WorldWideScience

Sample records for oleic acid suspension

  1. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension

    CERN Document Server

    Peterlin, Primoz; Kogej, Ksenija; Svetina, Sasa; Walde, Peter

    2009-01-01

    The interaction of two types of vesicle systems was investigated: micrometer-sized, giant unilamellar vesicles (GUVs) formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and submicrometer-sized, large unilamellar vesicles (LUVs) formed from oleic acid and oleate, both in a buffered aqueous solution (pH=8.8). Individual POPC GUVs were transferred with a micropipette into a suspension of oleic acid/oleate LUVs, and the shape changes of the GUVs were monitored using optical microscopy. The behavior of POPC GUVs upon transfer into a 0.8 mM suspension of oleic acid, in which oleic acid/oleate forms vesicular bilayer structures, was qualitatively different from the behavior upon transfer into a 0.3 mM suspension of oleic acid/oleate, in which oleic acid/oleate is predominantly present in the form of monomers and possibly non-vesicular aggregates. In both cases, changes in vesicle morphology were observed within tens of seconds after the transfer. Vesicle initially started to evaginate. In 60% of the...

  2. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s{sup −1} for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability. - Highlights: • Surfactants were employed to make adjustments of the hydrophobicity of particles. • Polar attractions between particles increased the viscosity considerably. • Loose and open flocculation was formed in CI/DA suspension. • The steric repulsion of oleic acid played a limited role in the stability.

  3. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    Science.gov (United States)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  4. Compact oleic acid in HAMLET.

    Science.gov (United States)

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara

    2005-11-07

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  5. Hydroxy-oleic acid, but not oleic acid, inhibits pharmacologic vascular responsiveness in isolated aortic tissue

    Science.gov (United States)

    Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is ...

  6. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids....

  7. Oleic Acid: Natural variation and potential enhancement in oilseed crops.

    Science.gov (United States)

    Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...

  8. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    Science.gov (United States)

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable.

  9. Increased isoprostane levels in oleic acid-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Koichi [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Koizumi, Tomonobu, E-mail: tomonobu@shinshu-u.ac.jp [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Nakagawa, Rikimaru [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Obata, Toru [Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo (Japan)

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  10. Oleic acid-embedded nanoliposome as a selective tumoricidal agent.

    Science.gov (United States)

    Jung, Sujin; Lee, Sangah; Lee, Hyejin; Yoon, Jaejin; Lee, E K

    2016-10-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cell), a molecular complex of human α-lactalbumin and oleic acid, is known to have selective cytotoxic activity against certain types of tumors. This cytotoxicity is known to stem from water-insoluble oleic acid. In this study, we manufactured an alternative complex using liposome as an oleic acid delivery vesicle. We named this nanolipoplex LIMLET (LIposome Made LEthal to Tumor cell). The LIMLET vesicle contained approximately 90,200 oleic acid molecules inserted into its lipophilic phospholipid bilayer and had a nominal mean diameter of 127nm. Using a WST-1 assay, its cytotoxicity against two cancer cell lines, MDA-MB-231 (human breast cancer) and A549 (human lung cancer), were tested. The results were compared with that of a normal cell line, Vero (from monkey kidney). We found that (1) LIMLET showed distinctive cytotoxicity against A549 and MDA-MB-231 cells, whereas bare liposomes (containing no oleic acid) had no toxicity, even at high concentrations, and (2) LIMLET demonstrated selective, concentration-dependent toxicity against the cancer cells: the LD50 values of MDA-MB-231 and A549 cells were 1.3 and 2.2nM LIMLET, respectively, whereas the LD50 of Vero was 5.7nM. The strength of the tumoricidal effect appeared to stem from the number of oleic acid molecules present. Our result suggests that LIMLET, like HAMLET, is an interesting nanolipoplex that can potentially be developed into tumor treatments.

  11. Facile method to synthesize oleic acid-capped magnetite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We described a simple one-step process for the synthesis of oleic acid-capped magnetite nanoparticles using the dimethyl sulfoxide(DMSO) to oxidize the precursor Fe~(2+) at 140℃.By adjusting the alkalinity of the reaction system,magnetite nanoparticles with two sizes of 4 and 7 nm could be easily achieved.And the magnetite nanoparticles coated by oleate were well-monodispersed in organic solvent.

  12. Regional pulmonary distribution of iodine-125-labeled oleic acid. Its relationship to the pattern of oleic acid edema and pulmonary blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Tarver, R.D.; Tsai, J.; Hedlund, L.W.; Sullivan, D.C.; Lischko, M.M.; Harris, C.C.; Effmann, E.L.; Putman, C.E.

    1986-02-01

    Oleic acid infusion in dogs produces a patchy, predominantly peripheral lesion on CT scans. This study correlates the pattern of oleic acid injury with the distribution of infused oleic acid and pulmonary blood flow. Radiolabeled oleic acid (I-125, 0.05 ml/kg) and radiolabeled 15-micron microspheres (Co-57) were infused into the right atria of 11 dogs. Oleic acid was given after the microspheres in six dogs and before microspheres in five dogs. Ten minutes after infusion, the lungs were removed. Four transverse slices (0.5 cm thick) of the lower lobes were taken from each dog and cubed. Samples were grouped into three regions of the transverse slice: outer, middle, and inner concentric rings. In both groups, I-125 (oleic acid) activity was greater in the outer than the middle and inner concentric layers (P less than 0.001). When Cobalt-57 microspheres were given before oleic acid, Cobalt-57 activity was marginally lower in the outer layer compared with the middle and inner layers. However, when oleic acid was given first, microsphere activity in the outer layer was significantly lower (P less than 0.001) than the middle layer. Thus, oleic acid was preferentially distributed to the peripheral regions of the lung, similar to the regions of injury on CT. This distribution did not correspond to the pattern of pulmonary blood flow as indicated by the microspheres. Immediately after oleic acid infusion, pulmonary blood flow to the periphery was reduced, reflecting a response to the predominantly peripheral injury by oleic acid.

  13. Comparison of the △12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes

    Institute of Scientific and Technical Information of China (English)

    ShanlinYu; Lijuan Pan; Qingli Yang; Ping Min; Zengkai Ren; Hongsheng Zhang

    2008-01-01

    △12fatty acid desaturase gene has been targeted as a logical candidate controlling the high oleate trait in peanut seeds. By RT-PCR method, the full-length cDNAs of △12 fatty acid desaturase gene were isolated from peanut (Arachis hypogaea L.) genotypes with normal and high ratio of oleic to linoleic acid, which were designated AhFAD2B and AhFAD2B', respectively. Sequence alignment of their coding regions revealed that an extra A was inserted at the position +442 bp of AhFAD2B' sequence of high oleic acid genotypes, which resulted in the shift of open reading frame and a truncated protein AhFAD2B', with the loss of one histidine box involved in metal ion complex required for the reduction of oxygen. Analysis of transcript level showed that the expression of △12 fatty acid desaturase gene in high oleic acid genotype was slightly lower than that in normal genotype. The enzyme activity experiment of yeast (Saccharomyces cerevisiae) cell transformed with AhFAD2B or AhFAD2B' proved that only AhFAD2B gene product showed significant A12 fatty acid desaturase activity,but AhFAD2B' gene product did not. These results suggested that the change of AhFAD2B' gene sequence resulted in lower activity or deactivation of △12 fatty acid desaturase in high oleic acid genotype.

  14. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  15. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    Science.gov (United States)

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  16. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    Directory of Open Access Journals (Sweden)

    Reda Elkacmi

    2016-01-01

    Full Text Available The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country’s climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification.

  17. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S. [Pillai’s Institute of Information Technology, Engineering, Media Studies and Research, Dr. K. M. Vasudevan Pillai’s Campus, New Panvel, 410 206 (India)

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  18. Effect of oleic acid on the allergenic properties of peanut and cashew allergens

    Science.gov (United States)

    Oleic acid is the major fatty acid in peanuts and cashews. There is limited information about its effect on peanut and cashew allergens during heating. The objective was to determine if heat treatment with oleic acid changes the allergenic properties of these nut proteins. Peanut and cashew protein...

  19. Energy absorption is reduced with oleic acid supplements in human short bowel syndrome.

    Science.gov (United States)

    Compher, Charlene W; Kinosian, Bruce P; Rubesin, Stephen E; Ratcliffe, Sarah J; Metz, David C

    2009-01-01

    Oleic acid premeal supplements have been described as a method to trigger the ileal brake and thus lengthen transit time and the opportunity for nutrient absorption. The aims of this study were to determine whether oleic acid supplements would lengthen transit time and improve absorption of nutrients in study participants with short bowel syndrome as well as affect diarrhea or patient weight. A double-blind, controlled, random-order crossover trial was conducted in 8 study participants with longstanding and severe short bowel syndrome, employing blue food color appearance, breath hydrogen testing, and radio-opaque markers as measures of transit time. Absorption of energy, protein, fat, and fluid was conducted by classic nutrient balance methods. Diarrhea was estimated by daily stool weight and number of bowel actions. Although 8 patients were enrolled, only 7 completed the study. Transit time was not significantly different between oleic acid and placebo treatment, although peptide YY levels trended higher with the oleic acid treatment. Energy absorption was reduced 14% by oleic acid, significantly more than the 3% reduction by placebo. Fat, protein, and fluid absorption was not changed significantly. Neither diarrhea nor patient body weight was changed by oleic acid. Energy absorption is reduced by oleic acid supplements in severe short bowel syndrome. The study may have lacked power to determine whether oleic acid affects diarrhea or body weight.

  20. The complex tale of the high oleic acid trait in peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Fatty acid composition of oil extracted from peanut (Arachis hypogaea L.) seed is an important quality trait. In particular, a high ratio of oleic (C18:1) relative to linoleic (C18:2) fatty acid (O/L = 10) results in a longer shelf life. Previous reports suggest that the high oleic (~80%) trait wa...

  1. Novel FAD2-1A alleles confer an elevated oleic acid phenotype in soybean seeds

    Science.gov (United States)

    To identify novel sources of genetic variation for the high oleic acid seed trait, soybean lines containing a higher fraction than normal of oleic acid were identified through a forward-genetic screen of a chemically mutagenized population. Mutant lines contained 30%- 40% of the oil fraction as olei...

  2. Molecular mechanism of flip-flop in triple-layer oleic-acid membrane: correlation between oleic acid and water.

    Science.gov (United States)

    Ngo, Van A; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2012-11-15

    We perform all-atom molecular dynamics simulations to study a pure oleic acid (OA) membrane in water that results in a triple-layer structure. We compute the pressure profiles to examine the hydrophobic and hydrophilic regions, and to estimate the surface tension (≈34.5 mN/m), which is similar to those of lipid membranes. We observe that the membrane of OAs having a large diffusion coefficient (0.4 × 10(-7) cm(2)/s) along the normal to the membrane is an ideal model to study oleic acid flip-flop. In the model, the membrane contains a middle layer serving as an intermediate for water and OAs to easily migrate (flip-flop) from one to other leaflets. Water molecules surrounding OA head-groups help to reduce the barriers at the hydrophobic interface to trigger flip-flop events. Within 500 ns, we observe 175 flip-flop events of OAs and 305 events of water traversing the membrane. The ratio of water passing rate (k(H(2)O) = 0.673 ns(-1)) to OA flip-flop rate (k(OA) = 0.446 ns(-1)) is 3/2. The ratio of the totally correlated water-OA events to the totally uncorrelated water-OA events, n(cor)/n(uncor), is also 3/2. The probability of the totally and partially correlated events is 69%. The results indicate that the trans-membrane movement of water and OAs is cooperative and correlated, and agrees with experimentally measured absorption rates. They support the idea that OA flip-flop is more favorable than transport by means of functional proteins. This study might provide further insight into how primitive cell membranes work, and how the interplay and correlation between water and fatty acids may occur.

  3. Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Hoopes, Matthew I.; Noro, Massimo G.; Longo, Marjorie L.; Faller, Roland

    2011-03-31

    The stratum corneum is the uppermost layer of the skin and acts as a barrier to keep out contaminants and retain moisture. Understanding the molecular structure and behavior of this layer will provide guidance for optimizing its biological function. In this study we use a model mixture comprised of equimolar portions of ceramide NS (24:0), lignoceric acid, and cholesterol to model the effect of the addition of small amounts of oleic acid to the bilayer at 300 and 340 K. Five systems at each temperature have been simulated with concentrations between 0 and 0.1 mol % oleic acid. Our major finding is that subdiffusive behavior over the 200 ns time scale is evident in systems at 340 K, with cholesterol diffusion being enhanced with increased oleic acid. Importantly, cholesterol and other species diffuse faster when radial densities indicate nearest neighbors include more cholesterol. We also find that, with the addition of oleic acid, the bilayer midplane and interfacial densities are reduced and there is a 3% decrease in total thickness occurring mostly near the hydrophilic interface at 300 K with reduced overall density at 340 K. Increased interdigitation occurs independent of oleic acid with a temperature increase. Slight ordering of the long non-hydroxy fatty acid of the ceramide occurs near the hydrophilic interface as a function of the oleic acid concentration, but no significant impact on hydrogen bonding is seen in the chosen oleic acid concentrations.

  4. Relationships between oleic and linoleic acid content and seed colonization by Cercospora kikuchii and Diaporthe phaseolorum

    Science.gov (United States)

    Seeds of soybean lines with the mid-oleic phenotype have sometimes shown increased colonization by fungi during later stages of development in the field. To approach this phenomenon experimentally, we manipulated the oleic and linoleic acid content in seeds of two near-isogenic soybean lines by all...

  5. Oleic acid disorders stratum corneum lipids in Langmuir monolayers.

    Science.gov (United States)

    Mao, Guangru; VanWyck, Dina; Xiao, Xin; Mack Correa, M Catherine; Gunn, Euen; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2013-04-16

    Oleic acid (OA) is well-known to affect the function of the skin barrier. In this study, the molecular interactions between OA and model stratum corneum (SC) lipids consisting of ceramide, cholesterol, and palmitic acid (PA) were investigated with Langmuir monolayer and associated techniques. Mixtures with different OA/SC lipid compositions were spread at the air/water interface, and the phase behavior was tracked with surface pressure-molecular area (π-A) isotherms. With increasing OA levels in the monolayer, the films became more fluid and more compressible. The thermodynamic parameters derived from π-A isotherms indicated that there are preferential interactions between OA and SC lipids and that films of their mixtures were thermodynamically stable. The domain structure and lipid conformational order of the monolayers were studied through Brewster angle microscopy (BAM) and infrared reflection absorption spectroscopy (IRRAS), respectively. Results indicate that lower concentrations of OA preferentially mix with and disorder the ceramide-enriched domains, followed by perturbation of the PA-enriched domains and disruption of SC lipid domain separation at higher OA levels.

  6. Measurements of Oleic Acid among Individual kernels Harvested from Test Plots of Purified Runner and Spanish High Oleic Seed

    Science.gov (United States)

    Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or they could be immature and not fully expressing th...

  7. Measurements of Oleic Acid Among Individual Kernels Harvested from Test Plots of Purified Runner and Spanish High Oleic Seed

    Science.gov (United States)

    Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or kernels not meeting threshold could be immature a...

  8. Enhanced uptake of water by oxidatively processed oleic acid

    Directory of Open Access Journals (Sweden)

    A. Asad

    2004-01-01

    Full Text Available A quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which additional water is taken up more gradually. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the 'free' and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified.

  9. Enhanced uptake of water by oxidatively processed oleic acid

    Directory of Open Access Journals (Sweden)

    A. Asad

    2004-07-01

    Full Text Available A quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which no additional water is taken up. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the "free" and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified.

  10. Biocatalyzed acidolysis of soybean oil triacylglycerols to increase oleic acid content.

    Science.gov (United States)

    Cossignani, Lina; Damiani, Pietro; Simonetti, M Stella; Manes, Jordi

    2004-10-15

    Lipase catalyzed acidolysis of triacylglycerols (TAG) of soybean oil with oleic acid in organic solvent was studied; immobilized lipase from Rhizomucor miehei was used and the effects of reaction time, incubation temperature and enzyme load on TAG total and positional fatty acid (FA) percentage compositions were investigated. The results show that oleic acid incorporation was high after 24 and 48 h, while after 72 h a lower level of oleic acid in TAG was observed. Moreover, for the reactions carried out at 30 and 40 degrees C, it was observed that the oleic acid level was about 46.5% while ligtly higher values (about 49%) were observed at 50 degrees C; however, under this last condition, the modification of sn-2 position FA composition was higher. Finally, the variable enzyme load resulted also important on the incorporation of oleic acid; in particular, even if the value of 10% (w/w) of enzyme load resulted in a lightly lower incorporation of oleic acid in soybean oil TAG (about 45%), in this situation a minimal modification of sn-2 position FA composition was obtained.

  11. Interaction study of paracetamol with saturated (capric) and unsaturated (oleic) fatty acids.

    Science.gov (United States)

    Misra, Arun Kumar; Misra, Manju; Panpalia, Gopal Madanlal; Dorle, Avinash Keshav

    2007-01-01

    Interaction study of paracetamol with saturated and unsaturated fatty acids, namely, capric and oleic acid have been performed by using serial dilution method, release behavior, FT-IR, and DSC study. Preliminary investigations by release studies indicated the possibility of interaction between paracetamol and fatty acids. UV-studies failed to detect any interaction between paracetamol and fatty acids. The possibility of hydrogen bonding between amino group of paracetamol and carbonyl group of fatty acids was revealed by FT-IR study. Polymorphic transition of paracetamol in the binary sample of paracetamol-capric acid was identified by DSC studies. However, no such possibility was detected in paracetamol-oleic acid mixture.

  12. Lewis Acidic Ionic Liquids As New Addition Catalyst For Oleic Acid To Monoestolide Synthesis

    Directory of Open Access Journals (Sweden)

    Nadia Farhana Adnan

    2011-09-01

    Full Text Available Estolide compound has a large potential in many industrial applications such as biodegradable lubricants and in cosmetic formulation. In this study, monoestolide can be prepared by addition reaction of oleic acid under vacuum-reflux and solvent free condition for 10 hours at 85 °C in the presence of solid zinc chloride anhydrous (ZnCl2, choline chloride (ChCl and ionic liquids (IL ChCl-ZnCl2, ChCl-FeCl3, ChCl-SnCl2, ChCl-CuCl2 as homogenous acid catalysts. These reactions were compared with common homogenous catalyst namely sulfuric acid (H2SO4. The FTIR analysis show that addition reaction using the above catalysts showed the presence of three new peaks at 1732 cm-1 for C=O ester, 967.0 cm-1 for trans-CH=CH and 1176 cm-1 for C-O-C which confirmed the existence of monoestolide. The LC-MS results showed peak for the present of new monoestolides at retention time (tR 12.3 min corresponding to m/z 563.48. Among the IL, ChCl-ZnCl2 surprisingly exhibited higher activity which is 98 % acid oleic conversion and 80 % selective for the synthesis of monoestolides. As a result, this IL gave two potential functions as a solvent as well as a green catalyst for monoestolide synthesis from oleic acid.

  13. Expected genetic response for oleic acid content in pork.

    Science.gov (United States)

    Ros-Freixedes, R; Reixach, J; Tor, M; Estany, J

    2012-12-01

    Intramuscular fat (IMF) and oleic acid (C18:1) content in pork are important issues for the pig industry and consumers. Data from a purebred Duroc line were used to i) estimate the genetic parameters of IMF and C18:1 and their genetic correlations with lean growth components, and ii) evaluate the opportunities for genetically improving C18:1 in IMF. The data set used for estimating genetic parameters consisted of 93,920 pigs, from which 85,194 had at least 1 record for BW or backfat thickness (BT) at 180 d and 943 for IMF and C18:1 at 205 d. Intramuscular fat content and C18:1, expressed as percentage of total fatty acids, were determined in the gluteus medius muscle by gas chromatography. Genetic parameters for C18:1 were estimated under a Bayesian 4-trait multivariate animal mixed model. Heritability of C18:1 was 0.50, with a probability of 95% of being greater than 0.37. Genetic correlations of C18:1 with BW, BT, and IMF were 0.11, 0.22, and 0.47, respectively (with a probability of 95% of being greater than -0.07, 0.04, and 0.27, respectively). Genetic responses were evaluated by deterministic simulation using a half-sib recording scheme for C18:1 and the previously estimated parameters. The C18:1 content is expected to exhibit only minor changes in selection programs directed at growth rate but to decrease in those focusing on lean content. Maximum expected response in C18:1 at no lean growth loss (i.e., at no change in BW and BT) was 0.44%, with a resulting correlated response in IMF of 0.15%. However, because lean growth is emphasized in the breeding goal, the resulting response scenarios are more constrained. We concluded that there is evidence to support the idea that C18:1 in IMF is genetically determined and defined selection strategies can lead to response scenarios in which C18:1, IMF, BT, and BW can be simultaneously improved. However, if adopted, the potential for lean growth would be reduced. The extent to which it is affordable relies on how much

  14. Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability.

    Science.gov (United States)

    Alves, M M; Vieira, J A; Pereira, R M; Pereira, M A; Mota, M

    2001-01-01

    Oleic acid toxicity and biodegradability were followed during long-term operation of two similar anaerobic fixed-bed units. When treating an oleate based effluent, the sludge from the bioreactor that was acclimated with lipids during the first operation period, showed a higher tolerance to oleic acid toxicity (IC50 = 137 mg/l) compared with the sludge fed with a non-fat substrate (IC50 = 80 mg/l). This sludge showed also the highest biodegradation capacity of oleic acid, achieving maximum methane production rates between 33 and 46 mlCH4(STP)/gVS.day and maximum percentages of methanization between 85 and 98% for the range of concentrations between 500 and 900 mg oleate/l. When oleate was the sole carbon source fed to both digesters, the biomass became encapsulated with organic matter, possibly oleate or an intermediate of its degradation, e.g. stearate that was degraded at a maximum rate of 99 mlCH4(STP)/gVS.day. This suggests the possibility of using adsorption-degradation cycles for the treatment of LCFA based effluents. Both tolerance to toxicity and biodegradability of oleic acid were improved by acclimatization with lipids or oleate below a threshold concentration.

  15. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2010-10-01

    Full Text Available Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Generally, it is formed by transesterification reaction of triglycerides in the vegetable oil or animal fat with an alcohol. In this work, esterification reaction was carried out using oleic acid, methanol and sulphuric acid as a catalyst by reactive distillation method. In order to determine the best conditions for biodiesel production by reactive distillation, the experiments were carried out at different temperature (100 oC, 120 oC, 150 oC and 180 oC using methanol/oleic acid molar ratios (1:1, 5:1, 6:1, 7:1, 8:1, catalyst/ oleic acid molar ratios (0.5%wt, 1%wt, 1.5%wt and 2%wt and reaction times (15, 30, 45, 60, 75 and 90 minutes. Results at temperature 180 oC, methanol/ oleic acid molar ratio of 8:1, amount of catalyst 1% for 90 minute reaction time gives the highest conversion of oleic acid above 0.9571. Biodiesel product from oleic acid was analysed by ASTM (American Standard for Testing Material. The results show that the biodiesel produced has the quality required to be a diesel substitute. ©2010 BCREC UNDIP. All rights reserved(Received: 1st January 2010, Revised: 18th March 2010; Accepted: 18th March 2010[How to Cite: K. Kusmiyati, A. Sugiharto. (2010. Production of Biodiesel from Oleic Acid and Methanol by Reactive Distillation. Bulletin of Chemical Reaction Engineering and Catalysis, 5(1: 1-6. doi:10.9767/bcrec.5.1.37.1-6][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.5.1.37.1-6

  16. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    Science.gov (United States)

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  17. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Emily A Clementi

    Full Text Available HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize

  18. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    Science.gov (United States)

    Clementi, Emily A; Wilhelm, Kristina R; Schleucher, Jürgen; Morozova-Roche, Ludmilla A; Hakansson, Anders P

    2013-01-01

    HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize and/or present the

  19. Dietary non-esterified oleic Acid decreases the jejunal levels of anorectic N-acylethanolamines

    DEFF Research Database (Denmark)

    Diep, Thi Ai; Madsen, Andreas N; Krogh-Hansen, Sandra

    2014-01-01

    mice respond to dietary fat (olive oil) by reducing levels of anorectic NAEs, and 3) whether dietary non-esterified oleic acid also can decrease levels of anorectic NAEs in mice. We are searching for the fat sensor in the intestine, which mediates the decreased levels of anorectic NAEs. METHODS: Male...... of anorectic NAEs in mice. CONCLUSIONS: These results suggest that the down-regulation of the jejunal level of anorectic NAEs by dietary fat is not restricted to rats, and that the fatty acid component oleic acid, in dietary olive oil may be sufficient to mediate this regulation. Thus, a fatty acid sensor may...

  20. Dietary non-esterified oleic Acid decreases the jejunal levels of anorectic N-acylethanolamines

    DEFF Research Database (Denmark)

    Diep, Thi Ai; Madsen, Andreas N; Krogh-Hansen, Sandra;

    2014-01-01

    mice respond to dietary fat (olive oil) by reducing levels of anorectic NAEs, and 3) whether dietary non-esterified oleic acid also can decrease levels of anorectic NAEs in mice. We are searching for the fat sensor in the intestine, which mediates the decreased levels of anorectic NAEs. METHODS: Male...... of anorectic NAEs in mice. CONCLUSIONS: These results suggest that the down-regulation of the jejunal level of anorectic NAEs by dietary fat is not restricted to rats, and that the fatty acid component oleic acid, in dietary olive oil may be sufficient to mediate this regulation. Thus, a fatty acid sensor may...

  1. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  2. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue.

    Directory of Open Access Journals (Sweden)

    Christina Camell

    Full Text Available Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding increases adipose tissue (AT leukocytes and alters the inflammatory profile of AT macrophages. We have seen that short term high fat feeding to C57BL/6J male mice increases palmitic and oleic acid within AT depots, but oleic acid increase is highest in the mesenteric AT (MAT. In vitro, oleic acid increases M2 macrophage markers (CD206, MGL1, and ARG1 in a murine macrophage cell line, while addition of palmitic acid is able to inhibit that increase. Three day supplementation of a chow diet, with oleic acid, induced an increase in M2 macrophage markers in the MAT, but not in the epididymal AT. We tested whether increases in M2 macrophages occur during short term ad lib feeding of a high fat diet, containing oleic acid. Experiments revealed two distinct populations of macrophages were altered by a three day high milk-fat diet. One population, phenotypically intermediate for F4/80, showed diet-induced increases in CD206, an anti-inflammatory marker characteristic of M2 macrophages intrinsic to the AT. Evidence for a second population, phenotypically F4/80(HICD11b(HI macrophages, showed increased association with the MAT following short term feeding that is dependent on the adhesion molecule, ICAM-1. Collectively, we have shown that short term feeding of a high-fat diet changes two population of macrophages, and that dietary oleic acid is responsible for increases in M2 macrophage polarization.

  3. Pressure-induced Phase Transition in Oleic Acid Studied by Raman Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    FAN Ya; ZHOU Jing; LI Shuang; GUAN Fu-Ying; XU Da-Peng

    2011-01-01

    High-pressure Raman studies up to 0.84 GPa are performed on oleic acid.Spectral analysis indicates that oleic acid undergoes a pressure-induced phase transition in the 0.29-0.36 GPa range.Only one high-pressure phase below 0.84 GPa is present,in which the polymethylene chains take the ordered all-trans conformation,with the methyl end of the chains exhibiting the ordered tt chain-end conformation and the olefin group taking the skewcis-skew' conformation.The conformational characters of the oleic acid molecule show that the high-pressure phase is the same as the low-temperature crystalline γ phase.The pressure-induced phase transition is typical of first-order transitions and the transition path during compression is different from that during cooling.Oleic acid (C1sH34O2) is one of the unsaturated fatty acids that appear naturally in a liquid state.It is one of the most common components of human diets,preventing coronary disease and breast cancer and benefiting people with diabetes.[1] A molecule of oleic acid possesses a carbon double bond,C =C,which leads to the occurrence of a phase transition when pressure is applied.[2] Therefore,the significance of high-pressure processing has recently increased as an alternative method of food preservation.So far some physical properties of oleic acid under pressures below 1 GPa have been investigated using a piston-cylinder device as a high-pressure apparatus.[2-10] However,no high-pressure Raman or any other in-situ experimental research on pressure-induced phase transition in oleic acid has been reported.In addition,the freezing point of oleic acid is 13.3℃,below which oleic acid crystallizes in three forms,namely,α,β and γ[11-17]%High-pressure Raman studies up to 0.84 Gpa are performed on oleic acid. Spectral analysis indicates that oleic acid undergoes a pressure-induced phase transition in the 0.29-0.36 Gpa range. Only one high-pressure phase below 0.84 Gpa is present, in which the polymethylene chains take the

  4. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Science.gov (United States)

    Soares, Paula I. P.; Laia, César A. T.; Carvalho, Alexandra; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João Paulo

    2016-10-01

    Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of -120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  5. Pressure-induced Phase Transition in Oleic Acid Studied by Raman Spectroscopy

    Science.gov (United States)

    Fan, Ya; Zhou, Jing; Li, Shuang; Guan, Fu-Ying; Xu, Da-Peng

    2011-11-01

    High-pressure Raman studies up to 0.84 GPa are performed on oleic acid. Spectral analysis indicates that oleic acid undergoes a pressure-induced phase transition in the 0.29-0.36 GPa range. Only one high-pressure phase below 0.84 GPa is present, in which the polymethylene chains take the ordered all-trans conformation, with the methyl end of the chains exhibiting the ordered tt chain-end conformation and the olefin group taking the skew-cis-skew' conformation. The conformational characters of the oleic acid molecule show that the high-pressure phase is the same as the low-temperature crystalline γ phase. The pressure-induced phase transition is typical of first-order transitions and the transition path during compression is different from that during cooling.

  6. Neutron scattering shows a droplet of oleic acid at the center of the BAMLET complex.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Gilbert, Elliot P; Doherty, Greg; Knott, Robert B; Church, W Bret

    2017-07-01

    The anti-cancer complex, Bovine Alpha-lactalbumin Made LEthal to Tumors (BAMLET), has intriguing broad-spectrum anti-cancer activity. Although aspects of BAMLET's anti-cancer mechanism are still not known, it is understood that it involves the oleic acid or oleate component of BAMLET being preferentially released into cancer cell membranes leading to increased membrane permeability and lysis. The structure of the protein component of BAMLET has previously been elucidated by small angle X-ray scattering (SAXS) to be partially unfolded and dramatically enlarged. However, the structure of the oleic acid component of BAMLET and its disposition with respect to the protein component was not revealed as oleic acid has the same X-ray scattering length density (SLD) as water. Employing the difference in the neutron SLDs of hydrogen and deuterium, we carried out solvent contrast variation small angle neutron scattering (SANS) experiments of hydrogenated BAMLET in deuterated water buffers, to reveal the size, shape, and disposition of the oleic acid component of BAMLET. Our resulting analysis and models generated from SANS and SAXS data indicate that oleic acid forms a spherical droplet of oil incompletely encapsulated by the partially unfolded protein component. This model provides insight into the anti-cancer mechanism of this cache of lipid. The model also reveals a protein component "tail" not associated with the oleic acid component that is able to interact with the tail of other BAMLET molecules, providing a plausible explanation of how BAMLET readily forms aggregates. Proteins 2017; 85:1371-1378. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    Science.gov (United States)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  8. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  9. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  10. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings.

    Science.gov (United States)

    Edwards, J Vincent; Howley, Phyllis; Cohen, I Kelman

    2004-10-13

    Human neutrophil elastase (HNE) is elevated in chronic wounds. Oleic acid albumin formulations that inhibit HNE may be applicable to treatment modalities for chronic wounds. Oleic acid/albumin formulations with mole ratios of 100:1, 50:1, and 25:1 (oleic acid to albumin) were prepared and found to have dose response inhibition properties against HNE. The IC50 values for inhibition of HNE with oleic acid/albumin formulations were 0.029-0.049 microM. Oleic acid/albumin (BSA) formulations were bound to positively and negatively charged cotton wound dressings and assessed for elastase inhibition using a fiber bound formulation in an assay designed to mimic HNE inhibition in the wound. Cotton derivatized with both carboxylate and amine functional groups were combined with oleic acid/albumin formulations at a maximum loading of 0.030 mg oleic acid + 0.14 mg BSA/mg fiber. The IC50 values for inhibition of HNE with oleic acid/albumin formulations bound to derivatized cotton were 0.26-0.42 microM. Release of the oleic acid/albumin formulation from the fiber was measured by measuring oleic acid levels with quantitative GC analysis. Approximately, 35-50% of the fiber bound formulation was released into solution within the first 15 min of incubation. Albumin was found to enhance the rate of elastase hydrolysis of the substrate within a concentration range of 0.3-50 g/L. The acceleration of HNE substrate hydrolysis by albumin required increased concentration of inhibitor in the formulation to obtain complete inhibition of HNE. Oleic acid formulations prepared with albumin enable transport, solubility and promote dose response inhibition of HNE from derivatized cotton fibers under aqueous conditions mimicking the chronic wound.

  11. Inheritance of Erucic Acid, Glucosinolate, and Oleic Acid Contents in Rapeseed (Brassica napus L.)

    Institute of Scientific and Technical Information of China (English)

    Huang Ze-su; Laosuwan Paisan; Machikowa Thitiporn; Chen Ze-hui; Dai Wen-dong; Tang Rong; Li De-zhen

    2012-01-01

    This study was conducted to verify the inheritance of certain characters of rapeseed including erucic acid, glucosinolate and oleic acid contents by using generation mean analysis. The cross of lines Ⅲ174×Zi20 (F1), F2, BC1 (F1×P1), BC2 (F1×P2), and parents (P1 and P2) were evaluated in the field. Data were measured on individual plants for oleic acid, erucic acid, and glucosinolate contents. Transgressive variations in F2 population were observed for oleic acid content, indicating that dominance and recessive genes distributed in both parents. Scaling test indicated that the effects of genes controlling these characters did not follow the additivedominance model. The data for three characters were analyzed using six parameter models and found that one or more types of epistatic gene effects were important for glucosinolate content. High broad sense heritabilities were obtained for erucic acid, oleic acid, and glucosinolate contents with the values of 98.97%, 93.68%, and 86.17%, respectively. Two major gene pairs were found to control the expression of erucic acid and oleic acid contents, while three major gene pairs were detected to control glucosinolate content.

  12. Water dispersible oleic acid-coated Fe{sub 3}O{sub 4} nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Shete, P.B.; Patil, R.M.; Tiwale, B.M.; Pawar, S.H., E-mail: pawar_s_h@yahoo.com

    2015-03-01

    Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe{sub 3}O{sub 4} MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core–shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles synthesized FeCl{sub 2} as the sole source by alkaline precipitation. • Hydrophilicity imparted to OA-Fe{sub 3}O{sub 4} MNPs. • Improved heating induction ability. • Highly stabilized colloidal suspension. • Improved biocompatiblity.

  13. Application of hydrothermally produced TiO{sub 2} nanotubes in photocatalytic esterification of oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manique, Márcia Cardoso, E-mail: marciamanique@yahoo.com.br; Silva, Aline Posteral; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2016-04-15

    Highlights: • A hydrothermal method was employed to synthesize TiO{sub 2} nanotubes. • TiO{sub 2} nanotubes were studied for photocatalytic esterification of oleic acid. • Optimum conditions were obtained at a concentration of 15% (w/w) and a molar ratio 3:1 (methanol:oleic acid). • The greater number of hydroxyl groups may have contributed to a low yield of ester versus P25. - Abstract: This study investigated the use of TiO{sub 2} nanotubes (TNTs) as photocatalysts in the esterification of fatty acids for biodiesel production. The TNTs were synthesized via a hydrothermal route and evaluated for their crystallinity, morphology, surface area and photocatalytic activity compared with a TiO{sub 2} P25 standard. Optimum photocatalytic conditions were obtained using a 15% concentration of catalyst (w/w) and a 3:1 molar ratio of methanol to oleic acid. The highest yield of methyl oleate obtained was 86.0% when P25 was used as a photocatalyst. The lowest band gap energy was obtained with the TNT sample synthesized at 110 °C for 48 h (E{sub g} = 3.08 eV), which also exhibited the highest rate of oleic acid esterification (59.3%) among all the investigated TNTs. We also observed that, in addition to the band gap, other factors such as the crystalline phase of the TNTs and their surface area were important in photocatalytic performance.

  14. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paula I.P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Laia, César A.T. [Laboratório Associado para a Química Verde (LAQV), REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, Alexandra [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Pereira, Laura C.J.; Coutinho, Joana T. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066 Bobadela LRS (Portugal); Ferreira, Isabel M.M., E-mail: imf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Novo, Carlos M.M. [Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT/UNL, 1349-008 Lisboa (Portugal); Borges, João Paulo, E-mail: jpb@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-10-15

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe{sub 3}O{sub 4}, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  15. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens

    Science.gov (United States)

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as a-lactalbumin and ß-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or c...

  16. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property.

  17. Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum

    Directory of Open Access Journals (Sweden)

    Abinaya Gurunathan

    2016-01-01

    Full Text Available To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicumand to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti(dengue vector and Culex quinquefasciatus(filarial vector. Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase. Ecdysone 20-monooxygenase assay (radioimmuno assay was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm and C. quinquefasciatus (LC50/24 h - 12.5 ppm than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively. The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatusthan the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicummay be considered as a potent source of mosquito larvicidal property.

  18. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S.

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  19. Interconnection of nanoparticles within 2D superlattices of PbS/oleic acid thin films.

    Science.gov (United States)

    Simon, Paul; Bahrig, Lydia; Baburin, Igor A; Formanek, Petr; Röder, Falk; Sickmann, Jan; Hickey, Stephen G; Eychmüller, Alexander; Lichte, Hannes; Kniep, Rüdiger; Rosseeva, Elena

    2014-05-21

    Make it connected! 2D close-packed layers of inorganic nanoparticles are interconnected by organic fibrils of oleic acid as clearly visualized by electron holography. These fibrils can be mineralised by PbS to transform an organic-inorganic framework to a completely interconnected inorganic semiconducting 2D array.

  20. Interesterification of Milk Fat with Oleic Acid Catalyzed by Immobilized Rhizopus oryzae Lipase

    NARCIS (Netherlands)

    OBA, T; Witholt, B.

    1994-01-01

    Milk fat was interesterified with oleic acid by catalysis of an immobilized lipase in a microaqueous two-phase system. A commercial lipase from Rhizopus oryzae and a controlled pore glass carrier were selected for preparation of an immobilized lipase. The prepared immobilized lipase showed a Michael

  1. INTERESTERIFICATION OF MILK-FAT WITH OLEIC-ACID CATALYZED BY IMMOBILIZED RHIZOPUS-ORYZAE LIPASE

    NARCIS (Netherlands)

    OBA, T; WITHOLT, B

    1994-01-01

    Milk fat was interesterified with oleic acid by catalysis of an immobilized lipase in a microaqueous two-phase system. A commercial lipase from Rhizopus oryzae and a controlled pore glass carrier were selected for preparation of an immobilized lipase. The prepared immobilized lipase showed a Michael

  2. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    Directory of Open Access Journals (Sweden)

    J. O. Woo

    2014-01-01

    Full Text Available Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.

  3. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol.

    Science.gov (United States)

    Liu, Tiantian; Li, Zhilong; Li, Wei; Shi, Congjiao; Wang, Yun

    2013-04-01

    A solid acid catalyst, prepared by sulfonating carbonized corn straw, was proved to be an efficient and environmental benign catalyst for the esterification of oleic acid and methanol. Various synthetic parameters, such as carbonization temperature and time were systematically examined. It was found that the catalyst exhibited the highest acid density of 2.64 mmol/g by NaOH titration. A quantitative yield (98%) of ester was achieved, using the most active sulfonated catalyst at 333 K with a 7 wt.% catalyst/oleic acid ratio for 4h, at a 7:1 M ratio of methanol/oleic acid, while the commercial available Amberlyst-15 only gave 85% yield under the same reaction condition.

  4. Tensile properties and water absorption of zein sheets plasticized with oleic and linoleic acids.

    Science.gov (United States)

    Budi Santosa, F X; Padua, G W

    1999-05-01

    Corn zein has been investigated for fabrication of biodegradable packaging materials. Our objective was to investigate the effect of added plasticizers, oleic and linoleic acids, on tensile properties and water absorption of zein sheets. Moldable resins were precipitated from aqueous ethanol dispersions of zein and fatty acids and rolled into sheets of approximately 0.5 mm in thickness. To increase plasticization effects, zein-oleic acid sheets were replasticized by heating them in fatty acid baths. Plasticization resulted in flexible sheets of high clarity, low modulus, and high elongation and toughness, although low tensile strength. Water absorption of zein sheets was lowered by plasticization, attributed in part to reduced mass fraction of zein. Polymerization of linoleic acid may have sealed off pores on sheet surfaces, thus slowing water absorption.

  5. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-02-01

    Full Text Available Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2 is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78% and a corresponding reduction in polyunsaturated fatty acids (Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60 in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha

  6. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    Science.gov (United States)

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  7. Synthesis of oleic acid based esters as potential basestock for biolubricant production

    OpenAIRE

    Salih, Nadia; Salimon, Jumat; Yousif, Emad

    2011-01-01

    Ester derivatives of 9, 10-dihydroxystearic acid were prepared and characterized. The processes involved were epoxidation of oleic acid, opening of the oxirane ring, and esterification. The structures of the products were confirmed by FTIR, 1H- and 13C-NMR. The low-temperature properties of each product were characterized using the pour point test. Other physical properties, such as flash point and viscosity, were also determined. The results show that desirable low temperature pro...

  8. Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane.

    Science.gov (United States)

    Doig, Michael; Warrens, Chris P; Camp, Philip J

    2014-01-14

    The structure and friction of fatty acid surfactant films adsorbed on iron oxide surfaces lubricated by squalane are examined using large-scale molecular dynamics simulations. The structures of stearic acid and oleic acid films under static and shear conditions, and at various surface coverages, are described in detail, and the effects of unsaturation in the tail group are highlighted. At high surface coverage, the measured properties of stearic acid and oleic acid films are seen to be very similar. At low and intermediate surface coverages, the presence of a double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the surfactant film and less layering of the lubricant near to the film. The kinetic friction coefficient is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication regime. Lubricant penetration and layering are observed to be correlated with friction coefficient. The friction coefficient with oleic acid depends only weakly on surface coverage, while stearic acid admits more lubricant penetration, and its friction coefficient increases significantly with decreasing surface coverage. Connections between film structure and friction are discussed.

  9. Effect of oleic, lauric and myristic acids on phenylephrine-induced contractions of isolated rat vas deferens.

    Science.gov (United States)

    Arruzazabala, M L; Pérez, Y; Ravelo, Y; Molina, V; Carbajal, D; Mas, R; Rodríguez, E

    2011-09-01

    D-004, a lipid extract of Roystonea regia fruits that contains oleic, lauric and myristic acids as major components inhibits alpha1-adrenoreceptors-mediated contractile responses in isolated rat vas deferens and prostate trips; no study has demonstrated a similar effect for oleic, lauric or myristic acids individually. Therefore, the effects of D-004 (250 microg/mL), oleic (100 microg/mL), lauric (50 microg/mL) or myristic (25 microg/mL) acids and their combined effects on phenylephrine (PHE: 10(-7)-10(-4) mol/L) induced contractions has been studied. No treatment changed the basal tone of the preparations, but all inhibited PHE-induced contractions. D-004 produced the highest inhibition, followed by lauric acid, which was more effective than myristic and oleic acids against PHE-induced contractions of control group. D-004 and the mixture of the three acids produced similar inhibitions.

  10. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    Science.gov (United States)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  11. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid...... structure and composition (P = 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long...

  12. Production and characterization of ice cream with high content in oleic and linoleic fatty acids

    DEFF Research Database (Denmark)

    Marín-Suárez, Marta; García Moreno, Pedro Jesús; Padial-Domínguez, Marta

    2016-01-01

    Ice creams produced with unsaturated fats rich in oleic (OO, 70.7% of oleic) and linoleic (LO, 49.0% of linoleic) fatty acids, were compared to ice cream based on saturated coconut oil (CO, 50% of lauric acid). The globule size distribution of OO mix during aging (72 h at 4°C) followed a similar...... trend to CO mix, being stable after 48 h; whereas LO mix destabilized after 24 h. CO mix showed higher destabilization during ice cream production, but no significant differences among fats were observed in the particle size of the ice cream produced. The overrun was also lower for OO and LO ice creams...... (34.19 and 27.12%, respectively) compared to CO based ice cream (45.06%). However, an improved melting behavior, which gradually decreased from 88.69% for CO to 66.09% for LO ice cream, was observed....

  13. Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Tiedan Chen

    2014-01-01

    Full Text Available Graphene oxide (GO nanosheets were prepared by modified Hummers and Offeman methods. Furthermore, oleic acid (OA capped graphene oxide (OACGO nanosheets were prepared and characterized by means of Fourier transform-infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. At the same time, the friction and wear properties of OA capped graphite powder (OACG, OACGO, and oleic acid capped precipitate of graphite (OACPG as additives in poly-alpha-olefin (PAO were compared using four-ball tester and SRV-1 reciprocating ball-on-disc friction and wear tester. By the addition of OACGO to PAO, the antiwear ability was improved and the friction coefficient was decreased. Also, the tribological mechanism of the GO was investigated.

  14. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability.

  15. Facile synthesis and shape evolution of oleic acid decorated Cu2O microcrystals

    Science.gov (United States)

    Xu, Bin; Cao, Xiaohai; Zhu, Bingchun; Lou, Baiyang; Ma, Xiaocun; Li, Xiao; Wang, Yuguang

    2015-11-01

    A facile synthetic method of oleic acid decorated Cu2O microcrystals has been developed by thermal decomposition of copper formate-octylamine complexes in paraffin using oleic acid as dispersing agent. This new method showed many advantages, which include free-reducing agent, enhancing antioxidant properties of Cu2O and good dispersity in paraffin, etc. The phase structure and morphology were investigated by means of XRD, SEM and TEM. It is found that the reaction time and temperature play the important roles in the crystallite morphology. With the increase of the reaction time, the Cu2O rhombic dodecahedron is gradually transformed into the spherical particle by intraparticle ripening. The shape evolution of Cu2O microcrystals can be accelerated with the increase of temperature.

  16. A modified PCR protocol for consistent amplification of fatty acid desaturase (FAD) alleles in marker-assisted backcross breeding for high oleic trait in peanut

    Science.gov (United States)

    High oleic acid, such as is found in olive oil, is desirable for the healthy cholesterol-lowering benefits. The oxidative stability of the oil with high oleic acid also gives longer “shelve life” for peanut products. These benefits drive the breeding effort toward developing high oleic peanuts worl...

  17. Effect of terbutaline on alveolar liquid clearance after oleic acid-induced lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; YANG Tian-de; LI Hong; DU Zhi-yong

    2006-01-01

    Objective: To investigate whether terbutaline affects alveolar liquid clearance after oleic acid-induced lung injury in rats.Methods: Forty healthy Wistar rats ( weighing 250-280 g) were randomly divided into five groups ( n = 8 in each group): the normal control group ( control group),oleic acid injury group ( injury group), terbutaline-treated group (terbutaline group ), terbutaline plus amiloridetreated group (terbutaline + amiloride group ) and terbutaline plus ouabain-treated group (terbutaline + ouabain group). Acute lung injury model was induced by intravenous oleic acid (0. 25 mi/kg body weight). 24 hours later, 1.5 μCi 125I-labeled 5% albumin solution (5 ml/kg body weight) was dripped into the lungs through trachea.The alveolar liquid clearance rate, extravascular lung water content, and arterial blood gas were measured 1 hour thereafter.Results: At 24 hours after infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia,with the alveolar liquid clearance rate decreased by 49.2 % and the extravascular lung water content elevated by 47.9%. Compared with the rats in the injury group,terbutaline (10-4 mol/L ) significantly increased the alveolar liquid clearance rate, decreased the extravascular lung water content and improved hypoxemia. The effect of terbutaline was partly blocked by amiloride and ouabain,which were inhibitors of sodium transport. Terbutaline increased the alveolar liquid clearance rate by 63.7 %, and amiloride and ouabain reduced the alveolar liquid clearance rate by 54.7% and 56.8%, respectively.Conclusions: Terbutaline can accelerate alveolar liquid clearance through increasing sodium transport to attenuate pulmonary edema, thus improving gas exchange,which may have therapeutical effect on pulmonary edema after acute lung injury.

  18. Design and evaluation of Lumefantrine – Oleic Acid Self Nanoemulsifying Ionic Complex for Enhanced Dissolution

    Directory of Open Access Journals (Sweden)

    Pradeep Vavia

    2013-03-01

    Full Text Available Background:Lumefantrine, an antimalarial molecule has very low and variable bioavailability owing to its extremely poor solubility in water. It is recommended to be taken with milk to enhance its solubility and bioavailability. The aim of present study was to develop a Self Nanoemulsifying Delivery system (SNEDs of lumefantrine (LF to achieve rapid and complete dissolution independent of food-fat and surfactant in dissolution media.Methods:Solubility of LF in oil, co-solvent/co-surfactant and surfactant solution and emulsification efficiency of surfactant were analyzed to optimize the LF loaded self nanoemulsifying preconcentrate. Effect of LF-oleic acid complexation on emulsification, droplet size, zeta potential and dissolution were investigated. Effect of milk concentration and fat content on saturation solubility and dissolution of LF was investigated. Dissolution of marketed formulation and LF-SNEDs was carried out in pH 1.2 and pH 6.8 phosphate buffer.Results:LF exhibited very high solubility in oleic acid owing to complexation between tertiary amine of LF and carboxyl group of oleic acid (OA. Cremophore EL and medium chain monoglyceride were selected surfactant and co-surfactant, respectively. Significantly smaller droplet size (37 nm, shift in zeta potential from negative to positive value, very high drug loading in lipid based system (> 10%, no precipitation after dissolution are the major distinguish characteristics contributed by LF-OA complex in the SNED system. Saturation solubility and dissolution study in milk containing media pointed the significant increment in solubility of LF in the presence of milk-food fat. LF-SNEDs showed > 90% LF release within 30 min in pH 1.2 while marketed tablet showed almost 0% drug release.Conclusion:Self nanoemulsification promoting ionic complexation between basic drug and oleic acid hold great promise in enhancing solubility of hydrophobic drugs.

  19. Effect of partial liquid ventilation on oleic acid-induced inflammatory responses in piglets

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; WANG Qiang; LIU Ying-long; LI Xiao-feng; LI Jian-an; L(U) Xiao-dong; LING Feng; LIU Ai-jun; FAN Xiang-ming

    2010-01-01

    Background Pediatric patients are susceptible to lung injury.Acute lung injury (ALI) in children often results in a high mortality.Partial liquid ventilation (PLV) has been shown to markedly improve oxygenation and reduce histologic evidence of injury in a number of lung injury models.This study aimed to examine the hypothesis that PLV would attenuate the production of local and systemic cytokines in an immature piglet model of ALI induced by oleic acid (OA).Methods Twelve Chinese immature piglets were induced to develop ALI by oleic acid.The animals were randomly assigned to two groups (n=6): (1) conventional mechanical ventilation (MV) group and (2) PLV with FC-77 (10 ml/kg) group.Results Compared with MV group, PLV group got better cardiopulmonary variables (P <0.05).These variables included heart rate, mean blood pressure, blood pH, partial pressure of arterial oxygen (PaO2), PaO2/FiO2 and partial pressure of arterial carbon dioxide (PaCO2).Partial liquid ventilation reduced IL-1β, IL-6, IL-10 and TN F-α both in plasma and tissue concentrations compared with MV group (P <0.05).Conclusions Partial liquid ventilation provides protective effects against inflammatory responses in the lungs of oleic acid-induced immature piglets.

  20. A novel, stable and reproducible acute lung injury model induced by oleic acid in immature piglet

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; LING Feng; ZHANG Yan-bo; LIU Ai-jun; LIU Dong-hai; QIAO Chen-hui; WANG Qiang; LIU Ying-long

    2011-01-01

    Background Young children are susceptible to pulmonary injury,and acute lung injury (ALl) often results in a high mortality and financial costs in pediatric patients.A good ALl model will help us to gain a better understanding of the real pathophysiological picture and to evaluate novel treatment approaches to acute respiratory distress syndrome (ARDS) more accurately and liberally.This study aimed to establish a hemodynamically stable and reproducible model with ALl in piglet induced by oleic acid.Methods Six Chinese mini-piglets were used to establish ALl models by oleic acid.Hemodynamic and pulmonary function data were measured.Histopathological assessment was performed.Results Mean blood pressure,heart rate (HR),cardiac output (CO),central venous pressure (CVP) and left atrial pressure (LAP) were sharply decreased after oleic acid given,while the mean pulmonary arterial pressure (MPAP) was increased in comparison with baseline (P <0.05).pH,arterial partial pressure of O2 (PaO2),PaO2/inspired O2 fraction (FiO2) and lung compliance decreased,while PaCO2 and airway pressure increased in comparison with baseline (P <0.05).The lung histology showed severe inflammation,hyaline membranes,intra-alveolar and interstitial hemorrhage.Conclusion This experiment established a stable model which allows for a diversity of studies on early lung injury.

  1. Luminescence properties of LaF{sub 3}:Ce nanoparticles encapsulated by oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaewoo, E-mail: kimj@kaeri.re.kr [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon-si 303-353 (Korea, Republic of); WCI Quantum Beam-based Radiation Research Center, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon-si 303-353 (Korea, Republic of); Missouri University Research Reactor, University of Missouri, Columbia, MO 65211 (United States); Lee, Jun-Hyung; An, Hyejin [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon-si 303-353 (Korea, Republic of); Lee, Jungkuk; Park, Seong-Hee [WCI Quantum Beam-based Radiation Research Center, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon-si 303-353 (Korea, Republic of); Department of Quantum Energy and Chemical Engineering, University of Science and Technology, 217 Gajeongro, Yuseong-gu, Daejoen-si 305-350 (Korea, Republic of); Seo, Young-Soo [Department of Nano Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu 143-747 (Korea, Republic of); Miller, William H. [Missouri University Research Reactor, University of Missouri, Columbia, MO 65211 (United States)

    2014-09-15

    Highlights: • In-situ hydrophobization of water dispersible LaF{sub 3}:Ce nanoparticles was achieved. • Oleic acid surface modification of the nanoparticles was verified by IR spectra. • Quantum yields of LaF{sub 3}:Ce and OA-LaF{sub 3}:Ce nanoparticles were evaluated. • Quantum yields of LaF{sub 3}:Ce are strongly dependent on OA surface modification. - Abstract: Cerium ions doped lanthanum fluoride (LaF{sub 3}:Ce) nanopowder as well as LaF{sub 3}:Ce nanopowder whose surfaces was modified by oleic acid (OA) were synthesized by using an in-situ hydrothermal process under the various doping concentrations. Based on the XRD spectra and TEM images, it was confirmed that the crystalline structured hexagonal LaF{sub 3}:Ce nanopowder was synthesized. Oleic acid was efficient for conversion of the water dispersible LaF{sub 3}:Ce nanoparticles to hydrophobic ones. Surface modification was verified by FTIR absorption spectrum as well as TEM images, showing no agglomeration between 5 and 10 nm scaled particles. Photoluminescence based on 5d ⟶ 4f electronic transition of cerium ions excited at λ{sub ex} ∼256 nm for both neat and OA encapsulated LaF{sub 3}:Ce nanoparticles decreases as the cerium concentration increases, while the quantum yields of OA encapsulated nanoparticles were much lower than the neat particles due to low photon transmittance of OA at the range longer than ∼350 nm.

  2. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  3. Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Aliakbari Atieh

    2015-03-01

    Full Text Available In the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and Fourier transform infrared spectroscopy (FT-IR. Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM. The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.

  4. Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation

    Institute of Scientific and Technical Information of China (English)

    Sifang Kong; Peipei Zhang; Xiufang Wen; Pihui Pi; Jiang Cheng; Zhuoru Yang; Jing Hai

    2008-01-01

    Oleic acid was used as surface modification agent to improve the hydrophobicity of magnetic strontium hexaferrite particles. The structure and properties of treated magnetic particles were characterized by scanning electronic microscopy (SEM), Fourier transform infrared spectra (FTIR), powder X-ray diffraction (XRD) and magnetic property measurement system (MPMS). The results show that oleic acid is chemically enwrapped on the surface of SrFe12O19 particles. Magnetic particles modified by oleic acid are highly dispersible and strongly responsive to magnetism but with slight decrease in saturated magnetization. The affinity between magnetic particles and monomers is improved by surface modification, resulting in increased particle incorporation in magnetic polymeric microspheres. The surface modification mechanism of magnetic particles by oleic acid is addressed in this work.

  5. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    Directory of Open Access Journals (Sweden)

    Marcio J. da Silva

    2008-09-01

    Full Text Available The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 is the catalyst on the first step of this process. It must be said, however, that major drawbacks such as substantial reactor corrosion and the great generation of wastes, including the salts formed due to neutralization of the mineral acid, are negative and virtually unsurmountable aspects of this protocol. In this paper, tin(II chloride dihydrate (SnCl2·2H2O, an inexpensive Lewis acid, was evaluated as catalyst on the ethanolysis of oleic acid, which is the major component of several fat and vegetable oils feedstocks. Tin chloride efficiently promoted the conversion of oleic acid into ethyl oleate in ethanol solution and in soybean oil samples, under mild reaction conditions. The SnCl2 catalyst was shown to be as active as the mineral acid H2SO4. Its use has relevant advantages in comparison to mineral acids catalysts, such as less corrosion of the reactors and as well as avoiding the unnecessary neutralization of products. Herein, the effect of the principal parameters of reaction on the yield and rate of ethyl oleate production has been investigated. Kinetic measurements revealed that the esterification of oleic acid catalyzed by SnCl2·2H2O is first-order in relation to both FFAs and catalyst concentration. Experimentally, it was verified that the energy of activation of the esterification reaction of oleic acid catalyzed by SnCl2 was very close those reported for H2SO4.

  6. Effect of high dose steroids on oleic acid-induced lung injury in rabbits: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwa Yeon; Yoo, Seung Min [Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2006-02-15

    The purpose of this study is to evaluate the therapeutic efficacy, on the basis of CT findings, of high dose methyl prednisolone for treating acute lung injury that was induced by oleic acid injection. A total of 30 healthy rabbits (1.8-2.2 kg) were included in this study. Group I included 10 rabbits in which 0.2 mL oleic acid was injected through their ear veins. Group IIa included 10 rabbits in which 30 mg/kg methyl prednisolone and 0.2 mL oleic acid were intravenously injected at the same time. Group IIb included 5 rabbits in which 30 mg/kg methyl prednisolone was injected 6 hours prior to the 0.2 mL oleic acid intravenous injection. The other 5 rabbits (Group III) were injected intravenously with 30 mg/kg methyl prednisolone without the oleic acid. After that, 30 mg/kg methyl prednisolone per every 12 hours was injected in the non-sacrificed rabbits of Group II and Group III. Nonenhanced Chest CT scans were performed prior to the 30 minutes, 4 hours, 24 hours, 48 hours, and 72 hours after the intravenous injection of oleic acid or methyl prednisolone. We randomly sacrificed one rabbit of groups I, II and III 30 minutes, 4 hours, 24 hours, 48 hours and 72 hours after CT scanning. The distribution, extent, and pattern of the lesions on the CT scan were analyzed. The analyzed pattern of the lesions was ground glass attenuation, consolidation and interstitial thickening. Pathologic correlation was then done. The main CT findings of Group I were peripheral, wedge shaped, ill-defined ground glass attenuations and /or consolidations. The pathologic findings of Group I were interstitial or intraalveolar edema, intraalveolar hemorrhage and coagulation necrosis. Diffuse ground glass opacities with interstitial thickening were noted in 20% (n=2/10) of Group I and in 60% (n=9/15) of Group II at the 30 minute CT; however, there was no statistical difference between the two groups ({rho} = 0.09). Consolidations with air bronchogram were noted in 22.2% (2/9) of Group I and in

  7. Oleic Acid and Octanoic Acid Sensing Capacity in Rainbow Trout Oncorhynchus mykiss Is Direct in Hypothalamus and Brockmann Bodies

    Science.gov (United States)

    Librán-Pérez, Marta; López-Patiño, Marcos A.; Míguez, Jesús M.; Soengas, José L.

    2013-01-01

    In a previous study, we provided evidence for the presence in hypothalamus and Brockmann bodies (BB) of rainbow trout Oncorhynchus mykiss of sensing systems responding to changes in levels of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). Since those effects could be attributed to an indirect effect, in the present study, we evaluated in vitro if hypothalamus and BB respond to changes in FA in a way similar to that observed in vivo. In a first set of experiments, we evaluated in hypothalamus and BB exposed to increased oleic acic or octanoic acid concentrations changes in parameters related to FA metabolism, FA transport, nuclear receptors and transcription factors, reactive oxygen species (ROS) effectors, components of the KATP channel, and (in hypothalamus) neuropeptides related to food intake. In a second set of experiments, we evaluated in hypothalamus the response of those parameters to oleic acid or octanoic acid in the presence of inhibitors of fatty acid sensing components. The responses observed in vitro in hypothalamus are comparable to those previously observed in vivo and specific inhibitors counteracted in many cases the effects of FA. These results support the capacity of rainbow trout hypothalamus to directly sense changes in MCFA or LCFA levels. In BB increased concentrations of oleic acid or octanoic acid induced changes that in general were comparable to those observed in hypothalamus supporting direct FA sensing in this tissue. However, those changes were not coincident with those observed in vivo allowing us to suggest that the FA sensing capacity of BB previously characterized in vivo is influenced by other neuroendocrine systems. PMID:23533628

  8. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2014-01-01

    Full Text Available The Delta-12 oleate desaturase gene (FAD2-1, which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71% and a reduction in palmitic acid (to <3% in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.

  9. Esterification of Glycerol by Oleic Acid and Selective Hydrogenation of Oieic Acid Methylester Over Acid and Ru-Sn-B Supported Mesoporous AIMCM-41

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The AIMCM-41 molecular sieves with two different pore sizes arc hydrothermally synthesized in the presence of surfactants with two different chain lengths. H-AIMCM-41 and Ru-Sn-B/H-AIMCM-41 which are prepared by the conventional ion-exchange and incipient wetness techniques of the AIMCM-41 show tair catalytic activity for esterification of glycerol by oleic acid and selective hydrogenation of oleic acid methylester, respectively.

  10. Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface

    Science.gov (United States)

    Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.

    2017-09-01

    The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.

  11. Characterizing time-dependent contact angles for sands hydrophobized with oleic and stearic acids

    DEFF Research Database (Denmark)

    Subedi, S; Kawamoto, K; Jayarathna, L

    2012-01-01

    -frequency precipitation. A potential solution is to alter soil grain surfaces to become water repellent by mixing or coating the soil cover material with hydrophobic agents (HAs). In this study, hydrophobic CBs comprised of sands mixed with environmentally friendly HAs (oleic acid [OA] and stearic acid [SA]) were studied....... Water repellency (WR) characteristics for hydrophobized sand samples with different HA contents and representing different coating methods (mixing in and solvent aided) were measured. Initial contact angles (αi) for OA-coated samples sharply increased with increasing HA content and reached peak values...

  12. Development and validation of a GC-FID method for quantitative analysis of oleic acid and related fatty acids☆

    Institute of Scientific and Technical Information of China (English)

    Honggen Zhang; Zhenyu Wang; Oscar Liu

    2015-01-01

    Oleic acid is a common pharmaceutical excipient that has been widely used in various dosage forms. Gas chromatography (GC) has often been used as the quantitation method for fatty acids normally requiring a derivatization step. The aim of this study was to develop a simple, robust, and derivatization-free GC method that is suitable for routine analysis of all the major components in oleic acid USP-NF (United States Pharmacopeia-National Formulary) material. A gas chromatography-flame ionization detection (GC-FID) method was developed for direct quantitative analysis of oleic acid and related fatty acids in oleic acid USP-NF material. Fifteen fatty acids were separated using a DB-FFAP (nitroterephthalic acid modified polyethylene glycol) capillary GC column (30 m × 0.32 mm i.d.) with a total run time of 20 min. The method was validated in terms of specificity, linearity, precision, accuracy, sensitivity, and robustness. The method can be routinely used for the purpose of oleic acid USP-NF material analysis.

  13. Oleic acid in olive oil: from a metabolic framework toward a clinical perspective.

    Science.gov (United States)

    Bermudez, Beatriz; Lopez, Sergio; Ortega, Almudena; Varela, Lourdes M; Pacheco, Yolanda M; Abia, Rocio; Muriana, Francisco J G

    2011-01-01

    Traditionally, nutrients such as fatty acids have been viewed as substrates for the generation of high-energy molecules and as precursors for the biosynthesis of macromolecules. However, accumulating data from multiple lines of evidence suggest that dietary fatty acids are linked not only to health promotion but also to disease pathogenesis. Metabolism in humans is regulated by complex hormonal signals and substrate interactions. For many years, the clinical focus has centered on a wide metabolic picture after an overnight fast. Nonetheless, the postprandial state (i.e., "the period that comprises and follows a meal") is an important one, and silent disturbances in this period are involved in the genesis of numerous pathological conditions, including atherosclerosis. In this review article, we present an overview of the evidence demonstrating the relevance of oleic acid in olive oil on different nutrition-related issues. We also discuss the impact of oleic acid in olive oil and its clinical relevance to major risk factors for cardiovascular disease in the context of the postprandial state and with regard to other dietary fatty acids.

  14. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution

    OpenAIRE

    Li,Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-01-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinv...

  15. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate

    Directory of Open Access Journals (Sweden)

    Wanessa Ximenes Ribeiro

    2015-10-01

    Full Text Available Zein oleic acid films added with 1, 2 and 3 % (w/w of nanocarbonate and 30 % glycerol as plasticizer, were produced and evaluated according to their structure and functional properties. Structural characteristics were analyzed by optical and scanning electron microscopy (SEM. Water solubility and mechanical properties were determined according to ASTM methods. The increase of nanocarbonate concentration increased water solubility and influenced the color and mechanical properties. Optical and SEM of film samples added with nanocarbonate, shown low amount of pores and great fat globules size.

  16. Synthesis of CdSe quantum dots via paraffin liquid and oleic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper reported an efficient and rapid method to produce highly monodispersed CdSe quantum dots (QDs), in which the traditional tri10ylphosphine oxide (TOPO) was replaced by paraffin liquid as solvent and oleic acid as the reacting media. The experimental conditions and the properties of QDs had been studied in detail. The resulting samples were confirmed of uniform size distribution with transmission electronic microscopy (TEM), while UV-vis absorption and photoluminescence (PL) spectra clearly indicated that such synthesized QDs had good fluorescence properties.

  17. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid.

    Science.gov (United States)

    Ghanbarzadeh, Babak; Almasi, Hadi

    2011-01-01

    Glycerol and oleic acid (OA) were incorporated into carboxymethyl cellulose (CMC) films by an emulsification method. Films containing different amounts of glycerol and OA were examined for mechanical properties, water vapor permeability (WVP), and moisture uptake, optical and thermal properties. Addition of OA to the CMC films significantly improved the barrier property. However, the effect of OA on the mechanical properties was lower than glycerol. By increasing of OA content, the cloudiness of the CMC films was intensified and Hunter value (b) of the films increased (by ca. 35.8%).

  18. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  19. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Hamizah Ammarah; Salimon, Jumat [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  20. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    Science.gov (United States)

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    2014-09-01

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR).

  1. New formulations of sunflower based bio-lubricants with high oleic acid content – VOSOLUB project

    Directory of Open Access Journals (Sweden)

    Leao J. D.

    2016-09-01

    Full Text Available VOSOLUB project is a demonstration project supported by Executive Agency for Small and Medium-sized Enterprises (EASME that aims at testing under real operating conditions new formulations of sunflower-based biolubricants with high oleic acid content. These biolubricant formulations (including hydraulic fluids, greases, and neat oil metal-working fluids will be tested in three European demonstrating sites. Their technical performance will be evaluated and compared to corresponding mineral lubricants ones. In order to cover the demand for the sunflower base oil, a European SMEs network will be established to ensure the supply of the base at a competitive market price. Results presented concerns the base oil quality confirmed to be in accordance with the specification required, in particular on Free Fatty acid content, Phosphorus content, rancimat induction time and oleic acid content (ITERG. The oil characteristics specific for lubricant application analyzed by BfB Oil Research under normalized methods, match with lubricant specifications requirement such as viscosity, cold & hot properties, surface properties, anti-oxidant properties and thermal stability, anti-wear and EP properties, anti-corrosion properties Performance of the new biolubricant have been assessed by formulators and TEKNIKER First results on the use of new lubricant on real condition for rail Grease (produced by RS CLARE and tested with Sheffield Supertram, Hydraulic oil (produced by BRUGAROLAS and cutting oil (produced by MOTUL TECH and tested with innovative machining, turning are described.

  2. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  3. Interaction of dietary high-oleic-acid sunflower hulls and different fat sources in broiler chickens.

    Science.gov (United States)

    Viveros, A; Ortiz, L T; Rodríguez, M L; Rebolé, A; Alzueta, C; Arija, I; Centeno, C; Brenes, A

    2009-01-01

    The effect of dietary fat sources (high-oleic-acid sunflower seeds, HOASS; palm oil, PO; and high-oleic-acid sunflower oil, HOASO) and high-oleic-acid sunflower hulls (HOAS hulls; 40 g/kg of diet) on performance, digestive organ size, fat digestibility, and fatty acid profile in abdominal fat and blood serum parameters was evaluated in chickens (from 1 to 21 d of age). Bird performance and digestive organ size were not affected by either dietary fat source or sunflower hull supplementation. Fat digestibility in birds fed diets enriched (HOASS and HOASO) in monounsaturated fatty acids (MUFA) was increased compared with those fed the PO diet. The addition of sunflower hulls did not modify fat digestibility. The fatty acids pattern of abdominal fat reflected the dietary fat profile. The greatest concentrations of C16:0 and C18:0 were found in birds fed PO diets. The C18:1n-9 content was increased in birds that received HOASS and HOASO diets compared with those fed PO diets. The greatest content of C18:2n-6 was observed in birds fed HOASS diets. The ratio of polyunsaturated fatty acid (PUFA) to MUFA was significantly increased in birds fed PO diets compared with those fed HOASS or HOASO diets. The addition of sunflower hulls to the diets resulted in a decrease of C18:2n-6 and PUFA concentrations and PUFA:MUFA ratio in abdominal fat. Dietary fat sources and sunflower hulls modify blood triglycerides and serum lipoproteins. A decrease in triglyceride concentrations was observed in birds fed HOASS diets compared with those fed PO and HOASO diets. The greatest concentrations of serum high density, very low density (VLDL), and low density lipoproteins were found in birds receiving HOASO, PO, and HOASS diets, respectively. The addition of sunflower hulls to the diets caused an increase of serum triglycerides and VLDL concentrations. The MUFA-enriched diets had lower triglyceride and VLDL concentrations than did diets rich in saturated fatty acids. However, the sunflower hull

  4. Enzymatic reaction of ethanol and oleic acid by lipase and lignin peroxidase in rhamnolipid (RL) reversed micelles

    Institute of Scientific and Technical Information of China (English)

    包珊; 吴秀莲; 武海鹏; 袁兴中; 王侯; 彭馨; 刘欢; 曾光明; 马玉洁; 崔凯龙

    2015-01-01

    An environment friendly bio-surfactant of rhamnolipid (RL) was used as a solvent. The enzymatic reaction of oleic acid catalyzed by lipase and lignin peroxidase (lip) was evaluated. The optimum conditions of enzymatic reaction catalyzed by lipase (lip) were water to amphiphile molar ratio of 30 (20), RL of 60 (60) critical micelle concentration (CMC), pH of 7.0 (3.0) and temperature of 40 (30) °C, respectively. The change of enzyme conformation indicates that, for catalytic of lipase, water content is the most important factor of the enzymatic reaction of oleic acid, and pH for lip. With individual optimum conditions, the enzymatic efficiency of oleic acid catalyzed by lipase is higher than that by lip. In the presence of ethanol, the enzymatic reaction of oleic acid catalyzed by lipase suits Ping-Pong Bi-Bi mechanism. As an alternative to chemical reversed micelles, the RL reversed micelles are promising methods to enzymatic reaction of oleic acid.

  5. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    Directory of Open Access Journals (Sweden)

    Catalin Ilie Spataru

    2016-11-01

    Full Text Available The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA and its alkaline salt (OLANa. Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA, with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1 required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG and differential scanning calorimetry (DSC (TG-DSC analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules.

  6. Oleic acid-induced lung injury in rabbits: effect of fibrinogen depletion with Arvin

    Energy Technology Data Exchange (ETDEWEB)

    Allard, M.F.; Doerschuk, C.M.; Brumwell, M.L.; Belzberg, A.; Hogg, J.C.

    1988-03-01

    The role of fibrinogen in the evolution of the increased permeability after oleic acid-induced lung injury was studied in New Zealand White rabbits. Animals depleted of fibrinogen by treatment with Malayan pit viper venom were compared with untreated rabbits immediately and at 1 and 24 h after injury. The increased permeability to albumin and elevated extravascular lung water (EVLW) associated with lung injury returned to control values by 24 h in untreated animals. Fibrinogen-depleted animals had a higher mortality (10/25 vs. 2/17, P less than 0.02) and showed a greater immediate increase in permeability to albumin that returned to control values at 1 and 24 h after injury, as well as trends toward elevated blood-free dry lung weight and larger increases in EVLW that persisted for 24 h. These findings indicate that fibrinogen-related proteins play an important role in controlling the microvascular injury that is produced by oleic acid. However, when these proteins are depleted, other mechanisms partially control the leak at later stages of the repair process.

  7. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst.

    Science.gov (United States)

    Pan, Ying; Alam, Md Asraful; Wang, Zhongming; Wu, Jingcheng; Zhang, Yi; Yuan, Zhenhong

    2016-11-01

    In present study, esterification of oleic acid with methanol using deep eutectic solvent (DES) assisted Amberlyst heterogeneous catalyst was investigated to produce biodiesel. Results showed that esterification efficiency was enhanced by the DES. The combined effect of DES on Amberlyst BD20 (BD20) is better than Amberlyst 15 (A-15) due to different structure. The optimal reaction conditions were 12:1M ratio of methanol to oleic acid, 20%(wt/wt) catalyst (BD20-DES (2:8) and A-15-DES (8:2)) at 85°C for 100min with agitating at 200rpm. The mechanism involved in catalysis and their capacity to reuse were studied. We proposed, Choline chloride-glycerol (Chcl-gly) DES could enhance the Amberlyst function due to the hydrogen bond effect on both DES and water. BD20 has fewer pores than A-15, have desirable performance in decreasing the inhibition the water during esterification of high FFA content and provide better performance in reuse.

  8. Segmental pulmonary vascular resistances during oleic acid lung injury in rabbits.

    Science.gov (United States)

    Maarek, J M; Grimbert, F

    1994-10-01

    We studied in isolated rabbit lungs the effects of oleic acid (OA) injury on the segmental distribution of vascular resistance. Vascular occlusion pressures were measured in control and OA-injured preparations over 90 min. Capillary filtration coefficient KF,C increased from 0.61 (+/- 0.10) to 0.91 (+/- 0.14) g.min-1.mmHg-1.(100 g)-1 in OA-injured lungs whereas it remained constant in control lungs. Total pulmonary vascular resistance changed little in both control and OA-injured lungs. OA injury resulted in a 15% increase of the double occlusion capillary pressure. In addition, the contribution of the microvascular to the total vascular resistance rose from 8% to 22%. The increase in microvascular resistance was significant 15 min after OA on the arteriolar side and became significant 30 min later on the venular side. Oleic acid injury does not change the total pulmonary vascular resistance but alters the distribution of segmental resistances in the isolated rabbit lung, thereby contributing to the accumulation of lung water in this model of low pressure permeability edema.

  9. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    Science.gov (United States)

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  10. Proliferation and function of microbodies in the nematophagous fungus Arthrobotrys oligospora during growth on oleic acid or D-alanine as the sole carbon source

    NARCIS (Netherlands)

    Dijksterhuis, Jan; Harder, Willem; Veenhuis, Marten

    1993-01-01

    The nematophagous fungus Arthrobotrys oligospora is able to grow on oleic acid or D-alanine as the sole carbon source. During growth on oleic acid, activities of enzymes of the beta-oxidation pathway, but not catalase, were induced. In the presence of D-alanine, both D-amino acid oxidase and catalas

  11. Effects of low potassium dextran glucose solution on oleic acid-induced acute lung injury in juvenile piglets

    Institute of Scientific and Technical Information of China (English)

    LING Feng; LIU Ying-long; LIU Ai-jun; WANG Dong; WANG Qiang

    2011-01-01

    Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.

  12. Oleic and Undecylenic Acids as Renewable Feedstocks in the Synthesis of Polyols and Polyurethanes

    Directory of Open Access Journals (Sweden)

    Virginia Cádiz

    2010-10-01

    Full Text Available Nowadays, the utilization of raw materials derived from renewable feedstock is in the spotlight of the chemical industry, as vegetable oils are one of the most important platform chemicals due to their universal availability, inherent biodegradability and low price. Taking into account that polyurethanes are one of the most important industrial products exhibiting versatile properties suitable for use in many fields, our research is focused on exploiting fatty acids in the preparation of biobased polyols and polyurethanes. This review is organized as a function of the nature of the final polyurethane systems; hence we describe the preparation of linear thermoplastic and crosslinked polyurethanes derived from oleic and undecylenic acids-based diols and polyols, respectively.

  13. Phase equilibria of oleic, palmitic, stearic, linoleic and linolenic acids in supercritical CO2

    Directory of Open Access Journals (Sweden)

    P. L. Penedo

    2009-03-01

    Full Text Available The knowledge of the phase equilibrium is one of the most important factors to study the design of separation processes controlled by the equilibrium. Fatty acids are present in high concentration as by-products in vegetable oils but the equilibrium data involving these components is scarce. The objective of this work is the experimental determination of the liquid-vapor equilibrium of five binary different systems formed by carbon dioxide and palmitic acid (C16:0, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2 and linolenic acid (C18:3. The equilibrium experimental data was collected at 40, 60 and 80ºC at 60, 90 and 120 bar, at the extract and raffinate phases, using an experimental apparatus containing an extractor, a gas cylinder and pressure and temperature controllers. The data was modeled using the cubic equation of state of Peng-Robinson with the mixing rule of van der Waals with binary interaction parameters. The model was adequate to treat the experimental data at each temperature and at all the temperatures together. The best model that includes the van der Waals mixing rule with two parameters has maximum deviation of 17%. The distribution coefficients were also analyzed and it was concluded that the fractionation of the fatty acids is possible using supercritical carbon dioxide.

  14. Attenuation of hypoxic pulmonary vasoconstriction in acute oleic acid lung injury--significance of vasodilator prostanoids.

    Science.gov (United States)

    Yamaguchi, K; Mori, M; Kawai, A; Asano, K; Takasugi, T; Umeda, A; Yokoyama, T

    1992-01-01

    To assess a significant role of hypoxic pulmonary vasoconstriction, HPV, on maintaining the gas exchange efficiency in acute lung injury, 24 mongrel dogs were treated with intravenously injecting 0.07 ml/kg of oleic acid. Hemodynamic and gas-exchange parameters were investigated at varied inspired O2 concentration, FIO2. To know a possible contribution of vasoactive prostanoids in regulating vascular reactivity under these circumstances, observations were repeated after infusion of indomethacin. The impairment of gas exchange in injured lungs was examined by measuring the fractional retention, R, of the gas in arterial blood. For this evaluation, a normal saline containing five foreign inert gases such as sulfur hexafluoride, SF6, ethane, cyclopropane, halothane and diethyl ether was infused at a constant rate through a peripheral vein. After a steady state was established, the expired gas was collected and the samples of both arterial and mixed venous blood were simultaneously taken for the inert-gas analysis. The concentrations of the indicator gases in the samples were measured in terms of a gas chromatograph equipped with an electron capture detector for SF6 and a flame ionization detector for the other four gases. Although pulmonary vascular resistance, PVR, after injecting oleic acid at FIO2 0.60 was significantly smaller than that obtained at FIO2 0.21, cardiac output, QT as well as extravascular lung water were not different between the two conditions. R value for the indicator gas was consistently lower at FIO2 0.60 irrespective of the gas species. As increasing FIO2, R estimate concerning SF6, RSF6, rational index of the fractional blood flow perfusing shunt area, decreased significantly. Administration of indomethacin caused the rise in PVR without an appreciable change in either QT or extravascular lung water but a considerable diminution in R value for the inert gas. RSF6 after infusion of indomethacin decreased from 0.35 to 0.27, accompanied by a

  15. Ca(2+)-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study.

    Science.gov (United States)

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Astashev, Maxim E; Kazakov, Alexey S; Saris, Nils-Erik L; Mironova, Galina D

    2014-10-01

    In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca(2+)-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca(2+) than palmitic acid (PA): 1mM versus 100μM respectively. (2) The OA/Ca(2+)-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca(2+). (3) The addition of Ca(2+) to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca(2+)-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca(2+) (30 and 100μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca(2+)-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca(2+)-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca(2+)-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca(2+)- and OA/Ca(2+)-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.

  16. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    Science.gov (United States)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  17. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    Science.gov (United States)

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent.

  18. PGC-1alpha inhibits oleic acid induced proliferation and migration of rat vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Oleic acid (OA stimulates vascular smooth muscle cell (VSMC proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma coactivator-1 alpha (PGC-1alpha on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis.

  19. Synthesis, characterization and physicochemical properties of oleic acid ether derivatives as biolubricant basestocks.

    Science.gov (United States)

    Salimon, Jumat; Salih, Nadia; Yousif, Emad

    2011-01-01

    Petroleum is a finite source as well as causing several environmental problems. Therefore petroleum needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources; the use of oleochemicals as biobased lubricants is of significant interest. This article presents a series of chemical modification on oleic acid to yield synthetic biolubricant basestocks. Measuring of density, volatility, cloud point (CP), pour point (PP), flash point (FP), viscosity index (VI), onset temperature (OT) and signal maximum temperature (SMT) was carried out for each compound. Furthermore, the friction and wear properties were measured using high-frequency reciprocating rig (HFRR). The results showed that octadecyl 9-octadecyloxy-10-hydroxyoctadecanoate exhibited the most favorable low-temperature performance (CP %ndash;26°C, PP %ndash;28°C) and the lowest ball wear scan diameter (42 µm) while propyl 9-propyloxy-10-hydroxyoctadecanoate exhibited the higher oxidation stability (OT 156°C).

  20. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  1. Commercial double-indicator-dilution densitometer using heavy water: Evaluation in oleic-acid pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Leksell, L.G.; Schreiner, M.S.; Sylvestro, A.; Neufeld, G.R. (Univ. of Pennsylvania School of Medicine, Philadelphia (USA))

    1990-04-01

    We evaluated a commercially available, double-indicator-dilution densitometric system for the estimation of pulmonary extravascular water volume in oleic acid-induced pulmonary edema. Indocyanine green and heavy water were used as the nondiffusible and diffusible tracers, respectively. Pulmonary extravascular water volume, measured with this system, was 67% of the gravimetric value (r = 0.91), which was consistent with values obtained from the radioisotope methods. The measured volume was not influenced by changes in cardiac index over a range of 1 to 4 L.min.m2. This system is less invasive than the thermal-dye technique and has potential for repeated clinical measurements of pulmonary extravascular lung water and cardiac output.

  2. Oleic Acid Induces Lung Injury in Mice through Activation of the ERK Pathway

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    2012-01-01

    Full Text Available Oleic acid (OA can induce acute lung injury in experimental models. In the present work, we used intratracheal OA injection to show augmented oedema formation, cell migration and activation, lipid mediator, and cytokine productions in the bronchoalveolar fluids of Swiss Webster mice. We also demonstrated that OA-induced pulmonary injury is dependent on ERK1/2 activation, since U0126, an inhibitor of ERK1/2 phosphorylation, blocked neutrophil migration, oedema, and lipid body formation as well as IL-6, but not IL-1β production. Using a mice strain carrying a null mutation for the TLR4 receptor, we proved that increased inflammatory parameters after OA challenges were not due to the activation of the TLR4 receptor. With OA being a Na/K-ATPase inhibitor, we suggest the possible involvement of this enzyme as an OA target triggering lung inflammation.

  3. Constant-pH MD Simulations of an Oleic Acid Bilayer.

    Science.gov (United States)

    Vila-Viçosa, Diogo; Teixeira, Vitor H; Baptista, António M; Machuqueiro, Miguel

    2015-05-12

    Oleic acid is a simple molecule with an aliphatic chain and a carboxylic group whose ionization and, consequently, intermolecular interactions are strongly dependent on the solution pH. The titration curve of these molecules was already obtained using different experimental methods, which have shown the lipid bilayer assemblies to be stable between pH 7.0 and 9.0. In this work, we take advantage of our recent implementations of periodic boundary conditions in Poisson-Boltzmann calculations and ionic strength treatment in simulations of charged lipid bilayers, and we studied the ionization dependent behavior of an oleic acid bilayer using a new extension of the stochastic titration constant-pH MD method. With this new approach, we obtained titration curves that are in good agreement with the experimental data. Also, we were able to estimate the slope of the titration curve from charge fluctuations, which is an important test of thermodynamic consistency for the sampling in a constant-pH MD method. The simulations were performed for ionizations up to 50%, because an experimentally observed macroscopic transition to micelles occurs above this value. As previously seen for a binary mixture of a zwitterionic and an anionic lipid, we were able to reproduce experimental results with simulation boxes usually far from neutrality. This observation further supports the idea that a charged membrane strongly influences the ion distribution in its vicinity and that neutrality is achieved significantly far from the bilayer surface. The good results obtained with this extension of the stochastic titration constant-pH MD method strongly supports its usefulness to sample the coupling between configuration and protonation in these types of biophysical systems. This method stands now as a powerful tool to study more realistic lipid bilayers where pH can influence both the lipids and the solutes interacting with them.

  4. In vitro release and antibacterial activity of poly(oleic/linoleic acid dimer:sebacic acid)-gentamicin

    Institute of Scientific and Technical Information of China (English)

    YANGXiu-Fen; ZHOUZhi-Bin; 等

    2003-01-01

    AIM:To investigate whether poly(oleic/linoleic acid dimer:sebacic acid)-getamicin[Poly(OAD/LOAD:SA)-gentamicin]delivery system was useful to treat chronic osteomyelitis.METHODS:Drug delivery system consisted of gentamicin sufate dispersed in a copolymer containing oleic/linoleic acid dimer(OAD/LOAD)and sebacic acid(SA)in a 1:1 weight ration.The gentamicin releast from[Poly(OAD/LOAD:SA)-gentamicin]was tested in water 0.9% saline,and phosphate buffer 0.1mol/L,RESULTS:The gentamicin concentration peak was found on d2,then slowly decreased.considerable amout of gentamicin was still released on d 50.From d 2 o d 50,the gentamicin concentration in the releasing fluids was from 59 to 42128-fold and 1.8 to 1314-fold of the MIC for Staphylococcus aureus and Escherichia coli,respectively.Staphylococcus aureus and Escherichia coli were strongly inhibited by the releasing fluids for 50d.The gentamicin release and anti-bacterial activity in the three media were similar.only in 0.1mol/L phosphate buffer,from d 2 to 14 it was lower.CONCLUSION:Poly(OAD/LOAD:SA)-gentamicin was useful to treat chronic osteomyelitis.

  5. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    Science.gov (United States)

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  6. Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action.

    Directory of Open Access Journals (Sweden)

    Mehboob Hoque

    Full Text Available A chance discovery of the tumoricidal action of a human milk fraction led to the characterization of the active component as oleic acid complex of the α-lactalbumin, which was given the acronym HAMLET. We report in this study that the oleic acid complex of bovine α-lactalbumin (BAMLET is hemolytic to human erythrocytes as well as to those derived from some other mammals. Indirect immunofluorescence analysis suggested binding of BAMLET to erythrocytes prior to induction of hemolysis. Free OA was hemolytic albeit at higher concentrations, while sodium oleate caused hemolysis at far lower concentrations. Amiloride and BaCl2 offered protection against BAMLET-induced hemolysis suggesting the involvement of a cation leak channel in the process. BAMLET coupled to CNBr-activated Sepharose was not only hemolytic but also tumoricidal to Jurkat and MCF-7 cells in culture. The Sepharose-linked preparation was however not toxic to non-cancerous peritoneal macrophages and primary adipocytes. The tumoricidal action was studied using the MTT-assay while apoptosis induction measured by the annexin V-propidium iodide assay. Repeated incubation of the immobilized BAMLET with erythrocytes depleted oleic acid and decreased the hemolytic activity of the complex. Incubation of MCF-7 and Jurkat cells with OA, soluble or immobilized BAMLET resulted in increase in the uptake of Lyso Tracker Red and Nile red by the cells. The data presented support the contention that oleic acid plays the key role, both in BAMLET-induced hemolysis and tumoricidal action.

  7. Characterization of Time-Dependent Contact Angles for Oleic Acid Mixed Sands with Different Particle Size Fractions

    DEFF Research Database (Denmark)

    Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko;

    2014-01-01

    A capillary barrier cover system (CBCS) is a low-cost solution for limiting water infiltration into solid waste landfills. Moreover, hydrophobized sublayer sand grains enhance the impermeable properties of the CBCS. In this study, we have assessed water repellency characteristics for oleic acid (OA...

  8. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were obt

  9. Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system

    NARCIS (Netherlands)

    Kraai, G.N.; Winkelman, J.G.M.; de Vries, Johannes; Heeres, H.J.

    2008-01-01

    The kinetics of the esterification of oleic acid with 1 -butanol catalyzed by free Rhizomucor miehei lipase in a biphasic system was studied in a batch reactor. The reaction appeared to proceed via a Ping Pong bi-bi mechanism with I -butanol inhibition. The kinetic constants of the model were

  10. Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system

    NARCIS (Netherlands)

    Kraai, G.N.; Winkelman, J.G.M.; de Vries, Johannes; Heeres, H.J.

    2008-01-01

    The kinetics of the esterification of oleic acid with 1 -butanol catalyzed by free Rhizomucor miehei lipase in a biphasic system was studied in a batch reactor. The reaction appeared to proceed via a Ping Pong bi-bi mechanism with I -butanol inhibition. The kinetic constants of the model were determ

  11. The interaction of equine lysozyme:oleic acid complexes with lipid membranes suggests a cargo off-loading mechanism

    DEFF Research Database (Denmark)

    Nielsen, Søren Bang; Wilhelm, Kristina; Vad, Brian

    2010-01-01

    extent when free oleic acid (OA) was added, but not when free OA was removed from ELOA by prior incubation with bovine serum albumin, emphasizing the role of OA in this process. NMR data indicated an equilibrium between free and bound OA, which shifts towards free OA as ELOA is progressively diluted...

  12. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    Science.gov (United States)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  13. Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application

    Science.gov (United States)

    Rafiee, Ezzat; Mirnezami, Fakhrosadat

    2017-02-01

    By combining phosphotungstic acid (PW) and SO3H- functioned zwitterion, heteropoly anion-based Brønsted acidic ionic liquids (HPA-ILs) were successfully obtained. Scanning electron microscopy and energy dispersive X-ray spectroscopy were provided the morphology and composition of the prepared material. Catalytic performance and reusability of the catalysts were evaluated through an esterification reaction between oleic acid and methanol for production of biodiesel. Relationship between catalytic activities and acidity of the catalysts have been discussed by potentiometric titration. The results showed that HPA-ILs had good activity and reusability. HPA-ILs dissolved in the reaction mixture during the reaction process and could be precipitated and separated from products at lower temperature.

  14. Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid.

    Science.gov (United States)

    Bonferoni, M C; Sandri, G; Dellera, E; Rossi, S; Ferrari, F; Mori, M; Caramella, C

    2014-05-01

    Chitosan is well known for its positive properties in wound healing. Also unsaturated fatty acids are described as able to accelerate tissue repairing mechanisms. In this work hydrophobically modified chitosan was obtained by ionic interaction with either oleic or linoleic acid. In aqueous environment self-assembling into nanoparticles occurred. The presence of hydrophobic domains, similar to those present in polymeric micelles, was demonstrated by changes in pyrene spectra. Both oleate and linoleate derivatives showed mucoadhesion behaviour. Cytotoxicity tests on human dermal fibroblasts demonstrated good biocompatibility of especially oleate derivatives. Clarithromycin, a poorly soluble model drug proposed for use in infected wounds was successfully encapsulated in both oleic and linoleic based polymeric micelles. The ionic structure of the carriers is responsible for their loosening at neutral pH and in the presence of salts. This behaviour should impair parenteral administration of the systems, but can be useful for topical delivery where the micelle components, chitosan and fatty acid, can play a positive role in dermal regeneration and tissue repairing.

  15. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    Energy Technology Data Exchange (ETDEWEB)

    Rogue, Alexandra [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France); Biologie Servier, Gidy (France); Anthérieu, Sébastien; Vluggens, Aurore [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France); Umbdenstock, Thierry [Technologie Servier, Orléans (France); Claude, Nancy [Institut de Recherches Servier, Courbevoie (France); Moureyre-Spire, Catherine de la; Weaver, Richard J. [Biologie Servier, Gidy (France); Guillouzo, André, E-mail: Andre.Guillouzo@univ-rennes1.fr [Inserm UMR 991, 35043 Rennes Cedex (France); Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex (France)

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the control

  16. Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling.

    Science.gov (United States)

    Harris, Richard Anthony; Shumbula, Poslet Morgan; van der Walt, Hendriëtte

    2015-04-07

    The interface interactions between surfactants oleic acid and oleylamine and magnetic nanoparticles are studied via molecular mechanics and dynamics. Mixtures of these two surfactants are widely advocated in the chemical synthesis of nanoparticles. However, the exact dynamic mechanism remains unclear. Here we report, for the first time, a comprehensive qualitative model showing the importance of acid-base complex formation between oleic acid and oleylamine as well as the presence of free protons in the engineering of nanoparticles of specific shapes and sizes. We show why critical parameters such as surfactant concentration may modify iron oxide nanoparticle shape and size and how this can be understood in the light of acid-base complex pair formation. We report on the influence these parameters have on both the in situ nanoparticle surface charge and zeta potential. Transmission electron microscopy (TEM), FTIR, and pH studies are used to confirm the validity of the calculated binding energies and number of acid-base pairs.

  17. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells.

    Science.gov (United States)

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing

    2014-01-03

    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  18. In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation

    Directory of Open Access Journals (Sweden)

    Tae-Jin Oh

    2012-12-01

    Full Text Available Certain members of the cytochromes P450 superfamily metabolizepolyunsaturated long-chain fatty acids to several classesof oxygenated metabolites. An approach based on in silicoanalysis predicted that Streptomyces peucetius CYP107N3might be a fatty acid-metabolizing enzyme, showing highhomology with epoxidase enzymes. Homology modeling anddocking studies of CYP107N3 showed that oleic acid can fitdirectly into the active site pocket of the double bond of oleicacid within optimum distance of 4.6 Å from the Fe. In order toconfirm the epoxidation activity proposed by in silico analysis,a gene coding CYP107N3 was expressed in Escherichia coli.The purified CYP107N3 was shown to catalyze C9-C10epoxidation of oleic acid in vitro to 9,10-epoxy stearic acidconfirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.

  19. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution.

    Science.gov (United States)

    Li, Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-12-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinvest TiO2 photocatalyst with the excellent visible light response. The deNOx ability is almost as high as 30 % destruction in the visible light region (λ > 510 nm) which is similar to the nitrogen-doped TiO2. Meanwhile, acetic acid, a monobasic acid, has a weaker ability on visible light modification of TiO2.

  20. Protease Inhibition by Oleic Acid Transfer From Chronic Wound Dressings to Albumin

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J. V.; Howley, Phyllis; Davis, Rachel M.; Mashchak, Andrew D.; Goheen, Steven C.

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds. These levels can inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid (18:1) is a non-toxic elastase inhibitor with some potential for redressing the imbalance of elastase activity found in chronic wounds. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of 18:1 by albumin under conditions mimicking chronic wounds. 18:1-treated cotton was examined for its ability to bind and release the fatty acid in the presence of albumin. The mechanism of 18:1 uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-18:1 complexes under liquid-liquid equilibrium conditions revealed fully saturated albumin-18:1 complexes with a 1:1 weight ratio of albumin:18:1. Cotton chromatography under liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of 18:1 per mole albumin. Cotton was contrasted with hydrogel, and hydrocolloid wound dressing for its comparative ability to lower elastase activity. Each dressing material evaluated was found to release 18:1 in the presence of albumin with significant inhibition of elastase activity. The 18:1-formulated wound dressings lowered elastase activity in a dose dependent manner in the order cotton gauze > hydrogel > hydrocolloid. In contrast the cationic serine protease Cathepsin G was inihibited by 18:1 within a narrow range of 18:1-cotton formulations. Four per cent Albumin solutions were most effective in binding cotton bound-18:1. However, 2% albumin was sufficient to transfer quantities of 18:1 necessary to achieve a significant elastase-lowering effect. Formulations with 128 mg 18:1/g cotton gauze had equivalent elastase lowering with 1 - 4% albumin. 18:1 bound to cotton wound dressings may have promise in the

  1. Iron oxide nanoparticles modified with oleic acid: Vibrational and phase determination

    Science.gov (United States)

    Soares, Paula P.; Barcellos, Geórgia S.; Petzhold, Cesar L.; Lavayen, Vladimir

    2016-12-01

    A simple path methodology to detect the phase composition of iron oxide nanoparticles modified with oleic acid based on vibrational spectroscopy is present here and applied on three different nanoparticles prepared by co-precipitation method. Firstly, the phase composition, magnetite, maghemite, and hematite, is determined using a reference intensity ratio methodology on X-ray diffraction pattern. Also, the size of each sample was calculated by Scherrer equation. Scanning, transmission electron microscopy, microanalysis and electron diffraction show a core magnetite particles size of around 10 nm for all particles. Based on lattice vibrations, we find a concentration of around 80% of magnetite and a hematite phase lower than 5%. Whereas, the magnetite composition from X-ray diffraction shows 76%. We also investigate the metal-organic interaction and disorder degree of organic molecule conformation by infrared and Raman spectroscopy analysis. Hematite lattice vibrations show more alterations as it interacts with the organic acid. Finally, magnetic measurements at room temperature of the modified particles, suggest a superparamagnetic behavior and high saturation magnetization.

  2. The Use of Heterogeneous Catalysts of Chitosan Sulfonate Bead on the Esterification Reaction of Oleic Acid and Methanol

    Science.gov (United States)

    Chamidy, H. N.; Riniati

    2017-05-01

    Biodiesel is one of the ester compounds with physical properties closer to a biodiesel which can be produced by the esterification reaction between methanol and oleic acid (one of major components present in Palm Fatty Acid Distillate, PFAD). The purpose of this study was to obtain an optimum condition of esterification reaction by using chitosan sulfonate bead as heterogeneous catalysts. Chitosan sulfonate bead was made from chitosan undergo sulfonation process using acidic reagents cross-linked with sulfosalicylic and glutaraldehyde with a high enough value of ion exchange capacity. The stage of esterification reactions was carried by varying the amount of catalyst being added (4, 6, 8, 10, 12% by oleic acid), the operating temperature was varied of 40, 50 and 60 °C, and the reaction time of 1, 2, 3, 4 and 5 hours. Conversion determination of the products was done by analysing the free fatty acids content in each sample. Having obtained from the optimum amount of catalyst being added, temperature, and time, it was found that the catalyst was at 8%, 50 °C, during 5 hours in operation. The maximum conversion of oleic acid into biodiesel was 73.12%.

  3. Study of the surface modification with oleic acid of nanosized HfO{sub 2} synthesized by the polymerized complex derived sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Gonzalez, R., E-mail: rramos.phd@gmail.com [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25250 (Mexico); Garcia-Cerda, L.A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25250 (Mexico); Quevedo-Lopez, M.A. [University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021 (United States)

    2012-06-01

    The synthesis of nanosized hafnium oxide by the polymerized complex derived sol-gel method is reported. The structural and morphological characterization of the HfO{sub 2} was carried out by X-ray diffraction and scanning electron microscopy. The surface of hafnium oxide nanoparticles was modified by capping with oleic acid. The nanoparticle surface area was measured by the gas adsorption technique in order to determine the minimal amount of oleic acid needed to obtain a uniform coverage of the hafnium oxide. The existence of organic layer can be confirmed by Fourier transform spectroscopy, solid state nuclear magnetic resonance spectroscopy, thermal gravimetric analysis and transmission electron microscopy. The FTIR and solid state NMR results reveal that oleic acid is chemisorbed as a carboxylate onto the HfO{sub 2} nanoparticle surface and confirm the formation of a monomolecular layer of oleic acid surrounding the HfO{sub 2}. The cover density of oleic acid on the HfO{sub 2} increases with the amount of oleic acid used to modify the nanoparticles and the surface properties of HfO{sub 2} nanoparticles modified with oleic acid change from hydrophilic to hydrophobic.

  4. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaoyun [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Huang, Qingxian [Department of Hepatobiliary Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000 (China); Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Bai, Xianyong, E-mail: xybai2012@163.com [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China)

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  5. Arachidonic and oleic acid exert distinct effects on the DNA methylome

    Science.gov (United States)

    Silva-Martínez, Guillermo A.; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda; Vaquero, Alejandro; Esteller, Manel; Carmona, F. Javier; Moran, Sebastian; Nielsen, Finn C.; Wickström-Lindholm, Marie; Wrobel, Katarzyna; Wrobel, Kazimierz; Barbosa-Sabanero, Gloria; Zaina, Silvio; Lund, Gertrud

    2016-01-01

    ABSTRACT Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1–200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts. PMID:27088456

  6. Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge.

    Science.gov (United States)

    Pereira, M A; Pires, O C; Mota, M; Alves, M M

    2005-10-05

    Palmitic acid was the main long chain fatty acids (LCFA) that accumulated onto the anaerobic sludge when oleic acid was fed to an EGSB reactor. The conversion between oleic and palmitic acid was linked to the biological activity. When palmitic acid was fed to an EGSB reactor it represented also the main LCFA that accumulated onto the sludge. The way of palmitic acid accumulation was different in the oleic and in the palmitic acid fed reactors. When oleic acid was fed, the biomass-associated LCFA (83% as palmitic acid) were mainly adsorbed and entrapped in the sludge that became "encapsulated" by an LCFA layer. However, when palmitic acid was fed, the biomass-associated LCFA (the totality as palmitic acid) was mainly precipitated in white spots like precipitates in between the sludge, which remained "non-encapsulated." The two sludges were compared in terms of the specific methanogenic activity (SMA) in the presence of acetate, propionate, butyrate, and H(2)CO(2), before and after the mineralization of similar amounts of biomass-associated LCFA (4.6 and 5.2 g COD-LCFA/g of volatile suspended solids (VSS), for the oleic and palmitic acid fed sludge, respectively). The "non-encapsulated," sludge exhibited a considerable initial methanogenic activity on all the tested substrates, with the single exception of butyrate. However, with the "encapsulated" sludge only methane production from ethanol and H(2)/CO(2) was detected, after a lag phase of about 50 h. After mineralization of the biomass-associated LCFA, both sludges exhibited activities of similar order of magnitude in the presence of the same individual substrates and significantly higher than before. The results evidenced that LCFA accumulation onto the sludge can create a physical barrier and hinder the transfer of substrates and products, inducing a delay on the initial methane production. Whatever the mechanism, metabolic or physical, that is behind this inhibition, it is reversible, being eliminated after the

  7. 6LiF oleic acid capped nanoparticles entrapment in siloxanes for thermal neutron detection

    Science.gov (United States)

    Carturan, S.; Maggioni, G.; Marchi, T.; Gramegna, F.; Cinausero, M.; Quaranta, A.; Palma, M. Dalla

    2016-07-01

    The good light output of siloxane based scintillators as displayed under γ-rays and α particles has been exploited here to obtain clear and reliable response toward thermal neutrons. Sensitization towards thermal neutrons has been pursued by adding 6LiF, in form of nanoparticles. Aiming at the enhancement of compatibility between the inorganic nanoparticles and the low polarity, siloxane based surrounding medium, oleic acid-capped 6LiF nanoparticles have been synthesized by thermal decomposition of Li trifluoroacetate. Thin pellets siloxane scintillator maintained their optical transmittance up to weight load of 2% of 6Li. Thin samples with increasing 6Li concentration and thicker ones with fixed 6Li amount have been prepared and tested with several sources (α, γ-rays, moderated neutrons). Light output as high as 80% of EJ212 under α irradiation was measured with thin samples, and negligible changes have been observed as a result of 6LiF addition. In case of thick samples, severe light loss has been observed, as induced by opacity. Nevertheless, thermal neutrons detection has been assessed and the data have been compared with GS20, based on Li glass, taken as a reference material.

  8. Effects of methylene blue in acute lung injury induced by oleic acid in rats

    Science.gov (United States)

    Cassiano Silveira, Ana Paula; Vento, Daniella Alves; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Tefé-Silva, Cristiane; Ramos, Simone Gusmão; Rubens de Nadai, Tales; Rodrigues, Alfredo José; Poli-Neto, Omero Benedicto

    2016-01-01

    Background In acute lung injury (ALI), rupture of the alveolar-capillary barrier determines the protein-rich fluid influx into alveolar spaces. Previous studies have reported that methylene blue (MB) attenuates such injuries. This investigation was carried out to study the MB effects in pulmonary capillary permeability. Methods Wistar rats were divided into five groups: (I) Sham: saline bolus; (II) MB, MB infusion for 2 h; (III) oleic acid (OA), OA bolus; (IV) MB/OA, MB infusion for 2 h, and at 5 min after from the beginning, concurrently with an OA bolus; and (V) OA/MB, OA bolus, and after 2 h, MB infusion for 2 h. After 4 h, blood, bronchoalveolar lavage (BAL), and lung tissue were collected from all groups for analysis of plasma and tissue nitric oxide, calculation of the wet weight to dry weight ratio (WW/DW), and histological examination of lung tissue. Statistical analysis was performed using nonparametric test. Results Although favourable trends have been observed for permeability improvement parameters (WW/WD and protein), the results were not statistically significant. However, histological analysis of lung tissue showed reduced lesion areas in both pre- and post-treatment groups. Conclusions The data collected using this experimental model was favourable only through macroscopic and histological analysis. These observations are valid for both MB infusions before or after induction of ALI. PMID:26855944

  9. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model.

    Science.gov (United States)

    Mohanty, Chandana; Das, Manasi; Sahoo, Sanjeeb K

    2012-10-01

    Wound healing is an intricate multistage process that includes inflammation, cell proliferation, matrix deposition and remodeling phases. It is often associated with oxidative stress and consequent prolonged inflammation, resulting in impaired wound healing. Curcumin has been reported to improve wound healing in different animal models. In order to increase the efficacy of curcumin in the healing arena a curcumin loaded oleic acid based polymeric (COP) bandage was formulated. The in vivo wound healing potency was compared with void bandage and control (cotton gauze treatment) in a rat model. Biochemical parameters and histological analysis revealed increased wound reduction and enhanced cell proliferation in COP bandage treated groups due to its efficient free radical scavenging properties. Comparative acceleration in wound healing was due to early implementation of fibroblasts and its differentiation (increased level of α-smooth muscle actin). Western blotting and semiquantitative PCR analysis clearly indicate that COP bandage can efficiently quench free radicals leading to reduced antioxidative enzyme activity. Further evidence at mRNA and protein level indicates that our system is potent enough to reduce the inflammatory response mediated by the NFκB pathway during wound healing. With this background, we anticipate that such a versatile approach may seed new arena for topical wound healing in the near future.

  10. Distinctive interactions of oleic acid covered magnetic nanoparticles with saturated and unsaturated phospholipids in Langmuir monolayers.

    Science.gov (United States)

    Matshaya, Thabo J; Lanterna, Anabel E; Granados, Alejandro M; Krause, Rui W M; Maggio, Bruno; Vico, Raquel V

    2014-05-27

    The growing number of innovations in nanomedicine and nanobiotechnology are posing new challenges in understanding the full spectrum of interactions between nanomateriales and biomolecules at nano-biointerfaces. Although considerable achievements have been accomplished by in vivo applications, many issues regarding the molecular nature of these interactions are far from being well-understood. In this work, we evaluate the interaction of hydrophobic magnetic nanoparticles (MNP) covered with a single layer of oleic acid with saturated and unsaturated phospholipids found in biomembranes through the use of Langmuir monolayers. We find distinctive interactions among the MNP with saturated and unsaturated phospholipids that are reflected by both, the compression isotherms and the surface topography of the films. The interaction between MNP and saturated lipids causes a noticeable reduction of the mean molecular area in the interfacial plane, while the interaction with unsaturated lipids promotes area expansion compared to the ideally mixed films. Moreover, when liquid expanded and liquid condensed phases of the phospholipid(s) coexist, the MNP preferably partition to the liquid-expanded phase, thus hindering the coalescence of the condensed domains with increasing surface pressure. In consequence organizational information on long-range order is attained. These results evidence the existence of a sensitive composition-dependent surface regulation given by phospholipid-nanoparticle interactions which enhance the biophysical relevance of understanding nanoparticle surface functionalization in relation to its interactions in biointerfaces constituted by defined types of biomolecules.

  11. Total liquid ventilation reduces oleic acid-induced lung injury in piglets

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; LIU Dong-hai; ZHANG Yan-bo; LIU Ai-jun; FAN Xiang-ming; QIAO Chen-hui; WANG Qiang

    2013-01-01

    Background Pediatric patients are susceptible to lung injury that does not respond to traditional therapies.Total liquid ventilation has been developed as an alternative ventilatory strategy for severe lung injury.The aim of this study is to investigate the effect of total liquid ventilation on oleic acid (OA)-induced lung injury in piglets.Methods Twelve Chinese immature piglets were induced acute lung injury by OA.Twelve piglets were randomly treated with conventional gas ventilation (control group) or total liquid ventilation (study group) for 240 minutes.Samples for blood gas analysis were collected before,and at 60-minute intervals after OA-induced lung injury.The degree of lung injury was quantified by histologic examination.The inflammatory cells and the levels of IL-1β,IL-6,IL-10 and TNF-α in plasma,tissue and bronchoalveolar lavage were analyzed.Results Neutrophil and macrophage counts in bronchoalveolar lavage were significantly decreased in the study group (P<0.05).The total lung injury score was also reduced in the study group (P<0.05).The cconcentrations of IL-1β,IL-6,IL-10and TNF-α in plasma,tissue and bronchoalveolar lavage were significantly reduced in the study group (P<0.05).Conclusions Total liquid ventilation reduces biochemical and histologic OA-induced lung injury in piglets.

  12. Influence of pH and heat treatment on β-lactolobulin-oleic acid complex

    Directory of Open Access Journals (Sweden)

    Ana-Maria SIMION (CIUCIU

    2015-12-01

    Full Text Available One of the major concerns of food technologists is to produce healthier products with specific functionalities. The potential use of β-lactoglobulin as a supplement for new functional products is encouraging due to its nutritional and functional characteristics. The aim of this work was to obtain β-lactoglobulin-oleic acid complexes at different pH values (5.0, 6.0, and 7.0 and to test their stability at different temperatures (25-85°C such as to allow identifying their potential use in a variety of food products. The complexes were characterized through different fluorescence spectroscopy based techniques: phase diagram, intrinsic and extrinsic fluorescence, along with fluorescence quenching experiments. Results showed the presence of more than two structurally distinct species with intermediates as induced by thermal treatment. The heat treatment at temperatures higher than 70°C caused an increase in both intrinsic and ANS fluorescence intensity. Acrylamide quenching showed no significant differences between the values of Stern-Volmer constants as function of temperature for pH 5.0, suggesting that no significant changes occurred in the Trp microenvironments. Quenching experiments with KI lead to decreases in Stern-Volmer constants in the temperature range 25-70°C, suggesting protein folding, whereas at higher temperatures a small increase was observed suggesting unfolding and an increased accessibility of the fluorophore to the quencher for all pH values.

  13. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice.

    Science.gov (United States)

    Dong, Hai-Ying; Xu, Min; Ji, Zhen-Yu; Wang, Yan-Xia; Dong, Ming-Qing; Liu, Man-Ling; Xu, Dun-Quan; Zhao, Peng-Tao; Liu, Yi; Luo, Ying; Niu, Wen; Zhang, Bo; Ye, Jing; Li, Zhi-Chao

    2013-12-01

    Leptin is reported to be involved in acute lung injury (ALI). However, the role and underlying mechanisms of leptin in ALI remain unclear. The aim of this study was to determine whether leptin deficiency promoted the development of ALI. LPS or oleic acid (OA) were administered to wild-type and leptin deficient (ob/ob) mice to induce ALI. Leptin level, survival rate, and lung injury were examined. Results showed that leptin levels were predominantly increased in the lung, but also in the heart, liver, kidney, and adipose tissue after LPS adminiatration. Compared with wild-type mice, LPS- or OA-induced lung injury was worse and the survival rate was lower in ob/ob mice. Moreover, leptin deficiency promoted the release of proinflammatory cytokines. Exogenous administration of leptin reduced lethality in ob/ob mice and ameliorated lung injury partly through inhibiting the activation of NF-κB, p38, and ERK pathways. These results indicated that leptin deficiency contributed to the development of lung injury by enhancing inflammatory response, and a high level of leptin improved survival and protected against ALI.

  14. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  15. Stability of HAMLET--a kinetically trapped alpha-lactalbumin oleic acid complex.

    Science.gov (United States)

    Fast, Jonas; Mossberg, Ann-Kristin; Svanborg, Catharina; Linse, Sara

    2005-02-01

    The stability toward thermal and urea denaturation was measured for HAMLET (human alpha-lactalbumin made lethal to tumor cells) and alpha-lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than alpha-lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15 degrees C lower for apo HAMLET than for apo alpha-lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than alpha-lactalbumin, although it is a complex of alpha-lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol.

  16. Enhanced Biodegradability, Lubricity and Corrosiveness of Lubricating Oil by Oleic Acid Diethanolamide Phosphate

    Directory of Open Access Journals (Sweden)

    Fang Jianhua

    2012-09-01

    Full Text Available Impacts of oleic acid diethanolamide phosphate (abbreviated as ODAP as an additive on biodegradability, anti-wear capacity, friction-reducing ability and corrosiveness of an unreadily biodegradable HVI 350 mineral lubricating oil was studied. The biodegradabilities of neat lubricating oil and its formulations with ODAP were evaluated on a biodegradation tester. Furthermore, the anti-wear and friction-reducing abilities and the corrosiveness of neat oil and the formulated oils were determined on a four-ball tribotester and a copper strip corrosion tester, respectively. The results indicated that ODAP markedly enhanced biodegradability as well as anti-wear and friction-reducing abilities of the lubricating oil. On the other hand, excellent color ratings of copper strips for both neat oil and the ODAP-doped oil were obtained in the corrosion tests, demonstrating that the corrosiveness of neat oil and the doped oil was negligible, although the latter seemed to provide slightly better anti-corrosion ability.

  17. Lamellar liquid crystal polymerization of sodium oleate/oleic acid/octadiene/water system

    Institute of Scientific and Technical Information of China (English)

    GUO, Rong; FU, Qing-Hong

    2000-01-01

    In the lamellar liquid crystallization (LLC) phase of NaOL/OLA/H2O system, the small angle X-ray diffraction measurements show that the oleic acid is solubilized in the oil layer at first and then into the ampliphile layer. The octadiene added is also located partly in the oil layer and partly in the amphiphile layer in the LLC. With the addition of octadiene as cross-linking agent, the LLC phase of NaOL/OLA/H2O system was polymerized under the initiation of AIBN with the protection of pure nitrogen at 60℃. Most of the double bond absorption of the monomers in IR spectra disappeared after polymerization. The polymerization takes place not only in the middle of the amphiphile layer between the double bonds of NaOL or OLA and those of octadiene, but also in the oil layer of LLC between the double bonds of OLA and those of octadiene. Interlayer spacing measurements on the copolymer proved d values decreased by about 1 ~ 2 nm compared with those of the corresponding system before the polymerization,indicating a disruption of the ordered structure by the polymerization. The copolymer still has superior surface activity with the critical micellar concentration (CMC) decreased almost to the half of the value for the system before the polymerization.

  18. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry

    Directory of Open Access Journals (Sweden)

    Cristina Lavinia Nistor

    2016-01-01

    Full Text Available The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA. The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent’s molar ratio. Dynamic light scattering (DLS and scanning electron microscopy (SEM measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  19. Computational study of cis-oleic acid adsorption on Ni(1 1 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica, IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Ulacco, S. [Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Brizuela, G.; Juan, A. [Departamento de Fisica, IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2012-05-15

    In the present work, the Atom Superposition and Electron Delocalization method has been applied in order to study the adsorption of cis-oleic acid on Ni(1 1 1) surface. This molecule presents two active functional groups, C=C (in the middle) and -COOH (at one end). Therefore, it is important to explore adsorption on the metal surface through the C=C bond in a geometry parallel to the surface and also in a vertical one with -COOH pointing at Ni atoms. Our results indicate that the parallel geometry is more stable than the vertical one and C=C bond adsorption dominates the process. Energetic results show a strong interaction with the metallic surface. Ni-Ni, C=C, and C-C bonds are weakened upon adsorption because of a bonding interaction between carbons and nickel surface. We found that Ni 5d{sub z}{sup 2} and 5d{sub yz} orbitals play an important role in the bonding between C p{sub x}, p{sub z} orbitals and surface, and the same happens with Ni 6p{sub x} and Ni 6p{sub z}. A small Ni-H interaction is also detected.

  20. Modeling of olive oil degradation and oleic acid inhibition during chemostat and batch cultivation of Bacillus thermoleovorans IHI-91.

    Science.gov (United States)

    Becker, P; Märkl, H

    2000-12-20

    Olive oil degradation by the thermophilic lipolytic strain Bacillus thermoleovorans IHI-91 in chemostat and batch culture was modeled to obtain a general understanding of the underlying principles and limitations of the process and to quantify its stoichiometry. Chemostat experiments with olive oil as the sole carbon source were successfully described using the Monod chemostat model extended by terms for maintenance requirements and wall growth. Maintenance requirements and biomass yield coefficients were in the range reported for mesophiles. For a chemostat experiment at D = 0.3 h(-1) the model was validated up to an olive oil feed concentration of about 3.0 g L(-1) above which an inhibitory effect occurred. Further analysis showed that the liberated oleic acid is the main cause for this inhibition. Using steady-state oleic acid concentrations measured in chemostat experiments with olive oil as substrate it was possible to derive a kinetic expression for oleic acid utilization, showing that a concentration of 430 mg L(-1) leads to a complete growth inhibition. Oleic acid accumulation observed during batch fermentations can be predicted using a model involving growth-associated lipase production and olive oil hydrolysis. Simulations confirmed that this accumulation is the cause for the sudden growth cessation occurring in batch fermentations with higher olive oil start concentrations. Further, an oscillatory behavior, as observed in some chemostat experiments, can also be predicted using the latter model. This work clearly demonstrates that thermophilic lipid degradation by Bacillus thermoleovorans IHI-91 is limited by long-chain fatty acid beta-oxidation rather than oil hydrolysis.

  1. Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid.

    Science.gov (United States)

    An, Jung-Ung; Oh, Deok-Kun

    2013-09-01

    Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.

  2. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol.

    Science.gov (United States)

    Yin, Ping; Chen, Wen; Liu, Wei; Chen, Hou; Qu, Rongjun; Liu, Xiguang; Tang, Qinghua; Xu, Qiang

    2013-07-01

    An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production.

  3. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence

    Institute of Scientific and Technical Information of China (English)

    Maghdu Nainamohamed Abubacker; Palaniyappan Kamala Devi

    2014-01-01

    Objective: To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Methods: Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. Results: The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. Conclusions: The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations.

  4. Enhancement of skin permeation of ibuprofen from ointments and gels by sesame oil, sunflower oil and oleic acid

    Directory of Open Access Journals (Sweden)

    Dinda S

    2006-01-01

    Full Text Available Several batches of paraffin ointments were prepared and ibuprofen was incorporated into them. Sesame oil, sunflower oil, and oleic acid in different concentrations were incorporated into different batches. Commercial ibuprofen gel was obtained and divided into several batches and different concentrations of sesame oil, sunflower oil, and oleic acid were incorporated into them. The in vitro drug release characteristics through hairless (88 mm rat skin was carried out by using modified Insertion cell designed in our laboratory. The cell was placed into a borosil beaker containing 50 ml of pH 7.4 phosphate buffer as the diffusion fluid. The beaker was placed over the magnetic stirrer, which was maintained at 37±0.5° to maintain the temperature of diffusion fluid. The released drug content at predetermined time interval was measured using U-V-double beam spectrophotometer at 272 nm. The drug release was raised with increase in oil concentration.

  5. Research of fluorescent spectra of oleic acid-stabilized ZnSe nanocrystals based on UV light modification

    Science.gov (United States)

    Hao, Licai; Bai, Zhongchen; Huang, Zhaoliang; Liao, Sha; Zhang, Zhengping

    2016-11-01

    The non-aqueous synthesized and post-preparative treatment of oleic acid (OA)-stabilized ZnSe nanocrystals were studied systematically. ZnSe nanocrystals were successfully synthesized via paraffin liquid and oleic acid system by using OA as stabilizer. Synthesized nanocrystals were characterized by means of absorption and fluorescent spectra, Fourier transform infrared spectrometer, transmission electron microscopy and selected area electron diffraction. Furthermore, solutions of ZnSe nanocrystals were illuminated with UV light. The experimental results showed that the fluorescent peak was red-shifted from 445 to 510 nm. The results suggested that, when the solution under illumination, OA was removed from the surface of ZnSe nanocrystals and the surface of ZnSe nanocrystals was oxidized to ZnO nanocrystals. ZnSe/ZnO core/shell nanocrystals were formed when the solution of ZnSe nanocrystals illuminated with UV light.

  6. Preparation of robust polyamide microcapsules by interfacial polycondensation of p-phenylenediamine and sebacoyl chloride and plasticization with oleic acid.

    Science.gov (United States)

    Rosa, Natacha; Martins, Gabriela V; Bastos, Margarida M S M; Gois, Joana R; Coelho, Jorge F J; Marques, Juliana; Tavares, Carlos J; Magalhães, Fernão D

    2015-01-01

    Microcapsules produced by interfacial polycondensation of p-phenylenediamine (PPD) and sebacoyl chloride (SC) were studied. The products were characterized in terms of morphology, mean diameter and effectiveness of dodecane encapsulation. The use of Tween 20 as dispersion stabilizer, in comparison with polyvinyl alcohol (PVA), reduced considerably the mean diameter of the microcapsules and originated smoother wall surfaces. When compared to ethylenediamine (EDA), microcapsules produced with PPD monomer were more rigid and brittle, prone to fracture during processing and ineffective retention of the core liquid. The use of diethylenetriamine (DETA) cross-linker in combination with PPD did not decrease capsule fragility. On the other hand, addition of a small fraction of oleic acid to the organic phase remarkably improved wall toughness and lead to successful encapsulation of the core-oil. Oleic acid is believed to act as a plasticizer. Its incorporation in the polymeric wall was demonstrated by FTIR and (1)H-NMR.

  7. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    Science.gov (United States)

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.M. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Aashuri, H. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of)

    2015-04-15

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown.

  9. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    Science.gov (United States)

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium.

  10. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    Science.gov (United States)

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  11. Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats

    Directory of Open Access Journals (Sweden)

    Takamatsu Kiyoharu

    2010-07-01

    Full Text Available Abstract Background Dietary 1(3-behenoyl-2,3(1-dioleoyl-rac-glycerol (BOO has been reported to inhibit pancreatic lipase activity in vitro and suppress postprandial hypertriacylglycerolemia in humans. In the present study, the anti-obesity activities of BOO and its inhibitory effects on lymphatic triacylglycerol (TAG absorption were investigated in rats. Methods In Experiment 1, rats were fed either BOO or soybean oil (SO diet for 6 weeks. In the BOO diet, 20% of SO was replaced with an experimental oil rich in BOO. In Experiments 2 and 3, rats cannulated in the thoracic duct were administered an emulsions containing trioleoylglycerol (OOO or an oil mixture (OOO:BOO, 9:1. Tri[1-14C]oleoylglycerol (14C-OOO was added to the emulsions administered in Experiment 3. Results No observable differences were detected in food intake or body weight gain between the BOO and SO groups in Experiment 1. Plasma and liver TAG concentrations and visceral fat weights were significantly lower in the BOO group than in the SO group. The apparent absorption rate of fat was significantly lower in the BOO group than in the SO group. In Experiment 2, the lymphatic recovery of oleic and behenic acids was significantly lower at 5 and 6 h after BOO administration than after OOO administration. In Experiment 3, the lymphatic recovery of 14C-OOO was significantly lower at 5 and 6 h after BOO administration than after OOO administration. Conclusions These results suggest that BOO prevents deposition of visceral fat and hepatic TAG by lowering and delaying intestinal absorption of TAG.

  12. Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Celis, J. Almazán, E-mail: jony-jac-5@hotmail.com; Olea Mejía, O. F., E-mail: oleaoscar@yahoo.com [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable UAEMéx-UNAM (Mexico); Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; García-Sosa, I., E-mail: irma.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares (Mexico); Derat-Escudero, R., E-mail: escu@unam.mx [Instituto de Investigación de materiales de la UNAM (Mexico); Baggio Saitovitch, E. M., E-mail: esaitovitch@yahoo.com.br; Alzamora Camarena, M., E-mail: mariella.alzamora@gmail.com [Centro Brasileiro de Pesquizas Físicas (Brazil)

    2017-11-15

    Nanometric magnetite (nm-Fe{sub 3}O{sub 4}) particles were prepared by the reverse co-precipitation synthesis method, obtaining particle sizes that ranged from 4 to 8.5 nm. In their synthesis, the concentration of iron salts of ferric nitrate, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O, and ferrous sulfate, FeSO{sub 4}⋅7H{sub 2}O, were varied relative to the chemical reaction volume and by using different surfactants such as oleic acid (OA) and hexadecyltrimethylammonium bromide (CTAB). The nm-Fe{sub 3}O{sub 4} particles were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), magnetic and X-ray diffraction (XRD) measurements. Typical asymmetrical and/or broad lines shapes appeared in all Mössbauer spectra of the as prepared samples suggesting strong magnetic inter-particle interactions, reducing these interactions to some extent by gentle mechanical grinding. For the smallest particles, maghemite instead of magnetite was the main preparation product as low temperature Mössbauer and magnetic measurements indicated. For the intermediate and largest particles a mixture of magnetite and maghemite phases were produced as the saturation magnetization values of M{sub S} ∼ 60 emu/g indicated; these values were measured for most samples, independently of the coating surfactant concentration, and according to the ZFC-FC curves the blocking temperatures were 225K and 275K for the smallest and largest magnetite nanoparticles, respectively. The synthesis method was highly reproducible.

  13. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    Science.gov (United States)

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-04

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Effect of oleic-linoleic acid and ?-sitosterol to freezing extender of bulls and stallions semen

    Directory of Open Access Journals (Sweden)

    Érika Saltiva Cruz Bender

    2015-06-01

    Full Text Available Addition of polyunsaturated fatty acids and/or cholesterol to a freezing diluent can modify the sperm plasma membrane composition, influencing its behavior during cryopreservation, thus, favoring seminal cryoresistance. The present study aimed to evaluate the effects of the addition of oleic-linoleic acid, (OLA; ?-sitosterol (?-sit, a plant analog of cholesterol; and OLA + ?-sit in combination to a freezing diluent, on the cryopreservation bull and stallion semen. The following variables were analyzed: motility/vigor, plasma and acrosomal membrane integrity (by Trypan Blue/Giemsa staining, mitochondrial activity (by DAB staining, and lipid peroxidation (by a TBARS assays. The lipids were added according to experimental treatments: C – control group, A1 and A2 – OLA at concentrations of 37 ?M and 74 ?M, B1 and B2 – ?-sit at concentrations of 1 ?g mL-1 and 2 ?g mL-1; AB1 and AB2 – OLA 37 ?M + ?-sit 1 ?g mL-1 and OLA 74 ?M + ?-sit 2 ?g mL-1, respectively. The study was divided into three experiments; in Experiment 1, the concentrations of the groups A1, B1, and AB1 were evaluated, whereas in Experiment 2 the concentrations of the groups A2, B2, and AB2 were analyzed, both experiments were performed with bull semen. We conducted Experiment 3 using equine semen with the addition of lipids at all of the concentrations described. Data were subjected to analysis of variance, using the GLM procedure of SAS, with treatment means compared by Duncan test considering 5% significance. These variables differed significantly after thawing the semen post-collection. However, there was no significant difference between treatments when variables were compared within the same time point, except for Experiment 2, where there was a decrease in motility and vigor decrease post-thaw in the groups following ?-sit addition (C – 51.0 ± 13.7%/2.9 ± 0.4; B2 – 35.8 ± 15.8%/2.3 ± 0.6; AB2 – 38.5 ± 16.6%/2.5 ± 0.5, respectively; p < 0.05. In conclusion, the

  15. Lipoprotein profiles and serum peroxide levels of aged women consuming palmolein or oleic acid-rich sunflower oil diets.

    Science.gov (United States)

    Cuesta, C; Ródenas, S; Merinero, M C; Rodríguez-Gil, S; Sánchez-Muniz, F J

    1998-09-01

    To investigate the hypercholesterolemic effects of a dietary exchange between 16:0 and 18:1 while 18:2 was at relatively lower level (approximately 4%) in aged women with initially high total serum cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) values and with high intakes of dietary cholesterol. Subjects were assigned to two consecutive 28 d periods. In the first period all subjects followed an oleic acid-rich diet in the form of oleic acid-rich sunflower oil. This was followed by a second period rich in palmitic acid in the form of palmolein. Nutrient intakes, serum lipids, lipoproteins, antioxidant vitamins, peroxides and LDL-peroxides were measured at two dietary periods. Instituto de Nutrición y Bromatología (CSIC), Departamento de Nutrición y Bromatología I (Nutrición) and Sección Departamental de Quimica Analítica, Universidad Complutense, Madrid, Spain. The palmolein period led to an increase in TC (P or = 6.21 mmol/L or with TC 6.21 mmol/L than in women with TC < 6.21 mmol/L, but palmolein decreased serum and LDL-peroxide in hypercholesterolemics more than in the normocholesterolemics, resulting in serum and LDL-peroxide levels which theoretically are more adequate. Though palmolein increased LDL-C concentrations, it better protected LDL particles, mainly in women with high TC, against peroxidation than did oleic acid-rich sunflower oil.

  16. Preparation of Solid Phase Microextraction (SPME) Probes through Polyaniline Multiwalled Carbon Nanotubes (PANI/MWCNTs) Coating for the Extraction of Palmitic Acid and Oleic Acid in Organic Solvents.

    Science.gov (United States)

    Khajeamiri, Alireza

    2012-01-01

    A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for Solid phase micreoextraction (SPME). The PANI film was directly electrodeposited on the platinum wire surface using cyclic voltametry (CV) technique. The same method was applied for the preparation of SPME fiber coated by polyaniline multiwalled carbon nanotubes (PANI/MWCNTs) composite. The concentration of sulfuric acid for electropolymerization was 0.1 M in the presence of 0.045 M aniline in aqueous solution. For the electrodeposition of PANI/MWCNT composite, 4 μg/mL of MWCNTs was dispersed into the solution. Film coating was carried out on the platinum wire by repetitive cycling of potentials between 0 and 1.0 V at the scan rate of 0.05 V/s. The applicability of these coatings were assessed through employing a laboratory-made SPME injecting device and gas chromatography with mass spectrometry (GC-MS) for the extraction of palmitic acid and oleic acid from chloroform. The developed method proved to be simple and easy, offering high reproducibility. Both PANI coated and PANI/CNT coated probes had the ability to concentrate palmitic acid and oleic acid on their coating and produced strong signals in GC-MS chromatograms. In the meantime, PANI/CNT coated SPME probes produced signals which were stronger than those produced by PANI coated SPME probes. The amount of extracted palmitic acid and oleic acid from chloroform by the PANI/MWCNTs coating was about 6 and 12 times higher than the amount extracted by plane PANI SPME fibers respectively. It could be suggested that the composite material with CNTs has both an increased surface area and an elevated absorptive capacity which leads to this overall increase in extracted palmitic acid and oleic acid.

  17. Who is Mr. HAMLET? Interaction of human alpha-lactalbumin with monomeric oleic acid.

    Science.gov (United States)

    Knyazeva, Ekaterina L; Grishchenko, Valery M; Fadeev, Roman S; Akatov, Vladimir S; Permyakov, Sergei E; Permyakov, Eugene A

    2008-12-09

    A specific state of the human milk Ca(2+) binding protein alpha-lactalbumin (hLA) complexed with oleic acid (OA) prepared using an OA-pretreated ion-exchange column (HAMLET) triggers several cell death pathways in various tumor cells. The possibility of preparing a hLA-OA complex with structural and cytotoxic properties similar to those of the HAMLET but under solution conditions has been explored. The complex was formed by titration of hLA by OA at pH 8.3 up to OA critical micelle concentration. We have shown that complex formation strongly depends on calcium, ionic strength, and temperature; the optimal conditions were established. The spectrofluorimetrically estimated number of OA molecules irreversibly bound per hLA molecule (after dialysis of the OA-loaded preparation against water followed by lyophilization) depends upon temperature: 2.9 at 17 degrees C (native apo-hLA; resulting complex referred to as LA-OA-17 state) and 9 at 45 degrees C (thermally unfolded apo-hLA; LA-OA-45). Intrinsic tryptophan fluorescence measurements revealed substantially decreased thermal stability of Ca(2+)-free forms of HAMLET, LA-OA-45, and OA-saturated protein. The irreversibly bound OA does not affect the Ca(2+) association constant of the protein. Phase plot analysis of fluorimetric and CD data indicates that the OA binding process involves several hLA intermediates. The effective pseudoequilibrium OA association constants for Ca(2+)-free hLA were estimated. The far-UV CD spectra of Ca(2+)-free hLA show that all OA-bound forms of the protein are characterized by elevated content of alpha-helical structure. The various hLA-OA complexes possess similar cytotoxic activities against human epidermoid larynx carcinoma cells. Overall, the LA-OA-45 complex possesses physicochemical, structural, and cytotoxic properties closely resembling those of HAMLET. The fact that the HAMLET-like complex can be formed in aqueous solution makes the process of its preparation more transparent and

  18. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Directory of Open Access Journals (Sweden)

    Haim, D.

    2012-10-01

    Full Text Available Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP, in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg–1 of butyric acid esterified policosanol (BAEP, or 164 mg kg–1 of oleic acid esterified policosanol (OAEP. Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05 in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis.

    Los Policosanoles están formados por una mezcla de alcoholes alifáticos de cadena larga y se obtienen de las ceras de la caña de azúcar. Más de cincuenta estudios indican que los policosanoles reducen el colesterol sérico, mientras que otros no logran reproducir este efecto. El objetivo de esta investigación fue evaluar la biodisponibilidad de policosanoles esterificados y no esterificados

  19. Changes in liquid clearance of alveolar epithelium after oleic acid-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    陶军; 杨天德; 陈祥瑞; 黄河

    2004-01-01

    Objective:Impaired active fluid transport of alveolar epithelium may involve in the pathogenesis and resolution of alveolar edema. Thc objective of this study was to explore the changes in alveolar epithelial liquid clearance during lung edema following acute lung injury induced by oleic acid. Methods:Forty-eight Wistar rats were randomly divided into six groups, I.e. , injured, amiloride, ouabain, amiloride plus ouabain and terbutaline groups. Twenty- four hours after the induction of acute lung injury by intravenous oleic acid (0.25 ml/kg), 5% albumin solution with 1.5 μCi 125Ⅰ-labeled albumin (5 ml/kg) was delivered into both lungs via trachea. Alveolar liquid clearance (ALC), extravascular lung water ( EVLW ) content and arterial blood gases were measured one hour thereafter.Results: At 24 h after the infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia, with EVLW increased by 47.9% and ALC decreased by 49.2%. Addition of either 2 × 10-3 M amiloride or 5 × 10-4 M ouabain to the instillation further reduced ALC and increased EVLW. ALC increased by approximately 63.7% and EVLW decreased by 46.9% with improved hypoxemia in the Terbutaline (10-4 M) group, compared those in injured rats. A significant negative correlation was found between the increment of EVLW and the reduction of ALC. Onclusions:Active fluid transport of alveolar epithelium might play a role in the pathogenesis of lung edema in acute lung injury.

  20. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    OpenAIRE

    Claudio Davet Gutiérrez-Lazos; Mauricio Ortega-López; Manuel A. Pérez-Guzmán; A. Mauricio Espinoza-Rivas; Francisco Solís-Pomar; Rebeca Ortega-Amaya; L. Gerardo Silva-Vidaurri; Castro-Peña, Virginia C; Eduardo Pérez-Tijerina

    2014-01-01

    This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis i...

  1. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian

    2015-10-02

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  2. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  3. Chemical Synthesis and Functionalization of Cobalt Ferrite Nanoparticles with Oleic Acid and Citric Acid Encapsulation

    Directory of Open Access Journals (Sweden)

    Watawe Shrikant C.

    2015-01-01

    Full Text Available The functionalized nanoparticles have now a prime importance because of their wide ranging biomedical applications. The particles having size range 30nm-150nm are useful for cell wall interaction specifically the pinocytosis which takes place in all types of cells. The Cobalt ferrite nanoparticles have been synthesized using chemical co- precipitation route and the pH and temperature of the synthesis is controlled to obtain the optimum sized particles. The coating of Sodium Oleate and Citric acid was carried out in aqueous medium at room temperature. The characterization of coated and uncoated particles has been carried out using XRD and IR which confirm the ferrite structure formation. The TGA-DTA analysis shows the coating of magnetic particles. The SEM micrographs reveal the particle size, before and after coating to be in the range of 45 to 90 nm. The saturation magnetization is found to be 16.8 emu/gm.

  4. Schistosoma mansoni: assessment of effects of oleic acid, cercarial age and water temperature on parasite-host attraction.

    Science.gov (United States)

    Lee, Vivien S T; Burgess, Jefferey L; Sterling, Charles R; Lutz, Eric A

    2013-09-01

    Although the lifecycle of Schistosoma spp. and pathophysiology of schistosomiasis have been established, the mechanism by which cercariae find their host is not well understood. Speculatively, host infection by random and accidental host contact is not as biologically plausible as a biochemical mechanism of mammalian attraction. A few studies have indicated that biochemical cues and temperature gradients may play a role in host identification, attraction and attachment triggers. This study aimed to elucidate these mechanisms more specifically through evaluation of biochemical, age and temperature influences leading to Schistosoma mansoni cercariae attraction and attachment behaviors. Oleic acid, a common unsaturated free fatty acid in the outer layer of human skin, was tested for cercariae attraction across biologically relevant concentrations. Influence of media type (beeswax, nail varnish and agar), age-dependent behavior variability and environmentally appropriate temperatures (22 and 30 °C) were also evaluated. Results indicated that oleic acid at concentrations of 0.3, 0.9 and 1.8 g/mL in beeswax significantly increased median attachment to media (median attachment of 7.50%, 4.20% and 3.71%, respectively, P0.05). Biochemical, age and environmental factors influencing cercarial host attraction and attachment behavior have been elucidated by this study. This information will inform further development of devices for environmental surveillance and potentially improve cercarial exposure prevention strategies.

  5. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture.

    Science.gov (United States)

    Moravcová, A; Červinková, Z; Kučera, O; Mezera, V; Rychtrmoc, D; Lotková, H

    2015-01-01

    In vitro models serve as a tool for studies of steatosis. Palmitic and oleic acids can induce steatosis in cultured hepatocytes. The aim of our study was to verify steatogenic and cytotoxic effects of palmitic acid (PA), oleic acid (OA) and their combinations as well as their impact on functional capacity of rat primary hepatocytes. Hepatocytes were exposed to OA or PA (0.125-2 mmol/l) or their combination at ratios of 3:1, 2:1 or 1:1 at the final concentrations of 0.5-1 mmol/l. Both OA and PA caused a dose-dependent increase in triacylglycerol content in hepatocytes. PA was more steatogenic at 0.25 and 0.5 mmol/l while OA at 0.75 and 1 mmol/l. PA exhibited a dose-dependent cytotoxic effect associated with ROS production, present markers of apoptosis and necrosis and a decrease in albumin production. OA induced a damage of the cytoplasmic membrane from 1 mM concentration. Mixture of OA and PA induced lower cytotoxicity with less weakened functional capacity than did PA alone. Extent of steatosis was comparable to that after exposure to OA alone. In conclusion, OA or combination of OA with PA is more suitable for simulation of simple steatosis than PA alone.

  6. H3PO4/Al2O3 catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    OpenAIRE

    Lucia Regina Raddi de Araujo; Cynthia Fraga Scofield; Nídia Maria Ribeiro Pastura; Wilma de Araujo Gonzalez

    2006-01-01

    Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the...

  7. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    Science.gov (United States)

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions.

  8. Comet assay assessment of oleic acid-coated magnetite nanoparticles on human SHSY5Y neuronal cells

    Directory of Open Access Journals (Sweden)

    Joao Paulo Teixeira

    2015-05-01

    Thus, the main objective of this work was to examine possible genotoxic effects of ION (crystalline phase magnetite, covered by oleic acid on human SHSY5Y neuronal cells by the standard alkaline comet assay, along with its OGG1 enzyme modified version to analyse oxidative DNA damage. Previously we evaluated the possible interference of the ION with the comet assay methodology and with OGG1 enzyme activity. ION were dispersed both in complete and serum-free cell culture media, and cells were exposed to four concentrations in the range 10-200 µg/ml for 3 and 24 h. Results obtained showed increases in DNA damage, both primary and oxidative, after treatment with oleic acid-coated ION, even though the highest concentrations were found to interfere with OGG1 enzyme activity in incomplete cell culture medium. The results of this study encourage the need for checking the suitability of comet assay when used for testing genotoxicity of nanomaterials. Further investigations are required to assess the ability of ION to induce oxidative stress, and to elucidate the specific mechanism involved in primary DNA damage induced by these ION.

  9. Effect of heating at frying temperature on the quality characteristics of regular and high-oleic acid sunflower oils

    Directory of Open Access Journals (Sweden)

    M Abbas Ali

    2013-06-01

    Full Text Available Background.Understanding of oil deterioration during heating/frying process is important as oils are nor- mally kept hot at commercial food outlets during intermittent frying cycles. An increased level of consumer awareness toward fat composition and its impact on human health could have an effect on selection of fats in the food industry. The rate of quality deterioration during heating depends on fatty acid composition and also the content and composition of minor components. Therefore, the use of more stable frying oils would be desirable. The present study compares the heat stability at frying temperature of regular sunflower oil (RSFO with that of high-oleic acid sunflower oil (HSFO.  Material and methods. Heating test was carried out at 185 ±5°C for the samples RSFO and HSFO using electric fryer for 8 h/day for 3 consecutive days. The samples were collected every 4 h. The changes in phys- icochemical properties of the samples were monitored by analytical and instrumental methods.  Results.In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, TOTOXvalue and polar compounds of the oils all increased, whereas C    /C ratio decreased as heating progressed.The percentage of linoleic acid tended to decrease, whereas the percentages of palmitic, stearic and oleic ac-ids increased. The sample HSFO exhibited better heating performance compared to RSFO. However, a higher amount of free fatty acids was found in HSFO compared to RSFO at the end of heating trial. Moreover, heat- ing process decreased the total tocopherol content and higher reduction was detected in RSFO.  Conclusion.In conclusion, the heating caused the formation of comparatively lower amounts of some deg- radative products in HSFO compared to RSFO indicating a lower extent of quality deterioration of HSFO.    

  10. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

    Science.gov (United States)

    Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan

    2014-10-29

    In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.

  11. Responses to increasing amounts of high-oleic sunflower fatty acids infused into the abomasum of lactating dairy cows.

    Science.gov (United States)

    Drackley, J K; Overton, T R; Ortiz-Gonzalez, G; Beaulieu, A D; Barbano, D M; Lynch, J M; Perkins, E G

    2007-11-01

    Increasing the oleic acid (18:1 cis-9) content of milk fat might be desirable to meet consumer concerns about dietary healthfulness and for certain manufacturing applications. The extent to which milk fat could be enriched with oleic acid is not known. Increasing the intestinal supply of polyunsaturated fatty acids decreases dry matter intake (DMI) in cows, but the effects of oleic acid have not been quantified. In a crossover design, 4 multiparous Holstein cows were abomasally infused with increasing amounts (0, 250, 500, 750, or 1,000 g/d) of free fatty acids from high-oleic sunflower oil (HOSFA) or with carrier alone. Continuous infusions (20 to 22 h/d) were for 7 d at each amount. Infusions were homogenates of HOSFA with 240 g/d of meat solubles and 11.2 g/d of Tween 80; controls received carrier only. The HOSFA contained (by wt) 2.4% 16:0, 1.8% 18:0, 91.4% 18:1 cis-9, and 2.4% 18:2. The DMI decreased linearly (range 22.0 to 5.8 kg/d) as the infused amount of HOSFA increased. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, and energy decreased as the infusion increased to 750 g/d and then increased when 1,000 g/d was infused. Digestibility of total fatty acids increased linearly as infused fatty acids increased. Yields of milk, fat, true protein, casein, and total solids decreased quadratically as infused amounts increased; decreases were greatest when 750 or 1,000 g/d of HOSFA were infused. Concentrations of fat and total solids increased at the higher amounts of HOSFA. The volume mean diameter of milk fat droplets and the diameter below which 90% of the volume of milk fat is contained both increased as HOSFA infusion increased. Concentrations of short-chain fatty acids, 12:0, 14:0, and 16:0 in milk fat decreased linearly as HOSFA increased. The concentration of 18:1 cis-9 (19.4 to 57.4% of total fatty acids) increased linearly as HOSFA infusion increased. Concentrations of 18:1 cis-9 in blood triglyceride

  12. Alpha-fetoprotein (AFP) modulates the effect of serum albumin on brain development by restraining the neurotrophic effect of oleic acid.

    Science.gov (United States)

    García-García, Alejandro G; Polo-Hernández, Erica; Tabernero, Arantxa; Medina, José M

    2015-10-22

    We have previously shown that serum albumin controls perinatal rat brain development through the regulation of oleic acid synthesis by astrocytes. In fact, oleic acid synthesized and released by astrocytes promoted neurite growth, neuron migration and the arrangement of prospective synapses. In this work we show that alpha-fetoprotein (AFP) is also present in the brain during embryonic development, its concentrations peaking at E15.5 and at E19.5. However, after E19.5 AFP concentrations plummeted concurrently with a sharp increase in serum albumin concentrations. At E15.5, AFP is present in caudal regions of the brain, particularly in brain areas undergoing differentiation during this period, such as the thalamic reticular nucleus of the thalamus, the hypothalamus, the amygdala and the hippocampus. Albumin was not detected in the brain at E15.5 but stained brain cells substantially on day E19.5, showing a very similar distribution to that of AFP under the same circumstances. The concentrations of free oleic acid in the brain were inversely correlated with those of AFP, suggesting that the signals elicited by AFP and oleic acid can be inversely associated. GAP-43, a marker of axonal growth that is highly expressed by the presence of oleic acid, was not co-localized with AFP except in the marginal zone and areas delimiting the subplate. AFP prevented the increase in GAP-43 expression caused by the presence of oleic acid in neurons in primary culture in vitro and in organotypic cultures of embryonic rat brain ex vivo, suggesting that AFP may modulate the effect of serum albumin on brain development.

  13. Molecular mechanisms of the cytotoxicity of human α-lactalbumin made lethal to tumor cells (HAMLET) and other protein-oleic acid complexes.

    Science.gov (United States)

    Nakamura, Takashi; Aizawa, Tomoyasu; Kariya, Ryusho; Okada, Seiji; Demura, Makoto; Kawano, Keiichi; Makabe, Koki; Kuwajima, Kunihiro

    2013-05-17

    Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and β2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane.

  14. Molecular Mechanisms of the Cytotoxicity of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET) and Other Protein-Oleic Acid Complexes*

    Science.gov (United States)

    Nakamura, Takashi; Aizawa, Tomoyasu; Kariya, Ryusho; Okada, Seiji; Demura, Makoto; Kawano, Keiichi; Makabe, Koki; Kuwajima, Kunihiro

    2013-01-01

    Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and β2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane. PMID:23580643

  15. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.;

    2015-01-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious...... deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...... in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic...

  16. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  17. Oleic acid biosynthesis in Plasmodium falciparum: characterization of the stearoyl-CoA desaturase and investigation as a potential therapeutic target.

    Directory of Open Access Journals (Sweden)

    Paul Gratraud

    Full Text Available BACKGROUND: Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD. These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE: Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD.

  18. Inactivation of Salmonella spp. and Listeria spp. by Palmitic, Stearic, and Oleic Acid Sophorolipids and Thiamine Dilauryl Sulfate

    Science.gov (United States)

    Zhang, Xuejie; Ashby, Richard; Solaiman, Daniel K. Y.; Uknalis, Joseph; Fan, Xuetong

    2016-01-01

    Food contaminated with human pathogens, such as Salmonella spp. and Listeria monocytogenes, frequently causes outbreaks of foodborne illness. Consumer concern over the use of synthesized antimicrobials to enhance microbial food safety has led to a search of natural alternatives. The objectives of this study were to evaluate the antimicrobial activity of various types of sophorolipids (SLs) and thiamine dilauryl sulfate (TDS) against pathogenic Salmonella spp. and Listeria spp. Both free and lactonic forms of SLs were synthesized from Candida bombicola using palmitic, stearic, and oleic acids as co-feedstocks. TDS and purified SLs were used to treat cocktails of Salmonella spp. and Listeria spp. Results showed that lactonic SLs had higher antimicrobial activity than the free-acid form, and Gram-positive Listeria spp. were more susceptible to SLs and TDS than Gram-negative Salmonella spp. Listeria populations were reduced from an initial concentration of 7.2 log CFU/mL to a non-detectible level within a 1 min treatment of 0.1% (w/v) lactonic SLs and TDS in the presence of 20% ethanol, which itself did not significantly reduce the populations. There were no significant differences in the antimicrobial efficacy among palmitic, stearic, and oleic acid-based SLs against Salmonella or Listeria spp. Ethanol was utilized to improve the antimicrobial activity of free-acid SLs against Gram-negative bacteria. In general, TDS was more effective than the SLs against Salmonella and Listeria spp. scanning electron microscopy and transmission electron microscopy images showed that SLs and TDS damaged Listeria cell membranes and resulted in cell lysis. Overall, our results demonstrated that SLs and TDS in the presence of ethanol can be used to inactivate foodborne pathogens, especially Gram-positive bacteria. PMID:28066390

  19. Inactivation of Salmonella spp. and Listeria spp. by Palmitic, Stearic, and Oleic Acid Sophorolipids and Thiamine Dilauryl Sulfate.

    Science.gov (United States)

    Zhang, Xuejie; Ashby, Richard; Solaiman, Daniel K Y; Uknalis, Joseph; Fan, Xuetong

    2016-01-01

    Food contaminated with human pathogens, such as Salmonella spp. and Listeria monocytogenes, frequently causes outbreaks of foodborne illness. Consumer concern over the use of synthesized antimicrobials to enhance microbial food safety has led to a search of natural alternatives. The objectives of this study were to evaluate the antimicrobial activity of various types of sophorolipids (SLs) and thiamine dilauryl sulfate (TDS) against pathogenic Salmonella spp. and Listeria spp. Both free and lactonic forms of SLs were synthesized from Candida bombicola using palmitic, stearic, and oleic acids as co-feedstocks. TDS and purified SLs were used to treat cocktails of Salmonella spp. and Listeria spp. Results showed that lactonic SLs had higher antimicrobial activity than the free-acid form, and Gram-positive Listeria spp. were more susceptible to SLs and TDS than Gram-negative Salmonella spp. Listeria populations were reduced from an initial concentration of 7.2 log CFU/mL to a non-detectible level within a 1 min treatment of 0.1% (w/v) lactonic SLs and TDS in the presence of 20% ethanol, which itself did not significantly reduce the populations. There were no significant differences in the antimicrobial efficacy among palmitic, stearic, and oleic acid-based SLs against Salmonella or Listeria spp. Ethanol was utilized to improve the antimicrobial activity of free-acid SLs against Gram-negative bacteria. In general, TDS was more effective than the SLs against Salmonella and Listeria spp. scanning electron microscopy and transmission electron microscopy images showed that SLs and TDS damaged Listeria cell membranes and resulted in cell lysis. Overall, our results demonstrated that SLs and TDS in the presence of ethanol can be used to inactivate foodborne pathogens, especially Gram-positive bacteria.

  20. Oleic acid synthesized by stearoyl-CoA desaturase (SCD-1) in the lateral periventricular zone of the developing rat brain mediates neuronal growth, migration and the arrangement of prospective synapses.

    Science.gov (United States)

    Polo-Hernández, Erica; Tello, Vega; Arroyo, Angel A; Domínguez-Prieto, Marta; de Castro, Fernando; Tabernero, Arantxa; Medina, José M

    2014-06-27

    Our previous work has shown that oleic acid synthesized by astrocytes in response to serum albumin behaves as a neurotrophic factor in neurons, upregulating the expression of GAP-43 and MAP-2 proteins, which are respectively markers of axonal and dendrite growth. In addition, oleic acid promoted neuron migration and aggregation, resulting in clusters of neurons connected each other by the newly formed neurites. In this work we show that the presence of albumin or albumin plus oleic acid increases neuron migration in cultured explants of the lateral periventricular zone, resulting in an increase in the number of GAP-43-positive neurons leaving the explant. Upon silencing stearoyl-CoA desaturase-1 (SCD-1), a key enzyme in oleic acid synthesis by RNA of interference mostly prevented the effect of albumin but not that of albumin plus oleic acid, suggesting that the oleic acid synthesized due to the effect of albumin would be responsible for the increase in neuron migration. Oleic acid increased doublecortin (DCX) expression in cultured neurons, explants and organotypic slices, suggesting that DCX may mediate in the effect of oleic acid on neuron migration. The effect of oleic acid on neuron migration may be destined for the formation of synapses because the presence of oleic acid increased the expression of synaptotagmin and that of postsynaptic density protein (PDS-95), respectively markers of the pre- and postsynaptic compartments. In addition, confocal microscopy revealed the occurrence of points of colocalization between synaptotagmin and PDS-95, which is consistent with the idea that oleic acid promotes synapse arrangement.

  1. Phase behavior and properties of salt-free cationic/anionic surfactant mixtures of oleic acid and stearic acid

    Institute of Scientific and Technical Information of China (English)

    ZHAO DianYing; LI HongGuang; SONG AiXin; HAO JingCheng

    2009-01-01

    Cationic base surfactant,tetradecyltrimethylammonium hydroxide (TTAOH),can be obtained through anion exchange from tetradecyltrimethylammonium bromide (TTABr).Salt-free cationic and anionic (catanionic) surfactant mixtures were studied by mixing TTAOH with oleic acid (OA) or stearic acid (SA) in water.The phase behavior of TTAOH/OA/H_2O is compared with that of TTAOH/SA/H_2O.It was found that the phase behavior of TTAOH/OA/H_2O and TTAOH/SA/H_2O system differs from each other due to the existence of the unsaturated double carbon bond (C=C) in OA.At fixed total surfactant concentration (25 mg/mL) of TTAOHIONH_2O system at 25℃,one can observe an isotropic L_1 phase,and a L_1/L_α two-phase region with increasing OA content.The volume of top turbid L.phase increases while the bottom phase changes gradually from transparently clear to a bit turbid until a single L_α-phase is reached.Finally at high OA concentration,excess OA is separated from the bulk aqueous solutions.TTAOH/SA/H_2O system usually forms white precipitating at 25℃ due to the high chain melting temperature of SA.When heated to 60℃,however,the state of samples changes.At fixed total surfactant concentration of 25 mg/mL,an isotropic L1 phase and a milk-white or bluish La-phase are observed with increasing SA concentration.Transparent thin layers which are strongly birefringent form at the tops of some samples within the L_α-phase region.Finally,at high SA concentration,excess SA is separated from the bulk aqueous solutions.In addition to phase behavior study,we also measured the conductivity of TTAOH/OA/H_2O system at 25℃ and TTAOH/SA/H_2O system at 60℃,respectively.Surface tension and rheological measurements were also performed on typical samples.

  2. Negative mesenteric effects of lung recruitment maneuvers in oleic acid lung injury are transient and short lasting.

    Science.gov (United States)

    Claesson, Jonas; Lehtipalo, Stefan; Bergstrand, Ulf; Arnerlöv, Conny; Winsö, Ola

    2007-01-01

    To test the hypothesis that repeated recruitment maneuvers (RMs) have sustained negative effects on mesenteric circulation, metabolism, and oxygenation 60 mins after RMs in pigs with oleic acid lung injury. Further, we aimed to test the hypothesis that an infusion of prostacyclin (PC) at 33 ng.kg.min would attenuate such possible negative mesenteric effects. Randomized, experimental, controlled study. University hospital animal laboratory. A total of 31 anesthetized, fluid-resuscitated pigs with oleic acid lung injury. : Animals were randomized to one of the following four groups: a control group (n = 7) that received no intervention, recruitment group (n = 8) that underwent the RM sequence, a prostacyclin group (n = 8) that received an infusion of PC, and a recruitment-prostacyclin group (n = 8) that received an infusion of PC and concomitant RM sequence. We measured systemic and mesenteric hemodynamic variables, jejunal mucosal perfusion, mesenteric lactate flux, jejunal tissue oxygen tension, and mesenteric oxygen delivery, uptake, and extraction ratio. Five minutes after RMs, mesenteric oxygen extraction ratio and mesenteric lactate flux were more prominently increased in the recruitment group, giving evidence of worsened mesenteric conditions after RMs. These signs of worsened conditions were further supported by more decreased jejunal tissue oxygen tension and portal vein oxygen saturation in the recruitment group. PC preserved mesenteric oxygenation, as indicated by less of a decrease in portal vein oxygen saturation at the time corresponding to 5 mins after RM and less of a decrease in mesenteric oxygen delivery at the time corresponding to 15 mins after RM. PC preserved mesenteric oxygenation as indicated by less of a decrease in portal vein oxygen saturation at 5 mins after RM and an attenuated increase in mesenteric oxygen extraction ratio at 5 mins after RM. There was a trend toward worsened jejunal mucosal perfusion, although not significant. In an

  3. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  4. Pinus densiflora Sieb. et Zucc. Alleviates Lipogenesis and Oxidative Stress during Oleic Acid-Induced Steatosis in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jin Hwang

    2014-07-01

    Full Text Available Excess accumulation of lipids and oxidative stress in the liver contribute to nonalcoholic fatty liver disease (NAFLD. We hypothesized that Pinus densiflora Sieb. et Zucc. (PSZ can protect against NAFLD by regulating lipid accumulation and oxidative stress in the liver. To investigate the effect of PSZ upon NAFLD, we used an established cellular model: HepG2 cells treated with oleic acid. Then, the extent of hepatic steatosis and oxidative stress was assessed and levels of inflammatory markers measured. Oleic acid-treated HepG2 cells, compared with controls, had greater lipid accumulation. PSZ decreased lipid accumulation by 63% in oleic acid-treated HepG2 cells. Additionally, PSZ decreased the target gene expression of lipogenesis such as sterol regulatory element binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, diacylglycerol O-acyltransferase-1, and acetyl-CoA carboxylase-1 by 1.75, 6.0, 2.32, 1.93 and 1.81 fold, respectively. In addition, Oleic acid-treated HepG2 cells elicited extensive accumulation of tumor necrosis factor-α (TNFα by 4.53 fold, whereas PSZ-treated cells decreased the expression of TNFα mRNA by 1.76 fold. PSZ significantly inhibited oxidative stress induced by reactive oxygen species. These results suggest that PSZ has effects on steatosis in vitro and further studies are needed in vivo to verify the current observations.

  5. Pinus densiflora Sieb. et Zucc. alleviates lipogenesis and oxidative stress during oleic acid-induced steatosis in HepG2 cells.

    Science.gov (United States)

    Hwang, Yu-Jin; Wi, Hae-Ri; Kim, Haeng-Ran; Park, Kye Won; Hwang, Kyung-A

    2014-07-23

    Excess accumulation of lipids and oxidative stress in the liver contribute to nonalcoholic fatty liver disease (NAFLD). We hypothesized that Pinus densiflora Sieb. et Zucc. (PSZ) can protect against NAFLD by regulating lipid accumulation and oxidative stress in the liver. To investigate the effect of PSZ upon NAFLD, we used an established cellular model: HepG2 cells treated with oleic acid. Then, the extent of hepatic steatosis and oxidative stress was assessed and levels of inflammatory markers measured. Oleic acid-treated HepG2 cells, compared with controls, had greater lipid accumulation. PSZ decreased lipid accumulation by 63% in oleic acid-treated HepG2 cells. Additionally, PSZ decreased the target gene expression of lipogenesis such as sterol regulatory element binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, diacylglycerol O-acyltransferase-1, and acetyl-CoA carboxylase-1 by 1.75, 6.0, 2.32, 1.93 and 1.81 fold, respectively. In addition, Oleic acid-treated HepG2 cells elicited extensive accumulation of tumor necrosis factor-α (TNFα) by 4.53 fold, whereas PSZ-treated cells decreased the expression of TNFα mRNA by 1.76 fold. PSZ significantly inhibited oxidative stress induced by reactive oxygen species. These results suggest that PSZ has effects on steatosis in vitro and further studies are needed in vivo to verify the current observations.

  6. Comparison of Chemical Characteristics of High Oleic Acid Fraction of Moringa oleifera Oil with Some Vegetable Oils

    Directory of Open Access Journals (Sweden)

    F. Rahman1

    2014-06-01

    Full Text Available Chemical characteristics of High oleic acid fraction (HOF of Moringa oleifera oil (MOO was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0oC. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1oC as compared to 10.2oC in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability.

  7. Competitive hydrogen bonds associated with the effect of primycin antibiotic on oleic acid as a building block of plasma membranes.

    Science.gov (United States)

    Virág, Eszter; Pesti, Miklós; Kunsági-Máté, Sándor

    2010-03-01

    Interaction of primycin antibiotic with oleic acid was investigated to understand the effect of primycin on lipid membranes at a molecular level. The thermodynamic parameters of the complex formation were determined by photoluminescence studies. Results highlight the presence of two interactions between the interacted species according to the cases in which one or two hydrogen bonds stabilize the molecular complexes. Although both interactions result in similar Gibbs-free enthalpy change at room temperature, the enthalpy and entropy changes associated with the formation of single or double hydrogen bonds are quite different. Quantum chemical and anisotropy decay studies validated that the formation of a single or double hydrogen bond between these species is driven by entropy in the former or enthalpy in the latter case. Owing to the resultant quite different temperature dependence of these two interactions, after detailed examinations in a cellular environment, this property could have importance in application of primycin on differently fevered bodies.

  8. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10‑4 S cm‑1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  9. Preemptive hemodynamic intervention restricting the administration of fluids attenuates lung edema progression in oleic acid-induced lung injury.

    Science.gov (United States)

    Gil Cano, A; Gracia Romero, M; Monge García, M I; Guijo González, P; Ruiz Campos, J

    2017-04-01

    A study is made of the influence of preemptive hemodynamic intervention restricting fluid administration upon the development of oleic acid-induced lung injury. A randomized in vivo study in rabbits was carried out. University research laboratory. Sixteen anesthetized, mechanically ventilated rabbits. Hemodynamic measurements obtained by transesophageal Doppler signal. Respiratory mechanics computed by a least square fitting method. Lung edema assessed by the ratio of wet weight to dry weight of the right lung. Histological examination of the left lung. Animals were randomly assigned to either the early protective lung strategy (EPLS) (n=8) or the early protective hemodynamic strategy (EPHS) (n=8). In both groups, lung injury was induced by the intravenous infusion of oleic acid (OA) (0.133mlkg(-1)h(-1) for 2h). At the same time, the EPLS group received 15mlkg(-1)h(-1) of Ringer lactate solution, while the EPHS group received 30mlkg(-1)h(-1). Measurements were obtained at baseline and 1 and 2h after starting OA infusion. After 2h, the cardiac index decreased in the EPLS group (p<0.05), whereas in the EPHS group it remained unchanged. Lung compliance decreased significantly only in the EPHS group (p<0.05). Lung edema was greater in the EPHS group (p<0.05). Histological damage proved similar in both groups (p=0.4). In this experimental model of early lung injury, lung edema progression was attenuated by preemptively restricting the administration of fluids. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  10. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjie; Zang, Chongguang, E-mail: zangchongguang@bit.edu.cn; Jiao, Qingjie

    2015-03-15

    The post-modified Mn–Zn ferrite was prepared by grafting oleic acid on the surface of Mn–Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz–1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite. - Highlights: • The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on its surface to inhibit aggregation. • The increasing in hydrophobicity and dispersion of modified coating improved compatibility between illers and polymer. • The modified fillers can decrease the friction COF of the composite coatings resulting in the enhanced resistance to wear. • The modified ferrite coatings are observed to exhibit better reflection loss compared with coatings with original ferrite.

  11. Effects of dietary high-oleic acid sunflower oil, copper and vitamin E levels on the fatty acid composition and the quality of dry cured Parma ham.

    Science.gov (United States)

    Bosi, P; Cacciavillani, J A; Casini, L; Lo Fiego, D P; Marchetti, M; Mattuzzi, S

    2000-02-01

    The effects of seven isoenergetic dietary treatments: (1) no sunflower oil, 35 mg/kg Cu, without α-tocopheryl-acetate added; (2) to (7) 6% high oleic acid sunflower oil (HOSO), 35 or 175 mg/kg Cu crossed with a 0, 100 or 200 mg/kg α-tocopherol addition, were tested on quality characteristics of dry cured Parma hams from a total 84 Large White gilts. No statistically significant effect was detected on parameters of early evaluation of seasoning loss of hams. The seasoning loss and intramuscular fat content of seasoned hams averaged 28.1 and 3.3%, respectively, with no effect of the diet composition. The CIE L*a*b* colour values taken on the surface of the lean from Parma ham were not affected by dietary oil inclusion, nor by copper levels and by α-tocopherol addition in the feed mixture, except for the 'a' value that increased in HOSO groups (Poil group, the Parma hams in the HOSO groups showed a higher oleic acid content in the covering fat, but not different in neutral and polar fractions from semimenbranosus muscle. The oil inclusion reduced the saturated fatty acid content in subcutaneous fat and neutral lipids fraction from muscle to 30-34% No effect of α-tocopherol and copper levels were observed on fatty acids profiles. From the subjects fed the HOSO diet softer Parma hams were produced than those fed the control diet (χ(2)<0.05), while α-tocopherol and Cu levels did not influence the sensorial evaluation of hams. The inclusion of an oleic acid rich source in heavy pig diet brought about an improved nutritional value, but also the possible need of a prolonged ageing time to achieve an ideal firmness of Parma ham. Dietary α-tocopherol supplementation improved the red colour slightly and the lipid stability in Parma ham, while the supplementation of Cu in the diet had no influence on the tested parameters.

  12. Reduced Plasma Nonesterified Fatty Acid Levels and the Advent of an Acute Lung Injury in Mice after Intravenous or Enteral Oleic Acid Administration

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves de Albuquerque

    2012-01-01

    Full Text Available Although exerting valuable functions in living organisms, nonesterified fatty acids (NEFAs can be toxic to cells. Increased blood concentration of oleic acid (OLA and other fatty acids is detected in many pathological conditions. In sepsis and leptospirosis, high plasma levels of NEFA and low albumin concentrations are correlated to the disease severity. Surprisingly, 24 h after intravenous or intragastric administration of OLA, main NEFA levels (OLA inclusive were dose dependently decreased. However, lung injury was detected in intravenously treated mice, and highest dose killed all mice. When administered by the enteral route, OLA was not toxic in any tested conditions. Results indicate that OLA has important regulatory properties on fatty acid metabolism, possibly lowering circulating fatty acid through activation of peroxisome proliferator-activated receptors. The significant reduction in blood NEFA levels detected after OLA enteral administration can contribute to the already known health benefits brought about by unsaturated-fatty-acid-enriched diets.

  13. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  14. Skeletal isomerisation of oleic acid over ferrierite in the presence and absence of triphenylphosphine : Pore mouth catalysis and related deactivation mechanisms

    NARCIS (Netherlands)

    Wiedemann, Sophie C C; Stewart, Joseph A.; Soulimani, Fouad|info:eu-repo/dai/nl/313889449; Van Bergen-Brenkman, Tanja; Langelaar, Stephan; Wels, Bas; De Peinder, Peter|info:eu-repo/dai/nl/325810818; Bruijnincx, Pieter C A|info:eu-repo/dai/nl/33799529X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2014-01-01

    The formation and nature of coke (precursor) species has been studied during the skeletal isomerisation of oleic acid catalysed by protonated ferrierite, in the presence and absence of a triphenylphosphine promoter. UV-Vis and FT-IR spectroscopic analyses of the spent catalyst materials,

  15. Oleic acid-dependent modulation of Nitric oxide associated 1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis

    Science.gov (United States)

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...

  16. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two olei

  17. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    OpenAIRE

    Bootello, M. A.; Garcés, R.; Martínez-Force, E.; Salas, J. J.

    2016-01-01

    The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable a...

  18. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Science.gov (United States)

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam.

  19. High-oleic ready-to-use therapeutic food maintains docosahexaenoic acid status in severe malnutrition

    Science.gov (United States)

    Ready-to-use therapeutic food (RUTF) is the preferred treatment for uncomplicated severe acute malnutrition. It contains large amounts of linoleic acid and little a-linolenic acid, which may reduce the availability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to the recovering child...

  20. 氧化油酸制备壬酸和壬二酸%Preparation of Pelargonic Acid and Azelaic Acid with Oxidation of Oleic Acid

    Institute of Scientific and Technical Information of China (English)

    孙元雪; 闫立东; 张美玲

    2012-01-01

    Using the industry oleic acid as raw materials and the united oxidation of ozone and hydroyen peroxide,azelaic acid and pelargonic were prepared.During the oxidation process of the ozone with hydrogen peroxide,major factors influencing the reaction such as temperature,catalyst and time were mainly studied.The final product was characterized by GC tracking the reaction process using IR spectroscopy,TG/DTA thermal analysis instrument and NMR,the yield of azelaic acid could be 51%,and the yield of pelargonic acid could be 50%.%以工业油酸为原料,采用臭氧和双氧水联合氧化法制备壬酸和壬二酸。在臭氧联合双氧水氧化过程中主要考察温度、催化剂、时间等因素对反应结果的影响。利用气相色谱跟踪反应进程,用红外光谱仪、热重/差热综合热分析仪、核磁共振仪对终产品进行表征,壬二酸收率可达51%,壬酸色谱收率可达50%。

  1. High oleic ready-to-use therapeutic food maintains docosahexaenoic acid status in severe malnutrition: a randomized, blinded trial

    Science.gov (United States)

    Hsieh, Ji-Cheng; Liu, Lei; Zeilani, Mamane; Ickes, Scott; Trehan, Indi; Maleta, Ken; Craig, Christina; Thakwalakwa, Chrissie; Singh, Lauren; Brenna, J. Thomas; Manary, Mark J.

    2015-01-01

    Objective Ready-to-use therapeutic food (RUTF) is the preferred treatment for uncomplicated severe acute malnutrition. RUTF contains large amounts of linoleic acid and very little α-linolenic acid, which may reduce the availability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to the recovering child. A novel high oleic RUTF (HO-RUTF) was developed with less linoleic acid to determine its effect on DHA and EPA status. Methods We conducted a prospective, randomized, double-blinded, clinical effectiveness trial treating rural Malawian children with severe acute malnutrition. Children were treated with either HO-RUTF or standard RUTF. Plasma phospholipid (PL) fatty acid status was measured upon enrollment and after 4 weeks and compared between the two intervention groups. Results Among the 141 children enrolled, 48/71 receiving HO-RUTF and 50/70 receiving RUTF recovered. Plasma PL samples were analyzed from 43 children consuming HO-RUTF and 35 children consuming RUTF. The change in DHA content during the first 4 weeks was +4% and −25% in the HO-RUTF and RUTF groups, respectively (P = 0.04). For EPA, the change in content was 63% and −24% in the HO-RUTF and RUTF groups (P < 0.001). For arachidonic acid, the change in content was −3% and 13% in the HO-RUTF and RUTF groups (P < 0.009). Conclusions The changes in DHA and EPA seen in the children treated with HO-RUTF warrant further investigation as they suggest HO-RUTF support improved PUFA status, necessary for neural development and recovery. PMID:25633498

  2. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection.

    Science.gov (United States)

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-15

    In this research, we have improved two aptasensors based on a modified carbon paste electrode (CPE) with oleic acid (OA), and a magnetic bar carbon paste electrode (MBCPE) with Fe3O4 magnetic nanoparticles and oleic acid (OA). After the immobilization process of anti-TET at the electrode surfaces, the aptasensors were named CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET respectively. In this paper, the detection of tetracycline is compared using CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET aptasensors. These modified electrodes were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), UV-vis spectroscopy, and voltammetric methods. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-12)-1.0×10(-7)M and 3.0×10(-13)M respectively by EIS method. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-10)-1.0×10(-7)M with a limit of detection of 2.9×10(-11)M using differential pulse voltammetry (DPV) technique. The MBCPE/Fe3O4NPs/OA/anti-TET aptasensor was used for determination of TET, and a liner range of 1.0×10(-14)-1.0×10(-6)M with a detection limit of 3.8×10(-15)M was obtained by EIS method. Also, the linear range and detection limit of 1.0×10(-12)-1.0×10(-6)M and 3.1×10(-13)M respectively, were obtained for MBCPE/Fe3O4NPs/OA/anti-TET aptasensor using DPV. The proposed aptasensors were applied for determination of tetracycline in some real samples such as drug, milk, honey and blood serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Transcriptional Analysis of Stearoyl-Acyl Carrier Protein Desaturase Genes from Olive (Olea europaea) in Relation to the Oleic Acid Content of the Virgin Olive Oil.

    Science.gov (United States)

    Parvini, Farshid; Sicardo, M Dolores; Hosseini-Mazinani, Mehdi; Martinez-Rivas, Jose M; Hernandez, M Luisa

    2016-10-02

    The specific contribution of different stearoyl-ACP desaturase (SAD) genes to the oleic acid content in olive (Olea europaea) fruit has been studied. Towards that end, we isolated three distinct cDNA clones encoding three SAD isoforms from olive (cv. Picual), as revealed by sequence analysis. The expression levels of olive SAD genes were determined in different tissues from Picual and Arbequina cultivars, including developing mesocarp and seed, together with the unsaturated fatty acid content. Lipid and gene expression analysis indicate that OeSAD2 seems to be the main gene contributing to the oleic acid content of the olive fruit and, therefore, of the virgin olive oil. This conclusion was confirmed when the study was extended to Hojiblanca, Picudo and Manzanilla cultivars. Furthermore, our data indicate that the olive microsomal oleate desaturase gene OeFAD2-2, but not OeSAD2, is responsible for the linoleic acid content in the virgin olive oil.

  4. Effects of oleic acid and olive oil on gastric emptying, gut hormone secretion and appetite in lean and overweight or obese males

    DEFF Research Database (Denmark)

    Damgaard, Morten; Graff, Jesper; Fuglsang, Stefan

    2013-01-01

    lean subjects, free fatty acid (FFA) promotes gut hormone release, delays gastric emptying, and reduces appetite and energy intake more than an isocaloric load of triglyceride (TG). In obesity, the gastrointestinal sensitivity to lipids may be reduced. Therefore, we compared the effects of the FF...... oleic acid and the TG olive oil on gut hormone secretion, gastric emptying, appetite, and energy intake in lean and overweight/obese subjects....

  5. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis.

    Science.gov (United States)

    Wiedemann, Sophie C C; Ristanović, Zoran; Whiting, Gareth T; Reddy Marthala, V R; Kärger, Jörg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2016-01-04

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths.

  6. Activation of hepatic lipase expression by oleic acid: possible involvement of USF1.

    NARCIS (Netherlands)

    D. van Deursen (Diederik); M. van Leeuwen (Marije); D. Akdogan (Deniz); H. Adams (Hadie); H. Jansen (Hans); A.J.M. Verhoeven (Adrie)

    2009-01-01

    textabstractPolyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element binding proteins (SREBPs), but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplemen

  7. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.

    Science.gov (United States)

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Rodríguez, C; Daza, A; López-Bote, C; Silió, L; Óvilo, C

    2016-06-01

    Diet influences animal body and tissue composition due to direct deposition and to the nutrients effects on metabolism. The influence of specific nutrients on the molecular regulation of lipogenesis is not well characterized and is known to be influenced by many factors including timing and physiological status. A trial was performed to study the effects of different dietary energy sources on lipogenic genes transcription in ham adipose tissue of Iberian pigs, at different growth periods and on feeding/fasting situations. A total of 27 Iberian male pigs of 28 kg BW were allocated to two separate groups and fed with different isocaloric feeding regimens: standard diet with carbohydrates as energy source (CH) or diet enriched with high oleic sunflower oil (HO). Ham subcutaneous adipose tissue was sampled by biopsy at growing (44 kg mean BW) and finishing (100 kg mean BW) periods. The first sampling was performed on fasted animals, while the last sampling was performed twice, with animals fasted overnight and 3 h after refeeding. Effects of diet, growth period and feeding/fasting status on gene expression were explored quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes. Quantitative PCR revealed several differentially expressed genes according to diet, with similar results at both timings: RXRG, LEP and FABP5 genes were upregulated in HO group while ME1, FASN, ACACA and ELOVL6 were upregulated in CH. The diet effect on ME1 gene expression was conditional on feeding/fasting status, with the higher ME1 gene expression in CH than HO groups, observed only in fasting samples. Results are compatible with a higher de novo endogenous synthesis of fatty acids (FA) in the carbohydrate-supplemented group and a higher FA transport in the oleic acid-supplemented group. Growth period significantly affected the expression of most of the studied genes, with all but PPARG showing higher expression in finishing pigs according to

  8. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Wei

    Full Text Available Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans.The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%. Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans.This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  9. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.;

    2004-01-01

    design, 17 healthy young men replaced part of their habitual dietary fat intake with 70 g MCTs (66% 8:0 and 34% 10:0) or high-oleic sunflower oil (89.4% 18:1). Each intervention period lasted 21 d, and the 2 periods were separated by a washout period of 2 wk. Blood samples were taken before and after...... the intervention periods. Results: Compared with the intake of high-oleic sunflower oil, MCT intake resulted in 11% higher plasma total cholesterol (P = 0.0005), 12% higher LDL cholesterol (P = 0.0001), 32% higher VLDL cholesterol (P = 0.080), a 12% higher ratio of LDL to HDL cholesterol (P = 0.002), 22% higher......Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...

  10. Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis.

    Science.gov (United States)

    Patel, Tushar P; Rawal, Komal; Soni, Sanket; Gupta, Sarita

    2016-10-01

    Swertiamarin, a bitter secoiridoid glycoside, is an antidiabetic drug with lipid lowering activity meliorates insulin resistance in Type 2 Diabetes condition. Therefore, the study was designed to explore the antioxidant and hypolipidemic activity of swertiamarin in ameliorating NAFLD caused due to hepatic lipid accumulation, inflammation and insulin resistance. Steatosis was induced in HepG2 cells by supplementing 1mM oleic acid (OA) for 24h which was marked by significant accumulation of lipid droplets. This was determined by Oil Red O (ORO) staining and triglyceride accumulation. Swertiamarin (25μg/ml) decreased triglyceride content by 2 folds and effectively reduced LDH release (50%) activity by protecting membrane integrity thus, preventing apoptosis evidenced by reduced cleavage of Caspase 3 and PARP1. We observed that swertiamarin significantly increased the expressions of major insulin signaling proteins like Insulin receptor (IR), PI(3)K, pAkt with concomitant reduction in p307 IRS-1. AMPK was activated by swertiamarin action, thus restoring insulin sensitivity in hepatocytes. In addition, qPCR results confirmed OA up-regulated Sterol Regulatory Element Binding Protein (SREBP)-1c and fatty acid synthase (FAS), resulting in increased fatty acid synthesis. Swertiamarin effectively modulated PPAR-α, a major potential regulator of carbohydrate metabolism which, in turn, decreased the levels of the gluconeogenic enzyme PEPCK, further restricting hepatic glucose production and fatty acid synthesis. Cumulatively, swertiamarin targets potential metabolic regulators AMPK and PPAR-α, through which it regulates hepatic glycemic burden, fat accumulation, insulin resistance and ROS in hepatic steatosis which emphasizes clinical significance of swertiamarin in regulating metabolism and as a suitable candidate for treating NAFLD.

  11. Oleic acid exposure of cultured endothelial cells alters lipid mediator production

    Science.gov (United States)

    Diesel, biodiesel, and other combustion sources contain free fatty acid (FFA) components capable of entering the body through particulate inhalation. FFA can also be endogenously released into circulation in response to stress. When in circulation, bioactive FFA may interact with...

  12. Effect of fatty acids complexed with polyethyleneimine on the flow curves of TiO2 nanoparticle/toluene suspensions

    Directory of Open Access Journals (Sweden)

    Motoyuki Iijima

    2016-09-01

    Full Text Available A series of polyethyleneimine (PEI–fatty acid complexes using oleic acid (OA, isostearic acid (ISA, and stearic acid (SA were prepared through a simple process. While PEI was not soluble in toluene, the complex with OA and ISA became soluble when its additive content was greater than 5 mol% based on the ethyleneimine (EI unit of PEI. PEI–SA had similar solubility in toluene when more than 5 mol% of SA was added; however, the complex precipitated when the additive ratio of SA was increased to 40 mol%. The effect of fatty acid of PEI complexes on their TiO2 nanoparticle adsorption properties and the flow curves of TiO2 nanoparticle/toluene suspension was then studied using PEI complexed with 30 mol% of fatty acids. Surprisingly, while PEI–OA and PEI–ISA complexes effectively adsorbed on TiO2 nanoparticles until saturation, the amount of adsorbed PEI–SA increased continuously. Comparing the flow curves of TiO2/toluene suspensions under 1.4 mg/m2 addition of PEI–fatty acid complexes, where PEI–OA and PEI–ISA were under saturated adsorption, it was confirmed that PEI–OA effectively stabilizes TiO2 nanoparticles in toluene without imparting thixotropic properties up to 30 vol%, while the suspensions with PEI–SA and PEI–ISA were solidified at lower volume contents and had high thixotropic properties.

  13. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    Directory of Open Access Journals (Sweden)

    Claudio Davet Gutiérrez-Lazos

    2014-06-01

    Full Text Available This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size. Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent. The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm−1, which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm−1 range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2.

  14. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing.

    Science.gov (United States)

    Gutiérrez-Lazos, Claudio Davet; Ortega-López, Mauricio; Pérez-Guzmán, Manuel A; Espinoza-Rivas, A Mauricio; Solís-Pomar, Francisco; Ortega-Amaya, Rebeca; Silva-Vidaurri, L Gerardo; Castro-Peña, Virginia C; Pérez-Tijerina, Eduardo

    2014-01-01

    This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size). Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent). The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm(-1), which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm(-1) range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2.

  15. Oleic acid derivative of polyethylenimine-functionalized proliposomes for enhancing oral bioavailability of extract of Ginkgo biloba.

    Science.gov (United States)

    Zheng, Bin; Yang, Shuang; Fan, Chunyu; Bi, Ye; Du, Lin; Zhao, Lingzhi; Lee, Robert J; Teng, Lesheng; Teng, Lirong; Xie, Jing

    2016-05-01

    The present systematic study focused to investigate the oleic acid derivative of branched polyethylenimine (bPEI-OA)-functionalized proliposomes for improving the oral delivery of extract of Ginkgo biloba (GbE). The GbE proliposomes were prepared by a spray drying method at varying ratios of egg yolk phosphatidylcholine and cholesterol, and the optimized formulation was tailored with bPEI-OA to obtain bPEI-OA-functionalized proliposomes. The formulations were characterized for particle size, zeta potential, and entrapment efficiency. The release of GbE from proliposomes exhibited a sustained release. And the release rate was regulated by changing the amount of bPEI-OA on the proliposomes. The physical state characterization studies showed some interactions between GbE and other materials, such as hydrogen bonds and van der Waals forces during the process of preparation of proliposomes. The in situ single-pass perfusion and oral bioavailability studies were performed in rats. The significant increase in absorption constant (Ka) and apparent permeability coefficient (Papp) from bPEI-OA-functionalized proliposomes indicated the importance of positive charge for effective uptake across the gastrointestinal tract. The oral bioavailability of bPEI-OA-functionalized proliposomes was remarkable enhanced in comparison with control and conventional proliposomes. The bPEI-OA-functionalized proliposomes showed great potential of improving oral absorption of GbE as a suitable carrier.

  16. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  17. Physiological study on CT image analysis of acute pulmonary edema by oleic acid and its application to diagnosis of drowning

    Energy Technology Data Exchange (ETDEWEB)

    Nosaka, Mizuho [Wakayama Medical Coll. (Japan)

    1998-05-01

    Recently, various investigations are carried out about the relationship between the pathophysiological changes and the images of the destructive extent in acute lung injury. In present paper, we examined, in progression time, the pathophysiological and histological changes basing upon pulmonary edema model made by administration of oleic acid to beagle dogs, and simultaneously took images of the lung by employing high-resolution X-ray CT and analyzed them. In pathophysiological and histological investigation, V{sub A}/Q heterogeneity and lung water volume increased, and decrease of PO{sub 2} in arterial blood was observed, and also filling of the alveoli with exudate, edema of the alveolar interstitium, congestion of the alveoli were observed histologically. In image analysis, the findings, that is enough to reflect the pathophysiological and histological changes, were obtained from mean CT value and the distribution of CT value histogram. Moreover, the same examination as in acute pulmonary edema model was carried out in drowning model with seawater. Consequently, it became evident that presuming of pathophysiological changes in drowning was possible from results of X-ray CT image analysis. The results described above seem to indicate that X-ray CT image analysis in acute lung injury can use as an index of the damage degree, and also is available for elucidation of the pathophysiological changes. (author)

  18. Targeted mutation of Δ12 and Δ15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil.

    Science.gov (United States)

    Bielecka, Monika; Kaminski, Filip; Adams, Ian; Poulson, Helen; Sloan, Raymond; Li, Yi; Larson, Tony R; Winzer, Thilo; Graham, Ian A

    2014-06-01

    We used expressed sequence tag library and whole genome sequence mining to identify a suite of putative desaturase genes representing the four main activities required for production of polyunsaturated fatty acids in hemp seed oil. Phylogenetic-based classification and developing seed transcriptome analysis informed selection for further analysis of one of seven Δ12 desaturases and one of three Δ15 desaturases that we designate CSFAD2A and CSFAD3A, respectively. Heterologous expression of corresponding cDNAs in Saccharomyces cerevisiae showed CSFAD2A to have Δx+3 activity, while CSFAD3A activity was exclusively at the Δ15 position. TILLING of an ethyl methane sulphonate mutagenized population identified multiple alleles including non-sense mutations in both genes and fatty acid composition of seed oil confirmed these to be the major Δ12 and Δ15 desaturases in developing hemp seed. Following four backcrosses and sibling crosses to achieve homozygosity, csfad2a-1 was grown in the field and found to produce a 70 molar per cent high oleic acid (18:1(Δ9) ) oil at yields similar to wild type. Cold-pressed high oleic oil produced fewer volatiles and had a sevenfold increase in shelf life compared to wild type. Two low abundance octadecadienoic acids, 18:2(Δ6,9) and 18:2(Δ9,15), were identified in the high oleic oil, and their presence suggests remaining endogenous desaturase activities utilize the increased levels of oleic acid as substrate. Consistent with this, CSFAD3A produces 18:2(Δ9,15) from endogenous 18:1(Δ9) when expressed in S. cerevisiae. This work lays the foundation for the development of additional novel oil varieties in this multipurpose low input crop.

  19. Dietary oleic and palmitic acids modulate the ratio of triacylglycerols to cholesterol in postprandial triacylglycerol-rich lipoproteins in men and cell viability and cycling in human monocytes.

    Science.gov (United States)

    López, Sergio; Bermúdez, Beatriz; Pacheco, Yolanda M; López-Lluch, Guillermo; Moreda, Wenceslao; Villar, José; Abia, Rocío; Muriana, Francisco J G

    2007-09-01

    The postprandial metabolism of dietary fats produces triacylglycerol (TG)-rich lipoproteins (TRL) that could interact with circulating cells. We investigated whether the ratios of oleic:palmitic acid and monounsaturated fatty acids (MUFA):SFA in the diet affect the ratio of TG:cholesterol (CHOL) in postprandial TRL of healthy men. The ability of postprandial TRL at 3 h (early postprandial period) and 5 h (late postprandial period) to affect cell viability and cycle in the THP-1 human monocytic cell line was also determined. In a randomized, crossover experiment, 14 healthy volunteers (Caucasian men) ate meals enriched (50 g/m(2) body surface area) in refined olive oil, high-palmitic sunflower oil, butter, and a mixture of vegetable and fish oils, which had ratios of oleic:palmitic acid (MUFA:SFA) of 6.83 (5.43), 2.36 (2.42), 0.82 (0.48), and 13.81 (7.08), respectively. The ratio of TG:CHOL in postprandial TRL was inversely correlated (r = -0.89 to -0.99) with the ratio of oleic:palmitic acid and with the MUFA:SFA ratio in the dietary fats (P the cell cycle in THP-1 cells.

  20. A case study on the genetic origin of the high oleic acid trait through FAD2-1 DNA sequence variation in safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Sara eRapson

    2015-09-01

    Full Text Available The safflower (Carthamus tinctorius L. is considered a strongly domesticated species with a long history of cultivation. The hybridization of safflower with its wild relatives has played an important role in the evolution of cultivars and is of particular interest with regards to their production of high quality edible oils. Original safflower varieties were all rich in linoleic acid, while varieties rich in oleic acid have risen to prominence in recent decades. The high oleic acid trait is controlled by a partially recessive allele ol at a single locus OL. The ol allele was found to be a defective microsomal oleate desaturase FAD2-1. Here we present DNA sequence data and DNA Southern blot analysis suggesting that there has been an ancient hybridization and introgression of the FAD2-1 gene into C. tinctorius from its wild relative C. palaestinus. It is from this gene that FAD2-1Δ was derived more recently. Identification and characterization of the genetic origin and diversity of FAD2-1 could aid safflower breeders in reducing population size and generations required for the development of new high oleic acid varieties by using perfect molecular marker-assisted selection.

  1. Petroleum-collecting and dispersing complexes based on oleic acid and nitrogenous compounds as surface-active agents for removing thin petroleum films from water surface.

    Science.gov (United States)

    Asadov, Ziyafaddin H; Tantawy, Ahmed H; Zarbaliyeva, Ilhama A; Rahimov, Ravan A

    2012-01-01

    Petroleum-collecting and dispersing complexes were synthesized on the basis of oleic acid and nitrogen-containing compounds. Surface-active properties (interfacial tension) of the obtained complexes were investigated by stalagmometric method. Petroleum-collecting and dispersing properties of the oleic acid complexes in diluted (5% wt. water or alcoholic solution) and undiluted form have been studied in waters of varying salinity (distilled, fresh and sea waters). Some of physico-chemical indices of the prepared compounds such as solubility, acid and amine numbers as well as electrical conductivity have been determined. The ability of oleic acid complex with ethylenediamine as petro-collecting and dispersing agent towards different types of petroleum has been studied. The influence of thickness and "age" of the petroleum slick on collecting and dispersing capacity of this complex has been clarified. Surface properties studied included critical micelle concentration (CMC), maximum surface excess (Γ(max)), and minimum surface area (A(min)). Free energies of micellization (ΔG°(mic)) and adsorption (ΔG°(ads)) were calculated.

  2. PERFORMANCE OF LOOFA-IMMOBILIZED Rhizopus oryzae IN THE ENZYMATIC PRODUCTION OF BIODIESEL WITH USE OF OLEIC ACID IN n-HEXANE MEDIUM

    Directory of Open Access Journals (Sweden)

    S. Sattari

    2015-06-01

    Full Text Available AbstractThe performance of loofa-immobilized Rhizopus oryzae (as a whole-cell biocatalyst in the synthesis of methyl oleate was evaluated using oleic acid as a model substrate. The activities of the cell-bound lipase in terms of the esterification and hydrolysis reactions were found to be higher for the immobilized cells as compared with those of the free cells. The time to reach equilibrium for methyl oleate synthesis was 12 h in the presence of n-hexane (hexane:oleic acid ratio 9:1(v/v, and the yield was 80%. In the absence of solvent, equilibrium was reached after 48 h and the yield was only 30%. The moisture repellency and the hydrophilic properties of loofa sponge make this natural fiber a good candidate for cell-enzyme immobilization, especially for lipases as the interfacial enzyme.

  3. Quantitative analysis of oleic acid and three types of polyethers according to the number of hydroxy end groups in Polysorbate 80 by hydrophilic interaction chromatography at critical conditions.

    Science.gov (United States)

    Zhang, Rui; Wang, Yu; Ji, Yu; Shi, Bei-jia; Zhang, Zai-ping; Zhang, Hai-yan; Yang, Ming; Wang, Yong-mei

    2013-01-11

    A quantitative characterization of Polysorbate 80 is crucial for its many applications. In this paper we report a quick RP-HPLC method for the quantitative determination of Polysorbate 80. The hydrolysis of Polysorbate 80 to release oleic acid and three types of polyethers was first carried out. A chromatographic method based on liquid chromatography at critical conditions (LCCC) was then developed for an endgroup-based separation of low-molecular-mass polyether. With this method the polyether, irrespective of its molecular-mass, is separated according to endgroups (functionality) due to interactions of the polar endgroups with the hydrophilic stationary phase. The different types of polyethers and oleic acid were identified using on-line electrospray ionization mass spectrometry and quantified by evaporative light scattering detection.

  4. Oxidation of dietary stearic, oleic, and linoleic acids in growing pigs follows a biphasic pattern.

    Science.gov (United States)

    Bruininx, Erik; van den Borne, Joost; van Heugten, Eric; van Milgen, Jaap; Verstegen, Martin; Gerrits, Walter

    2011-09-01

    We used the pig as a model to assess the effects of dietary fat content and composition on nutrient oxidation and energy partitioning in positive energy balance. Pigs weighing 25 kg were assigned to either: 1) a low fat-high starch diet, or 2) a high saturated-fat diet, or 3) a high unsaturated-fat diet. In the high-fat treatments, 20% starch was iso-energetically replaced by 10.8% lard or 10.2% soybean oil, respectively. For 7 d, pigs were fed twice daily at a rate of 1200 kJ digestible energy · kg(-0.75) · d(-1). Oral bolus doses of [U-(13)C] glucose, [U-(13)C] α-linoleate, [U-(13)C] stearate, and [U-(13)C] oleate were administered on d 1, 2, 4, and 6, respectively, and (13)CO(2) production was measured. Protein and fat deposition were measured for 7 d. Fractional oxidation of fatty acids from the low-fat diet was lower than from the high-fat diets. Within diets, the saturated [U-(13)C] stearate was oxidized less than the unsaturated [U-(13)C] oleate and [U-(13)C] linoleate. For the high unsaturated-fat diet, oxidation of [U-(13)C] oleate was higher than that of [U-(13)C] linoleate. In general, recovery of (13)CO(2) from labeled fatty acids rose within 2 h after ingestion but peaked around the next meal. This peak was induced by an increased energy expenditure that was likely related to increased eating activity. In conclusion, oxidation of dietary fatty acids in growing pigs depends on the inclusion level and composition of dietary fat. Moreover, our data suggest that the most recently ingested fatty acids are preferred substrates for oxidation when the direct supply of dietary nutrients has decreased and ATP requirements increase.

  5. Extensive feeding versus oleic acid and tocopherol enriched mixed diets for the production of Iberian dry-cured hams: Effect on chemical composition, oxidative status and sensory traits.

    Science.gov (United States)

    Ventanas, S; Ventanas, J; Tovar, J; García, C; Estévez, M

    2007-10-01

    The present study aimed to analyse the chemical composition and oxidative status of Iberian dry-cured hams from pigs fed different finishing diets: extensive feeding on acorns and pasture in a "Montanera" traditional system (MON), fed in confinement with a mixed diet containing high-oleic sunflower oil (115g/kg of diet) and supplemented with 250mg/kg α-tocopherol (HOVE), and fed in confinement control mixed diet (CON) without added tocopherol and oleic acid fat. Muscles from MON dry-cured hams contained significantly (p<0.05) higher amounts of intramuscular fat (IMF) than those from HOVE and CON hams. The feeding background affected the tocopherol levels in dry-cured hams as those from MON and HOVE pigs had significantly higher levels of α-tocopherol than those from CON pigs whereas the extensive feeding provided muscles from MON pigs with significantly higher levels of γ-tocopherol than the experimental diets did to CON and HOVE pigs. The HOVE diet significantly increased the levels of oleic acid in Iberian dry-cured hams with these levels being similar to the oleic acid levels found in MON hams and significantly higher than those in CON hams. Compared to dry-cured hams from CON pigs, those from MON and HOVE pigs exhibited a higher oxidative stability as a likely result of a most favourable fatty acid composition and the presence of higher tocopherol levels. The principal component analysis (PCA) successfully discriminated between dry-cured hams from pigs fed different finishing diets.

  6. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    Directory of Open Access Journals (Sweden)

    Adrie J. M. Verhoeven

    2009-10-01

    Full Text Available Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs and sterol regulatory element binding proteins (SREBPs, but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL. We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp. Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells.

  7. 油酸和亚油酸的激光拉曼光谱%Raman Spectra of Oleic Acid and Linoleic Acid

    Institute of Scientific and Technical Information of China (English)

    范雅; 李霜; 许大鹏

    2013-01-01

    Different unsaturated fatty acids have different physiological functions ,however ,the common fatty acid products are mostly mixture of several unsaturated fatty acids .Thus it is necessary to analyze the compo-sition of impure fatty acid products before application .In the present article ,the Raman spectra of oleic acid and linoleic acid (the most commonly appearing components of fatty acid products ) were measured .Further-more ,the mode assignments of the Raman bands were determined and the molecular conformational characters were analyzed .The results lay the groundwork for researching the energy level structures and transitions of long-chain unsaturated fatty acids and enrich the valence bond data of organic molecules .In addition ,the differences between the Raman spectra of oleic acid and linoleic acid were analyzed in detail ,which provides a convenient and effective method for their identification and has directive significance for the application of Raman spectroscopy in hogwash oil detection .%不同的不饱和脂肪酸各自具有其不同的生理功能,但常见的不饱和脂肪酸产品大部分为几种脂肪酸的混合物,故在应用前对不纯的脂肪酸产品进行组成分析是必须的。测量了不饱和脂肪酸产品组分中最常见的油酸和亚油酸的拉曼光谱,确定了各拉曼谱线的振动模归属,分析了其分子的构象特征。该结果为研究长链不饱和脂肪酸的振动能级结构及能级间跃迁等做了基础工作,丰富了有机物分子的价键数据和性质。同时详细分析比较了油酸和亚油酸拉曼光谱的差异,为定性鉴别脂肪酸产品的成分提供了一种简便有效的方法,对拉曼光谱在地沟油检测方面的应用具有重要的指导意义。

  8. CLINICAL EXPERIENCE OF CANCER IMMUNOTHERAPY INTEGRATED WITH OLEIC ACID COMPLEXED WITH DE-GLYCOSYLATED VITAMIN D BINDING PROTEIN

    Directory of Open Access Journals (Sweden)

    Emma Ward

    2014-01-01

    Full Text Available Proteins highly represented in milk such as α-lactalbumin and lactoferrin bind Oleic Acid (OA to form complexes with selective anti-tumor activity. A protein present in milk, colostrum and blood, vitamin D binding protein is the precursor of a potent Macrophage Activating Factor (GcMAF and in analogy with other OA-protein complexes, we proposed that OA-GcMAF could demonstrate a greater immunotherapeutic activity than that of GcMAF alone. We describe a preliminary experience treating patients with advanced cancers, often labelled as “incurable” with an integrative immunotherapy centred on OA-GcMAF. Patients with advanced cancer were treated at the Immuno Biotech Treatment Centre with OA-GcMAF-based integrative immunotherapy in combination with a very low carbohydrate, high protein diet, fermented milk products containing naturally produced GcMAF, vitamin D3 and low-dose acetylsalicylic acid. When the primary tumor or a metastasis could be measured by ultrasonographic techniques, we observed, on average, a decrease of tumor volume of approximately 25% in a week. We also observed a consistent increase in splenic blood flow that was interpreted in the context of generalised immune system activation and allowed to assess the degree of responsiveness of the individual patient. The results reported here are consistent with the results previously described in the experimental animal harbouring a human hepatocellular carcinoma as well as with the results reported for neoadjuvant chemotherapy. OA-protein complexes are bound to play a leading role in cancer therapy thanks to selectivity of antitumoral effects, absence of any side effects, safety and oral availability. We hypothesise that OA-GcMAF, combines the known anticancer effects OA-protein complexes with the well established immune stimulating effects of GcMAF.

  9. Additive Regulation of Adiponectin Expression by the Mediterranean Diet Olive Oil Components Oleic Acid and Hydroxytyrosol in Human Adipocytes

    Science.gov (United States)

    Scoditti, Egeria; Massaro, Marika; Carluccio, Maria Annunziata; Pellegrino, Mariangela; Wabitsch, Martin; Calabriso, Nadia; Storelli, Carlo; De Caterina, Raffaele

    2015-01-01

    Adiponectin, an adipocyte-derived insulin-sensitizing and anti-inflammatory hormone, is suppressed in obesity through mechanisms involving chronic inflammation and oxidative stress. Olive oil consumption is associated with beneficial cardiometabolic actions, with possible contributions from the antioxidant phenol hydroxytyrosol (HT) and the monounsaturated fatty acid oleic acid (OA, 18:1n-9 cis), both possessing anti-inflammatory and vasculo-protective properties. We determined the effects of HT and OA, alone and in combination, on adiponectin expression in human and murine adipocytes under pro-inflammatory conditions induced by the cytokine tumor necrosis factor(TNF)-α. We used human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes and murine 3T3-L1 adipocytes as cell model systems, and pretreated them with 1-100 μmol/L OA, 0.1-20 μmol/L HT or OA plus HT combination before stimulation with 10 ng/mL TNF-α. OA or HT significantly (Padiponectin secretion (by 42% compared with TNF-α alone) as well as mRNA levels (by 30% compared with TNF-α alone). HT and OA also prevented—by 35%—TNF-α-induced downregulation of peroxisome proliferator-activated receptor PPARγ. Co-treatment with HT and OA restored adiponectin and PPARγ expression in an additive manner compared with single treatments. Exploring the activation of JNK, which is crucial for both adiponectin and PPARγ suppression by TNF-α, we found that HT and OA additively attenuated TNF-α-stimulated JNK phosphorylation (up to 55% inhibition). In conclusion, the virgin olive oil components OA and HT, at nutritionally relevant concentrations, have additive effects in preventing adiponectin downregulation in inflamed adipocytes through an attenuation of JNK-mediated PPARγ suppression. PMID:26030149

  10. PALMITIC AND OLEIC ACIDS AND THEIR ROLE IN PATHOGENESIS OF ATHEROSCLEROSIS

    Directory of Open Access Journals (Sweden)

    V. N. Titov

    2014-01-01

    Full Text Available On the basis of phylogenetic theory of general pathology, the cause of a noninfectious disease whose occurrence in a population is more than 5–7% is an impaired biological function or reaction to the environment. From the general biology viewpoint, high mortality rate related to cardio-vascular diseases and atherosclerosis (intercellular deficiency of polyenic fatty acids (PFA is just extinction of the Homo sapiens population upon adaptation to new environmental factors. The biological function of throphology (feeding and biological reaction of exotrophy (external feeding are impaired in several aspects, the major of which is nonphysiologically high dietary content of saturated fatty acids, primarily, of palmitic fatty acid (FA. The lipoprotein system formed at early stages of phylogenesis cannot transport and provide physiological deposition of great amounts of palmitic FA, which leads to the development of an adaption (compensatory and accumulation disease. This results in hypermipidemia, impaired bioavailability of PFA to cells, compesatory production of humoral mediators from ω-9 eicosatrienoic mead FA, disorders in physiological parameters of cell plasma membrane and integral proteins, nonphysiological conformation of apoВ-100 in lipoproteins, formation of ligandless lipoproteins (biological litter and impairments in the biological function of endoecology, utilization of ligandless lipoproteins in arterial intima by phylogenetically early macrophages that do not hydrolyze polyenic cholesterol esters, increase in the intensity of the biological reaction of inflammation, and destructive and inflammatory lesions in arterial intima of an atheromatosis or atherothrombosis type. Atheromatous masses are catabolites of PFA which were not internalized by phylogenetically late cells via receptor-mediated pathway.

  11. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E2P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed; Christensen, Søren Brøgger

    2011-01-01

    anthroylouabain, a fluorescent ouabain analog, revealed that the increased ouabain affinity is unique to oleic and linoleic acids, as compared with ¿-linolenic acid, which decreased pump-mediated ATP hydrolysis but did not equally increase ouabain interaction with the pump. Thus, the dynamic changes in plasma...... that modulates interaction of cardiac glycosides with the sodium pump....

  12. Caffeic Acid Inhibits the Formation of 7-Carboxyheptyl Radicals from Oleic Acid under Flavin Mononucleotide Photosensitization by Scavenging Singlet Oxygen and Quenching the Excited State of Flavin Mononucleotide

    Directory of Open Access Journals (Sweden)

    Marie Asano

    2014-08-01

    Full Text Available We examined the effects of caffeic acid (CA and related compounds on 7-carboxyheptyl radical formation. This analysis was performed using a standard D2O reaction mixture containing 4.3 mM oleic acid, 25 μM flavin mononucleotide (FMN, 160 mM phosphate buffer (pH 7.4, 10 mM cholic acid, 100 mM α-(4-pyridyl-1-oxide-N-tert-butylnitrone, and 1 mM Fe(SO42(NH42 during irradiation with 7.8 J/cm2 at 436 nm. 7-Carboxyheptyl radical formation was inhibited by CA, catechol, gallic acid, chlorogenic acid, ferulic acid, noradrenalin, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid. Quinic acid, benzoic acid, and p-anisic acid had no effect on radical formation. These results suggest that a phenol moiety is essential for these inhibitory effects. The fluorescence intensity of FMN decreased by 69% ± 2% after CA addition, suggesting that CA quenches the singlet excited state of FMN. When 1 mM CA was added to a standard reaction mixture containing 25 μM FMN, 140 mM phosphate buffer (pH 7.4, and 10 mM 4-oxo-2,2,6,6-tetramethylpiperidine, the electron spin resonance signal of 4-oxo-2,2,6,6-tetramethylpiperidinooxy disappeared. This finding suggests that singlet oxygen was scavenged completely by CA. Therefore, CA appears to inhibit 7-carboxyheptyl radical formation by scavenging singlet oxygen and quenching the excited state of FMN.

  13. The particle image velocimetry method in the study of the dynamics of phase transitions induced by high pressures in triolein and oleic acid

    Science.gov (United States)

    Tefelski, D. B.; Kulisiewicz, L.; Wierschem, A.; Delgado, A.; Rostocki, A. J.; Siegoczyński, R. M.

    2011-03-01

    Particle image velocimetry (PIV) is an optical measurement method capable of providing visualisation of velocity field of particle flow in fluids. After analysis of data acquired in the form of an image sequence, it is possible to retrieve information about flow parameters as mean values of velocity, vorticity, shear and normal strain. This paper presents the results of high pressure experiments using this method applied to triolein and oleic acid samples in their phase transition region. A high pressure optical chamber, He-Ne laser and light-sheet optics together with a digital camera and image acquisition computer allow us to study the motion of particles in high pressure conditions. The set-up was similar to that presented in Özmutlu et al. [Momentum and energy transfer during phase change of water under high hydrostatic pressure, Innov. Food Sci. Emerg. Technol. 7(3) (2006), pp. 161-168] and Kulisiewicz et al. [Visualization of pressure-shift freezing and thawing of concentrated aqueous sucrose solutions, High Press. Res. 27(2) (2007), pp. 291-297]. The analysis of phase transition dynamics in triolein and oleic acid is an extension to the work presented in Tefelski et al. [The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure, J. Phys.: Conf. Ser. 121(142004) (2008), pp. 1-6]. Oleic acid is a monounsaturated fatty acid and has a bent rod shape. Triolein is a triglyceride and has a "chair"-like shape. It is the base particle of many vegetable oils, especially olive oil. Triolein consists of three chains of oleic acid bound by a glycerol part. Information obtained by the study of phase transitions dynamics is important for food science and food technology processes which involve high pressure treatment. The PIV method shows differences in the solidification process of both substances in time, the existence of inhomogeneities (layers of different densities in the observed flow) and allows us to calculate the

  14. A Study on Triacylglycerol Composition and the Structure of High-Oleic Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Mei Guan

    2016-06-01

    Full Text Available The composition of fatty acids in triacylglycerides (TAGs and their position on the glycerol backbone determine the nutritional value of vegetable oil. In this study, gas chromatography and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS were used to analyze the composition and distribution of fatty acids in TAGs of different rapeseed oils. Our results show the content of oleic acid in high-oleic-acid rapeseed oil to be about 80%. In terms of the number of acyl carbon atoms (CN, TAGs with CN52–C54 were most abundant, with a maximum concentration at CN54 (80%. The main type of TAG was oleic-oleic-oleic (OOO, accounting for 71.75%, while oleic-oleic-linoleic (OOL accounted for 7.56%, oleic-oleic-linolenic (OOLn accounted for 4.81%, and stearic-oleic-oleic (SOO accounted for 4.74%. Oleic acid in high-oleic-acid rapeseed oil was distributed in the following order of preference: sn-2 > sn-1/3. In high-erucic-acid rapeseed oil, however, oleic acid was enriched at the sn-1/3. These data show that the content of oleic acid can be as high as about 80% in high-oleic-acid material. This finding suggests that high-oleic-acid rapeseed oil has high nutritional value.

  15. Intravenous transplantation of mesenchymal stem cells attenuates oleic acid induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    XU Yu-lin; LIU Ying-long; WANG Qiang; LI Gang; L(U) Xiao-dong; KONG Bo

    2012-01-01

    Background Acute lung injury (ALI) and end-stage acute respiratory distress syndrome (ARDS) were among the most common causes of death in intensive care units.The activation of an inflammatory response and the damage of pulmonary epithelium and endotheliumwerethe hallmark of ALI/ARDS.Recent studies had demonstrated the importance of mesenchymal stem cells (MSCs) in maintaining the normal pulmonary endothelial and epithelial function as well as participating in modulating the inflammatory response and they are involved in epithelial and endothelial repair after injury.Here,our study demonstrates MSCs therapeutic potential in a rat model of ALI/ARDS.Methods Bone marrow derived MSCs were obtained from Sprague-Dawley (SD) rats and their differential potential was verified.ALl was induced in rats byoleic acid (OA),and MSCs were transplanted intravenously.The lung injury and the concentration of cytokines in plasma and lung tissue extracts were assessed at 8 hours,24 hours and 48 hours after OA-injection.Results The histological appearance and water content in rat lung tissue were significantly improved at different time points in rats treated with MSCs.The concentration of tumor necrosis factor-α and intercellular adhesion molecular-1 in rats plasma and lung tissue extracts were significantly inhibited after intravenous transplantation of MSCs,whereas interleukin-10 was significantly higher after MSCs transplantation at 8 hours,24 hours and 48 hours after OA-challenge.Conclusions Intravenous transplantation of MSCs could maintain the integrity of the pulmonary alveolar-capillary barrier and modulate the inflammatory response to attenuate the experimental ALI/ARDS.Transplantation of MSCs could be a novel cell-based therapeutic strategy for prevention and treatment of ALI/ARDS.

  16. Reversible Nuclear-Lipid-Droplet Morphology Induced by Oleic Acid: A Link to Cellular-Lipid Metabolism

    Science.gov (United States)

    Lagrutta, Lucía C.; Montero-Villegas, Sandra; Layerenza, Juan P.; Sisti, Martín S.; García de Bravo, Margarita M.

    2017-01-01

    Neutral lipids—involved in many cellular processes—are stored as lipid droplets (LD), those mainly cytosolic (cLD) along with a small nuclear population (nLD). nLD could be involved in nuclear-lipid homeostasis serving as an endonuclear buffering system that would provide or incorporate lipids and proteins involved in signalling pathways as transcription factors and as enzymes of lipid metabolism and nuclear processes. Our aim was to determine if nLD constituted a dynamic domain. Oleic-acid (OA) added to rat hepatocytes or HepG2 cells in culture produced cellular-phenotypic LD modifications: increases in TAG, CE, C, and PL content and in cLD and nLD numbers and sizes. LD increments were reversed on exclusion of OA and were prevented by inhibition of acyl-CoA synthetase (with Triacsin C) and thus lipid biosynthesis. Under all conditions, nLD corresponded to a small population (2–10%) of total cellular LD. The anabolism triggered by OA, involving morphologic and size changes within the cLD and nLD populations, was reversed by a net balance of catabolism, upon eliminating OA. These catabolic processes included lipolysis and the mobilization of hydrolyzed FA from the LD to cytosolic-oxidation sites. These results would imply that nLD are actively involved in nuclear processes that include lipids. In conclusion, nLD are a dynamic nuclear domain since they are modified by OA through a reversible mechanism in combination with cLD; this process involves acyl-CoA-synthetase activity; ongoing TAG, CE, and PL biosynthesis. Thus, liver nLD and cLD are both dynamic cellular organelles. PMID:28125673

  17. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    Science.gov (United States)

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia.

  18. Surface modification of ZnO quantum dots by organosilanes and oleic acid with enhanced luminescence for potential biological application

    Science.gov (United States)

    Rissi, Nathalia Cristina; Hammer, Peter; Aparecida Chiavacci, Leila

    2017-01-01

    Luminescent ZnO-QDs is a promising candidate for biological application, especially due to their low toxicity. Nevertheless, colloidal ZnO-QDs prepared by sol-gel route are unstable in water and incompatible with lipophilic systems, hindering their application in biology and medicine. To tackle the problem, this study reports three different strategies for surface modification of ZnO-QDs by: (i) hydrophilic (3-glycidyloxypropyl) trimethoxysilane (GPTMS), (ii) hydrophobic hexadecyltrimethoxysilane (HTMS) and then by (iii) oleic acid (OA) and HTMS bilayer. Capped ZnO-QDs by GPTMS and HTMS were performed by hydrolysis and condensation reactions under basic catalysis, leading to the formation of siloxane layer, involving strong interaction between the silanes with hydroxylated surface of ZnO, thereby creating a covalent bond—ZnO-O-Si. Alternatively, OA and HTMS were employed as hydrophobic agent to form a bilayer barrier surrounding the nanoparticles (NPs). Capped ZnO-QDS were analyzed by techniques including: Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and transmission electron microscopy, as well as the monitoring of excitonic peak of ZnO by UV-vis absorption spectroscopy. Photoluminescence measurements confirmed the importance of capping agents. Bare ZnO-QDs powder showed lowest photoluminescence intensity and displacement to yellow region when compared with ZnO-QDs capped, which present a higher photoluminescence in the green region. The above results can be related to changes of the concentration of oxygen vacancies (V o) and also by increased presence of surface defect density. Silane capping represents the best choice for high stability and photoluminescence enhancement of ZnO-QDs.

  19. Oleic Acid Induces MiR-7 Processing through Remodeling of Pri-MiR-7/Protein Complex.

    Science.gov (United States)

    Kumar, Santosh; Downie Ruiz Velasco, Angela; Michlewski, Gracjan

    2017-06-02

    MicroRNAs (miRs) play a vital role in governing cell function, with their levels tightly controlled at transcriptional and post-transcriptional levels. Different sets of RNA-binding proteins interact with primary miRs (pri-miRs) and precursor-miR transcripts (pre-miRs), controlling their biogenesis post-transcriptionally. The Hu antigen R (HuR)-mediated binding of Musashi homolog2 (MSI2) to the conserved terminal loop of pri-miR-7 regulates the levels of brain-enriched miR-7 formation in a tissue-specific manner. Here, we show that oleic acid (OA) inhibits the binding of proteins containing RNA recognition motifs (RRM) to the conserved terminal loop of pri-miR-7. Using electrophoretic mobility shift assays in HeLa cell extracts, we show that OA treatment disrupts pre-miR/protein complexes. Furthermore, OA rescues in vitro processing of pri-miR-7, which is otherwise blocked by HuR and MSI2 proteins. On the contrary, pri-miR-16 shows reduced processing in the presence of OA. This indicates that OA may inhibit the binding of other RRM-containing protein/s necessary for miR-16 processing. Finally, we demonstrate that OA induces mature miR-7 production in HeLa cells. Together, our results demonstrate that OA can regulate the processing of pri-miRs by remodeling their protein complexes. This provides a new tool to study RNA processing and a potential lead for small molecules that target the miR-7 biogenesis pathway. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Genetics and breeding for intramuscular fat and oleic acid content in pigs.

    Science.gov (United States)

    Estany, J; Ros-Freixedes, R; Tor, M; Pena, R N

    2017-05-01

    The intramuscular fat (IMF) and oleic acid (OL) content have been favorably related to pork quality and human health. This influences the purchasing behavior of consumers and, therefore, also shifts the attention of breeding companies toward whether these traits are included into the breeding goal of the lines producing for high-valued markets. Because IMF and OL are unfavorably associated with lean content, a key economic trait, the real challenge for the industry is not simply to increase IMF and OL, but rather to come up with the right trade-off between them and lean content. In this paper we review the efforts performed to genetically improve IMF and OL, with particular reference to the research we conducted in a Duroc line aimed at producing high quality fresh and dry-cured pork products. Based on this research, we conclude that there are selection strategies that lead to response scenarios where IMF, OL, and lean content can be simultaneously improved. Such scenarios involve regular recording of IMF and OL, so that developing a cost-efficient phenotyping system for these traits is paramount. With the economic benefits of genomic selection needing further assessment in pigs, selection on a combination of pedigree-connected phenotypes and genotypes from a panel of selected genetic markers is presented as a suitable alternative. Evidence is provided supporting that at least a polymorphism in the leptin receptor and another in the stearoyl-CoA desaturase genes should be in that panel. Selection for IMF and OL results in an opportunity cost on lean growth. The extent to which it is affordable relies on the consumers' willingness to pay for premium products and on the cost to benefit ratio of alternative management strategies, such as specific dietary manipulations. How the genotype can influence the effect of the diet on IMF and OL remains a topic for further research.

  1. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Science.gov (United States)

    Nemashkalova, Ekaterina L; Kazakov, Alexei S; Khasanova, Leysan M; Permyakov, Eugene A; Permyakov, Sergei E

    2013-09-10

    HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.

  2. Continuous Gradient Temperature Raman Spectroscopy of Oleic and Linoleic Acids from -100 to 50 °C.

    Science.gov (United States)

    Broadhurst, C Leigh; Schmidt, Walter F; Kim, Moon S; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L; Shelton, Daniel R

    2016-11-01

    We analyzed the unsaturated fatty acids oleic (OA, 18:1n-9) and linoleic (LA, 18:2n-3), and a 3:1 LA:OA mixture from -100 to 50 °C with continuous gradient temperature Raman spectroscopy (GTRS). The 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allowed rapid, complete assignment of solid, liquid, and transition state vibrational modes. For OA, large spectral and line width changes occurred in the solid state γ to α transition near -4 °C, and the melt (13 °C) over a range of only 1 °C. For LA, major intensity reductions from 200 to 1750 cm(-1) and some peak shifts marked one solid state phase transition at -50 °C. A second solid state transition (-33 °C) had minor spectral changes. Large spectral and line width changes occurred at the melt transition (-7 °C) over a narrow temperature range. For both molecules, melting initiates at the diene structure, then progresses towards the ends. In the 3:1 LA:OA mixture, some less intense and lower frequencies present in the individual lipids are weaker or absent. For example, modes assignable to C8 rocking, C9H-C10H wagging, C10H-C11H wagging, and CH3 rocking are present in OA but absent in LA:OA. Our data quantify the concept of lipid premelting and identify the flexible structures within OA and LA, which have characteristic vibrational modes beginning at cryogenic temperatures.

  3. Backbone and sidechain 1H, 13C and 15N resonance assignments of the human brain-type fatty acid binding protein (FABP7) in its apo form and the holo forms binding to DHA, oleic acid, linoleic acid and elaidic acid

    DEFF Research Database (Denmark)

    Oeemig, Jesper S; Jørgensen, Mathilde L; Hansen, Mikka S

    2009-01-01

    In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid.......In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid....

  4. H3PO4/Al2O3 catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    Directory of Open Access Journals (Sweden)

    Lucia Regina Raddi de Araujo

    2006-06-01

    Full Text Available Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts. The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil. The best catalytic performance was achieved with the highest surface area alumina impregnated with H3PO4, which was the solid that allied high total acidity with a large quantity of mesopores.

  5. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    Science.gov (United States)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production.

  6. 高油酸花生品系材料比较试验%Compared Experiment on High Oleic Acid Peanut

    Institute of Scientific and Technical Information of China (English)

    苗华荣; 胡晓辉; 石运庆; 张建成; 陈静; 禹山林

    2012-01-01

    Peanut is an important oil and economic crop in China. Breeding peanut variety with high o-leic content is an important breeding objective of peanut quality. In this paper, 19 cultivated breedingmaterials with high oleic acid were compared with other peanut varieties including high oleic acid andcommon high oleic acid varieties. Oleic content of 19 materials except H6 exceeded 78%. The resultsof yield comparision showed that yield of one large peanut H4 was equal to Luhua 11, and 3 small pea-nuts H12, H15 and H17 increased by3.44%, 14.50%, 8.78% compared toLuhua 11 respectively.%试验以育成的19个高油酸材料、2个对照品种和5个高油酸参照品种为材料,通过田间考种、室内考种、品质测定和休眠性检测来进行高油酸材料的评价。结果表明,19个高油酸材料中除H6外,油酸含量均在78%以上,油亚比值大于20;与高油酸参考品种的农艺性状相比,筛选的高油酸材料主茎高和侧枝长有所降低,分枝数和饱果数有了一定提高。产量比较筛选出4个产量表现较为突出的材料,1个大花生材料H4,与鲁花11号产量相当;3个小花生材料H12、H15、H17,分别比对照鲁花11号增产3.44%、14.50%、8.78%。

  7. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Directory of Open Access Journals (Sweden)

    Natalia Mercer

    Full Text Available BACKGROUND: Alpha-lactalbumin (α-LA is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA acquires tumoricidal activity. Such a complex made from human α-LA (hLA is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells, and its tumoricidal activity has been well established. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext. A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2 and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. CONCLUSIONS/SIGNIFICANCE: We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal

  8. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Science.gov (United States)

    Mercer, Natalia; Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K

    2011-01-01

    Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established. In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.

  9. Determination of α-Linoleic Acid, Linoleic Acid and Oleic Acid in Hemp Seed by HPLC%HPLC同时测定火麻仁中α-亚麻酸、亚油酸和油酸含量

    Institute of Scientific and Technical Information of China (English)

    秦建平; 陆艳芹; 罗雪磊; 吴建雄; 李家春; 萧伟

    2012-01-01

    目的:建立同时测定火麻仁中的α-亚麻酸、亚油酸和油酸含量的HPLC方法.方法:色谱柱为Kromasil 100-5 C18(4.6 mm×250 mm,5 μm),以乙腈-o.1%磷酸(80∶20)为流动相,流速1 mL? min-1,柱温30℃,检测波长203 nm.结果:α-亚麻酸在34.625~554 mg? L-1(r=0.999 9),亚油酸在56.375~902 mg?L -1(r=1),油酸在17.125 ~ 274 mg? L-1(r =0.999 9)呈良好的线性关系;平均回收率α-亚麻酸为96.38%,RSD0.93%(n=6);亚油酸为97.79%,RSD 0.92%(n=6);油酸为97.06%,RSD 1.51% (n =6).结论:本法简便准确,专属性强,重复性好,可作为火麻仁的质量控制的参考.%Objective: To establish a HPLC method for the determination of a-linoleic acid, linoleic acid and oleic acid in Hemp Seed. Method; The Kromasil 100-5 C18 (4.6 mm ×250 mm, 5 μm) column was used with a mobile phase of acetonitrile-0. 1% phosphoric acid (80:20) , the flow rate was 1 mL ? Min-1 , the column temperature was at 30 ℃, the detection wavelength was at 203 nm. Result: The linear ranges of a-linoleic acid, linoleic acid and oleic acid were 34. 625-554 mg ? L-1 ( r = 0. 999 9) , 56. 375-902 mg ? L-1 ( r = 1 ) and 17. 125-274 mg ? L-1 (r=0. 999 9) respectively. The average recoveries were 96. 38% with RSD 0. 93% for a-linoleic acid, 97. 79% with RSD 0. 92% for linoleic acid, 97. 06% with RSD 1. 51% for oleic acid. Conclusion; The method can be used to control the quality of a-linoleic acid, linoleic acid and oleic acid in Hemp Seed, which is simple, accurate, convenient, specific and repeatable.

  10. Effect of oleic and conjugated linoleic acid in the diet of broiler chickens on the live growth performances, carcass traits and meat fatty acid profile

    Directory of Open Access Journals (Sweden)

    Stefano Rapaccini

    2010-01-01

    Full Text Available Olive oil and CLA enriched olive oil were compared with each other in a growth trial with broiler chickens, as energy supplements to the diet. A commercial CLA blend was used at the level of 1 kg per 100 kg mixed integrated feed. Two hundred and forty commercial hybrid broilers (Ross 308 were randomly subdivided and allotted to 8 pens of 30 birds each. Four pens of birds were fed the olive oil diet and considered the control group; the other 4 pens were fed the olive oil supplemented with CLA and considered the treated group. The experiment lasted 47 days. The live performance of the treated birds resulted different from the performance of the control ones: the final body weight was slightly lighter (2.544 kg vs 2.639 kg; P≤0.05 with a lower feed intake (4.886 kg feed vs 4.998 kg, P≤0.05 and, of course, an almost perfectly overlapping feed/gain ratio (1.90 vs 1.91. The fatty acid composition of the breast fat of the CLA treated birds resulted enriched by the two major CLA isomers, trans 10 cis 12 and cis 9 trans 11, whereas oleic acid and the linoleic, linolenic and arachidonic polyunsaturated acids showed a decrease (P≤0.05. CLA appears a recommendable ingredient in the diets of broilers as it improves the beneficial characteristics of poultry meat.

  11. Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice.

    Science.gov (United States)

    Gouk, Shiou-Wah; Cheng, Sit-Foon; Ong, Augustine Soon-Hock; Chuah, Cheng-Hock

    2014-04-14

    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.

  12. Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate.

    Science.gov (United States)

    Fordahl, Steve C; Erikson, Keith M

    2014-05-01

    Manganese (Mn) exposure interferes with GABA uptake; however, the effects of Mn on GABA transport proteins (GATs) have not been identified. We sought to characterize how Mn impairs GAT function in primary rat astrocytes. Astrocytes exposed to Mn (500 μM) had significantly reduced (3)H-GABA uptake despite no change in membrane or cytosolic GAT3 protein levels. Co-treatment with 100 μM oleic or palmitic acids (both known to be elevated in Mn neurotoxicity), exacerbated the Mn-induced decline in (3)H-GABA uptake. Mn accumulation in the membrane fraction of astrocytes was enhanced with fatty acid administration, and was negatively correlated with (3)H-GABA uptake. Furthermore, control cells exposed to Mn only during the experimental uptake had significantly reduced (3)H-GABA uptake, and the addition of GABA (50 μM) blunted cytosolic Mn accumulation. These data indicate that reduced GAT function in astrocytes is influenced by Mn and fatty acids accumulating at or interacting with the plasma membrane.

  13. H{sub 3}PW{sub 12}O{sub 40} (HPA), an efficient and reusable catalyst for biodiesel production related reactions. Esterification of oleic acid and etherification of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, Jorge H.; Vera, Carlos R.; Yori, Juan C.; Badano, Juan M., E-mail: jsepulve@fiq.unl.edu.a [Instituto de Investigaciones en Catalisis y Petroquimica, Santiago del Estero Santa Fe (Argentina); Santarosa, Daniel; Mandelli, Dalmo [Pontificia Universidade Catolica de Campinas, SP (Brazil). Faculdade Quimica

    2011-07-01

    In esterification of oleic acid with methanol at 25 deg C HPA displayed the highest activity. Moreover the HPA could be reused after being transformed into its cesium salt. In the reaction of etherification of glycerol HPA and Amberlyst 35W showed similar initial activity levels. The results of acid properties demonstrate that HPA is a strong protonic acid and that both surface and bulk protons contribute to the acidity. Because of its strong affinity for polar compounds, HPA is also seemingly dissolved in both oleic acid and methanol. The reaction in this case proceeds with the catalyst in the homogenous phase. (author)

  14. Production and Optimization of Oleic Acid Ethyl Ester Synthesis Using Lipase From Rice Bran (Oryza sativa L. and Germinated Jatropha Seeds (Jatropha curcas L. by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-11-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Recently, the fatty acid ethyl ester has been synthesized in place of fatty acid methyl ester since ethanol has been more renewable. In this research, oleic acid ethyl ester (OAEE was synthesized using germinated jatropha seeds (Jatropha curcas.L and rice bran (Oryza sativa as source of lipase. The objective of the research was to optimize the synthesis conditions using Response Surface Methodology. Factors, such as crude enzyme concentration, molar ratio of oleic acid to ethanol, and the reaction time, were evaluated. The results show that lipase from germinated jatropha seeds had the hydrolitic and esterifi cation activity about 6.73 U/g and 298.07 U/g, respectively. Lipase from rice bran had the hydrolitic and esterifi cation activity about 10.57 U/g and 324.03 U/g, respectively. The optimum conditions of esterifi cation reaction using germinated jatropha seed lipase as biocatalyst were crude enzyme concentration of 0.31 g/ml, molar ratio of oleic acid to ethanol of 1 : 1.81, and reaction time of 50.9 min. The optimum conditions of esterifi cation reaction using rice bran lipase were crude enzyme concentration of 0.29 g/ml, molar ratio of oleic acid to ethanol of 1 : 2.05, and reaction time of 58.61 min. The obtained amounts of OAEE were 810.77 μmole and 626.92 μmole for lipases from rice bran and germinated jatropha seed, respectively. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  15. Acute toxicity of peroxy sulfonated oleic acids (PSOA) to freshwater aquatic species and sludge microflora as observed in laboratory environments.

    Science.gov (United States)

    Solloch, Stephan; Pechacek, Nathan; Peterson, Bridget; Osorio, Magdalena; Caudill, Jeffrey

    2015-01-01

    Peroxy sulfonated oleic acids (PSOA) is a novel surfactant peracid. The commercial applications of PSOA result in the chemical primarily being disposed of via industrial waste water effluent. Given this manner of disposal, it is important to understand the aquatic hazards of the chemical to better assess the risk posed to aqueous environments. Acute aquatic toxicity laboratory experiments were performed to evaluate aquatic hazards and were conducted according to standard OECD test guidelines with rainbow trout (Oncorhynchus mykiss), water fleas (Daphnia magna) and algae (Pseudokirchneriella subcapitata). In addition, microbial toxicity was evaluated in activated sludge obtained from a domestic sewage treatment facility. Lethal concentration in 50 % of test species (LC50) and effect concentration in 50 % of test species (EC50) values for PSOA ranged from 0.75 to 5.44 mg/L, representing a relatively small range spanning less than an order of magnitude. No observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) ranges were also relatively small, with ranges of 0.25-1.66 and 0.5-3.6 mg/L, respectively. The EC50, LOEC and NOEC values for microbial toxicity were 216, 60 and 20 mg/L, respectively. Predicted no effect concentrations (PNEC) for aqueous media were based on the 96-h LC50 (0.75 mg/L) for O. mykiss, the organism displaying the greatest sensitivity to PSOA. These values were derived for freshwater, marine water and intermittent releases to water and ranged from 7.5 × 10(-5) to 7.5 × 10(-3) mg/L. A sewage treatment plant PNEC of 2 mg/L was derived based on an activated sludge 3-h NOEC of 20 mg/L. These values, along with the anticipated environmental fate and transport for PSOA, were considered in assessing the overall aquatic risk posed by this chemical. Despite the relatively high acute aquatic hazards for PSOA, environmental modeling suggests the overall risk of PSOA to aqueous environments is low based on its

  16. Effect of oleic acid-induced acute lung injury and conventional mechanical ventilation on renal function in piglets

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-jun; LING Feng; LI Zhi-qiang; LI Xiao-feng; LIU Ying-long; DU Jie; HAN Ling

    2013-01-01

    Background Animal models that demonstrate changes of renal function in response to acute lung injury (ALl) and mechanical ventilation (MV) are few.The present study was performed to examine the effect of ALl induced by oleic acid (OA) in combination with conventional MV strategy on renal function in piglets.Methods Twelve Chinese mini-piglets were randomly divided into two groups:the OA group (n=6),animals were ventilated with a conventional MV strategy of 12 ml/kg and suffered an ALl induced by administration of OA,and the control group (n=6),animals were ventilated with a protective MV strategy of 6 ml/kg and received the same amount of sterile saline.Results Six hours after OA injection a severe lung injury and a mild-moderate degree of renal histopathological injury were seen,while no apparent histological abnormalities were observed in the control group.Although we observed an increase in the plasma concentrations of creatinine and urea after ALl,there was no significant difference compared with the control group.Plasma concentrations of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C increased (5.6±1.3) and (7.4±1.5) times in the OA group compared to baseline values,and were significantly higher than the values in the control group.OA injection in combination with conventional MV strategy resulted in a dramatic aggravation of hemodynamic and blood gas exchange parameters,while these parameters remained stable during the experiment in the control group.The plasma expression of TNF-α and IL-6 in the OA group were significantly higher than that in the control group.Compared with high expression in the lung and renal tissue in the OA group,TNF-α and IL-6 were too low to be detected in the lung and renal tissue in the control group.Conclusions OA injection in combination with conventional MV strategy not only resulted in a severe lung injury but also an apparent renal injury.The potential mechanisms involved a cytokine response of TNF-α and

  17. Effect of partial liquid ventilation on lung function in oleic acid-induced lung injury model of piglets

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-zhuo; LI Ling-ke; ZHANG Yan-bo; LI Gang; XU Yu-lin; ZHU Yao-bin

    2013-01-01

    Background Pediatric patients are susceptible to lung injury that does not respond to traditional therapies.Partial liquid ventilation (PLV) has been developed as an alternative ventilatory strategy for treating severe lung injury.The aim of this study is to investigate the effect of PLV on lung function in immature piglets.Methods Acute lung injury was induced in 12 Chinese immature piglets by oleic acid (OA).The animals were randomly assigned to two groups (n=6 each group):(1) conventional mechanical ventilation (MV) group and (2) PLV with FC-77 (10 ml/kg) group.Mean arterial blood pressure (MAP),mean pulmonary arterial pressure (MPAP),central venous pressure (CVP),left atrial pressure (LAP),systemic vascular resistance (SVR),pulmonary vascular resistance (PVR),cardiac output (CO),mean pressure of airway (Paw),dynamic lung compliance (Cydn),and arterial blood gases were measured during the observation period.Results No piglet died in either group with severe lung injury.After four hours of ventilation,pH in the MV group gradually decreased to lower than 7.20,while in the PLV group,pH also gradually decreased but remained higher than 7.20 (P <0.05).Partial pressure of oxygen in artery (PaO2) decreased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Partial pressure of carbon dioxide in artery (PaCO2) increased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Paw increased in both groups,but was not significantly different (P >0.05).Cydn decreased in both groups,but without a significant difference (P >0.05).At four hours,heart rate (HR) and MAP in both groups decreased.MPAP in both groups increased,and there was a significant difference between the two groups (P <0.05).CVP was stable in both groups.At four hours,PVR and LAP were increased in both groups.CO was decreased in both groups (P <0.05).SVR was stable during the observation time.Conclusion PLV did not

  18. Atrial natriuretic peptide attenuates inflammatory responses on oleic acid-induced acute lung injury model in rats

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; ZHANG Yan-bo; LIU Dong-hai; LI Xiao-feng; LIU Ai-jun; FAN Xiang-ming; QIAO Chen-hui

    2013-01-01

    Background An inflammatory response leading to organ dysfunction and failure continues to be a major problem after injury in many clinical conditions such as sepsis,severe burns,and trauma.It is increasingly recognized that atrial natriuretic peptide (ANP) possesses a broad range of biological activities,including effects on endothelial function and inflammation.A recent study has revealed that ANP exerts anti-inflammatory effects.In this study we tested the effects of human ANP (hANP) on lung injury in a model of oleic acid (OA)-induced acute lung injury (ALl) in rats.Methods Rats were randomly assigned to three groups (n=6 in each group).Rats in the control group received a 0.9% solution of NaCl (1 ml.kg1.h-1) by continuous intravenous infusion,after 30 minutes a 0.9% solution of NaCl (1 ml/kg) was injected intravenously,and then the 0.9% NaCl infusion was restarted.Rats in the ALl group received a 0.9% NaCl solution (1 ml·kg-1·h-1) intravenous infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the 0.9% NaCl infusion was restarted.Rats in the hANP-treated ALI group received a hANP (0.1μg·kg-1·min-1) infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the hANP infusion was restarted.The anti-inflammation effects of hANP were evaluated by histological examination and determination of serum cytokine levels.Results Serum intedeukin (IL)-1β,IL-6,IL-10 and tumor necrosis factor (TNF) α were increased in the ALI group at six hours.The levels of all factors were significantly lower in the hANP treated rats (P <0.005).Similarly,levels of IL-1β,IL-6,IL-10 and TNF-α were higher in the lung tissue in the ALI group at six hours.hANP treatment significantly reduced the levels of these factors in the lungs (P <0.005).Histological examination revealed marked reduction in interstitial congestion,edema,and inflammation.Conclusion hANP can attenuate inflammation in an OA-induced lung injury in rat model.

  19. Genetic, molecular and expression features of the Pervenets mutant leading to high oleic acid content of seed oil in sunflower

    Directory of Open Access Journals (Sweden)

    Lacombe Séverine

    2002-01-01

    Full Text Available Pervenets is a sunflower population that displays seed oil with a high oleic acid content [HOAC]. Our aim is to reconcile all the data gathered on this mutant in a unique explanatory mechanism. All Pervenets-derived [HOAC] lines display no accumulation or a very reduced accumulation of the DELTA12-desaturase transcript in the embryos during the stages for oil accumulation. They also carry oleHOS specific RFLP markers revealed by an DELTA12-desaturase cDNA used as a probe. The linoleic or [LO] genotypes do not carry this RFLP marker, but another allele: oleLOR (oleHL locus. Linkage disequilibrium between the oleHOS allele and [HOAC] was verified. We studied the mode of inheritance of [HOAC] in two segregating populations. A F2 progenies revealed one dominant allele for [HOAC] that co-segregated with the oleHOS allele showing that the Pervenets mutation and oleHOS were closely linked. F6 recombinant inbred lines, showed the [HOAC] trait due to two independent loci: the locus carrying the oleHOS allele and another locus sup. One allele, supole, at this second locus may suppress the effect of the oleHOS allele on the [HOAC] trait. Northern analyses performed on [HOAC] lines and F1 ([HOAC] x [LO] hybrids revealed under-accumulation of DELTA12-desaturase transcript. Thus Pervenets mutation acts in trans. The oleHOS genomic region that may carry the Pervenets mutation was cloned. A genomic library was constructed in lambdafixII with the DNA from the RHA345 [HOAC] line and screened with a DELTA12-desaturase cDNA as a probe. Two overlapping clones were entirely sequenced and revealed carrying a gene for an DELTA12-desaturase probably located in the RE. This corresponds to the invariant part of the oleHL locus. Another clone (11.1 probably carries DELTA12-desaturase repeated sequences that cause instability of the clone. We showed that the 11.1 clone carries most of cDNA sequence, but due to its organization it is not yet sequenced. A mutation mechanism

  20. Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB: oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2010-05-01

    Full Text Available We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007. K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations.

    From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of ~10−11 cm2 s−1 for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

  1. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2007-01-01

    Full Text Available The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS: the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the commonly observed aldehyde and organic acid products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal is described. The relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide oligomers and polymers, and their formation is in accord with solution and liquid-phase ozonolysis. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei (CCN. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, the main atmospheric implications of oxidative processing of particulate containing fatty acids are presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semi-solids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas-phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that

  2. Antioxidant Activities of Tannins to Oleic Acid%植物单宁对油酸抗氧化性研究

    Institute of Scientific and Technical Information of China (English)

    唐余玲; 刘会云; 孔佳超; 张振; 胡薇; 王茹

    2013-01-01

    以固载单宁皮粉(IT-HP)作为含单宁的成品革模型物,以油酸模拟皮革中的不饱和油脂类加脂剂,研究植物单宁对油酸的抗氧化性.系统研究了固载单宁皮粉中3种不同单宁对油酸的抗氧化作用,并优选抗氧化性最好的黑荆树单宁,考察了单宁用量、pH值和温度等条件对其抗氧化作用的影响.结果表明:3种单宁均具有良好的抑制油酸过氧化作用;抗油酸过氧化能力的强弱顺序为:黑荆树单宁>杨梅单宁>落叶松单宁;黑荆树单宁用量为20%时,抗氧化性最强;较高的pH值有利于黑荆树单宁的抗氧化作用;温度主要对油酸过氧化速度产生影响;在油酸过氧化反应初期,温度对黑荆树单宁抗氧化性的影响较小.%Tannin - immobilized hide powder (IT - HP) was employed as the leather model and oleic acid was used to mimic the unsaturated fat liquoring agent. The anti - oxidation for three kinds of tannins, black wattle tannin, bayberry tannin, and larch tannin, was investigated. The effects of tannin dosage, pH, and temperature on the anti - oxidation of black wattle tannin were studied in detail. Results show that all these three kinds of tannins have inhibition effect for oleic acid oxidation, with an anti -oxidation effect sequence of black wattle tannin > bayberry tannin > larch tannin. The anti - oxidation activity of black wattle tannin is found to increase with the increasing of tannin dosage. On the other hand, a higher pH is more propitious to anti - oxidation effect of black wattle tannin. Temperature mainly affects the oxidation rate of oleic acid, while it applies negligible impact to the anti - oxidation activity of the black wattle tannin in the initial stage of oleic acid oxidation.

  3. Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats

    NARCIS (Netherlands)

    Jambor de Sousa, Ulrike L.; Benthem, Lambertus; Arsenijevic, Denis; Scheurink, Anton J. W.; Langhans, Wolfgang; Geary, Noni; Leonhardt, Monika; Geary, Nori

    2006-01-01

    In several human and animal studies, medium-chain triglycerides decreased food intake more than did long-chain triglycerides. It is possible that faster uptake and metabolism of medium-chain fatty acids in the liver is responsible for this difference. To test this hypothesis we compared the feeding

  4. Use of oleic-acid functionalized nanoparticles for the magnetic solid-phase microextraction of alkylphenols in fruit juices using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Viñas, Pilar; Pastor-Belda, Marta; Torres, Aitor; Campillo, Natalia; Hernández-Córdoba, Manuel

    2016-05-01

    Magnetic nanoparticles of cobalt ferrite with oleic acid as the surfactant (CoFe2O4/oleic acid) were used as sorbent material for the determination of alkylphenols in fruit juices. High sensitivity and specificity were achieved by liquid chromatography and detection using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the selected reaction monitoring (SRM) mode of the negative fragment ions for alkylphenols (APs) and in positive mode for ethoxylate APs (APEOs). The optimized conditions for the different variables influencing the magnetic separation procedure were: mass of magnetic nanoparticles, 50mg, juice volume, 10mL diluted to 25mL with water, pH 6, stirring for 10min at room temperature, separation with an external neodymium magnet, desorption with 3mL of methanol and orbital shaking for 5min. The enriched organic phase was evaporated and reconstituted with 100µL acetonitrile before injecting 30µL into a liquid chromatograph with a mobile phase composed of acetonitrile/0.1% (v/v) formic acid under gradient elution. Quantification limits were in the range 3.6 to 125ngmL(-1). The recoveries obtained were in the 91-119% range, with RSDs lower than 14%. The ESI-MS/MS spectra permitted the correct identification of both APs and APEOs in the fruit juice samples.

  5. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    Science.gov (United States)

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  6. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2006-11-01

    Full Text Available The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS: the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential

  7. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Science.gov (United States)

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  8. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Katiéli Caroline Welter

    Full Text Available To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4 kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil, 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis. The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  9. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    Science.gov (United States)

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30.

  10. Experimental investigation to effects of oleic acid and lauric acid on stabilization of magnetorheological fluids%采用油酸和月桂酸改进磁流变液稳定性的实验研究

    Institute of Scientific and Technical Information of China (English)

    熊晨熙; 彭向和; 易成建

    2011-01-01

    The effects of oleic acid and lauric acid on the stabilization of magnetorheological fluids(MRF) were investigated experimentally.Several groups of samples were prepared,with both lauric acid and oleic acid as additives.The variations of the zero-field viscosity,mechanical property and sedimentation rate of these samples against time were tested,and the effects of volume fractions of lauric acid,oleic acid and carbonyl iron on the stabilization and mechanical property of the MRF samples were studied.The results indicated that the proper addition of lauric acid and oleic acid could significantly improve the mechanical property of magnetorheological fluids.%鉴于油酸和月桂酸2种表面活性剂对磁流变液稳定性所起到的不同的作用,制备了若干种不同配比的以油酸和月桂酸共同添加的磁流变液,测量它们的零场粘度、力学性能和沉降率-时间曲线,研究了月桂酸、油酸和羰基铁粉3种成分的含量对于磁流变液稳定性和力学性能的影响。结果表明合理的添加油酸和月桂酸对于制备零场粘度小且稳定性优良的磁流变液具有显著的效果。

  11. Polymerisation by acrylamide and acrylic acid inverse suspension

    Directory of Open Access Journals (Sweden)

    Sergio Alejandro LLoreda Blanco

    2010-04-01

    Full Text Available This work describes polymerisation by inverse suspension of acrylamide monomers and acrylic acid for forming homopolymers or copolymers This type of polymersitaion's advantages are described and reasons given for why it should be studied. The article stresses the importance of these types of monomer for obtaining materials presenting great affinity for water, such as super-absorbents and controlled liberation mechanism. Important aspects are presented such as type of initiation, monomer composition and continuous phase composition; parameters are described offering an important basis for formulating a system leading to successfully obtaining the desired materials' most relevant characteristics such as particle distribution and size polymerisation kinetics, conversion and water absorption capacity respecting the system's modifiable parameters. The foregoing is important since the product can be modified, bestowing propierties on it which are suitable for its use.

  12. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  13. Effect of Size and Distribution of Ni Nanoparticles on γ-Al2O3 in Oleic Acid Hydrodeoxygenation to Produce n-Alkanes

    Directory of Open Access Journals (Sweden)

    Manuel Sánchez-Cárdenas

    2016-10-01

    Full Text Available To contribute to the search for an oxygen-free biodiesel from vegetable oil, a process based in the oleic acid hydrodeoxygenation over Ni/γ-Al2O3 catalysts was performed. In this work different wt % of Ni nanoparticles were prepared by wetness impregnation and tested as catalytic phases. Oleic acid was used as a model molecule for biodiesel production due to its high proportion in vegetable oils used in food and agro-industrial processes. A theoretical model to optimize yield of n-C17 was developed using size, distribution, and wt % of Ni nanoparticles (NPs as additional factors besides operational conditions such as temperature and reaction time. These mathematical models related to response surfaces plots predict a higher yield of n-C17 when physical parameters of Ni NPs are suitable. It can be of particular interest that the model components have a high interaction with operation conditions for the n-C17 yields, with the size, distribution, and wt % of Ni NPs being the most significant. A combination of these factors statistically pointed out those conditions that create a maximum yield of alkanes; these proved to be affordable for producing biodiesel from this catalytic environmental process.

  14. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro.

    Science.gov (United States)

    Wang, Yong; Zhao, Liang; Wang, Dan; Huo, Yazhen; Ji, Baoping

    2016-05-01

    Limited information is available regarding the relationship between the chemical structures and inhibitory effects of anthocyanin (ACN) on triglyceride (TG) overaccumulation. Thus this study investigated the antioxidant activity and inhibitory effect of blackberry, wild blueberry, strawberry, and chokeberry ACN-rich extracts, with different structural characteristics, on oleic acid-induced hepatic steatosis in vitro. Four major ACNs from these berries, with different aglycones, namely cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, pelargonidin-3-glucoside, and malvidin-3-glucoside, were also investigated. Blackberry ACN-rich extract exhibited the most significant inhibitory effect on TG clearance (30.5% ± 3.4%) and reactive oxygen species generation. TG clearance was significantly correlated with total phenolic content (r = 0.991, P < 0.05) and oxygen radical absorbance capacity value (r = 0.961, P < 0.05). Furthermore, Cy-3-glu showed the highest inhibitory effect on intracellular TG overaccumulation, with a maximum TG clearance of 61.3% at 40 µg mL(-1) . Our findings suggest that the inhibitory effects of different ACNs on oleic acid-induced hepatic steatosis significantly vary. Cy-3-glu, which contains the ortho hydroxyl group in its B ring, possibly confers the protective effects of antioxidants and inhibits TG accumulation in HepG2 cells. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Biodistribution and pharmacokinetics in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin-oleic acid nanoparticles containing paclitaxel.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Beom-Jin

    2014-01-01

    The aim of this study was to investigate the pharmacokinetics and biodistribution in Sprague-Dawley rats, anti-tumor activity and acute toxicity in different tumor-bearing mice of novel biocompatible nanoparticles. Paclitaxel (PTX) was selected as a model drug and loaded on different tumor types and at various doses. The nanoparticles were prepared using a newly synthesized gelatin-oleic acid conjugate via self-assembly in an aqueous solution. The nanoparticles were further functionalized using folic acid (FA) as a targeting ligand for cancer. The in vivo effects of the nanoparticles were compared with the commercially available Taxol (a solution form of PTX) as a reference dosage form. The in vivo studies confirmed that nanoparticles showed improved therapeutic effects on tumors and significantly reduced the toxic effects associated with Taxol, even at the 50% lethal dose (LD50). The in vivo pharmacokinetic parameters and biodistribution of the nanoparticles containing PTX also indicated slower clearance, longer blood circulation and higher tumor selectivity. Furthermore, the functionalized nanoparticles with FA were more effective than the non-functionalized nanoparticles. Thus, the suitable properties of gelatin-oleic nanoparticles (GON) as a drug carrier and the effective targeting ligand could synergistically maximize the in vivo anti-tumor efficacy resulting in delayed tumor volume growth and hence, providing versatile strategies in cancer therapy and drug delivery.

  16. Chemical composition and oxidative status of tissues from Iberian pigs as affected by diets: extensive feeding v. oleic acid- and tocopherol-enriched mixed diets.

    Science.gov (United States)

    Ventanas, S; Tejeda, J F; Estévez, M

    2008-04-01

    The present work was intended to analyse the chemical composition and oxidative stability of the muscle biceps femoris and adipose tissues from Iberian pigs fed different finishing diets: free-range feeding on grass and acorns in a 'Montanera' traditional system (MON), fed in confinement with a mixed diet containing high-oleic sunflower oil (115 g/kg of diet) and supplemented with 250 mg/kg α-tocopherol (HOVE), and fed in confinement with a tocopherol-non-supplemented control mixed diet (CON). Muscles from MON pigs contained significantly (P < 0.05) higher amounts of intramuscular fat than those from HOVE and CON pigs. Muscles from MON and HOVE pigs had significantly higher levels of α-tocopherol than muscles from CON pigs whereas free-range feeding provided significantly higher levels of γ-tocopherol to muscles from MON pigs than the experimental diets did to CON and HOVE pigs. Adipose tissues from MON and HOVE pigs contained significantly lower proportions of saturated fatty acids and significantly higher levels of oleic acid and monounsaturated fatty acids than those from CON pigs. Tissues from MON pigs contained significantly smaller levels of polyunsaturated fatty acids than those from CON and HOVE pigs. To a higher extent, feeding background affected the fatty acid composition of polar lipids from the muscle biceps femoris than that of neutral lipids. Tissues from MON pigs contained significantly smaller ω-6/ω-3 values than those from pigs fed mixed diets. Compared to tissues from CON pigs, those from MON and HOVE pigs exhibited a higher oxidative stability as a likely result of a most favourable fatty acid composition and the presence of higher tocopherol levels.

  17. Biochemistry of Suberization: Incorporation of [1-C]Oleic Acid and [1-C]Acetate into the Aliphatic Components of Suberin in Potato Tuber Disks (Solanum tuberosum).

    Science.gov (United States)

    Dean, B B; Kolattukudy, P E

    1977-01-01

    Biosynthesis of the aliphatic components of suberin was studied in suberizing potato (Solanum tuberosum) slices with [1-(14)C]oleic acid and [1-(14)C]acetate as precursors. In 4-day aged tissue, [1-(14)C]oleic acid was incorporated into an insoluble residue, which, upon hydrogenolysis (LiA1H(4)), released the label into chloroform-soluble products. Radio thin layer and gas chromatographic analyses of these products showed that (14)C was contained exclusively in octadecenol and octadecene-1, 18-diol. OsO(4) treatment and periodate cleavage of the resulting tetraol showed that the labeled diol was octadec-9-ene-1, 18-diol, the product expected from the two major components of suberin, namely 18-hydroxyoleic acid and the corresponding dicarboxylic acid. Aged potato slices also incorporated [1-(14)C]acetate into an insoluble material. Hydrogenolysis followed by radio chromatographic analyses of the products showed that (14)C was contained in alkanols and alkane-alpha,omega-diols. In the former fraction, a substantial proportion of the label was contained in aliphatic chains longer than C(20), which are known to be common constituents of suberin. In the labeled diol fraction, the major component was octadec-9-ene-1,18-diol, with smaller quantities of saturated C(16), C(18), C(20), C(22), and C(24)-alpha,omega-diols. Soluble lipids derived from [1-(14)C]acetate in the aged tissue also contained labeled very long acids from C(20) to C(28), as well as C(22) and C(24) alcohols, but no labeled omega-hydroxy acids or dicarboxylic acids were detected. Label was also found in n-alkanes isolated from the soluble lipids, and the distribution of label among them was consistent with the composition of n-alkanes found in the wound periderm of this tissue; C(21) and C(23) were the major components with lesser amounts of C(19) and C(25). The amount of (14)C incorporated into these bifunctional monomers in 0-, 2-, 4-, 6-, and 8-day aged tissue were 0, 1.5, 2.5, 0.8, and 0.3% of the

  18. Spin-dependent transport properties of oleic acid molecule self-assembled La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xi, L., E-mail: xili@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Du, J.H.; Ma, J.H.; Wang, Z.; Zuo, Y.L.; Xue, D.S. [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Spin-dependent transport property of LSMO/oleic acid nanoparticles is investigated. Black-Right-Pointing-Pointer Transport properties and MR measured by Cu/nanoparticle assembly/elargol device. Black-Right-Pointing-Pointer Non-linear I-V curve indicates a tunneling type transport properties. Black-Right-Pointing-Pointer Tunnel barrier height around 1.3 {+-} 0.15 eV was obtained by fitting I-V curves. Black-Right-Pointing-Pointer LFMR of LSMO/oleic acid molecules value reaches -18% with current of 0.1 {mu}A at 10 K. - Abstract: Spin-dependent transport property through molecules is investigated using a monolayer of oleic acid molecule self-assembled half metallic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) nanoparticles, which was synthesized using a coprecipitation method. Fourier transform infrared spectroscopy was used to confirm that one-monolayer oleic acid molecules chemically bond to the LSMO nanoparticles. The transport properties and magnetoresistance (MR) effect of the oleic acid molecule coated LSMO nanoparticles were measured by a direct current four probes method using a Cu/nanoparticle assembly/elargol electrode sandwich device with various temperatures and bias voltages. The non-linear I-V curve indicates a tunneling type transport properties. The tunnel barrier height around 1.3 {+-} 0.15 eV was obtained by fitting the I-V curve according to the Simmons equation. The magnetoresistance curves can be divided to high-field MR and low-field MR (LFMR) parts. The former is ascribed to the influence of spin disorder or canting within the LSMO nanoparticle surface and the latter one with strong bias dependence is attributed to the spin-dependent tunneling effect through the insulating surface layer of LSMO and oleic acid molecules. The enhanced LFMR effect for oleic acid coated LSMO with respect to the bare LSMO was attributed to the enhanced tunneling transport and weak spin scattering in oleic acid molecule barrier.

  19. [The positional isomers of triglycerides in oils, fats and apoB-100 lipoproteins: palmitic and oleic modes of metabolism of fatty acids-substrates for energy acquiring].

    Science.gov (United States)

    Kotkina, T I; Titov V N

    2014-01-01

    Even total resemblance of content of fatty acids in triglycerides has both no standing for their functional unity nor even identity of their physical chemical characteristics. The etherification of fatty acids in various positions of three-atomic glycerin separates triglycerides on palmitic and oleic substrates for energy acquiring by cells. The kinetic parameters of biochemical reactions under palmitic mode of metabolism of fatty acids are always low. The myocytes in biological reaction of exotrophy experience deficiency of exogenous fatty acids which in vivo is to permanently supply through activation of biological reaction of endotrophy--enhancement of lipolysis in adipocytes. The biological role of insulin is to prevent formation in vivo of palmitic mode of metabolism of saturated and monoenic fatty acids. Under this condition, the necessity to activate lipolysis and to increase in blood plasma concentration of unesteritied fatty acids forms syndrome of resistance to insulin. The surplus of palmitic fatty acid in food and deficiency of insulin show in vivo unidirectional a physiologic action. The formation of palmitic mode of metabolism of energy substrates--portion of pathogenesis of atherosclerosis, metabolic syndrome, obesity, non-alcoholic fatty infiltration of liver and partiallly essential arterial hypertension.

  20. Apolipoprotein E isoforms 3/3 and 3/4 differentially interact with circulating stearic, palmitic, and oleic fatty acids and lipid levels in Alaskan Natives.

    Science.gov (United States)

    Castellanos-Tapia, Lyssia; López-Alvarenga, Juan Carlos; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth

    2015-04-01

    Lifestyle changes in Alaskan Natives have been related to the increase of cardiovascular disease and metabolic syndrome in the last decades. Variation of the apolipoprotein E (Apo E) genotype may contribute to the diverse response to diet in lipid metabolism and influence the association between fatty acids in plasma and risk factors for cardiovascular disease. The aim of this investigation was to analyze the interaction between Apo E isoforms and plasma fatty acids, influencing phenotypes related to metabolic diseases in Alaskan Natives. A sample of 427 adult Siberian Yupik Alaskan Natives was included. Fasting glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, Apo A1, and Apo B plasma concentrations were measured using reference methods. Concentrations of 13 fatty acids in fasting plasma were analyzed by gas chromatography, and Apo E variants were identified. Analyses of covariance were conducted to identify Apo E isoform and fatty acid main effects and multiplicative interactions. The means for body mass index and age were 26 ± 5.2 and 47 ± 1.5, respectively. Significant main effects were observed for variation in Apo E and different fatty acids influencing Apo B levels, triglycerides, and total cholesterol. Significant interactions were found between Apo E isoform and selected fatty acids influencing total cholesterol, triglycerides, and Apo B concentrations. In summary, Apo E3/3 and 3/4 isoforms had significant interactions with circulating levels of stearic, palmitic, oleic fatty acids, and phenotypes of lipid metabolism in Alaskan Natives.

  1. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  2. Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols.

    Science.gov (United States)

    Yazawa, Hisashi; Kamisaka, Yasushi; Kimura, Kazuyoshi; Yamaoka, Masakazu; Uemura, Hiroshi

    2011-09-01

    When the cells of Saccharomyces cerevisiae are exposed to high concentration of ethanol, the content of oleic acid (C18:1n-9) increased as the initial concentration of ethanol increased. Based on this observation, we attempted to confer ethanol tolerance to S. cerevisiae by manipulating fatty acid composition of the cells. Rather than altering OLE1 expression [the desaturase making both C16:1n-7 (palmitoleic acid) and C18:1n-9], we introduced elongase genes. Introduction of rat elongase 1 gene (rELO1) into S. cerevisiae gave cis-vaccenic acid (cis-C18:1n-7) by conversion from C16:1n-7, and the increase in this C18:1 fatty acid did not confer ethanol tolerance to the cells. On the other hand, the introduction of rat elongase 2 gene (rELO2), which elongates C16:0 to C18:0, drastically increased C18:1n-9 content, and the cells acquired ethanol tolerance, emphasizing the specific role of C18:1n-9. Furthermore, the transformant of rELO2 also conferred tolerance to n-butanol, n-propanol, and 2-propanol.

  3. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    Directory of Open Access Journals (Sweden)

    Bootello, M. A.

    2016-09-01

    Full Text Available The composition and distribution of fatty acids in triacylglycerol (TAG molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.La composición y distribución de los ácidos grasos en las moléculas de triglicéridos se consideran factores determinantes en las propiedades físicas de los aceites y grasas. La distribución de ácidos grasos en un determinado aceite o grasa puede caracterizarse mediante un coeficiente de asimetría α, calculado a partir de las composiciones de triglicéridos y de ácidos grasos en la posición sn-2 de la molécula de triglicérido mediante hidrólisis con lipasa. El aceite de girasol alto oleico-alto esteárico es una grasa estable y saludable, adecuada para reemplazar a los aceites vegetales hidrogenados y fracciones de palma en muchos productos alimentarios, como grasas plásticas y grasas de confitería. En el presente trabajo, se formularon diferentes aceites alto oleico-alto esteárico con diferente distribución de los ácidos grasos saturados en

  4. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    Science.gov (United States)

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l(-1), and 10 g oleic acid l(-1). Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l(-1) within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l(-1) h(-1). The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  5. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis.

  6. Ice core profiles of saturated fatty acids (C12:0-C30:0) and oleic acid (C18:1) from southern Alaska since 1734 AD: A link to climate change in the Northern Hemisphere

    Science.gov (United States)

    Pokhrel, Ambarish; Kawamura, Kimitaka; Seki, Osamu; Matoba, Sumio; Shiraiwa, Takayuki

    2015-01-01

    An ice core drilled at Aurora Peak in southeast Alaska was analyzed for homologous series of straight chain fatty acids (C12:0-C30:0) including unsaturated fatty acid (oleic acid) using gas chromatography (GC/FID) and GC/mass spectrometry (GC/MS). Molecular distributions of fatty acids are characterized by even carbon number predominance with a peak at palmitic acid (C16:0, av. 20.3 ± SD. 29.8 ng/g-ice) followed by oleic acid (C18:1, 19.6 ± 38.6 ng/g-ice) and myristic acid (C14:0, 15.3 ± 21.9 ng/g-ice). The historical trends of short-chain fatty acids, together with correlation analysis with inorganic ions and organic tracers suggest that short-chain fatty acids (except for C12:0 and C15:0) were mainly derived from sea surface micro layers through bubble bursting mechanism and transported over the glacier through the atmosphere. This atmospheric transport process is suggested to be linked with Kamchatka ice core δD record from Northeast Asia and Greenland Temperature Anomaly (GTA). In contrast, long-chain fatty acids (C20:0-C30:0) are originated from terrestrial higher plants, soil organic matter and dusts, which are also linked with GTA. Hence, this study suggests that Alaskan fatty acids are strongly influenced by Pacific Decadal Oscillation/North Pacific Gyre Oscillation and/or extra tropical North Pacific surface climate and Arctic oscillation. We also found that decadal scale variability of C18:1/C18:0 ratios in the Aurora Peak ice core correlate with the Kamchatka ice core δD, which reflects climate oscillations in the North Pacific. This study suggests that photochemical aging of organic aerosols could be controlled by climate periodicity.

  7. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    Science.gov (United States)

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  8. Hydrolysis of tRNA(sup Phe) on Suspensions of Amino Acids

    Science.gov (United States)

    Gao, Kui; Orgel, Leslie E.

    2001-01-01

    RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNA(sup Phe) is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and beta-glutamic acid but not by suspensions of alpha-glutamic acid, asparagine, or glutamine. The non-enzymatic hydrolysis of RNA has been studied extensively, especially because of its relevance to the mechanisms of action of ribozymes and to biotechnology and therapy. Many ribonucleases, ribozymes, and non-biological catalysts function via acid-base catalysis of an intramolecular transesterification mechanism in which the 2'-OH group attacks the adjacent phosphate group. The pentacoordinated phosphorane intermediate may collapse back to starting material, or yield isomerized or cleaved products.

  9. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    Science.gov (United States)

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  10. Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)--effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources.

    Science.gov (United States)

    Torstensen, B E; Lie, O; Frøyland, L

    2000-06-01

    Triplicate groups of Atlantic salmon (Salmo salar L.) were fed four diets containing different oils as the sole lipid source, i.e., capelin oil, oleic acid-enriched sunflower oil, a 1:1 (w/w) mixture of capelin oil and oleic acid-enriched sunflower oil, and palm oil (PO). The beta-oxidation capacity, protein utilization, digestibility of dietary fatty acids and fatty acid composition of lipoproteins, plasma, liver, belly flap, red and white muscle were measured. Further, the lipid class and protein levels in the lipoproteins were analyzed. The different dietary fatty acid compositions did not significantly affect protein utilization or beta-oxidation capacity in red muscle. The levels of total cholesterol, triacylglycerols, and protein in very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL), and plasma were not significantly affected by the dietary fatty acids. VLDL, LDL, and HDL fatty acid compositions were decreasingly affected by dietary fatty acid composition. Dietary fatty acid composition significantly affected both the relative fatty acid composition and the amount of fatty acids (mg fatty acid per g tissue, wet weight) in belly flap, liver, red and white muscle. Apparent digestibility of the fatty acids, measured by adding yttrium oxide as inert marker, was significantly lower in fish fed the PO diet compared to the other three diets.

  11. Wheat Gluten-Laminated Paperboard with Improved Moisture Barrier Properties: A New Concept Using a Plasticizer (Glycerol Containing a Hydrophobic Component (Oleic Acid

    Directory of Open Access Journals (Sweden)

    Sung-Woo Cho

    2012-01-01

    Full Text Available This paper presents a novel approach to reduce the water vapor transmission rate (WVTR and water absorbance of wheat gluten/paperboard laminates by introducing a hydrophobic component (oleic acid (OA into the hydrophilic plasticizer (glycerol. Whereas the paperboard showed immeasurably high WVTR, the laminate with gluten/glycerol yielded finite values. More importantly, by incorporating 75 wt.% OA into the plasticizer, the WVTR and water absorbance were reduced by, respectively, a factor of three and 1.5–2. Of particular interest was that the mechanical properties were not changing dramatically between 0 and 50 wt.% OA. The results showed clear benefits of combining a gluten film with paperboard. Whereas the paperboard provided toughness, the WG layer contributed with improved moisture barrier properties. In addition, WVTR indicated that the paperboard reduced the swelling of the outer gluten/glycerol layer in moist conditions; a free standing gluten/glycerol film would yield infinite, rather than finite, WVTR values.

  12. Heat transfer behaviour of silver particles containing oleic acid surfactant: application in a two phase closed rectangular cross sectional thermosyphon (RTPTC)

    Science.gov (United States)

    Bhuwakietkumjohn, N.; Parametthanuwat, T.

    2017-01-01

    This article focuses on heat transfer behaviour of silver nanoparticles containing oleic acid surfactant (OA) applied as a working fluid in a two-phase closed rectangular cross sectional thermosyphon (RTPTC). Thus, the OA could reduce the surface tension of the working fluid, which improved the colloidal ability and increased the lead-time period for nanoparticles to be uniformly dispersed. It highlights theories for investigating the effects on heat transfer characteristics of RTPTC such as heat transfer rate, thermal resistance, heat transfer coefficients and nanofluids behaviour. The most important heat transfer characteristic to be examined in this experiment is the relative thermal efficiency ( R T ). Five working fluids were tested, these include: de-ionized water; de-ionized water base with a silver nanoparticles concentration of 0.5 wt% (NP); and NP containing 0.5; 1; and 1.5 wt% of OA respectively. The results showed that 0.5 wt% NP containing 1 wt% OA produced the best results. It was further found that the heat transfer rate of 0.5 wt% NP containing 1 wt% of OA with a R T value of 1, was the highest across all experimental parameters studied. The NP containing OA demonstrated approximately 80 % higher heat transfer rate than the de-ionized water.

  13. Heat transfer behaviour of silver particles containing oleic acid surfactant: application in a two phase closed rectangular cross sectional thermosyphon (RTPTC)

    Science.gov (United States)

    Bhuwakietkumjohn, N.; Parametthanuwat, T.

    2016-03-01

    This article focuses on heat transfer behaviour of silver nanoparticles containing oleic acid surfactant (OA) applied as a working fluid in a two-phase closed rectangular cross sectional thermosyphon (RTPTC). Thus, the OA could reduce the surface tension of the working fluid, which improved the colloidal ability and increased the lead-time period for nanoparticles to be uniformly dispersed. It highlights theories for investigating the effects on heat transfer characteristics of RTPTC such as heat transfer rate, thermal resistance, heat transfer coefficients and nanofluids behaviour. The most important heat transfer characteristic to be examined in this experiment is the relative thermal efficiency (R T ). Five working fluids were tested, these include: de-ionized water; de-ionized water base with a silver nanoparticles concentration of 0.5 wt% (NP); and NP containing 0.5; 1; and 1.5 wt% of OA respectively. The results showed that 0.5 wt% NP containing 1 wt% OA produced the best results. It was further found that the heat transfer rate of 0.5 wt% NP containing 1 wt% of OA with a R T value of 1, was the highest across all experimental parameters studied. The NP containing OA demonstrated approximately 80 % higher heat transfer rate than the de-ionized water.

  14. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content.

    Science.gov (United States)

    Gezer, P Gizem; Brodsky, Serena; Hsiao, Austin; Liu, G Logan; Kokini, Jozef L

    2015-11-01

    Zein has been widely studied as a biopolymer due to its unique film-forming abilities. Surface properties are of high importance for certain applications which include microfluidics and tissue engineering, as they drastically affect the end result. It is important to develop techniques to modify zein surface properties without compromising bulk material properties. In this study, we developed a facile technique to change the water affinity of zein film surfaces, compatible with patterning techniques via soft lithography. This is achieved by a simple solvent casting technique onto a polydimethylsilohexane (PDMS) substrate that was exposed to oxygen plasma. Water contact angle measurements (WCA) were used to assess the hydrophillicity of zein surfaces and they reached as low as 20°. Atomic force microscopy, optical absorbance and light microscopy were used to study the characteristics of the film and its surface topography. Hydrophilic zein surfaces had higher roughness values compared to hydrophobic ones. Surface roughness, introduced by sandpaper and gratings does not have the same effect as surface chemistry. The amphiphilic nature of plasticizer oleic acid also contributed to the change in the water contact angle of the films. In conclusion, we demonstrated that zein film's surface properties can be controlled by its ability to self-assemble depending on the substrate that it is being cast on.

  15. The effect of polyol on multiple ligand capped silver alloyed nanobimetallic particles in tri-n-octylphosphine oxide and oleic acid matrices

    Science.gov (United States)

    Adeyemi Adekoya, Joseph; Olugbenga Dare, Enock; Olurotimi Ogunniran, Kehinde; Oluwasegun Siyanbola, Tolutope; Oyewale Ajani, Olayinka; Osereme Ehi-Eromosele, Cyril; Revaprasadu, Neerish

    2016-12-01

    The syntheses of Ag/M (M is Co, Ni, Pd, Pt and Ru) alloyed nanobimetallic particles in tri-n-octylphosphine oxide and oleic acid matrices were successfully carried out by the successive reduction of ligand capped metal ions with polyols, which resulted in rapid precipitation of some fractal high index faceted hybrid Ag/M bimetal nanoparticles. The optical measurements revealed the existence of modified surface plasmon band and peak broadening resulting from reaction-limited growth processes of the metal sols, making it possible to monitor the changes spectrometrically. The bimetallic nanoparticles were further characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and electron microscopy techniques which confirmed the formation of novel core-shell and alloyed clusters. The Ag/M nanoparticles thus synthesized within TOPO/OA matrices indicated significant reduction potential as a result of their energy band gap 2.65-2.77 eV which points to the fact that they could serve as reducing agents for electrocatalytic reaction.

  16. Partial liquid ventilation decreases tissue and serum tumor necrosis factor-α concentrations in acute lung injury model of immature piglet induced by oleic acid

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; FAN Xiang-ming; LI Xiao-feng; LI Zhi-qiang; WANG Qiang; SUN Li-zhong; LIU Ying-long

    2012-01-01

    Background Pediatric patients are susceptible to lung injury.Acute lung injury in children often results in high mortality.Partial liquid ventilation (PLV) has been shown to markedly improve oxygenation and reduce histologic evidence of injury in a number of lung injury models.This study was designed to examine the hypothesis that PLV would attenuate the production of local and systemic tumor necrosis factor (TNF)-α in an immature piglet model of acute lung injury induced by oleic acid (OA).Methods Twelve Chinese immature piglets were induced acute lung injury by OA.The animals were randomly assigned to two groups of six animals,(1) conventional mechanical ventilation (MV) group and (2) PLV with 10 ml/kg FC-77 group.Results Compared with MV group,the PLV group had better cardiopulmonary variables (P <0.05).These variables included heart rate,mean blood pressure,blood pH,partial pressure of arterial oxygen (PaO2),PaO2/inspired O2 fraction (FiO2) and partial pressure of arterial carbon dioxide (PaCO2).PLV reduced TNF-α levels both in plasma and tissue compared with MV group (P <0.05).Conclusion PLV provides protective effects against TNF-a response in OA-induced acute lung injury in immature piglets.

  17. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun

    2016-06-01

    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  18. Effects of duodenal infusions of palmitic, stearic, or oleic acids on milk composition and physical properties of butter.

    Science.gov (United States)

    Enjalbert, F; Nicot, M C; Bayourthe, C; Moncoulon, R

    2000-07-01

    Four dairy cows fitted with a duodenal cannula were used in a 4 x 4 Latin square design to investigate the effects of daily duodenal infusion of 500 g of fatty acids (containing mainly C16:0, C18:0, or cis-C18:1) on fecal concentrations of fatty acids, fatty acid profiles of milk fat, and solid fat content of butter. Fecal concentrations of C16:0 and especially of C18:0 were increased by duodenal infusion. Infusion with C16:0 increased the proportion of C16:0 in milk fat and delayed softening of butter when the temperature rose. Infusion with C18:0 resulted only in a slight increase of C18:0 proportion in milk fat and did not significantly affect solid fat in butter between -10 and 30 degrees C. With the infusion of cis-C18:1, the proportion of cis-C18:1 in milk fat was more than twice that of control, to the detriment of C16:0. Butter contained low proportion of solid fat, even at low temperatures. Increasing C16:0 or cis-C18:1 in milk fatty acid via duodenal infusion can be used to study their specific effects on butter characteristics, but, because of a low transfer from infusion to milk, this method is less efficient with C18:0.

  19. Production of high-oleic acid tallow fractions using lipase-catalyzed directed interesterification, using both batch and continuous processing.

    Science.gov (United States)

    MacKenzie; Stevenson

    2000-08-01

    Immobilized lipases were used to catalyze batch-directed interesterification of tallow, resulting in oleins containing significantly higher levels of unsaturated fatty acids than obtained by fractionation without lipase. After 14 days, a reaction catalyzed by 2% Novozym 435 yielded 57% olein unsaturation, compared with 45% in a no-enzyme control. Free fatty acid levels increased to 2-3% during reactions. Incubation of the enzyme in multiple batches of melted fat caused a gradual loss of interesterification activity, apparently due to progressive dehydration. The activity could be restored by addition of water to the reaction medium. Immobilized lipase was also used to catalyze directed interesterification in a continuous flow reactor. Melted tallow was circulated through a packed bed enzyme reactor and a separate crystallization vessel. The temperatures of the two parts of the apparatus were controlled separately to allow crystallization to occur separately from interesterification. Operation of the reactor with conventionally dry, prefractionated tallow allowed the formation of an olein consisting of up to 60% unsaturated fatty acids. The greatest changes in olein fatty acid composition were achieved when the fractionation temperature was kept constant at a value that promoted selective crystallization of trisaturated triglycerides that were continuously produced by enzymic interesterification. The enzyme could be reused without apparent loss of activity, and its activity was apparently enhanced by preincubation in melted tallow for up to several days. Control of both the water activity of the enzyme and tallow feedstock and of the absorption of atmospheric water vapor were required to maintain enzyme activity, during multiple reuse and minimize free fatty acid formation. This method may form the basis for a process to produce highly mono-unsaturated tallow fractions for use in food applications (e.g. frying) where a "healthy" low saturated fat product is required.

  20. [The isozymes of stearil-coenzymeA-desaturase and insulin activity in the light of phylogenetic theory of pathology. Oleic fatty acid and realization of biologic functions of trophology and locomotion].

    Science.gov (United States)

    2013-11-01

    The formation of function of isozymes of stearil-coenzymeA-desaturases occured at the different stages of phylogeny under realization of biologic function of trophology (stearil-coenzymeA-desaturase 1) and biologic function of locomotion, insulin system (stearil-coenzymeA-desaturase 2) billions years later. The stearil-coenzymeA-desaturase 1 transforms in C 18:1 oleic fatty acid only exogenous C 16:0 palmitinic saturated fatty acid. The stearil-coenzymeA-desaturase 2 transforms only endogenic palmitinic saturated fatty acid, synthesized form glucose. The biologic role of insulin is in energy support of biologic function of locomotion. Insulin through expressing stearil-coenzymeA-desaturase 2 transforms energetically non-optimal palmitinic variation of metabolism of substrates into highly effective oleic variation for cells' groundwork of energy (saturated fatty acid and mono fatty acid). The surplus of palmitinic saturated fatty acid in food is enabled in pathogenesis of resistance to insulin and derangement of synthesis of hormone by beta-cells of islets. The resistance to insulin and diabetes mellitus are primarily the derangement of metabolism of saturated fatty acids with mono fatty acids, energy problems of organism and only afterwards the derangement of metabolism of carbohydrates. It is desirable to restrict food intake of exogenous palmitinic saturated fatty acid. The reasons are low expression of independent of insulin stearil-coenzymeA-desaturase 2, marked lipotoxicity of polar form of palmitinic saturated fatty acid and synthesis of non-optimal palmitinic triglycerides instead of physiologic and more energetically more effective oleic triglycerides.

  1. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells.

    Science.gov (United States)

    Debbabi, Meryam; Zarrouk, Amira; Bezine, Maryem; Meddeb, Wiem; Nury, Thomas; Badreddine, Asmaa; Karym, El Mostafa; Sghaier, Randa; Bretillon, Lionel; Guyot, Stéphane; Samadi, Mohammad; Cherkaoui-Malki, Mustapha; Nasser, Boubker; Mejri, Mondher; Ben-Hammou, Sofien; Hammami, Mohamed; Lizard, Gérard

    2017-04-10

    Increased levels of 7-ketocholesterol (7KC), which results mainly from cholesterol auto-oxidation, are often found in the plasma and/or cerebrospinal fluid of patients with neurodegenerative diseases and might contribute to activation of microglial cells involved in neurodegeneration. As major cellular dysfunctions are induced by 7KC, it is important to identify molecules able to impair its side effects. Since consumption of olive and argan oils, and fish is important in the Mediterranean diet, the aim of the study was to determine the ability of oleic acid (OA), a major compound of olive and argan oil, and docosahexaenoic acid (DHA) present in fatty fishes, such as sardines, to attenuate 7KC-induced cytotoxic effects. Since elaidic acid (EA), the trans isomer of OA, can be found in hydrogenated cooking oils and fried foods, its effects on 7KC-induced cytotoxicity were also determined. In murine microglial BV-2 cells, 7KC induces cell growth inhibition, mitochondrial dysfunctions, reactive oxygen species overproduction and lipid peroxidation, increased plasma membrane permeability and fluidity, nuclei condensation and/or fragmentation and caspase-3 activation, which are apoptotic characteristics, and an increased LC3-II/LC3-I ratio, which is a criterion of autophagy. 7KC is therefore a potent inducer of oxiapoptophagy (OXIdation+APOPTOsis+autoPHAGY) on BV-2 cells. OA and EA, but not DHA, also favor the accumulation of lipid droplets revealed with Masson's trichrome, Oil Red O, and Nile Red staining. The cytotoxicity of 7KC was strongly attenuated by OA and DHA. Protective effects were also observed with EA. However, 7KC-induced caspase-3 activation was less attenuated with EA. Different effects of OA and EA on autophagy were also observed. In addition, EA (but not OA) increased plasma membrane fluidity, and only OA (but not EA) was able to prevent the 7KC-induced increase in plasma membrane fluidity. Thus, in BV-2 microglial cells, the principal fatty acids of the

  2. Abiotic elicitation of gymnemic acid in the suspension cultures of Gymnema sylvestre.

    Science.gov (United States)

    Ch, Bhuvaneswari; Rao, Kiranmayee; Gandi, Suryakala; Giri, Archana

    2012-02-01

    Elicitation is one of the few strategies that find commercial application in the enhancement of secondary metabolite production from plants as well as cell culture systems. Due to their immense medicinal value, production of saponins in suspension cultures has been attempted by many researchers. Gymnema sylvestre is a rich source of gymnemic acids (saponins) that find application in the treatment of diabetes. The present study is an attempt to evaluate the effect of various metal salts (cadmium chloride, mercuric chloride, silver nitrate, cupric chloride, cobaltous chloride and calcium chloride) in eliciting the response from G. sylvestre suspension cultures. The maximum gymnemic acid production in the suspensions was achieved on day 12 of culture, though the maximum biomass was obtained on day 16. Among the different salts, CdCl(2) gave maximum response (59.97 mg/gDCW) at 2 mM concentration after a 24 h time period, while, AgNO(3) gave the least response (18.35 mg/gDCW) on incubation of 48 h at 1 mM concentration, in terms of gymnemic acid accumulation. The accumulation of gymnemic acid was found to be dependent on treatment time and concentration of the elicitor. The enhanced gymnemic acid production shown by the suspensions in response to the metal salts indicates their role in evoking the plant defense mechanisms. These elicitation studies help in providing a platform for improved commercial supply of bioactive gymnemic acids.

  3. 高油酸油菜研究现状、存在的问题及发展建议%Present Research Situation,Questions and Developmental Advises of High Oleic Acid Rapeseed

    Institute of Scientific and Technical Information of China (English)

    张振乾; 胡庆一; 官春云

    2016-01-01

    High oleic acid rapeseed oil has very good nutrition and health functions,and its quality can be comparable with the camellia oil,olive oil and other senior edible vegetable oil,which is helpful to increase the edible vegetable oil supply of China and promote the upgrading of the rape industry. The study trend and application situation of Hunan Agricultural Uni-versity and the other domestic and foreign research institutions were summarized in this paper. At the same time,the genetic characteristics of oleic acid,high oleic acid rapeseed breeding (microspore culture,distant hybridization,induced and transgenic technology),advances of high oleic acid rapeseed breeding by different methods (such as,microspore culture, distant hybridization,mutation and transgenic technology),and the molecular biology research were summarized. In addi-tion,several advices were proposed according to the currently existing questions.%高油酸菜油具有很好的营养保健功能,其品质可与茶油、橄榄油等高级食用植物油媲美,对于改变我国食用植物油自给不足、促进油菜产业升级等方面有很好的作用。总结了国内外相关研究机构在高油酸油菜方面的研究动态及应用情况,同时对油酸的遗传特性、高油酸油菜选育途径(小孢子培养、远缘杂交、诱变和转基因技术)和分子生物学研究进展进行了综述,并针对当前存在的问题提出了一些建议。

  4. Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing.

    Science.gov (United States)

    Chen, Yurong; Zhou, Xue-Rong; Zhang, Zhi-Jun; Dribnenki, Paul; Singh, Surinder; Green, Allan

    2015-04-01

    Simultaneous gene silencing of both FAD2 genes in high linoleic acid flax leads to high level of oleic acid, which is stable across multiple generations. High oleic oil is one of the preferred traits in oil crop engineering due to its stability and multiple applications as an industrial feedstock. Flax possesses two isoforms of FAD2 enzymes that desaturate monounsaturated oleic acid to polyunsaturated linoleic acid. These two enzymes are encoded by two FAD2 genes. By simultaneous gene silencing both FAD2 genes in high linoleic acid flax, Linola, high level of oleic acid up to 80% was achieved in 69 silencing lines. The high oleic trait was stable across multiple generations with oleic acid reaching up to 77% in homozygote T3 progeny. The RNAi-mediated gene-silencing approach generated high oleic linseed oil, as well as a high oleic platform that can be exploited for further fatty acid engineering.

  5. Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells

    Science.gov (United States)

    Zhang, Dan-Dan; Zhang, Ji-Gang; Wu, Xin; Liu, Ying; Gu, Sheng-Ying; Zhu, Guan-Hua; Wang, Yu-Zhu; Liu, Gao-Lin; Li, Xiao-Yu

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disease associated with lipotoxicity, lipid peroxidation, oxidative stress, and inflammation. Nuciferine, an active ingredient extracted from the natural lotus leaf, has been reported to be effective for the prevention and treatment of NAFLD. Per-Arnt-Sim kinase (PASK) is a nutrient responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, and gene expression. The aim of the present study was to investigate the protective effect of nuciferine against NAFLD and its inhibitory effect on PASK, exploring the possible underlying mechanism of nuciferine-mediated inhibition on NAFLD. Relevant biochemical parameters (lipid accumulation, extent of oxidative stress and release of inflammation cytokines) in oleic acid (OA)-induced HepG2 cells that mimicked steatosis in vitro were measured and compared with the control. It was found that nuciferine and silenced-PASK (siRNA PASK) both inhibited triglyceride (TG) accumulation and was effective in decreasing fatty acid (FFAs). The content of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) were increased respectively by nuciferine and siRNA PASK without increase in glutathione (GSH). Malondialdehyde (MDA) was decreased respectively by nuciferine and siRNA PASK. In addition, nuciferine decreased TNF-a, IL-6 and IL-8 as well as the siRNA PASK group. IL-10 was increased by nuciferine and siRNA PASK respectively. Further investigation revealed that nuciferine and siRNA PASK could respectively regulate the expression of target genes involved in lipogenesis and inflammation, suggesting that nuciferine may be a potential therapeutic treatment for NAFLD. Furthermore, the modulated effect of nuciferine on (OA)-induced HepG2 cells lipogenesis and inflammation, which was accompanied with PASK inhibition, was also consistent with siRNA PASK, implying that PASK might play a role in nuciferine-mediated regulation on NAFLD

  6. Production of beta-thujaplicin in Cupressus lusitanica suspension cultures fed with organic acids and monoterpenes.

    Science.gov (United States)

    Zhao, J; Fujita, K; Sakai, K

    2001-05-01

    Effects of some organic acids and monoterpenes on production of beta-thujaplicin were studied in Cupressus lusitanica suspension cultures. The fungal elicitor-induced biosynthesis of beta-thujaplicin was promoted by the feedings of malate, pyruvate, fumarate, succinate, and acetate. These results suggest some relationships between acetate/pyruvate metabolism and beta-thujaplicin biosynthesis, or between tricarboxylic acid cycle and beta-thujaplicin biosynthesis. Feedings of C. lusitanica suspension cultures with some monoterpenes inhibited elicitor-triggered beta-thujaplicin biosynthesis, but 2-carene and terpinyl acetate feedings significantly improved the beta-thujaplicin production of C. lusitanica suspension cultures. These results indicate a possible involvement of terpinyl acetate and 2-carene in beta-thujaplicin biosynthesis, as well as potential uses of these monoterpenes in large-scale beta-thujaplicin production.

  7. Activation of SUR2B/Kir6.1-type KATP channels protects glomerular endothelial, mesangial and tubular epithelial cells against oleic acid renal damage

    Institute of Scientific and Technical Information of China (English)

    Ying ZHAO; Hai WANG

    2012-01-01

    Cumulative evidence suggests that renal vascular endothelial injury play an important role in initiating and extending tubular epithelial injury and contribute to the development of ischemic acute renal failure.Our previous studies have demonstrated that iptakalim's endothelium protection is related to activation of SUR2B/Kir6.1 subtype of ATP sensitive potassium channel (KATP) in the endothelium.It has been reported that SUR2B/Kir6.1 channels are widely distributed in the tubular epithelium,glomerular mesangium,and the endothelium and the smooth muscle of blood vessels.Herein,we hypothesized that activating renal KATP channels with iptakalim might have directly neroprotective effects.In this study,glomerular endothelial,mesangial and tubular epithelial cells which are the main cell types to form nephron were exposed to oleic acid (OA) at various concentrations for 24 h.0.25 μl/ml OA could cause cellular damage of glomerular endothelium and mesangium,while 1.25μl/ml OA could lead to the injury of three types of renal cells.It was observed that pretreatment with iptakalim at concentrations of 0.1,1,10 or 100 μmol/L prevented cellular damage of glomerular endothelium and tubular epithelium,whereas iptakalim from 1 to 100 μmol/L prevented the injury of mesangial cells.Our data showed iptakalim significantly increased survived cell rates in a concentration-dependent manner,significantly antagonized by glibenclamide,a KATP blocker.Iptakalim played a protective role in the main cell types of kidney,which was consistent with natakalim,a highly selective SUR2B/Kir6.1 channel opener.Iptakalim exerted protective effects through activating SUR2B/Kir6.1 channels,suggesting a new strategy for renal injury by its endothelial and renal cell protection.

  8. A high oleic sunflower oil fatty acid esters of plant sterols mixed with dietary diacylglycerol reduces plasma insulin and body fat accumulation in Psammomys obesus

    Directory of Open Access Journals (Sweden)

    Pelled Dori

    2009-10-01

    Full Text Available Abstract Background Metabolic syndrome is associated with subsequent development of cardiovascular diseases and type 2 diabetes. It is characterized by reduced response to insulin, central obesity, and dyslipidemia. Intake of plant sterols (PS has been shown to confer a healthier lipid profile and ameliorate cardiovascular disease risk factors in experimental animals and humans. In this study we used an animal model of type 2 diabetes to assess the effects of a preparation of PS esterified to high oleic sunflower oil fatty acids mixed with dietary diacylglycerol (PS-HOSO on diabetic related metabolic parameters. Psammomys obesus (P. obesus were fed high energy (HE diet supplemented by either PS-HOSO or control oil. Following 4.5 weeks of intervention, animals were divided into fasting and non-fasting modes prior to outcome measurements. Glucose and insulin levels as well as blood lipid profile, body weight, and fat accumulation were evaluated in fasting and non-fasting modes. Results P. obesus fed with a HE diet displayed a characteristic heterogeneity in their blood glucose and insulin levels with a subset group displaying type 2 diabetes symptoms. PS-HOSO treatment significantly reduced total cholesterol (24%, P P P P Conclusion PS-HOSO supplementation to diabetes-prone gerbils counteracts the increase in body weight and epididymal fat accumulation, and also results in a drop in circulating insulin levels. These effects are pointing out that PS-HOSO may serve as a functional ingredient for metabolic syndrome or diabetic sufferers, which not only influences body weight, but also prevents or reverses insulin resistance and hyperlipidemia.

  9. High oleic enhancement of palm olein via enzymatic interesterification.

    Science.gov (United States)

    Lin, Siew Wai; Huey, Saw Mei

    2009-01-01

    Acidolysis to incorporate oleic acid into refined, bleached and deodorized (RBD) palm olein (IV 56) using various lipases (enzymes) as catalysts to increase the oleic content of the oil was investigated. Immobilised lipases (lipase PLG, Lipozyme TL IM, Lipozyme RM IM and Novozym 435) and non-immobilised lipase (lipase PL) were used in this study to compare the effectiveness of the selected lipases in catalyzing the reaction to produce a high oleic oil. The results showed that the TAG of OLO/OOL content was increased at least 4 fold and OOO content was increased at least 3 fold when a 5% enzyme load was used. Lipase PL showed the greatest increase in tri-unsaturated triacylglycerols (TAGs) content. A pilot scale experiment conducted using TL IM enzyme, followed by recovery of the oil and fractionation allows the production of oils with varying oleic contents. A high oleic content of 56% was achievable.

  10. H{sub 3}PO{sub 4}/Al{sub 2}O{sub 3} catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lucia Regina Raddi de; Scofield, Cynthia Fraga [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Quimica]. E-mail: luraddi@uerj.br. Pastura, Nidia Maria Ribeiro; Gonzalez, Wilma de Araujo [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Quimica

    2006-04-15

    Al{sub 2}O{sub 3} and H{sub 3}PO{sub 4}/Al{sub 2}O{sub 3} catalysts were investigated in the conversion of oleic acid to bio fuels and bio lubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N{sub 2} as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N{sub 2} adsorption-desorption, X ray diffraction, {sup 31}P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts. The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil. The best catalytic performance was achieved with the highest surface area alumina impregnated with H{sub 3}PO{sub 4}, which was the solid that allied high total acidity with a large quantity of meso pores. (author)

  11. Treatment of rat spinal cord injury with the neurotrophic factor albumin-oleic acid: translational application for paralysis, spasticity and pain.

    Directory of Open Access Journals (Sweden)

    Gerardo Avila-Martin

    Full Text Available Sensorimotor dysfunction following incomplete spinal cord injury (iSCI is often characterized by the debilitating symptoms of paralysis, spasticity and pain, which require treatment with novel pleiotropic pharmacological agents. Previous in vitro studies suggest that Albumin (Alb and Oleic Acid (OA may play a role together as an endogenous neurotrophic factor. Although Alb can promote basic recovery of motor function after iSCI, the therapeutic effect of OA or Alb-OA on a known translational measure of SCI associated with symptoms of spasticity and change in nociception has not been studied. Following T9 spinal contusion injury in Wistar rats, intrathecal treatment with: i Saline, ii Alb (0.4 nanomoles, iii OA (80 nanomoles, iv Alb-Elaidic acid (0.4/80 nanomoles, or v Alb-OA (0.4/80 nanomoles were evaluated on basic motor function, temporal summation of noxious reflex activity, and with a new test of descending modulation of spinal activity below the SCI up to one month after injury. Albumin, OA and Alb-OA treatment inhibited nociceptive Tibialis Anterior (TA reflex activity. Moreover Alb-OA synergistically promoted early recovery of locomotor activity to 50 ± 10% of control and promoted de novo phasic descending inhibition of TA noxious reflex activity to 47 ± 5% following non-invasive electrical conditioning stimulation applied above the iSCI. Spinal L4-L5 immunohistochemistry demonstrated a unique increase in serotonin fibre innervation up to 4.2 ± 1.1 and 2.3 ± 0.3 fold within the dorsal and ventral horn respectively with Alb-OA treatment when compared to uninjured tissue, in addition to a reduction in NR1 NMDA receptor phosphorylation and microglia reactivity. Early recovery of voluntary motor function accompanied with tonic and de novo phasic descending inhibition of nociceptive TA flexor reflex activity following Alb-OA treatment, mediated via known endogenous spinal mechanisms of action, suggests a clinical application of this novel

  12. Dietary linseed oil with or without malate increases conjugated linoleic acid and oleic acid in milk fat and and gene expression in mammary gland and milk somatic cells of lactating goats.

    Science.gov (United States)

    Li, X Z; Choi, S H; Yan, C G; Shin, J S; Smith, S B

    2016-08-01

    Supplementary dietary plant oils have the potential to alter milk fatty acid composition in ruminants as a result of changes in the amount and kind of fatty acid precursors. We hypothesized that linseed oil in combination with malate (a key propionate precursor in the rumen) would increase ∆9 unsaturated fatty acids and specific gene expression in somatic cells and mammary glands of lactating goats. Twelve lactating goats were used in a 3 × 3 Latin square design. Treatments included the basal diet (CON), the CON plus 4% linseed oil (LO), and the CON plus 4% linseed oil and 2% -malate (LOM). Relative to CON, the LO and LOM supplements increased the daily intake of palmitic (16:0), stearic (18:0), oleic (18:1-9), linoleic (18:2-6), α-linolenic (18:3-3), and γ-linolenic acids (18:2-6); α-linolenic acid intake was increased over 9-fold, from 6.77 to over 51 g/d ( oils on gene expression in goat mammary tissue.

  13. Electrorheological behavior of suspensions of camphorsulfonic acid (CSA) doped polyaniline nanofibers in silicone oil

    Science.gov (United States)

    Goswami, S.; Gonçalves, P.; Cidade, M. T.

    2017-07-01

    The electrorheological (ER) effect is known as the enhancement of the apparent viscosity upon application of an external electric field applied perpendicular to the flow direction. Suspensions of polarizable particles in non-conducting solvents are the most studied ER fluids. The increase in viscosity observed in the suspensions is due to the formation of columns that align with the electric field. This work presents the ER behavior of suspensions, in silicone oil, of camphorsulfonic acid (CSA) doped polyaniline (PANI) nanofibers. The ER properties of the suspensions were investigated with a rotational rheometer, to which an ER cell was coupled, in steady shear, and electrical field strengths up to 2 kV mm-1. The effects of the electric field strength, content of nanostructures and viscosity of the continuum phase, in the shear viscosity and yield stress, were investigated at room temperature. As expected, the ER effect increases with the increase of the electric field as well as with the increase of content of nanofibers and it decreases with the increase of the oil viscosity. The suspensions present giant ER effects (higher than 2 orders of magnitude increase in viscosity for low shear rates and high electric fields), showing their potential application as ER smart materials.

  14. Toxicity of aqueous C70-gallic acid suspension in Daphnia magna.

    Science.gov (United States)

    Seda, Brandon C; Ke, Pu-Chun; Mount, Andrew S; Klaine, Stephen J

    2012-01-01

    The present study assessed the toxic effects of stable aqueous colloidal suspensions of gallic-acid-stabilized C(70) fullerene on Daphnia magna. The suspensions were stabilized through noncovalent surface modification with gallic acid. In addition to whole-organism responses, changes in antioxidative processes in D. magna were quantified. Acute toxicity was observed with 96LC50 for C(70) -gallic acid of 0.4 ± 0.1 mg/L C(70) . Daphnia magna fecundity was significantly reduced in 21-d bioassays at C(70) -gallic aqcid concentrations below quantifiable limits. Antioxidant enzyme activities of glutathione peroxidase and superoxide dismutase as well as lipid peroxidation suggested that exposed organisms experienced oxidative stress. Microscopic techniques used to determine cellular toxicity via apoptosis proved unsuccessful.

  15. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid.

    Science.gov (United States)

    Choi, S H; Park, S K; Johnson, B J; Chung, K Y; Choi, C W; Kim, K H; Kim, W Y; Smith, B

    2015-03-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's Modified Eagle Medium (DMEM) and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC) or 5% FBS/DMEM (IPA) with antibiotics. Media also contained 10 μg/mL insulin and 10 μg/mL pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with 40 μM palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001) carnitine palmitoyltransferase-1 beta (CPT1β) gene expression, but the increase in CPT1β gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17- fold increases). Oleic and linoleic acid decreased (p = 0.001) stearoyl-CoA desaturase (SCD) gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased AMPKα gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism.

  16. Effect of fatty acids complexed with polyethyleneimine on the flow curves of TiO2 nanoparticle/toluene suspensions

    OpenAIRE

    Motoyuki Iijima; Yasuhiro Kawaharada; Junichi Tatami

    2016-01-01

    A series of polyethyleneimine (PEI)–fatty acid complexes using oleic acid (OA), isostearic acid (ISA), and stearic acid (SA) were prepared through a simple process. While PEI was not soluble in toluene, the complex with OA and ISA became soluble when its additive content was greater than 5 mol% based on the ethyleneimine (EI) unit of PEI. PEI–SA had similar solubility in toluene when more than 5 mol% of SA was added; however, the complex precipitated when the additive ratio of SA was increase...

  17. Effects of remifentanil on acute lung injury induced by oleic acid in rabbits%瑞芬太尼对兔油酸性急性肺损伤的影响

    Institute of Scientific and Technical Information of China (English)

    杜成; 孙思庆; 王润丰; 徐婷

    2015-01-01

    Objective:To investigate the effects of remifentanil ( RF) on acute lung injury( ALI) induced by oleic acid in rabbits. Methods:Eighteen healthy male New Zealand white rabbits weighing 2. 5-3. 5 kg were randomly divided into 3 groups ( n=6 each):control group, oleic acid group and RF group. The animals were anesthetized with intravenous 3% pentobarbital sodium 30 mg·kg-1 , tracheostomized and mechanically ventilated. The carotid artery and jugular vein were cannulated for blood sampling, fluid and drug administration. Oleic acid 0. 1 ml·kg-1 in 10 ml of normal saline (NS) was infused over 30 min in oleic acid group and RF group. RF 0. 2 μg·kg-1· min-1 was infused starting from 15 min before oleic acid administration until the death of the animals. PaO2 and plasma ICAM-1,TNF-αand IL-8 concentration were measured immediately before oleic acid infusion and at 6 h after the end of oleic acid infusion. The animals were killed and the lungs were immediately removed for microscopic examination and determination of W/D lung weight ratio. Results: PaO2 were significantly decreased while W/D ratio were significantly increased in oleic group and RF group as compared with control group. Oleic acid significantly increased plasma ICAM-1,TNF-αand IL-8 concentration and damaged the structure of lung tissue. Remifentanil infusion significantly attenuated the OA-induced changes in a dose-dependent manner. Conclusion:RF has protective effect against acute lung injury induced by oleic acid and inhibition of ICAM-1,TNF-αand IL-8 expression is involved in the mechanism.%目的::探讨瑞芬太尼对兔油酸性急性肺损伤( ALI )的影响。方法:选取健康成年雄性新西兰大白兔18只,由东南大学医学院实验动物中心提供,体质量2.5~3.5 kg,随机分为3组(n=6),即对照组、油酸组和瑞芬太尼组。对照组经30 min静脉输注生理盐水10 ml;油酸组经30 min静脉注射油酸0.1 ml·kg-1;瑞芬太尼组静脉输注瑞芬太尼0.2

  18. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic alpha-linolenic acid and eicosapentaenoic acid content in mice

    Science.gov (United States)

    Considerable research centers upon the role of linoleic acid (LNA; 18:2n6) as a competitive inhibitor of a-linolenic (ALA; 18:3n3) metabolism; however, little data exist as to the impact of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) on ALA metabolism. We tested the hypothesi...

  19. Protective effect of low potassium dextran solution on acute kidney injury following acute lung injury induced by oleic acid in piglets

    Institute of Scientific and Technical Information of China (English)

    WU Rui-ping; LIANG Xiu-bin; GUO Hui; ZHOU Xiao-shuang; ZHAO Li; WANG Chen; LI Rong-shan

    2012-01-01

    Background Low potassium dextran (LPD) solution can attenuate acute lung injury (ALI).However,LPD solution for treating acute kidney injury secondary to ALI has not been reported.The present study was performed to examine the renoprotective effect of LPD solution in ALI induced by oleic acid (OA) in piglets.Methods Twelve animals that suffered an ALI induced by administration of OA into the right atrium were divided into two groups:the placebo group (n=6) pretreated with normal saline and the LPD group (n=6),pretreated with LPD solution.LPD solution was injected intravenously at a dose of 12.5 ml/kg via the auricular vein 1 hour before OA injection.Results All animals survived the experiments with mild histopathological injury to the kidney.There were no significant differences in mean arterial pressure (MAP),creatinin and renal damage scores between the two groups.Compared with the placebo group,the LPD group had better gas exchange parameters at most of the observation points ((347.0±12.6)mmHg vs.(284.3±11.3) mmHg at 6 hours after ALI,P<0.01).After 6 hours of treatment with OA,the plasma concentrations of NGAL and interleukin (IL)-6 in both groups increased dramatically compared to baseline ((6.0±0.6) and (2.50±0.08) folds in placebo group; and (2.5±0.5) and (1.40±0.05) folds in LPD group),but the change of both parameters in the LPD group was significantly lower (P <0.01) than in the placebo group.And 6 hours after ALl the kidney tissue concentration of IL-6 in the LPD group ((165.7 ± 22.5) pg.ml-1.g-1 protein) was significantly lower (P <0.01) than that in placebo group ((67.2± 25.3) pg.ml-1.g-1 protein).Conclusion These findings suggest that pretreatment with LPD solution via systemic administration might attenuate acute kidney injury and the cytokine response of IL-6 in the ALl piglet model induced by OA injection.

  20. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    Directory of Open Access Journals (Sweden)

    E. I. Howard

    2016-03-01

    Full Text Available Crystal diffraction data of heart fatty acid binding protein (H-FABP in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively. These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  1. The UV Shielding Properties of Oleic Acid-modified ZnO Nanorods%油酸修饰的纳米氧化锌的紫外屏蔽特性

    Institute of Scientific and Technical Information of China (English)

    李维维; 魏昂; 张睿; 潘柳华; 熊莉; 王钊; 孙立; 董晓臣; 黄维

    2012-01-01

    Different morphology of zinc oxide ( ZnO) is prepared by simple hydrothermal decomposition and microwave-assisted hydrothermal and modified by oleic acid. The structure, morphology, and the characteristices of the sampls are characteried by scanning electron microscopy、 X-ray diffraction 、 photoluminescence spectroscopy^ infrared spectroscopy and UV absorption spectroscopy. After the ZnO Nanorods are modified by oleic acid, the surface characteristic of the ZnO nanorod is changed from hydrophilic-oleophobic to oleophilic-hydrophobicity, and the great UV shielding can be achieved when the oleic acid-modified ZnO nanorods are blended with the vaseline beauty cream.%通过简单的水热法和微波辅助法水热法制备了不同形貌的纳米氧化锌( ZnO),使用油酸对其进行了修饰.通过扫描电子显微镜、X射线衍射、光致发光谱、红外光谱、紫外吸收谱等研究了油酸修饰的纳米ZnO的结构和特性.实验发现油酸修饰的纳米ZnO实现了由亲水疏油性到亲油疏水性性能的改变,当应用到凡士林保湿润肤霜中,达到了很好的屏蔽紫外线效果.

  2. 高油酸油菜与双低油菜的比较研究%Comparative Study on High Oleic Acid Varieties and Double Low Varieties in Rapeseed

    Institute of Scientific and Technical Information of China (English)

    官邑; 黄璜

    2014-01-01

    采用4个高油酸品系(油酸含量在80%以上)与2个双低油菜品种,在田间试验条件下进行了小区比较研究。结果表明,高油酸油菜品种的农艺性状、种子产量以及抗病性等与双低油菜品种差异较小;在高油酸品种中以高油酸1号与高油酸2号表现最好,产量分别为2748.0 kg/hm2和2629.5 kg/hm2,种子含油量分别为46.2%和47.1%,全生育期为210 d左右,菌核病危害程度也较轻。硏究表明,优质高油酸油菜品种完全可在生产上推广应用。%A plot experiment was conducted in field with 4 high oleic acid rapeseed varieties and 2 double low rapeseed va-rieties as materials.The results were showed that there were little differences in agronomic traits ,seed yield and disease re-sistance between high oleic acid rapeseed varieties and double low rapeseed varieties.In high oleic acid rapeseed varieties , No.1 and No.2 variety performed best,the unit yield was 2 748.0 kg/hm2 and 2 629.5 kg/hm2,and the oil content in seed was 46.2%and 47.1%,respectively.Their whole duration was about 210 days,and the harmness of sclerotinia rot was lighter.The results showed that the rapeseed varieties with high oleic acid can be applied in production .

  3. An arachidonic acid-enriched diet does not result in more colonic inflammation as compared with fish oil- or oleic acid-enriched diets in mice with experimental colitis.

    Science.gov (United States)

    Ramakers, Julian D; Mensink, Ronald P; Verstege, Marleen I; te Velde, Anje A; Plat, Jogchum

    2008-08-01

    Fish oils (FO) - rich in EPA and DHA - may protect against colitis development. Moreover, inflammatory bowel disease patients have elevated colonic arachidonic acid (AA) proportions. So far, effects of dietary AA v. FO on colitis have never been examined. We therefore designed three isoenergetic diets, which were fed to mice for 6 weeks preceding and during 7 d dextran sodium sulfate colitis induction. The control diet was rich in oleic acid (OA). For the other two diets, 1.0 % (w/w) OA was exchanged for EPA+DHA (FO group) or AA. At 7 d after colitis induction, the AA group had gained weight (0.46 (sem 0.54) g), whereas the FO and OA groups had lost weight (- 0.98 (SEM 0.81) g and - 0.79 (SEM 1.05) g, respectively; P diet increased colonic AA content, but did not result in more colonic inflammation as compared with FO- and OA-enriched diets. As we only examined effects after 7 d and because the time point for evaluating effects seems to be important, the present results should be regarded as preliminary. Future studies should further elucidate differential effects of fatty acids on colitis development in time.

  4. Production of a value-added hydroxy fatty acid, 7,10-dihydroxy-8(E)-octadecenoic acid from high oleic safflower oil by Pseudomonas aeruginosa PR3

    Science.gov (United States)

    Hydroxy fatty acids (HFA), originally found in small amount mainly from plant systems, are good examples of the structurally modified lipids, rendering special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial ...

  5. Phosphoric acid purification by suspension melt crystallization: Parametric study of the crystallization and sweating steps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baoming; Li, Jun; Qi, Yabing; Jia, Xuhong; Luo, Jianhong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2012-10-15

    In order to purify phosphoric acid, the suspension melt crystallization process was studied. The suspension crystallization experiments were carried out with 80, 84 and 88 wt% phosphoric acid melt at the cooling rates of 0.05, 0.1 and 0.2 K/min, respectively. Sweating experiments were executed for various crystals obtained in suspension crystallization step. The purification effects of the sweating parameters including sweating time, initial inclusion amount and initial impurity content were studied. The inclusion fraction increases with the increase in cooling rate. The inclusion fraction of the crystals which were formed with feed concentration of 84 wt% phosphoric acid melt is lowest among the three feed concentrations. Different impurities have different purification performances during sweating. High inclusion amount and low impurity concentration favor the purification of H{sub 3}PO{sub 4}.0.5H{sub 2}O crystals during sweating. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions

    Science.gov (United States)

    Li, Shuangbing; Wang, Jixiao; Cai, Wei; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-08-01

    The discontinuous shear thickening (DST) phenomenon of silica nanoparticle suspensions was investigated in this article. First, the non-aggregated silica nanoparticles were synthesized and characterized. The results indicate that the silica nanoparticles are spherical particles with a narrow size distribution with a diameter of approximately 90 nm. Next, the influence of nitric acid concentration and temperature on the DST phenomenon of shear thickening fluids (STFs) was investigated. The results indicate that the concentrated fluids with nitric acid concentration below 8.50 mmol/L and at a temperature below 40 °C exhibit a readily noticeable DST phenomenon.

  7. Plastic shaping of aqueous alumina suspensions with saccharides and dicarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Goel, H.; Schilling, C.H.; Biner, S.B. [Iowa State Univ., Ames, IA (United States)] [and others

    1996-06-01

    Traditional methods for the shape-forming of engineering ceramics entail plastic deformation of powder slurries containing hazardous organic liquids as suspending media. Replacing these organics with aqueous media requires the development of environmentally-benign, water-soluble additives which serve as plasticizers and binders. Fundamental studies were performed with aqueous suspensions of colloidal {alpha}-Al{sub 2}O{sub 3} to evaluate the role of sucrose, maltodextrin, and oxalic acid on viscosity, sedimentation and filtration characteristics, plastic flow behavior of filter cakes, and sinterability. Maltodextrin and oxalic acid systems exhibited superior results, including filtration to high packing-densities and clay-like plasticity with minimal cracking.

  8. 17-hydroxy oleic acid as precursor for unsaturated and epoxy fatty acid estolides: application as plasticizers in poly(3-hydroxybutyrate) films

    Science.gov (United States)

    Estolides (oligomeric fatty acid esters) have been known for close to a century but only within the last few years have they been efficiently produced with control over molecular structure. While estolides are commonly associated with lubricant applications, they can also be beneficial as plasticizi...

  9. Exercise attenuates the increase in plasma monounsaturated fatty acids and high-density lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women.

    Science.gov (United States)

    Gilmore, L Anne; Crouse, Stephen F; Carbuhn, Aaron; Klooster, Jennifer; Calles, José Antonio Elias; Meade, Thomas; Smith, Stephen B

    2013-12-01

    We hypothesized that dietary monounsaturated fatty acids (MUFA) and exercise increase high-density lipoprotein cholesterol (HDL-C) by independent mechanisms, so there would be additive effects between a single, intensive session of exercise and high-MUFA ground beef on HDL-C and blood risk factors for cardiovascular disease. Seventeen postmenopausal women completed a 2-way crossover design in which they consumed five 114-g ground beef patties per week for two 6-week periods separated by a 4-week washout (habitual diet) period. The ground beef patties contained 21% total fat with either 9.97 (low-MUFA) or 12.72 (high-MUFA) g total MUFA. Blood was taken at entry, at the end of each 6-week diet period, after the 4-week washout period, and 24 hours after aerobic exercise sessions (75% VO₂peak, 2.07 MJ). After the ground beef intervention, the high-MUFA ground beef increased plasma palmitoleic acid and oleic acid, low-density lipoprotein (LDL) particle density, HDL-C, and HDL2b-C (all P density. After the washout (habitual diet) period, the single exercise session increased serum LDL cholesterol, HDL-C, and HDL2a and decreased TAG and oleic acid. After the low-MUFA ground beef diet, exercise increased LDL size and HDL density and decreased LDL density and very low-density lipoprotein cholesterol, but had no effect on HDL-C fractions. After the high-MUFA ground beef intervention, exercise decreased palmitioleic acid, oleic acid, HDL-C, and HDL2a-C, but not HDL2b-C. Contrary to our hypothesis, the effects of exercise and a high-MUFA diet were not additive; instead, exercise attenuated the effects of the high-MUFA ground beef on HDL-C and plasma MUFAs. The differential effects of high-MUFA ground beef and exercise on HDL2a-C and HDL2b-C indicate that diet and exercise affect HDL-C by different mechanisms.

  10. Industrial frying trials with high oleic sunflower oil

    Directory of Open Access Journals (Sweden)

    Niemelä, J. R.K.

    1996-04-01

    Full Text Available High oleic sunflower oil has been developed for some special purposes where a good oxidation stability is needed and a healthy fatty acid profile is preferred. The oil is especially suitable for deep fat frying. These industrial frying trials with high oleic sunflower oil were part of the AIR-project CT 920687 "Utilisation of Sunflower Oils in Industrial Frying Operations". High oleic sunflower oil (HOSO was tested against the traditional oils and fats in two industrial deep fat frying applications, namely crisps and prefried frozen french fries. The frying trials took place in Raisio Groups factories in Pyhanta and Vihanti, Finland in 1993 and 1994. According to the trials, high oleic sunflower oil is very suitable for deep fat frying. Problems occurred when a hard fat was substituted for a liquid oil in the preparation of prefrozen French Fries. These problems could be partly overcome by adjustments in the processing line.

  11. Friction Reduction and Antiwear Properties of Serpentine and Oleic Acid as Lubricating Oil Additives%蛇纹石和油酸作为润滑油添加剂的减摩抗磨性能∗

    Institute of Scientific and Technical Information of China (English)

    司友波; 常秋英; 乔姣飞; 崔艳斌

    2015-01-01

    利用高能球磨机制备平均粒径约1μm的蛇纹石超细粉体,并将其与油酸按质量比2∶1混合分散到PAO10基础油中,利用四球试验机探究其作为润滑油添加剂的减摩抗磨性能,利用白光干涉仪分析磨斑表面三维形貌,并用EDAX对磨斑表面元素进行分析。结果表明:蛇纹石与油酸混合加入基础油中具有更好的减摩抗磨效果;蛇纹石粉体与油酸混合后能够在摩擦副表面形成含有Si、 Mg元素的修复膜,而单一的蛇纹石粉体在摩擦过程中不能成膜,这是因为,油酸作为分散剂能够吸附摩擦过程中产生的金属磨粒并使其分散到润滑油里,减少磨粒对摩擦表面造成的磨粒磨损;油酸有机修饰层吸附到蛇纹石颗粒表面,改善了蛇纹石颗粒在基础油中的分散性。%Ultrafine serpentine powder with average particle size of 1 μm was prepared with high⁃energy ball⁃milling method.Serpentine powder was added to the PAO10 base oil with oleic acid according to mass ratio of 2 ∶ 1.The friction and antiwear properties of the lubricant additives were investigated by four⁃ball machine, and the three dimensional mor⁃phology of worn surface was characterized by the White Light Interferometers, and the elements of worn surface were ana⁃lyzed with EDAX. Results indicate that compared to serpentine powder, the compound additives consisted of serpentine powder and oleic acid can reduce friction and wear more efficiently.A tribofilm is formed on the worn surface with the pres⁃ence of Si, Mg elements under the compound additives of serpentine powder and oleic acid, while the tribofilm cannot be formed on the worn surface lubricated under the single additive of serpentine powder.It is because that the oleic acid as a dispersant can absorb metal wear particles produced in the friction process, and disperse them into lubricant, so the abra⁃sive wear is reduced on worn surface.The organic tribofim

  12. NTP Toxicology and Carcinogenesis Studies of Oleic Acid Diethanolamine Condensate (CAS No. 93-83-4) in F344/N Rats and B6C3F1 Mice (Dermal Studies).

    Science.gov (United States)

    1999-07-01

    Oleic acid diethanolamine condensate is widely used as an emollient, thickener, and foam stabilizer present in cosmetic formulations of bath additives, shampoos, conditioners, lipsticks, and hair dyes. Male and female F344/N rats and B6C3F1 mice received dermal applications of diethanolamine in 95% ethanol for 13 weeks or 2 years. Genetic toxicology studies were performed in Salmonella typhimurium and L5178Y mouse lymphoma cells. 13-WEEK STUDY IN RATS: Groups of 10 male and 10 female rats were admin istered 0, 25, 50, 100, 200, or 400 mg oleic acid diethanolamine condensate/kg body weight in ethanol dermally for 13 weeks. All male and female rats survived until the end of the study. The final mean body weights and body weight gains of 200 and 400 mg/kg males and the mean body weight gain of 400 mg/kg females were significantly less than those of the vehicle controls. The only chemical-related clinical finding was irritation of the skin at the site of application in most males administered 100 mg/kg or greater and in all females administered 50 mg/kg or greater. Segmented neutrophil counts were increased relative to the vehicle controls in the 400 mg/kg male group on days 5 and 19, in the 200 mg/kg female group on day 19 and at week 13, and in the 400 mg/kg female group on days 5 and 19 and at week 13. Alkaline phosphatase concentrations were significantly increased in the 200 mg/kg male group on day 19, the 200 mg/kg female group at week 13, and in the 400 mg/kg groups of males and females at week 13. Kidney weights of 200 and 400 mg/kg females were significantly greater than those of the vehicle controls. Lesions of the skin at the site of application included epidermal hyperplasia, parakeratosis, chronic active dermal inflammation, suppurative epidermal inflammation, and sebaceous gland hypertrophy in dosed rats. The severities of these lesions generally increased with increasing dose. 13-WEEK STUDY IN MICE: Groups of 10 male and 10 female mice were admin istered

  13. Liquid to Semisolid Rheological Transition of Normal and High-Oleic Peanut Oils Upon Cooling to Refrigeration Temperatures

    Science.gov (United States)

    Rheological transitions of peanut oils cooled from 20 to 3ºC at 0.5ºC/min were monitored via small strain oscillatory measurements at 0.1 Hz and 1 Pa. Oils were from 9 different cultivars of peanut, and 3 oils were classified as high-oleic (approximately 80% oleic acid). High-oleic oils maintained...

  14. Fluorometric estimation of amino acids interaction with colloidal suspension of FITC functionalized graphene oxide nanoparticles

    Science.gov (United States)

    Dave, Kashyap; Dhayal, Marshal

    2017-02-01

    A hydrosol approach developed to synthesize fluorescence quenched fluorescein isothiocyanate (FITC) functionalized colloidal suspension of graphene oxide nanoparticles (GONP). UV-vis spectroscopic measurements showed characteristic peak at 236 nm and 300 nm due to pi-pi* interaction in Cdbnd C and n-pi* transition in Cdbnd O bond of GONP, respectively. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra showed reduced intensity of 1429 cm-1 IR band of GONP due to the electrostatic and pi-pi interactions of FITC with GONP in FITC-GONP. ATR-FTIR spectra of different amino acid co-functionalised FITC-GONP showed an increase in the FTIR band intensity at 1429 cm-1 which was significantly reduced due to electrostatic/pi-pi interactions of FITC with GONP in the absence of the amino acids. A peak at 1084 cm-1 in ATR-FTIR spectra appears which confirms the interaction between amine group of amino acids and sbnd COO- groups at GONP surface. The FITC interaction with GONP lead to fluorescence resonance energy transfers (FRET) and resulted in a liner decrease in the FITC fluorescence with an increase of GONP concentration. An increase in the reappearance of FITC fluorescence observed while the amino acid concentration was increased in co-functionalised FITC-GONP. The quantified amount of reappeared fluorescence of FITC in amino acid co-functionalised FITC-GONP depends on the concentration, polar and non-polar nature of amino acids. The reappearance of FITC from the surface of FITC-GONP with the addition of amino acid was found to be consistent with the organic substitute, size of amino acids and their functionalities. Therefore, FRET based method using FITC-GONP colloidal suspension may have potential application in determining the binding nature of biomolecules with GONP for biomedical applications.

  15. Production of Gymnemic Acid from Cell Suspension Cultures of Gymnema sylvestre.

    Science.gov (United States)

    Nagella, Praveen; Dandin, Vijayalaxmi S; Murthy, Hosakatte Niranjana

    2016-01-01

    Gymnema sylvestre R. Br. is a popular herbal medicine. It has been used in ayurvedic system of medicine for thousands of years. It is popularly called as "Gur-mar" for its distinctive property of temporarily destroying the taste of sweetness and is used in the treatment of diabetes. The leaves of gymnema possess antidiabetic, antimicrobial, anti-hypercholesterolemic, anti-sweetener, anti-inflammatory, and hepatoprotective properties and have traditional uses in the treatment of asthma, eye complaints, and snake bite. The leaves contain triterpene saponins such as gymnemic acid which is an active ingredient of Gymnema. Since the cultivation of G. sylvestre is a very slow process and the content of gymnemic acid depends on the environmental factors, cell suspension culture is sought as an alternative means for the production of Gymnema biomass and to enhance the gymnemic acid content. In this chapter, the methods employed for the induction of callus and subsequent establishment of cell suspension cultures for the production of biomass and analysis of gymnemic acid using high performance liquid chromatography are described.

  16. Synthesis and physical properties of new coco-oleic estolide branched esters

    Science.gov (United States)

    Oils derived from vegetable oils tend to not meet the standards for industrial lubricants because of unacceptable low temperature properties, pour point (PP), and/or cloud point (CP). However, a catalytic amount of perchloric acid with oleic and coconut (coco) fatty acids produced a coco-oleic estol...

  17. COMBINING MODERATE PULSED ELECTRIC FIELDS WITH TEMPERATURE AND WITH ORGANIC ACIDS TO INACTIVATE ESCHERICHIA COLI SUSPENSIONS

    Directory of Open Access Journals (Sweden)

    Henri EL ZAKHEM

    2010-09-01

    Full Text Available The aim of this work was to study the efficiency of inactivation of Escherichia coli cells in aqueous suspensions using combined moderate pulsed electric field (PEF and thermal treatments. The inactivation kinetics of E. coli cells in aqueous suspensions (1 wt% was monitored using conductometric technique. The electric field strength E was within 5-7.5 kV/cm, the effective PEF treatment time was within 0-0.75 s, the pulse duration ti was within 0.3-1 ms, the medium temperature was 30-50°C, and the time of thermal treatment tT was within 0-7000 s. The organic acid concentration was within 0-0.5 g/L.The damage of E. coli was accompanied by release of intracellular components. The synergy between the PEF and thermal treatments in E. coli inactivation was clearly demonstrated. The damage efficiency was noticeably improved by addition of organic acids, especially lactic acid.

  18. Decreased aortic early atherosclerosis in hypercholesterolemic hamsters fed oleic acid-rich TriSun oil compared to linoleic acid-rich sunflower oil.

    Science.gov (United States)

    Nicolosi, Robert J.; Wilson, Thomas A.; Handelman, Garry; Foxall, Thomas; Keaney, John F.; Vita, Joseph A.

    2002-07-01

    Previous studies have demonstrated that low density lipoprotein (LDL) enriched in polyunsaturated fatty acids (PUFA) are more susceptible to oxidation (ex vivo) than those containing monounsaturated fatty acids (MUFA). To test whether this observation was associated with various parameters considered to be related with the development of early aortic atherosclerosis, hamsters were fed commercial hypercholesterolemic diets (HCD) containing either the PUFA, sunflower oil (SF) or the MUFA, TriSun oil (TS) at 10% with 0.4% cholesterol (wt/wt). LDL isolated from hamsters fed TS had significantly longer lag phase (30%, P < 0.05), a decreased propagation phase (-62%, P < 0.005), and fewer conjugated dienes formed (-37%, P < 0.007) compared to hamsters fed SF. Aortic vasomotor function, measured as degree of aortic relaxation, was significantly greater in the TS vs SF-fed hamsters whether acetylcholine or the calcium ionophore A23187 was used as the endothelium-dependent agonist. As a group, the SF-fed hamsters had significantly more early atherosclerosis than hamsters fed TS (46%, P < 0.006). When animals across the two diets were pair-matched by plasma LDL-C levels, there was an 82% greater mean difference (P < 0.002) in early atherosclerosis in the SF versus the TS-fed hamsters. While there were no significant associations with plasma lipids and lipoprotein cholesterol, early atherosclerosis was significantly correlated with lag phase (r = -0.67, p < 0.02), rate of LDL conjugated diene formation (r = 0.74, p < 0.006) and maximum dienes formed (r = 0.67, p < 0.02). Compared to TS-fed animals, aortic sections from hamsters fed the SF-containing diet revealed that the cytoplasm of numerous foam cells in the subendothelial space reacted positively with the monoclonal anti-bodies MDA-2 and NA59 antibody, epitopes found on oxidized forms of LDL. The present study suggests that compared to TS, hamsters fed the SF-diet demonstrated enhanced LDL oxidative susceptibility, reduced

  19. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    Science.gov (United States)

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  20. Effect of Nitric Acid Concentrations on Synthesis and Stability of Maghemite Nanoparticles Suspension

    Directory of Open Access Journals (Sweden)

    Irwan Nurdin

    2014-01-01

    Full Text Available Maghemite (γ-Fe2O3 nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD, transmission electron microscopy (TEM, alternating gradient magnetometry (AGM, thermogravimetric analysis (TGA, dynamic light scattering (DLS, and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  1. Effect of nitric acid concentrations on synthesis and stability of maghemite nanoparticles suspension.

    Science.gov (United States)

    Nurdin, Irwan; Johan, Mohd Rafie; Yaacob, Iskandar Idris; Ang, Bee Chin

    2014-01-01

    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  2. Role of oleic acid in immune system; mechanism of action: a review Papel del ácido oleico en el sistema inmune; mecanismo de acción: revisión científica

    Directory of Open Access Journals (Sweden)

    C. Carrillo

    2012-08-01

    Full Text Available Introduction: Although n-3 polyunsaturated fatty acids have been widely described as anti-inflammatory fats, little is known about the role of oleic acid in immune system. Aim: The aim of the present review is to join all the reports available in order to analyze where exactly the knowledge concerning this topic is and what the causes of the controversial data could be. Methods: We searched electronic databases and bibliographies of selected articles were inspected for further reference. Results: Diets rich in oleic acid have beneficial effects in inflammatory-related diseases. In addition, a wide range of studies evaluate the effect of oleic acid in different cellular functions thus reporting a potential mechanism for the biological effect of such a fat. However, some controversial data can be found in literature, maybe related to the kind of study or even the dose of the reagent added. Conclusion: In conclusion, oleic acid could be reported as an anti-inflammatory fatty acid playing a role in the activation of different pathways of immune competent cells.Introducción: Los ácidos grasos poliinsaturados de la familia n-3 han sido ampliamente caracterizados por su potencial antiinflamatorio. Sin embargo, las evidencias relativas al papel del ácido oleico en el sistema inmune son escasas. Objetivo: El objetivo de la presente revisión bibliográfica es hacer una recopilación de todos y cada uno de los trabajos publicados a este respecto, al objeto de evaluar dónde se encuentra el conocimiento relativo a esta área y cuáles pueden ser las causas de los resultados contradictorios. Métodos: Se ha realizado una búsqueda bibliográfica a través de bases de datos electrónicas y las referencias de los artículos de interés han sido utilizadas como fuente de búsquedas más avanzadas. Resultados: Las dietas ricas en ácido oleico parecen estar asociadas con un beneficio en determinadas patologías de base inflamatoria. Además, un gran n

  3. Synthetic technology of castor oleic acid Trimethylolpropane ester%蓖麻油酸三羟甲基丙烷酯的合成工艺条件及性能

    Institute of Scientific and Technical Information of China (English)

    焦体; 胡文云; 唐志辉; 周诗磊; 邹晨

    2012-01-01

    以蓖麻油和三羟甲基丙烷为原料,通过皂化,酯化合成蓖麻油酸三羟酯,研究了原料配比,催化剂用量,反应温度,反应时间等对酯化反应的影响,最佳条件为:蓖麻油与三羟甲基丙烷的摩尔比为5∶4,,催化剂用量为蓖麻油酸质量的0.5%,反应温度180 ~ 200℃,反应时间4h.生成的蓖麻油酸三羟甲基丙烷酯为黄色透明液体,产率为86.48%,用红外光谱进行了定性分析,证明了目标产物的存在,采用了热重/差热综合热分析仪研究了其热稳定性,采用了运动粘度测定仪研究了其粘温性能.结果表明:其润滑性能、热稳定性、粘温性能满足工艺润滑油基础油的要求.%With castor oil and Trimethylolpropane as raw material, castor oleic acid ester was synthesized by the saponification and esterification. The ratio of raw material, catalyst dosage, reaction temperature and reaction time on the esterification of influence was studied. And the best conditions were as follows; castor oil and Trimethylolpropane mole ratio of 5: 4, catalyst dosage of the mass of oleic acid castor for 0. 5 % , reaction temperature 180-200 °C , reaction time 4 h. The Castor oleic acid Trimethylolpropane ester is a kind of yellow transparent liquid, production rate is 86.48%. It is proved the existence of the target product with infrared spectra of qualitative analysis. The results show that; the lubrication properties, thermal stability, glue temperature performance meet the technological requirements of base oil lubricating oil.

  4. Removal of copper(II) from some environmental samples by sorptive-flotation using powdered marble wastes as sorbents and oleic acid as surfactant.

    Science.gov (United States)

    Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M

    2004-11-01

    A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.

  5. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    Science.gov (United States)

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  6. Evaluation of splanchnic perfusion and oxygenation during positive end-expiratory pressure ventilation in relation to subcutaneous tissue gases and pH. An experimental study in pigs with oleic acid-induced lung injury.

    Science.gov (United States)

    Jedlińska, B; Mellström, A; Månsson, P; Hartmann, M; Jönsson, K

    2001-01-01

    Evaluation of splanchnic perfusion and oxygenation was performed by measurements of serosal tissue oxygen tension (PserO2) and intramucosal pH (pHi) in relation to subcutaneous oxygen tension (PscO2), subcutaneous carbon dioxide tension (PscCO2) and subcutaneous pH (pHsc) in pigs subjected to oleic acid-induced lung injury during ventilation with increasing levels of positive end-expiratory pressure (PEEP). Lung injury resulted in a general hypoxia and redistribution of perfusion away from the subcutaneous and splanchnic tissues, illustrated by a decrease in PaO2 from 93 to 37 mm Hg (p portal vein oxygen tension (PportaO2) from 21 to 34 mm Hg (p oxygenation was better reflected by serosal oxygen tension than pHi in the colon. Changes in serosal oxygenation of the colon paralleled changes in subcutaneous tissue oxygenation. Copyright 2001 S. Karger AG, Basel

  7. Studies on the phase properties of lyotropic liquid crystals of Brij35/sodium oleate/oleic acid/water system: By means of polarizing microscope, SAXS, 2H-NMR and rheological methods

    Institute of Scientific and Technical Information of China (English)

    AN Ya; XU Jun; ZHANG Jin; HU Changgang; LI Ganzuo; WANG Zhining; WANG Zhongni; ZHANG Xiaoyi; ZHENG Liqiang

    2006-01-01

    The pseudo-quaternary phase diagram of Brij35/sodium oleate/oleic acid/water systems has been investigated, and the liquid crystal area has been identified, which covers about two thirds of the whole phase diagram. The liquid crystal structure and behavior have been also studied by using polarizing texture, small angle X-ray scattering, 2H-NMR and rheometer etc. The result shows that when the composition of the system changes along the line of AA' in this large liquid crystal region, the structural change is cubic→cubic/lamellar→lamellar→lamellar/hexagonal→hexagonal. Meanwhile, we made the first attempt of systematic study of the rheological properties of the above system. The lattice constants of cubic and hexagonal liquid crystals are 10.53 and 5.68 nm, respectively.

  8. Kinetics of adsorption of oleic acid from soybean oil by alkaline clay%碱性白土吸附大豆油中油酸的动力学研究

    Institute of Scientific and Technical Information of China (English)

    霍英霞; 童张法; 韦藤幼

    2014-01-01

    The kinetics of adsorption of oleic acid from soybean oil by alkaline clay under the conditions of different water contents of alkaline clay,different adsorption temperatures and different initial contents of oleic acid of soybean oil was studied. The results showed that the adsorption process was in line with the quasi-second order kinetic equation with correlation coefficient R2 above 0. 995 and the theoretical equi-librium adsorption capacity was close to the experimental value;the adsorption rate increased obviously with the water content of alkaline clay increasing;the adsorption rate constant hardly changed with the content of oleic acid of soybean oil increasing,which manifested chemical adsorption control;the adsorp-tion rate constant increased while the balance adsorption capacity decreased with the adsorption tempera-ture rising,which indicated that the adsorption was an exothermic process and manifested physical adsorp-tion control. The activation energy of the adsorption was 70. 7 kJ/mol,which was between physical ad-sorption and chemical adsorption. Therefore,the adsorption of oleic acid from soybean oil by alkaline clay was controlled by both chemical adsorption and physical adsorption.%研究不同碱性白土的含水量、吸附温度及大豆油中初始油酸含量条件下,碱性白土吸附大豆油中油酸的动力学。结果表明:吸附过程符合拟二级动力学方程,相关系数R2>0.995,由模型拟合得出的平衡吸附量与实验值接近;碱性白土含水量增加,吸附速率明显加快;吸附速率常数不随大豆油中油酸含量升高而变化,表现为化学吸附控制;而吸附速率常数随着吸附温度的升高而增大,平衡吸附量则随吸附温度升高而减少,说明此吸附为放热过程,表现为物理吸附控制。吸附活化能为70.7 kJ/mol,该活化能介于物理吸附和化学吸附之间,故碱性白土对大豆油中油酸的吸附是化学吸附和物理吸附共同控制的。

  9. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications.

    Science.gov (United States)

    Xie, Yongjing; Min, Soyoung; Harte, Níal P; Kirk, Hannah; O'Brien, John E; Voorheis, H Paul; Svanborg, Catharina; Hun Mok, K

    2013-01-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type α-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated α-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on α-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to α-lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Copyright © 2012 Wiley Periodicals, Inc.

  10. 三羟甲基丙烷高纯油酸酯的制备及其作为液压油基础油的抗氧化研究%Preparation of Trihydroxymethylpropyl Trioleate with High Purity Oleic Acid and Study on Its Antioxidant Propriety as a Lubricant Base Oil

    Institute of Scientific and Technical Information of China (English)

    孔令杰; 张东恒; 李鹏; 魏观为; 张雪涛; 连玉双

    2015-01-01

    High purity oleic acid was prepared via Diels-Alder reaction with technical grade 80 oleic acid using maleic anhydride, methyl acrylate and acrylic acid as dienophile respectively. The contents of oleic acid was increased up to nearly 90%. With the high purity oleic ac-id and technical grade 80 oleic acid respectively, two different trihydroxymethylpropyl trioleates(TMPTOs) were prepared by esterification, and were purified by molecular distillation. PDSC and rotary oxygen bomb were employed to evaluate the oxidation stabilities of two diffi-dent TMPTOs as lubricant base oils with the same additives package. The results showed that the antioxidant performance of TMPTO syn-thesisd with high purity oleic acid is,significantly improved compared to TMPTO synthesisd with 80 oleic acid. PDSC oxidation induction period raise nearly 1 times, and rotary oxygenbomb oxidation time increase from 121min to 198min.%采用马来酸酐、丙烯酸甲酯以及丙烯酸为亲双烯体分别与工业级的80油酸中的多不饱和酸进行Diels-Alder反应,并通过分子蒸馏分离出纯度近90%的油酸。采用制备的高纯油酸与三羟甲基丙烷进行酯化反应,并通过分子蒸馏分离提纯,得到了三羟甲基丙烷高纯油酸酯。使用PDSC和旋转氧弹等方法对合成的三羟甲基丙烷高纯油酸酯在液压油配方中进行了氧化安定性的分析测试,发现其抗氧化性相比于直接使用80油酸合成的同类酯显著提升,PDSC氧化诱导期提升近1倍,旋转氧弹氧化时间由121min提升至198min。

  11. [Research on ursolic acid production of Eriobotrya japonica cell suspension culture in WAVE bioreactor].

    Science.gov (United States)

    Li, Hui-hua; Yao, De-heng; Xu, Jian; Wang, Wei; Chang, Qiang; Su, Ming-hua

    2015-05-01

    Through scale-up cultivation of Eriobotrya japonica suspension cells using WAVE bioreactor, the cell growth and ursolic acid (UA) accumulation were studied. The comparison test was carried out in the flask and the reactor with cell dry weight (DW) and UA content as evaluation indexes. The culture medium, DW and UA content were compared in 1 L and 5 L working volumes of bioreactor. The orthogonal test with main actors of inoculation amount, speed and angle of rotation was developed to find the optimal combination, in 1 L working volume of bioreactor. DW of the cell growth and the UA content in bioreactor were higher than those of the shaker by 105.5% and 27.65% respectively. In bioreactor, the dynamic changes of elements in the fluid culture, the dry weight of the cell growth and the UA content in 1 L and 5 L working volumes were similar. Inoculation of 80 g, rotational speed of 26 r · min(-1), and angle of 6 ° was the optimal combination, and the cell biomass of 19.01 g · L(-1) and the UA content of 27.750 mg · g(-1) were achieved after 100 h cultivation in 1 L working volume of bioreactor. WAVE Bioreactor is more suitable than flasks for the E. japonica cell suspension culture, and culture parameters can be achieved from 1 L to 5 L amplification.

  12. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1.

    Science.gov (United States)

    Ziamajidi, Nasrin; Khaghani, Shahnaz; Hassanzadeh, Gholamreza; Vardasbi, Safura; Ahmadian, Shahram; Nowrouzi, Azin; Ghaffari, Seyed Mahmood; Abdirad, Afshin

    2013-08-01

    We evaluated the effect of chicory (Cichorium intybus L.) seed extract (CI) on hepatic steatosis caused by early and late stage diabetes in rats (in vivo), and induced in HepG2 cells (in vitro) by BSA-oleic acid complex (OA). Different dosages of CI (1.25, 2.5 and 5 mg/ml) were applied along with OA (1 mM) to HepG2 cells, simultaneously and non-simultaneously; and without OA to ordinary non-steatotic cells. Cellular lipid accumulation and glycerol release, and hepatic triglyceride (TG) content were measured. The expression levels of sterol regulatory element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor alpha (PPARα) were determined. Liver samples were stained with hematoxylin and eosin (H&E). Significant histological damage (steatosis-inflammation-fibrosis) to the cells and tissues and down-regulation of SREBP-1c and PPARα genes that followed steatosis induction were prevented by CI in simultaneous treatment. In non-simultaneous treatment, CI up-regulated the expression of both genes and restored the normal levels of the corresponding proteins; with a greater stimulating effect on PPARα, CI acted as a PPARα agonist. CI released glycerol from HepG2 cells, and targeted the first and the second hit phases of hepatic steatosis. A preliminary attempt to characterize CI showed caffeic acid, chlorogenic acid, and chicoric acid, among the constituents.

  13. 法国海岸松树皮提取物碧萝芷对长链游离脂肪酸诱导的巨噬细胞perilipin2基因表达的影响%Pycnogenol, an Extract from French Martime Pine, Suppresses Oleic Acid-induced perilipin2 Expression in Macrophages

    Institute of Scientific and Technical Information of China (English)

    范斌; 杜强; 谷剑秋; 张锦

    2011-01-01

    Abstract Objective To investigate the effect of Pycnogenol on oleic acid-induced perilipin2 expression in macrophages. Methods Realtime PCR and Western blot were performed to detect perilipin2 expression. Transient transfection and luciferase assay were employed to measure perilipin2 promoter activity. Results Oleic acid significantly induced perilipiti2 expression in a dose-and time-dependent manner in macrophages; oleic acid markedly enhanced perilipin2 promoter activity; Pycnogenol significantly suppressed oleic acid-induced perihpin2 expression and promoter activity. Conclusion For the first time,we demonstrated that Pycnogenol significantly suppressed oleic acid-induced perilipin2 expression and promoter activity.%目的 研究碧萝芷(PYC)对油酸诱导的巨噬细胞perilipin2表达的影响及其相关分子机制.方法 应用Real-time PCR 和Western blot测定油酸及PYC对perilipin2 mRNA和蛋白水平表达影响.应用荧光素酶活性分析方法检测油酸及PYC时perilipin2启动子活性的影响.结果油酸以剂量和浓度依赖方式上调perilipin2 mRNA和蛋白水平表达,并促进perilipin2启动子活性.PYC以剂量依赖方式抑制了油酸诱导的perilipin2表达及启动子活性.结论PYC抑制了巨噬细胞中油酸诱导的perilipin2的表达.PYC通过抑制perilipin2启动子活性,从而直接抑制perilipin2的表达.

  14. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo.

    Science.gov (United States)

    Abdullah, Muhammad; Kornegay, Joe N; Honcoop, Aubree; Parry, Traci L; Balog-Alvarez, Cynthia J; O'Neal, Sara K; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Patterson, Cam; Willis, Monte S

    2017-07-29

    Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10(-3)), carnosine (0.40-fold of controls, p = 1.88 × 10(-2)), fumaric acid (0.40-fold of controls, p = 7.40 × 10(-4)), lactamide (0.33-fold of controls, p = 4.84 × 10(-2)), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10(-2)), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10(-2)), glutamic acid (2.48-fold of controls, p = 2.63 × 10(-2)), and proline (1.73-fold of controls, p = 3.01 × 10(-2)). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10(-4), FDR 4.7 × 10(-2)), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle dysfunction. In contrast, two

  15. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo

    Directory of Open Access Journals (Sweden)

    Muhammad Abdullah

    2017-07-01

    Full Text Available Background: Like Duchenne muscular dystrophy (DMD, the Golden Retriever Muscular Dystrophy (GRMD dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes atrophy of the biceps femoris (BF as compared to unaffected normal dogs, while the long digital extensor (LDE, which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. Methods: We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. Results: Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10−3, carnosine (0.40-fold of controls, p = 1.88 × 10−2, fumaric acid (0.40-fold of controls, p = 7.40 × 10−4, lactamide (0.33-fold of controls, p = 4.84 × 10−2, myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10−2, and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10−2, glutamic acid (2.48-fold of controls, p = 2.63 × 10−2, and proline (1.73-fold of controls, p = 3.01 × 10−2. Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10−4, FDR 4.7 × 10−2, where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid, suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle

  16. pH对油酸水解废水酸化发酵过程的影响%Effect of pH on the Acidification Fermentation Process in Oleic Acid Hydrolysis Wastewater

    Institute of Scientific and Technical Information of China (English)

    吴九九; 刘建平; 杨春燕

    2012-01-01

    pH对油酸水解废水酸化发酵影响的研究表明,pH不仅对酸化速率有很大影响,而且也会影响酸化产物的构成;不同pH值下酸化的主要产物是乙酸,但酸化的最佳pH值为6.5,此pH条件下VFA的产量最高可达12.53 g/L;在pH〉7时,明显有丙酸生成。%The impact of pH on the environment of acidification fermentation in oleic acid hydrolysis wastewater is studied, and the results show that pH has a great influence not only on the rate of acidi- fication ,but also on the composition of acidification products. The chief product of acidification is acetic acid under different pH value. The most favorable pH value in acidification is 6.5, at which the highest yielding of VFA ( 12.53 g/L) was obtained. The formation of propionic acid is apparent when pH 〉 7.

  17. Determination of triterpenic acids and screening for valuable secondary metabolites in Salvia sp. suspension cultures.

    Science.gov (United States)

    Kümmritz, Sibylle; Haas, Christiane; Pavlov, Atanas I; Geib, Doris; Ulber, Roland; Bley, Thomas; Steingroewer, Juliane

    2014-01-01

    Plant in vitro cultures are a prospective alternative for biochemicals production, for example the triterpenes oleanolic and ursolic acid present in plants and cell cultures of Salvia sp. Our objective was to develop a suitable analysis protocol for evaluation of triterpenic acid yield in plant raw material and in vitro cultures supporting selection processes. Moreover, valuable bioactive compounds had to be revealed. Thus, different strategies enhancing the separation for a sensitive and effective HPLC-UV method were investigated and the developed method was validated for linearity, precision, accuracy, limits of detection and quantification. A baseline separation of these isomers enabled detection limits of below 0.4 microg/mL and quantification limits of about 1.2 microg/mL. Over the tested concentration range a good linearity was observed (R2 > 0.9999). The variations in the method were below 6% for intra- and inter-day assays of concentration. Recoveries were between 85-98% for both compounds using ethanol as extraction solvent. Additionally, metabolite profiling of cell suspension culture extracts by GC-MS has shown the production variability of different plant metabolites and especially the presence of plant phenols and sterols. These studies provide a method suitable for screening plant and cell culture productivity of triterpenic acids and highlighted interesting co-products of plant cell cultures.

  18. Effects of conjugated linoleic acid and high oleic acid safflower oil in the treatment of children with HPV-induced laryngeal papillomatosis: a randomized, double-blinded and crossover preliminary study

    Directory of Open Access Journals (Sweden)

    Louw Louise

    2012-10-01

    Full Text Available Abstract Background Surgery is the mainstay therapy for HPV-induced laryngeal papillomatosis (LP and adjuvant therapies are palliative at best. Research revealed that conjugated-linoleic acid (CLA may improve the outcome of virally-induced diseases. The effects of Clarinol™ G-80 (CLA and high oleic safflower oil (HOSF on children with LP (concomitant with surgery were evaluated. Design A randomized, double-blinded, crossover and reference-oil controlled trial was conducted at a South African medical university. Study components included clinical, HPV type/load and lymphocyte/cytokine analyses, according to routine laboratory methods. Participants Overall: ten children enrolled; eight completed the trial; five remained randomized; seven received CLA first; all treatments remained double-blinded. Intervention Children (4 to 12 years received 2.5 ml p/d CLA (8 weeks and 2.5 ml p/d HOSF (8 weeks with a washout period (6 weeks in-between. The one-year trial included a post-treatment period (30 weeks and afterwards was a one-year follow-up period. Main outcome measures Changes in numbers of surgical procedures for improved disease outcome, total/anatomical scores (staging system for papillomatosis prevention/viral inhibition, and lymphocyte/cytokine counts for immune responses between baselines and each treatment/end of trial were measured. Findings After each treatment all the children were in remission (no surgical procedures; after the trial two had recurrence (surgical procedures in post-treatment period; after the follow-up period three had recurrence (several surgical procedures and five recovered (four had no surgical procedures. Effects of CLA (and HOSF to a lesser extent were restricted to mildly/moderately aggressive papillomatosis. Children with low total scores (seven/less and reduced infections (three/less laryngeal sub-sites recovered after the trial. No harmful effects were observed. The number of surgical procedures during the trial

  19. Effect of pH on acid production from sorbitol in washed cell suspensions of oral bacteria.

    Science.gov (United States)

    Kalfas, S; Maki, Y; Birkhed, D; Edwardsson, S

    1990-01-01

    The acid production from sorbitol and glucose was studied under anaerobic conditions in resting cell suspensions of bacteria from the predominant sorbitol-fermenting human dental plaque flora, belonging to the genera Streptococcus, Lactobacillus and Actinomyces. The acid production activity of the bacterial cells was followed by titration with alkali, at environmental pH 7.0, 6.0 and 5.0 after addition of carbohydrate solution. The metabolic end products formed in the suspensions were analyzed thereafter by isotachophoretic and enzymatic methods. The results showed that sorbitol was fermented at a slower rate than glucose. Lowering the environmental pH decreased the acid production activity from the two carbohydrates. Compared with glucose, the catabolism of sorbitol was affected to greater extent by the pH conditions. The total amount of acids formed from sorbitol was considerably less than from glucose. Lactic acid, which was the major end product in glucose-challenged suspensions, was produced only in low concentrations from sorbitol by all strains tested. The ratio strong (formic + lactic)/weak acids was moreover lower for sorbitol than for glucose. The present results further illustrate some of the mechanisms behind the low cariogenic potential of this sugar substitute.

  20. Estabilidade do modelo animal de lesão pulmonar aguda induzida por ácido oleico Stability of the animal model of oleic acid-induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Eduardo Gaio

    2009-08-01

    Full Text Available OBJETIVO: Avaliar a estabilidade das variáveis hemodinâmicas, da mecânica respiratória e de troca gasosa do modelo animal de lesão pulmonar aguda induzida por ácido oleico. MÉTODOS: Trata-se de um estudo experimental no qual foram utilizados 10 cães de raça indeterminada. As variáveis foram aferidas inicialmente e em 30, 60, 90 e 120 min após a administração do ácido oleico. Para analisar as medidas repetidas, foram testados efeitos lineares e quadráticos e foram utilizados ajustes de modelos lineares mistos com estruturas de variâncias e covariâncias diversificadas, dependendo da variável analisada. RESULTADOS: Observamos estabilidade da pressão arterial média aos 30 min, assim como da frequência cardíaca, da pressão arterial pulmonar e da pressão de capilar pulmonar aos 60 min. Frequência respiratória, volume corrente, volume minuto e trabalho respiratório estabilizaram aos 30 min. Quanto às variáveis de troca gasosa, PaO2, relação PaO2/FiO2 e fração de shunt pulmonar estabilizaram-se aos 30 min. As demais variáveis mantiveram-se em ascensão ou queda contínuas. CONCLUSÕES: O modelo de lesão pulmonar aguda induzida por ácido oleico é estável para algumas das variáveis testadas; porém, a estabilização se dá em momentos diferentes. As variáveis da mecânica respiratória e de troca gasosa estabilizaram em 30 min, e as hemodinâmicas, em 60 min.OBJECTIVE: To evaluate the stability of hemodynamic, respiratory and gas exchange variables in an animal model of oleic acid-induced acute lung injury. METHODS: This was an experimental study involving 10 mongrel dogs. The variables were measured at baseline, as well as at 30, 60, 90 and 120 min after the administration of oleic acid. In order to analyze repeated measurements, linear and quadratic effects were tested. Mixed linear models with diversified variance and covariance structures were used, depending on the variable studied. RESULTS: We found that mean

  1. Identification and examination of a novel 9-bp insert/deletion polymorphism on porcine SFTPA1 exon 2 associated with acute lung injury using an oleic acid-acute lung injury model.

    Science.gov (United States)

    Zhang, Yuebo; Zhang, Longchao; Wang, Ligang; Qiao, Lijuan; Liang, Jing; Yan, Hua; Zhao, Kebin; Liu, Xin; Wang, Lixian

    2015-06-01

    The pulmonary surfactant-associated protein (SFTPA1, SP-A) gene has been studied as a candidate gene for lung disease resistance in humans and livestock. The objective of the present study was to identify polymorphisms of the porcine SFTPA1 gene coding region and its association with acute lung injury (ALI). Through DNA sequencing and the PCR-single-strand conformation polymorphism method, a novel 9-bp nucleotide insertion (+) or deletion (-) was detected on exon 2 of SFTPA1, which causes a change in three amino acids, namely, alanine (Ala), glycine (Gly) and proline (Pro). Individuals of three genotypes (-/-, +/- and +/+) were divided into equal groups from 60 Rongchang pigs that were genotyped. These pigs were selected for participation in the oleic acid (OA)-ALI model by 1-h and 3-h injections of OA, and there were equal numbers of pigs in the control and injection groups. The lung water content, a marker for acute lung injury, was measured in this study; there is a significant correlation between high lung water content and the presence of the 9-bp indel polymorphism (P polymorphism causing altered expression of the gene. The individuals with the -/- genotype showed lower lung water content than the +/+ genotype pigs, which suggests that polymorphism could be a potential marker for lung disease-resistant pig breeding and that pig can be a potential animal model for human lung disease resistance in future studies.

  2. Action of peracetic acid on Escherichia coli and Staphylococcus aureus in suspension or settled on stainless steel surfaces

    Directory of Open Access Journals (Sweden)

    Kunigk Leo

    2001-01-01

    Full Text Available The efficiency of a commercial peracetic acid sanitizer on destruction of Staphylococcus aureus and Escherichia coli was evaluated using two distinct methods. The first method is the AOAC suspension test and the second is a method proposed by one of the authors in which the microbial cells are settled on a stainless steel surface and then treated with the sanitizer. The results showed that when in suspension S. aureus was more resistant to the sanitizer than E. coli. When S. aureus was settled on the stainless steel surface, the contact time between the sanitizer and the microorganisms to attain a 6.5 log reduction in the number of viable cells was three times greater than when the cells were in suspension.

  3. Serum content of oleic acid is associated with higher platelet-, endothelial- and leukocyte-derived circulating microparticles in Norwegian normolipidemic elderly patients after an acute myocardial infarction

    DEFF Research Database (Denmark)

    Chiva-Blanch, G; Bratseth, V; Laake, K;

    2016-01-01

    OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from...

  4. Growth of Avena Coleoptiles and pH Drop of Protoplast Suspensions Induced by Chlorinated Indoleacetic Acids

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Doll, Hans; Böttger, M.

    1978-01-01

    -auxins. Some of the derivatives were compared for their effect on pH decline in stem protoplast suspensions of Helianthus annuus L. and Pisum sativum L. The change of pH occurs without a lag period or with only a very short one. Derivatives which are very active in the Avena straight growth assay cause......Several indoleacetic acids, substituted in the benzene ring, were compared in the Avena straight growth bioassay. 4-Chloroindoleacetic acid, a naturally occurring plant hormone, is one of the strongest hormones in this bioassay. With an optimum at 10-6 mol l-1, it is more active than indoleacetic...... acid, 2,4-dichlorphenoxyacetic acid and naphthaleneacetic acid. 5-Chloro- and 6-chloroindoleacetic acids are very strong auxins as well. Other derivatives tested have a lower activity. 5,7-Dichloro- and 5-hydroxyindoleacetic acids have very low auxin activity at 10-4 mol l-1 and may be anti...

  5. Gomisin J Inhibits Oleic Acid-Induced Hepatic Lipogenesis by Activation of the AMPK-Dependent Pathway and Inhibition of the Hepatokine Fetuin-A in HepG2 Cells.

    Science.gov (United States)

    Kim, Myungsuk; Lim, Sue Ji; Lee, Hee-Ju; Kim, Sun Young; Nho, Chu Won

    2015-11-11

    The aim of our study is to investigate the molecular mechanism of gomisin J from Schisandra chinensis on the oleic acid (OA)-induced lipid accumulation in HepG2 cells. Gomisin J attenuated lipid accumulation in OA-induced HepG2 cells. It also suppressed the expression of lipogenic enzymes and inflammatory mediators and increased the expression of lipolytic enzymes in OA-induced HepG2 cells. Furthermore, the use of specific inhibitors and fetuin-A siRNA and liver kinase B1 (LKB1) siRNA transfected cells demonstrated that gomisin J regulated lipogenesis and lipolysis via inhibition of fetuin-A and activation of an AMP-activated protein kinase (AMPK)-dependent pathway in HepG2 cells. Our results showed that gomisin J suppressed lipid accumulation by regulating the expression of lipogenic and lipolytic enzymes and inflammatory molecules through activation of AMPK, LKB1, and Ca(2+)/calmodulin-dependent protein kinase II and inhibition of fetuin-A in HepG2 cells. This suggested that gomisin J has potential benefits in treating nonalcoholic fatty liver disease.

  6. Photodecomposition of tetrabromobisphenol A in aqueous humic acid suspension by irradiation with light of various wavelengths.

    Science.gov (United States)

    Han, Sang Kuk; Yamasaki, Toshihide; Yamada, Ken-ichi

    2016-03-01

    The reactive species generated in aqueous 3,3',5,5'-tetrabromobisphenol A (TBBPA)/humic acid (HA) suspensions above the TBBPA pKa (∼7.4), under various light-irradiation conditions, namely ambient and ultraviolet light, were investigated using electron paramagnetic resonance (EPR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). We confirmed that singlet oxygen and OH radicals are the key reactive oxygen species generated at wavelengths greater than 400 and 300 nm, respectively. The amount of 2,6-dibromo-p-benzosemiquinone anion radicals (2,6-DBSQ(•-)) formed under irradiation at 400 nm increased linearly with respect to irradiation time; the initial reaction rate was 7.03 × 10(-9) mol g(-1) HA s(-1). The rate increased with increasing pH and light intensity. LC-MS and EPR spectroscopy showed that tribromohydroxybisphenol A was formed under irradiation at 300 nm via reaction of OH radicals with TBBPA. This study, for the first time, shows that the main byproducts formed during irradiation at wavelengths above 300 nm are 2,6-DBSQ(•-) and tribromohydroxybisphenol A, generated from singlet oxygen ((1)O2) and OH radicals, respectively. Photodecomposition of TBBPA in the environment may occur by formation of (1)O2 and OH radicals.

  7. Oleic acid loading does not add to the nephrotoxic effect of albumin in an amphibian and chronic rat model of kidney injury

    NARCIS (Netherlands)

    van Timmeren, Mirjan M.; Gross, Marie-Luise; Hanke, Wilfried; Klok, Pieter A.; van Goor, Harry; Stegeman, Coen A.; Bakker, Stephan J. L.

    2008-01-01

    Background. Under proteinuric conditions, ultrafiltrated albumin can induce an inflammatory and fibrotic response in proximal tubular cells. It is unclear whether albumin per se or compounds bound to albumin are nephrotoxic. Some studies have supported the toxicity of albumin-bound fatty acids; howe

  8. Regulation of serum-responsive transmembrane kinase EhTMKB1-9 by an unsaturated lipid, oleic acid in protistan parasite Entamoeba histolytica.

    Science.gov (United States)

    Saha, Arpita; Bhattacharya, Sudha; Bhattacharya, Alok

    2014-11-01

    Transmembrane kinases of Entamoeba histolytica are known to play a wide range of roles from virulence, phagocytosis, and proliferation to stress response. Transmembrane kinase EhTMKB1-9 is thought to be involved in early proliferative response and it was originally identified as a serum inducible gene. Ability to stimulate EhTMKB1 expression of serum starved cells resides in unsaturated fatty acids associated with albumin fraction of serum and the mechanism of stimulation follows activation of EhTMKB1-9 promoter. Gel shift assay showed the presence of proteins that bind to the specific site of EhTMKB1-9 upstream region and the concentration of these protein(s) go down on serum starvation, but level of binding protein(s) go up on serum or fatty acid replenishment. This increase in concentration of binding molecule(s) is due to new synthesis rather than activation of existing molecule(s) as a protein synthesis inhibitor blocked enhanced level of gel shifted material on replenishment. The stimulating activity resides in the fatty acyl chain, but not in the head group. Moreover, the fatty acid initiates signaling through class I PI3 kinases that result in activation of EhTMKB1-9 expression. These results suggest a novel mechanism of gene regulation in E. histolytica, and unsaturated fatty acids as potential new signaling molecules.

  9. Oleic acid loading does not add to the nephrotoxic effect of albumin in an amphibian and chronic rat model of kidney injury

    NARCIS (Netherlands)

    van Timmeren, Mirjan M.; Gross, Marie-Luise; Hanke, Wilfried; Klok, Pieter A.; van Goor, Harry; Stegeman, Coen A.; Bakker, Stephan J. L.

    2008-01-01

    Background. Under proteinuric conditions, ultrafiltrated albumin can induce an inflammatory and fibrotic response in proximal tubular cells. It is unclear whether albumin per se or compounds bound to albumin are nephrotoxic. Some studies have supported the toxicity of albumin-bound fatty acids; howe

  10. A mixture of oleic, erucic and conjugated linoleic acids modulates cerebrospinal fluid inflammatory markers and improve somatosensorial evoked potential in X-linked adrenoleukodystrophy female carriers.

    Science.gov (United States)

    Cappa, Marco; Bizzarri, Carla; Petroni, Anna; Carta, Gianfranca; Cordeddu, Lina; Valeriani, Massimiliano; Vollono, Catello; De Pasquale, Loredana; Blasevich, Milena; Banni, Sebastiano

    2012-09-01

    X-linked adrenoleukodystrophy is a rare inherited demyelinating disorder characterized by an abnormal accumulation of very long chain fatty acids, mainly hexacosanoic acid (26:0), due to a mutation of the gene encoding for a peroxisomal membrane protein. The only available, and partially effective, therapeutic treatment consists of dietary intake of a 4:1 mixture of triolein and trierucin, called Lorenzo's oil (LO), targeted to inhibit the elongation of docosanoic acid (22:0) to 26:0. In this study we tested whether, besides inhibiting elongation, an enhancement of peroxisomal beta oxidation induced by conjugated linoleic acid (CLA), will improve somatosensory evoked potentials and modify inflammatory markers in adrenoleukodystrophy females carriers. We enrolled five heterozygous women. They received a mixture of LO (40 g/day) with CLA (5 g/day) for 2 months. The therapeutic efficacy was evaluated by the means of plasma levels of 26:0, 26:0/22:0 ratio, modification of cerebrospinal fluid (CSF) inflammatory markers and somatosensory evoked potentials. Changes of fatty acid profile, and in particular CLA incorporation, were also evaluated in CSF and plasma. The results showed that CLA promptly passes the blood brain barrier and the mixture was able to lower both 26:0 and 26:0/22:0 ratio in plasma. The mixture improved somatosensory evoked potentials, which were previously found unchanged or worsened with dietary LO alone, and reduced IL-6 levels in CSF in three out of five patients. Our data suggest that the synergic activity of CLA and LO, by enhancing peroxisomal beta-oxidation and preventing 26:0 formation, improves the somatosensory evoked potentials and reduces neuroinflammation.

  11. Jasmonic Acid Effect on the Fatty Acid and Terpenoid Indole Alkaloid Accumulation in Cell Suspension Cultures of Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Guitele Dalia Goldhaber-Pasillas

    2014-07-01

    Full Text Available The stress response after jasmonic acid (JA treatment was studied in cell suspension cultures of Catharanthus roseus. The effect of JA on the primary and secondary metabolism was based on changes in profiles of fatty acids (FA and terpenoid indole alkaloids (TIA. According to multivariate data analyses (MVDA, three major time events were observed and characterized according to the variations of specific FA and TIA: after 0–30 min of induction FA such as C18:1, C20:0, C22:0 and C24:0 were highly induced by JA; 90–360 min after treatment was characterized by variations of C14:0 and C15:0; and 1440 min after induction JA had the largest effect on both group of metabolites were C18:1, C18:2, C18:3, C16:0, C20:0, C22:0, C24:0, catharanthine, tabersonine-like 1, serpentine, tabersonine and ajmalicine-like had the most significant variations. These results unambiguously demonstrate the profound effect of JA particularly on the accumulation of its own precursor, C18:3 and the accumulation of TIA, which can be considered as late stress response events to JA since they occurred only after 1440 min. These observations show that the early events in the JA response do not involve the de novo biosynthesis of neither its own precursor nor TIA, but is due to an already present biochemical system.

  12. A Low-Cost Polytetrafluoroethylene-Framed TiO2 Electrode Decorated with Oleic Acid-Capped CdSe Quantum Dots for Solar Cell

    OpenAIRE

    Delele Worku Ayele; Wein-Nien Su; Bing-Joe Hwang

    2013-01-01

    Colloidal CdSe QDs have been assembled, as quantum dot-sensitized solar cells (QDSSCs), on a novel architecture comprising a polytetrafluoroethylene- (PTFE-) framed TiO2 electrode for the first time. CdSe QDs are anchored on the surface of the film using a linker molecule (3-mercaptopropionic acid, MPA). The resulting photoelectrode comprises a TiO2 compact layer and a PTFE-framed structural layer with average respective thicknesses of 2 μm for the compact layer and either 23 μm or 28 μm for ...

  13. 染料木素对油酸诱导的HEⅡ4肝细胞脂质沉积的影响%Effect of genistein on lipid accumulation in H4Ⅱ E cell induced by oleic acid

    Institute of Scientific and Technical Information of China (English)

    秦灵灵; 徐暾海; 周静鑫; 刘铜华

    2013-01-01

    Objective To observe the effects of genistein(GEN)on oleic acid(OA)induced lipid accumulationin in H4 ⅡE cells and to discuss the possible mechanism of GEN in the pointof AMPK.Methods H4ⅡE cells were cultured in vitro.The control group(NOR),OA treatment group(MOD group)and GEN treatment group were established according to the experimental requirements.The effects of GEN on the proliferation of H4 Ⅱ E cells were measured with MTT assay.The intraeellular TG mass was quantified spectrophotometrically using TG test kit.Cell protein was determined by DCTM Protein Assay kit.The intracellular TG concentration which was used to evaluate lipid accumulation was corrected using protein content as an internal standard.Western blotting was applied to determine the expression of AMPK and P-AMPK (Thr172).Accordingly the phosphorylation levels of AMPK was by means of P-AMPK(Thr172)/AMPK.Results OA treatment can induce lipid accumulation in H4 Ⅱ E cells while GEN treatment can decrease the intracellular TG concentration through up-regulate the phosphorylation levels of AMPK,though the effect was blocked by Compound C that is the inhibitor of AMPK.Conclusion GEN has anti-accumulation of lipid effect in H4ⅡE cell.The mechanism of GEN protective effect is partially due to AMPK.%目的 观察染料木素(GEN)对油酸(oleic acid)诱导的HEⅡ4肝细胞脂质沉积细胞模型的作用,以及对腺苷酸活化蛋白激酶(AMPK)磷酸化的影响.方法 采用MTT法检测不同浓度的GEN对细胞的毒性;以0.2 mmol/L油酸诱导HEⅡ4肝细胞内脂质大量沉积,给予GEN干预后以GPO·DAOS法检测细胞内甘油三酯(TG)含量,以DCTM法检测细胞内总蛋白含量,用蛋白含量校正细胞内TG含量(TG/蛋白)来评估细胞内脂质沉积情况;Western blotting法检测肝细胞内AMPK及P-AMPK (Thr172)蛋白表达水平,以P-AMPK (Thr172)/AMPK表示AMPK的磷酸化水平.结果 GEN可减少肝细胞内脂质沉积(分别为139.64±18.60、192.20±34

  14. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    Science.gov (United States)

    Shiraiwa, Manabu; Pfrang, Christian; Pöschl, Ulrich

    2010-05-01

    Aerosols are ubiquitous in the atmosphere and have strong effects on climate and public health. Gas-particle interactions can significantly change the physical and chemical properties of aerosols such as toxicity, reactivity, hygroscopicity and radiative properties. Chemical reactions and mass transport lead to continuous transformation and changes in the composition of atmospheric aerosols ("chemical aging"). Resistor model formulations are widely used to describe and investigate heterogeneous reactions and multiphase processes in laboratory, field and model studies of atmospheric chemistry. The traditional resistor models, however, are usually based on simplifying assumptions such as steady state conditions, homogeneous mixing, and limited numbers of non-interacting species and processes. In order to overcome these limitations, Pöschl, Rudich and Ammann have developed a kinetic model framework (PRA framework) with a double-layer surface concept and universally applicable rate equations and parameters for mass transport and chemical reactions at the gas-particle interface of aerosols and clouds [1]. Based on the PRA framework, we present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB) [2]. The model includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and

  15. A Low-Cost Polytetrafluoroethylene-Framed TiO2 Electrode Decorated with Oleic Acid-Capped CdSe Quantum Dots for Solar Cell

    Directory of Open Access Journals (Sweden)

    Delele Worku Ayele

    2013-01-01

    Full Text Available Colloidal CdSe QDs have been assembled, as quantum dot-sensitized solar cells (QDSSCs, on a novel architecture comprising a polytetrafluoroethylene- (PTFE- framed TiO2 electrode for the first time. CdSe QDs are anchored on the surface of the film using a linker molecule (3-mercaptopropionic acid, MPA. The resulting photoelectrode comprises a TiO2 compact layer and a PTFE-framed structural layer with average respective thicknesses of 2 μm for the compact layer and either 23 μm or 28 μm for the PTFE-framed structural layer. UV-vis absorption spectra show that more CdSe quantum dots are anchored on the surface of the modified with MPA TiO2 film compared to direct absorption onto an unmodified film. Energy conversion efficiencies of up to 0.18% can be achieved with cells prepared from a TiO2 (25 μm/MPA/CdSe QD electrode. Electrochemical impedance measurements show that the recombination resistance is relatively higher for a cell assembled with TiO2 (25 μm/MPA/CdSe QD photoanode than with TiO2 (25 μm/CdSe QD resulting in an increase of cell efficiency. The PTFE-framed structure along with the compact layer is a new approach to QDSSC application that provides a tunable film thickness and a cost-effective preparation technique for the large-scale production of the photoanode.

  16. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22(phox) up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  17. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Meryam Debbabi

    2016-11-01

    Full Text Available Lipid peroxidation products, such as 7-ketocholesterol (7KC, may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA. Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.

  18. Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R.Br. through endophytic fungi.

    Science.gov (United States)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Gaddam, Susmila Aparna; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-12-01

    The enhancement of plant secondary metabolite production in cell suspension cultures through biotic or abiotic elicitation has become a potential biotechnological approach for commercialization or large-scale production of bioactive compounds. Gymnema sylvestre R.Br. is an important medicinal plant, rich in a group of oleanane triterpenoid saponins called gymnemic acid, well known for its anti-diabetic activity. Two endophytic fungal strains were isolated from the leaves of G. sylvestre and identified as Polyancora globosa and Xylaria sp. based on the PCR amplification and internal transcribed spacer (ITS 1-5.8S-ITS 2) sequencing of 18S rRNA gene. The process of elicitation of cell suspension cultures of G. sylvestre with dried powder of fungal mycelia (DPFM) and extracellular culture filtrate (ECF) of endophytic fungi consistently enhanced the accumulation of gymnemic acid and the DPFM was proved to be an effective elicitor when compared to the ECF. The DPFM elicited the gymnemic acid content in the range of 2.57-10.45-fold, while the ECF elicited the gymnemic acid content in the range of 2.39-7.8-fold. P. globosa, a novel and a rare endophytic fungal strain, has shown a great influence on the production of gymnemic acid. Cell suspension cultures elicited with DPFM of P. globosa produced higher amount of gymnemic acid content (124.23 mg/g dried cell weight) compared to the cultures elicited with DPFM of Xylaria sp. (102.24 mg/g DCW). But the cultures treated with consortium of DPFM of both fungi showed great influence on the production of gymnemic acid (139.98 mg/g DCW) than the cultures treated with DPFM alone. Similarly, cultures treated with consortium of ECF of both fungi produced more gymnemic acid content (94.86 mg/g DCW) compared with cultures treated with ECF of Xylaria sp. (77.93 mg/g DCW) and ECF of P. globosa (78.65 mg/g DCW) alone.

  19. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.

    Science.gov (United States)

    Kondo, Akira; Xu, Hui; Abe, Hiroya; Naito, Makio

    2012-05-01

    Thermoresponsive gelling behavior of concentrated alumina suspensions with poly(acrylic acid) (PAA) and triblock copolymer (PEO(101)-PPO(56)-PEO(101), Pluronic F127) was investigated as a function of PAA concentration (0.4-1.2 mass%) for ceramic solid free forming. The copolymer species assemble into micelles at temperatures above 15°C, yielding aqueous physical gel. In this study, the concentrated alumina aqueous suspensions (φ=35 vol%) were first prepared using the anionic dispersant of PAA, and then the copolymer species (10 mass%) were dissolved at a cooled temperature at 10°C. The addition of the copolymer species had a negligible influence on the adsorption state of PAA onto the alumina surfaces. The PAA concentration needed for the saturation adsorption on the alumina surfaces was ~0.6 mass%. When the PAA concentration was this value or slightly less, the suspension became gel state at 30°C from low viscous state at 10°C. The thermally induced alumina gel had excellent viscoelastic properties, and thereby the three dimensional periodic ceramic structures were successfully fabricated by a direct colloidal printing method that using the gels as "solid" inks at the room temperature. On the other hand, when it exceeded the saturation adsorption limit, the gelling behavior was not observed, indicating that the non-adsorbing PAA species may partly suppress the micellization of the copolymer on the heating.

  20. Role of Changes in Cell Fatty Acids Composition in the Increasing of Frost Resistance of Winter Wheat Suspension Culture

    Directory of Open Access Journals (Sweden)

    I.V. Lyubushkina

    2013-11-01

    Full Text Available Influences of low temperatures (4 and 8 ° С on the frost tolerance and fatty acid compositions of cells in a winter wheat suspension culture have been studied. It has been found that treatment of the culture with 4 °C (7 days did not protect cells from subsequent freezing temperature action (-8 °С, 6 h and was not accompanied significant changes in the fatty acid composition. On the contrary, the treatment of the culture with the temperature 8 °C (7 days prevented the death caused by freezing temperature and the content of saturated fatty acids decreased: pentadecanoic acid (by 35,0%, palmitic acid (by 19,9% and stearic acid (by 65,4%, and the content of α-linolenic acid increased by 94%. That was the cause of the double bond index (DBI increase by 16%. The role of fatty acids composition changes in the process of increasing frost tolerance in plants are discussed.

  1. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile

    Science.gov (United States)

    Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana

    2017-01-01

    The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function.

  2. The role of genomics and biotechnology in achieving global food security for high-oleic vegetable oil.

    Science.gov (United States)

    Wilson, Richard F

    2012-01-01

    Health related concerns for dietary 'trans-fat' in the U.S. have mediated a significant decline in the use of hydrogenated vegetable oils in edible applications. Oils having a natural abundance of oleic acid provide many functional properties that are derived from partial hydrogenation of polyunsaturated oils. However, the long term agronomic production capacity of existing high-oleic oil crops to replace hydrogenated oil ingredients is not sustainable. Although improvements are expected in processing technology, genetic modification of seed composition offers the most promising tactic to increase the overall supply of high-oleic commodity oils. Genetic enhancement of oleic acid concentration has been demonstrated experimentally in nearly every oilseed. Private companies have launched production of genetically enhanced oleic acid cultivars such as: Nexera™ Omega-9 canola and Omega-9 sunflower oils. The E. I. du Pont de Nemours and Company plans commercial production of Plenish™ high-oleic soybeans in 2012. The Monsanto Co. plans commercial production of Vistive-Gold™ low-saturated high-oleic soybeans possibly as early as 2013. These 'new' high-oleic oilseeds must not only exhibit superior oil quality but also sequentially improved yield potential. Genetic maps that help breeders identify, locate and track useful genes will facilitate accomplishment of that goal. However, a reference sequence map in soybean is the only available chromosome scale assembly of an oilseed genome. Knowledge of genome structure enables technological advances that help increase soybean yielding ability, improve crop protection against biotic stresses, and reveal alleles for genes that mediate expression of quality traits. Led by soybean, genetically enhanced high-oleic vegetable oils that now are becoming commercially available may capture greater than 40% of the domestic consumption of vegetable oil in the U.S. by 2020. This innovation in oilseed technology is a positive step toward

  3. Responses of amino acids in hindlimb muscles to recovery from hypogravity and unloading by tail-cast suspension

    Science.gov (United States)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Cook, P. H.

    1985-01-01

    Amino acids were assayed in muscles from rats exposed to 7 days of hypogravity and 12 h of gravity (F) or 6 days of suspension with (R) or without (H) 12 h of loading. In these groups, lower aspartate was common only to the soleus (SOL) relative to control muscles, the smallest difference being in group R. This difference in aspartate for F and H, but not for R, correlated with lower malate suggesting diminution of citric acid cycle intermediates. The R SOL value was increased over the H SOL. Therefore desite 12 h of loading, the F SOL was more comparable to the H SOL. The role of stress in preventing recovery of the F SOL was apparent from the ratios of glutamine/glutamate. Synthesis of glutamine is enhanced by glucocorticoids and is reflected by an increased ratio. In 5 of the 6 F muscles studied, this ratio was greater than in controls. In contrast, the ratio in all R muscles was similar to controls and showed recovery from the values in H muscles. Hence the post-flight treatment of F rats may have produced additional stress. Despite this stress, in some respects the SOL responses to hypogravity were similar to its responses to unloding by suspension.

  4. Biodiesel from Forsythia suspense [(Thunb.) Vahl (Oleaceae)] seed oil.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wei, Fu-Yao; Luo, Meng; Wang, Wei; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-09-01

    In the present work, Forsythia suspense seed oil (FSSO) was investigated for the first time as an alternative non-conventional feedstock for the preparation of biodiesel. The FSSO yield is 30.08±2.35% (dry weight of F. suspense seed basis), and the oil has low acid value (1.07 mg KOH/g). The fatty acid composition of FSSO exhibits the predominance of linoleic acid (72.89%) along with oleic acid (18.68%) and palmitic acid (5.65%), which is quite similar to that of sunflower oil. Moreover, microwave-assisted transesterification process of FSSO with methanol in the presence of potassium hydroxide catalyst was optimized and an optimal biodiesel yield (90.74±2.02%) was obtained. Furthermore, the fuel properties of the biodiesel product were evaluated as against ASTM D-6751 biodiesel standards and an acceptable agreement was observed except the cetane number. Overall, this study revealed the possibility of FSSO as a potential resource of biodiesel feedstock.

  5. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  6. A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension

    NARCIS (Netherlands)

    Bellenger, J.; Bellenger, S.; Clement, L.; Mandard, S.J.; Diot, C.; Poisson, J.P.; Narce, M.

    2004-01-01

    Polyunsaturated fatty acids (PUFA) are known to repress SCD-1 gene expression, key enzyme of monounsaturated fatty acid biosynthesis. Alterations of the monounsaturated/saturated fatty acids ratio have been implicated in various diseases related to the metabolic syndrome, including hypertension. We

  7. A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension

    NARCIS (Netherlands)

    Bellenger, J.; Bellenger, S.; Clement, L.; Mandard, S.J.; Diot, C.; Poisson, J.P.; Narce, M.

    2004-01-01

    Polyunsaturated fatty acids (PUFA) are known to repress SCD-1 gene expression, key enzyme of monounsaturated fatty acid biosynthesis. Alterations of the monounsaturated/saturated fatty acids ratio have been implicated in various diseases related to the metabolic syndrome, including hypertension. We

  8. Improved Production of Paclitaxel from Suspension Culture of Taxus chinensis var.mairei by in situ Extraction with Organic Solvents

    Institute of Scientific and Technical Information of China (English)

    未作君; 元英进; 吴兆亮; 吴金川

    2003-01-01

    The production of paclitaxel from suspension culture of Taxus chinensis var,mairei was improved by in situ extraction with organic solvents to avoid feedback repression and product degradation.Oleic acid and dibutyl phthalate were proved to be suitable solvents .The optimal volumetric percentage of organic solvents in the culture medium was found to be around 8%,and the favorable time for their introduction was at the exponential phase of cell growth,Paclitaxel production with the in situ extraction was ca 3-fold of that without extraction.

  9. 利用重组人α乳清蛋白和油酸大量快速制备高活性的HAMLET肿瘤杀伤复合物%Fast and scalable production of cancer-killing complex from recombinant human alpha-lactalbumin and oleic acid

    Institute of Scientific and Technical Information of China (English)

    张轶博; 曾瑞霞; 牛静; 郑少鹏; 贾弘褆; 丁卫

    2012-01-01

    Objective Human alpha-lactalbumin made lethal to tumor cells (HAMLET) is a novel potent tumoricidal agent that selectively induces apoptosis-like cell death in a variety of cancers. Methods As the sufficient amount and concentration of human alpha-lactalbumin (HLA) to form HAMLET is critical for its anti-tumor activity, mass production and rapid purification of recombinant HLA protein is highly desired. We first constructed a cDNA library of MCF-7 cell, known to secrete mature HLA peptides. Then amplified the full-length of HLA coding sequence by PCR, and cloned it into a pET30a( + ) vector with an C-terminus His-tag. The His-rHLA was highly expressed in BL21 E coli cells with the induction of IPTG and purified by Ni-NTA affinity chromatography. The rHLA was refolded in an in vitro refolding buffer, de-calcinated with EDTA treatment, and then reacted with oleic acid (OA) water suspension under heated conditions to form the HAMLET complex. Results By comparing our HAMLET product with a reference preparation (BAMLET) from bovine alpha-lactalbumin and OA, we found that our preparations of IIAMLET have a similar UV spectrum and a comparable tumoricidal activity as determined by cell viability assays and morphologic observations. Conclusion The cost-effectiveness and scalability of HAMLET production using recombinant HLA can be extremely useful for the further investigation of mechanistic studies of HAMLET functions, and may also be potentially considered as a practical anti-cancer agent for therapeutic trials.%目的 可致肿瘤细胞死亡的人α乳清蛋白(human alpha-lactalbumin made lethal to tumor cells,HAMLET)是一种可导致多种癌细胞死亡的强效选择性肿瘤杀伤蛋白质-脂酸复合物.为了使HAMLET应用于肿瘤的治疗并对其杀伤机制进行探讨,我们需要建立和优化简便、快速、规模化制备与纯化HAMLET的方法.方法 通过构建人α乳清蛋白分泌型细胞MCF-7的cDNA文库,PCR扩增出编码人α乳清蛋

  10. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells.

    Science.gov (United States)

    Poór, Péter; Kovács, Judit; Szopkó, Dóra; Tari, Irma

    2013-02-01

    Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10(-3) M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca(2+) chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension.

  11. Pharmacokinetics of Three Benzimidazoles Suspended in Oleic Acid,Soybean Oil or 1% Tragacanth,and Administered Orally to Mice at A Single Dose%小鼠口服3种苯并咪唑类药物的油酸、大豆油和1%西黄耆胶混悬剂的药动学

    Institute of Scientific and Technical Information of China (English)

    姜斌; 张皓冰; 刘丛珊; 陶奕

    2012-01-01

    OBJECTIVE To determine the pharmacokinetics of three benzimidazoles ( albendazole, fenbendazole and fluben-dazole) suspended in three different media [oleic acid, soybean oil or 1% tragacanth (served as control) ] in mice, and observe the correlation of those pharmacokinetic parameters with the solubilities of the three benzimidazoles in corresponding medium. METHODS Albendazole, fenbendazole and flubendazole suspened in oleic acid, soybean oil or 1% tragacanth were prepared by ball grinding mill. Groups of 45 - 54 mice were administered orally with one of aforementioned benzimidazole suspensions at a single dose of 100 mg·kg-1 ( albendazole) or 50 mg·kg-1 (fenbendazole and flubendazole). Subgroups with 5-6 mice in each group were bled at varying intervals within 24 h. Plasma was then separated from heparin-anticoagulated blood, and evaluated for the presence of the drug by high performance liquid chromatography ( HPLC ). Pharmacokinetic parameters of each drug were calculated using DAS ( Drug AnaLyze System). RESULTS After oral administration of three benzimidazoles suspended in oleic acid, soybean oil or 1% tragacanth, the pharmacokinetic parameters of each drug were described as follows; albendazole, the MRT (average retention time) were (3. 91 ± 0.29), (3.70±0.09) and (1. 59 ± 0. 14) h, ρmax (maximum concentration) were (0.66±0.08), (0.29±0.05) and (0. 34±0. 09) mg·L-1 , AUC (area under the concentration-time curve) were (3. 19 ±0.40) , (1. 25 ±0.09) and (0. 50 ±0. 05) mg·L·h-1, F (relative bioavailability, the AUC compared with that of 1% tragacanth group) were 6. 38 and 2. 50; fenbendazole, the MRT were (5. 72 ±0. 14) , (4. 83 ±0.38) and (3. 85 ±0.25) h, ρmax were( 0. 70 ± 0. 11) , (0.20 ±0.05) and (0. 12 ±0.03) mg·L-1 , AUC were (5. 02 ±0.73) , (1.08 ±0.21) and (0.52 ±0.07) mg·h·L-1 , F were 9.65 and 2.08; flubendazole, the MRT were (5.71 ±0.37), (4.59±0.39) and (3. 34 ±0.20) h, pmax were (0.93 ±0. 14), (0.58 ±0.09) and (0

  12. Influence of oleic acid in different solvent media on LO2 and HepG2 cell-growth and -viability%不同溶剂中油酸对LO2和HepG2细胞生长和活力的影响

    Institute of Scientific and Technical Information of China (English)

    陈莉; 汪春红; 黄邵鑫; 段纯喆; 金丽娜; 王红

    2012-01-01

    Objective To find a suitable media for fatty acids and a convenient cell line in vitro for studying lipid metabolism, by comparing the effect of oleic acid (OA) at different solvent media on human liver cells L0, and hepato-carcinoma cells HepG2. Methods Both LO2 and HepG2 cell lines were divided into normal group,DMSO group, groups of different concentrations of oleic acid, BSA group, and groups of different concentrations of oleic acid. After being cultured for 48 hours, the cell viability was analyzed with MTT method, the fatty droplets in cells could be observed by oil red 0 staining under optical microscope. The intracellular triglyceride (TG) was detected by reactant kits. Results The growth curves of the two cell lines, which were treated with different concentrations of oleic acid (0. 4, 0. 8, 1.6, 3.2, 6. 4μ/ml) dissolved in DMSO, showing first increased and then a decreased trend. Except the group of LO2 with 1.6 μ / mi OA, the cell viability of the other groups was significantly lower than that of the normal group (P < 0.05). However, the viability of the two cell lines, treated with oleic acid (0.4, 0.8, 1.6, 3.2, 6. 4(jLg/ml) dissolved in BSA, were higher than that of the normal group, and the curves showed an upward trend. Oil red O staining showed that the intracellular lipid droplets of the two cell lines treated with oleic acid dissolved in DMSO increased, as compared with the normal group, and the cell number decreased, but the lipid droplets and the cell number of the two cell lines treated with oleic acid dissolved in BSA both increased. The level of TG in each group was similar to the trend of the oil red 0 staining, while LO3 cell line was more sensitive. Conclusion Compared with DMSO, BSA is a better dissolution media for fat acids, and LO, cell line was more suitable for the development in vitro model of liver lipid metabolism.%目的 探讨以二甲基亚砜(DMSO)和牛血清白蛋白(BSA)分别溶解的油酸(OA)对人正常肝细胞(LO2

  13. Dynamics of indole-3-acetic acid oxidase activity in suspension culture of sunflower crown-gall

    Directory of Open Access Journals (Sweden)

    Zofia Chirek

    2014-02-01

    Full Text Available IAA oxidase activity was determined in several growth phases of a suspension culture of sunflower crown-gall. During the short phase of intensive growth (zero passage - PO a negative correlation was noted between enzymatic activity and the rate of growth. IAA oxidase activity increased to a certain level is not a factor limiting cell division. For protraction of the phase of intensive growth (first passage - P1, however, a decrease in the activity of this enzyme seems indispensable. IAA oxidase activity in the tested culture is under the control of inhibitors present in the cells and medium. High enzyme inhibition was observed in PO cells during the phase, of intensive growth and in P1 at the beginning and in the middle part of this phase. These results suggest' that the -auxin level determined in earlier studies in sunflower crown-gall culture is controlled by the IAA oxidase set. During the long phase of intensive growth (P1 this control is of negative feedback type.

  14. Bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids: aqueous solubility and release characteristics from solutions and suspensions using a rotating dialysis cell model.

    Science.gov (United States)

    Østergaard, Jesper; Larsen, Susan W; Parshad, Henrik; Larsen, Claus

    2005-11-01

    In the search for poorly soluble bupivacaine salts potentially enabling prolonged postoperative pain relief after local joint administration in the form of suspensions the solubility of bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids were investigated together with the release characteristics of selected 1:1 salts from solutions and suspensions using a rotating dialysis cell model. The poorest soluble bupivacaine salts were obtained from the aromatic ortho-hydroxycarboxylic acids diflunisal, 5-iodosalicylic acid, and salicylic acid (aqueous solubilities: 0.6-1.9 mM at 37 degrees C). Diffusant appearance rates in the acceptor phase upon instillation of solutions of various salts in the donor cell applied to first-order kinetics. Calculated permeability coefficients for bupivacaine and the counterions diflunisal, 5-iodosalicylic acid, and mandelic acid were found to be correlated with the molecular size of the diffusants. Release experiments at physiological pH involving suspensions of the bupivacaine-diflunisal salt revealed that at each sampling point the diflunisal concentration exceeded that of bupivacaine in the acceptor phase. However, after an initial lag period, a steady state situation was attained resulting in equal and constant fluxes of the two diffusants controlled by the permeability coefficients in combination with the solubility product of the salt. Due to the fact that the saturation solubility of the bupivacaine-salicylic acid salt in water exceeded that of bupivacaine at pH 7.4, suspensions of the latter salt were unable to provide simultaneous release of the cationic and anionic species at pH 7.4. The release profiles were characterised by a rapid release of salicylate accompanied by a much slower appearance of bupivacaine in the acceptor phase caused by precipitation of bupivacaine base from the solution upon dissolution of the salt in the donor cell.

  15. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pušnik, Klementina; Goršak, Tanja [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia); Drofenik, Miha [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia)

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe{sup 3+} ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe{sup 3+} ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  16. Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells.

    Science.gov (United States)

    Popper, Zoë A; Fry, Stephen C

    2005-07-01

    Covalent linkages between xyloglucan and rhamnogalacturonan-I (RG-I) have been reported in the primary cell walls of cultured Rosa cells and may contribute to wall architecture. This study investigated whether this chemical feature is general to angiosperms or whether Rosa is unusual. * Xyloglucan was alkali-extracted from the walls of l-[1-3H]arabinose-fed suspension-cultured cells of Arabidopsis, sycamore, rose, tomato, spinach, maize and barley. The polysaccharide was precipitated with 50 % ethanol and subjected to anion-exchange chromatography in 8 m urea. Eluted fractions were Driselase-digested, yielding [3H]isoprimeverose (diagnostic of [3H]xyloglucan). The Arabidopsis cells were also fed [6-14C]glucuronic acid, and radiolabelled pectins were extracted with ammonium oxalate. * [3H]Xyloglucan was detected in acidic (galacturonate-containing) as well as non-anionic polysaccharide fractions. The proportion of the [3H]isoprimeverose units that were in anionic fractions was: Arabidopsis, 45 %; sycamore, 60 %; rose, 44 %; tomato, 75 %; spinach, 70 %; maize, 50 %; barley, 70 %. In Arabidopsis cultures fed d-[6-(14)C]glucuronate, 20 % of the (galacturonate-14C)-labelled pectins were found to hydrogen-bond to cellulose, a characteristic normally restricted to hemicelluloses such as xyloglucan. * Alkali-stable, anionic complexes of xyloglucan (reported in the case of Rosa to be xyloglucan-RG-I covalent complexes) are widespread in the cell walls of angiosperms, including gramineous monocots.

  17. Full factorial experimental design applied to oxalic acid photocatalytic degradation in TiO2 aqueous suspension

    Directory of Open Access Journals (Sweden)

    N. Barka

    2014-11-01

    Full Text Available Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of oxalic acid in a batch photo-reactor using TiO2 aqueous suspension. The important parameters which affect the removal efficiency of oxalic acid such as agitation, initial concentration, volume of the solution and TiO2 dosage were investigated. The parameters were coded as X1, X2, X3 and X4, consecutively, and were investigated at two levels (−1 and +1. The effects of individual variables and their interaction effects for dependent variables, namely, photocatalytic degradation efficiency (% were determined. From the statistical analysis, the most effective parameters in the photocatalytic degradation efficiency were initial concentration and volume of solution. The interaction between initial concentration, volume of solution and TiO2 dosage was the most influencing interaction. However, the interaction between agitation, initial concentration and volume of solution was the least influencing parameter.

  18. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains ... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  19. Effect of replacing solvent-extracted canola meal with high-oil traditional canola, high-oleic acid canola, or high-erucic acid rapeseed meals on rumen fermentation, digestibility, milk production, and milk fatty acid composition in lactating dairy cows.

    Science.gov (United States)

    Hristov, A N; Domitrovich, C; Wachter, A; Cassidy, T; Lee, C; Shingfield, K J; Kairenius, P; Davis, J; Brown, J

    2011-08-01

    The objective of this experiment was to investigate the effects of replacing conventional, solvent-extracted canola meal (control; CTRL) with high oil content; conventional, mechanically extracted canola meal (CMEC); high-oleic, low polyunsaturated fatty acid (FA) canola meal (HOLL); and high-erucic acid, low-glucosinolate rapeseed meal (RPS) on rumen function, digestibility, milk production, and milk FA composition in lactating dairy cows. The experimental design was a replicated 4×4 Latin square with 8 lactating dairy cows. Four of the cows were ruminally cannulated. All oilseed meals were included at approximately 12 to 13% of dietary dry matter (DM). Crude protein and fat concentrations (% of DM) of the meals were 43 and 3.1%, 32.8 and 16.1%, 45.2 and 13.7%, and 34.3 and 17.9% for CTRL, CMEC, HOLL, and RPS, respectively. All diets were formulated to supply net energy of lactation in excess of requirements. The CMEC and RPS diets were predicted to be about 1% deficient in metabolizable protein. Relative to the CTRL, inclusion of high-oil seed meals in the diet lowered ruminal acetate concentration and the molar acetate:propionate ratio and decreased DM intake. Milk yield generally followed DM intake and was lower for CMEC and RPS than the CTRL. Treatments had no effect on milk composition, other than an increase in milk urea nitrogen concentration for HOLL. Fat-corrected milk (3.5%) feed efficiency was increased by HOLL and RPS compared with CTRL. Urinary urea nitrogen losses were increased by HOLL, which, as a consequence, increased the ammonia-emitting potential of manure. The ratio of milk N-to-N intake was greater for CMEC and RPS. Replacing solvent-extracted canola meal with the high-oil meal decreased milk fat 12:0, 14:0, 16:0, and total saturated FA content and enhanced cis-9 18:1 and total monounsaturated FA concentrations. Relative to the CTRL, canola increased total trans FA in milk, whereas inclusion of HOLL in the diet increased trans-11 18:1 and

  20. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Science.gov (United States)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  1. Retrobiosynthetic study of salicylic acid in Catharanthus roseus cell suspension cultures

    NARCIS (Netherlands)

    Mustafa, Natali Rianika

    2007-01-01

    Salicylic acid (SA) is an important signal compound in systemic acquired resistance in plants. The level of this C6C1 compound in plants increases after a pathogenic attack. There are two biosynthetic pathways of SA, the phenylalanine pathway, which is thought to occur in plants, and the isochorisma

  2. Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation.

    Science.gov (United States)

    Curtin, Chris; Zhang, Wei; Franco, Chris

    2003-07-01

    Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g(-1) dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g(-1) DCW, in response to treatment with jasmonic acid, and comprising approximately 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g(-1) DCW which made up approximately 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g(-1) DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g(-1) DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g(-1) DCW, but there was no change in the anthocyanin composition.

  3. Oenocarpus bataua Mart. (Arecaceae) : rediscovering a source of high oleic vegetable oil from Amazonia

    OpenAIRE

    Montufar, R.; Laffargue, Andreina; Pintaud, Jean-Christophe; Hamon, Serge; Avallone, Sylvie; Dussert, Stéphane

    2010-01-01

    The fatty acid (FA) composition of Oenocarpus bataua oil from 38 samples collected over a large geographical range (i.e. French Guiana and Peru) was analyzed. Fifteen fatty acids were obtained from the mesocarp of this palm species. Oleic (72.7%) and palmitic (18.1%) acids were the predominant FAs. Minor FAs were cis-vaccenic acid (2.3%), linoleic acid (1.9%), stearic acid (1.7%), palmitoleic (0.9%) and alpha-linolenic acid (0.8%). The mean lipid content of the dry mesocarp was 51.6%. The O. ...

  4. Alpha-picolinic Acid Activates Diverse Defense Responses of Salicylic Acid-, Jasmonic Acid/Ethylene- and Ca2 -dependent Pathways in Arabidopsis and Rice Suspension Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANGHai-Kuo; ZHANGXin; LIQun; HEZu-Hua

    2004-01-01

    Alpha-picolinic acid (PA) is an apoptosis inducer in animal cells, and could elicit hypersensitiv eresponse (HR) in rice, a monocotyledonous model plant. Here we report that PA is an HR inducer in plants. It induced HR in Arabidopsis, a dicotyledonous model plant, including the oxidative burst and cell death. We investigated defense signal transduction activated by PA through marker genes of particular defense pathways in Arabidopsis. The result indicated that both the salicylic acid-dependent and jasmonic acid/ethylene-dependent pathways were activated by PA, in which the marker defense genes PR-1, PR-2 and PDF 1.2 were all induced in dose-dependent and time-course manners. We also observed that the PAinduced reactive oxygen species (ROS) production in rice suspension cells was Ca2+-dependent. Together with our previous studies of PA-induced defense activation in rice, we conclude that PA acts as a nonspecific elicitor in plant defense and has a potential utilization in cellular model establishment of systemicac quired resistance (SAR) activation.

  5. Red blood cell oleic acid levels reflect olive oil intake while omega-3 levels reflect fish intake and the use of omega-3 acid ethyl esters: The Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Heart Failure trial.

    Science.gov (United States)

    Harris, William S; Masson, Serge; Barlera, Simona; Milani, Valentina; Pileggi, Silvana; Franzosi, Maria Grazia; Marchioli, Roberto; Tognoni, Gianni; Tavazzi, Luigi; Latini, Roberto

    2016-09-01

    The Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Heart Failure (GISSI-HF) study reported benefits of n-3 fatty acid (FA) treatment on cardiovascular (CV) events, but the effects of treatment on a putative CV disease risk factor, the red blood cell (RBC) n-3 FA level (the omega-3 index), have not been examined in this context. We hypothesized that treatment with prescription omega-3 acid ethyl esters (O3AEE) would increase the omega-3 index to the proposed cardioprotective value of 8%. RBCs were collected from a subset of patients participating in the GISSI-HF study (n=461 out of 6975 randomized), at baseline and after 3 months of treatment with either an olive oil placebo or O3AEE (1 g/d). RBC FA levels were expressed as a percentage of total FA. Patients also reported their typical olive oil and fish intakes. RBC oleic acid levels were directly correlated with reported frequency of olive oil consumption, and the omega-3 index was correlated with reported fish intake (P for trends omega-3 index increased from 4.8±1.7% to 6.7±1.9% but was unchanged in the placebo group (4.7±1.7 to 4.8±1.5%) (Pomega-3 index level of 8%-12% in the treated vs placebo group (22.6% vs. 1.3%, Pomega-3 index levels were ultimately achieved after four years in this trial are unknown.

  6. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    Science.gov (United States)

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Aluminium-induced phospholipid signal transduction pathway in Coffea arabica suspension cells and its amelioration by silicic acid.

    Science.gov (United States)

    Quintal-Tun, Fausto; Muñoz-Sánchez, J Armando; Ramos-Díaz, Ana; Escamilla-Bencomo, Armando; Martínez-Estévez, Manuel; Exley, Christopher; Hernández-Sotomayor, S M Teresa

    2007-02-01

    Coffee (Coffea arabica L.) is of economic importance worldwide. Its growth in organic-rich acidic soils is influenced by aluminium such that coffee yield may be impaired. Herein we have used the Al-sensitive C. arabica suspension cell line L2 to analyse the effect of two different Al species on the phosphoinositide signal transduction pathway. Our results have shown that the association of Al with coffee cells was affected by the pH and the form of Al in media. More Al was associated with cells at pH 4.3 than 5.8, whereas when Al was present as hydroxyaluminosilicates (HAS) the association was halved at pH 4.3 and unchanged at pH 5.8. Two signal transduction elements were also evaluated; phospholipase C (PLC) activity and phosphatidic acid (PA) formation. PLC was inhibited ( approximately 50%) when cells were incubated for 2 h in the presence of either AlCl(3) or Al in the form of HAS. PA formation was tested as a short-term response to Al. By way of contrast to what was found for PLC, incubation of cells for 15 min in the presence of AlCl(3) decreased the formation of PA whereas the same concentration of Al as HAS produced no effect upon its formation. These results suggest that Al is capable to exert its effects upon signal transduction as Al((aq))(3+) acting upon a mechanism linked to the phosphoinositide signal transduction pathway.

  8. High-oleic sunflower, a new oil component; Die High-Oleic-Sunflower als neue Grundoelkomponente

    Energy Technology Data Exchange (ETDEWEB)

    Botz, O. [Natoil AG, Technopark Luzern (Switzerland)

    2007-07-01

    Achieved results from NATOIL {sup registered} proved that the application of the High-Oleic-Sunflower as a component of a base oil in lubricants is in general feasible. The target goals and properties have been realised with great success. To emphasize are particularly good results in relation to piston cleanliness, oxidative stability as well as fuel economy properties. The central fear that the High-Oleic-Sunflower would not be sufficiently stable concerning oxidation has been clearly refuted in diverse motor tests. The application of the High-Oleic Sunflower and of the here of manufactured esters enables the development of lubricants with much lower viscosity characteristics in comparison to mineral-oil-based lubricants, which may result in the overall reduction of the average drag torque by up to 30%. (orig.)

  9. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    Science.gov (United States)

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and overall CHD risk.

  10. CT在油酸致兔急性呼吸窘迫综合征早期诊断中的应用%The value of computed tomography in early diagnosis in rabbits with acute respiratory distress syndrome induced by oleic acid

    Institute of Scientific and Technical Information of China (English)

    金兆辰; 蒋文芳; 吉木森; 姚利群; 虞志新; 冯玉玲; 吴永红; 周红

    2010-01-01

    Objective To investigate the clinical value of computed tomography(CT)in early diagnosis by comparison of the changes of different defrees of aeratation in lung compartments of rabbits with acute respiratory distress syndrome(ARDS)induced by oleic acid.Method Twenty white rabbits were randomly(random number)divided into control group and oleic acid group.Oleic acid(0.1 mL/kg)was given intravenously to induce ARDS in cr room.Arterial blood gas analysis was determined every 15 rain.All rabbits underwent chest X-my and lung spiral cr scans examinations at basal state(T_0),200 mmHg<OI<300 mmHg(T_1)and OI<200 mmHg(T_2).The percentages of different degrees aeratation in different aerated lung compartments were measured by CT software at the same time.Changes in different lung compartments,chest images,and the correlation between lung volume and OI were investigated.Moreover,the wet/dry ratio and pathological changes in lung were examined.Data were evaluated by two-sample t-test and repeated measutement data analysis of variance,and Spearman raak correlation was used to analyze the correlation between two variables.Results(1)The percentages of non-aerated,poorly aerated and normally aerated compartment were significantly different at different intervals in the oleic add group (P<0.01),and the percentages of non-aerated compartment were(19.30±2.34)%at T_1 and)26.47±1.89)%at T_2,and those of the poorly aerted compartment were(28.08±2.70)%at T_1 and(37.40±1.78)%at T_2 which were higber than those in control group(P<0.01).While the percentages of normally aerated compartment were(47.38±3.19)%at T_1 and(30.82±3.25)%at T_2 which were lower than those in control group [(79.12±1.25)%at T_1 and(78.23±1.84)%at T_2](P<0.01),there were no significant differences in percentages of hyperinflated compartment between two groups(P>0.05).(2)There was a negative correlation in respect of OI between non-aerated and poorly aerated compartments(-0.745~-0.636)while the

  11. Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions.

    Science.gov (United States)

    Tsimas, Emmanuil S; Tyrovola, Konstantina; Xekoukoulotakis, Nikolaos P; Nikolaidis, Nikolaos P; Diamadopoulos, Evan; Mantzavinos, Dionissios

    2009-09-30

    The simultaneous photocatalytic oxidation of As(III) and humic acid (HA) in aqueous Degussa P25 TiO(2) suspensions was investigated. Preliminary photocatalytic studies of the binary As(III)/TiO(2) and HA/TiO(2) systems showed that As(III) was oxidized more rapidly than HA and the extent of photocatalytic oxidation of each individual component (i.e. As(III) or HA) increased with decreasing its initial concentration and/or increasing catalyst loading. The simultaneous photocatalytic oxidation of As(III) and HA in the ternary As(III)/HA/TiO(2) system showed that both As(III) and HA oxidation was reduced in the ternary system compared to the corresponding binary systems. The effect of operating conditions in the ternary system, such as initial As(III), HA and TiO(2) concentrations (in the range 3-20mg/L, 10-100mg/L and 50-250 mg/L respectively), initial solution pH (3.6-6.7) and reaction time (10-30 min), on photocatalytic As(III) and HA oxidation was assessed implementing a two-level factorial experimental design methodology. Seven and ten factors were found statistically important in the case of photocatalytic As(III) and HA oxidation respectively. Based on these statistically significant factors, a first order polynomial model describing As(III) and HA photocatalytic oxidation was constructed and a very good agreement was obtained between the experimental values and those predicted by the model, while the observed differences may be readily explained as random noise.

  12. Effect of oleic acid and glycerol on mechanical properties of zein film and its mechanism investigation%油酸与甘油对玉米醇溶蛋白膜机械性能的影响及机理探讨

    Institute of Scientific and Technical Information of China (English)

    徐晖; 张根义

    2012-01-01

    The effect of two kinds of different nature plasticizer (oleic acid and glycerol) on zein membrane mechanical properties and possible mechanisms was studied according to the index of tensile strength, elongation,water permeability. It was found that oleic acid and glycerol could significantly improve the mechanical properties of zein films,and the optimal quantity was 20% (g/g zein);compound plasticized study found that when added 20% mixed plasticizer into zein film,the best ratio of oleic acid and glycerol was 3:1 ,whose tensile strength had increased 190%,elongation had increased 70% compared to non-plasticized zein films. Further statistical analysis showed that oleic acid and glycerol had synergy in plasticized zein films. Glass transition temperature(Tg) and infrared spectroscopy(FT-IR) analysis found that the Tg of zein film decreased after plasticized,and the largest decline was found in the film which was plasticized by plasticized compound (oleic acid:glycerol=3:1)by FT-IR spectra analysis,it was found that when the zein film was plasticized by 20% plasticized compound,the characteristic peak of glycerol moved to higher wavelengths,which indicated plasticization had been strengthened. By secondary structure analysis of zein films,it was found that,although slight changes could be found in secondary structure after the zein film was plasticized by compound plasticizer,significant levels had not be reached,so,the chemical mechanism of the plastication of zein film was likely to be based on the non-covalent interactions (hydrophobic force and hydrogen bonding) between plasticizers and zein.%主要研究了两种性质不同的增塑剂(油酸和甘油)对玉米醇溶蛋白(zein)膜机械性能的影响和可能的机理,以抗拉伸强度(TS)、伸长率(E)、透水率(WVP)为指标,结果发现油酸和甘油都能显著改善zein膜的机械性能,且添加量都以20%(g/g zein)最优;复

  13. Simultaneous Determination of Vitamin E Oleate,Vitamin E and Oleic Acid by Ultraviolet Spectroscopy Method%紫外光谱法对维生素E油酸酯、维生素E与油酸的同时测定

    Institute of Scientific and Technical Information of China (English)

    粟晖; 黎国梁; 姚志湘; 郭晓菲

    2009-01-01

    A simultaneous determination method was established for the determination of vitamin E, oleic acid and vitamin E oleate. The mixture signal was gotten by UV - Vis fiber-optical spectrometer. In this experiment, calibration set and prediction set were designed by uniform design. A calibration model of three components system for simultaneous determination was built by the partial least square at 255 - 315 nm and a predicted model of oleic acid was improved by interval PLS algorithm at selected optimal interval. The results showed that, comparing with the outputs of PLS, iPLS could apparently improve the accuracy of prediction, especially for components with low absorbance signal, and the maximum relative error reduced from 54. 7% to 8. 98% . Therefore, the constructed model was suitable for the requirement of in-situ anlysis for dynamic study.%建立了混合体系中维生素E、油酸和维生素E油酸酯同时测定的方法,用光纤光谱仪获取混合体系紫外-可见透射光谱.实验按均匀设计建立校正集和预测集,在255 ~315 nm波段采用偏最小二乘法建立了同时定量测定该3组分的校正模型,并用间隔区间偏最小二乘法(iPLS)通过优选建模区间改进油酸的预测模型.采用iPLS能够显著提高模型准确度,尤其对光谱弱响应的物质,最大相对误差从PLS直接建模的54.7%降至iPLS的8.98%,建立的模型可满足动力学研究的原位分析需要.

  14. Composition of human VLDL triacylglycerols after ingestion of olive oil and high oleic sunflower oil.

    Science.gov (United States)

    Ruiz-Gutiérrez, V; Morgado, N; Prada, J L; Pérez-Jiménez, F; Muriana, F J

    1998-03-01

    This work was undertaken to determine the effect of diets enriched with olive oil or high oleic sunflower oil on very low density lipoprotein (VLDL) triacylglycerol composition of healthy human subjects. Both oils contain a similar proportion of monounsaturated fatty acids (MUFA) but differ in their triacylglycerol composition. All 22 human subjects initially consumed a low fat, high carbohydrate diet as recommended by the National Cholesterol Education Program (NCEP-I). They then consumed the two experimental oils (40% dietary energy) in a crossover design. The olive oil and high oleic sunflower oil diets resulted in significant increases in palmitoleic (55%, P 100%, P sunflower oil diet increased the content of stearic acid (60%, P 100%, P sunflower oil diet). Intake of olive oil, in particular, significantly decreased the content of sn-glycerol-tripalmitate (36%, P sunflower oil diets. In addition, olive oil, but not high oleic sunflower oil, further contributed to VLDL triacylglycerols that contained alpha-linolenic and docosahexaenoic acids acylated in the sn-2 position. These data suggest that differences in the composition of VLDL triacylglycerols may be of major importance in explaining the beneficial effects of dietary olive oil in reducing the atherogenic risk profile in healthy subjects.

  15. Producing a highly concentrated coal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mokudzu, K.; Atsudzima, T.; Kiyedzuka, Y.

    1983-06-03

    Coal from wet and dry grinding is loaded into a mixer with a mixer arm with the acquisition of a highly concentrated suspension. Foamers (for instance, alkylbenzolsulfonate) and foam stabilizers (for instance diethanolamide of lauric acid) are added in a ratio of 10 to (2 to 5). The high fluidity of the suspension is maintained by injecting air into the suspension and an 80 percent concentration of the suspension is achieved.

  16. Scientific Opinion on application (EFSA-GMO-NL-2010-78 for the placing on the market of herbicide-tolerant, increased oleic acid genetically modified soybean MON 87705 for food and feed uses, import and processing under Regulation (EC No 1829/2003 from Monsanto

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2012-10-01

    Full Text Available

    This scientific opinion is a risk assessment of the genetically modified, herbicide-tolerant, increased oleic acid soybean MON 87705 for food and feed uses, import and processing. MON 87705 contains the soybean FAD2-1A/FATB1-A gene fragments down-regulating endogenous FAD2 and FATB enzymes and the CP4 epsps gene cassette conferring tolerance to glyphosate-containing herbicides. Bioinformatic analyses and genetic stability studies did not raise safety issues. The levels of the CP4 EPSPS protein in soybean MON 87705 have been sufficiently analysed. MON 87705 differs from the conventional counterpart in the fatty acid profile (proportion of (C18:1 oleic acid increased and proportions of (C18:2 linoleic acid and (C16:0 palmitic acid decreased in seeds and the presence of the CP4 EPSPS protein. Scientific risk assessment of soybean MON 87705 was carried out in the context of the intended use as specified by the applicant, namely its use for food and feed as any conventional soybean except for the oil derived from soybean MON 87705, which is to be used in margarine, salad dressing, mayonnaise and home-use liquid vegetable oil, excluding the use of soybean MON 87705 oil for commercial frying.

    The safety assessment identified no concerns regarding potential toxicity and allergenicity of the CP4 EPSPS protein. The altered fatty acid profile did not raise concerns regarding toxicity. The overall allergenicity of the whole plant was not changed by the genetic modification. The estimated changes in intake levels of these fatty acids do not raise nutritional concerns in the context of the intended use as specified by the applicant. A feeding study on broiler chickens confirmed that defatted meal of soybean MON 87705 is as nutritious as meals produced from its conventional counterpart and non-GM reference varieties. There are no indications of an increased likelihood of establishment and spread of feral soybean plants

  17. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

    OpenAIRE

    Choi, S H; Park, S. K.; B. J. Johnson; Chung, K. Y.; Choi, C. W.; Kim, K. H.; Kim, W. Y.; Smith, B.

    2015-01-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/D...

  18. Preparation, characterization and in vitro MR imaging of poly (D,L-lactide-co-glycolide acid) nanoparticles loaded with iron oxide nanocrystals with oleic acid coating%装载油酸修饰氧化铁的聚乳酸/羟基乙酸纳米粒的制备、表征及体外MR显像

    Institute of Scientific and Technical Information of China (English)

    孙玲; 赵建农; 郭大静; 周君; 张瑜; 杨静; 王志刚

    2013-01-01

    目的 制备装载油酸修饰氧化铁的聚乳酸/羟基乙酸(PLGA)纳米粒(磁性PLGA纳米粒),并对其理化性质进行表征,观察其体外MR显像效果.方法 以油酸修饰氧化铁和PLGA-COOH为原料,采用单乳化法制备磁性PLGA纳米粒.以激光共聚焦扫描显微镜及透射电镜观察其表面及内部结构;Malvern激光分析仪测量其粒径大小、分布及表面电位;X射线粉末衍射仪分析其内部物象结构;原子吸收光谱法测量样品中Fe的浓度;热重分析法分析其内装载的Fe3O4的量.将稀释到不同浓度的磁性PLGA纳米粒分别置于Eppendof管中,行MR扫描.结果 所得样品为棕色混悬液,大小均匀,粒径为(292.70±77.07)nm,多分散指数为0.009,粒径分布较窄;Zeta电位为(-10.20±4.34)mV;透射电镜和X射线粉末衍射法证实其内包裹大量Fe3O4颗粒;原子吸收光谱法计算得Fe3O4的包封率为39.6%,Fe3O4的负载量为1.036%.体外MR显像显示,所得样品能使T2*信号强度降低,且样本中Fe浓度越大,其信号强度越低.结论 制备所得磁性PLGA纳米粒粒径小,分布窄,能有效降低T2*信号强度,为构建潜在多功能MRI分子探针奠定了基础.%Objective To prepare biodegradable poly (D, L-lactide-co-glycolide acid) (PLGA) nanoparticles loaded with iron oxide nanocrystals with oleic acid coating, and to explore the effect for in vitro MR imaging. Methods Magnetic PLGA nanoparticles were prepared using modified single oil-in-water emulsion method utilizing iron oxide nanocrystals with o-leic acid coating and PLGA-COOH. Laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM) analysis were carried out to examine the surface and interior morphology of PLGA nanoparticles. The size, distribution and zeta potential were observed using Malvern laser analyzer. X-ray powder diffraction analysis (XRD) was used to confirm the phase composition. Atomic absorption spectrophotometry (AAS) and

  19. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  20. Effect of Oleic Acid-modified Nano-CaCO3 on the Crystallization Behavior and Mechanical Properties of Polypropylene%油酸修饰纳米CaCO3对PP结晶行为和力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    申屠宝卿; 李继鹏; 翁志学

    2006-01-01

    Oleic acid (OA)-modified CaCO3 nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed that OA attached to the surface of CaCO3 nanoparticles with the ionic bond. Effect of OA concentration on the dispersion stability of CaCO3 in heptane was also studied, and the result indicated that modified CaCO3 nanoparticles dispersed in heptane more stably than unmodified ones. The optimal proportion of OA to CaCO3 was established. The effect of modified CaCO3 nanoparticles on crystallization behavior of polypropylene (PP) was studied by means of DSC. It was found that CaCO3 significantly increased the crystallization temperature, crystallization degree and crystallization rate of PP, and the addition of modified CaCO3 nanoparticles can lead to the formation of β-crystal PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the flexural strength increased by about 20%.

  1. Self-assembled microstructures from 1,2-ethanediol suspensions of pure and binary mixtures of neutral and acidic biological galactosylceramides.

    Science.gov (United States)

    Archibald, D D; Mann, S

    1994-01-01

    Optical and electron microscopy were employed to characterize microstructures formed by thermal mechanical treatment of glycol suspensions of various pure and binary mixtures of the brain-derived galactosphingolipids hydroxy fatty acid cerebroside (HFA-Cer), non-hydroxy fatty acid cerebroside (NFA-Cer) and sulfatide (S-Cer). Negative staining indicated some new features of the neutral cerebroside suspensions in glycol. HFA-Cer formed a small fraction of both unilamellar cylinders (ULCs) (lumina ca. 27 nm) and giant multilamellar cochleates in addition to the typical nonhelical multilamellar cylinders (MLCs) (lumina ca. 10-30 nm). NFA-Cer formed a gel composed of a significant fraction of very long ULCs (lumina ca. 17 nm) without helical substructure, in addition to multilamellar helical structures such as ribbons and cylinders (lumina ca. 70 nm). Anisotropic lamellar micelle-shards of NFA-Cer were also detected by negative staining. S-Cer formed short ULCs (lumina ca. 44 nm) with no obvious helical substructure. Complex mixture data are thought to result from thermodynamic and kinetic factors. HFA-Cer is highly insoluble and promotes a network of rigid intralamellar hydrogen bonding that tends to exclude other lipids. NFA-Cer stabilizes helical defects in the lamellae, and S-Cer enhances disorder or micellization. The processes of microstructure nucleation and lipid phase separation were affected by mixtures such that metastable microstructures were trapped or the length of lamellar cylinders was altered.

  2. Heat-initiated prebiotic formation of peptides from glycine/aspartic acid and glycine/valine in aqueous environment and clay suspension

    Science.gov (United States)

    Pant, Chandra Kala; Lata, Hem; Pathak, Hari Datt; Mehata, Mohan Singh

    2009-04-01

    The effect of heat on the reaction system of glycine/aspartic acid and glycine/valine in the aqueous environment as well as in montmorillonite clay suspension with or without divalent cations (Ca2+, Mg2+ and Ni2+) has been investigated at 85°C±5°C for varying periods under prebiotic drying and wetting conditions. The resulting products were analysed and characterized by chromatographic and spectroscopic methods. Peptide formation appears to depend on the duration of heat effect, nature of reactant amino acids and, to some extent, on montmorillonite clay incorporated with divalent cations. In the glycine/aspartic acid system, oligomerization of glycine was limited up to trimer level (Gly)3 along with the formation of glycyl-aspartic acid, while linear and cyclic peptides of aspartic acid were not formed, whereas the glycine/valine system preferentially elongated homo-oligopeptide of glycine up to pentamer level (Gly)5 along with formation of hetero-peptides (Gly-Val and Val-Gly). These studies are relevant in the context of the prebiotic origin of proteins and the role of clay and metal ions in condensation and oligomerization of amino acids. The length of the bio-oligomer chain depends upon the reaction conditions. However, condensation into even a small length seems significant, as the same process would have taken millions of years in the primitive era of the Earth, leading to the first proteins.

  3. Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2014-12-01

    Full Text Available Composite materials prepared by loading polycrystalline TiO2 powders with lipophilic highly branched Cu(II- and metal-free phthalocyanines or porphyrins, which have been used in the past as photocatalysts for photodegradative processes, have been successfully tested for the efficient photoreduction of carbon dioxide in aqueous suspension affording significant amounts of formic acid. The results indicated that the presence of the sensitizers is beneficial for the photoactivity, confirming the important role of Cu(II co-ordinated in the middle of the macrocycles. A comparison between Cu(II phthalocyanines and Cu(II porphyrins indicated that the Cu(II- phthalocyanine sensitizer was more efficient in the photoreduction of CO2 to formic acid, probably due to its favorable reduction potential.

  4. Photoreduction of carbon dioxide to formic acid in aqueous suspension: a comparison between phthalocyanine/TiO2 and porphyrin/TiO2 catalysed processes.

    Science.gov (United States)

    Mele, Giuseppe; Annese, Cosimo; D'Accolti, Lucia; De Riccardis, Alberto; Fusco, Caterina; Palmisano, Leonardo; Scarlino, Anna; Vasapollo, Giuseppe

    2014-12-30

    Composite materials prepared by loading polycrystalline TiO2 powders with lipophilic highly branched Cu(II)- and metal-free phthalocyanines or porphyrins, which have been used in the past as photocatalysts for photodegradative processes, have been successfully tested for the efficient photoreduction of carbon dioxide in aqueous suspension affording significant amounts of formic acid. The results indicated that the presence of the sensitizers is beneficial for the photoactivity, confirming the important role of Cu(II) co-ordinated in the middle of the macrocycles. A comparison between Cu(II) phthalocyanines and Cu(II) porphyrins indicated that the Cu(II)- phthalocyanine sensitizer was more efficient in the photoreduction of CO2 to formic acid, probably due to its favorable reduction potential.

  5. Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species.

    Science.gov (United States)

    Horn, Patrick J; Sturtevant, Drew; Chapman, Kent D

    2014-01-01

    Targeted increases in monounsaturated (oleic acid) fatty acid content of refined cottonseed oil could support improved human nutrition and cardiovascular health. Genetic modifications of cottonseed fatty acid composition have been accomplished using several different molecular strategies. Modification of oleic acid content in cottonseed embryos using a dominant-negative protein approach, while successful in effecting change in the desired fatty acid composition, resulted in reduced oil content and seed viability. Here these changes in fatty acid composition were associated with changes in dominant molecular species of triacylglycerols (TAGs) and their spatial distributions within embryo tissues. A combination of mass spectrometry (MS)-based lipidomics approaches, including MS imaging of seed cryo-sections, revealed that cotton embryos expressing a non-functional allele of a Brassica napus delta-12 desaturase showed altered accumulation of TAG species, especially within cotyledonary tissues. While lipid analysis of seed extracts could demonstrate detailed quantitative changes in TAG species in transgenics, the spatial contribution of metabolite compartmentation could only be visualized by MS imaging. Our results suggest tissue-specific differences in TAG biosynthetic pathways within cotton embryos, and indicate the importance of considering the location of metabolites in tissues in addition to their identification and quantification when developing a detailed view of cellular metabolism.

  6. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L. plants

    Directory of Open Access Journals (Sweden)

    Shijiang eCao

    2013-12-01

    Full Text Available Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO trait in safflower we have profiled the microRNA (miRNA populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unravelling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.

  7. 饲料中植物油替代鱼油对大西洋鲑肝细胞油酸跨膜吸收的影响%OLEIC ACID TRANS-MEMBRANE UPTAKE IN HEPATOCYTES OF ATLANTIC SALMON (SALMO SALARL.) AND EFFECT OF REPLACING DIETARY FISH OIL WITH VEGETABLE OIL

    Institute of Scientific and Technical Information of China (English)

    周继术; Bente E. Torstensen; Ingunn Stubhaug

    2014-01-01

    Taking [1-14C] OA (oleic acid;18:1n-9) as the indicator, the uptake of OA in Atlantic salmon (Salmo salar L.) hepatocyte with different membrane fatty acid composition induced by dietary fish oil (FO) and vegetable oil (VO) diets was determined to investigate the effect of replacing dietary fish oil with vegetable oil on fatty acid uptake and to pro-vide the probability of replacing dietary fish oil with vegetable oil in Atlantic salmon diet. Atlantic salmon post smolt was fed diets containing either 100% FO or VO for 5 months to produce hepatocytes with typical FO and VO fatty acid composition, then OA uptake in isolated hepatocytes were studied by incubating with [1-14C] OA and 37.5 µmol/L OA (1/30, mol/mol, 0.3 µCi/flask) for 2h and by calculating the radioactivity in the cells. Meanwhile total RNA of the other same batch of FO and VO hepatocytes were extracted and the relative expression of FATP (fatty acid transport protein) and FAT/CD36 (fatty acid translocase) were determined by RT-PCR. The result showed that OA uptake in FO and VO was (0.924±0.258) nmol/(h·million cells) cells and (0.888±0.179) nmol/(h·million cells) respectively and there was no significant different between them (P>0.05). The relative expression ofFATP andFAT/CD36 were not significantly di-fferent between FO and VO hepatocytes too. The results indicate that by the same OA uptake between FO and VO hepatocytes, replacing dietary FO with VO was available in Atlantic salmon diet.%以[1-14C]油酸(oleic acid;18:1n-9, OA)为指示剂,研究了不同饲料油源饲喂下大西洋鲑肝细胞膜脂肪酸组成受到改变时该细胞对OA吸收的状况,以探讨植物油(Vegetable oil, VO)替代鱼油(Fish oil, FO)对大西洋鲑肝细胞脂肪酸跨膜吸收的影响,为大西洋鲑饲料中植物油替代鱼油的可行性提供理论依据。试验先以鱼油和大豆油为油源配制两种全价配合饲料,分别饲喂大西洋鲑幼鲑5个月,使其产生不同的脂肪酸组

  8. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.

    Science.gov (United States)

    Meledandri, Carla J; Stolarczyk, Jacek K; Ghosh, Swapankumar; Brougham, Dermot F

    2008-12-16

    We report the preparation of monodisperse maghemite (gamma-Fe2O3) nanoparticle suspensions in heptane, by thermal decomposition of iron(III) acetylacetonate in the presence of oleic acid and oleylamine surfactants. By varying the surfactant/Fe precursor mole ratio during synthesis, control was exerted both over the nanocrystal core size, in the range from 3 to 6 nm, and over the magnetic properties of the resulting nanoparticle dispersions. We report field-cycling 1H NMR relaxation analysis of the superparamagnetic relaxation rate enhancement of nonaqueous suspensions for the first time. This approach permits measurement of the relaxivity and provides information on the saturation magnetization and magnetic anisotropy energy of the suspended particles. The saturation magnetization was found to be in the expected range for maghemite particles of this size. The anisotropy energy was found to increase significantly with decreasing particle size, which we attribute to increased shape anisotropy. This study can be used as a guide for the synthesis of maghemite nanoparticles with selected magnetic properties for a given application.

  9. Scientific Opinion on application EFSA-GMO-NL-2007-45 for the placing on the market of herbicide-tolerant, high-oleic acid, genetically modified soybean 305423 for food and feed uses, import and processing under Regulation (EC No 1829/2003 from Pioneer

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Genetically Modified Organisms (GMO

    2013-12-01

    Full Text Available Soybean 305423 was developed through particle bombardment and contains gm-fad2-1 and gm-hra expression cassettes, conferring a high oleic acid profile and tolerance to acetolactate synthase (ALS-inhibiting herbicides. Bioinformatic analyses and genetic stability studies did not raise safety issues. Levels of the GM-HRA protein in soybean 305423 have been sufficiently analysed. Soybean 305423 differs from the conventional counterpart in the seed fatty acid profile and for the presence of the GM-HRA protein. It is agronomically equivalent to non-GM reference soybeans. The safety assessment of GM-HRA identified no concerns regarding potential toxicity and allergenicity. There are no indications that the overall allergenicity of soybean 305423 has changed. Nutritional assessment on soybean 305423 oil and derived food products did not identify concerns on human health and nutrition. There are no concerns regarding the use of feeding stuffs derived from soybean 305423. There are no indications of an increased likelihood of establishment and spread of feral GM soybean plants. Environmental risks associated with an unlikely, but theoretically possible, horizontal gene transfer from soybean 305423 to bacteria have not been identified. Potential biotic and abiotic interactions of soybean 305423 were not considered to be an issue owing to the low level of environmental exposure. The post-market environmental monitoring plan is in line with the scope of soybean 305423. The EFSA GMO Panel considers that the information available for soybean 305423 addresses the scientific comments raised by the Member States and states that the soybean 305423, as described in the application, is as safe as its conventional counterpart with respect to potential effects on human and animal health and the environment in the context of the scope. The GMO Panel recommends a post-market monitoring plan, focusing on the collection of consumption data for the European

  10. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    Science.gov (United States)

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  11. Zeolite-catalyzed additions of aromatic compounds to oleic acid

    Science.gov (United States)

    There is significant research interest in developing new materials from vegetable oils and animal fats. Biobased materials can be more environmentally friendly because they tend to have good biodegradability and are derived from renewable resources. In this talk, efficient approaches for the addit...

  12. Evaluation of oleic acid as additive in automatic transmission fluid

    Science.gov (United States)

    Khairuldean, A. K.; Ing, T. Chiong; Bambang, S.; Baharin, T. Kamarul; Wira, J. Y.; Syahrullail, S.

    2012-06-01

    Transmission fluid has already being monopolized by petroleum oil over these years, either mineral oil or synthetic oil, the base oil originated from the crude oil. Currently, with environmental issue becomes globally concerned, it is time to move toward green technology and more to the sustainability, resource renewability and biodegradability. To respond to this challenge, a research focusing on development of environmental friendly lubricant for Automatic Transmission (AT) is conducted. In this paper, the Refined, Bleached, and Deodorized Palm-Olein (RBDPO) mixed with the Automatic Transmission Fluid (ATF), is developed and tested. The research focuses on some parameters such as anti wear and friction coefficient characteristics. The test is conducted using four ball wear tester machine to analyze anti wear of the lubricant as well as to simulate the sliding surface of gear operation inside the transmission which is the most critical operation condition for the lubricant. The method of testing is based on ASTM D4172 Test B condition for wear measurement. By comparing the experimental results between mixed lubricants and the commercial ATF, it can be seen that the palm olein is very potential to become a base oil for transmission lubricant in the future due to its promising performance of the tested physical properties.

  13. Enhancing anaerobic treatment of wastewaters containing oleic acid

    NARCIS (Netherlands)

    Hwu, C.S.

    1997-01-01

    INTRODUCTION

    Lipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater

  14. Oleic and vaccenic acid levels in lipid clases of tumors.

    Science.gov (United States)

    Wood, R

    1976-07-01

    The isomeric octadecenoate composition of triglyceride, phosphatidyicholine, and phosphatidylethanolamine classes from a variety of rat and mouse tumors was examined. Phosphatidylethanolamine from the tumors contained a higher percentage of octadecenoate than reported for many normal tissues. The octadecenoate fractions of the three lipid classes from various tumors consisted of ca. 75% or greater oleate, with vaccenate making up the balance. These data indicate that the loss of lipid class specificity for isomeric octadecenoates reported in hepatomas (Lipids 10:746, 1975, and Lipids 9:987, 1974) also occurs in other tumors.

  15. Enhancing Anaerobic Treatment of Wastewaters Containing Oleic Acid.

    NARCIS (Netherlands)

    Ching-Shyung, H.

    1997-01-01

    INTRODUCTIONLipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater concern when consider

  16. The kinetics of photocatalytic degradation of aliphatic carboxylic acids in an UV/TiO2 suspension system.

    Science.gov (United States)

    Chen, Q; Song, J M; Pan, F; Xia, F L; Yuan, J Y

    2009-10-01

    Kinetic studies on the photocatalytic degradation of aliphatic carboxylic acids were carried out in a slurry photoreactor with in-situ monitoring, employing artificial UV light as the source of energy and nano-TiO2 powder as the catalyst. The influences on the photocatalytic degradation such as the initial concentration of reactant (C0), catalyst dosage (CTiO2), UV intensity (Ia) and pH value have been investigated. Good agreement has been obtained between the value calculated by Langmuir-Freundlich-Hinshelwood (L-F-H) model and experimental data, with coefficient of multiple determination (R2) varying from 0.880 to 0.999. The L-F-H model has been proven to be feasible in describing the kinetic characteristic of the photocatalytic degradation of aliphatic carboxylic acids. Moreover, the apparent reaction rate constant (k) of the photocatalytic degradation of dicarboxylic acids is higher than that of monocarboxylic acids with the same carbon atoms. This shows that the photocatalytic degradation rate is favoured by different chemical structure.

  17. 异丙酚对油酸型急性肺损伤兔血清TNF-α、IL-1β水平的影响%Effect of propofol on serum TNF-β and IL-1β in rabbit with acute lung injury induced by oleic acid

    Institute of Scientific and Technical Information of China (English)

    蒋柳明; 金建国; 祝卿; 吉伟; 林丽娜

    2011-01-01

    AIM: To observe the effects of propofol on serum TNF-a, IL-1β in rabbit with acute lung injury (ALI) induced by oleic acid (OA) and explore its possible protective mechanism and provide evidence for the choice of anesthesia drug in clinical anesthesia. METHODS: Twenty four health Japanese white rabbits were randomly divided into three groups (n = 8):control group (group I ), model group (group Ⅱ ) and propofol treatment group (group Ⅲ). The rabbits in group Ⅱ and Ⅲ were injected oleic acid (OA) (0.08 mL/kg) by marginal veins of ear to establish ALI models. The rabbits of group IE were injected propofol ( 8 mg·kg-1 ·h-1 ) with pump, while group I and group II were injected normal saline (0.8 mL·kg-1· h-1) to end of the experiment after establishing the ALI models successfully. The concentration of TNF-α and interleukin-lβ in serum were detected by ELISA at the points of propofol or normal saline infusion (To)? 1 h after administration (T1 ) , 2 h after administration (T2), 3 h after administration (T3), 4 h after administration (T4), and blood gas analysis of them had been performed to calculate the PaO2/ FiO2 Ratio. RESULTS: The concentrations of TNF-a and interleukin-1β in serum in group I had no difference at different points (P>0. 05). The concentration of TNF-a began to increase atT1 , reached to peak at T2 and decreased at T3, T4, but still higher than those of T0(P<0. 05). The concentrations of TNF-a in group TJ increased more obviously than those of group I (P <0. 05) and were lower in group fll than those of group II ( P < 0. 05 ) at the corresponding time point. Compared with T0 the concentrations of interleukin-ip in group I began to increase at T1 , reached to the peak at T4 ( P < 0. 05) and were higher than those of group I at the corresponding time points (P<0. 05), increased lowerly in group m than those of group II (P<0. 05). The oxygenation index at different time points had no significant change in group I , decreased gradually

  18. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  19. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age.

    Science.gov (United States)

    Strandvik, Birgitta; Ntoumani, Eleni; Lundqvist-Persson, Cristina; Sabel, Karl-Göran

    2016-04-01

    Myelination is important perinatally and highly dependent on long-chain saturated and monounsaturated fatty acids. Long-chain polyunsaturated fatty acids, nowadays often supplemented, inhibit oleic acid synthesis. Using data from a premature cohort, we studied if nervonic, lignoceric and oleic acids correlated to growth and early development up to 18 months corrected age. Small for gestational age infants had lower concentrations than infants appropriate for gestational age. Only oleic acid was negatively correlated to long-chain polyunsaturated fatty acids. Oleic and lignoceric acids correlated to social interaction at one month, and nervonic acid to mental, psychomotor and behavioral development at 6, 10 and 18 months, also when adjusted for several confounders. Negative association between oleic acid and long-chain polyunsaturated fatty acids suggests inhibition of delta-9 desaturase, and nervonic acid´s divergent correlation to lignoceric and oleic acids suggests different metabolism in neonatal period. Our results may have implications for the supplementation of premature infants.

  20. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension.

    Science.gov (United States)

    Li, Jing; Zhu, Li; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi-Chung; Zong, Yu; Li, Wei-Jiang

    2013-10-01

    Biologically active β-1,3-oligosaccharides with rapidly growing biomedical applications are produced from hydrolysis of curdlan polysaccharide. The water-insoluble curdlan impedes its hydrolysis efficiency which is enhanced by our newly developed alkali-neutralization treatment process to increase the stability of curdlan suspension to more than 20 days, while the untreated control settled within 5 min. A putative double-layer structure model comprising of a compact core and a hydrated outer layer was proposed to describe the treated curdlan particles based on sedimentation and scanning electron microscopy observation. This model was verified by single- and two-step acid hydrolysis, indicative of the reduced susceptibility to hydrolysis when close to the compact core. Electrospray ionization-mass spectrometry, thin-layer chromatography analyses, and effective HPLC procedure led to the development of improved process to produce purified individual β-1,3-oligosaccharides with degrees of polymerization from 2 to 10 and potential for biomedical applications from curdlan hydrolyzate. Our new curdlan oligosaccharide production process offers an even better alternative to the previously published processes.

<