WorldWideScience

Sample records for olefin double bonds

  1. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  2. Radiation-induced copolymerization of hexafluoroacetone with α-olefins

    International Nuclear Information System (INIS)

    Matsuda, O.; Watanabe, S.; Okamoto, J.; Machi, S.; Tabata, Y.

    1977-01-01

    The copolymerization of hexafluoroacetone with higher α-olefins above butene, such as 1-pentene (I), 1-hexene (II), 1-octene (III), 2-methyl-1-butene (IV), 2-methyl-1-pentene (V), 3-methyl-1-butene (VI), and 4-methyl-1-pentene (VII) was studied at relatively low temperatures by γ-ray irradiation. Copolymerization of II, IV, V, and VII with hexafluoroacetone was found to scarcely take place at -78 0 C in bulk, but the addition of trichlorotrifluoroethane in amounts to yield equimolar mixtures resulted in conversion of 15.7 percent for IV and of 2.1 to 4.0 percent for the other α-olefins. Higher conversion of V at -78 0 C than at 0 0 C suggest that copolymerization may take place via an ionic mechanism. The effects of various additives on the copolymerization are reported. Infrared spectral studies indicated that the double bond of the α-olefins is opened to form a polymer. The C--O double bond of the hexafluoroacetone and the α-olefin double bond are opened to form the copolymer

  3. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    Science.gov (United States)

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  4. Hydrogen Transfer from Hantzsch 1,4-Dihydropyridines to Carbon-Carbon Double Bonds under Microwave Irradiation

    OpenAIRE

    Jean Jacques Vanden Eynde; Didier Barbry; Guy Cordonnier; Séverine Torchy

    2002-01-01

    1,4-Dihydropyridines (DHPs) have been used in the reduction of carbon-carbon double bonds under microwave irradiation without solvent. The efficiency of the reactions is dramatically dependent on the steric effects in the DHPs and on the electronic effects in the olefins.

  5. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Palladium-Catalyzed ortho-Olefination of Phenyl Acetic and Phenyl Propylacetic Esters via C-H Bond Activation.

    Science.gov (United States)

    Hu, Jundie; Guan, Mingyu; Han, Jian; Huang, Zhi-Bin; Shi, Da-Qing; Zhao, Yingsheng

    2015-08-21

    A highly regioselective palladium-catalyzed ester-directed ortho-olefination of phenyl acetic and propionic esters with olefins via C-H bond activation has been developed. A wide variety of phenyl acetic and propionic esters were tolerated in this transformation, affording the corresponding olefinated aromatic compounds. The ortho-olefination of heterocyclic acetic and propionic esters also took place smoothly giving the products in good yields, thus proving the potential utility of this protocol in synthetic chemistry.

  7. 1-acetylvinyl acrylates: new captodative olefins bearing an internal probe for the evaluation of the relative reactivity of captodative against electron-deficient double bonds in Diels-Alder and Friedel-Crafts reactions

    International Nuclear Information System (INIS)

    Herrera, Rafael; Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mich.; Jimenez-Vazquez, Hugo A.; Delgado, Francisco; Tamariz, Joaquin; Soederberg, Bjoern C.G.

    2005-01-01

    The captodative olefins 1-acetylvinyl esters of methacrylic and trans-crotonic acids, 3a and 3b, have been prepared. The presence of a second double bond in the molecule, acting as an internal probe, allowed us to compare their relative reactivity in Diels-Alder and Friedel-Crafts reactions. The reactivity was evaluated with cyclopentadiene (6) as diene in Diels-Alder cycloadditions, and with furan (9) and thiophene (10) as heteroaromatic Friedel-Crafts substrates. In both processes, the captodative enone double bond proved to be more reactive than that in the acrylic moiety. FMO theory accounted for this chemo selectivity as a consequence of the major π contribution of the enone to the LUMO of these molecules. The slight exo stereoselectivity observed in the cycloaddition to 6 parallels the higher stability of the corresponding transition state, according to the results of B3LYP/6-311G(d,p) calculations. (author)

  8. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura; Poater, Albert; Cazin, Catherine S J; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  9. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts

    KAUST Repository

    Merle, Nicolas

    2017-09-25

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2tBu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2tBu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  10. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts

    KAUST Repository

    Merle, Nicolas; Le Qué mé ner, Fré dé ric; Barman, Samir; Samantaray, Manoja; Szeto, Kai C.; De Mallmann, Aimery; Taoufik, Mostafa; Basset, Jean-Marie

    2017-01-01

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2tBu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2tBu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  11. An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4.

    Science.gov (United States)

    Nicolaou, K C; Adsool, Vikrant A; Hale, Christopher R H

    2010-04-02

    PhI(OAc)(2) in the presence of OsO(4) (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with alpha-hydroxy ketones as byproduct. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO(4) (cat.), 2,6-lutidine, and PhI(OAc)(2).

  12. Copper(I)-catalyzed olefination of N-sulfonylhydrazones with sulfones.

    Science.gov (United States)

    Xu, Shuai; Gao, Yunpeng; Chen, Ri; Wang, Kang; Zhang, Yan; Wang, Jianbo

    2016-03-25

    The Cu(I)-catalyzed olefination of N-sulfonylhydrazones with sulfones via metal carbene intermediates is reported. This reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of carbon-carbon double bonds. Mechanistically, Cu(I) carbene formation and subsequent carbene migratory insertion are proposed as the key steps.

  13. A three-membered ring approach to carbonyl olefination.

    Science.gov (United States)

    Niyomchon, Supaporn; Oppedisano, Alberto; Aillard, Paul; Maulide, Nuno

    2017-10-23

    The carbon-carbon double bond, with its diverse and multifaceted reactivity, occupies a prominent position in organic synthesis. Although a variety of simple alkenes are readily available, the mild and chemoselective introduction of a unit of unsaturation into a functionalized organic molecule remains an ongoing area of research, and the olefination of carbonyl compounds is a cornerstone of such approaches. Here we show the direct olefination of hydrazones via the intermediacy of three-membered ring species generated by addition of sulfoxonium ylides, departing from the general dogma of alkenes synthesis from carbonyls. Moreover, the mild reaction conditions and operational simplicity of the transformation render the methodology appealing from a practical point of view.

  14. Comparative toxicity of various ozonized olefins to bacteria suspended in air

    Energy Technology Data Exchange (ETDEWEB)

    Dark, P A; Nash, T

    1970-01-01

    Air containing olefin vapor was treated with known amounts of ozone simulating natural concentrations. The bactericidal effect of the mixture was tested using microthreads sprayed with washed cultures of Escherichia coli var. communis or Micrococcus albus, aerosol strain. With 20 different olefins a wide range of activity was found, those in which the double bond formed part of a ring being the most bactericidal; gasoline vapor was about as active as the average open-chain olefin. The two organisms behaved similarly at the experimental relative humidity of 80%. The estimated amount of bactericidal substance present was only about one hundreth of that required to give the same kill with a 'conventional' air disinfectant; a simple physical explanation is proposed for this enhanced effect.

  15. Rhodium(I) catalysis in olefin photoreactions

    International Nuclear Information System (INIS)

    Salomon, R.G.; El Sanadi, N.

    1975-01-01

    The photorearrangement (254 nm) of 1,5-cyclooctadiene (1) in the presence of rhodium(I) chloride to give 1,4-cyclooctadiene (4) was found by deuterium labeling to involve an intramolecular [1,3] shift of hydrogen. A rate-determining cleavage of an allylic C--H bond is indicated by a deuterium isotope effect, k/sub H//k/sub D/ = 1.55 +- 0.03 for the 1 → 4 rearrangement. The acyclic 1,5-diene, 3,3-dimethyl-1,5-hexadiene (8), rearranges in the presence of rhodium(I) chloride upon uv irradiation (254 nm) to give cis-3,3-dimethyl-1,4-hexadiene (10) and the trans isomer 11 in a 1:4 ratio, respectively. This observation supports a mechanism for the photorearrangement of olefins catalyzed by rhodium(I) involving an initial photodissociation of one of two rhodium(I) coordinated carbon-carbon double bonds. This results in an increase in the coordinative unsaturation of rhodium(I) and enhances the proclivity of this d/sub s/ metal atom toward oxidative addition of an allylic C--H bond. A eta 3 -allylrhodium hydride intermediate then gives rearranged olefin by reductive elimination. Lastly, a novel photochemical, rhodium(I) catalyzed hydrogen transfer is reported which gives cyclooctene (7) from cyclooctadienes under unprecedentedly mild conditions. (auth)

  16. Borata-Wittig olefination reactions of ketones, carboxylic esters and amides with bis(pentafluorophenyl)borata-alkene reagents.

    Science.gov (United States)

    Wang, Tongdao; Kohrt, Sonja; Daniliuc, Constantin G; Kehr, Gerald; Erker, Gerhard

    2017-08-07

    The strongly electrophilic borane derivative amino-CH 2 CH 2 CH 2 -B(C 6 F 5 ) 2 6 was α-CH deprotonated with LiTMP to give the borata-alkene {[amino-(CH 2 ) 2 -CH[double bond, length as m-dash]B(C 6 F 5 ) 2 - ][Li + ]} 2 9 which underwent facile [2 + 2] cycloaddition reactions with benzophenone or fluorenone to yield the respective 1,2-oxaboretanides 11a,b. Compounds 9 and 11 were characterized by the X-ray diffraction. Thermolysis or hydrolysis of compounds 11a,b gave the corresponding borata-Wittig olefination products 12a,b. A variety of R-CH 2 -CH 2 -B(C 6 F 5 ) 2 boranes (conveniently generated by hydroboration of terminal alkenes R-CH[double bond, length as m-dash]CH 2 with Piers' borane [HB(C 6 F 5 ) 2 ]) were analogously deprotonated to give the respective borata-alkenes 16a-e (R: Ph-CH 2 -, n C 4 H 9 , t Bu, Cy, PhCH 2 CH 2 -). They underwent "non-classical" borata-Wittig olefination reactions with ethylformate to give the respective enolether carbonylation products, or their C 1 -elongated aldehydes (after hydrolysis). The borata-alkene [Ph-(CH 2 ) 2 -CH[double bond, length as m-dash]B(C 6 F 5 ) 2 - ] [Li + HTMP] (16a) gave the respective "non-classical" borata-Wittig olefination products, the enolethers 25a,b and 27, respectively, upon treatment with methyl- or ethyl acetate or γ-butyrolactone.

  17. Rhenium-catalyzed dehydrogenative olefination of C(sp(3))-H bonds with hypervalent iodine(III) reagents.

    Science.gov (United States)

    Gu, Haidong; Wang, Congyang

    2015-06-07

    A dehydrogenative olefination of C(sp(3))-H bonds is disclosed here, by merging rhenium catalysis with an alanine-derived hypervalent iodine(III) reagent. Thus, cyclic and acyclic ethers, toluene derivatives, cycloalkanes, and nitriles are all successfully alkenylated in a regio- and stereoselective manner.

  18. Gum forming olefinic precursors in motor gasoline: a model compound study

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Joshi, G.C.; Singh, J.; Rastogi, S.N. (Indian Institute of Petroleum, Dehradun (India))

    1994-01-01

    The source of the cracked components in motor gasoline are generally (Fluid Catalytic Cracking) FCC and thermal cracking naphthas incorporated in the gasoline pool. The FCC olefins are predominant in isostructures, while thermal cracking naphthas obtained from visbreaking and coking operations contain substantial amounts of cyclic structures. The contribution of various olefinic structures present in these naphthas are likely to vary. The gum forming tendencies of different types of olefinic structures have been studied by taking model compounds in a known sample matrix through potential gum measurements under accelerated test conditions. Peroxide number values have also been determined on aged sample. Cyclic and dicyclic structures have been found to contribute maximum, towards gum formation tendencies. Branching generally increases the gum formation. However, position of branching plays an important role besides the double bond. Synergistic effects of dienes with straight chain and branched olefins have also been studied. 11 refs., 10 figs., 2 tabs.

  19. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, Cé sar A.; Poater, Albert; Lé bl, Tomá š; Manzini, Simone; Slawin, Alexandra M. Z.; Cavallo, Luigi; Nolan, Steven P.

    2013-01-01

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  20. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  1. Radiation-induced copolymerization of methyl trifluoroacrylate with α-olefins

    International Nuclear Information System (INIS)

    Matsuda, O.; Watanabe, T.; Tabata, Y.; Machi, S.

    1978-01-01

    Paper describes the radiation-induced bulk copolymerization of methyl trifluoroacrylate with various α olefins; propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and isobutylene. MTFA (purity above 98%) was synthesized by method described in literature. Reagent grade α-olefins were used. An equimolar mixture of MTFA and α-olefin was charged into the reactor. Trace amounts of oxygen were purged by the freeze-thaw technique. Irradiation was carried out with gamma rays from a 60 Co source under vapor pressure of the monomers at 25 0 C. The product was precipitated and washed with methanol to remove unreacted monomers, and dried under vacuum at 60 0 C. Infrared spectra of the copolymers were measured; compositions were determined from elemental analysis. Reactivity of the α-olefins appears to be related to the electron density at the double bond. All copolymers were found to have almost equimolar compositions and were soluble in polar solvents such as tetrahydrofuran and acetone. Copolymerization was inhibited completely by the addition of 1,1-diphenyl-2-picrihydrazil, but not by water, indicating that the copolymerization proceeds via a radical mechanism. 1 table; 2 figures

  2. N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts To Generate α,β-Unsaturated Ketones.

    Science.gov (United States)

    Rajkiewicz, Adam A; Kalek, Marcin

    2018-04-06

    An organocatalyzed metal-free, direct olefination of aldehydes with vinyliodonium salts has been achieved by an N-heterocyclic carbene-promoted C-H bond activation. The reaction proceeds under very mild conditions, delivering a range of (hetero)aryl-vinyl ketones in good yields. The retention of the double bond configuration is uniformly observed, and the application of 2-methoxyphenyl auxiliary group in iodonium salts secures a complete selectivity of the vinyl transfer.

  3. Replacement of the double bond of antitubulin chalcones with triazoles and tetrazoles: Synthesis and biological evaluation.

    Science.gov (United States)

    Mesenzani, Ornella; Massarotti, Alberto; Giustiniano, Mariateresa; Pirali, Tracey; Bevilacqua, Valentina; Caldarelli, Antonio; Canonico, Pierluigi; Sorba, Giovanni; Novellino, Ettore; Genazzani, Armando A; Tron, Gian Cesare

    2011-01-15

    In the chalcone scaffold, it is thought that the double bond is an important structural linker but it is likely not essential for the interaction with tubulin. Yet, it may be a potential site of metabolic degradation and interaction with biological nucleophiles. In this letter, we have replaced this olefinic portion of chalcones with two metabolically stable and chemically inert heterocyclic rings, namely triazole or tetrazole. Yet, our biologic data suggest that, unlike in other antitubulinic structures, the olephinic ring might not be merely a structural linker. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Pd(II)-Catalyzed Olefination of sp3 C–H Bonds

    Science.gov (United States)

    Wasa, Masayuki; Engle, Keary M.; Yu, Jin-Quan

    2010-01-01

    The first Pd(II)-catalyzed sp3 C–H olefination reaction has been developed using N-arylamide directing groups. Following olefination, the resulting intermediates were found to undergo rapid 1,4-addition to give the corresponding γ lactams. Notably, this method was effective with substrates containing α-hydrogen atoms and could be applied to effect methylene C–H olefination of cyclopropane substrates. PMID:20187642

  5. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins

    Science.gov (United States)

    Hu, Jiefeng; Wang, Minyan; Pu, Xinghui; Shi, Zhuangzhi

    2017-05-01

    Amide and olefins are important synthetic intermediates with complementary reactivity which play a key role in the construction of natural products, pharmaceuticals and manmade materials. Converting the normally highly stable aliphatic amides into olefins directly is a challenging task. Here we show that a Ni/NHC-catalytic system has been established for decarbonylative elimination of aliphatic amides to generate various olefins via C-N and C-C bond cleavage. This study not only overcomes the acyl C-N bond activation in aliphatic amides, but also encompasses distinct chemical advances on a new type of elimination reaction called retro-hydroamidocarbonylation. This transformation shows good functional group compatibility and can serve as a powerful synthetic tool for late-stage olefination of amide groups in complex compounds.

  6. Sequential meta-C-H olefination of synthetically versatile benzyl silanes: effective synthesis of meta-olefinated toluene, benzaldehyde and benzyl alcohols.

    Science.gov (United States)

    Patra, Tuhin; Watile, Rahul; Agasti, Soumitra; Naveen, Togati; Maiti, Debabrata

    2016-02-04

    Tremendous progress has been made towards ortho-selective C-H functionalization in the last three decades. However, the activation of distal C-H bonds and their functionalization has remained fairly underdeveloped. Herein, we report sequential meta-C-H functionalization by performing selective mono-olefination and bis-olefination with late stage modification of the C-Si as well as Si-O bonds. Temporary silyl connection was found to be advantageous due to its easy installation, easy removal and wide synthetic diversification.

  7. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.

    Science.gov (United States)

    Deb, Arghya; Bag, Sukdev; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-01

    Palladium-catalyzed coupling between aryl halides and alkenes (Mizoroki-Heck reaction) is one of the most popular reactions for synthesizing complex organic molecules. The limited availability, problematic synthesis, and higher cost of aryl halide precursors (or their equivalents) have encouraged exploration of direct olefination of aryl carbon-hydrogen (C-H) bonds (Fujiwara-Moritani reaction). Despite significant progress, the restricted substrate scope, in particular noncompliance of unactivated aliphatic olefins, has discouraged the use of this greener alternative. Overcoming this serious limitation, we report here a palladium-catalyzed chelation-assisted ortho C-H bond olefination of phenylacetic acid derivatives with unactivated, aliphatic alkenes in good to excellent yields with high regio- and stereoselectivities. The versatility of this operationally simple method has been demonstrated through drug diversification and sequential C-H olefination for synthesizing divinylbenzene derivatives.

  8. Reactions of dihydridotetrakis(triphenylphosphine)ruthenium(II) with olefins and isolation of new ruthenium-olefin complexes

    International Nuclear Information System (INIS)

    Komiya, Sanshiro; Yamamoto, Akio

    1976-01-01

    Dihydridotetrakis(triphenylphosphine)ruthenium (II), RuH 2 (PPh 3 ) 4 , reacts with olefins (ethylene, propylene, stylene and butadiene) to give olefin-coordinated complexes of the type, Ru(olefin)(PPh 3 ) 3 and equimolar amounts of their hydrogenation products per mol of the dihydride complex. The olefin coordinated with ruthenium can be exchanged with other olefins. Olefin-coordinated complexes easily react with molecular hydrogen to afford tetrahydridotris(triphenylphosphine)ruthenium, RuH 4 (PPh 3 ) 3 , releasing alkane at room temperature, Under hydrogen atmosphere catalytic hydrogenation of the olefins smoothly takes place with RuH 2 (PPh 3 ) 4 . (Ethylene)tris(triphenylphosphine)ruthenium(0) reacts with methyl iodide to give propylene and a trace of butadiene along with methane, ethylene, and small amounts of ethane and butenes. The formation of propylene suggests that oxidative addition involving cleavage of the C-H bond of ethylene to ruthenium giving a hydridovinyl complex may be taking place. Reactions of Ru(C 2 H 4 )(PPh 3 ) 3 with methyl-d 3 iodide and ethyl iodide, and of Ru(C 3 H 6 )(PPh 3 ) 3 with methyl iodide were examined to test the generality of this type of reaction. The reaction of Ru(C 2 H 4 )(PPh 3 ) 3 with CD 3 I released CD 4 and CD 2 H 2 together with CD 3 H suggesting the involvement of α-hydrogen abstraction. (auth.)

  9. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E. [Indiana Univ., Bloomington, IN (United States)

    1992-03-25

    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  10. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    Science.gov (United States)

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  11. Double role of the hydroxy group of phosphoryl in palladium(II)-catalyzed ortho-olefination: a combined experimental and theoretical investigation.

    Science.gov (United States)

    Liu, Liu; Yuan, Hang; Fu, Tingting; Wang, Tao; Gao, Xiang; Zeng, Zhiping; Zhu, Jun; Zhao, Yufen

    2014-01-03

    Density functional theory calculations have been carried out on Pd-catalyzed phosphoryl-directed ortho-olefination to probe the origin of the significant reactivity difference between methyl hydrogen benzylphosphonates and dimethyl benzylphosphonates. The overall catalytic cycle is found to include four basic steps: C-H bond activation, transmetalation, reductive elimination, and recycling of catalyst, each of which is constituted from different steps. Our calculations reveal that the hydroxy group of phosphoryl plays a crucial role almost in all steps, which can not only stabilize the intermediates and transition states by intramolecular hydrogen bonds but also act as a proton donor so that the η(1)-CH3COO(-) ligand could be protonated to form a neutral acetic acid for easy removal. These findings explain why only the methyl hydrogen benzylphosphonates and methyl hydrogen phenylphosphates were found to be suitable reaction partners. Our mechanistic findings are further supported by theoretical prediction of Pd-catalyzed ortho-olefination using methyl hydrogen phenylphosphonate, which is verified by experimental observations that the desired product was formed in a moderate yield.

  12. Ternary catalyst-olefin-hydroperoxide complexes and their contribution to epoxidation

    International Nuclear Information System (INIS)

    Svitych, R.B.; Rzhevskaya, N.N.; Buchachenko, A.L.; Yablonskij, O.P.; Petukhov, A.A.; Belyaev, V.A.

    1976-01-01

    Electron and NMR spectroscopy have been used for studying the complex formation of catalysts (Mo 5+ , Mn 2+ , Co 2+ ) in double and triple systems: metal-olefin and metal-olefin-hydroperoxide. It has been established that ions of metals form complexes with olefins in the first sphere. The formation has been proved of ternary complexes metal-olefin-hydroperoxide. The structure of the complexes has been proposed with olefins in the first and hydroperoxide in the second sphere of the metal ion. The structure explains known kinetic regularities of epoxydation and the mechanism of the formation of final products, oxide and alcohol. It has been shown that the best catalysts for epoxydation of olefins with hydroperoxides must be the compounds of the metals with an electron state of ion d 0 [ru

  13. Intermolecular Dehydrative Coupling Reaction of Arylketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: A Novel Ketone Olefination Method via Vinyl C–H Bond Activation

    Science.gov (United States)

    Yi, Chae S.; Lee, Do W.

    2010-01-01

    Summary The cationic ruthenium-hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly effective catalyst for the intermolecular olefination reaction of arylketones with cycloalkenes. The preliminary mechanistic analysis revealed that electrophilic ruthenium-vinyl complex is the key species for mediating both vinyl C–H bond activation and the dehydrative olefination steps of the coupling reaction. PMID:20567607

  14. Immobilization of Ag(i) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature.

    Science.gov (United States)

    Chang, Ganggang; Huang, Minhui; Su, Ye; Xing, Huabin; Su, Baogen; Zhang, Zhiguo; Yang, Qiwei; Yang, Yiwen; Ren, Qilong; Bao, Zongbi; Chen, Banglin

    2015-02-18

    Introduction of Ag(i) ions into a sulfonic acid functionalized MOF ((Cr)-MIL-101-SO3H) significantly enhances its interactions with olefin double bonds, leading to its much higher selectivities for the separation of C2H4-C2H6 and C3H6-C3H8 at room temperature over the original (Cr)-MIL-101-SO3H and other adsorbents at room temperature.

  15. Thiocarbamate-Directed Tandem Olefination-Intramolecular Sulfuration of Two Ortho C-H Bonds: Application to Synthesis of a COX-2 Inhibitor.

    Science.gov (United States)

    Li, Wendong; Zhao, Yingwei; Mai, Shaoyu; Song, Qiuling

    2018-02-16

    A palladium-catalyzed dual ortho C-H bond activation of aryl thiocarbamates is developed. This tandem reaction initiates by thiocarbamate-directed ortho C-H palladation, which leads to favorable olefin insertion rather than reductive elimination. The oxidative Heck reaction followed by another C-H activation and sulfuration affords the dual-functionalized products. This reaction provides a concise route to the S,O,C multisubstituted benzene skeleton which could be successfully applied for the synthesis of a COX-2 inhibitor.

  16. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    Science.gov (United States)

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  17. Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices

    International Nuclear Information System (INIS)

    Yu, H; Tor, S B; Loh, N H

    2014-01-01

    Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its T g could be comparable to the strength for pure thermal compression at 5 °C higher than its T g . It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under T g ; therefore the deformation is minor under ultrasonic

  18. Thermal 18F atom addition to olefins

    International Nuclear Information System (INIS)

    Rogers, P.J.M.

    1986-01-01

    The addition of thermal 18 F atoms to olefins was investigated using various substrate molecules. The 18 F atoms were produced by the 19 F(n,2n) 18 F nuclear reaction with >10 5 eV of energy which is removed by multiple collisions with SF 6 molecules before reaction occurs with an olefin. By varying the SF 6 /substrate mole ratio it was demonstrated that the fraction of non-thermal reactions is dependent upon the frequency of non-reactive energy reducing collisions with SF 6 . The rate constants for addition and abstraction reactions with propene, cis-1-chloropropene and trans-1-chloropropene were determined. The substitution of a C1 atom for the olefinic H atom in the C 1 position does not affect the rate of 18 F bond formation but it changes the orientation of attack. The 18 F atom prefers the terminal carbon-in propene and propene-d 6 by a factor of 1.35 while the preference is less than 0.5 for the terminal carbon in cis-1-chloropropene and trans-1-chloropropene. The addition of 18 F atoms to olefins creates vibrationally excited fluoroalkyl radicals which can either decompose or stabilize by collision with another molecule. The rate constants for decomposition of excited CH 3 CHCHC1F radicals formed by 18 F addition to cis-1-chloropropene and trans-1-chloropropene are competitive with C 1 -C 2 bond rotation. The 18 F atoms add to the parent molecule with retention of geometry and a memory of the geometry persists as demonstrated by the cis-1-fluoropropene/trans-1-fluoropropene decomposition product ratio

  19. Reactions of Fischer carbene complexes with Electron-deficient olefins: Scope and limitations of this route to donor-acceptor-substituted cyclopropanes

    Energy Technology Data Exchange (ETDEWEB)

    Wienand, A.; Reissig, H.U. (Inst. fuer Organische Chemie der Technischen Hochschule Darmstadt (West Germany))

    1990-12-01

    The Fischer carbene complex ((CO){sub 5}Cr{double bond}C(OMe)Ph) (1) is able to transfer its carbene ligand to a variety of electron-deficient olefins and provides donor-acceptor-substituted cyclopropanes in good yields. Apt activating groups with respect to the alkene are ester, amide, nitrile, sulfone, and dialkyl phosphonate functions. Methyl vinyl ketone (19) affords products in low yield that may arise from an intermediate cyclopropane derivative. Phenyl vinyl sulfoxide (24) mainly acts as an oxidizing agent, transforming 1 into methyl benzoate. for olefin 24 and {alpha}-(N-methylanilino)acrylonitrile the authors found products that should be formed on an olefin metathesis pathway. The methyl-substituted carbene complex 48 also affords the expected donor-acceptor-substituted cyclopropanes; however, acyclic isomers are formed in higher amounts. The molybdenum and tungsten complexes 55 and 56, respectively, also furnish cyclopropane derivatives, but the yields are lower than with the chromium compound 1. Disubstituted olefins and complex 1 still give the cyclopropanes in moderate yields, while all trisubstituted and most of the difunctionalized alkenes do not react with this Fischer carbene complex. The cyclopropanes synthesized can be deprotonated and alkylated or transformed into ring-opened products. These model reactions demonstrate the synthetic potentials of donor-acceptor-substituted cyclopropanes prepared via Fischer carbene complexes.

  20. Programming Recognition Arrays through Double Chalcogen-Bonding Interactions.

    Science.gov (United States)

    Biot, Nicolas; Bonifazi, Davide

    2018-04-11

    In this work, we have programmed and synthesized a recognition motif constructed around a chalcogenazolo-pyridine scaffold (CGP) that, through the formation of frontal double chalcogen-bonding interactions, associates into dimeric EX-type complexes. The reliability of the double chalcogen-bonding interaction has been shown at the solid-state by X-ray analysis, depicting the strongest recognition persistence for a Te-congener. The high recognition fidelity, chemical and thermal stability and easy derivatization at the 2-position makes CGP a convenient motif for constructing supramolecular architectures through programmed chalcogen-bonding interactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of double-layer application on bond quality of adhesive systems.

    Science.gov (United States)

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Formation of cyclobutanones by the photolytic reaction of (CO)/sub 5/Cr/double bond/C(OMe)Me with electron-rich olefins

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, M.A.; Hegedus, L.S.

    1989-03-15

    Recent research has centered on the development of useful organic synthetic methodology based on the photolytic reactions of chromium Fischer carbene complexes, particularly in regards to the development of new /beta/-lactam syntheses. In the course of these studies it became evident that photolysis of chromium-carbene complexes resulted in the reversible production of chromium-ketene complexes, by a photochemically driven CO insertion into the chromium-carbene carbon double bond and that this unstable intermediate was responsible for /beta/-lactam formation.

  3. Pd(II/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins

    Directory of Open Access Journals (Sweden)

    Yasutaka Ishii

    2010-03-01

    Full Text Available The direct aerobic coupling reaction of arenes with olefins was successfully achieved by the use of Pd(OAc2/molybdovanadophosphoric acid (HPMoV as a key catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and ethylene through the direct aromatic C-H bond activation.

  4. Ligand-enabled ortho-C-H olefination of phenylacetic amides with unactivated alkenes.

    Science.gov (United States)

    Lu, Ming-Zhu; Chen, Xing-Rong; Xu, Hui; Dai, Hui-Xiong; Yu, Jin-Quan

    2018-02-07

    Although chelation-assisted C-H olefination has been intensely investigated, Pd(ii)-catalyzed C-H olefination reactions are largely restricted to acrylates and styrenes. Here we report a quinoline-derived ligand that enables the Pd(ii)-catalyzed olefination of the C(sp 2 )-H bond with simple aliphatic alkenes using a weakly coordinating monodentate amide auxiliary. Oxygen is used as the terminal oxidant with catalytic copper as the co-oxidant. A variety of functional groups in the aliphatic alkenes are tolerated. Upon hydrogenation, the ortho -alkylated product can be accessed. The utility of this reaction is also demonstrated by the late-stage diversification of drug molecules.

  5. Ligand-Enabled γ-C(sp(3))-H Olefination of Amines: En Route to Pyrrolidines.

    Science.gov (United States)

    Jiang, Heng; He, Jian; Liu, Tao; Yu, Jin-Quan

    2016-02-17

    Pd(II)-catalyzed olefination of γ-C(sp(3))-H bonds of triflyl (Tf) and 4-nitrobenzenesulfonyl (Ns) protected amines is achieved. Subsequent aza-Wacker oxidative cyclization or conjugate addition of the olefinated intermediates provides a variety of C-2 alkylated pyrrolidines. Three pyridine- and quinoline-based ligands are developed to match different classes of amine substrates, demonstrating a rare example of ligand-enabled C(sp(3))-H olefination reactions. The use of Ns protecting group to direct C(sp(3))-H activation of alkyl amines is also a significant step toward practical C-H functionalizations of alkyl amines.

  6. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.

    Science.gov (United States)

    Negishi, Ei-ichi; Huang, Zhihong; Wang, Guangwei; Mohan, Swathi; Wang, Chao; Hattori, Hatsuhiko

    2008-11-18

    Although generally considered competitive, the alkenylation and carbonyl olefination routes to alkenes are also complementary. In this Account, we focus on these approaches for the synthesis of regio- and stereodefined di- and trisubstituted alkenes and a few examples of tetrasubstituted alkenes. We also discuss the subset of regio- and stereodefined dienes and oligoenes that are conjugated. Pd-catalyzed cross-coupling using alkenyl metals containing Zn, Al, Zr, and B (Negishi coupling and Suzuki coupling) or alkenyl halides and related alkenyl electrophiles provides a method of alkenylation with the widest applicability and predictability, with high stereo- and regioselectivity. The requisite alkenyl metals or alkenyl electrophiles are most commonly prepared through highly selective alkyne addition reactions including (i) conventional polar additions, (ii) hydrometalation, (iii) carbometalation, (iv) halometalation, and (v) other heteroatom-metal additions. Although much more limited in applicability, the Heck alkenylation offers an operationally simpler, viable alternative when it is highly selective and satisfactory. A wide variety of carbonyl olefination reactions, especially the Wittig olefination and its modifications represented by the E-selective HWE olefination and the Z-selective Still-Gennari olefination, collectively offer the major alternative to the Pd-catalyzed alkenylation. However, the carbonyl olefination method fundamentally suffers from more limited stereochemical options and generally lower stereoselectivity levels than the Pd-catalyzed alkenylation. In a number of cases, however, very high (>98%) stereoselectivity levels have been attained in the syntheses of both E and Z isomers. The complementarity of the alkenylation and carbonyl olefination routes provide synthetic chemists with valuable options. While the alkenylation involves formation of a C-C single bond to a CC bond, the carbonyl olefination converts a CO bond to a CC bond. When a

  7. (E)-Specific direct Julia-olefination of aryl alcohols without extra reducing agents promoted by bases.

    Science.gov (United States)

    Yao, Chuan-Zhi; Li, Qiang-Qiang; Wang, Mei-Mei; Ning, Xiao-Shan; Kang, Yan-Biao

    2015-05-04

    An unprecedented base-promoted direct olefination of aryl alcohols with sulfones via a Julia-type reaction has been described. No extra reductants are needed for Julia reaction since alcohols work as double sources of aldehydes and the hydride. Generally high yields were given for both terminal and highly (E)-selective internal olefins.

  8. Oxidant-free Rh(III)-catalyzed direct C-H olefination of arenes with allyl acetates.

    Science.gov (United States)

    Feng, Chao; Feng, Daming; Loh, Teck-Peng

    2013-07-19

    Rh(III)-catalyzed direct olefination of arenes with allyl acetate via C-H bond activation is described using N,N-disubstituted aminocarbonyl as the directing group. The catalyst undergoes a redox neutral process, and high to excellent yields of trans-products are obtained. This protocol exhibits a wide spectrum of functionality compatibility because of the simple reaction conditions employed and provides a highly effective synthetic method in the realm of C-H olefination.

  9. Polydiphenylacetylene with Schiff Base End Groups: Synthesis and Characterization

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the carbonyl-olefin exchange reaction. The question arises: is it possible the carbonyl-olefin exchange reaction to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction become an alternative of the existing carbonyl olefination reactions?

  10. Aerobic Pd-Catalyzed sp3 C–H Olefination: A Route to Both N-Heterocyclic Scaffolds and Alkenes

    Science.gov (United States)

    Stowers, Kara J.; Fortner, Kevin C.

    2011-01-01

    This communication describes a new method for the Pd/polyoxometalate-catalyzed aerobic olefination of unactivated sp3 C–H bonds. Nitrogen heterocycles serve as directing groups, and air is used as the terminal oxidant. The products undergo reversible intramolecular Michael addition, which protects the mono-alkenylated product from over-functionalization. Hydrogenation of the Michael adducts provides access to bicyclic nitrogen-containing scaffolds that are prevalent in alkaloid natural products. Additionally, the cationic Michael adducts undergo facile elimination to release α,β-unsaturated olefins, which can be elaborated in numerous C–C and C–heteroatom bond-forming reactions. PMID:21476513

  11. Catalyst compositions useful for olefin isomerization and disproportionation

    International Nuclear Information System (INIS)

    Drake, C.A.

    1987-01-01

    A process is described for the double bond isomerization of an aliphatic olefinic hydrocarbon feed which comprises contacting the feed under isomerization conditions with a catalyst prepared by: (a) impregnating an alumina support having a surface area of at least 200 m/sup 2//g and a pore volume of at least 0.45 cm/sup 3//g with: 1 up to 20 wt. % of at least one magnesium compound convertible to the oxide, based on the weight of support and calculated as the metal; 0 up to 5 wt. % of at least one alkali metal compound convertible to the oxide, based on the weight of support and calculated as the metal; and 0 up to 5 wt. % of at least one zirconium compound convertible to the oxide, based on the weight of support and calculated as the metal; and (b) heating the alumina support impregnated in accordance with step (a) in an oxygen-containing atmosphere under conditions suitable to convert at least a portion of the magnesium, alkali metal, and zirconium compounds to the oxide form

  12. (E-1-(1,3-Benzodioxol-5-yl-3-[4-(dimethylaminophenyl]prop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Karthik Kumara

    2017-01-01

    Full Text Available In the title compound, C18H17NO3, the olefinic double bond adopts an E conformation. The molecule is nearly planar as indicated by the dihedral angle of 3.11 (6° between the benzodioxole and benzene rings. The carbonyl group lies in the plane of the olefinic double bond and the benzodioxole ring. The trans conformation of the C=C double bond in the central enone group is confirmed by the C=C—C—C torsion angle of −177.82 (14°.

  13. (E-1-(3-Bromophenyl-3-(3-fluorophenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    S. Rajendraprasad

    2017-03-01

    Full Text Available In the title compound, C15H10BrFO, the olefinic double bond adopts an E conformation. The molecule is non-planar as seen by the dihedral angle of 48.92 (11° between the bromophenyl and fluorophenyl rings. The carbonyl group is twisted from the plane of the bromophenyl ring and the olefinic double bond. The trans conformation of the C=C double bond in the central enone group is confirmed by the C—C=C—C torsion angle of −165.7 (2°.

  14. Ligand-Enabled γ-C(sp3)–H Olefination of Amines: En Route to Pyrrolidines

    Science.gov (United States)

    Jiang, Heng; He, Jian; Liu, Tao

    2016-01-01

    Pd(II)-catalyzed olefination of γ-C(sp3)–H bonds of triflyl (Tf) and 4-nitrobenzenesulfonyl (Ns) protected amines is achieved. Subsequent aza-Wacker oxidative cyclization or conjugate addition of the olefinated intermediates provides a variety of C-2 alkylated pyrrolidines. Three pyridine- and quinoline-based ligands are developed to match different classes of amine substrates, demonstrating a rare example of ligand-enabled C(sp3)–H olefination reaction. The use of Ns protecting group to direct C(sp3)–H activation of alkyl amine is also a significant step towards practical C–H functionalizations of alkyl amines. PMID:26796676

  15. Alkylation of isobutane with light olefins: Yields of alkylates for different olefins

    Energy Technology Data Exchange (ETDEWEB)

    Albright, L.F. [Purdue Univ., West Lafayette, IN (United States); Kranz, K.E.; Masters, K.R. [STRATCO, Inc., Leawood, KS (United States)

    1993-12-01

    For alkylation of isobutane with C{sub 3}-C{sub 5} olefins using sulfuric acid as the catalyst, the yields of alkylates with different olefins are compared as the operating conditions are changed. The results of recent pilot plant experiments with propylene, C{sub 4} olefins, and C{sub 5} olefins permit such comparisons. The yields expressed as weight of alkylate produced per 100 wt of olefin consumed varied from about 201:100 to 220:100. Weight ratios of the isobutane consumed per olefin consumed vary from about 101:100 to 120:100. differences of yield values are explained by the changes in the overall chemistry. The procedure employed to calculate yields with good accuracy is based on the analysis of the alkylate and the amount of conjunct polymers produced. Based on literature data, yields are also reported for alkylations using HF as the catalyst.

  16. X-ray structure determination of new monomers to establish their polymerizability: copolymerization of two tetrasubstituted electrophilic olefins with electron-rich styrenes giving polymers with an average 1.25 functional groups per chain carbon atom

    International Nuclear Information System (INIS)

    Hall, H.K. Jr.; Reineke, K.E.; Ried, J.H.; Sentman, R.C.; Miller, D.

    1982-01-01

    X-ray crystal structure determination for two tetrasubstituted electrophilic olefins, tetramethyl ethylenetetracarboxylate TMET and dimethyl dicyanofumarate DDCF, revealed two fundamentally different molecular structures. TMET is a nonplanar molecule that possesses two opposite ester groups planar and the others above and below the molecular plane. In contrast, DDCF is a molecule for which both ester groups lie in the plane of the double bond and nitrile groups. DDCF underwent thermal spontaneous copolymerization with electron-rich styrenes to give 1:1 alternating copolymers in moderate yields and molecular weights. These copolymers, which result from the first copolymerization of a tetrasubstituted olefin, possess an average functionality of 1.25 per chain carbon atom. Polymerization is made possible by low steric hindrance and the high delocalization in the propagating radical. The yields were limited by competing cycloaddition reaction. The corresponding diethyl ester also copolymerized, but not so well. Neither electrophilic olefin homopolymerized under γ-irradiation. TMET did not copolymerize at all when treated under identical conditions

  17. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    Science.gov (United States)

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  18. Rh(III)-catalyzed olefination of N-sulfonyl imines: synthesis of ortho-olefinated benzaldehydes.

    Science.gov (United States)

    Zhang, Tao; Wu, Lamei; Li, Xingwei

    2013-12-20

    Rh(III)-catalyzed olefination of N-sulfonyl imines using acrylates and styrenes has been achieved for the synthesis of ortho-olefinated benaldehydes. This reaction proceeds via a chelation assisted C-H olefination/in situ hydrolysis process.

  19. Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes.

    Science.gov (United States)

    Gao, Yang; Gao, Yinglan; Wu, Wanqing; Jiang, Huanfeng; Yang, Xiaobo; Liu, Wenbo; Li, Chao-Jun

    2017-01-18

    We describe herein a palladium-catalyzed tandem oxidative arylation/olefination reaction of aromatic tethered alkenes/alkynes for the synthesis of dihydrobenzofurans and 2 H-chromene derivatives. This reaction features a 1,2-difunctionalization of C-C π-bond with two C-H bonds using O 2 as terminal oxidant at room temperature. The products obtained are valuable synthons and important scaffolds in biological agents and natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Kinetic stabilities of double, tetra- and hexarosette hydrogen-bonded assemblies

    NARCIS (Netherlands)

    Prins, L.J.; Neuteboom, Edda E.; Paraschiv, V.; Crego Calama, Mercedes; Timmerman, P.; Reinhoudt, David

    2002-01-01

    A study of the kinetic stabilities of hydrogen-bonded double, tetra-, and hexarosette assemblies, comprising 36, 72, and 108 hydrogen bonds, respectively, is described. The kinetic stabilities are measured using both chiral amplification and racemization experiments. The chiral amplification studies

  1. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.

    Science.gov (United States)

    Rangheard, Claudine; de Julián Fernández, César; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; de Vries, Johannes G

    2010-09-28

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the hydrogenation of a range of olefins and alkynes. Olefin hydrogenation is relatively fast at 5 bar using 5 mol% of catalyst. The catalyst is also active for terminal olefins and 1,1' and 1,2-cis disubstituted olefins while trans-olefins react much slower. 1-Octyne is hydrogenated to mixtures of 1-octene and octane. Kinetic studies led us to propose a mechanism for this latter transformation where octane is obtained by two different pathways. Characterization of the nanoparticles via TEM, magnetic measurements and poisoning experiments were undertaken to understand the true nature of our catalyst.

  2. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    Science.gov (United States)

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  3. Oxidative Olefination of Anilides with Unactivated Alkenes Catalyzed by an (Electron-Deficient η(5) -Cyclopentadienyl)Rhodium(III) Complex Under Ambient Conditions.

    Science.gov (United States)

    Takahama, Yuji; Shibata, Yu; Tanaka, Ken

    2015-06-15

    The oxidative olefination of sp(2) C-H bonds of anilides with both activated and unactivated alkenes using an (electron-deficient η(5) -cyclopentadienyl)rhodium(III) complex is reported. In contrast to reactions using this electron-deficient rhodium(III) catalyst, [Cp*RhCl2 ]2 showed no activity against olefination with unactivated alkenes. In addition, the deuterium kinetic isotope effect (DKIE) study revealed that the C-H bond cleavage step is thought to be the turnover-limiting step. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    International Nuclear Information System (INIS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-01-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 -AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe 3 O 4 -AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe 3 O 4 -AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe 3 O 4 . Transmission electron microscopy (TEM) analysis confirmed that the Fe 3 O 4 -AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe 3 O 4 -AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe 3 O 4 -MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe 3 O 4 -AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe 3 O 4 -AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe 3 O 4 -AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K

  5. Radiation degradation of poly(olefin sulphone)s - Fundamental research to practical applications

    International Nuclear Information System (INIS)

    Bowden, M.J.; O'Donnell, J.H.

    1985-01-01

    The degradation of poly(olefin sulphone)s by high energy radiation, particularly by γ-rays and electron beams, provides an example of the application of fundamental science to high technology industry. Scientific interest in the radiation degradation of these polymers was first aroused by the discovery that they underwent highly specific bond scission in the backbone chain as the primary result of absorption of high energy radiation and in fact they were the first polymers in which such an effect had been demonstrated. This conclusion was initially based mainly on evidence from electron spin resonance spectroscopy and was subsequently verified by studies of molecular weight changes. These studies showed that the poly(olefin sulphone)s not only degraded by main chain scission but were also among the most radiation-sensitive polymers known. The extremely high sensitivity of poly(olefin sulphone)s to radiation-induced main-chain scission has found application in the field of microelectronics. Electron beam writing on poly(olefin sulphone) films is used to produce lithographic masks for the manufacture of integrated circuits on silicon wafers. Poly(1-butene sulphone) (PBS) is currently used in the production of a substantial proportion of the masks for the industry. The fundamental aspects of the radiation degradation of poly(olefin sulphone)s and the practical applications to high technology are reviewed. (author)

  6. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process

    International Nuclear Information System (INIS)

    Xiang, Dong; Qian, Yu; Man, Yi; Yang, Siyu

    2014-01-01

    Highlights: • Present the opportunities and challenges of coal-to-olefins (CTO) development. • Conduct a techno-economic analysis on CTO compared with oil-to-olefins (OTO). • Suggest approaches for improving energy efficiency and economic performance of CTO. • Analyze effects of plant scale, feedstock price, CO 2 tax on CTO and OTO. - Abstract: Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive

  7. Ether-Directed ortho-C–H Olefination with a PdII/MPAA Catalyst**

    Science.gov (United States)

    Li, Gang; Leow, Dasheng; Wan, Li; Yu, Jin-Quan

    2013-01-01

    Weak coordination is powerful! A PdII-catalyzed olefination of ortho-C–H bonds of arenes directed by weakly coordinating ethers is developed using mono-protected amino acid (MPAA) ligands. This finding provides a method for chemically modifying ethers, which are abundant in natural products and drug molecules. PMID:23239120

  8. Determination of Double Bond Positions and Geometry of Methyl Linoleate Isomers with Dimethyl Disulfide Adducts by GC/MS.

    Science.gov (United States)

    Shibamoto, Shigeaki; Murata, Tasuku; Yamamoto, Kouhei

    2016-09-01

    The dimethyl disulfide (DMDS) adduct method is one of the convenient and effective methods for determining double bond positions of unsaturated fatty acid methyl esters (FAME) except conjugated FAME. When analyzed using gas chromatography/electron ionization-mass spectrometry (GC/EI-MS), unsaturated FAME with DMDS added to the double bonds yields high intensity MS spectra of characteristic ions. The MS spectra of characteristic ions can then be used to easily confirm double bond positions. Here we explore the GC/EI-MS analysis of the DMDS adducts of methyl linoleate geometrical isomers isolated by high performance liquid chromatography (HPLC) with a silver nitrate column. For C18:2-c9, c12 and C18:2-t9, t12, DMDS randomly formed adducts with double bonds at either carbon 9-10 or carbon 12-13, but not both at the same time due to steric hindrance. For C18:2-c9, t12 and C18:2-t9, c12, however, DMDS only formed adducts with the double bond in the cis configuration. Consequently, when analyzing fatty acids with methylene interrupted double bonds, with one double bond in the cis and one in the trans configuration, double bond positions cannot be completely confirmed.

  9. Synthesis and characterization of tantalum organometallic complexes. Catalytic activity for olefins

    International Nuclear Information System (INIS)

    Baley, A.S.

    1990-11-01

    Synthesis of monoaryloxy (alcoxy) neopentyl compounds is investigated. The tantalum-oxygen bond is formed by two parallel ways from TaCl 5 or TaR 2 Cl 3 with R = neopentyl and the tantalum carbon bond from a neopentyl derivative of the main series. Some compounds were isolated and characterized by NMR, elemental analysis and sometimes X-ray structure, some others are characterized in solution only. Catalytic effect is tested by ethylene dimerization and olefin polymerization. Reactivity of tantalum aryloxy neopentyl in respect to complexing and chelating ligands is studied for preparation of neopentylidene complexes

  10. α 'agostic' assistance in Ziegler-Natta polymerization of olefins. Deuterium isotopic perturbation of stereochemistry indicating coordination of an α C-H bond in chain propagation

    International Nuclear Information System (INIS)

    Piers, W.E.; Bercaw, J.E.

    1990-01-01

    The well-defined, homogeneous Ziegler-Natta olefin polymerization systems that have been reported recently provide an unprecedented opportunity to investigate the mechanism of this important process. While a consensus appears to be developing that in all these systems the active catalysts are the 14-electron, d 0 (or d 0 f n ) metallocene alkyls, Cp 2 MR (M = lanthanide or group 3 transition metal) or [Cp 2 MR] + (M = group 4 transition metal), the mechanism for chain propagation and the geometry of the transition state for olefin insertion into the metal-carbon bond have not yet been unequivocally established. In a cleverly conceived experiment, Grubbs et al. probed for an α agostic interaction in the transition state for olefin insertion. Racemic 1-d 1 -5-hexenylchlorotitanocene was prepared and found to undergo AlCl 2 (CH 2 CH 3 )-induced cyclization to a mixture of cis- and trans-2-d 1 -cyclopentylmethyl stereoisomers. Any α agostic assistance in the insertion step is expected to favor the trans product (vide infra). Hydrolysis and 2 H NMR analysis of the resultant mixture of deuteriomethylcyclopentanes revealed a 1.00 ± 0.05 ratio of trans:cis products, arguing against an α agostic assisted insertion in their system, however. The scandium hydride, {(η 5 -C 5 Me 4 ) 2 SiMe 2 }Sc(PMe 3 )H ('OpSc(PMe 3 )H'), cleanly catalyzes the hydrocyclization of 1,5-hexadiene to methylcyclopentane. The authors have adapted this catalytic hydrocyclization reaction along the lines of the Grubbs experiment to probe for α agostic assistance with the scandium system

  11. Ligand-Enabled Reactivity and Selectivity in a Synthetically Versatile Aryl C–H Olefination*

    Science.gov (United States)

    Wang, Dong-Hui; Engle, Keary M.; Shi, Bing-Feng; Yu, Jin-Quan

    2010-01-01

    The Mizoroki–Heck reaction, which couples aryl halides with olefins, has been widely used to stitch together the carbogenic cores of numerous complex organic molecules. Given that the position-selective introduction of a halide onto an arene is not always straightforward, direct olefination of aryl C–H bonds would obviate the inefficiencies associated with generating halide precursors or their equivalents; however, methods for carrying out such a reaction have suffered from narrow substrate scope and low positional selectivity. Here we report an operationally simple, atom-economical, carboxylate-directed Pd(II)-catalyzed C–H olefination reaction with phenylacetic acid and 3-phenylpropionic acid substrates, using oxygen at atmospheric pressure as the oxidant. The positional selectivity can be tuned by introducing amino acid derivatives as ligands. We demonstrate the versatility of the method through direct elaboration of commercial drug scaffolds and efficient synthesis of 2-tetralone and naphthoic acid natural product cores. PMID:19965380

  12. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  13. Modifications of the alpha,beta-double bond in chalcones only marginally affect the antiprotozoal activities

    DEFF Research Database (Denmark)

    Nielsen, S F; Kharazmi, A; Christensen, S B

    1998-01-01

    Methods for selective alkylation of chalcones in the alpha- or beta-position and for selective reduction of the alpha,beta-double bond have been developed. The antiparasitic potencies of the alpha,beta-double bond modified chalcones only differ marginally from the potencies of the parent chalcones...

  14. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  16. Synthesis of uniformly labelled organic compounds by polymerization of 14C ethylene

    International Nuclear Information System (INIS)

    Dauphin, J.-F.

    1972-01-01

    The synthesis of 14 C uniformly labelled compounds is described. By polymerization of 14 C ethylene, linear olefins with a double bond at α position were obtained. From these olefins, uniformly labelled alkanes, alcohols and acids were prepared [fr

  17. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination.

    Science.gov (United States)

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong

    2017-04-19

    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane- and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines was evaluated.

  18. Preparation and characterization of highly water-soluble magnetic Fe{sub 3}O{sub 4} nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Honghong; Qin, Li [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Feng, Ying [Department of Bridge Engineering, Shanxi Railway Institute, Weinan 714000 (China); Hu, Lihua [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Zhou, Chunhua, E-mail: chm_zhouch@ujn.edu.cn [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-06-15

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles (Fe{sub 3}O{sub 4}-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe{sub 3}O{sub 4}-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe{sub 3}O{sub 4}-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe{sub 3}O{sub 4}. Transmission electron microscopy (TEM) analysis confirmed that the Fe{sub 3}O{sub 4}-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe{sub 3}O{sub 4}-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe{sub 3}O{sub 4}-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe{sub 3}O{sub 4}-AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K.

  19. Electronic bond tuning with heterocyclic carbenes

    KAUST Repository

    Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Jacobsen, Heiko

    2013-01-01

    have a propensity to increase the bonding of the labile ligand and of the substrate in Ru-promoted olefin metathesis, whereas negligible impact is expected on the stability of the ruthenacycle intermediate. In the case of Pd cross-coupling reactions

  20. Synthesis of Fluoroolefins via Julia-Kocienski Olefination

    OpenAIRE

    Zajc, Barbara; Kumar, Rakesh

    2010-01-01

    The Julia-Kocienski olefination provides a versatile platform for the synthesis of fluorovinyl compounds. This review describes our efforts as well as those of others in the synthesis of various fluorinated aryl and heteroaryl sulfones and their utility as olefination reagents for the modular assembly of fluoroalkenes. Where data is available, the influence of the fluorine atom on the reactivity of the olefination reagents and the stereochemical outcome of the olefination are described.

  1. Synthesis of Fluoroolefins via Julia-Kocienski Olefination.

    Science.gov (United States)

    Zajc, Barbara; Kumar, Rakesh

    2010-01-01

    The Julia-Kocienski olefination provides a versatile platform for the synthesis of fluorovinyl compounds. This review describes our efforts as well as those of others in the synthesis of various fluorinated aryl and heteroaryl sulfones and their utility as olefination reagents for the modular assembly of fluoroalkenes. Where data is available, the influence of the fluorine atom on the reactivity of the olefination reagents and the stereochemical outcome of the olefination are described.

  2. Pd(II)-catalyzed di-o-olefination of carbazoles directed by the protecting N-(2-pyridyl)sulfonyl group.

    Science.gov (United States)

    Urones, Beatriz; Gómez Arrayás, Ramón; Carretero, Juan Carlos

    2013-03-01

    Despite the significance of carbazole in pharmacy and material science, examples of the direct C-H functionalization of this privileged unit are quite rare. The N-(2-pyridyl)sulfonyl group enables the Pd(II)-catalyzed ortho-olefination of carbazoles and related systems, acting as both a directing and readily removable protecting group. This method features ample structural versatility, affording typically the double ortho-olefination products (at C1 and C8) in satisfactory yields and complete regiocontrol. The application of this procedure to related heterocyclic systems, such as indoline, is also described.

  3. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry

    International Nuclear Information System (INIS)

    Sun, Chenxing; Zhao, Yuan-Yuan; Curtis, Jonathan M.

    2013-01-01

    Highlights: ► An ozonolysis reactor was coupled in-line with mass spectrometry (O 3 -MS). ► Double bond positions in FAME were determined unambiguously without standards. ► LC directly connected to O 3 -MS allowed double bond localization in lipid mixtures. ► LC/O 3 -MS applied to bovine fat demonstrated practical use in lipid analysis. -- Abstract: The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O 3 -MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O 3 -MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O 3 -MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O 3 -MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures

  4. trans-Double Bond-Containing Liposomes as Potential Carriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Giorgia Giacometti

    2017-11-01

    Full Text Available The use of liposomes has been crucial for investigations in biomimetic chemical biology as a membrane model and in medicinal chemistry for drug delivery. Liposomes are made of phospholipids whose biophysical characteristics strongly depend on the type of fatty acid moiety, where natural unsaturated lipids always have the double bond geometry in the cis configuration. The influence of lipid double bond configuration had not been considered so far with respect to the competence of liposomes in delivery. We were interested in evaluating possible changes in the molecular properties induced by the conversion of the double bond from cis to trans geometry. Here we report on the effects of the addition of trans-phospholipids supplied in different amounts to other liposome constituents (cholesterol, neutral phospholipids and cationic surfactants, on the size, ζ-potential and stability of liposomal formulations and on their ability to encapsulate two dyes such as rhodamine B and fluorescein. From a biotechnological point of view, trans-containing liposomes proved to have different characteristics from those containing the cis analogues, and to influence the incorporation and release of the dyes. These results open new perspectives in the use of the unnatural lipid geometry, for the purpose of changing liposome behavior and/or of obtaining molecular interferences, also in view of synergic effects of cell toxicity, especially in antitumoral strategies.

  5. 13C Kinetic isotopic effect of polymerization on monomers with multiple bond

    International Nuclear Information System (INIS)

    Berman, E.L.; Polyakov, V.B.; Makovetskij, K.L.; Golenko, T.G.; Galimov, Eh.M.; AN SSSR, Moscow. Inst. Organicheskoj Khimii; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1988-01-01

    13 C kinetic isotopic effect (KIE) of anionic and radical polymerization and metathesis reaction of monomers with multiple bonds are studied and correlation between the found KIE values of polymerization and the structure of transition state is established. 13 C KIE of polymerization reactions are investigated using monomers with natural content of the isotope. Polymerization was carried out using high-vacuum equipment: radical polymerization of methyl acrylate (MA) and vinyl acetate in benzene solution under the effect of benzoyl peroxide (60 deg C); anionic polymerization of MA, initiated by potassium butyl cellosolvolate, was realized in mass at 25 deg C; cyclopentene metathesis reaction was conducted in benzene under the effect of initiating system WCl 6 - (C 3 H 5 ) 2 Si(CH 3 ) 2 at -30 deg C; phenylacetylene polymers were prepared by polymerization in benzene solution at 20 deg C under the effect of WCl 6 . It is ascertained that 13 C KIE of radical and anionic polymerization of olefins and cycloolefin metathesis constitutes 2.0 -2.4%. Polymerization of compound with ternary bond is accompanied by a lower value of 13 C KIE (<1%), which is explained by double bond of reacting bond in transition state

  6. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chenxing; Zhao, Yuan-Yuan [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada); Curtis, Jonathan M., E-mail: jcurtis1@ualberta.ca [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5 (Canada)

    2013-01-31

    Highlights: ► An ozonolysis reactor was coupled in-line with mass spectrometry (O{sub 3}-MS). ► Double bond positions in FAME were determined unambiguously without standards. ► LC directly connected to O{sub 3}-MS allowed double bond localization in lipid mixtures. ► LC/O{sub 3}-MS applied to bovine fat demonstrated practical use in lipid analysis. -- Abstract: The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O{sub 3}-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O{sub 3}-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O{sub 3}-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O{sub 3}-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  7. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora

    2016-07-21

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  8. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora; Nakajima, Masaki; Nguyen, Anh L. P.; Rueping, Magnus

    2016-01-01

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  9. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  10. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  11. Double site-bond percolation model for biomaterial implants

    OpenAIRE

    Mely, H.; Mathiot, J. -F.

    2011-01-01

    9 figures - 10 pages; We present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones, and on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the im...

  12. Catalytic olefin polymerization with early transition metal compounds

    NARCIS (Netherlands)

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and

  13. Olefin copolymerization using atom transfer radical polymerization (ATRP)

    NARCIS (Netherlands)

    Venkatesh, R.; Klumperman, B.

    2003-01-01

    Olefin copolymers of alpha-olefins with polar monomers with various architectures remain an ultimate goal in polyolefin engineering. The present paper is a more detailed study on the copolymn. of alpha-olefins (1-octene) with acrylates (Me acrylate). Comparison of reaction kinetics between free

  14. Gamma radiolysis of 3-methylpentane. Effect of added olefins on the formation of C12-olefins

    International Nuclear Information System (INIS)

    Laet, M. de; Tilquin, B.

    1991-01-01

    Contributions of congruent (parent derived) olefins to the formation of unsaturated heavy products (C 12 H 24 ) are investigated. Effects of dose or of olefinic additives on the G yield values are studied by capillary gas chromatography. The dose dependence is explained by transfer of positive charge to congruent olefins (C 6 H 12 ) even though their concentrations build up linearly with dose. γ Irradiation of 3-methylpentane containing pentenes or butenes (0.2-2 mol %) provides good examples of transfer of energy, however the results are unexpected. C-H scission in the radiolysis of solid 3-methylpentane is also reviewed. (author)

  15. Crystallinity and the effect of ionizing radiation in polyethylene. V. Distribution of trans-vinylene and trans, trans conjugated double bonds in linear polyethylene

    International Nuclear Information System (INIS)

    Patel, G.N.

    1975-01-01

    Freeze-dried chain folded single crystals and the single crystals without amorphous surface layers (crystalline cores) of different thicknesses of linear polyethylene were irradiated with 60 Co γ-rays up to 600 Mrad. Concentration of trans-vinylene double bonds and conjugated diene produced during irradiation of the crystals was measured by infrared. Concentrations of trans-vinylene and of the conjugated diene were independent of thickness of crystalline core which suggest that the double bonds were randomly distributed in the crystalline parts of the crystals. Concentrations of trans-vinylene and of conjugated double bonds were lower in chain-folded crystals than in the crystalline cores and this suggests that the folds (amorphous surface layers) are less preferential sites for formation of the double bonds. The zero-order growth and first-order decay kinetics of trans-vinylene double bonds was studied by the equation derived by Dole et al. The equation is strictly obeyed up to 300 Mrad and the results then deviate. Since there is the decay of trans-vinylene double bonds and though there are no crosslinks in the crystalline cores, it has been suggested that the decay of the double bond does not result in the crosslinks

  16. Theoretical Investigation of the NO3 Radical Addition to Double Bonds of Limonene

    Science.gov (United States)

    Jiang, Lei; Wang, Wei; Xu, Yi-Sheng

    2009-01-01

    The addition reactions of NO3 to limonene have been investigated using ab initio methods. Six different possibilities for NO3 addition to the double bonds, which correspond to the two C–C double bonds (endocyclic or exocyclic) have been considered. The negative activation energies for the addition of NO3 to limonene are calculated and the energies of NO3-limonene radical adducts are found to be 14.55 to 20.17 kcal mol-1 more stable than the separated NO3 and limonene at the CCSD(T)/6–31G(d) + CF level. The results also indicate that the endocyclic addition reaction is more energetically favorable than the exocyclic one. PMID:19865516

  17. Direct Wittig Olefination of Alcohols.

    Science.gov (United States)

    Li, Qiang-Qiang; Shah, Zaher; Qu, Jian-Ping; Kang, Yan-Biao

    2018-01-05

    A base-promoted transition metal-free approach to substituted alkenes using alcohols under aerobic conditions using air as the inexpensive and clean oxidant is described. Aldehydes are relatively difficult to handle compared to corresponding alcohols due to their volatility and penchant to polymerize and autoxidize. Wittig ylides are easily oxidized to aldehydes and consequently form homo-olefination products. By the strategy of simultaneously in situ generation of ylides and aldehydes, for the first time, alcohols are directly transferred to olefins with no need of prepreparation of either aldehydes or ylides. Thus, the di/monocontrollable olefination of diols is accomplished. This synthetically practical method has been applied in the gram-scale synthesis of pharmaceuticals, such as DMU-212 and resveratrol from alcohols.

  18. Catalyst for disproportionation/double-bond isomerization of olefins

    International Nuclear Information System (INIS)

    Hughes, W.; Reusser, R.

    1980-01-01

    An activated calcined homogenous catalyst composition consists essentially of a support uranium and at least one of tungsten and rhenium, wherein said composition contains about 0.1 to 25 weight percent total uranium, tungsten, and rhenium, each calculated as the metal; and a weight ratio of uranium:at least one of tungsten and rhenium of about 2:1 to 1:1. The activated catalyst composition is prepared by steps which comprise forming a homogenous composite, calcining said homogenous composite in a molecular oxygen-containing atmosphere at elevated temperatures, and subsequently activating said calcined homogenous composite under reducing conditions at elevated temperatures. The catalyst composition according to claim 1 is one in which the total of uranium, tungsten, and rhenium is about 1 to 15 weight percent. The catalyst composition according to claim 2 is one in which the ratio of uranium to at least one of tungsten and rhenium is about 2:1 to 0.5:1. The catalyst composition according to claim 3 is one in which the support is alumina, silica, silica-alumina, zirconia, titania, thoria, aluminum phosphate, magnisium silicate, zinc aluminate, or mixture. The catalyst composition according to claim 4is one in which support is silica

  19. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  20. compounds with N=N, C≡C or conjugated double-bonded systems

    Indian Academy of Sciences (India)

    Unusual products in the reactions of phosphorus(III) compounds with. N=N, C≡C or conjugated double-bonded systems. K C KUMARA SWAMY,* E BALARAMAN, M PHANI PAVAN, N N BHUVAN KUMAR,. K PRAVEEN KUMAR and N SATISH KUMAR. School of Chemistry, University of Hyderabad, Hyderabad 500 046.

  1. Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including (1) H-NMR multiplet analysis of olefinic protons.

    Science.gov (United States)

    Santos, Sara; Graça, José

    2014-01-01

    Suberin is a biopolyester responsible for the protection of secondary plant tissues, and yet its molecular structure remains unknown. The C18:1 ω-hydroxyacid and the C18:1 α,ω-diacid are major monomers in the suberin structure, but the configuration of the double bond remains to be elucidated. To unequivocally define the configuration of the C18:1 suberin acids. Pure C18:1 ω-hydroxyacid and C18:1 α,ω-diacid, isolated from cork suberin, and two structurally very close C18:1 model compounds of known stereochemistry, methyl oleate and methyl elaidate, were analysed by NMR spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy, and GC-MS. The GC-MS analysis showed that both acids were present in cork suberin as only one geometric isomer. The analysis of dimethyloxazoline (DMOX) and picolinyl derivatives proved the double bond position to be at C-9. The FTIR spectra were concordant with a cis-configuration for both suberin acids, but their unambiguous stereochemical assignment came from the NMR analysis: (i) the chemical shifts of the allylic (13) C carbons were shielded comparatively to the trans model compound, and (ii) the complex multiplets of the olefinic protons could be simulated only with (3) JHH and long-range (4) JHH coupling constants typical of a cis geometry. The two C18:1 suberin acids in cork are (Z)-18-hydroxyoctadec-9-enoic acid and (Z)-octadec-9-enedoic acid. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry.

    Science.gov (United States)

    Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M

    2017-08-15

    The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.

  3. Pd(II)-Catalyzed Ortho- or Meta-C–H Olefination of Phenol Derivatives

    Science.gov (United States)

    Dai, Hui-Xiong; Li, Gang; Zhang, Xing-Guo; Stepan, Antonia F.

    2013-01-01

    A combination of weakly coordinating auxiliaries and ligand acceleration allows for the development of both ortho- and meta-selective C–H olefination of phenol derivatives. These reactions demonstrate the feasibility of directing C–H functionalizations when functional groups are distal to target C–H bonds. The meta-C–H functionalization of electron-rich phenol derivatives is unprecedented and orthogonal to previous electrophilic substitution of phenols in terms of regioselectivity. These methods are also applied to functionalize α-phenoxyacetic acids, a fibrate class of drug scaffolds. PMID:23614807

  4. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  5. Methanol to olefin Conversion on HSAPO-34 zeolite from periodic density functional theory calculations: a complete cycle of side chain hydrocarbon pool mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.M.; Wang, Y.D.; Xie, Z.K.; Liu, Z.P. [SINOPEC, Shanghai (China)

    2009-03-15

    For its unique position in the coal chemical industry, the methanol to olefin (MTO) reaction has been a hot topic in zeolite catalysis. Due to the complexities of catalyst structure and reaction networks, many questions such as how the olefin chain is built from methanol remain elusive. On the basis of periodic density functional theory calculations, this work establishes the first complete catalytic cycle for MTO reaction via hexamethylbenzene (HMB) trapped in HSAPO-34 zeolite based on the so-called side chain hydrocarbon pool mechanism. The cycle starts from the methylation of HMB that leads to heptamethylbenzenium ion (heptaMB{sup +}) intermediate. This is then followed by the growth of side chain via repeated deprotonation of benzenium ions and methylation of the exocyclic double bond. Ethene and propene can finally be released from the side ethyl and isopropyl groups of benzenium ions by deprotonation and subsequent protonation steps. We demonstrate that (i) HMB/HSAPO-34 only yields propene as the primary product based on the side chain hydrocarbon pool mechanism and (ii) an indirect proton-shift step mediated by water that is always available in the system is energetically more favorable than the traditionally regarded internal hydrogen-shift step. Finally, the implications of our results toward understanding the effect of acidity of zeolite on MTO activity are also discussed.

  6. Olefination of Electron-Deficient Alkenes with Allyl Acetate: Stereo- and Regioselective Access to (2Z,4E)-Dienamides.

    Science.gov (United States)

    Li, Feifei; Yu, Chunbing; Zhang, Jian; Zhong, Guofu

    2016-09-16

    A Ru-catalyzed direct olefination of electron-deficient alkenes with allyl acetate via C-H bond activation is disclosed. By using N,N-disubstituted aminocarbonyl as the directing group, this external oxidant-free protocol resulted in high reaction efficiency and good stereo- and regioselectivities, which opens a novel synthetic passway for access to (Z,E)-butadiene skeletons.

  7. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  8. Olefin recovery from FCC off-gas can pay off

    International Nuclear Information System (INIS)

    Brahn, M.G.

    1992-01-01

    This paper reports on olefins recovery from refinery FCC offgas streams which offers an attractive cash flow from olefins from a tail-gas stream that has typically been consumed as refinery fuel. Such recovery schemes can be employed in refineries or olefins plants, and can be tailored to fit individual requirements. Mobil Chemical Co. has operated such a dephlegmator-based off-gas recovery unit at its Beaumont, Tex., olefin plant since 1987. It reported that the project was paid out within 11 months of initial start-up

  9. A computational mechanistic study of Pd(ii)-catalyzed γ-C(sp3)-H olefination/cyclization of amines: the roles of bicarbonate and ligand effect.

    Science.gov (United States)

    Liu, Jian-Biao; Tian, Ying-Ying; Zhang, Xin; Wang, Lu-Lin; Chen, De-Zhan

    2018-04-03

    The detailed mechanism of palladium-catalyzed γ-C(sp3)-H olefination/cyclization of triflyl-protected amines was investigated by density functional theory (DFT) calculations. The olefinated intermediate was initially formed in the first catalytic cycle involving ligand exchange, bicarbonate-assisted C(sp3)-H bond cleavage, alkene insertion and 'reductive β-hydride elimination'. The following syn-addition and reductive elimination furnish the aza-Wacker product. The first step of reductive elimination is the rate-determining step. The mechanism unveils the important roles of bicarbonate: aiding the C-H activation and abstracting the β-proton in the second step of reductive elimination. The parallel bridging mode in the metal-olefin intermediate facilitates the syn-addition, explaining the experimentally observed stereoselectivity. The effect of the monodentate pyridine-based ligands is also discussed.

  10. Catalytic olefin polymerization with early transition metal compounds

    OpenAIRE

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and arene oxidation. Traditionally, heterogeneous catalysts have been used for the production of large-scale commodity chemicals such as methanol and ammonia and in the production of high octane gasoline...

  11. Metylcyclohexane conversion to light olefins

    OpenAIRE

    SCOFIELD, C.F.; BENAZZI, E.; CAUFFRIEZ, H.; MARCILLY, C.

    1998-01-01

    This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4=) were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and fa...

  12. Formation of Conjugated Double Bonds to Induce Polystyrene Conductivity by using Different Concentrations of Methoxo-Oxo Bis (8-Quinolyloxo Vanadium (V

    Directory of Open Access Journals (Sweden)

    Basim Mohamad Hasan

    2017-02-01

    Full Text Available The effect of different concentrations of additive compound methoxo–oxo bis (8-quinolyloxo vanadium (v on formation of conjugated double bonds as part of photo transformation of polystyrene has been investigated. The UV-Vis spectrophotometery has been used in this work. The results are show that additive concentrations applied increase the formation of conjugated double bond as compared with polystyrene. In this study methoxo – oxo bis (8-quinolyloxo vanadium (v indicates great activity to enhance the conductivity of polystyrene by formation of conjugated double bonds.

  13. Photochemical reaction products in air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, E R; Darley, E F; Taylor, O C; Scott, W E

    1961-01-01

    Isolation and purification of peroxyacetyl nitrate (PAN) from artificial photochemical reaction of olefins and NO/sub x/ in air are analyzed. Olefin splits at the double bond, one end forming carbonyl compound and the other yielding PAN, among others. At concentrations below 1 ppM, PAN causes plant damage. At a concentration of about 1 ppM, PAN is a strong eye irritant.

  14. P(O)R2-Directed Enantioselective C-H Olefination toward Chiral Atropoisomeric Phosphine-Olefin Compounds.

    Science.gov (United States)

    Li, Shi-Xia; Ma, Yan-Na; Yang, Shang-Dong

    2017-04-07

    An effective synthesis of chiral atropoisomeric biaryl phosphine-olefin compounds via palladium-catalyzed enantioselective C-H olefination has been developed for the first time. The reactions are operationally simple, tolerate wide functional groups, and have a good ee value. Notably, P(O)R 2 not only acts as the directing group to direct C-H activation in order to make a useful ligand but also serves to facilitate composition of the product in a useful manner in this transformation.

  15. Production of olefins from bioethanol. Catalysts, mechanism

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2012-12-01

    Full Text Available This review describes methods of catalytic obtaining from bioethanol of valuable industrial products – olefins, particularly ethylene. Аmong olefins, ethylene is the most popular key raw material of petrochemical synthesis. The scope of appllication of ethylene is almost unlimited in petrochemical products: polyethylene, ethylbenzene, styrene, ethylene dichloride, vinyl chloride etc. It also examines catalysts for the production of olefins and their properties. The most promising and commercially advantageous process of ethylene production by catalytic dehydration of ethanol on catalysts based on modified alumina. And this review discusses the mechanisms of catalytic conversion of ethanol to ethylene.

  16. Iodine-Catalyzed Direct Olefination of 2-Oxindoles and Alkenes via Cross-Dehydrogenative Coupling (CDC) in Air.

    Science.gov (United States)

    Huang, Hong-Yan; Wu, Hong-Ru; Wei, Feng; Wang, Dong; Liu, Li

    2015-08-07

    A direct intermolecular olefination of sp(3) C-H bond between 2-oxindoles and simple alkenes via a Cross-Dehydrogenative Coupling (CDC) strategy has been developed. In the absence of additional base, moderate to excellent yields have been obtained by using a catalytic amount of iodine with atmospheric oxygen as the reoxidant. Based on the observation of a radical capture experiment, the transformation is proposed to proceed via a radical process.

  17. Analysis of molecular species of triacylglycerols from vegetable oils containing fatty acids with non-methylene-interrupted double bonds, by HPLC in the silver-ion mode

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Y.; Kim, S. [Dong A Univ., Pusan (Korea, Republic of)

    1998-10-20

    The possibilities for application of silver ion HPLC to analysis of the triacylglycerols containing conjugate trienoic acids and {Delta}{sup 5}-polymethylene-interrupted acids and proportions of triacylglycerol fractions obtained by silver-ion HPLC from the seed oil of Momordica charantia double bonds were examined, respectively. The triacylglycerols of seed oils containing conjugate trienoic acids such as {alpha}-eleostearic acid (C{sub 18:3 9c,11t,13t}) and punicic acid (C{sub 18:3} {sub 9c,11t,13c}) were resolved by silver-ion HPLC. Fractions were fractionated on the basis of the number and configuration of double bonds in the species, and the elution profile is quite different from that of the species comprising exclusively saturated and unsaturated fatty acids with methylene-interrupted double bonds ; for instance, the species (DT(c2)) composed of one dienoic acid and two conjugate trienoic acids eluted much earlier than the species (D{sub 2}T{sub c}) composed of two dienoic acids and one conjugate trienoic acid, in spite of having larger number of double bonds. This means that the interaction of conjugate double bonds with silver ions is weaker than that of methylene-interrupted double bonds, presumably because of the delocalization of {pi}-electrons in conjugate double bonds. In this instance, the strength of interaction of a conjugate trienoic double bond system with silver ions seemed to be between that of methylene-interrupted dienoic and monoenoic double bond systems. Triacylglycerols of the seeds of Ginkgo biloba have been resolved by HPLC in the silver-ion mode according to the number and position of double bonds. In this instance, the strength of interaction between the {pi}-electrons of double bonds in the fatty acyl residues and silver ions is in the order; C{sub 18:3{omega}3}>C(20:3){Delta}{sup 5,11,14}C{sub 18:3}{Delta}{sup 5,9,12}>= C{sub 18:2{omega}6}>C{sub 18:2}{Delta}{sup 5,9}>C{sub 18:1{omega}9}>C{sub 18:1ome= ga7}. 49 refs., 2 figs., 2 tabs.

  18. Metylcyclohexane conversion to light olefins

    Directory of Open Access Journals (Sweden)

    SCOFIELD C.F.

    1998-01-01

    Full Text Available This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4= were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and faujasite.

  19. Preparation of mesoporous alumina particles by spray pyrolysis and application to double bond migration of 2-butene.

    Science.gov (United States)

    Song, Ki Chang; Kim, Joo Hyun; Kim, Jin Han; Jung, Kyeong Youl; Park, Young-Kwon; Jeon, Jong-Ki

    2011-07-01

    The objective of the present study is to investigate the catalytic performance of mesoporous alumina that were prepared via spray pyrolysis for double bond migration from 2-butene to 1-butene. The mesoporous alumina particles were prepared via spray pyrolysis by changing the types of organic surfactants and Al precursors. The texture and acidic properties of mesoporous alumina were analyzed through N2 adsorption, SEM, ammonia-temperature programmed desorption, and FT-IR of adsorbed pyridine. The morphologies and texture properties of the mesoporous alumina were found to have been strongly influenced by the combination of the Al precursor and the structure-directing agents. The mesoporous alumina samples had two kinds of acidic sites: a Lewis acid site and a H-bonded weak acid site. 1-Butene was produced selectively through double bond migration of 2-butene over all of the mesoporous alumina catalysts. The catalyst prepared by using a chloride compound as an aluminium precursor and CTAC as a structure-directing agent showed the highest activity in the double bond migration of 2-butene, which was attributed to its large surface area and an overall high amount of acid sites.

  20. P(NMe2)3-Mediated Umpolung Alkylation and Nonylidic Olefination of α-Keto Esters.

    Science.gov (United States)

    Wang, Sunewang Rixin; Radosevich, Alexander T

    2015-08-07

    A commercial phosphorus-based reagent (P(NMe2)3) mediates umpolung alkylation of methyl aroylformates with benzylic and allylic bromides, leading to either Barbier-type addition or ylide-free olefination products upon workup. The reaction sequence is initiated by a two-electron redox addition of the tricoordinate phosphorus reagent with an α-keto ester compound (Kukhtin-Ramirez addition). A mechanistic rationale is offered for the chemoselectivity upon which the success of this nonmetal mediated C-C bond forming strategy is based.

  1. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M.(Lummus)

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort

  2. Production and use of light olefins. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Buzzoni, R.; Leitner, W.; Lercher, J.A.; Lichtscheidl, J.; Nees, F.; Santacesaria, E. (eds.)

    2009-07-01

    Within the conference of the German Society for Petroleum and Coal Science and Technology e.V. (Hamburg, Federal Republic of Germany) in Berlin (Federal Republic of Germany) at 28th to 30th September, 2009, the following lectures were held: (1) Steamcracking - State of the Art (H. Zimmermann); (2) Diversify Feedstock Options to Olefin Production (Q. Ling et al.); (3) Syngas to lower olefins (E. Schwab et al.); (4) STAR process registered for the on-purpose production of propylene (K. Bueker); (5) The catalytic activity of zinc oxide supported on aerosil for C-H activation of light alkanes (S. Arndt et al.); (6) Novel catalytic approaches for the oxidative dehydrogenation of ethane (D. Hartmann); (7) A comparison of the active sites structures of homogeneous and heterogeneous olefin polymerisation catalysts (A. Zecchina); (8) Catalytic strategies in metathesis (C. Coperet); (9) Multi-technology integrated production and consumption of olefins (J. Popp et al.); (10) Olefin oligomerization for the production of fuels and petrochemicals (H. Olivier-Bourbigou et al.); (11) Dieselization of the world - How to increase diesel yield in a refinery (A. Dueker); (12) Isomerization of butenes: LyondellBasell's Isomplus technology development (T. Zak et al.); (13) Valuable products from butadiene, carbon dioxide and further base chemicals (A. Behr); (14) The partial oxidation of propene to propylene oxide using N{sub 2}O as an oxidant (T. Thoemmes); (15) Alternative feedstocks for olefin production: What role will ethanol play? (B.R. Maughon); (16) Production of light olefins from renewable resources - The effect of deoxygenation degree on yields of light olefins (D. Kubicka et al.); (17) Recovery of low olefins from refinery offgases (M. Bender).

  3. Integrated packaging of multiple double sided cooling planar bond power modules

    Science.gov (United States)

    Liang, Zhenxian

    2018-04-10

    An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flow path to remove heat and increase the power density of the power module.

  4. The olefin metathesis reaction: reorganization and cyclization of organic compounds

    International Nuclear Information System (INIS)

    Frederico, Daniel; Brocksom, Ursula; Brocksom, Timothy John

    2005-01-01

    The olefin metathesis reaction allows the exchange of complex alkyl units between two olefins, with the formation of a new olefinic link and a sub-product olefin usually ethylene. This reaction has found extensive application in the last ten years with the development of the Grubbs and Schrock catalysts, in total synthesis of complex organic molecules, as opposed to the very important use in the petrochemical industry with relatively simple molecules. This review intends to trace a historical and mechanistic pathway from industry to academy, before illustrating the more recent advances. (author)

  5. SAXS observation of structural evolution of heated olefin

    International Nuclear Information System (INIS)

    Sun Minhua; Mou Hongchen; Wang Yuxi; Li Demin; Wang Aiping; Ma Congxiao; Cheng Weidong; Wang Dan; Liu Jia

    2007-01-01

    Structural evolution of olefin during its heating process was observed with SAXS method at Beijing Synchrotron Radiation Facility. The mean square fluctuation of electron density increased from 468.5 nm -2 at 22 degree C to 2416 nm -2 at 100 degree C, while the electronic gyration radius decreased from 11.61 nm at 22 degree C to 11.16 nm at 100 degree C. Therefore, the olefin softens as a result of the increased thermal motion of the molecules, rather than the shrinking size of fundamental structural units of olefin. (authors)

  6. Ag1 Pd1 Nanoparticles-Reduced Graphene Oxide as a Highly Efficient and Recyclable Catalyst for Direct Aryl C-H Olefination.

    Science.gov (United States)

    Hu, Qiyan; Liu, Xiaowang; Wang, Guoliang; Wang, Feifan; Li, Qian; Zhang, Wu

    2017-12-14

    The efficient and selective palladium-catalyzed activation of C-H bonds is of great importance for the construction of diverse bioactive molecules. Despite significant progress, the inability to recycle palladium catalysts and the need for additives impedes the practical applications of these reactions. Ag 1 Pd 1 nanoparticles-reduced graphene oxide (Ag 1 Pd 1 -rGO) was used as highly efficient and recyclable catalyst for the chelation-assisted ortho C-H bond olefination of amides with acrylates in good yields with a broad substrate scope. The catalyst can be recovered and reused at least 5 times without losing activity. A synergistic effect between the Ag and Pd atoms on the catalytic activity was found, and a plausible mechanism for the AgPd-rGO catalyzed C-H olefination is proposed. These findings suggest that the search for such Pd-based bimetallic alloy nanoparticles is a new method towards the development of superior recyclable catalysts for direct aryl C-H functionalization under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cu-catalyzed C(sp³)-H bond activation reaction for direct preparation of cycloallyl esters from cycloalkanes and aromatic aldehydes.

    Science.gov (United States)

    Zhao, Jincan; Fang, Hong; Han, Jianlin; Pan, Yi

    2014-05-02

    Cu-catalyzed dehydrogenation-olefination and esterification of C(sp(3))-H bonds of cycloalkanes with TBHP as an oxidant has been developed. The reaction involves four C-H bond activations and gives cycloallyl ester products directly from cycloalkanes and aromatic aldehydes.

  8. Ligand-enabled ortho-C–H olefination of phenylacetic amides with unactivated alkenes† †Electronic supplementary information (ESI) available: Data for new compounds and experimental procedures. See DOI: 10.1039/c7sc04827k

    Science.gov (United States)

    Lu, Ming-Zhu; Chen, Xing-Rong; Xu, Hui

    2017-01-01

    Although chelation-assisted C–H olefination has been intensely investigated, Pd(ii)-catalyzed C–H olefination reactions are largely restricted to acrylates and styrenes. Here we report a quinoline-derived ligand that enables the Pd(ii)-catalyzed olefination of the C(sp2)–H bond with simple aliphatic alkenes using a weakly coordinating monodentate amide auxiliary. Oxygen is used as the terminal oxidant with catalytic copper as the co-oxidant. A variety of functional groups in the aliphatic alkenes are tolerated. Upon hydrogenation, the ortho-alkylated product can be accessed. The utility of this reaction is also demonstrated by the late-stage diversification of drug molecules. PMID:29675177

  9. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  10. Surface-enhanced light olefin yields during steam cracking

    NARCIS (Netherlands)

    Golombok, M.; Kornegoor, M.; Brink, van den P.; Dierickx, J.; Grotenbreg, R.

    2000-01-01

    Various papers have shown enhanced olefin yields during steam cracking when a catalytic surface is introduced. Our studies reveal that increased light olefin yields during catalytic steam cracking are mainly due to a surface volume effect and not to a traditional catalytic effect. Augmentation of

  11. Electrochemistry for biofuel generation: transformation of fatty acids and triglycerides to diesel-like olefin/ether mixtures and olefins.

    Science.gov (United States)

    dos Santos, Tatiane R; Harnisch, Falk; Nilges, Peter; Schröder, Uwe

    2015-03-01

    Electroorganic synthesis can be exploited for the production of biofuels from fatty acids and triglycerides. With Coulomb efficiencies (CE) of up to 50 %, the electrochemical decarboxylation of fatty acids in methanolic and ethanolic solutions leads to the formation of diesel-like olefin/ether mixtures. Triglycerides can be directly converted in aqueous solutions by using sonoelectrochemistry, with olefins as the main products (with a CE of more than 20 %). The latter reaction, however, is terminated at around 50 % substrate conversion by the produced side-product glycerol. An energy analysis shows that the electrochemical olefin synthesis can be an energetically competitive, sustainable, and--in comparison with established processes--economically feasible alternative for the exploitation of fats and oils for biofuel production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. CH3-ReO3 on gamma-Al2O3: understanding its structure, initiation,and reactivity in olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Salameh, Alain; Joubert, Jerome; Baudouin, Anne; Lukens, Wayne; Delbecq, Francoise; Sautet, Philippe; Basset, Jean Marie; Coperet,Christophe

    2007-01-20

    Me-ReO3 on gamma-alumina: understanding the structure, theinitiation and thereactivity of a highly active olefin metathesiscatalyst Heterolytic splitting of the C-H bond of the methyl group ofCH3ReO3 on AlsO reactive sites of alumina as a way to generate the activesite of CH3ReO3 supported on gamma-Al203.

  13. Olefination reactions of phosphorus-stabilized carbon nucleophiles.

    Science.gov (United States)

    Gu, Yonghong; Tian, Shi-Kai

    2012-01-01

    A range of phosphorus-stabilized carbon nucleophiles have been employed for alkene synthesis with high chemo-, regio-, and stereoselectivity. The Wittig, Horner-Wadsworth-Emmons, Horner-Wittig, and Evans-Akiba reactions utilize phosphonium-, phosphonate-, phosphine oxide-, and pentacoordinated phosphorane-stabilized carbanions as nucleophiles, respectively, to undergo olefination with aldehydes or ketones, and each of these transformations has its own advantages and limitations. Modifying the structures of these nucleophiles along with optimizing reaction conditions results in the formation of a wide variety of polysubstituted alkenes in a highly stereoselective manner. The olefination of imines with phosphonium ylides has recently emerged as a useful approach to tune the stereoselectivity for alkene synthesis. This review focuses on recent advances in the stereoselective olefination of phosphorus-stabilized carbon nucleophiles.

  14. Cleavage of olefinic double bonds by mediated anodic oxidation

    International Nuclear Information System (INIS)

    Baeumer, U.-St.; Schaefer, H.J.

    2003-01-01

    Seven alkenes, e.g. 1-decene, methyl oleate, cyclododecene, norbornene, are cleaved by indirect anodic oxidation with IO 4 - /RuCl 3 as mediator to carboxylic acids. The best performance was achieved with two alternative ex cell-methods. Periodate is regenerated from iodate in a divided cell at a PbO 2 /Ti-anode. In the chemical reactor alkene and the produced carboxylic acid are immobilized in a chromatography column on Chromosorb W and oxidized with IO 4 - /RuO 4 in CH 3 CN/water. In the alternative version the alkene is oxidized in an emulsion generated by sonication and the organic phase is retained in the reactor by a separator. Acids and diacids are obtained in 61-91% chemical yield and good current yields. The amount of consumed periodate can be reduced to less than 5% of the amount needed for the chemical oxidation. The mediated anodic cleavage of alkenes is altogether an interesting alternative to ozonolysis

  15. Kinetically based NMR method of measuring blending octane number of olefins

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, J.; Morley, C.

    1995-01-01

    Olefins are highly nonlinear octane blenders so that standard GC analyses are poor predictors of blend quality. Engine rating is the only way of measuring olefin octane number nonlinearity. It is thus not possible to rapidly assess the quality of the product obtained from an olefin-producing

  16. Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.

  17. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt

  18. Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding

    International Nuclear Information System (INIS)

    Kim, Young-Jong; Taniguchi, Yoshinao; Murase, Kuniaki; Taguchi, Yoshihiro; Sugimura, Hiroyuki

    2009-01-01

    The surface of cyclo-olefin polymer (COP) was treated with vacuum ultraviolet (VUV) light at 172 nm wavelength to improve the wettability and adhesion properties. Through VUV treatment in air, the terminal groups of the COP surface were oxidized into oxygen functional groups, containing C-O, C=O, and COO components, making the COP surface hydrophilic. The extent of oxygenation was evaluated by XPS and FTIR-ATR spectra, and it was shown that the surface properties, hydrophilicity, and functionalization were dependent on both VUV irradiation distance and irradiation time, which have an effect on the concentration of oxygen functional groups. VUV-light treatment with a short irradiation distance was more effective in introducing oxygen functional groups.

  19. (Z-Selective Takai olefination of salicylaldehydes

    Directory of Open Access Journals (Sweden)

    Stephen M. Geddis

    2017-02-01

    Full Text Available The Takai olefination (or Takai reaction is a method for the conversion of aldehydes to vinyl iodides, and has seen widespread implementation in organic synthesis. The reaction is usually noted for its high (E-selectivity; however, herein we report the highly (Z-selective Takai olefination of salicylaldehyde derivatives. Systematic screening of related substrates led to the identification of key factors responsible for this surprising inversion of selectivity, and enabled the development of a modified mechanistic model to rationalise these observations.

  20. (Z)-Selective Takai olefination of salicylaldehydes.

    Science.gov (United States)

    Geddis, Stephen M; Hagerman, Caroline E; Galloway, Warren R J D; Sore, Hannah F; Goodman, Jonathan M; Spring, David R

    2017-01-01

    The Takai olefination (or Takai reaction) is a method for the conversion of aldehydes to vinyl iodides, and has seen widespread implementation in organic synthesis. The reaction is usually noted for its high ( E )-selectivity; however, herein we report the highly ( Z )-selective Takai olefination of salicylaldehyde derivatives. Systematic screening of related substrates led to the identification of key factors responsible for this surprising inversion of selectivity, and enabled the development of a modified mechanistic model to rationalise these observations.

  1. Rhodium(iii)-catalyzed ortho-olefination of aryl phosphonates.

    Science.gov (United States)

    Chary, Bathoju Chandra; Kim, Sunggak

    2013-09-25

    Rhodium(iii)-catalyzed C-H olefination of aryl phosphonic esters is reported for the first time. In this mild and efficient process, the phosphonic ester group is utilized successfully as a new directing group. In addition, mono-olefination for aryl phosphonates is observed using a phosphonic diamide directing group.

  2. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Science.gov (United States)

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  3. Isobutane/olefin-alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Waitkamp, J.; Maixner, S.

    1983-11-01

    Isobutane/olefin-alkylation - technology and reaction mechanism of a refinery process for production of high octane gasoline components: The alkylation of i-butane with olefins, especially with butenes, is a process for the conversion of light byproducts of a catalytic cracker to high quality gasoline components. Alkylate is a complex mixture of i-paraffins containing 5 to ca. 12 carbon atoms. Due to their octane numbers the four trimethylpentane isomers are the most desirable product components. Indeed, under optimum process conditions these isomers are the main products. Presently, alkylation capacity in the western world amounts to more than 40x10/sup 6/ t/a. Most units are located in the USA. Two liquid-phase processes using sulfuric acid and hydrofluoric acid, respectively, are of commercial importance. At present, there is a definite trend towards HF-alkylation. The reaction mechanism which proceeds via carbocations, is extremely complex. It is composed of a great variety of individual steps. Modern mechanistic concepts are discussed.

  4. Direct catalytic olefination of alcohols with sulfones.

    Science.gov (United States)

    Srimani, Dipankar; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2014-10-06

    The synthesis of terminal, as well as internal, olefins was achieved by the one-step olefination of alcohols with sulfones catalyzed by a ruthenium pincer complex. Furthermore, performing the reaction with dimethyl sulfone under mild hydrogen pressure provides a direct route for the replacement of alcohol hydroxy groups by methyl groups in one step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Techno-economic analysis and comparison of coal based olefins processes

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • The coal based Fischer–Tropsch-to-olefins (CFTO) process is proposed and analyzed. • The CFTO suffers from lower energy efficiency and serious CO 2 emissions. • Approaches for improving techno-economic performance of the CFTO are obtained. - Abstract: Traditional olefins production is heavily dependent on oil. In the background of the scarcity of oil and richness of coal in China, olefins production from coal has been attracting more attention of the chemical process industry. The first coal based methanol-to-olefins (CMTO) plant has been commercialized in China. For shorter process route and lower capital cost, Fischer–Fropsch has been put forward in the last few years. The coal based Fischer–Tropsch-to-olefins (CFTO) process is designed in this paper and then its techno-economic and environmental performance was detailed studied in this paper, in comparison with the CMTO. Results show that at the present olefins selectivity, the CFTO suffers from relative lower energy efficiency and higher CO 2 emissions. In economic aspect, the capital investment and product cost of the CFTO are roughly equivalent to that of the CMTO. Although the conversion route of the CFTO is shorter, its techno-economic performance is still inferior to that of the CMTO. It is also found that increase of olefins selectivity by cracking oil or decrease of CO 2 selectivity by improving catalyst could significantly improve the performance of the CFTO.

  6. Regioselective C2 Oxidative Olefination of Indoles and Pyrroles through Cationic Rhodium(III)-Catalyzed C-H Bond Activation.

    Science.gov (United States)

    Li, Bin; Ma, Jianfeng; Xie, Weijia; Song, Haibin; Xu, Shansheng; Wang, Baiquan

    2013-09-02

    Be economic with your atoms! An efficient Rh-catalyzed oxidative olefination of indoles and pyrroles with broad substrate scope and tolerance is reported. The catalytic reaction proceeds with excellent regio- and stereoselectivity. The directing group N,N-dimethylcarbamoyl was crucial for the reaction and could be removed easily. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rh(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides using activated and unactivated alkenes.

    Science.gov (United States)

    Li, Xuting; Gong, Xue; Zhao, Miao; Song, Guoyong; Deng, Jian; Li, Xingwei

    2011-11-04

    Rhodium(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides has been achieved at the peri position. Three categories of olefins have been successfully applied. Activated olefins reacted to afford five-membered azacycles as a result of oxidative olefination-hydroamination. Unactivated olefins reacted to give the olefination product. 2-fold oxidative C-C and C-N coupling was achieved for allylbenzenes. © 2011 American Chemical Society

  8. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  9. New synthesis of photocurable silanes and polysiloxanes bearing heterocyclic or olefinic functions

    International Nuclear Information System (INIS)

    Youssef, B.; Lecamp, L.; Garin, S.; Bunel, C.

    1999-01-01

    In this work, we described the synthesis of silanes and polysiloxanes bearing cationic photopolymerizable groups. Two new methods were used. The first one is the reaction between 3-mercapto-propyl-1-triethoxysilane (1) and chloromethylated olefins by a phase transfer catalysis. The second one is the radical addition of (1) or poly(dimethylsiloxane-co-methylmercaptopropylsiloxane) (9) to allyl or vinyl substituted heterocyclic monomers. These methods led to the expected adducts with an excellent yield. The polysiloxanes bearing heterocyclic functional groups linked through thioether bonds were photocurable by cationic route. Under UV light intensity of 17.5 mW/cm 2 , these polymers harden after 15 or 20 s

  10. Synthesis of the EF-ring of ciguatoxin 3C based on the [2,3]-Wittig rearrangement and ring-closing olefin metathesis.

    Science.gov (United States)

    Goto, Akiyoshi; Fujiwara, Kenshu; Kawai, Ayako; Kawai, Hidetoshi; Suzuki, Takanori

    2007-12-20

    The EF-ring segment of ciguatoxin 3C, a causative toxin of ciguatera fish poisoning, was synthesized in three major steps: 1,4-addition for the C20O-C27 bond connection, chirality transferring anti selective [2,3]-Wittig rearrangement for the construction of the anti-2-hydroxyalkyl ether part, and ring-closing olefin metathesis for the F-ring formation.

  11. Reactivity of olefin and allyl ligands in π-complexes of metals

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    The data on reactivity of olefin and allyl ligands in transition metal (Ru, W) π-complexes, published up to 1984 are presented. Metal ion coordination of olefins causes their appreciable reactivity change. Transformations of π-olefin ligands into σ-alkyl ones, interaction of π-complexes with oxygen nucleophilic reagents, amines, halogenides and pseudohalogenides are considered

  12. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    Science.gov (United States)

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-11-04

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.

  14. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.

    Science.gov (United States)

    Goblirsch, Brandon R; Jensen, Matthew R; Mohamed, Fatuma A; Wackett, Lawrence P; Wilmot, Carrie M

    2016-12-23

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys 143 ) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C 12 and C 14 ) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ 117 ) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis*

    Science.gov (United States)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-01-01

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. PMID:27815501

  16. Olefin metathesis in nano-sized systems

    Directory of Open Access Journals (Sweden)

    Denise Méry

    2011-01-01

    Full Text Available The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM, cross metathesis (CM, enyne metathesis reactions (EYM – for reactions in water without a co-solvent and (ii construction and functionalization of dendrimers by CM reactions.

  17. The Existence of a Designer Al=Al Double Bond in the LiAl2 H4- Cluster Formed by Electronic Transmutation.

    Science.gov (United States)

    Lundell, Katie A; Zhang, Xinxing; Boldyrev, Alexander I; Bowen, Kit H

    2017-12-22

    The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl 2 H 4 - cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl 2 H 4 - cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si 2 H 4 , demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface activation of cyclo olefin polymer by oxygen plasma discharge: a molecular dynamics study

    International Nuclear Information System (INIS)

    Soberon, Felipe

    2014-01-01

    Thermoplastic substrates made of cyclo olefin polymer (COP) are treated with oxygen plasma discharges to introduce polar groups at the surface. This is the first step in the process of surface functionalization of COP substrates used in biosensor devices. A molecular dynamics model of basic COP structure is implemented using the second-generation reactive empirical bond order (REBO) potentials for hydrocarbon–oxygen interactions. The model includes covalent bond and Van der Waals interactions. The bombardment of a COP surface with mono-energetic atomic oxygen ions, energy in the range 1-35 eV, is simulated and reported here. The dynamics of the substrate modification reveals that the substrate top layer is de-hydrogenated and subsequently builds up an oxygen–carbon matrix layer, ∼10 Å thick. Analysis of the modified substrates indicates that surface yield is predominantly peroxide groups. (paper)

  19. Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C-H Activation Promoted by Metal-Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry.

    Science.gov (United States)

    Dang, Yanfeng; Qu, Shuanglin; Tao, Yuan; Deng, Xi; Wang, Zhi-Xiang

    2015-05-20

    Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems.

  20. Self-Organization of +-Crown Ether Derivatives into Double-Columnar Arrays Controlled by Supramolecular Isomers of Hydrogen-Bonded Anionic Biimidazolate Ni Complexes

    Directory of Open Access Journals (Sweden)

    Makoto Tadokoro

    2012-01-01

    Full Text Available Anionic tris (biimidazolate nickelate (II ([Ni(Hbim3]−, which is a hydrogen-bonding (H-bonding molecular building block, undergoes self-organization into honeycomb-sheet superstructures connected by complementary intermolecular H-bonds. The crystal obtained from the stacking of these sheets is assembled into channel frameworks, approximately 2 nm wide, that clathrate two cationic K+-crown ether derivatives organised into one-dimensional (1D double-columnar arrays. In this study, we have shown that all five cationic guest-included crystals form nanochannel structures that clathrate the 1-D double-columnar arrays of one of the four types of K+-crown ether derivatives, one of which induces a polymorph. This is accomplished by adaptably fitting two types of anionic [Ni(Hbim3]− host arrays. One is a ΔΛ−ΔΛ−ΔΛ⋯ network with H-bonded linkages alternating between the two different optical isomers of the Δ and Λ types with flexible H-bonded [Ni(Hbim3]−. The other is a ΔΔΔ−ΛΛΛ⋯ network of a racemate with 1-D H-bonded arrays of the same optical isomer for each type. Thus, [Ni(Hbim3]− can assemble large cations such as K+ crown-ether derivatives into double-columnar arrays by highly recognizing flexible H-bonding arrangements with two host networks of ΔΛ−ΔΛ−ΔΛ⋯ and ΔΔΔ−ΛΛΛ⋯.

  1. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu; Queval, Pierre; Borre, Etienne; Falivene, Laura; Poater, Albert; Berthod, Mikael; Hugues, Francois; Cavallo, Luigi; Basle, Olivier; Olivier-Bourbigou, Helene; Mauduit, Marc

    2016-01-01

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  2. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu

    2016-10-14

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  3. Reactions of rhodium(I) carbonyl chloride with olefins

    International Nuclear Information System (INIS)

    Varshavskii, Yu.S.; Kiseleva, N.V.; Cherkasova, T.G.; Buzina, N.A.; Bresler, L.S.

    1987-01-01

    The reactions of [Rh(CO) 2 Cl] 2 (Y 0 ) with cyclooctene and several other olefins (1-heptene, 1-hexene, ethylene, and cyclohexene) have been studied by IR and 13 C NMR spectroscopy. The main reaction products are the binuclear complexes Rh 2 L(CO) 3 Cl 2 (Y 1 ) and [RhL(CO)Cl] 2 (Y 2 ), where L denotes the olefin. The extent of replacement of the carbonyl groups depends on the nature of the olefin and the conditions under which the reaction is carried out (the L:Rh ratio and the removal of CO from the reaction sphere). The liquid olefins form the following series according to their ability to replace the carbonyl groups: C 8 H 14 > C 7 H 14 , C 6 H 12 > C 6 H 10 . In the presence of an excess of C 8 H 14 , Y 2 disproportionates with the formation of a dicarbonyl product, which presumably corresponds to the formula Rh(C 8 H 14 ) 2 (CO) 2 Cl (a pentacoordinate complex with a trigonal-bipyramidal structure). The 13 C signal in the NMR spectrum of a solution of Y 2 in C 8 H 14 is a singlet with σ( 13 C) 180.3 ppm, which is an indication of the rapid exchange of the carbonyl groups. Rapid exchange of the CO ligands is also observed in solutions of Y 0 in the olefins (with the exception of C 6 H 10 ). For example, the 13 C signal in the spectrum of a solution of Y 0 in C 8 H 14 is a singlet with σ( 13 C) 179.8 ppm. The spectrum of Y 0 in C 6 H 10 is a doublet with σ( 13 C) = 178.5 ppm and 1 J(CRh) = 76.3 Hz. A scheme for the interaction of Y 0 with olefins based on the conception of the trans antagonism of π-acceptor ligands has been proposed

  4. Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Li, Xiuxi; Qian, Yu

    2015-01-01

    Highlights: • Conduct a life cycle energy use and GHG emissions of olefins production processes. • Analyse effects of carbon capture and efficiency on alternative olefins production. • Analyse life cycle performance of Chinese olefins industry in three key periods. • Present the advantages and challenges of alternative olefins routes. - Abstract: Olefins are important platform chemicals widely used in industry. In terms of the short supply of oil resources, natural gas and coal are two significant alternative feedstocks. In this paper, energy consumption and GHG emissions of olefins production are analysed with life cycle assessment methods. Results showed the energy consumption and GHG emissions of natural gas-to-olefins are roughly equivalent to those of oil-to-olefins, while coal-to-olefins suffers from higher energy consumption and serious GHG emissions, including 5793 kg eq. CO 2 /t olefins of direct emissions and 5714 kg eq. CO 2 /t olefins of indirect emissions. To address the problem, the effect of carbon capture on coal-to-olefins is investigated. In comprehensive consideration of energy utilization, environmental impact, and economic benefit, the coal-to-olefins with 80% CO 2 capture of the direct emissions is found to be an appropriate choice. With this carbon capture configuration, the direct emissions of the coal-to-olefins are reduced to 1161 kg eq. CO 2 /t olefins. However, the indirect emissions are still not captured, which should be strictly monitored and significantly reduced. Finally, a scenario analysis is conducted to estimate resource utilization and GHG emissions of olefins production of China in 2020. Several suggestions are also proposed for policy making on the sustainable development of olefins industry

  5. Hardening by means of ionising radiation

    International Nuclear Information System (INIS)

    Spoor, H.; Demmler, K.

    1979-01-01

    The polymerisable ethylic unsaturated mixture can be hardened by means of electron irradiation and used as a corrosion preventive layer. The mixture mainly consists of at least a di-olefinic unsaturated polyester, partial esters of polycarbonic acids, in particular the monoester of dicarbonic acids, with a copolymerizable C-C double bond, and mono-olefine unsaturated hydrocarbons, for example vinyl aromatics. The coatings exhibit good adhesion to the substrate, in particular to metal, and good flexibility. (DG) [de

  6. Direct observation of OH production from the ozonolysis of olefins

    Science.gov (United States)

    Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.; Demerjian, Kenneth L.

    Ozone olefin reactions may be a significant source of OH in the urban atmosphere, but current evidence for OH production is indirect and contested. We report the first direct observation of OH radicals from the reaction of ozone with a series of olefins (ethene, isoprene, trans-2-butene and 2,3 dimethyl-2-butene) in 4-6 torr of nitrogen. Using LIF to directly observe the steady-state of OH produced by the initial ozone-olefin reaction and subsequently destroyed by the OH-olefin reaction, we are able to establish OH yields broadly consistent with indirect values. The identification of the OH is unequivocal, and there is no indication that it is produced by a secondary process. To support these observations, we present a complete ab-initio potential energy surface for the O3-ethene reaction, extending from the reactants to available products.

  7. Synthesis of zirconium aryloxide complexes containing pendent vinyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Evans, W.J.; Ansari, M.A.; Ziller, J.W. [Univ. of California, Irvine, CA (United States). Dept. of Chemistry

    1999-03-22

    The attachment of pendent olefin groups to oxygen-ligated zirconium complexes using olefin-substituted phenols and alcohols and readily accessible zirconium reagents is described. Syntheses of three crystallographically characterizable complexes isolable in 55--90% yield are reported. Eugenol, HOC{sub 6}H{sub 3}(OMe-2)(CH{sub 2}CH{double_bond}CH{sub 2}-4)(HOAr) reacts with [Zr(O{sup i}Pr){sub 4}(HO{sup i}Pr)]{sub 2} in toluene to form [({sup i}PrO){sub 2}(ArO)Zr({mu}-O{sup i}Pr)]{sub 2}, 1. CH{sub 2}{double_bond}CHCH{sub 2}OH reacts with [Zr(NMe{sub 2}){sub 4}]{sub 2} in the presence of 2,6-dimethylphenol to form the mixed ligand salt, {l_brace}Me{sub 2}NH{sub 2}{r_brace}[(2,6-Me{sub 2}C{sub 6}H{sub 3}O){sub 3}Zr]{sub 2}({mu}-OCH{sub 2}CH{double_bond}CH{sub 2}){sub 3}{r_brace}, 2. The potassium salt derived from eugenol, KOAr, reacts with Zr(OEt){sub 4} in THF to form [K{sub 2}Zr(OAr){sub 4}(OEt)]{sub 2}(O), 3.

  8. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    Science.gov (United States)

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  9. Ionic liquids for separation of olefin-paraffin mixtures

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  10. Direct olefination of fluorinated benzothiadiazoles: a new entry to optoelectronic materials.

    Science.gov (United States)

    Xiao, Yu-Lan; Zhang, Bo; He, Chun-Yang; Zhang, Xingang

    2014-04-14

    Fluorinated olefin-containing benzothiadiazoles have important applications in optoelectronic materials. Herein, we reported the direct olefination of fluorinated benzothiadiazoles, as catalyzed by palladium. The reaction proceeds under mild reaction conditions and shows high functional-group compatibility. A preliminary study of the properties of the resulting symmetrical and unsymmetrical olefin-containing fluorinated benzothiadiazoles in red-light-emitting dyes has also been conducted. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  12. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices.

    Science.gov (United States)

    Wan, Alwin M D; Moore, Thomas A; Young, Edmond W K

    2017-01-17

    Thermoplastic microfluidic devices offer many advantages over those made from silicone elastomers, but bonding procedures must be developed for each thermoplastic of interest. Solvent bonding is a simple and versatile method that can be used to fabricate devices from a variety of plastics. An appropriate solvent is added between two device layers to be bonded, and heat and pressure are applied to the device to facilitate the bonding. By using an appropriate combination of solvent, plastic, heat, and pressure, the device can be sealed with a high quality bond, characterized as having high bond coverage, bond strength, optical clarity, durability over time, and low deformation or damage to microfeature geometry. We describe the procedure for bonding devices made from two popular thermoplastics, poly(methyl-methacrylate) (PMMA), and cyclo-olefin polymer (COP), as well as a variety of methods to characterize the quality of the resulting bonds, and strategies to troubleshoot low quality bonds. These methods can be used to develop new solvent bonding protocols for other plastic-solvent systems.

  13. Oxidative cracking of n-hexane: a catalytic pathway to olefins

    NARCIS (Netherlands)

    Boyadjian, C.A.

    2010-01-01

    Steam cracking, the major, current existing route for light olefin production, is the most energy consuming process in the chemical industry. The need for an energy efficient processes, urged substantial research work for the development of new catalytic technologies for light olefin production.

  14. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    Science.gov (United States)

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of a silver–olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    International Nuclear Information System (INIS)

    Everitt, D T; Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2015-01-01

    A silver–olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver–olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h. (paper)

  16. Allene or alkyne treatment of olefin conversion catalysts

    International Nuclear Information System (INIS)

    Banks, R.L.

    1986-01-01

    This patent describes a disproportionation process which comprises contacting at least one olefin from the group consisting of: acyclic mono- and polyenes having at least 3 up to 10 carbon atoms per molecule, and cycloalkyl and aryl derivatives thereof; cyclic mono- and polyenes having at least 4 to 10 carbon atoms per molecule, and alkyl and aryl derivatives thereof; mixtures of two or more of the above olefins; and mixtures of ethylene with one or more of the above olefins capable of undergoing disproportionation with a tungsten oxide on silica disproportionation catalyst system under disproportionation conditions, the improvement comprising contacting the catalyst with an activating amount of at least one alkyne conforming to the formula: R-C=C-R wherein each R is independently H or a C/sub 1/-C/sub 6/ carbon radical per mole of tungsten oxide

  17. Zeolitic imidazolate frameworks with optimized pore structure for olefin/paraffin-separation

    Energy Technology Data Exchange (ETDEWEB)

    Paula, C.; Boehme, U.; Hartmann, M. [Erlangen-Nuernberg Univ. (Germany). Erlangen Catalysis Resource Center

    2013-11-01

    In the chemical industry, the largest part of energy is spent on separation processes such as the separation of olefin/paraffin mixtures from steam cracker effluents by low-temperature rectification. A suitable alternative to this energy and cost intensive process is separation by selective adsorption with suitable microporous adsorbent. In this work, different ZIFs (Zeolitic Imidazolate Frameworks) have been explored with respect to their separation of olefins and paraffins. The studied materials (e.g. ZIF-8 (SOD-Topology), ZIF-71 (RHO-Topology)) were selected because of their low diameter of the largest pore entrance (0.29 to 4.2 nm) which is close to the kinetic diameter of the C{sub 2} to C{sub 4} olefins and paraffins under study. In contrast to other MOF- or zeolite-based adsorbents, in ZIF-8 and ZIF-71, the paraffin is preferentially adsorbed, which is evident from the single-component adsorption isotherms at different temperature. In the corresponding mixture breakthrough curves, the olefin breaks through first and the alkane even displaces the olefin from the pores. Thus, ZIF-8 and ZIF-71 are interesting candidates for the envisaged paraffin/olefin separation. Whether the observed separation behavior is due to the structural properties of the studied ZIFs or a consequence of peculiar chemical properties is subject to further studies. (orig.) (Published in summary form only)

  18. Pd(II)-Catalyzed Enantioselective C-H Olefination of Diphenylacetic Acids

    Science.gov (United States)

    Shi, Bing-Feng; Zhang, Yang-Hui; Lam, Jonathan K.; Wang, Dong-Hui; Yu, Jin-Quan

    2009-01-01

    Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acid substrates has been achieved through the use of mono-protected chiral amino acid ligands. The absolute configuration of the resulting olefinated products is consistent with that of a proposed C-H insertion intermediate. PMID:20017549

  19. Alkylation of isobutane with light olefins catalyzed by zeolite beta

    NARCIS (Netherlands)

    Nivarthy, G.S.; Feller, A.P.; Seshan, Kulathuiyer; Lercher, J.A.

    2000-01-01

    Alkylation of isobutane with ethene and propene was studied over an H-BEA catalyst in a well-stirred reactor. Under similar conditions of space velocity and paraffin-to-olefin feed ratio, lower initial olefin conversions were observed with ethene or propene than those reported earlier for butene.

  20. Effect of double bonds on the conducting properties of ciguatoxin 3C and tetrahydropyrane-based polymers: a theoretical study.

    Science.gov (United States)

    Matus, Myrna H; Garza, Jorge; Galván, Marcelo

    2006-01-26

    The electronic structure of the ciguatoxin 3C is analyzed through the Kohn-Sham model by using two different kinds of basis sets: localized basis set (Gaussian functions) and nonlocalized basis set (plane wave functions). With the localized basis functions, two approximations are used for the exchange-correlation functional: the local density approximation and the generalized gradient approximation. With the nonlocalized basis set, just the local density approximation is used. The energy gap, obtained from the frontier molecular orbitals, for this molecule predicts that this system is a semiconductor, even when the number of double bonds is increased inside the structure. However, as large molecules built with the basic unit--the tetrahydropyrane--of the ciguatoxin 3C are found in nature, it suggests studying the gap in polymeric systems built with the basic unit of this molecule. It is demonstrated that the presence of double bonds reduces considerably the gap, indicating the possibility of forming conducting materials by introducing double bonds in this kind of molecular systems. Thus, molecules strongly linked with biological systems can be used as precursor to build electric conducting systems.

  1. Palladium(II)-catalyzed ortho-olefination of arenes applying sulfoxides as remote directing groups.

    Science.gov (United States)

    Wang, Binjie; Shen, Chuang; Yao, Jinzhong; Yin, Hong; Zhang, Yuhong

    2014-01-03

    A novel palladium-catalyzed ortho-C(sp(2))-H olefination protocol has been developed by the use of sulfoxide as the directing group. Importantly, relatively remote coordination can be accessed to achieve the ortho olefination of benzyl, 2-arylethyl, and 3-arylpropenyl sulfoxide substrates, and the olefinated sulfoxide can be easily transformed to other functionalities.

  2. Ti-Catalyzed Selective Isomerization of Terminal Mono-substituted Olefins

    International Nuclear Information System (INIS)

    Lee, Hyung Soo; Lee, Gab Yong

    2005-01-01

    The isomerization of olefins occurs either by a metal hydride addition-elimination or by a π-allyl metal hydride intermediate. HCo(CO) 4 , [(C 2 H 4 ) 2 RhCl] 2 , Ni[P(OEt) 3 ] 4 , and PtCl 2 (PPh 3 ) 2 -SnCl 2 are effective catalysts for isomerization of olefins via a metal hydride addition-elimination mechanism, 3,4 and Fe 3 (CO) 12 catalyzed isomerization of 3-ethyl-1-pentene and isomerization of 1-heptene catalyzed by (PhCN) 2 PdCl 2 occur via a π-allyl metal hydride mechanism. The cis/trans ratio of 2-butene obtained from isomerization of 1-butene by RhH(CO)(PPh 3 ) 3 has also been investigated. The skeletal isomerization of olefins catalyzed by (R 3 P) 2 NiCl 2 is developed such as conversion of cis-1,4-hexadiene to trans-2-methyl-1,3-pentadiene. Titanium complexes serve as an effective catalysts for a variety of reactions such as hydroalumination, hydroboration, and hydrogenation of unsaturated hydrocarbons. We have been interested in the selective reactions of unsaturated hydrocarbons by using titanium and zirconium compounds. The reagent system composed of LiAlH 4 /Cp 2 TiCl 2 ≤ 2 in the molar ratio promotes the isomerization of 1-octene, but the detailed reaction for isomerization of olefins has not been reported. We report here a selective isomerization of olefins with low valent titanium complex generated from Cp 2 TiCl 2 (Cp=cyclopentadienyl) and LiAlH 4

  3. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Science.gov (United States)

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A

    2010-03-20

    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  4. Electronic bond tuning with heterocyclic carbenes

    KAUST Repository

    Falivene, Laura

    2013-01-01

    We discuss the impact of the nature of the heterocyclic carbene ring, when used as a complex forming ligand, on the relative stability of key intermediates in three typical Ru, Pd and Au promoted reactions. Results show that P-heterocyclic carbenes have a propensity to increase the bonding of the labile ligand and of the substrate in Ru-promoted olefin metathesis, whereas negligible impact is expected on the stability of the ruthenacycle intermediate. In the case of Pd cross-coupling reactions, dissociation of a P-heterocyclic carbene is easier than dissociation of the N-heterocyclic analogue. In the case of the Au-OH synthon, the Au-OH bond is weakened with the P-heterocyclic carbene ligands. A detailed energy decomposition analysis is performed to rationalize these results. © 2013 The Royal Society of Chemistry.

  5. The progress of SINOPEC methanol-to-olefins (S-MTO) technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxing; Xie, Zaiku; Zhao, Guoliang [SINOPEC Shanghai Research Institute of Petrochemical Technology (China)

    2013-11-01

    It is widely recognized that naphtha steam crackers and FCC units are the main current sources of ethylene and propylene. On the condition of high oil price, olefin producers are striving to develop new economical routes to produce ethylene and propylene with low-cost feedstocks. Methanol to olefins (MTO) has aroused great attention in recent years, and SINOPEC has developed a new kind of MTO process named S-MTO which features high olefins selectivity, high methanol conversion and low catalyst consumption. Puyang Zhongyuan 200 KTA S-MTO has been in steady operation for more than 17 months. The catalyst used in the process is based on a silicoaluminophosphate, SAPO-34, which has very high carbon selectivity to low carbon olefins. Results from the commercial plant show that S-MTO process converts methanol to ethylene and propylene at about 81% carbon selectivity. The carbon selectivity approaches 92% if butenes are also accounted for as part of the product. Typically, the ratio of propylene to ethylene can range from 0.6 to 1.3. When combined with OCC (Olefin Catalytic Cracking) process to convert the heavier olefins, the overall yield of ethylene and propylene can increase to 85% {proportional_to} 87% and propylene-ethylene ratios of more than 1.5 are achievable. Other co-products include very small amounts of C1-C4 paraffins, hydrogen, CO and CO{sub 2}, as well as heavier oxygenates only with ppm level. Because of the quick deactivation of MTO catalyst, a kind of high efficiency fast fluidized bed reactor is adopted. The activity of deactivated catalyst is recovered by burning the coke in the regenerator. This paper gives an updated introduction of S-MTO technology developed by SINOPEC SRIPT. (orig.)

  6. Determining Double Bond Position in Lipids Using Online Ozonolysis Coupled to Liquid Chromatography and Ion Mobility-Mass Spectrometry.

    Science.gov (United States)

    Harris, Rachel A; May, Jody C; Stinson, Craig A; Xia, Yu; McLean, John A

    2018-02-06

    The increasing focus on lipid metabolism has revealed a need for analytical techniques capable of structurally characterizing lipids with a high degree of specificity. Lipids can exist as any one of a large number of double bond positional isomers, which are indistinguishable by single-stage mass spectrometry alone. Ozonolysis reactions coupled to mass spectrometry have previously been demonstrated as a means for localizing double bonds in unsaturated lipids. Here we describe an online, solution-phase reactor using ozone produced via a low-pressure mercury lamp, which generates aldehyde products diagnostic of cleavage at a particular double bond position. This flow-cell device is utilized in conjunction with structurally selective ion mobility-mass spectrometry. The lamp-mediated reaction was found to be effective for multiple lipid species in both positive and negative ionization modes, and the conversion efficiency from precursor to product ions was tunable across a wide range (20-95%) by varying the flow rate through the ozonolysis device. Ion mobility separation of the ozonolysis products generated additional structural information and revealed the presence of saturated species in a complex mixture. The method presented here is simple, robust, and readily coupled to existing instrument platforms with minimal modifications necessary. For these reasons, application to standard lipidomic workflows is possible and aids in more comprehensive structural characterization of a myriad of lipid species.

  7. Accurate characterization of wafer bond toughness with the double cantilever specimen

    Science.gov (United States)

    Turner, Kevin T.; Spearing, S. Mark

    2008-01-01

    The displacement loaded double cantilever test, also referred to as the "Maszara test" and the "crack opening method" by the wafer bonding community, is a common technique used to evaluate the interface toughness or surface energy of direct wafer bonds. While the specimen is widely used, there has been a persistent question as to the accuracy of the method since the actual specimen geometry differs from the ideal beam geometry assumed in the expression used for data reduction. The effect of conducting the test on whole wafer pairs, in which the arms of cantilevers are wide plates rather than slender beams, is examined in this work using finite element analysis. A model is developed to predict the equilibrium shape of the crack front and to develop a corrected expression for calculating interface toughness from crack length measurements obtained in tests conducted on whole wafer pairs. The finite element model, which is validated through comparison to experiments, demonstrates that using the traditional beam theory-based expressions for data reduction can lead to errors of up to 25%.

  8. Alternative routes to olefins. Chances and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Delhomme, C.; Ponceau, M. [Linde AG, Pullach (Germany)

    2013-11-01

    In the future, conventional raw materials which are used for the production of olefins will get shorter and more expensive and alternative raw materials and production routes will gain importance. Natural gas, coal, shale oil or bio-mass are potential sources for the production of olefins, especially ethylene and propylene, as major base chemicals. Several potential production routes were already developed in the past, but cost, energy and environmental considerations might make these unattractive or unfeasible in comparison to traditional processes (e.g. steam cracking). Other processes such as methanol to olefins processes were successfully developed and first commercial units are running. In addition, combination of traditional processes (e.g. coal/biomass gasification, Fischer-Tropsch and steam cracking) might enable new pathways. Besides, dehydration of ethanol is opening direct routes from biomass to 'green' ethylene. However, for these 'bio-routes', feedstock availability and potential land use conflict with food production (sugar cane, wheat,..) still need to be evaluated. finally, new oxidative routes, including processes such as oxidative coupling of methane or oxidative dehydrogenation, are still at an early development stage but present potential for future industrial applications. (orig.) (Published in summary form only)

  9. Retrofit with membrane the Paraffin/Olefin separation

    Energy Technology Data Exchange (ETDEWEB)

    Motelica, A.; Bruinsma, O.S.L.; Kreiter, R.; Den Exter, M.J.; Vente, J.F. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-10-15

    Olefins, such as ethylene, propylene, and butadiene, are among the most produced intermediates in petrochemical industry. They are produced from a wide range of hydrocarbon feedstocks (ethane, propane, butane, naphtha, gas oil) via a cracking process. The last step in this process is the separation of olefins from other hydrocarbons, which is traditionally performed with distillation. As the physicochemical properties, such as volatility and boiling point, of the compounds are very similar, the purification becomes capital and energy intensive. For example, the top of an ethylene/ethane distillation column needs to be chilled to -30C and this requires large amount of electric energy consumption. The separation of butadiene from the C4-fraction is performed with the aid of an additional solvent. This solvent has to be regenerated at the cost of additional high temperature steam. To overcome these separation disadvantages of olefin/paraffin separation, different separation methods have been investigated and proposed in recent years. Suggested options are based on better heat integration of the overall process, or on novel separation systems such as Heat Integrated Distillation Columns, membrane separation, adsorption-desorption systems or on hybrid separation methods, for example, distillation combined with membrane separation.

  10. Synthetic and mechanistic aspects of titanium-mediated carbonyl olefinations

    Energy Technology Data Exchange (ETDEWEB)

    Petasis, N.A.; Staszewski, J.P.; Hu, Yong-Han; Lu, Shao-Po [Univ. of Southern California, Los Angeles, CA (United States)

    1995-12-31

    A new method for the olefination of carbonyl compounds with dimethyl titanocene, and other related bishydrocarbyl titanocene derivatives has been recently developed in the author`s laboratories. This process is experimentally convenient and works with various types of carbonyl compounds, including aldehydes, ketones, esters, lactones, carbonates, anhydrides, amides, imides, lactams, thioesters, selenoesters, and acylsilanes. More recent studies have focused on the scope and utility of this reaction, including mechanistic studies and synthetic applications. In addition to varying the reaction conditions, the authors have examined several mixed titanocene derivatives and have found ways for carrying out this type of olefination at room temperature, such as the use of tris(trimethylsilyl) titanacyclobutene. The authors have also employed this reaction in the modification of carbohydrates and cyclobutenediones. This olefination was also followed-up with subsequent transformations to produce carbocycles and heterocycles, including tetrahydrofurans and tetrahydropyrans.

  11. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  12. Radiation-induced copolymerization of α,β,β-trifluoroacrylonitrile with α-olefin

    International Nuclear Information System (INIS)

    Matsuda, O.; Kostov, G.K.; Tabata, Y.; Machi, S.

    1979-01-01

    Homopolymerization and copolymerization of α,β,β-trifluoroacrylonitrile (FAN) with α-olefins were carried out in bulk by γ-ray irradiation at 25 0 C. FAN gives very small quantities of brown and greasy low molecular weight polymer. Cyano groups in FAN polymer were found to be readily hydrolyzed to acid amide groups in the atmosphere. FAN was found to copolymerize with ethylene, propylene, and isobutylene via a radical mechanism to form equimolar copolymers in a wide range of monomer compositions. The polymerization rate increases linearly with FAN fraction in the monomer mixture. These copolymers are also hydrolyzed in the atmosphere, and the hydrolysis proceeds with more difficulty for the copolymer with higher α-olefin. The reactivity ratios r 1 (FAN) and r 2 (α-olefin) were determined to be 0.01 and 0.12 for the FAN/ethylene copolymerization and 0.01 and 0.07 for the FAN/propylene copolymerization. These results confirm that an alternating copolymerization takes place in the FAN/α-olefin system

  13. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  14. Adsorption heats of olefins on supported MoO3/Al2O3 catalists

    International Nuclear Information System (INIS)

    Grinev, V.E.; Madden, M.; Khalit, V.A.; Aptekar', E.L.; Aldag, A.; Krylov, O.V.

    1983-01-01

    Adsorption heats of C 2 H 4 , C 3 H 6 and C 4 H 8 on supported MoO 3 /Al 2 O 3 catalysts containing 6, 10 and 15 wt. % of MoO 3 at 25, 77 and 195 deg are determimed. Adsorption heat of an olefin increases with a growing length of its carbonic chain. The number of adsorbed olefin molecules grows with an increase in the MoO 3 concentration, while initial adsorption heats decrease. The number of adsorbed olefins is proportional to mean rate of molybdenum reduction in catalysts. Adsorption heats of oxygen on the surface of the catalysts with preliminarily adsorbed olefins are determined. It is shown that adsorption of oxygen and olefins proceeeds both on the same and on different centres of the surface. Mechanisms of surface interactions are discussed

  15. On the bonding nature of electron states for the Fe-Mo double perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, E.; Cruz-Irisson, M. [ESIME-Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana 1000, C.P. 04430, México, D.F. (Mexico); Oviedo-Roa, R. [Programa de Investigación en Ingeniería Molecular, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, México, D.F. (Mexico); Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 04510, México, D.F. (Mexico)

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  16. Raman and FTIR spectroscopic studies on two hydroxylated tung oils (HTO) bearing conjugated double bonds

    Science.gov (United States)

    Zhuang, Yuwei; Ren, Zhiyong; Jiang, Lei; Zhang, Jiaxiang; Wang, Huafen; Zhang, Guobao

    2018-06-01

    Tung oil (TO) was used as a model compound to study two hydroxylated tung oils (HTO), prepared from TO by either aminolysis (HTO-am) or alcoholysis (HTO-al). Main bands in Raman and FTIR spectra were initially assigned based on the detailed analysis of the compound spectra before and after exposure to elevated temperature (200 °C). The effect of heat treatment in air on spectral bands, and especially on the changes associated with double bonds, were then investigated. In the present work, changes in spectral bands due to heat treatment were compared with those revealed in the previous work of others. The results show that the conjugated triene structure of TO has been retained during alcoholysis and aminolysis, to yield the HTOs studied; yet the change of the triene structure caused by heating is different among the three samples; the H-bonding strength between OH and Cdbnd O in HTO-am is higher than that in HTO-al; the changes in HTO vOH and vCdbnd O bands in FTIR caused by the present heat treatment were significant; for TO, there is a big difference between changes in spectra as caused by thermal exposure, compared to those caused by ageing under UV light or exposure to a catalyst. The present work has laid additional groundwork for further study of the reactions of such triply conjugated double bond structures under different ageing conditions.

  17. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Science.gov (United States)

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  18. Reações de ozonólise de olefinas em fase gasosa

    Directory of Open Access Journals (Sweden)

    Nunes Fabíola Maria Nobre

    2000-01-01

    Full Text Available Biogenic emissions of volatile organic compounds play a fundamental role in the atmospheric chemistry, vegetation being one of their major sources. Amongst the VOCs emitted by plants, olefins and terpenoids are the most abundant. These compounds, due to the presence of two or more double bonds and other structural features, are very reactive in the atmosphere and act as precursors of the photochemical smog and aerosols. This article presents a review of the reactions of olefins and terpenoids with ozone, in the gas phase, with emphasis toward the mechanisms and kinetic aspects.

  19. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    Science.gov (United States)

    2006-08-01

    organic, and biochemistry, lectured in chemistry of weapons, and researched on ionic liquids and nucleic acid derivatives. She discovered her joy of...Products from oligomerization of the dimer scaffold or olefin isomerization are excluded from these projected numbers.97,98 The number of...Figure 3-8). This is excluding any olefin isomerization products or oligomerization of the cyclic scaffold. If stereoisomers are considered, then

  20. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    KAUST Repository

    Leitgeb, Anita; Abbas, Mudassar E.; Fischer, Roland C.; Poater, Albert; Cavallo, Luigi; Slugovc, Christian

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  1. Deformation mechanism under essential work of fracture process in polycyclo-olefin materials

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The fracture toughness of a glassy polycyclo-olefin (PCO was investigated by the essential work of fracture (EWF method using a double-edge notched specimens. It was shown that the PCO follows the EWF concept in the temperature range between room temperature and glass transition temperature Tg where the ligament yielding appear at a maximum point on the stress-displacement curves and subsequently the necking and tearing processes take place in the post yielding region. The essential work of fracture required for the ligament yielding drops as the temperature approaches Tg. The non-essential work of fracture attributed to tearing process after yielding is consumed to expand the plastic region and causes molecular chains to orient to the stretching direction.

  2. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Sari Fouad

    2012-12-01

    Full Text Available We reported in this work that the cationic copolymerization in one step takes place between carbon–carbon double-bond monomer styrene with cyclic monomer tetrahydrofuran. The comonomers studied belong to different families: vinylic and cyclic ether. The reaction is initiated with maghnite-H+ an acid exchanged montmorillonite as acid solid ecocatalyst. Maghnite-H+ is already used as catalyst for polymerization of many vinylic and heterocyclic monomers. The oxonium ion of tetrahydrofuran and carbonium ion of styrene propagated the reaction of copolymerization. The acetic anhydride is essential for the maintenance of the ring opening of tetrahydrofuran and the entry in copolymerization. The temperature was kept constant at 40°C in oil bath heating for 6 hours. A typical reaction product was analyzed by 1H-NMR, 13C-NMR and IR and the formation of the copolymer was confirmed. The reaction was proved by matched with analysis. The maghnite-H+ allowed us to obtain extremely pure copolymer in good yield by following a simples operational conditions. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 29th October 2012; Revised: 29th November 2012; Accepted: 29th November 2012[How to Cite: S. Fouad, M.I. Ferrahi, M. Belbachir. (2012. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 165-171. (doi:10.9767/bcrec.7.2.4074.165-171][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4074.165-171 ] | View in 

  3. Methylenation of perfluoroalkyl ketones using a Peterson olefination approach.

    Science.gov (United States)

    Hamlin, Trevor A; Kelly, Christopher B; Cywar, Robin M; Leadbeater, Nicholas E

    2014-02-07

    An operationally simple, inexpensive, and rapid route for the olefination of a wide array of trifluoromethyl ketones to yield 3,3,3-trifluoromethylpropenes is reported. Using a Peterson olefination approach, the reaction gives good to excellent yields of the alkene products and can be performed without purification of the β-hydroxysilyl intermediate. The reaction can be extended to other perfluoroalkyl substituents and is easily scaled up. The alkenes prepared can be readily transformed into a variety of other perfluoroalkyl-containing compounds.

  4. First examples of intramolecular addition of primary amidyl radicals to olefins

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreault, P.; Drouin, C.; Lessard, J. [Sherbrooke Univ., PQ (Canada). Dept. de Chimie

    2005-07-01

    This paper presents the first examples of radical cyclization involving a primary amidyl radical and a pendant olefin. Amidyl radicals have attracted interest in terms of their structure, reactivity, and ways to generate them. The intramolecular addition of an amidyl radical on a pendant olefin appears to be a powerful synthetic tool for creating nitrogen-containing heterocycles. Although several examples of cyclization involving secondary amidyl radicals are cited in the the literature, there are no examples of a successful cyclization involving a primary amidyl radical. This is because all attempts to prepare the usual radical precursors have failed when applied to olefinic primary amides. This study reveals that N-(phenylthio) derivatives of olefinic primary amides can be easily prepared and that nitrogen heterocycles resulting from their radical cyclization can be obtained in good to very good yields. Four olefinic primary amides were chosen as models for radical cyclization of primary amidyl radicals. They were prepared from the corresponding carboxylic acids via the acid chlorides. Conversion of primary amides into suitable amidyl radical precursors was also examined. The study showed that N-(phenylthio) amides could be easily prepared by following a slightly modified protocol developed by Esker and Newcomb, by reacting the anion of the amide with phenylsulfenyl chloride. In particular, olefinic N-(phenylthio) amides were prepared and used as primary amidyl radical precursors in a reaction with a solution of 2,2'-azobis(isobutyronitrile) in catalytic quantities and tributyltin hydride in benzene. The resulting yields of cyclic products ranged from 63 to 85 per cent. The intent of the study was to demonstrate that it is no longer necessary to prepare an N-protected precursor and then remove the protecting group after cyclization. Further studies are currently underway. 10 refs., 1 tab.

  5. Use of water in aiding olefin/paraffin (liquid + liquid) extraction via complexation with a silver bis(trifluoromethylsulfonyl)imide salt

    International Nuclear Information System (INIS)

    Wang, Yu; Thompson, Jillian; Zhou, Jingjing; Goodrich, Peter; Atilhan, Mert; Pensado, Alfonso S.; Kirchner, Barbara; Rooney, David; Jacquemin, Johan; Khraisheh, Majeda

    2014-01-01

    Highlights: • Silver-based ILs used as olefin extracting agents for olefin/paraffin mixtures. • Each extraction process is based on the olefin complexation and solvation. • The presence of water influences positively each extraction process. • Each extraction process was evaluated by DFT calculations, NMR, IR and Raman. • LLE data were then correlated by using the UNIQUAC model. - Abstract: This paper describes the extraction of C 5 –C 8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf 2 N]) to form room temperature ionic liquids [Ag(olefin) x ][Tf 2 N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf 2 N], 1-pentene showed the best separation performance while C 7 and C 8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C 5 and C 6 , for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf 2 N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin) x ][Tf 2 N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins

  6. Palladium catalyzed selective distal C-H olefination of biaryl systems.

    Science.gov (United States)

    Maity, Soham; Hoque, Ehtasimul; Dhawa, Uttam; Maiti, Debabrata

    2016-11-29

    Palladium catalyzed selective distal C-H activation with nitrile based templates has been of significant research interest in recent times. In this report, we disclose the distal C-H olefination of biphenyl systems with high regio- and stereo-selectivity and useful synthetic yields. The utility of this method has been demonstrated through its wide olefin scope, its operation at the gram scale and the easy removal/recovery of the directing group.

  7. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    KAUST Repository

    Dong, G.; Teo, P.; Wickens, Z. K.; Grubbs, R. H.

    2011-01-01

    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive

  8. Synthesis of pterostilbene by Julie Olefination

    Science.gov (United States)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  9. Stereoselective synthesis of hydroxy stilbenoids and styrenes by atom-efficient olefination with thiophthalides.

    Science.gov (United States)

    Mitra, Prithiba; Shome, Brateen; De, Saroj Ranjan; Sarkar, Anindya; Mal, Dipakranjan

    2012-04-14

    The synthesis of stilbenoids and styryl carboxylic acids is accomplished with high E-stereoselectivity by olefination of aldehydes with thiophthalides under basic conditions. The olefination is highly atom-efficient as it only loses elemental sulfur during the reaction. This olefination, in conjunction with retro Kolbe-Schmitt reaction, allows facile synthesis of E-hydroxystilbenoids with minimal employment of protecting groups. This study also discloses two important findings: formation of i) 4-methylsulfanyl isocoumarins and ii) an 2-arylindenone. This journal is © The Royal Society of Chemistry 2012

  10. Conversion of olefins to liquid motor fuels

    Science.gov (United States)

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  11. hf alkylation in the 1980's: the role of isobutane/olefin ratio

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, T. Jr.

    1978-08-01

    Research devoted to maximizing no-lead octane numbers in motor fuel is reported. Results of the studies are the basis for the following conclusions: 1. Isobutane alkylate made from either propylene, butene-2, or C/sub 3/--C/sub 4/ mixed olefins is a low sensitivity, high motor octane product. Typically, C/sub 3/--C/sub 4/ mixed olefin alkylate has a clear motor octane number of about 92.2 and a clear Research octane number of about 93.5. 2. In separate studies with propylene, butene-2 and C/sub 3/--C/sub 4/ mixed olefins, increasing the isobutane-to-olefin ratio suppressed the formation of high molecular weight residue, indicating a substantial reduction in the role of olefin polymerization to large ions. The overall result of increasing ratio was an improvement in selectivity to high-octane components in the alkylate. 3. When alkylating isobutane with propylene, increasing the ratio resulted in a decrease in the concentration of C/sub 7/-fraction (primary product) and an increase in the C/sub 8/-fraction (from chain initiation and subsequent hydrogen transfer). At the same time, the production of chain-termination-product propane also increased. 4. When alkylating isobutane with C/sub 3/--C/sub 4/ mixed olefins, increasing the ratio showed the same trend obtained in separate alkylation tests with propylene and butene-2. As the ratio increased, the concentration of C/sub 7/-fraction (primary propylene--isobutane product) decreased and the concentration of C/sub 8/-fraction increased markedly. Thus, increasing isobutane-to-olefin ratio exerted a strong effect on alkylate quality in the area of about 5 to 1 to 20 to 1; this effect diminished at ratios 20:1.

  12. Cyclic olefin copolymer-silica nanocomposites foams

    Czech Academy of Sciences Publication Activity Database

    Pegoretti, A.; Dorigato, A.; Biani, A.; Šlouf, Miroslav

    2016-01-01

    Roč. 51, č. 8 (2016), s. 3907-3916 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : cyclic olefin copolymer * nanocomposites * silica Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.599, year: 2016

  13. Methyltrioxorhenium as catalyst of a novel aldehyde olefination

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wang Mei (Academia Sinica, Dalian Inst. of Chemical Physics (China))

    1991-12-01

    From aldehydes or cyclic ketones, diazoalkanes, and teritiary phosphanes, olefins may be prepared with MTO as catalyst. In particular, diazoacetates and -malonates (R{sup 2}, R{sup 3} = H, CO{sub 2}Et, or 2 x CO{sub 2}Me) can be transformed into olefins with aliphatic and aromatic aldehydes (R{sup 1} = iPr, trans-PhCH=CH, Ph, 4-NO{sub 2}C{sub 6}H{sub 4}, etc.). Readily accessible starting materials, easy handling, mild reaction conditions, and good yields characterize the new synthesis method. (R' = Ph, 3-C{sub 6}H{sub 4}SO{sub 3}Na, nBu.) (orig.).

  14. Atmosphere-Controlled Chemoselectivity: Rhodium-Catalyzed Alkylation and Olefination of Alkylnitriles with Alcohols.

    Science.gov (United States)

    Li, Junjun; Liu, Yuxuan; Tang, Weijun; Xue, Dong; Li, Chaoqun; Xiao, Jianliang; Wang, Chao

    2017-10-17

    The chemoselective alkylation and olefination of alkylnitriles with alcohols have been developed by simply controlling the reaction atmosphere. A binuclear rhodium complex catalyzes the alkylation reaction under argon through a hydrogen-borrowing pathway and the olefination reaction under oxygen through aerobic dehydrogenation. Broad substrate scope is demonstrated, permitting the synthesis of some important organic building blocks. Mechanistic studies suggest that the alkylation product may be formed through conjugate reduction of an alkene intermediate by a rhodium hydride, whereas the formation of olefin product may be due to the oxidation of the rhodium hydride complex with molecular oxygen. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structure and dynamics of olefin radical cation aggregates. Time-resolved fluorescence detected magnetic resonance

    International Nuclear Information System (INIS)

    Desrosiers, M.F.; Trifunac, A.D.

    1986-01-01

    The time-resolved EPR spectra and thus the structure and dynamics of transient hydrocarbon radical cations are obtained by the pulse radiolysis-fluorescence detected magnetic resonance (FDMR) technique. Here the authors report the observation of short-lived radical cations from olefins. FDMR-EPR spectra of radical cations from tetramethylethylene and cyclohexadiene are illustrated. The olefin radical cations, FDMR spectra are concentration-dependent, since dimerization with neutral molecules takes place at higher (>10 -2 M) olefin concentration. Rate constants for the dimerization reaction are derived and the effect of solvent viscosity on aggregate formation is demonstrated. By monitoring the further reactions of dimer cations the authors have obtained EPR evidence for previously unobserved higher-order (multimer) radical cation aggregates of olefins. 16 references, 5 figures

  16. Propagation/depropagation equilibrium and structural factors in the radiation degradation of poly(olefin sulfone)s

    International Nuclear Information System (INIS)

    Bowmer, T.N.; O'Donnell, J.H.

    1981-01-01

    The principal volatile products observed after γ irradiation of nine different poly(olefin sulfone)s in the solid state were the two comonomers, i.e., the respective olefin and sulfur dioxide. An exponential increase in yield, G (volatile products), with increasing irradiation temperature, T/sub irr/, was observed for each copolymer through the ceiling temperature, T/sub c/, for the corresponding propagation/depropagation equilibrium. Thus the G value increased by ca. 3 orders of magnitude from T/sub irr/ = 0.7 T/sub c/ to T/sub irr/ = 1.3 T/sub c/ for all of the poly(olefin sulfone)s. Depropagation sensitivity was considered to be best measured by G(SO 2 ) since radiation induced, cationic homopolymerization of the product olefin occurred to a variable extent. Five of the poly(olefin sulfone)s had similar rates of depropagation at their respective T/sub c's/ but the polysulfones of 1-hexene, cyclohexene and 2-butene showed anomalously high depropagation rates. This may be related to greater steric hinderance to segmental chain mobility in the polysulfones of the 1,2 disubstituted olefins. Poly(1-hexene sulfone) appears to be anomalous, as in other respects

  17. Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    This action proposes to allow for an additional alternative test method for olefins in gasoline, ASTM D6550-05. The allowance of this additional alternative test method will provide more flexibility to the regulated industry.

  18. Decarbonisation of olefin processes using biomass pyrolysis oil

    International Nuclear Information System (INIS)

    Sharifzadeh, M.; Wang, L.; Shah, N.

    2015-01-01

    Highlights: • Decarbonization of olefin processes using biomass pyrolysis oil was proposed. • The decarbonization is based on integrated catalytic processing of bio-oil. • The retrofitted process features significant economic and environmental advantages. - Abstract: An imperative step toward decarbonisation of current industrial processes is to substitute their petroleum-derived feedstocks with biomass and biomass-derived feedstocks. For decarbonisation of the petrochemical industry, integrated catalytic processing of biomass pyrolysis oil (also known as bio-oil) is an enabling technology. This is because, under certain conditions, the reaction products form a mixture consisting of olefins and aromatics, which are very similar to the products of naphtha hydro-cracking in the conventional olefin processes. These synergies suggest that the catalytic bio-oil upgrading reactors can be seamlessly integrated to the subsequent separation network with minimal retrofitting costs. In addition, the integrated catalytic processing provides a high degree of flexibility for optimization of different products in response to market fluctuations. With the aim of assessing the techno-economic viability of this pathway, five scenarios in which different fractions of bio-oil (water soluble/water insoluble) were processed with different degrees of hydrogenation were studied in the present research. The results showed that such a retrofit is not only economically viable, but also provides a high degree of flexibility to the process, and contributes to decarbonisation of olefin infrastructures. Up to 44% reductions in greenhouse gas emissions were observed in several scenarios. In addition, it was shown that hydrogen prices lower than 6 $/kg will result in bio-based chemicals which are cheaper than equivalent petrochemicals. Alternatively, for higher hydrogen prices, it is possible to reform the water insoluble phase of bio-oil and produce bio-based chemicals, cheaper than

  19. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  20. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    KAUST Repository

    Dong, G.

    2011-09-15

    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive; an indirect hydroboration/oxidation sequence requiring stoichiometric borane and oxidant is currently the most practical methodology. Here, we report a more direct approach with the use of a triple relay catalysis system that couples palladium-catalyzed oxidation, acid-catalyzed hydrolysis, and ruthenium-catalyzed reduction cycles. Aryl-substituted terminal olefins are converted to primary alcohols by net reaction with water in good yield and excellent regioselectivity.

  1. Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate.

    Science.gov (United States)

    Park, Jihye; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Lee, Seok-Yong; Lee, Jong Suk; Kwak, Jong Hwan; Um, Sung Hee; Kim, In Su

    2016-11-18

    The rhodium(III)-catalyzed olefination of various carboxamides with α-CF 3 -substituted allylic carbonate is described. This reaction provides direct access to linear CF 3 -allyl frameworks with complete trans-selectivity. In particular, a rhodium catalyst provided Heck-type γ-CF 3 -allylation products via the β-O-elimination of rhodacycle intermediate and subsequent olefin migration process.

  2. Olefin Autoxidation in Flow

    OpenAIRE

    Neuenschwander Ulrich; Jensen Klavs F.

    2014-01-01

    Handling hazardous multiphase reactions in flow brings not only safety advantages but also significantly improved performance due to better mass transfer characteristics. In this paper we present a continuous microreactor setup capable of performing olefin autoxidations with O2 under solvent free and catalyst free conditions. Owing to the transparent reactor design consumption of O2 can be visually followed and exhaustion of the gas bubbles marks a clear end point along the channel length coo...

  3. Kinetics of H-D exchange in olefins with complicating reactions

    International Nuclear Information System (INIS)

    Trokhimets, A.I.

    1979-01-01

    The kinetics of H-D-exchange is considered for olefins under conditions when simple and complicated exchange occur together with hydrogenation. If hydrogenation takes place in the system, it is theoretically impossible to derive the integrated rate equation for the accumulation of deuterium in the olefin. The variation of the concentration of different deuteroolefins during the process can be calculated numerically. A method is proposed for evaluating the contribution of individual steps to the overall process and determining the rate constants of the most important reactions. (author)

  4. Breaking the regioselectivity rule for acrylate insertion in the Mizoroki-Heck reaction.

    Science.gov (United States)

    Wucher, Philipp; Caporaso, Lucia; Roesle, Philipp; Ragone, Francesco; Cavallo, Luigi; Mecking, Stefan; Göttker-Schnetmann, Inigo

    2011-05-31

    In modern methods for the preparation of small molecules and polymers, the insertion of substrate carbon-carbon double bonds into metal-carbon bonds is a fundamental step of paramount importance. This issue is illustrated by Mizoroki-Heck coupling as the most prominent example in organic synthesis and also by catalytic insertion polymerization. For unsymmetric substrates H(2)C = CHX the regioselectivity of insertion is decisive for the nature of the product formed. Electron-deficient olefins insert selectively in a 2,1-fashion for electronic reasons. A means for controlling this regioselectivity is lacking to date. In a combined experimental and theoretical study, we now report that, by destabilizing the transition state of 2,1-insertion via steric interactions, the regioselectivity of methyl acrylate insertion into palladium-methyl and phenyl bonds can be inverted entirely to yield the opposite "regioirregular" products in stoichiometric reactions. Insights from these experiments will aid the rational design of complexes which enable a catalytic and regioirregular Mizoroki-Heck reaction of electron-deficient olefins.

  5. Tungsten Hydride Phosphorus- and Arsenic-Bearing Molecules with Double and Triple W-P and W-As Bonds.

    Science.gov (United States)

    Andrews, Lester; Cho, Han-Gook; Fang, Zongtang; Vasiliu, Monica; Dixon, David A

    2018-05-07

    Laser ablation of tungsten metal provides W atoms which react with phosphine and arsine during condensation in excess argon and neon, leading to major new infrared (IR) absorptions. Annealing, UV irradiation, and deuterium substitution experiments coupled with electronic structure calculations at the density functional theory level led to the assignment of the observed IR absorptions to the E≡WH 3 and HE═WH 2 molecules for E = P and As. The potential energy surfaces for hydrogen transfer from PH 3 to the W were calculated at the coupled-cluster CCSD(T)/complete basis set level. Additional weak bands in the phosphide and arsenide W-H stretching region are assigned to the molecules with loss of H from W, E≡WH 2 . The electronic structure calculations show that the E≡WH 3 molecules have a W-E triple bond, the HE═WH 2 molecules have a W-E double bond, and the H 2 E-WH molecules have a W-E single bond. The formation of multiple E-W bonds leads to increasing stability for the isomers.

  6. The Mechanism of Rh-Catalyzed Transformation of Fatty Acids to Linear Alpha olefins

    Directory of Open Access Journals (Sweden)

    Sondre H. Hopen Eliasson

    2017-12-01

    Full Text Available Linear alpha olefins (LAOs are key commodity chemicals and petrochemical intermediates that are currently produced from fossil resources. Fatty acids are the obvious renewable starting material for LAOs, which can be obtained via transition-metal-catalyzed decarbonylative dehydration. However, even the best catalysts that have been obtained to date, which are based on palladium, are not active and stable enough for industrial use. To provide insight for design of better catalysts, we here present the first computationally derived mechanism for another attractive transition-metal for this reaction, rhodium. By comparing the calculated mechanisms and free energy profiles for the two metals, Pd and Rh, we single out important factors for a facile, low-barrier reaction and for a stable catalyst. While the olefin formation is rate limiting for both of the metals, the rate-determining intermediate for Rh is, in contrast to Pd, the starting complex, (PPh32Rh(COCl. This complex largely draws its stability from the strength of the Rh(I–CO bond. CO is a much less suitable ligand for the high-oxidation state Rh(III. However, for steric reasons, rhodium dissociates a bulkier triphenylphosphine and keeps the carbonyl during the oxidative addition, which is less favorable than for Pd. When compared to Pd, which dissociates two phosphine ligands at the start of the reaction, the catalytic activity of Rh also appears to be hampered by its preference for high coordination numbers. The remaining ancillary ligands leave less space for the metal to mediate the reaction.

  7. Stability of cracked naphthas from thermal and catalytic processes and their additive response. Part II. Composition and effect of olefinic structures

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Joshi, G.C.; Rastogi, S.N. [Indian Institute of Petroleum, Dehradun (India)

    1995-05-01

    Olefinic concentrates were separated from two naphthas, one from fluid catalytic cracking (FCC) and one thermal crackate, using column chromatography. The composition and structure of the olefins were determined by a combination of analytical techniques. FCC naphthas contain relatively higher levels of conjugated dienes. The monoolefins are highly branched. The thermal crackates have higher levels of {alpha}-olefins and abound in mono-, di-, tri- and conjugated cyclic olefins. Stability tests on these olefinic concentrates blended in low-S,N straight-run naphtha showed that cyclic olefins are very active gum formers. Representative commercial antioxidants (hindered phenols and phenylenediamines) both gave good responses to different olefin concentrate test blends. Hindered phenols had a marginally better effect. 14 refs., 5 figs., 3 tabs.

  8. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters.

    Science.gov (United States)

    Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping

    2018-07-01

    Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Proceedings of the DGMK-Conference 'Creating value from light olefins - production and conversion'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G; Kraemer, H J; Weitkamp, J [eds.

    2001-07-01

    Main topics of the conference were: production of light olefin by steamcracking and catalytic cracking processes, catalysts, methanol to olefin processes, oxidative dehydrogenation, partial oxidation, selective oxidation of alkanes with various catalysts. (uke)

  10. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  11. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  12. Methanol conversion to lower olefins over RHO type zeolite

    KAUST Repository

    Masih, Dilshad

    2013-07-01

    Eight-membered ring small-pore zeolite of RHO-type topology has been synthesized, characterized and tested for methanol-to-olefin (MTO) reaction. The zeolite was hydrothermally crystallized from the gel with Si/Al ratio of 5.0. It showed a high BET specific surface area (812 m2 g-1), micropore volume (0.429 cm3 g-1), and acid amount (2.53 mmol g-1). Scanning electron microscopy observations showed small crystallites of about 1 μm. The zeolite was active for MTO reaction with 100% methanol conversions at 623-723 K, whereas selectivity to lower olefins changed with time. © 2013 Elsevier B.V.

  13. Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode.

    Science.gov (United States)

    Illa, Xavi; De Malsche, Wim; Gardeniers, Han; Desmet, Gert; Romano-Rodríguez, Albert

    2010-11-01

    Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have been fabricated via hot embossing and pressure-assisted thermal bonding. Separations of a mixture of four coumarins using varying mobile phase compositions have been monitored to study the relation between the retention factor and the ratio of organic solvent in the aqueous mobile phase. Moreover, the linear relation between the retention and the surface/volume ratio predicted in theory has been observed, achieving retention factors up to k=2.5. Under the same retentive conditions, minimal reduced plate height values of h(min)=0.4 have been obtained at retention factors of k=1.2. These experimental results are compared with the case of non-porous and porous silicon pillars. Similar results for the plate heights are achieved while retention factors are higher than the non-porous silicon column and considerably smaller than the porous pillar column, given the non-porous nature of the used cyclo olefin polymer. The feasibility of using this polymer column as an alternative to the pillar array silicon columns is corroborated.

  14. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  15. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert

    2015-09-29

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  16. Cobalt carbide nanoprisms for direct production of lower olefins from syngas

    Science.gov (United States)

    Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui

    2016-10-01

    Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer-Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson-Schulz-Flory distribution, which is characterized by a maximum C2-C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2-C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

  17. Early-transition-metal ketenimine complexes. Synthesis, reactivity, and structural characterization of complexes with. eta. sup 2 (C,N)-ketenimine groups bound to the halogenobis((trimethylsilyl)cyclopentadienyl)niobium unit. X-ray structure of Nb(. eta. sup 5 -C sub 5 H sub 4 SiMe sub 3 ) sub 2 Cl(. eta. sup 2 (C,N)-PhN double bond C double bond CPh sub 2 )

    Energy Technology Data Exchange (ETDEWEB)

    Antinolo, A.; Fajardo, M.; Lopez Mardomingo, C.; Otero, A. (Univ. de Alcala de Henares (Spain)); Mourad, Y.; Mugnier, Y. (Centre National de la Recherche Scientifique, Dijon (France)); Sanz-Aparicio, J.; Fonseca, I.; Florencio, F. (CSIC, Madrid (Spain))

    1990-11-01

    The reaction of Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}X (X = Cl, Br) with 1 equiv of various ketenimines, R{sup 1}N{double bond}C{double bond}CR{sup 2}R{sup 3}, leads to the niobium derivatives Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}X({eta}{sup 2}(C,N)-R{sup 1}N{double bond}C{double bond}CR{sup 2}R{sup 3}) (1, X = Cl, R{sup 1} = R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 2, X = Cl, R{sup 1} = p-CH{sub 3}-C{sub 6}H{sub 4}, R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 3, X = Br, R{sup 1} = R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 4, X = Br, R{sup 1} = p-CH{sub 3}-C{sub 6}H{sub 4}, R{sup 2} = R{sup 3} = C{sub 6}H{sub 5}; 5, X = Cl, R{sup 1} = R{sup 2} = C{sub 6}H{sub 5}, R{sup 3} = CH{sub 3}; 6, X = Br, R{sup 1} = R{sup 2} = C{sub 6}H{sub 5}, R{sup 3} = CH{sub 3}) with the expected ketenimine C{double bond}N bonding mode. Reduction of 1 with 1 equiv of Na/Hg gives the complex Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}({eta}{sup 2}(C,N)-PhN{double bond}C{double bond}CPh{sub 2}) (9) as a paramagnetic compound. The reduction of 9 with 1 equiv of Na/Hg and the subsequent addition of a proton source (ethanol) leads to the iminoacyl compound Nb({eta}{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3}){sub 2}(CRNR{sup 1}) (10, R = CH(Ph{sub 2}), R{sup 1} = Ph). The one- and two-electron reductions of 1 have been studied by cyclic voltammetry experiments. The structure of 1 was determined by single-crystal X-ray diffractometry: a = 24.4904 (14) {angstrom}, b = 11.0435 (04) {angstrom}, c = 26.6130 (15) {angstrom}, {beta} = 109.890 (5){degree}, monoclinic, space group C2/c, Z = 8, V = 6,768.4 (5) {angstrom}{sup 3}, {rho}{sub calcd} = 1.3194 g/mL, R = 0.048, R{sub w} = 0.060 based on 4,806 observed reflections. The structure contains a niobium atom bonded to two cyclopentadienyl rings in a {eta}{sup 5} fashion; the coordination of the metal is completed by a Cl atom and a {eta}{sup 2}(C,N)-bonded ketenimine ligand.

  18. Construction of Eight-Membered Carbocycles with Trisubstituted Double Bonds Using the Ring Closing Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Motoo Tori

    2010-06-01

    Full Text Available Medium sized carbocycles are particularly difficult to synthesize. Ring closing metathesis reactions (RCM have recently been applied to construct eight-membered carbocycles, but trisubstituted double bonds in the eight-membered rings are more difficult to produce using RCM reactions. In this review, model examples and our own results are cited and the importance of the preparation of suitably designed precursors is discussed. Examples of RCM reactions used in the total synthesis of natural products are also outlined.

  19. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  20. Stereoselective Carbonyl Olefination with Fluorosulfoximines: Facile Access to Z or E Terminal Monofluoroalkenes.

    Science.gov (United States)

    Liu, Qinghe; Shen, Xiao; Ni, Chuanfa; Hu, Jinbo

    2017-01-09

    Terminal monofluoroalkenes are important structural motifs in the design of bioactive compounds, such as homeostasis regulators and mechanism-based enzyme inhibitors. However, it is difficult to control the stereoselectivity of known carbonyl olefination reactions, and olefin metathesis is limited to disubstituted terminal monofluoroalkenes. Although sulfoximines have been used extensively in organic synthesis, reports on their use in carbonyl olefination reactions have not appeared to date. Herein, we report highly stereoselective carbonyl monofluoroolefination with a fluorosulfoximine reagent. The potential of this method is demonstrated by the synthesis of MDL 72161 and by the late-stage monofluoromethylenation of complex molecules, such as haloperidol and steroid derivatives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, K.; Bosáková, Z.; Cvačka, Josef

    2015-01-01

    Roč. 407, č. 17 (2015), s. 5175-5188 ISSN 1618-2642 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : double bond * gas-phase chemistry * lipidomics * olive oil * vernix caseosa Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.125, year: 2015

  2. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    Science.gov (United States)

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  3. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    International Nuclear Information System (INIS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-01-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2 ) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  4. Radiation-induced terpolymerization of methyl α,β,β-trifluoroacrylate with tetrafluoroethylene and α-olefin

    International Nuclear Information System (INIS)

    Matsuda, O.; Watanabe, T.; Tabata, Y.; Machi, S.

    1980-01-01

    Radiation-induced terpolymerizations of methyl α,β,β-trifluoroacrylate (MTFA) with tetrafluoroethylene (TFE) and α-olefins, such as ethylene, propylene, and isobutylene, were carried out in bulk at 25 0 C for the purpose of controlling the content of ester group in the MTFA-α-olefin alternating copolymers. These monomers polymerized to form alternating terpolymers which contained 50 mole % α-olefin in a wide range of monomer composition. The content of MTFA, namely, the ester group in polymer, can be varied without destruction of the alternating structures between fluoroolefins (MTFA, TFE) and α-olefin by changing the MTFA/TFE ratio in the monomer mixture. The relative reactivities of MTFA and TFE in the terpolymerization were discussed according to kinetic treatments by free propagating and complex mechanisms. The relation between the MTFA/TFE ratio in the monomer mixture and that in terpolymer was explained favorably by the complex mechanism. It was also concluded that the relative reactivity of MTFA is larger than that of TFE in the terpolymerizations

  5. Stereoselective Wittig Olefination as a Macrocyclization Tool. Synthesis of Large Carbazolophanes.

    Science.gov (United States)

    Myśliwiec, Damian; Lis, Tadeusz; Gregoliński, Janusz; Stępień, Marcin

    2015-06-19

    Z-Selective Wittig olefination was applied to the synthesis of large carbazolophanes containing up to eight heteroaromatic subunits. A number of strategies were devised and tested, showing that cyclooligomerization yields can be significantly improved by using one-component schemes involving heterobifunctional reactants. [4]- and [6]Carbazolophanes were characterized in the solid state, revealing compact, highly folded structures. Electronic and steric effects of substitution and chain length on the Wittig olefination rates and Z-selectivities were explored theoretically using DFT calculations.

  6. Olefin copolymerization via reversible addition-fragmentation chain transfer

    NARCIS (Netherlands)

    Venkatesh, R.; Staal, B.B.P.; Klumperman, B.

    2004-01-01

    Successful statistical copolymn. of an a-olefin (1-octene) with an acrylate (Bu acrylate, BA) and with a methacrylate (Me methacrylate, MMA), employing reversible addn.-fragmentation chain transfer (RAFT) mediated polymn. has been accomplished

  7. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling.

    Science.gov (United States)

    Deb, Arghya; Hazra, Avijit; Peng, Qian; Paton, Robert S; Maiti, Debabrata

    2017-01-18

    Directing group-assisted regioselective C-H olefination with electronically biased olefins is well studied. However, the incorporation of unactivated olefins has remained largely unsuccessful. A proper mechanistic understanding of olefination involving unactivated alkenes is therefore essential for enhancing their usage in future. In this Article, detailed experimental and computational mechanistic studies on palladium catalyzed C-H olefination with unactivated, aliphatic alkenes are described. The isolation of Pd(II) intermediates is shown to be effective for elucidating the elementary steps involved in catalytic olefination. Reaction rate and order determination, control experiments, isotopic labeling studies, and Hammett analysis have been used to understand the reaction mechanism. The results from these experimental studies implicate β-hydride elimination as the rate-determining step and that a mechanistic switch occurs between cationic and neutral pathway. Computational studies support this interpretation of the experimental evidence and are used to uncover the origins of selectivity.

  8. New Trends in Olefin Production

    Directory of Open Access Journals (Sweden)

    Ismaël Amghizar

    2017-04-01

    Full Text Available Most olefins (e.g., ethylene and propylene will continue to be produced through steam cracking (SC of hydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investing very little in alternative technologies and feedstocks because of their current lack of economic viability, despite decreasing crude oil reserves and the recognition of global warming. In this perspective, some of the most promising alternatives are compared with the conventional SC process, and the major bottlenecks of each of the competing processes are highlighted. These technologies emerge especially from the abundance of cheap propane, ethane, and methane from shale gas and stranded gas. From an economic point of view, methane is an interesting starting material, if chemicals can be produced from it. The huge availability of crude oil and the expected substantial decline in the demand for fuels imply that the future for proven technologies such as Fischer-Tropsch synthesis (FTS or methanol to gasoline is not bright. The abundance of cheap ethane and the large availability of crude oil, on the other hand, have caused the SC industry to shift to these two extremes, making room for the on-purpose production of light olefins, such as by the catalytic dehydrogenation of propane.

  9. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  10. Different Roles of Endo- and Exo-cyclic Double Bonds in Limonene Ozonolysis System: Effect of Water and OH Radical Scavengers

    Science.gov (United States)

    Gong, Y.; Li, H.; Chen, Z.

    2017-12-01

    Limonene, as an important monoterpene, has a high emission rate both from biogenic and anthropogenic sources. Its doubly unsaturated structure leads to a high potential for secondary organic aerosol formation and a detailed understanding of roles of endo- and exo-cyclic double bonds in limonene ozonolysis is in urgent need. This study provided new insights into the mechanism and effect of both unsaturated bonds oxidation. A low and a high ratio set of [O3]/[limonene] experiments in the presence or absence of OH scavenger (2-butanol or cyclohexane) in the relative humidity (RH) range of 0-90% were conducted. Molar yields of hydrogen peroxide (H2O2) and hydromethyl hydroperoxide (HMHP) both increased rapidly as RH rose from 0 to 50%, then reached a plateau above 70% RH, while peroxyformic acid (PFA) and peroxyacetic acid (PAA) kept increasing with RH. The ozonolysis of exocyclic double bonds showed larger capacity for producing these peroxides than endocyclic ones, resulting in significantly higher yields of H2O2, HMHP, PFA and PAA in limonene ozonolysis than α-pinene when ozone was sufficient. The SOA mass fraction of total peroxides was 50% at high [O3]/[limonene] ratio, whereas only 12% at low ratio. The gas-particle partitioning coefficient of undetected peroxides rose up from (0.8-2.0)×10-3m3μg-1 at 0% RH to (4.0-5.2)×10-3m3μg-1 at 90% RH, indicating some water-dependent channels contributed low-volatility peroxides formation. A box model was employed to simulate the reaction system, and the results obviously underestimated the yield of H2O2, whilst overestimated the yield of undetected peroxides. It is interesting to note that SOA produced at high [O3]/[limonene] ratio could generate considerable amount of H2O2 in the aqueous phase, which may be another source of H2O2 in cloud drops. To elucidate the mechanism further, the yield of OH radicals formed from endocyclic double bonds was found to be about 3 times larger than that from exocyclic double bonds

  11. chemical constituents and cytotoxicity of some tanzanian wild

    African Journals Online (AJOL)

    Mgina

    C - 6), 115.9 (C - 3, C - 5), 161 (C - 4) and. 190.7 (CHO). Brine Shrimp Lethality Bioassays. The cytotoxicity of ... HO. 3. Both the 1H and 13C NMR spectra of compound 2 exhibited signals that suggested the presence of two olefinic double bonds instead of three as shown in ergosterol. The 13C NMR spectrum, unlike.

  12. On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Mueller, S.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. of Chemistry

    2012-07-01

    Methanol-to-hydrocarbons processes using HZSM-5 archetype acidic zeolites or zeotype SAPO-34 catalysts are regarded as a vital suite of conversion technologies to bypass petroleum-based routes for the production of specific fuels and petrochemical commodities. Special significance of the methanol chemistry originates from its versatility enabling selective transformations towards various products. Industry demonstrated successfully implementations of Methanol-To-Gasoline, Methanol-To-Olefin, and Methanol-To-Propylene processes, although the typical single-pass selectivity remained limited and recycling is necessary. Considerable fundamental research efforts both from experimental and computational sides contributed to unravel the underlying complex reaction mechanism. The indirect hydrocarbon pool mechanism, in which Broensted acid sites combined with adsorbed light olefins or lower methylbenzenes act as active centers, is generally accepted to explain the formation of light olefins. As olefin and aromatics populated catalytic sites show different reactivity in terms of activity and selectivity to ethylene or propylene, one could envision optimizing the product distribution by suitable co-feeding of specific hydrocarbons. The present work addresses three questions with an experimental study conducted under realistic MTP operation conditions: (1) How are ethylene and propylene formed at molecular level? (2) Which reaction pathway leads to the formation of undesired hydrogen transfer products? (3) Does olefin or aromatics co-feeding change the selectivity to ethylene or propylene? Xylenes and various olefins were co-fed with methanol to achieve a detailed understanding of the reaction mechanism over acidic HZSM-5 zeolites. Results suggest, that an olefin homologation/cracking route (olefin cycle) accounts for the autocatalytic (-like) nature and the majority of methanol consumption rather than the route involving aromatic intermediates (aromatics cycle). Co

  13. Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.

    Science.gov (United States)

    Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B

    2012-12-01

    Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes

    International Nuclear Information System (INIS)

    Ren Tao; Patel, Martin; Blok, Kornelis

    2006-01-01

    Steam cracking for the production of light olefins, such as ethylene and propylene, is the single most energy-consuming process in the chemical industry. This paper reviews conventional steam cracking and innovative olefin technologies in terms of energy efficiency. It is found that the pyrolysis section of a naphtha steam cracker alone consumes approximately 65% of the total process energy and approximately 75% of the total exergy loss. A family portrait of olefin technologies by feedstocks is drawn to search for alternatives. An overview of state-of-the-art naphtha cracking technologies shows that approximately 20% savings on the current average process energy use are possible. Advanced naphtha cracking technologies in the pyrolysis section, such as advanced coil and furnace materials, could together lead to up to approximately 20% savings on the process energy use by state-of-the-art technologies. Improvements in the compression and separation sections could together lead to up to approximately 15% savings. Alternative processes, i.e. catalytic olefin technologies, can save up to approximately 20%

  15. Radiation-induced copolymerizations of perfluorovinyl acetic acid and its methyl ester with α-olefin

    International Nuclear Information System (INIS)

    Kawaguchi, M.; Watanabe, T.; Matsuda, O.; Tabata, Y.; Machi, S.

    1981-01-01

    Homopolymerizations and copolymerizations of perfluorovinyl acetic acid (FVA) and its methyl ester (MFVA) were carried out by γ radiation at a temperature of 25 0 C, a dose rate of 1 x 10 6 rad/hr, and FVA/α-olefin and MFVA/α-olefin ratios of 10/90-90/10 in the monomer mixture. FVA and MFVA gave small quantities of brown and greasy low-molecular-weight homopolymers. The polymerization rates of both FVA and MFVA were extremely small, as shown by the maximum G value of monomer consumption of 12. FVA and MFVA reacted with α-olefin to form waxlike copolymers. The copolymerization rates of both FVA and MFVA with α-olefin were remarkably larger than those of the homopolymerizations, particularly with ethylene. The polymer compositions of FVA/ethylene or MFVA/ethylene were nearly 1/2 over a wide range of the monomer compositions. The Mayo-Lewis method gave negative r 1 (FVA) and r 1 (MFVA). The polymer composition curves could be well interpreted by introducing the penultimate model

  16. Ozonolysis of Model Olefins-Efficiency of Antiozonants

    NARCIS (Netherlands)

    Huntink, N.M.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.

    2006-01-01

    In this study, the efficiency of several potential long lasting antiozonants was studied by ozonolysis of model olefins. 2-Methyl-2-pentene was selected as a model for natural rubber (NR) and 5-phenyl-2-hexene as a model for styrene butadiene rubber (SBR). A comparison was made between the

  17. A method for producing lower olefins

    Energy Technology Data Exchange (ETDEWEB)

    Lemayev, N.V.; Grigorovich, V.A.; Isayev, V.A.; Liakumovich, A.G.; Mitrofanov, A.I.; Orekhov, A.I.; Trifonov, S.V.; Vernov, P.A.

    1983-01-01

    In the known method for producing lower olefins by pyrolysis of a hydrocarbon raw material in the presence of an initiator which contains ammonia, in order to increase the output of the target products, morpholine or piperidine are additionally introduced into the initiator in a volume of 0.00001 to 0.1 percent each, converted for the raw material. The compounds to be added may be introduced into the pyrolysis zone by dissolving them in the hydrocarbon raw material or in water, which forms vapors with dilution of the raw material being subjected to pyrolysis. The increase in the outputs of the lower olefins in the process through the use of additives may be explained by the synergistic effect of the mixture of ammonia, morpholine and piperidine used. With benzine pyrolysis without the additives the output of ethylene is 24.1 percent; in comparable conditions with additives of ammonia or morpholine alone, or of piperidine alone, the outputs are 24.0, 26.2 and 25.8 percent, respectively. With the joint presence of ammonia and piperidine, the output of ethylene reaches 27.2 percent and with the addition of ammonia and morpholine, it reaches 27.4 percent.

  18. Co-Aromatization of Methane with Olefins: The Role of Inner Pore and External Surface Catalytic Sites

    Energy Technology Data Exchange (ETDEWEB)

    Yung, Matthew M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); He, Peng [University of Calgary; Jarvis, Jack [University of Calgary; Meng, Shijun [University of Calgary; Wang, Aiguo [University of Calgary; Kou, Shiyu [University of Calgary; Gatip, Richard [University of Calgary; Liu, Lijia [Soochow University; Song, Hua [University of Calgary

    2018-04-22

    The co-aromatization of methane with olefins is investigated using Ag-Ga/HZSM-5 as the catalyst at 400 degrees C. The presence of methane has a pronounced effect on the product distribution in terms of increased average carbon number and substitution index and decreased aromatic carbon fraction compared with its N2 environment counterpart. The participation of methane during the co-aromatization over the Ag-Ga/HZSM-5 catalyst diminishes as the co-fed olefin feedstock molecule becomes larger, from 1-hexene to 1-octene and 1-decene, in diameter. The effect of suppressed methane participation with larger olefinic molecules is not as significant when Ag-Ga/HY is employed as the catalyst, which might be attributed to the larger pore size of HY that gives more room to hold olefin and methane molecules within the inner pores and reduces the diffusion limitation of olefin molecules. The effect of olefin feedstock on the methane participation during the co-aromatization over Ag-Ga/HZSM-5 is experimentally evidenced by 13C and 2D NMR. The incorporation of the methane carbon atoms into the phenyl ring of product molecules is reduced significantly with larger co-fed olefins, whereas its incorporation into the substitution groups of the formed aromatic molecules is not notably affected, suggesting that the methane participation in the phenyl ring formation might preferably occur within inner pores, while its incorporation into substitution groups may mainly take place on external catalytic sites. This hypothesis is well supported by the product selectivity obtained over Ag-Ga/HZSM-5 catalysts prepared using conventional ZSM-5, ZSM-5 with the external catalytic sites deactivated, nanosize ZSM-5, ZSM-5 with a micro/meso pore structure and ZSM-5 with the inner pores blocked, and further confirmed by the isotopic labeling studies.

  19. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  20. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  1. Rhodium-Catalyzed Regioselective C7-Olefination of Indazoles Using an N-Amide Directing Group.

    Science.gov (United States)

    Guo, Lei; Chen, Yanyu; Zhang, Rong; Peng, Qiujun; Xu, Lanting; Pan, Xianhua

    2017-02-01

    A rhodium-catalyzed regioselective C-H olefination of indazole is described. This protocol relies on the use of an efficient and removable N,N-diisopropylcarbamoyl directing group, which offers facile access to C7-olefinated indazoles with high regioselectivity, ample substrate scope and broad functional group tolerance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimization of catalytic glycerol steam reforming to light olefins using Cu/ZSM-5 catalyst

    International Nuclear Information System (INIS)

    Zakaria, Z.Y.; Amin, N.A.S.; Linnekoski, J.

    2014-01-01

    Highlights: • Glycerol steam reforming to light olefin using Cu/ZSM-5 process was optimized. • Response surface methodology and multi-objective genetic algorithm were employed. • Second order polynomial model produced adequately fitted experimental data. • Thermodynamic study inferred high temperature requirement for ethylene formation. • Turn-over-frequency at optimized responses is higher than the non-optimized process. - Abstract: Response surface methodology (RSM) and multi-objective genetic algorithm was employed to optimize the process parameters for catalytic conversion of glycerol, a byproduct from biodiesel production, to light olefins using Cu/ZSM-5 catalyst. The effects of operating temperature, weight hourly space velocity (WHSV) and glycerol concentration on light olefins selectivity and yield were observed. Experimental results revealed the data adequately fitted into a second-order polynomial model. The linear temperature and quadratic WHSV terms gave significant effect on both responses. Optimization of both the responses indicated that temperature favouring high light olefin formation lied beyond the experimental design range. The trend in the temperature profile concurred commensurately with the thermodynamic analysis. Multi-objective genetic algorithm was performed to attain a single set of processing parameters that could produce both the highest light olefin selectivity and yield. The turn-over-frequency (TOF) of the optimized responses demonstrated a slightly higher value than the one which was not optimized. Combination of RSM, multi-objective response and thermodynamic is useful to determine the process optimal operating conditions for industrial applications

  3. Synthesis of Regiospecifically Fluorinated Conjugated Dienamides

    Directory of Open Access Journals (Sweden)

    Mohammad Chowdhury

    2014-04-01

    Full Text Available Modular synthesis of regiospecifically fluorinated 2,4-diene Weinreb amides, with defined stereochemistry at both double bonds, was achieved via two sequential Julia-Kocienski olefinations. In the first step, a Z-a-fluorovinyl Weinreb amide unit with a benzothiazolylsulfanyl substituent at the allylic position was assembled. This was achieved via condensation of two primary building blocks, namely 2-(benzo[d]thiazol-2-ylsulfonyl-2-fluoro-N-methoxy-N-methylacetamide (a Julia-Kocienski olefination reagent and 2-(benzo[d]thiazol-2-ylthioacetaldehyde (a bifunctional building block. This condensation was highly Z-selective and proceeded in a good 76% yield. Oxidation of benzothiazolylsulfanyl moiety furnished a second-generation Julia-Kocienski olefination reagent, which was used for the introduction of the second olefinic linkage via DBU-mediated condensations with aldehydes, to give (2Z,4E/Z-dienamides in 50%–74% yield. Although olefinations were 4Z-selective, (2Z,4E/Z-2-fluoro-2,4-dienamides could be readily isomerized to the corresponding 5-substituted (2Z,4E-2-fluoro-N-methoxy-N-methylpenta-2,4-dienamides in the presence of catalytic iodine.

  4. Synthesis of Regiospecifically Fluorinated Conjugated Dienamides

    Science.gov (United States)

    Chowdhury, Mohammad; Mandal, Samir K.; Banerjee, Shaibal; Zajc, Barbara

    2015-01-01

    Modular synthesis of regiospecifically fluorinated 2,4-diene Weinreb amides, with defined stereochemistry at both double bonds, was achieved via two sequential Julia-Kocienski olefinations. In the first step, a Z-α-fluorovinyl Weinreb amide unit with a benzothiazolylsulfanyl substituent at the allylic position was assembled. This was achieved via condensation of two primary building blocks, namely 2-(benzo[d]thiazol-2-ylsulfonyl)-2-fluoro-N-methoxy-N-methylacetamide (a Julia-Kocienski olefination reagent) and 2-(benzo[d]thiazol-2-ylthio)acetaldehyde (a bifunctional building block). This condensation was highly Z-selective and proceeded in a good 76% yield. Oxidation of benzothiazolylsulfanyl moiety furnished a second-generation Julia-Kocienski olefination reagent, which was used for the introduction of the second olefinic linkage via DBU-mediated condensations with aldehydes, to give (2Z,4E/Z)-dienamides in 50%–74% yield. Although olefinations were 4Z-selective, (2Z,4E/Z)-2-fluoro-2,4-dienamides could be readily isomerized to the corresponding 5-substituted (2Z,4E)-2-fluoro-N-methoxy-N-methylpenta-2,4-dienamides in the presence of catalytic iodine. PMID:24727415

  5. Pd(II)-Catalyzed Hydroxyl-Directed C–H Olefination Enabled by Mono-Protected Amino Acid Ligands

    Science.gov (United States)

    Lu, Yi; Wang, Dong-Hui; Engle, Keary M.

    2010-01-01

    A novel Pd(II)-catalyzed ortho-C–H olefination protocol has been developed using spatially remote, unprotected tertiary, secondary, and primary alcohols as the directing groups. Mono-N-protected amino acid ligands were found to promote the reaction, and an array of olefin coupling partners could be used. When electron-deficient alkenes were used, the resulting olefinated intermediates underwent subsequent Pd(II)-catalyzed oxidative intramolecular cyclization to give the corresponding pyran products, which could be converted into ortho-alkylated alcohols under hydrogenolysis conditions. The mechanistic details of the oxidative cyclization step are discussed and situated in the context of the overall catalytic cycle. PMID:20359184

  6. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  8. Ligand-Promoted C(sp(3) )-H Olefination en Route to Multi-functionalized Pyrazoles.

    Science.gov (United States)

    Yang, Weibo; Ye, Shengqing; Schmidt, Yvonne; Stamos, Dean; Yu, Jin-Quan

    2016-05-17

    A Pd-catalyzed/N-heterocycle-directed C(sp(3) )-H olefination has been developed. The monoprotected amino acid ligand (MPAA) is found to significantly promote Pd-catalyzed C(sp(3) )-H olefination for the first time. Cu(OAc)2 instead of Ag(+) salts are used as the terminal oxidant. This reaction provides a useful method for the synthesis of alkylated pyrazoles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reaction heats and bond strengths based on a series of lectures given to postgraduate students at the University of Keele, 1960

    CERN Document Server

    Mortimer, C T

    1962-01-01

    Reaction Heats and Bond Strengths presents the variations in the heats of particular types of reaction. This book covers a variety of topics, including the hydrogenation and polymerization of olefinic compounds, the dissociation of organic and organo-metallic compounds, and the molecular-addition compounds. Organized into 10 chapters, this book begins with an overview of the concept of bond energy that can be very useful where a comparison is being made between two dissimilar molecules. This text then examines the strain in cyclopropane and cyclobutane, which is largely a result of angular str

  10. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    2011-01-31

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This proposed rule will provide flexibility to the regulated community by allowing an additional... A. Alternative Test Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A...

  11. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    2011-10-21

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This final rule will provide flexibility to the regulated community by allowing an additional... Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A. Executive Order 12866...

  12. Catalytic polymerization of olefins in supercritical carbon dioxide

    NARCIS (Netherlands)

    Kemmere, M.F.; Vries, de T.J.; Keurentjes, J.T.F.

    2004-01-01

    A novel process is being developed for the catalytic polymerization of olefins in supercritical carbon dioxide (sc CO2), for which potential applications will mainly be in the production of EPDM and other elastomers. For this purpose, the Brookhart catalyst has been tested for the homopolymerization

  13. Synthesis of o-Alkenylated 2-Arylbenzoxazoles via Rh-Catalyzed Oxidative Olefination of 2-Arylbenzoxazoles: Scope Investigation, Structural Features, and Mechanism Studies.

    Science.gov (United States)

    Zhou, Quan; Zhang, Jing-Fan; Cao, Hui; Zhong, Rui; Hou, Xiu-Feng

    2016-12-16

    2-Arylbenzazoles are promising molecules for potential applications in medicine and material areas. Efficient protocols for direct regioselective functionalization of 2-arylbenzoxazoles are in high demand. Herein, we disclose a general method for selective ortho-olefination of 2-arylbenzo[d]oxazoles with alkenes enabled by versatile Cp*Rh(III) in high yields. This protocol features broad functional group tolerance and high regioselectivity. Intermolecular competition studies and kinetic isotope effect experiments imply that the oxidative olefination process occurs via an electrophilic C-H activation pathway. The molecular structure of the m-fluoro-substituted olefination product confirms regioselective C-H activation/olefination at the more hindered site in cases where the meta F atom or heteroatom substituent existed. Apparent torsion angles were observed in the structures of mono- and bis-olefination products, which resulted in distinct different chemical shifts of olefinic protons. Additionally, two gram-scale reactions and further transformation experiments demonstrate that this method is practical for synthesis of ortho-alkenylated 2-arylbenzoxazole derivatives.

  14. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  15. General regularities of olefin epoxidation by hydroperoxide catalyzed by V, W and Ti compounds

    International Nuclear Information System (INIS)

    Sapunov, V.N.; Sharykin, V.G.; Logvinov, A.S.; Litvintsev, I.Yu.; Lebedev, N.N.

    1983-01-01

    The kinetic analysis of cyclohexane epoxidation by ethylbenzene hydroperoxide when catalyzed by titanium- and tungsten cyclohexandiolates has shown that the reaction follows the main regularities of hydroperoxide epoxidation previously established for catalysis by molybdenum- and vanadiUm compounds. The catalyst activity varies depending on the metal nature and forms the following series: Mo>V>W>Ti, which agrees with their π-acceptor capacity. During the cyclohexane epoxidation on all catalysts the hydroperoxide activities vary according to the following series: ethylbenzene hydroperoxide>cumene>tertiarybutyl>tertiaryamyl. Correlation relationships between the olefine structure, characterized by th constants, and the reactivity of olefines are foUnd. The reaction sensitivity during catalysis by WV, and Ti cyclohexandiolates is -1.2, -1.0- and -1.3, respectively. The mechanism of hydroperoxide epoxidation of olefine is discussed

  16. Effects of composite adherend properties on stresses in double lap bonded joints

    International Nuclear Information System (INIS)

    Mokhtari, M.; Madani, K.; Belhouari, M.; Touzain, S.; Feaugas, X.; Ratwani, M.

    2013-01-01

    Highlights: ► We analysis the maximal stresses distribution in the adhesive and the adherend for double lap joint. ► We modified the mechanical properties of adherend layer to decreases the stresses in adhesive layer. ► Then, we analysis the influence of modifying the types of fibers on maximal stresses distributions. ► We analysis the thickness modifications of some layers on maximal stresses distribution. ► In last, we analysis the combination of different modifications on maximal stresses distribution. -- Abstract: The effects of composite layer stiffness, thickness and ply orientations on stresses in the adhesive layer of a double lap bonded joint are investigated using three-dimensional finite element analysis code ABAQUS. A special 3-layer modelling technique is used in the finite element analysis. The non-linear behaviour of adhesive is also considered. Six composite laminates with different ply orientations are used in the lap-joint analysis. The composite materials considered in the analysis are – carbon epoxy, boron epoxy, T300/934 graphite-epoxy, and aramid epoxy. The analysis results indicate that the maximum stress in the adhesive can be significantly reduced by changing the stiffness and fibre orientations in the composite layer. Also, the use of hybrid composite (changing the nature of the fibres in two layers which are near the adhesive layer) results in reducing adhesive shear stresses.

  17. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO₂, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C₁₂{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO₂, allene, C₂–C₆ olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water

  18. The effect of ultralow temperature on olefin cation formation by ionic fragmentation in the radiolysis of 2,3-dimethylbutane

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The formation of olefin cations in the radiolysis of 2,3-dimethylbutane (DMB) was studied by ESR at 4.2 and 77 K. When a DMB-SF 6 mixture is γ-irradiated at 77 K, tetramethylethylene (TME) cations are formed remarkably. The formation of the TME cations, however, is suppressed at 4.2 K. When the DMB-SF 6 mixture is γ-irradiated at 4.2 K and then warmed to 77 K, TME cations are formed by thermal annealing. The TME cations are not formed by a charge transfer to olefinic impurities or olefinic products in radiolysis, but by H 2 elimination from parent DMB cations in the ground state. The remarkable formation of olefin cations at 77 K corresponds to the large yields of unsaturated dimers in the radiolysis of DMB at 77 K. The suppression of olefin cation formation at 4.2 K corresponds to the low yields of unsaturated dimers in the radiolysis of DMB at 4.2 K. (author)

  19. Photoisomerization around a fulvene double bond: coherent population transfer to the electronic ground state?

    Science.gov (United States)

    Ioffe, Ilya; Dobryakov, Alexander L; Granovsky, Alexander A; Ernsting, Nikolaus P; Lustres, J Luis Pérez

    2011-07-11

    Photoisomerization around a central fulvene-type double bond is known to proceed through a conical intersection at the perpendicular geometry. The process is studied with an indenylidene-dihydropyridine model compound, allowing the use of visible excitation pulses. Transient absorption shows that 1) stimulated emission shifts to the red and loses oscillator strength on a 50 fs timescale, and 2) bleach recovery is highly nonexponential and not affected by solvent viscosity or methyl substitution at the dihydropyridine ring. Quantum-chemical calculations are used to explain point 1 as a result of initial elongation of the central C=C bond with mixing of S(2) and S(1) states. From point 2 it is concluded that internal conversion of S(1)→S(0) does not require torsional motion to the fully perpendicular state. The S(1) population appears to encounter a sink on the torsional coordinate before the conical intersection is reached. Rate equations cannot model the observed ground-state recovery adequately. Instead the dynamics are best described with a strongly damped oscillatory contribution, which could indicate coherent S(1)-S(0) population transfer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    National Research Council Canada - National Science Library

    Low, Tammy K

    2006-01-01

    .... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...

  1. Proceedings of the DGMK-Conference 'Creating value from light olefins - production and conversion'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Kraemer, H.J.; Weitkamp, J. (eds.)

    2001-07-01

    Main topics of the conference were: production of light olefin by steamcracking and catalytic cracking processes, catalysts, methanol to olefin processes, oxidative dehydrogenation, partial oxidation, selective oxidation of alkanes with various catalysts. (uke)

  2. Sulfonate activation of the electrophilic reactivity of chlorine and alkyl hypochlorides by the insertion of sulfur trioxide at the C1-C1 and O-C1 bonds. Addition of chlorine chloro- and ethoxysulfate to olefins

    International Nuclear Information System (INIS)

    Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D.; Zhdankin, V.V.

    1986-01-01

    At low temperatures (-40 to -80 0 C) sulfur trioxide enters the chlorine molecule (with the formation of chlorine chlorosulfate) and the ethyl hypochlorite molecule (giving chlorine ethoxysulfate). Both new compounds are highly reactive electrophilic chlorinating reagents and add to ethylene, activated alkenes (1-hexene and cyclohexene), and deactivated olefins (methyl methacrylate, tri- and tetrachloroethylene) in methylene chloride solution at low temperatures. The addition of chlorine chlorosulfate leads to the formation of β-chloroalkyl chlorosulfates with yields of 24-85%, and the addition of chlorine ethoxysulfate leads to β-chloroalkyl ethylsulfates with yields of 65-85%. The reactions with unsymmetrical olefins lead to mixtures of the regioisomers with a preference for the products from addition according to the Markovnikov rule; the addition to cyclohexene is trans-stereospecific. The investigated processes represent a new simple approach to the production of sulfate-activated chlorinating reagents and extend the possibilities for functional substitution of olefins

  3. Nitrogen-Doped Carbon Encapsulated Nickel/Cobalt Nanoparticle Catalysts for Olefin Migration of Allylarenes

    DEFF Research Database (Denmark)

    Kramer, Søren; Mielby, Jerrik Jørgen; Buss, Kasper Spanggård

    2017-01-01

    Olefin migration of allylarenes is typically performed with precious metal-based homogeneous catalysts. In contrast, very limited progress has been made using cheap, earth-abundant base metals as heterogeneous catalysts for these transformations - in spite of the obvious economic and environmental...... advantages. Herein, we report on the use of an easily prepared heterogeneous catalyst material for the migration of olefins, in particular allylarenes. The catalyst material consists of nickel/cobalt alloy nanoparticles encapsulated in nitrogen-doped carbon shells. The encapsulated nanoparticles are stable...

  4. Highly Convergent Total Synthesis of (+)-Lithospermic Acid via a Late-Stage Intermolecular C–H Olefination

    Science.gov (United States)

    Wang, Dong-Hui; Yu, Jin-Quan

    2011-01-01

    The total synthesis of (+)-lithospermic acid is reported, which exploits two successive C–H activation reactions as the key steps. Rh-catalyzed carbene C–H insertion reaction using Davies’ catalyst built the dihydrobenzofuran core, and a late-stage intermolecular C–H olefination coupled the olefin unit with the dihydrobenzofuran core to construct the molecule in a highly convergent manner. PMID:21443224

  5. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  6. Synthetic lubricants based on copolymers of n-butyl methacrylate and α-olefins

    Directory of Open Access Journals (Sweden)

    Đakov Tatjana A.

    2002-01-01

    Full Text Available Synthetic fluids obtained by the copolymerization of α -olefins with alkyl esters of unsaturated carboxylic acids have a unique combination of properties of non-polar poly-a-olefins (PAOs and polar esters in a single molecule. These compounds are characterized by superior thermal, oxidative and hydrolytic stability, miscibility with mineral and synthetic base oils solubility of additives and neutral elastomer behavior. Depending on the molar masses and comonomer ratios in the copolymer molecule, synthetic fluids with a wide range of properties are obtained. These compounds are valuable components in lubricating oil formulations for different applications.

  7. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert; Correa, Andrea; Pump, Eva; Cavallo, Luigi

    2014-01-01

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  8. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  9. Methanol conversion to lower olefins over RHO type zeolite

    KAUST Repository

    Masih, Dilshad; Imai, Hiroyuki; Yokoi, Toshiyuki; Kondo, Junkonomura; Tatsumi, Takashi

    2013-01-01

    Eight-membered ring small-pore zeolite of RHO-type topology has been synthesized, characterized and tested for methanol-to-olefin (MTO) reaction. The zeolite was hydrothermally crystallized from the gel with Si/Al ratio of 5.0. It showed a high BET

  10. Olefination of carbonyl compounds: modern and classical methods

    Energy Technology Data Exchange (ETDEWEB)

    Korotchenko, V N; Nenajdenko, Valentine G; Balenkova, Elizabeth S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Shastin, Aleksey V [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2004-10-31

    The published data on the methods for alkene synthesis by olefination of carbonyl compounds are generalised and systematised. The main attention is given to the use of transition metals and organoelement compounds. The review covers the data on both classical and newly developed methods that are little known to chemists at large.

  11. Olefination of carbonyl compounds: modern and classical methods

    Science.gov (United States)

    Korotchenko, V. N.; Nenajdenko, Valentine G.; Balenkova, Elizabeth S.; Shastin, Aleksey V.

    2004-10-01

    The published data on the methods for alkene synthesis by olefination of carbonyl compounds are generalised and systematised. The main attention is given to the use of transition metals and organoelement compounds. The review covers the data on both classical and newly developed methods that are little known to chemists at large.

  12. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya

    2017-12-21

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2tBu)2] 2 and [(≡Si-O)Ta(=CHtBu)(CH2tBu)2] 3. We witnessed that in our conditions olefin metathesis/isomerization of 1-decene occurs much faster followed by reduction of the newly formed olefins rather than reduction of the 1-decene to decane, followed by metathesis of decane. We found that Mo-based catalyst favors 2+2 cycloaddition of 1-decene forming metallocarbene, followed by reduction of the newly formed olefins to alkanes. However, in the case of W and Ta-based catalysts, a rapid isomerization (migration) of the double bond followed by olefin metathesis and reduction of the newly formed olefins were observed. We witnessed that silica supported W catalyst precursor 1 and Mo catalyst precursor 2 are better catalysts for hydro-metathesis reaction with TONs of 818 and 808 than Ta-based catalyst 3 (TON of 334). This comparison of the catalysts provides us a better understanding that, if a catalyst is efficient in olefin metathesis reaction it would be a better catalyst for hydro-metathesis reaction.

  13. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  14. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  15. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  16. Hydroxycarbonylation of olefins and alcohols in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Eliseev, O.L.; Bondarenko, T.N.; Stepin, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2006-07-01

    Palladium-catalysed hydroxycarbonylation of olefins and alcohols proceeds in ionic liquid media. Terminal and internal olefins, cyclohexene, styrene, methanol, ethanol, n-butanol, cyclohexanol, benzyl alcohol and 1-phenylethanol were tested as substrates for the reaction. A number of molten salts were applied as a reaction medium and tetrabutylammonium bromide (m.p. 103 C) seemed to be the best. Carbon monoxide pressure of 2 MPa and reaction temperature of 110 C are suitable conditions to furnish the reaction in 2 hours in the presence of palladium acetate as a precursor. Triphenylphosphine added as a ligand reduces reaction rate. The critical role of counter anion in molten salt was also recognised. Yield of acids decreased in the order: Br{sup -} > Cl{sup -} > BF{sub 4} {approx}PF{sub 6}{sup -}. A two-route reaction scheme is proposed to explain the regularities of styrene and 1-phenylethanol hydroxycarbonylation. The catalytic system can be used repeatedly by simple extraction of products with diethyl ether. Nine cycles were carried out without loss of activity. (orig.)

  17. Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination.

    Science.gov (United States)

    Wang, Wenyi; Wang, Binghe

    2017-09-12

    Sulfur dioxide (SO 2 ) is an endogenously produced gaseous molecule, and is emerging as a potential gasotransmitter. Herein, we describe the first series of esterase-sensitive prodrugs inspired by modified Julia olefination as SO 2 donors.

  18. Improved olefinic fat suppression in skeletal muscle DTI using a magnitude-based dixon method.

    Science.gov (United States)

    Burakiewicz, Jedrzej; Hooijmans, Melissa T; Webb, Andrew G; Verschuuren, Jan J G M; Niks, Erik H; Kan, Hermien E

    2018-01-01

    To develop a method of suppressing the multi-resonance fat signal in diffusion-weighted imaging of skeletal muscle. This is particularly important when imaging patients with muscular dystrophies, a group of diseases which cause gradual replacement of muscle tissue by fat. The signal from the olefinic fat peak at 5.3 ppm can significantly confound diffusion-tensor imaging measurements. Dixon olefinic fat suppression (DOFS), a magnitude-based chemical-shift-based method of suppressing the olefinic peak, is proposed. It is verified in vivo by performing diffusion tensor imaging (DTI)-based quantification in the lower leg of seven healthy volunteers, and compared to two previously described fat-suppression techniques in regions with and without fat contamination. In the region without fat contamination, DOFS produces similar results to existing techniques, whereas in muscle contaminated by subcutaneous fat signal moved due to the chemical shift artefact, it consistently showed significantly higher (P = 0.018) mean diffusivity (MD). Because fat presence lowers MD, this suggests improved fat suppression. DOFS offers superior fat suppression and enhances quantitative measurements in the muscle in the presence of fat. DOFS is an alternative to spectral olefinic fat suppression. Magn Reson Med 79:152-159, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Manganese oxide as a promoter for C2-C4 olefin production in the hydrogenation of carbon dioxide

    International Nuclear Information System (INIS)

    Kim, C.; Chen, K.; Hanson, F.V.; Oblad, A.G.; Tsai, Y.

    1986-01-01

    A number of active research and development programs have been initiated to explore the potential of CO hydrogenation process as a source of low molecular weight (C 2 -C 4 ) olefins. Metal catalysts such as Co-Mn, Ni-zeolite, Rd and Mo have been evaluated for low molecular weight olefin selectivity. The coprecipitated Fe-Mn system (Mn/Fe=9/1) was reported to be highly olefin selective. Recently, many investigators reported supporting evidence for the promotional effect of Mn for precipitated Fe catalysts. In this study, Raney Fe promoted with Mn has been evaluated for C 2 -C 4 olefin selectivity in the hydrogenation of CO relative to coprecipitated Fe-Mn catalysts. Catalyst characterization, including BET surface area, X-ray diffraction, selective chemisorption and ESCA, has been carried to provide insight into the role of manganese in both the Coprecipitated and Raney catalyst systems

  20. Utilisation of an eta(3)-allyl hydride complex, formed by UV irradiation, as a controlled source of 16-electron (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

    Science.gov (United States)

    Sexton, Catherine J; López-Serrano, Joaquín; Lledós, Agustí; Duckett, Simon B

    2008-10-21

    Low temperature UV irradiation of solutions of (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe)(2) yields (eta(5)-C(5)Me(5))Rh(eta(3)-CH(2)CHCH(2))(H), which provides controlled access to the 16-electron fragment (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).

  1. Rh(iii)-catalyzed C-H olefination of N-pentafluoroaryl benzamides using air as the sole oxidant.

    Science.gov (United States)

    Lu, Yi; Wang, Huai-Wei; Spangler, Jillian E; Chen, Kai; Cui, Pei-Pei; Zhao, Yue; Sun, Wei-Yin; Yu, Jin-Quan

    2015-03-01

    The oxidative olefination of a broad array of arenes and heteroarenes with a variety of activated and unactivated olefins has be achieved via a rhodium(iii)-catalyzed C-H activation reaction. The use of an N -pentafluorophenyl benzamide directing group is crucial for achieving catalytic turnovers in the presence of air as the sole oxidant without using a co-oxidant.

  2. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    Science.gov (United States)

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  3. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  4. Hydrogenation of the Exocyclic Olefinic Bond at C-16/C-17 Position of ent-Kaurane Diterpene Glycosides of Stevia rebaudiana Using Various Catalysts

    Science.gov (United States)

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2013-01-01

    Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data. PMID:23896597

  5. Hydrogenation of the Exocyclic Olefinic Bond at C-16/C-17 Position of ent-Kaurane Diterpene Glycosides of Stevia rebaudiana Using Various Catalysts

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2013-07-01

    Full Text Available Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2 under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data.

  6. Key product development based on cyclo olefin polymer for LCD-TV

    Science.gov (United States)

    Konishi, Yuichiro; Kobayashi, Masahi; Arakawa, Kouhei

    2006-09-01

    Cyclo Olefin Polymer (COP), which was developed by Zeon Corporation, is well known and used as an optical plastic in optical markets, having unique properties such as high light transmission, low water absorption, low birefringence etc. Optes Inc, who is ZEON CORPORATION's affiliate optical parts manufacturer, has succeeded in the development of high performance optical base films. These are used for retardation and polarizing films in LCD's (Liquid Crystal Displays), made from Cyclo Olefin Polymer with own film extrusion technologies. The Optical base film developed by Optes Inc has superior properties compared with those of existing products such as polycarbonate (PC), polyethylene terephthalate (PET) and Triacetate Cellulose (TAC) base in terms of low birefringence, high optical isotropy and high dimensional stability under high humidity and temperature conditions.

  7. Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil.

    Science.gov (United States)

    Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas

    2017-05-01

    Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  9. Kinetics of olefin arylation by bis(triphenylphosphine) diacetatopalladium(II) (PPAP) and trans-cis isomerization of the latter

    Energy Technology Data Exchange (ETDEWEB)

    Ryabov, A.D.; Yatsimirskii, A.K.

    1979-01-01

    In the absence of olefins, at 70/sup 0/C, PPAP dissolved in glacial acetic acid rapidly decomposed into triphenylphosphine (TPP) oxide, biphenyl, and metallic palladium, after an induction period of about ten minutes. At lower temperatures in this solvent, pure trans-PPAP was converted into the more stable cis-isomer. The conversion was 70-80Vertical Bar3<, increased with temperature (25/sup 0/-45/sup 0/C), and was inhibited by free TPP. Interaction of PPAP with styrene in glacial acetic acid at 70/sup 0/C occurred with an induction period and gave stilbene (80Vertical Bar3< yield) and TPP oxide. The induction period was independent of the concentration of PPAP or olefin and coincided with that in PPAP decomposition in the absence of olefin. Similar regularities were observed in PPAP interaction with p-methoxystyrene and p-nitrostyrene. Apparently, the induction period involves Pd(II) reduction to a phenypalladium(0) species stabilized by TPP and is followed by rapid transfer of phenyl from palladium to olefin.

  10. Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite

    Directory of Open Access Journals (Sweden)

    Xuan Hoan Vu

    2015-10-01

    Full Text Available The catalytic cracking of triglyceride-rich biomass toward C2–C4 olefins was evaluated over a hierarchically textured nano-ZSM-5/SBA-15 analog composite (ZSC-24 under fluid catalytic cracking (FCC conditions. The experiments were performed on a fully automated Single-Receiver Short-Contact-Time Microactivity Test unit (SR-SCT-MAT, Grace Davison at 550 °C and different catalyst-to-oil mass ratios (0–1.2 g∙g−1. The ZSC-24 catalyst is very effective for transformation of triglycerides to valuable hydrocarbons, particularly lower olefins. The selectivity to C2–C4 olefins is remarkably high (>90% throughout the investigated catalyst-to-oil ratio range. The superior catalytic performance of the ZSC-24 catalyst can be attributed to the combination of its medium acid site amount and improved molecular transport provided by the bimodal pore system, which effectively suppresses the secondary reactions of primarily formed lower olefins.

  11. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    Science.gov (United States)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  12. Asymmetric Synthesis of Apratoxin E.

    Science.gov (United States)

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  13. Dithioacetals as an Entry to Titanium-Alkylidene Chemistry: A New and Efficient Carbonyl Olefination.

    Science.gov (United States)

    Breit, Bernhard

    1998-03-02

    Wittig, Horner-Wadsworth-Emmons, Julia-Lythgoe, Tebbe, Grubbs, and Petasis-when it comes to carbonyl olefinations, these names are familiar to all chemistry students. In the future, the name Takeda will probably have to be added to this list. His recent work on the formation of titanium-alkylidene species from dithioacetals has provided organic chemists with a remarkable method for carbonyl olefination that is generally applicable under neutral to Lewis acidic conditions. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  14. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  15. Palladium-Catalyzed Decarboxylative γ-Olefination of 2,5-Cyclohexadiene-1-carboxylic Acid Derivatives with Vinyl Halides.

    Science.gov (United States)

    Chang, Chi-Hao; Chou, Chih-Ming

    2018-04-06

    This study explores a Pd-catalyzed decarboxylative Heck-type Csp 3 -Csp 2 coupling reaction of 2,5-cyclohexadiene-1-carboxylic acid derivatives with vinyl halides to provide γ-olefination products. The olefinated 1,3-cyclohexadienes can be further oxidized to produce meta-alkylated stilbene derivatives. Additionally, the conjugated diene products can also undergo a Diels-Alder reaction to produce a bicyclo[2.2.2]octadiene framework.

  16. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues

    2006-01-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  17. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Ronán [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Bagga, Komal; Groarke, Robert [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Stalcup, Apryll [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Vázquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-11-30

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  18. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    International Nuclear Information System (INIS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-01-01

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  19. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    Science.gov (United States)

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  20. Rare-earth- and uranium-mesoionic carbenes. A new class of f-block carbene complex derived from an N-heterocyclic olefin

    Energy Technology Data Exchange (ETDEWEB)

    Seed, John A.; Gregson, Matthew; Chilton, Nicholas F.; Wooles, Ashley J.; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Tuna, Floriana; McInnes, Eric J.L. [School of Chemistry and Photon Science Institute, The University of Manchester (United Kingdom)

    2017-09-11

    Neutral mesoionic carbenes (MICs) have emerged as an important class of carbene, however they are found in the free form or ligated to only a few d-block ions. Unprecedented f-block MIC complexes [M(N''){sub 3}{CN(Me)C(Me)N(Me)CH}] (M=U, Y, La, Nd; N''=N(SiMe{sub 3}){sub 2}) are reported. These complexes were prepared by a formal 1,4-proton migration reaction when the metal triamides [M(N''){sub 3}] were treated with the N-heterocyclic olefin H{sub 2}C=C(NMeCH){sub 2}, which constitutes a new, general way to prepare MIC complexes. Quantum chemical calculations on the 5f{sup 3} uranium(III) complex suggest the presence of a U=C donor-acceptor bond, composed of a MIC→U σ-component and a U(5f)→MIC(2p) π-back-bond, but for the d{sup 0}f{sup 0} Y and La and 4f{sup 3} Nd congeners only MIC→M σ-bonding is found. Considering the generally negligible π-acidity of MICs, this is surprising and highlights that greater consideration should possibly be given to recognizing MICs as potential π-acid ligands when coordinated to strongly reducing metals. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  1. Positive ion scavenging by olefins in trans-decalin: TRMC and product analysis studies

    International Nuclear Information System (INIS)

    Warman, J.M.; Leng, H.C. de; Haas, M.P. de; Anisimov, O.A.

    1990-01-01

    The rate constants for scavenging of the mobile positive ion in trans-decalin have been measured using the time-resolved microwave conductivity (TRMC) pulse radiolysis technique for a series of olefins and cyclopropane. For the olefins the values vary from ≤2 x 10 8 dm 3 /mol/s for ethylene to 1.6 x 10 11 dm 3 /mol/s for cyclohexene. Steady-state (γ) radiolysis of solutions of isobutene in trans-decalin results in the formation of isobutane and C 8 and C 14 products which display different dependences on solute concentration. The results are explained in terms of the formation of a complex between the solvent radical cation and isobutene which can dissociate, within a timescale of approx. 1 ns, to give isobutane or on neutralisation leads to the formation of C 14 condensation products. The C 8 products which are formed above 5 x 10 -2 mol/dm 3 are attributed to reaction of the complex with isobutene to form the olefin dimer cation. Cyclopropane is unreactive, i.e. k 8 dm 3 /mol/s, towards the mobile positive ion in trans-decalin (author)

  2. How much life is left in your olefin unit

    International Nuclear Information System (INIS)

    Baas, J.; Warner, R.

    1992-01-01

    Highly attractive economics in the olefin industry has justified increasing capacity via plant expansion and using aging olefin units beyond expected limitations. If these existing units are to operate well beyond their design life, what type of analysis and information is necessary to make this decision? What technologies or methods should be used for continued safe and controlled operation of these not so new units. This paper reports that the plant's mechanical integrity is the focal point of this analysis and decision-making method. Plant life expectancy study (PLES) looks at an operating plant's mechanical integrity from several vantage points. Four basic principles, such as plant history, process upsets and operating records, assessment of plant fires, and how to conduct records, assessment of plant fires, and how to conduct inspection and testing, provide the basis of how well a plant has been operated and maintained. Furthermore, the analysis includes a critical component inventory. These items address additional potential-failure causes, such as creep, fatigue, toughness, corrosion, erosion and carburization/oxidation

  3. 1-O-vinyl glycosides via Tebbe olefination, their use as chiral auxiliaries and monomers.

    Science.gov (United States)

    Yuan, Jialong; Lindner, Kristof; Frauenrath, Holger

    2006-07-21

    A series of anomerically pure 1-O-formyl glycosides 1 was prepared and converted into the corresponding 1-O-vinyl glycosides 2 by Tebbe olefination. The unsubstituted vinyl glycosides were obtained as anomerically pure compounds in good yields, and the method of preparation was compatible with the presence of a variety of functional groups. Remarkably, the anomeric formate group was regioselectively converted into the corresponding olefin in the presence of acetate and benzoate protecting groups. With the perspective to use the 1-O-vinyl glycosides as monomers for the preparation of glycosylated poly(vinyl alcohol) derivatives with controlled tacticity, their scope as chiral auxiliaries for a stereodifferentiation in addition reactions to the olefin function was investigated by using the [2+2] cycloaddition to dichloroketene as a model reaction. In particular, vinyl 2,3,4,6-tetra-O-benzoyl-alpha-d-mannopyranoside (2i) exhibited excellent diastereoselectivity. Finally, the 1-O-vinyl glycosides were successfully subjected to radical homopolymerization in bulk or used as electron-rich comonomers in radical copolymerizations with maleic anhydride, yielding alternating, glycosylated poly(vinyl alcohol-alt-maleic anhydride).

  4. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    Science.gov (United States)

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  5. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  6. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  7. Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis

    Science.gov (United States)

    Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...

  8. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  9. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases.

    Science.gov (United States)

    Nan, He; Zhang, Cheng; Venkatesh, Amrit; Rossini, Aaron J; Anderson, Jared L

    2017-11-10

    Silver ion or argentation chromatography utilizes stationary phases containing silver ions for the separation of unsaturated compounds. In this study, a mixed-ligand silver-based ionic liquid (IL) was evaluated for the first time as a gas chromatographic (GC) stationary phase for the separation of light olefin/paraffin mixtures. The selectivity of the stationary phase toward olefins can be tuned by adjusting the ratio of silver ion and the mixed ligands. The maximum allowable operating temperature of these stationary phases was determined to be between 125°C and 150°C. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the coordination behavior of the silver-based IL as well as provide an understanding into the retention mechanism of light olefins. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  12. Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Espinas, Jeff; Dé ry, Alexandre; Samantaray, Manoja; Dey, Raju; Basset, Jean-Marie

    2015-01-01

    Metathesis of linear alkanes catalyzed by the well-defined precursor (≡Si-O-WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.

  13. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    Science.gov (United States)

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-02

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.

  14. catena-Poly[[bromidocopper(I)]-?-?2,?1-3-(2-allyl-2H-tetra?zol-5-yl)pyridine

    OpenAIRE

    Wang, Wei

    2008-01-01

    The title compound, [CuBr(C9H9N5)] n , has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetra?zol-5-yl)pyridine. It is a new homometallic CuI olefin coord?ination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra?zol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-...

  15. Manganese-catalyzed Dehydrogenative Alkylation or α-Olefination of Alkyl-N-Heteroaromatics by Alcohols.

    Science.gov (United States)

    Kempe, Rhett; Zhang, Guoying; Irrgang, Torsten; Dietel, Thomas; Kallmeier, Fabian

    2018-05-02

    Catalysis involving earth-abundant transition metals is an option to help save our rare noble metal resources and is especially interesting if novel reactivity or selectivity patterns are observed. We report here on a novel reaction: the dehydrogenative alkylation or α-olefination of alkyl-N-heteroaromatics by alcohols. Manganese complexes developed in our laboratory catalyze the reaction efficiently. Fe and Co complexes stabilized by such ligands are essentially inactive. Hydrogen is liberated during the reaction and bromo or iodo functional groups and olefins can be tolerated. A variety of alkyl-N-heteroaromatics can be functionalized, and benzyl and aliphatic alcohols undergo the reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Facile Preparation of (2Z,4E)-Dienamides by the Olefination of Electron-deficient Alkenes with Allyl Acetate.

    Science.gov (United States)

    Ding, Liyuan; Yu, Chunbing; Zhao, Zhenqiang; Li, Feifei; Zhang, Jian; Zhong, Guofu

    2017-06-21

    Direct cross-coupling between two alkenes via vinylic C-H bond activation represents an efficient strategy for the synthesis of butadienes with high atomic and step economy. However, this functionality-directed cross-coupling reaction has not been developed, as there are still limited directing groups in practical use. In particular, a stoichiometric amount of oxidant is usually required, producing a large amount of waste. Due to our interest in novel 1,3-butadiene synthesis, we describe the ruthenium-catalyzed olefination of electron-deficient alkenes using allyl acetate and without external oxidant. The reaction of 2-phenyl acrylamide and allyl acetate was chosen as a model reaction, and the desired diene product was obtained in 80% isolated yield with good stereoselectivity (Z,E/Z,Z = 88:12) under optimal conditions: [Ru(p-cymene) Cl2]2 (3 mol %) and AgSbF6 (20 mol %) in DCE at 110 ºC for 16 h. With the optimized catalytic conditions in hand, representative α- and/or β-substituted acrylamides were investigated, and all reacted smoothly, regardless of aliphatic or aromatic groups. Also, differently N-substituted acrylamides have proven to be good substrates. Moreover, we examined the reactivity of different allyl derivatives, suggesting that the chelation of acetate oxygen to the metal is crucial for the catalytic process. Deuterium-labeled experiments were also conducted to investigate the reaction mechanism. Only Z-selective H/D exchanges on acrylamide were observed, indicating a reversible cyclometalation event. In addition, a kinetic isotope effect (KIE) of 3.2 was observed in the intermolecular isotopic study, suggesting that the olefinic C-H metalation step is probably involved in the rate-determining step.

  17. Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability

    NARCIS (Netherlands)

    Severn, J.R.; Chadwick, J.C.

    2013-01-01

    The activity and stability of homogeneous olefin polymerisation catalysts, when immobilised on a support, are dependent on both chemical and physical effects. Chemical factors affecting catalyst activity include the ease of formation of the active species, which is strongly dependent on the

  18. Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Čejka, Jiří

    2013-01-01

    Roč. 257, 21-22 (2013), s. 3107-3124 ISSN 0010-8545 R&D Projects: GA AV ČR IAA400400805; GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : Olefin metathesis * mesoporous molecular sieves * Heterogeneous catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.098, year: 2013

  19. Organoruthenium (II) complexes produced by insertion reactions of substituted olefins into a hydrido-ruthenium bond

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Katsuma; Sasada, Yoko; Kitamura, Tsuneyuki [Nagasaki Univ. (Japan)

    1980-04-01

    Dimethyl fumarate, 2-vinylpyridine, and acrylonitrile insert into a H-Ru bond of (RuClH(CO)(PPh/sub 3/)/sub 3/) (1) to yield new substituted alkylruthenium(II) complexes. Methyl sorbate also reacted with 1 to give a new substituted eta/sup 3/-allylruthenium(II) complex.

  20. Preparation of Mesoporous SBA-16 Silica-Supported Biscinchona Alkaloid Ligand for the Asymmetric Dihydroxylation of Olefins

    Directory of Open Access Journals (Sweden)

    Shaheen M. Sarkar

    2014-01-01

    Full Text Available Optically active cinchona alkaloid was anchored onto mesoporous SBA-16 silica and the as-prepared complex was used as a heterogeneous chiral ligand of osmium tetraoxide for the asymmetric dihydroxylation of olefins. The prepared catalytic system provided 90–93% yield of vicinal diol with 92–99% enantioselectivity. The ordered mesoporous SBA-16 silica was found to be a valuable support for the cinchona alkaloid liganded osmium catalyst system which is frequently used in chemical industries and research laboratories for olefin functionalization.

  1. Nature of Bonding in Bowl-Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location.

    Science.gov (United States)

    Li, Rui; You, Xue-Rui; Wang, Kang; Zhai, Hua-Jin

    2018-05-04

    The bowl-shaped C 6v B 36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B 36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B 36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B 36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B 36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C 6v B 36 cluster the global minimum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles

    Science.gov (United States)

    Chuprakov, Stepan; Kwok, Sen Wai; Zhang, Li; Lercher, Lukas; Fokin, Valery V.

    2009-01-01

    N-Sulfonyl 1,2,3-triazoles readily form rhodium(II) azavinyl carbenes, which react with olefins to produce cyclopropanes with excellent diastereo- and enantioselectivity and in high yield. PMID:19928917

  3. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  4. Intermolecular Formation of Two C−C Bonds across Olefins Enabled by Boron-Based Relay Strategies

    Czech Academy of Sciences Publication Activity Database

    Hidasová, Denisa; Jahn, Ullrich

    2017-01-01

    Roč. 56, č. 33 (2017), s. 9656-9658 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : 1,2- metal ate rearrangement * C−C bond formation * radical reactions * transition metal catalysis * vinyl boronates Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  5. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    Science.gov (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  6. Energy and materials flows in the production of olefins and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  7. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    International Nuclear Information System (INIS)

    Pan Yang; Zhao Junshu; Ji Yuanyuan; Yan Lei; Yu Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3 TMB* after rapid intersystem crossing from 1 TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k q T values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k q S have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k q values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation

  8. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

    NARCIS (Netherlands)

    Oschatz, M; van Deelen, T W; Weber, J L; Lamme, W S; Wang, G; Goderis, B; Verkinderen, O; Dugulan, A I; de Jong, K P

    2016-01-01

    Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon

  9. Tacticities study of high poly-α-olefins, from poly-1-hexene to poly-1-octadecene, obtained with metallocenes catalysts

    International Nuclear Information System (INIS)

    Silva, Luciano F. da; Galland, Griselda B.

    2003-01-01

    High poly-α-olefins such as poly-1-hexene, poly-1-octene, poly-1-decene, poly-1-dodecene, poly-1-tetradecene, poly-1-hexadecene and poly-1-octadecene were obtained with the homogeneous iso specific catalyst rac-Et[Ind]ZrCl 2 /MAO and with the homogeneous syndiospecific catalyst Me 2 C[Cp(9-Flu)]ZrCl 2 /MAO at the polymerization temperatures of 0 deg C, 30 deg C and 60 deg C. The polymers were analyzed by 13 C NMR to study the influence of the α - olefins sizes, the catalysts type and the polymerization temperatures in their tacticities. The stereospecific control of both catalytic systems decreased with the increase of the reaction temperature and with the α-olefin size. (author)

  10. Improving energy efficiency of an Olefin plant – A new approach

    International Nuclear Information System (INIS)

    Tahouni, Nassim; Bagheri, Narges; Towfighi, Jafar; Hassan Panjeshahi, M.

    2013-01-01

    Highlights: • The retrofit of an Olefin plant is studied to improve the overall energy efficiency. • Three levels of retrofit and optimization of this process are suggested. • A simultaneous method is presented to optimize low-temperature separation processes. - Abstract: Low-temperature gas separation processes are the most important gas separation routes. There is a complex interaction between core process (separation columns), associated heat exchanger network and refrigeration cycles in sub ambient processes. The aim of this paper is performing a comprehensive retrofit study of an Olefin plant (as an industrial example) to improve the overall energy efficiency. In this regard, the effect of improving column operating parameters and refrigeration cycles are first evaluated separately. Then, column operating parameters and refrigeration cycles as well as heat exchanger network are optimized simultaneously using genetic algorithm or simulated annealing. Having compared all results, one can conclude that simultaneous optimization leads to higher efficiency of the overall system

  11. Catalysts for production of lower olefins from synthesis gas: A review

    NARCIS (Netherlands)

    Torres Galvis, H.M.; de Jong, K.P.

    2013-01-01

    C2 to C4 olefins are traditionally produced from steam cracking of naphtha. The necessity for alternative production routes for these major commodity chemicals via non-oil-based processes has driven research in past times during the oil crises. Currently, there is a renewed interest in producing

  12. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis*

    OpenAIRE

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-01-01

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction wi...

  13. Surface science of single-site heterogeneous olefin polymerization catalysts

    OpenAIRE

    Kim, Seong H.; Somorjai, Gabor A.

    2006-01-01

    This article reviews the surface science of the heterogeneous olefin polymerization catalysts. The specific focus is on how to prepare and characterize stereochemically specific heterogeneous model catalysts for the Ziegler–Natta polymerization. Under clean, ultra-high vacuum conditions, low-energy electron irradiation during the chemical vapor deposition of model Ziegler–Natta catalysts can be used to create a “single-site” catalyst film with a surface structure that produces only isotactic ...

  14. Radiation chemical addition of dimethylformamide to α-olefins

    International Nuclear Information System (INIS)

    Dederichs, B.; Saus, A.; Lennertz, A.M.

    1977-10-01

    With n-hexene-1, n-octene-1 and n-decene-1 the radiation-initiated addition of demethyl formamide to α-olefins is described for the fist time. N,N-dimethyl alkane carbonic acid amides and N-methyl-N-alkyl formamides are formed in a ratio of about 50:50. The addition reaction is investigated in depencence of a solvent, of the ratio of the reaction, temperature, reaction time and dose rate. Mechanistic considerations are performed by radiolysis experiments of dimethyl formamide. (orig.) [de

  15. Effects of aromatics, olefins and distillation temperatures (T50 & T90) on particle mass and number emissions from gasoline direct injection (GDI) vehicles

    International Nuclear Information System (INIS)

    Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Zu, Lei

    2017-01-01

    Abstratct: Fuel quality is among the primary reasons for severe vehicle pollution. A limited understanding of the effects of gasoline properties on modern vehicle emissions is one obstacle for the establishment of stricter fuel standards in China. The goal of this study was to evaluate the effects of aromatic and olefin contents and T50 and T90 (defined as the 50%v and 90%v distillation temperatures) on tailpipe emissions from gasoline direct injection (GDI) vehicles compliant with China 4 standards. Both gaseous and particle emissions using different types of gasoline were measured. Changing aromatic and olefin contents had relatively small impacts on fuel consumption. Compared with olefins and T90, the regulated gaseous emissions were impacted more by aromatics and T50. Evident decreases of the particle mass (PM) and particle number (PN) emissions were noticed when the aromatic content and T90 decreased. Reducing the olefin content slightly decreased the PM emissions and increased the PN emissions. With decreasing T50, the PM emissions increased and the PN emissions slightly decreased. These results suggest that aromatic content and T90 should be decreased to reduce particle emissions from GDI vehicles. The information presented in this study provides some suggestions for how to improve gasoline quality in China. - Highlights: • Effect of aromatics, olefins, T50 and T90 on GDI vehicle emissions was investigated. • Aromatics and olefins had little impact on fuel consumption and CO 2 emissions. • Reducing the aromatic content and T90 significantly decreased PM and PN emissions. • Changing the olefin content and T50 had a minor impact on particle emissions. • Thresholds of aromatics and T90 should be tightened in future gasoline regulations.

  16. Functional chiral hydrogen-bonded assemblies

    NARCIS (Netherlands)

    Mateos timoneda, Miguel

    2005-01-01

    In this thesis different aspects of functional hydrogen-bonded (double and tetrarosette) assemblies are described. The functions were inspired by naturally occurring mechanisms such as molecular recognition, supramolecular chirality and its origin, and biostrategies for the correct folding of

  17. Structural analysis of platinum-palladium nanoparticles dispersed on titanium dioxide to evaluate cyclo-olefines reactivity

    International Nuclear Information System (INIS)

    Castillo, N.; Perez, R.; Martinez-Ortiz, M.J.; Diaz-Barriga, L.; Garcia, L.; Conde-Gallardo, A.

    2010-01-01

    Structural and chemical properties were correlated to explain catalytic behavior of Pt-Pd/TiO 2 in a cyclo-olefin reaction. Bimetallic nanoparticles supported on TiO 2 were prepared by wetness impregnation techniques at different concentrations of Pt and Pd ∼1 metallic wt%. The physicochemical properties of these metallic nanoparticles supported on TiO 2 were characterized by N 2 physisorption (Brunauer-Emmett-Teller-BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The relationship between chemical composition, physicochemical properties and particle size on the cyclo-olefin reaction was then studied. XRD and TEM results show that these nanoparticles are composed of Pt-Pd with FFC structure (a = 0.389-0.391 nm) supported on TiO 2 (anatase-like structure), and the materials present tetragonal structure nanoparticles (a = 0.37842, b = 0.37842, c = 0.95146 nm). Samples with higher contents of platinum and particle sizes of 4.2 nm show the highest catalytic conversion in cyclo-olefins reaction. Finally, structural examinations of Pt x -Pd (1-x) /TiO 2 based system was then conducted to study the effects of metals on the nanostructure of the materials.

  18. Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com [Faculty of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Kashef, Z. [Faculty of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of)

    2012-04-15

    New heterogeneous molybdenum catalyst was prepared through covalent attachment of a Schiff base ligand on the surface of silica coated magnetite nanoparticles via aminopropyl spacer and subsequent complexation with MoO{sub 2}(acac){sub 2}. The prepared nanocatalyst was characterized with Fourier transform infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopies and vibrating sample magnetometry. Catalytic epoxidation of some olefins and allylic alcohols by prepared nanocatalyst using tert-butyl hydroperoxide and cumene hydroperoxide as oxidants was achieved with good activities and selectivities. - Highlights: Black-Right-Pointing-Pointer Silica coated magnetite nanoparticles were modified with a Schiff base ligand. Black-Right-Pointing-Pointer Next reaction with MoO{sub 2}(acac){sub 2} afforded magnetically recoverable nanocatalyst. Black-Right-Pointing-Pointer The prepared nanocatalyst catalyzed the epoxidation of olefins with TBHP.

  19. A Wittig-olefination-Claisen-rearrangement approach to the 3-methylquinoline-4-carbaldehyde synthesis.

    Science.gov (United States)

    Kulkarni, Mukund G; Desai, Mayur P; Birhade, Deekshaputra R; Shaikh, Yunus B; Dhatrak, Ajit N; Gannimani, Ramesh

    2012-01-01

    Efficient syntheses are described for the synthetically important 3-methylquinoline-4-carbaldehydes 6a-h from o-nitrobenzaldehydes 1a-h employing a Wittig-olefination-Claisen-rearrangement protocol. The Wittig reaction of o-nitrobenzaldehydes with crotyloxymethylene triphenylphosphorane afforded crotyl vinyl ethers 2a-h, which on heating under reflux in xylene underwent Claisen rearrangement to give 4-pentenals 3a-h. Protection of the aldehyde group of the 4-pentenals as acetals 4a-h and subsequent oxidative cleavage of the terminal olefin furnished nitroaldehydes 5a-h. Reductive cyclization of these nitroaldehydes yielded the required 3-methylquinoline-4-carbaldehydes 6a-h in excellent yields. Therefore, an efficient method was developed for the preparation of 3-methylquinoline-4-carbaldehydes from o-nitrobenzaldehydes in a simple five-step procedure.

  20. PMMA to Polystyrene bonding for polymer based microfluidic systems

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Yi, Ying; Foulds, Ian G.

    2013-01-01

    temperature ranged from 110 to 125 C with a varying compression force, from 700 to 1,000 N (0.36-0.51 MPa). After the bonding process, two kinds of adhesion quantification methods were used to measure the bonding strength: the double cantilever beam method

  1. Hydro-Metathesis of Long-Chain Olefin (1-decene) using Well-Defined Silica-Supported Tungsten (VI), Molybdenum (VI) and Tantalum (V) Catalysts

    KAUST Repository

    Saidi, Aya

    2016-11-01

    Nowadays, catalysis lies at the heart of economy growth mainly in the petroleum industry. Catalysis can offer real and potential solutions to the current challenges for a long-term sustainable energy, green chemistry, and environmental protection. In this context, one of the most important and future prosperity promising catalytic applications in the petrochemical field is hydrocarbons metathesis; it consists on the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels. Olefin metathesis has become one of the standard methodologies for constructing C-C bonds in many organic transformation reactions. This owed to the numerous types of metathesis reactions that have been developed, for example, enyne, ring-opening and closing, self and cross metathesis, etc. But the one step conversion of olefin to alkanes has not been studied much. Recently, only one such a work has been published for the hydro-metathesis of propylene by tantalum hydride supported on KCC-1 in dynamic reactor. With this knowledge, we thought to study the hydro-metathesis using liquid olefin (1-decene). Another aspect of using 1-decene comes from our previous experience on metathesis of n-decane where the first step is the conversion of decane to 1-decene and subsequently to different chain length alkanes with W-alkyl/alkylidene catalyst. In this way, it would be easy for us to use different catalysts and compare them with parent catalyst concerning TON. We found 100% conversion with TON of 1010 using supported WMe6 onto SiO2-700 [(≡Si-O-)WMe5] against the previous results for n-decane showing 20% conversion and TON of 153. In this work, we disclose the hydro-metathesis reaction of 1-decene using well-defined silica supported W(VI), Mo(VI) and Ta(V) alkyl catalysts in batch reactor condition. This work is divided into three major sections; first chapter contains an introduction to the field of catalysis and surface organometallic chemistry. In second chapter

  2. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill

    2013-01-16

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  3. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  4. Prediction of properties of new halogenated olefins using two group contribution approaches

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Cignitti, Stefano; Abildskov, Jens

    2017-01-01

    The increasingly restrictive regulations for substances with high ozone depletion and global warming potentials are driving the search for new sustainable fluids with low environmental impact. Recent research works have pointed out the great potential of fluorine- and chlorine-based olefins as re...

  5. Synthesis of 7-Deoxypancratistatin from Carbohydrates by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Håkansson, Anders Eckart; Palmelund, Anders; Holm, H.

    2006-01-01

    from D-xylose and piperonal. The former is converted into ribofuranoside 28, which is coupled with bromide 7 in the presence of zinc, and this is followed by ring-closing olefin metathesis. Subsequent Overman rearrangement, dihydroxylation, and deprotection then affords the natural product....

  6. Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2005-12-01

    Supercritical isobutane regeneration of a USY zeolite alkylation catalyst was examined in a continuous, automated reaction / regeneration system. Two feeds were studied; a synthetic isobutane / 2-butene blend, and a commercial refinery isoparaffin / olefin blend. The refinery blend was minimally treated, containing a variety of light olefins, and contaminants, including butadiene, oxygenates and sulfur, which are well known to cause severe catalyst deactivation. Synthetic feed experiments showed that high levels of butene conversion was maintained for more than 200 hours time on stream, and that product quality and catalyst maintenance was relatively stable over the course of the experiment using a 3 hour reaction / 3 hour regeneration cycle. Catalyst activity maintenance was lower when the commercial feed was employed. High levels of alkene conversion were maintained for 78 hours and 192 hours using a 3 hour reaction / 3 hour regeneration cycle and a 2 hour reaction / 2 hour regeneration cycle, respectively.

  7. Cobalt-catalyzed C-H olefination of aromatics with unactivated alkenes.

    Science.gov (United States)

    Manoharan, Ramasamy; Sivakumar, Ganesan; Jeganmohan, Masilamani

    2016-08-18

    A cobalt-catalyzed C-H olefination of aromatic and heteroaromatic amides with unactivated alkenes, allyl acetates and allyl alcohols is described. This method offers an efficient route for the synthesis of vinyl and allyl benzamides in a highly stereoselective manner. It is observed that the ortho substituent on the benzamide moiety is crucial for the observation of allylated products in unactivated alkenes.

  8. Access to Functionalized Steroid Side Chains via Modified Julia Olefination

    Science.gov (United States)

    Izgu, Enver Cagri; Burns, Aaron C.; Hoye, Thomas R.

    2011-01-01

    Various functionalized steroidal side chains were conveniently accessed by a modified Julia olefination strategy using a common sulfone donor and an appropriate α-branched aldehyde acceptor. For the coupling of these hindered classes of reaction partners (and in contrast to typically observed trends), the benzothiazolyl(BT)-sulfone anion gave superior outcomes compared to the phenyltetrazolyl(PT)-sulfone anion. PMID:21244047

  9. The Cost of Immediacy for Corporate Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Marco, Rossi

    Liquidity provision in the corporate bond market has become significantly more expensive after the 2008 credit crisis. Using index exclusions as a natural experiment during which uninformed index trackers request immediacy, we find that the price of immediacy has doubled for short-term investment...... grade bonds, and more than tripled for speculative-grade bonds. The increased cost of immediacy is a side-effect of a ban on proprietary trading (Volker Rule) and tighter post-crisis capital regulations, which have resulted in lower aggregate dealer inventories....

  10. Rapid Access to Ortho-Alkylated Vinylarenes from Aromatic Acids by Dearomatization and Tandem Decarboxylative C-H Olefination/Rearomatization.

    Science.gov (United States)

    Tsai, Hung-Chang; Huang, Yen-Hsiang; Chou, Chih-Ming

    2018-03-02

    A two-step straightforward method for the preparation of ortho-alkylated vinylarenes from readily available benzoic acids is described. The synthetic route involves the dearomatization of benzoic acids by Birch reduction providing alkylated cyclohexa-2,5-dienyl-1-carboxylic acids. The diene subsequently undergoes a decarboxylative C-H olefination followed by rearomatization to deliver ortho-alkylated vinylarene. Mechanistic studies suggest that a Pd/Ag bimetallic catalytic system is important in the tandem decarboxylative C-H olefination/rearomatization step.

  11. Synthesis and structure of the unligated carbene of chromium

    Energy Technology Data Exchange (ETDEWEB)

    Billups, W.E.; Souchan Chang; Hauge, R.H.; Margrave, J.L. (Rice Univ., Houston, TX (United States))

    1993-04-14

    Complexes with metal-carbon double bonds have found applications as intermediates in many important catalytic reactions including cyclopropanation of alkenes by diazoalkanes, Fischer-Tropsch synthesis, olefin metathesis, Ziegler-Natta polymerization, alkane activation, and in the decomposition of transition metal alkyl complexes. However, complexes with the simplest carbene, CH[sub 2], coordinated to the metal center are relatively rare. In this paper the authors report the synthesis and characterization of the simple unligated carbene of chromium by FTIR matrix isolation spectroscopy. 7 refs., 3 figs., 4 tabs.

  12. Synthesis of interlocked molecules by olefin metathesis

    Science.gov (United States)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  13. OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Matthew R.; Goblirsch, Brandon R.; Christenson, James K.; Esler, Morgan A.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M. (UMM)

    2017-10-12

    In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a β-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon–carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.

  14. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  15. Palladium(II)-Catalyzed meta-C-H Olefination: Constructing Multisubstituted Arenes through Homo-Diolefination and Sequential Hetero-Diolefination.

    Science.gov (United States)

    Bera, Milan; Maji, Arun; Sahoo, Santosh K; Maiti, Debabrata

    2015-07-13

    Divinylbenzene derivatives represent an important class of molecular building blocks in organic chemistry and materials science. Reported herein is the palladium-catalyzed synthesis of divinylbenzenes by meta-C-H olefination of sulfone-based arenes. Successful sequential olefinations in a position-selective manner provided a novel route for the synthesis of hetero-dialkenylated products, which are difficult to access using conventional methods. Additionally, 1,3,5-trialkenylated compounds can be generated upon successful removal of the directing group. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Maximizing light olefins production in fluid catalytic cracking (FCC) units; Maximizacao de olefinas leves em unidades de craqueamento catalitico fluido

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Ricardo D.M.; Pinho, Andrea de Rezende [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The Fluid Catalytic Cracking (FCC) process is widely spread over the ten PETROBRAS refineries in its thirteen industrial units. The importance of the FCC process resides on its high gasoline output, being the main supplier of this important product to the system. Additionally, FCC process is the main source of light hydrocarbons in the LPG range, including light olefins. The increasing demand for ethylene, propylene and butylenes was encouraging to concentrate the research efforts on studies about alternatives for the traditional FCC process. In the present work, the proposals from main licensors (UOP, KBR, Stone and Webster) for a light-olefins-driven FCC process (Petrochemical FCC) will be compared. Furthermore, the catalytic route for light olefins production in FCC units is also described. An additive based on ZSM- 5 zeolite, which is produced following a PETROBRAS proprietary technology, is being largely applied into the catalyst inventories of all FCC units. An analysis of different scenarios was performed to estimate the maximum potential of light olefins production from the highest possible ZSM-5 additive usage. More specifically for the case of ethylene, which production is also boosted by the same type of additive, studies are being conducted with the objective of recovering it from a C2 stream using specific units to do the splitting (UPGR). The search for increasing light olefins production in the refining processes is in line with PETROBRAS strategic plan which targeted for the company a more intense activity in the Brazilian petrochemical market (author)

  17. Patterns of hydrogen bonding involving thiourea in the series of thioureaṡtrans-1,2-bispyridyl ethylene cocrystals - A comparative study

    Science.gov (United States)

    Kole, Goutam Kumar; Kumar, Mukesh

    2018-07-01

    Thiourea is known to act as a template to preorganise a series of trans-1,2-bispyridyl ethylenes (bpe), where the thiourea molecules present in an infinite zigzag chain with R22(8) graph set (the β-tape) which offers three different types of hydrogen bonding [J. Am. Chem. Soc. 132 (2010) 13434]. This article reports a new cocrystal of thiourea with 3,4‧-bpe and acts as a 'missing link' in the series. In this cocrystal, thiourea present in an infinite corrugated chain with R21(6) graph set, a rarely observed thiourea synthon i.e. α-tape. A comparative study has been discussed which demonstrates various types of hydrogen bonding that exist in the series and their impact on the parallel stacking of the pyridyl based olefins.

  18. Identification of the formation of metal-vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling.

    Science.gov (United States)

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei

    2016-10-07

    Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

  19. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Choi,

    2011-05-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15, according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond and application methods. The adhesive systems were applied on the dentin as follows: 1 The single coating, 2 The double coating, 3 Manual agitation, 4 Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.

  20. Efficient and Selective Syntheses of (all-E)- and (6E,10Z)-2′-O-Methylmyxalamides D via Pd-Catalyzed Alkenylation—Carbonyl Olefination Synergy

    Science.gov (United States)

    Wang, Guangwei; Huang, Zhihong; Negishi, Ei-ichi

    2008-01-01

    Highly efficient and selective syntheses of both (all-E) and (6E,10Z)-isomers of 2′-O-methylmyxalamide D (2 and 3), in which the crucial conjugated pentaene moieties were assembled in ≥98% stereoselectivity through the use of two Pd-catalyzed alkenylation reactions, the Horner—Wadsworth—Emmons (HWE) olefination, and either the Corey—Schlessinger—Mills modified (CSM-modified) Peterson olefination for 2 or the Still—Gennari olefination for 3, are reported. Either 2 or 3 was prepared in 16% yield in seven steps from propargyl alcohol. PMID:18593171

  1. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    Science.gov (United States)

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-06

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structural analysis of platinum-palladium nanoparticles dispersed on titanium dioxide to evaluate cyclo-olefines reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, N., E-mail: necastillo@yahoo.co [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Edificio B, 04510 Mexico DF (Mexico); Centro de Investigacion y de Estudios Avanzados del IPN, Depto. de Fisica, Av. IPN 2508, C.P. 07360, Mexico DF (Mexico); Perez, R. [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Campus Morelos, 62251 Cuernavaca Morelos (Mexico); Martinez-Ortiz, M.J.; Diaz-Barriga, L. [Instituto Politecnico Nacional - ESIQIE, UPALM Edif. 7, 07738 Mexico DF (Mexico); Garcia, L. [Instituto Politecnico Nacional - ESIT, UPALM, 07738 Mexico DF (Mexico); Conde-Gallardo, A. [Centro de Investigacion y de Estudios Avanzados del IPN, Depto. de Fisica, Av. IPN 2508, C.P. 07360, Mexico DF (Mexico)

    2010-04-16

    Structural and chemical properties were correlated to explain catalytic behavior of Pt-Pd/TiO{sub 2} in a cyclo-olefin reaction. Bimetallic nanoparticles supported on TiO{sub 2} were prepared by wetness impregnation techniques at different concentrations of Pt and Pd {approx}1 metallic wt%. The physicochemical properties of these metallic nanoparticles supported on TiO{sub 2} were characterized by N{sub 2} physisorption (Brunauer-Emmett-Teller-BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The relationship between chemical composition, physicochemical properties and particle size on the cyclo-olefin reaction was then studied. XRD and TEM results show that these nanoparticles are composed of Pt-Pd with FFC structure (a = 0.389-0.391 nm) supported on TiO{sub 2} (anatase-like structure), and the materials present tetragonal structure nanoparticles (a = 0.37842, b = 0.37842, c = 0.95146 nm). Samples with higher contents of platinum and particle sizes of 4.2 nm show the highest catalytic conversion in cyclo-olefins reaction. Finally, structural examinations of Pt{sub x}-Pd{sub (1-x)}/TiO{sub 2} based system was then conducted to study the effects of metals on the nanostructure of the materials.

  3. A Fracture-Based Criterion for Debonding Strength of Adhesive-Bonded Double-Strap Steel Joints

    Directory of Open Access Journals (Sweden)

    Prawit Santisukpotha

    2012-01-01

    Full Text Available This paper addresses the debonding strength of adhesive-bonded double-strap steel joints. A fracture-based criterion was formulated in terms of a stress singularity parameter, i.e., the stress intensity factor, which governs the magnitude of a singular stress field near the joint ends. No existing crack was assumed. A total of 24 steel joint specimens were tested under constant amplitude fatigue loadings at stress ratio of 0.2 and frequency of 2 Hz. The joint stiffness ratio was slightly less than one to control the maximum adhesive stresses at the joint ends. To detect the debonding, a simple and practical technique was developed. The test results showed that the interfacial failure near the steel/adhesive corner was a dominant failure mode. The failure was brittle and the debonding life was governed by the crack initiation stage. The finite element analysis was employed to calculate the stress intensity factors and investigate the effects of the adhesive layer thickness, lap length and joint stiffness ratio on the debonding strength.

  4. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    Science.gov (United States)

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  5. PMMA to Polystyrene bonding for polymer based microfluidic systems

    KAUST Repository

    Fan, Yiqiang

    2013-03-29

    A thermal bonding technique for Poly (methylmethacrylate) (PMMA) to Polystyrene (PS) is presented in this paper. The PMMA to PS bonding was achieved using a thermocompression method, and the bonding strength was carefully characterized. The bonding temperature ranged from 110 to 125 C with a varying compression force, from 700 to 1,000 N (0.36-0.51 MPa). After the bonding process, two kinds of adhesion quantification methods were used to measure the bonding strength: the double cantilever beam method and the tensile stress method. The results show that the bonding strength increases with a rising bonding temperature and bonding force. The results also indicate that the bonding strength is independent of bonding time. A deep-UV surface treatment method was also provided in this paper to lower the bonding temperature and compression force. Finally, a PMMA to PS bonded microfluidic device was fabricated successfully. © 2013 Springer-Verlag Berlin Heidelberg.

  6. Effect of calcium hydroxide and double and triple antibiotic pastes on the bond strength of epoxy resin-based sealer to root canal dentin.

    Science.gov (United States)

    Akcay, Merve; Arslan, Hakan; Topcuoglu, Hüseyin Sinan; Tuncay, Oznur

    2014-10-01

    The aim of this study was to evaluate the effects of calcium hydroxide (CH) and triple (TAP) and double (DAP) antibiotic pastes on the bond strength of an epoxy resin-based sealer (AH Plus Jet; Dentsply DeTrey, Konstanz, Germany) to the root canal dentin. Sixty-four single-rooted human mandibular premolars were decoronated and prepared using the rotary system to size 40. The specimens were randomly divided into a control group (without intracanal dressing) and 3 experimental groups that received an intracanal dressing with either CH, DAP, or TAP (n = 16). The intracanal dressing was removed by rinsing with 10 mL 17% EDTA followed by 10 mL 2.5% sodium hypochlorite. The root canals were then obturated with gutta-percha and AH Plus Jet sealer. A push-out test was used to measure the bond strength between the root canal dentin and the sealer. The data were analyzed using 2-way analysis of variance and Tukey post hoc tests to detect the effect of the independent variables (intracanal medicaments and root canal thirds) and their interactions on the push-out bond strength of the root canal filling material to the root dentin (P = .05). The push-out bond strength values were significantly affected by the intracanal medicaments (P .05). In the middle and apical third, the bond strength of the TAP group was higher than those of the CH and DAP groups (P < .05). The DAP and CH did not affect the bond strength of the epoxy resin-based sealer. Additionally, the TAP improved the bond strength of the epoxy resin-based sealer in the middle and apical thirds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Zhang, Jun; Qian, Yu

    2014-01-01

    Highlights: • A novel coke-oven gas assisted coal to olefins (GaCTO) process is proposed. • GaCTO has higher energy efficiency and emits less CO 2 compared to coal-to-olefins process. • GaCTO proposes an idea of using redundant coke-oven gas for producing value added products. - Abstract: Olefins are one of the most important platform chemicals. Developing coal-to-olefins (CTO) processes is regarded as one of promising alternatives to oil-to-olefins process. However, CTO suffers from high CO 2 emission due to the high carbon contents of coal. In China, there is 7 × 10 10 m 3 coke-oven gas (COG) produced in coke plants annually. However, most of the hydrogen-rich COG is utilized as fuel or discharged directly into the air. Such situation is a waste of precious hydrogen resource and serious economic loss, which causes serious environmental pollution either. This paper proposes a novel co-feed process of COG assist CTO in which CH 4 of COG reacts with CO 2 in a Dry Methane Reforming unit to reduce emissions, while the Steam Methane Reforming unit produces H 2 -rich syngas. H 2 of COG can adjust the H/C ratio of syngas. The analysis shows that the energy efficiency of the co-feed process increases about 10%, while at the same time, life cycle carbon footprint is reduced by around 85% in comparison to the conventional CTO process. The economic sustainability of the co-feed process will be reached when the carbon tax would be higher than 150 CNY/t CO 2

  8. Polymeric membranes containing silver salts for propylene/propane separation

    Directory of Open Access Journals (Sweden)

    L. D. Pollo

    2012-06-01

    Full Text Available The separation of olefin/paraffin mixtures is one of the most important processes of the chemical industry. This separation is typically carried out by distillation, which is an energy and capital intensive process. One promising alternative is the use of facilitated transport membranes, which contain specific carrier agents in the polymer matrix that interact reversibly with the double bond in the olefin molecule, promoting the simultaneous increase of its permeability and selectivity. In this study, polyurethane (PU membranes were prepared using two different silver salts (triflate and hexafluorantimonate. The membranes were structurally characterized and their performance for the separation of propylene/propane mixtures was evaluated. The results of the characterization analyses indicated that the triflate salt was the most efficient carrier agent. The membranes containing this salt showed the best performance, reaching an ideal selectivity of 10 and propylene permeability of 188 Barrer.

  9. THE 6 μ m FEATURE AS A TRACER OF ALIPHATIC COMPONENTS OF INTERSTELLAR CARBONACEOUS GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Hsia Chih-Hao; Sadjadi, Seyedabdolreza; Zhang Yong; Kwok Sun, E-mail: chhsia@must.edu.mo, E-mail: ssadjadi@hku.hk, E-mail: zhangy96@hku.hk, E-mail: sunkwok@hku.hk [Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2016-12-01

    An unidentified infrared emission (UIE) feature at 6.0 μ m is detected in a number of astronomical sources showing the UIE bands. In contrast to the previous suggestion that this band is due to C=O vibrational modes, we suggest that the 6.0 μ m feature arises from olefinic double-bond functional groups. These groups are likely to be attached to aromatic rings, which are responsible for the major UIE bands. The possibility that the formation of these functional groups is related to the hydrogenation process is discussed.

  10. Novel route to 5-position vinyl derivatives of thiolactomycin: Olefination vs. deformylation

    Science.gov (United States)

    Kim, Pilho; Barry, Clifton E.; Dowd*, Cynthia S.

    2006-01-01

    Vinyl and diene derivatives of thiolactomycin have been prepared via Horner-Wadsworth-Emmons olefination from protected 5-formyl-3,5-dimethylthiotetronic acid. Several 4-position protecting groups and a variety of phosphonates were evaluated, with MOM protection and β-ketophosphonates yielding the highest ratio of desired product to deformylated product. PMID:16699591

  11. OsO(4) in ionic liquid [Bmim]PF(6): a recyclable and reusable catalyst system for olefin dihydroxylation. remarkable effect of DMAP.

    Science.gov (United States)

    Yao, Qingwei

    2002-06-27

    [reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.

  12. Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines.

    Science.gov (United States)

    Liu, Guan-Sai; Zhang, Yong-Qiang; Yuan, Yong-An; Xu, Hao

    2013-03-06

    A diastereoselective aminohydroxylation of olefins with a functionalized hydroxylamine is catalyzed by new iron(II) complexes. This efficient intramolecular process readily affords synthetically useful amino alcohols with excellent selectivity (dr up to > 20:1). Asymmetric catalysis with chiral iron(II) complexes and preliminary mechanistic studies reveal an iron nitrenoid is a possible intermediate that can undergo either aminohydroxylation or aziridination, and the selectivity can be controlled by careful selection of counteranion/ligand combinations.

  13. Biomimetic Aerobic C-H Olefination of Cyclic Enaminones at Room Temperature: Development toward the Synthesis of 1,3,5-Trisubstituted Benzenes.

    Science.gov (United States)

    Yu, Yi-Yun; Georg, Gunda I

    2014-04-14

    A green and mild protocol for the dehydrogenative olefination of cyclic enaminones was devised via palladium catalysis at room temperature using oxygen as the terminal oxidant. The synthetic utility of the olefinated cyclic enaminones afforded a series of unique 1,3,5-trisubstituted benzenes via an unanticipated Diels-Alder tandem reaction. The broad substrate scope and good yields achieved with this new protocol provide an alternative pathway for arene functionalization.

  14. A kinetic mechanistic study of acid-catalyzed alkylation of isobutane with C4-olefins at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, B.M.

    1978-01-01

    A kinetic and mechanistic study of sulfuric acid-catalyzed alkylation of isobutane with C/sub 4/-Olefins at Low Temperatures(-20/sup 0/ to 0/sup 0/C) was based on a new two-step reaction sequence in which the desired first-step reactions are between acid and olefin to form sulfates and the desired second-step reactions are between sulfates and isobutane to form mostly trimethylpentanes. Linear butenes formed stable sulfates that formed alkylates of exceptionally high quality, up to 100 Research octane, whereas isobutylene and trimethylpentene mainly polymerized during the first step, and the alkylate produced had only 90 Research octane. Trimethylpentanes and dimethylhexanes, when contacted with concentrated sulfuric acid at -10/sup 0/ to +25/sup 0/C, degraded and isomerized to form C/sub 4/-C/sub 9/ and higher isoparaffins and acid-soluble hydrocarbons (conjunct polymers). For the two-step process and the degradation and isomerization reactions, kinetic models based on reaction at the interface were developed; but for isoolefins, a polymerization-cracking sequence (via C/sub 12/- and even C/sub 16/-olefins) is the preferred route. Commercial applications of the results are proposed.

  15. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60Fullerenes

    KAUST Repository

    Martínez, Juan Pablo

    2016-04-10

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60Fullerenes

    KAUST Repository

    Martí nez, Juan Pablo; Vummaleti, Sai V. C.; Falivene, Laura; Nolan, Steven P.; Cavallo, Luigi; Solà , Miquel; Poater, Albert

    2016-01-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of Balanced Double Lap Joints with a Bi-Linear Softening Adhesive

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik; Schmidt, Jacob Wittrup

    2010-01-01

    of cracked concrete disks strengthened with adhesive bonded fiber reinforced polymers (FRP), or in any other structure comparable to a double lap joint with a softening interface. The present constitutive model can be changed to fit any model with the same shape of constitutive relationship, see Figure 1.......The response of a bonded symmetric balanced double lap joint under tensile loading with a bilinear softening adhesive is described with a closed form solution. Since bonded joints in concrete structures undergo softening, a versatile model to describe the response for a wide range of constitutive...

  18. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pan Yang [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Zhao Junshu [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Ji Yuanyuan [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yan Lei [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yu Shuqin [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China)], E-mail: sqyu@ustc.edu.cn

    2006-01-05

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields {sup 3}TMB* after rapid intersystem crossing from {sup 1}TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), {alpha}-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property ({pi}-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k{sub q}{sup T} values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k{sub q}{sup S} have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k{sub q} values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation.

  19. Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-03-01

    Full Text Available Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %. These compounds include phenol, water, acetic acid, acetaldehyde, hydroxyacetone, d-glucose and 2-hydroxymethylfuran. Mechanisms for the overall conversions were proposed. Other olefins (1,7-octadiene, cyclohexene, and 2,4,4-trimethylpentene and alcohols (iso-butanol with different activities were also investigated. All the olefins and alcohols used were effective but produced varying product selectivities. A complex model bio-oil, synthesized by mixing all the above-stated model compounds, was refined under similar conditions to test the catalyst’s activity. SSA shows the highest hydrothermal stability. Cs2.5/K10 lost most of its activity. A global reaction pathway is outlined. Simultaneous and competing esterification, etherfication, acetal formation, hydration, isomerization and other equilibria were involved. Synergistic interactions among reactants and products were determined. Acid-catalyzed olefin hydration removed water and drove the esterification and acetal formation equilibria toward ester and acetal products.

  20. Synthesis and essay of an Ionomer like catalyst of olefins epoxidation

    International Nuclear Information System (INIS)

    Boyaca Mendivelso, Alejandro; Tempesti, Ezio

    1995-01-01

    The purpose of the present work is the preparation of an ionomer with base in Molybdenum and to evaluate its activity like catalyst of olefins epoxidation like alternative of synthesis of catalysts of the Hawk process. A polymer is synthesized with available functional groups to stabilize the metal starting from sodium molybdate; the characterization is made by atomic absorption, spectroscopy to GO, and X.P.S. The characterization indicates that indeed it is possible to stabilize the Mo in the main polymeric. The evaluation in reaction in liquid phase allows similar conversions to those of a homogeneous catalyst. The selective epoxidation of olefins for alkyl hydroperoxides, it has acquired great importance inside the industrial processes obtaining of propylene oxide due to the recent use of the terbutilic alcohol (co-produced together with the epoxide), as preservative in gasoline free of lead. In the environment of these processes, and in particular in the Hawk process possibilities of technological innovation, in the concerning to the heterogenization of conventional catalysts, at the moment used in homogeneous phase. The present work collaborate to some tentative that look for to generate alternative of preparation of catalysts for the process Hawk, synthesizing and testing the activity of an ionomer like epoxidation catalyst, which tries to reproduce the chemical structure of the complexes organ-metallic pear to suppress the separation stages and necessary recovery facilitating its recurrent reutilization with eventual economic repercussions in the industrial process. It is described the procedure of synthesis of the ionomer, the characterization and the evaluation of the activity in reaction under diverse conditions. Of the made characterization it comes off that the heterogenization of catalysts for olefins epoxidation, according to the Hawk process, is possible by means of the preparation of polymers modified appropriately. Likewise the evaluation in

  1. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert; Credendino, Raffaele; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  2. Olefin polymerization from single site catalysts confined within porous media

    Science.gov (United States)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE

  3. Biomimetic Aerobic C–H Olefination of Cyclic Enaminones at Room Temperature: Development toward the Synthesis of 1,3,5-Trisubstituted Benzenes

    Science.gov (United States)

    Yu, Yi-Yun

    2014-01-01

    A green and mild protocol for the dehydrogenative olefination of cyclic enaminones was devised via palladium catalysis at room temperature using oxygen as the terminal oxidant. The synthetic utility of the olefinated cyclic enaminones afforded a series of unique 1,3,5-trisubstituted benzenes via an unanticipated Diels-Alder tandem reaction. The broad substrate scope and good yields achieved with this new protocol provide an alternative pathway for arene functionalization. PMID:25071423

  4. Absolute and relative-rate measurement of the rate coefficient for reaction of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2) with OH.

    Science.gov (United States)

    Srinivasulu, G; Bunkan, A J C; Amedro, D; Crowley, J N

    2018-01-31

    The rate coefficient (k 1 ) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C 2 F 5 OCF[double bond, length as m-dash]CF 2 ) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N 2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy. The rate coefficient has a negative temperature dependence which can be parameterized as: k 1 (T) = 6.0 × 10 -13  exp[(480 ± 38/T)] cm 3 molecule -1 s -1 and a room temperature value of k 1 (298 K) = (3.0 ± 0.3) × 10 -12 cm 3 molecule -1 s -1 . Highly accurate rate coefficients from the PLP-LIF experiments were achieved by optical on-line measurements of PEVE and by performing the measurements at two different apparatuses. The large rate coefficient and the temperature dependence indicate that the reaction proceeds via OH addition to the C[double bond, length as m-dash]C double bond, the high pressure limit already being reached at 50 Torr N 2 . Based on the rate coefficient and average OH levels, the atmospheric lifetime of PEVE was estimated to be a few days.

  5. Catalyst Design and Development for the Direct Production of Lower Olefins from Synthesis Gas

    NARCIS (Netherlands)

    Xie, J.

    2017-01-01

    The increase in global demand for lower olefins (ethylene, propylene, and butylenes) coupled with the regional diversification of carbon raw materials bring about opportunities and challenges for emerging technologies. Crude oil has been the primary carbon feedstock for the past 50 years, but

  6. Transmissive Olefination Route to Putative “Morinol I” Lignans

    Science.gov (United States)

    Yao, Lihua; Pitta, Bhaskar; Ravikumar, P. C.; Purzycki, Matthew; Fleming, Fraser F.

    2012-01-01

    A series of morinol-type lignans were rapidly assembled using a Grignard-based transmissive olefination. In combination with palladium-catalyzed arylations, the strategy provides stereoselective access to (7Z, 7′E), (7E, 7′E), (7E, 7′Z) morinol diastereomers and the (7Z, 8′E) and (7E, 8′E) conjugated analogs. Critical for the E/Z-stereoselectivity is a new, general method for converting alkenenitriles to alkenemethanols that circumvents the enal E/Z isomerization commonly encountered during conventional i-Bu2AlH reduction. PMID:22432777

  7. Homogeneous dihydroxylation of olefins catalyzed by OsO(4)(2-) immobilized on a dendritic backbone with a tertiary nitrogen at its core position.

    Science.gov (United States)

    Fujita, Ken-Ichi; Inoue, Kensuke; Tsuchimoto, Teruhisa; Yasuda, Hiroyuki

    2012-01-01

    OsO(4)(2-) immobilized on a poly(benzyl ether) dendrimer with a tertiary nitrogen at its core position efficiently catalyzed the homogeneous dihydroxylation of olefins with a low level of osmium leaching. The dendritic osmium catalyst could be applied to the wide range of olefins. Furthermore, the dendritic osmium catalyst was recovered by reprecipitation and then reused up to five times.

  8. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    Science.gov (United States)

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  9. Catalytic asymmetric dihydroxylation of olefins with reusable OsO(4)(2-) on ion-exchangers: the scope and reactivity using various cooxidants.

    Science.gov (United States)

    Choudary, Boyapati M; Chowdari, Naidu S; Jyothi, Karangula; Kantam, Mannepalli L

    2002-05-15

    Exchanger-OsO(4) catalysts are prepared by an ion-exchange technique using layered double hydroxides and quaternary ammonium salts covalently bound to resin and silica as ion-exchangers. The ion-exchangers with different characteristics and opposite ion selectivities are specially chosen to produce the best heterogeneous catalyst that can operate using the various cooxidants in the asymmetric dihydroxylation reaction. LDH-OsO(4) catalysts composed of different compositions are evaluated for the asymmetric dihydroxylation of trans-stilbene. Resin-OsO(4) and SiO(2)-OsO(4) designed to overcome the problems associated with LDH-OsO(4) indeed show consistent activity and enantioselectivity in asymmetric dihydroxylation of olefins using K(3)Fe(CN)(6) and molecular oxygen as cooxidants. Compared to the Kobayashi heterogeneous systems, resin-OsO(4) is a very efficient catalyst for the dihydroxylation of a wide variety of aromatic, aliphatic, acyclic, cyclic, mono-, di-, and trisubstituted olefins to afford chiral vicinal diols with high yields and enantioselectivities irrespective of the cooxidant used. Resin-OsO(4) is recovered quantitatively by a simple filtration and reused for a number of cycles with consistent activity. The high binding ability of the heterogeneous osmium catalyst enables the use of an equimolar ratio of ligand to osmium to give excellent enantioselectives in asymmetric dihydroxylation in contrast to the homogeneous osmium system in which excess molar quantities of the expensive chiral ligand to osmium are invariably used. The complexation of the chiral ligand (DHQD)(2)PHAL, having very large dimension, a prerequisite to obtain higher ee, is possible only with the OsO(4)(2-) located on the surface of the supports.

  10. Similarities between intra- and intermolecular hydrogen bonds in RNA kissing complexes found by means of cross-correlated relaxation

    International Nuclear Information System (INIS)

    Dittmer, Jens; Kim, Chul-Hyun; Bodenhausen, Geoffrey

    2003-01-01

    The bond lengths and dynamics of intra- and intermolecular hydrogen bonds in an RNA kissing complex have been characterized by determining the NMR relaxation rates of various double- and triple-quantum coherences that involve an imino proton and two neighboring nitrogen-15 nuclei belonging to opposite bases. New experiments allow one to determine the chemical shift anisotropy of the imino protons. The bond lengths derived from dipolar relaxation and the lack of modulations of the nitrogen chemical shifts indicate that the intermolecular hydrogen bonds which hold the kissing complex together are very similar to the intramolecular hydrogen bonds in the double-stranded stem of the RNA

  11. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-01-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts

  12. Fragmentation of delta-diketones by electron impact. Olefin elimination and formation of an enol acetate ion

    International Nuclear Information System (INIS)

    Morizur, J.P.; Mercier, J.; Casals, P.F.

    1985-01-01

    Under electron impact delta-diketones lose an olefin. The mechanism and structure of the resulting ion have been established by several techniques: substitution, Mike and Cid spectra and thermochemical data [fr

  13. Enhanced catalytic performance for light-olefins production from chloromethane over hierarchical porous ZSM-5 zeolite synthesized by a growth-inhibition strategy

    Science.gov (United States)

    Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu

    2018-03-01

    Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.

  14. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    El Fissi, Lamia, E-mail: lamia.elfissi@uclouvain.be [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium); Vandormael, Denis [SIRRIS Liege Science Park, 4102 Seraing (Belgium); Houssiau, Laurent [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Francis, Laurent A. [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium)

    2016-02-15

    Highlights: • TiO{sub 2}/COC (cyclic olefin copolymer) hybrid material for BioMEMS applications. • Thin layer of TiO{sub 2} was deposed on cyclic olefin copolymer using physical vapor deposition (PVD) technique. • The coating possess the highest level of adhesion with an excellent morphology of the hybrid material (TiO{sub 2}/COC). - Abstract: Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO{sub 2}/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO{sub 2} film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO{sub 2}/COC hybrid material in the visible domain reached 80%. The TiO{sub 2}/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO{sub 2}/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  15. Pd(II)-Catalyzed Olefination of Electron-Deficient Arenes Using 2,6-Dialkylpyridine Ligands

    Science.gov (United States)

    Zhang, Yang-Hui; Shi, Bing-Feng; Yu, Jin-Quan

    2009-01-01

    Pd(II)-catalyzed meta-olefination of highly electron deficient arenes is achieved through the use of a rationally designed mutually repulsive ligand. The combination of directed and non-directed C–H functionalization of arenes provides a versatile route for the synthesis of highly sought-after 1,2,4-trisubstituted arenes. PMID:19296661

  16. Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com; Ghorbani, M.

    2016-04-15

    Highlights: • Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles were synthesized by using microemulsion system. • The nanoparticles have uniform size of about 25 nm and spherical morphologies. • The prepared nanoparticles act as reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}. - Abstract: Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles (Q = cetyltrimethylammonium cation) were synthesized in water-in-oil (w/o) microemulsion consisted of water/cetyltrimethylammonium bromide/n-butanol/isooctane. Reaction of Na{sub 2}WO{sub 4}, Na{sub 2}HPO{sub 4} and hydrochloric acid within water containing nanoreactors of reverse micelles resulted in the preparation of Q{sub 3}PW{sub 12}O{sub 40} nanoparticles. The resultant nanoparticles were analyzed by physicochemical methods such as FT-IR spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, thermogravimetric analyses (TGA-DTA), scanning and transmission electron microscopy and atomic force microscopy which show nearly uniform spherical nanoparticles with size of about 15 nm. Finally, catalytic activity of the Q{sub 3}PW{sub 12}O{sub 40} nanoparticles was examined in the epoxidation of olefins with H{sub 2}O{sub 2}. The prepared nanoparticles acted as recoverable and reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}.

  17. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary.

    Science.gov (United States)

    Yao, Qi-Jun; Zhang, Shuo; Zhan, Bei-Bei; Shi, Bing-Feng

    2017-06-01

    Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C-H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A method for producing light olefines

    Energy Technology Data Exchange (ETDEWEB)

    Kavada, N.; Katsuno, K.

    1982-11-04

    A method is proposed for producing light olefins from MeOH in the presence of a catalyst (Kt), a crystalline silicate which includes silicon, an alkaline and or alkaline earth metal, titanium(4+) and phosphorus(5+), whose composition is described by the formula p(019 plus or minus 0.3)M2/mO with pZ4/nO2 with SiO2, where M is the alkaline or alkaline earth metal, Z = titanium(4+) or phosphorus(5+), m is the valency of the metal, n is the valency of Z and O is less than p is less than or equal to 0.1. A high selectivity of MeOH to C2 to C4 olefins is achieved in the presence of the catalyst. Silicon powder, silica gel, colloidal silicon, liquid glass or silicates of alkaline metals in a ratio of SiO2 to M2O of 1 to 5 is used as the source of the first component. Hydroxides or silicates of potassium and sodium (best sodium) and nitrates or chlorides of alkaline earth metals (best calcium) are used as the source of the second component. Water soluble compounds of titanium(4+) (best Ti(SO4)2, TiBr4 and TiI4) and phosphorus(5+) (best H3PO4, Na3PO4) are used as the source of the third component. Heterocyclic compounds (best morpholine, oxazolidine and their derivatives, which are taken in a molar ratio of crystallization agent to SiO2 of 0.01 to 50 (best at 0.1 to 10), are used as the crystallization agent (ArK). The catalyst is prepared through heating in an autoclave at a temperature of 80 to 300 degrees (best at 120 to 200 degrees) at atmospheric pressure for 10 to 50 hours with mixing of the mixture of the three components, water and the crystallization agent. The forming crystalline product is cooled, poured off, washed with water, dried for several hours at a temperature of at least 100 degrees and roasted in air for 2 to 48 hours at 300 to 700 degrees.

  19. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    Science.gov (United States)

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  20. Mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Baiburskii, V.L.; Khadzhiev, S.N.; Ovsyannikov, V.P.

    1992-05-10

    The authors attempted here to examine the mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid in terms of an initial stage of activation of isoparaffin. The version of formation of tert-alkyl cations and the role of the catalyst in this stage were analyzed. 10 refs., 1 fig., 1 tab.

  1. Protein farnesyltransferase isoprenoid substrate discrimination is dependent on isoprene double bonds and branched methyl groups.

    Science.gov (United States)

    Micali, E; Chehade, K A; Isaacs, R J; Andres, D A; Spielmann, H P

    2001-10-16

    Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.

  2. Mesoporous catalysts for the synthesis of clean diesel fuels by oligomerisation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Catani, Roberto; Rossini, Stefano [Snamprogetti SpA, Via F. Maritano 26, 20092 , MI S. Donato Milanese (Italy); Mandreoli, Monica; Vaccari, Angelo [Dipartimento di Chimica Industriale e dei Materiali, Universita di Bologna, INSTM-UdR di Bologna, Viale del Risorgimento 4, 40136 Bologna (Italy)

    2002-07-03

    Si/Al MCM-41 type mesoporous compounds, as such or containing small amounts of metal (Ni, Rh or Pt), were investigated in the synthesis of clean diesel fuels by oligomerisation of orphan olefin streams. Very good catalytic performances were obtained with C{sub 4} and C{sub 5} olefins, while almost no conversion occurred with ethylene. The activity increased with increasing reaction pressure, temperature and contact time, while high Si/Al ratios had a negative effect on both activity and catalyst stability. The presence of small amount of metal inside the mesoporous structure did not significantly modify the catalytic activity, although specific effects were detected for each element. Since the evaluation of the cetane number by H-NMR gave rise to values about 20% lower than the actual value, a new and more complex algorithm is proposed to calculate the cetane number. Using the proposed algorithm, a good correlation index was found between calculated and motor values for pure compounds. Further study is necessary to move from pure compounds to experimental mixtures.

  3. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C2-symmetric building block: a strategy for the synthesis of decanolide natural products

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2013-11-01

    Full Text Available Starting from the conveniently available ex-chiral pool building block (R,R-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i a site-selective cross metathesis, (ii a highly diastereoselective extended tethered RCM to furnish a (Z,E-configured dienyl carboxylic acid and (iii a Ru–lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  4. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C 2-symmetric building block: a strategy for the synthesis of decanolide natural products.

    Science.gov (United States)

    Schmidt, Bernd; Kunz, Oliver

    2013-01-01

    Starting from the conveniently available ex-chiral pool building block (R,R)-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i) a site-selective cross metathesis, (ii) a highly diastereoselective extended tethered RCM to furnish a (Z,E)-configured dienyl carboxylic acid and (iii) a Ru-lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  5. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs

    NARCIS (Netherlands)

    Ren, T.; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2008-01-01

    While most olefins (e.g., ethylene and propylene) are currently produced through steam cracking routes, they can also possibly be produced from natural gas (i.e., methane) via methanol and oxidative coupling routes. We reviewed recent data in the literature and then compared the energy use, CO2

  6. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling.

    Science.gov (United States)

    Wei, Wei; Dai, Xi-Jie; Wang, Haining; Li, Chenchen; Yang, Xiaobo; Li, Chao-Jun

    2017-12-01

    Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KO t Bu and bidentate phosphine dmpe is vital to this transformation.

  7. Olefins and chemical regulation in Europe: REACH.

    Science.gov (United States)

    Penman, Mike; Banton, Marcy; Erler, Steffen; Moore, Nigel; Semmler, Klaus

    2015-11-05

    REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the European Union's chemical regulation for the management of risk to human health and the environment (European Chemicals Agency, 2006). This regulation entered into force in June 2007 and required manufacturers and importers to register substances produced in annual quantities of 1000 tonnes or more by December 2010, with further deadlines for lower tonnages in 2013 and 2018. Depending on the type of registration, required information included the substance's identification, the hazards of the substance, the potential exposure arising from the manufacture or import, the identified uses of the substance, and the operational conditions and risk management measures applied or recommended to downstream users. Among the content developed to support this information were Derived No-Effect Levels or Derived Minimal Effect Levels (DNELs/DMELs) for human health hazard assessment, Predicted No Effect Concentrations (PNECs) for environmental hazard assessment, and exposure scenarios for exposure and risk assessment. Once registered, substances may undergo evaluation by the European Chemicals Agency (ECHA) or Member State authorities and be subject to requests for additional information or testing as well as additional risk reduction measures. To manage the REACH registration and related activities for the European olefins and aromatics industry, the Lower Olefins and Aromatics REACH Consortium was formed in 2008 with administrative and technical support provided by Penman Consulting. A total of 135 substances are managed by this group including 26 individual chemical registrations (e.g. benzene, 1,3-butadiene) and 13 categories consisting of 5-26 substances. This presentation will describe the content of selected registrations prepared for 2010 in addition to the significant post-2010 activities. Beyond REACH, content of the registrations may also be relevant to other European activities, for

  8. The Cost of Immediacy for Corporate Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Marco, Rossi

    Liquidity provision in the corporate bond market has become significantly more expensive after the 2008 credit crisis. Using index exclusions as a natural experiment during which uninformed index trackers request immediacy, we find that the price of immediacy has doubled for short-term investment...

  9. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.

  10. Radiation-chemical alkylation of olefines with adamantane

    International Nuclear Information System (INIS)

    Podkhalyuzin, A.T.; Vikulin, V.V.; Morozov, V.A.; Nazarova, M.P.; Vereshchinskii, I.V.

    1977-01-01

    Radiation-chemical alkylation of C 2 to C 4 olefines with adamantane was studied in gas phase at temperatures 270 to 430 0 C. The main reaction product is monoalkyladamantane. The reaction proceeds by a free radical chain mechanism. The effective activation energy is of the order of 8 to 10 kcal/mole. Thermal alkylation was carried out for comparison and the contribution of the thermal component to the radiation-thermal process was estimated. Liquid phase alkylation of hexafluoropropylene with adamantane was studied in the presence of solvents. Under various conditions mono- and di-substituted adamantanes are produced containing fluorine in end groups. These compounds were converted to corresponding fluoroalkenyladamantanes by dehydrofluorination. The kinetic parameters were calculated and physical-chemical data concerning some of the resulting products were determined. (author)

  11. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    Science.gov (United States)

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-26

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bonding temperature dependence of GaInAsP/InP laser diode grown on hydrophilically directly bonded InP/Si substrate

    Science.gov (United States)

    Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko

    2018-02-01

    The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.

  13. Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.; Ramasamy, Karthikeyan K.; Kovarik, Libor; Bowden, Mark E.; Onfroy, Thomas; Dagle, Robert A.

    2016-04-01

    In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between

  14. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12...

  15. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area

    Science.gov (United States)

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-03-01

    Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.

  16. Constructing Multiply Substituted Arenes Using Sequential Pd(II)-Catalyzed C–H Olefination**

    Science.gov (United States)

    Engle, Keary M.; Wang, Dong-Hui; Yu, Jin-Quan

    2011-01-01

    Complementary catalytic systems have been developed in which the reactivity/selectivity balance in Pd(II)-catalyzed ortho-C–H olefination can be modulated through ligand control. This allows for sequential C–H functionalization for the rapid preparation of 1,2,3-trisubstituted arenes. Additionally, a rare example of iterative C–H activation, in which a newly installed functional group directs subsequent C–H activation has been demonstrated. PMID:20632344

  17. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  18. Ligand-Enabled γ-C–H Olefination and Carbonylation: Construction of β-Quaternary Carbon Centers

    Science.gov (United States)

    2015-01-01

    Monoselective γ-C–H olefination and carbonylation of aliphatic acids has been accomplished by using a combination of a quinoline-based ligand and a weakly coordinating amide directing group. The reaction provides a new route for constructing richly functionalized all-carbon quaternary carbon centers at the β-position of aliphatic acids. PMID:24666182

  19. STIR: Redox-Switchable Olefin Polymerization Catalysis: Electronically Tunable Ligands for Controlled Polymer Synthesis

    Science.gov (United States)

    2013-03-28

    production of polyethylene (PE) and polypropylene (PP) topped 53 billion pounds in 2011.1 This extreme demand has ensured that olefin polymerization...is an ideal starting monomer as it is a liquid at room temperature facilitating rapid screening and data collection without the need for cumbersome...elastomers, binders, thermoplastic elastomers, rheology modifiers, permeation selective membranes, and high strength, light-weight structural materials

  20. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-...

  1. H-ZSM-5 Zeolite Model Crystals: Structure-Diffusion-Activity Relationship in Methanol-to-Olefins Catalysis.

    Czech Academy of Sciences Publication Activity Database

    Losch, P.; Pinar, A.B.; Willinger, M.G.; Soukup, Karel; Chavan, S.; Vincent, B.; Pale, P.; Louis, B.

    2017-01-01

    Roč. 345, JAN 1 (2017), s. 11-23 ISSN 0021-9517 Grant - others:NRFL(LU) 5898454 Institutional support: RVO:67985858 Keywords : zeolite * methanol-to-olefins (MTO) * model catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 6.844, year: 2016

  2. Ru-Based Complexes with Quaternary Ammonium Tags Immobilized on Mesoporous Silica as Olefin Metathesis Catalysts

    Czech Academy of Sciences Publication Activity Database

    Pastva, Jakub; Skowerski, K.; Czarnocki, S. J.; Žilková, Naděžda; Čejka, Jiří; Bastl, Zdeněk; Balcar, Hynek

    2014-01-01

    Roč. 4, č. 9 (2014), s. 3227-3236 ISSN 2155-5435 R&D Projects: GA ČR(CZ) GAP106/12/0189 Institutional support: RVO:61388955 Keywords : olefin metathesis * heterogeneous catalysts * mesoporous molecular sieves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.312, year: 2014

  3. H-ZSM-5 Zeolite Model Crystals: Structure-Diffusion-Activity Relationship in Methanol-to-Olefins Catalysis.

    Czech Academy of Sciences Publication Activity Database

    Losch, P.; Pinar, A.B.; Willinger, M.G.; Soukup, Karel; Chavan, S.; Vincent, B.; Pale, P.; Louis, B.

    2017-01-01

    Roč. 345, JAN 1 (2017), s. 11-23 ISSN 0021-9517 Grant - others:NRFL(LU) 5898454 Institutional support: RVO:67985858 Keywords : zeolite * methanol -to-olefins (MTO) * model catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 6.844, year: 2016

  4. Electronic structure and bonding in the ternary silicide YNiSi3

    International Nuclear Information System (INIS)

    Sung, Gi Hong; Kang, Dae Bok

    2003-01-01

    An analysis of the electronic structure and bonding in the ternary silicide YNiSi 3 is made, using extended Hueckel tight-binding calculations. The YNiSi 3 structure consists of Ni-capped Si 2 dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of (Y 3+ )(Ni 0 )(Si 3 ) 3- for YNiSi 3 constitutes a good starting point to describe its electronic structure. Si atoms receive electrons form the most electropositive Y in YNiSi 3 , and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the π orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi 3 can be rewritten as (Y 3+ )(Ni 2- )(Si 2- )(Si-Si) + , making the Si 2 layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si 2 double layer possesses single bonds within a dimer with a partial double bond character. Stronger Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si 2 π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis

  5. Hydrogen yield from polyethylene by radiolysis and the application to dosimeter

    International Nuclear Information System (INIS)

    Seguchi, T.

    2006-01-01

    The mechanisms and kinetics of hydrogen yield from polyethylene by γ-rays radiolysis were studied. As well known the major product from poly-olefins such as polyethylene is hydrogen and the yield tends to saturate with increase of dose. To understanding the saturation phenomena, the hydrogen yield from high molecular linear polyethylene was investigated quantitatively and proposed a mechanism of the saturation. The hydrogen yield from ultra-high molecular weight polyethylene showed the excellent reproducibility, therefore it is expected to be a high quality dosimeter. Materials were ultra-high molecular weight polyethylene (UHM-PE) and low-density polyethylene (LD-PE). UHM-PE is a linear chain and LD-PE contains branches such as ethyl- and butyl-groups in main chain. As the references, ethylene propylene copolymer rubber (EPR) and poly-isoprene (PIS) were examined. EPR has methyl-branches, and PIS contains double bonds in the main chain. The pure grade sample (less than 1g) was put in a glass tube and sealed off after evacuation, then irradiated by 60 Co γ-rays at a constant temperature. The dose was changed from 1 kGy to several MGy with a dose rate of 5 kGy/h. The accumulated gas in a glass tube was analyzed by gas chromatography. Mechanism of hydrogen evolution: The main gas was hydrogen for all polymers, and the miner gases were CH 4 , C 2 H 6 , C 3 H 8 , C 2 H 4 etc. H 2 content is 99.9% for UHM-PE, 99.1% for LD-PE, 98.8% for EPR, and 95% for PIS. The miner hydrocarbon gases are evolved by the C-C scission at branched chains or chain end. Therefore, the hydrocarbon gas from UHM-PE of linear long chain is negligibly small. For PE and EPR, H 2 yield increases linearly with dose up to 30 kGy, and tends to level off with increase of dose. G-value (H 2 ) is around 4-5 at linier line dose range for PE and EPR, and depends mainly on the crystallinity, that is, H 2 evolution is bigger in amorphous than crystalline part. The morphology of UHM-PE is scarcely changed

  6. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  7. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.

  8. On the nature of acidic centers in the deep oxidation of olefins over CdMoO/sub 4/: temperature-programmed desorption/Mass spectrometer investigation

    Energy Technology Data Exchange (ETDEWEB)

    Forzatti, P. (Politec. Milano); Kotzev, N.; Gencheva, L.; Pasquon, I.; Shopov, D.; Villa, P.L.

    1980-10-01

    Propylene and 1-butene were adsorbed at room temperature on cadmium molybdate, a poorly selective catalyst for olefin oxidation Temperature-programed desorption occurred at low temperature (145/sup 0/C for propylene, 100/sup 0/C for butene) from a reversibly adsorbed species on A sites, and at high temperature (400/sup 0/C for both olefins) from B sites in dissociated form. The A-sites were apparently vacancies or surface defects, which were destroyed when the cata

  9. Bond rearrangement caused by sudden single and multiple ionization of water molecules

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Sayler, A. Max; Leonard, M.; Maseberg, J.W.; Hathiramani, D.; Wells, E.; Smith, M.A.; Xia, Jiangfan; Wang, Pengqian; Carnes, K.D.; Esry, B.D.

    2005-01-01

    Bond rearrangement, namely the dissociation of water into H 2 + +O q+ following ionization by fast proton and highly charged ion impact, was investigated. Single ionization by fast proton impact exhibits a strong isotopic effect, the dissociation of H 2 O + ->H 2 + +O being about twice as likely as D 2 O + ->D 2 + +O, with HDO + ->HD + +O in between. This suggests that the bond rearrangement does not happen during the slow dissociation, but rather during the very fast ionization, and thus H 2 + should also be produced when the water molecule is multiply ionized. We observed that the H 2 + +O + and H 2 + +O 2+ production in 1MeV/amu F 7+ +H 2 O collisions are 0.209+/-0.006% and 0.0665+/-0.003%, respectively, of the main double-ionization dissociation product, H 2 O 2+ ->H + +OH + . This ratio is similar to the triple to double ionization ratio in similar collisions with atomic targets thus suggesting that the bond-rearrangement fraction out of each ionization level is approximately constant. Similar dissociation channels in the heavier water isotopes, which are expected to be smaller, are under study. Finally, the fragmentation of HDO exhibits very strong isotopic preference for breaking the OH bond over the OD bond

  10. Cascade olefin isomerization/intramolecular Diels-Alder reaction catalyzed by N-heterocyclic carbenes.

    Science.gov (United States)

    Kowalczyk, Marcin; Lupton, David W

    2014-05-19

    The addition of an N-heterocyclic carbene to the carbonyl group of an α,β,γ,δ-unsaturated enol ester affords a hemiacetal azolium intermediate that enables a cascade olefin isomerization/Diels-Alder reaction, for which mechanistic studies implicate Lewis base catalysis. Preliminary studies into the utility of the products have been undertaken with reductive and oxidative cleavage, giving materials for potential use in complex-target synthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Local vibrational modes of the formic acid dimer - the strength of the double hydrogen bond

    Science.gov (United States)

    Kalescky, R.; Kraka, E.; Cremer, D.

    2013-07-01

    The 24 normal and 24 local vibrational modes of the formic acid dimer formed by two trans formic acid monomers to a ring (TT1) are analysed utilising preferentially experimental frequencies, but also CCSD(T)/CBS and ωB97X-D harmonic vibrational frequencies. The local hydrogen bond (HB) stretching frequencies are at 676 cm-1 and by this 482 and 412 cm-1 higher compared to the measured symmetric and asymmetric HB stretching frequencies at 264 and 194 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to the topology of dimer TT1, mass coupling, and avoided crossings involving the HṡṡṡOC bending modes. The HB local mode stretching force constant is related to the strength of the HB whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the HB strength. The HB in TT1 is stabilised by electron delocalisation in the O=C-O units fostered by forming a ring via double HBs. This implies that the CO apart from the OH local stretching frequencies reflect the strength of the HB via their red or blue shifts relative to their corresponding values in trans formic acid.

  12. A new approach to ferrocene derived alkenes via copper-catalyzed olefination.

    Science.gov (United States)

    Muzalevskiy, Vasily M; Shastin, Aleksei V; Demidovich, Alexandra D; Shikhaliev, Namiq G; Magerramov, Abel M; Khrustalev, Victor N; Rakhimov, Rustem D; Vatsadze, Sergey Z; Nenajdenko, Valentine G

    2015-01-01

    A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  13. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  14. Isolation and characterization of a uranium(VI)-nitride triple bond

    Science.gov (United States)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  15. Amine-Controlled Divergent Reaction: Iminolactonization and Olefination in the Presence of a Cu(I) Catalyst.

    Science.gov (United States)

    Nishikata, Takashi; Itonaga, Kohei; Yamaguchi, Norihiro; Sumimoto, Michinori

    2017-05-19

    α-Bromoamides and styrenes underwent iminolactonization reactions (carbooxygenation), in which simultaneous C-C and C-O formation occurred in the presence of a copper catalyst with triethylamine as the base. Conversely, olefination reactions occurred in the presence of a Cu catalyst with piperidine as the base. The selectivities in those reactions were very high.

  16. Synthesis of complex intermediates for the study of a dehydratase from borrelidin biosynthesis

    Directory of Open Access Journals (Sweden)

    Frank Hahn

    2014-03-01

    Full Text Available Herein, we describe the syntheses of a complex biosynthesis-intermediate analogue of the potent antitumor polyketide borrelidin and of reference molecules to determine the stereoselectivity of the dehydratase of borrelidin polyketide synthase module 3. The target molecules were obtained from a common precursor aldehyde in the form of N-acetylcysteamine (SNAc thioesters and methyl esters in 13 to 15 steps. Key steps for the assembly of the polyketide backbone of the dehydratase substrate analogue were a Yamamoto asymmetric carbocyclisation and a Sakurai allylation as well as an anti-selective aldol reaction. Reference compounds representing the E- and Z-configured double bond isomers as potential products of the dehydratase reaction were obtained from a common precursor aldehyde by Wittig olefination and Still–Gennari olefination. The final deprotection of TBS ethers and methyl esters was performed under mildly acidic conditions followed by pig liver esterase-mediated chemoselective hydrolysis. These conditions are compatible with the presence of a coenzyme A or a SNAc thioester, suggesting that they are generally applicable to the synthesis of complex polyketide-derived thioesters suited for biosynthesis studies.

  17. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin

    2017-01-05

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  18. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin; Hamieh, Ali Imad Ali; Barman, Samir; Maity, Niladri; Samantaray, Manoja; Ould-Chikh, Samy; Abou-Hamad, Edy; Falivene, Laura; D’ Elia, Valerio; Rothenberger, Alexander; Llorens, Isabelle; Hazemann, Jean-Louis; Basset, Jean-Marie

    2017-01-01

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  19. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    International Nuclear Information System (INIS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-01-01

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique

  20. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  1. Nonthermal plasma reactors for the production of light hydrocarbon olefins from heavy oil

    Directory of Open Access Journals (Sweden)

    G. Prieto

    2003-03-01

    Full Text Available During the last decade, nonthermal plasma technology was applied in many different fields, focusing attention on the destruction of harmful compounds in the air. This paper deals with nonthermal plasma reactors for the conversion of heavy oil into light hydrocarbon olefins, to be employed as gasoline components or to be added in small amounts for the catalytic reduction of nitrogen oxide compounds in the treatment of exhaust gas at power plants. For the process, the plate-plate nonthermal plasma reactor driven by AC high voltage was selected. The reactor was modeled as a function of parameter characteristics, using the methodology provided by the statistical experimental design. The parameters studied were gap distance between electrodes, carrier gas flow and applied power. Results indicate that the reactions occurring in the process of heavy oil conversion have an important selective behavior. The products obtained were C1-C4 hydrocarbons with ethylene as the main compound. Operating the parameters of the reactor within the established operative window of the system and close to the optimum conditions, efficiencies as high as 70 (mul/joule were obtained. These values validate the process as an in-situ method to produce light olefins for the treatment of nitrogen oxides in the exhaust gas from diesel engines.

  2. Synthesis of 2-Alkenylquinoline by Reductive Olefination of Quinoline N-Oxide under Metal-Free Conditions.

    Science.gov (United States)

    Xia, Hong; Liu, Yuanhong; Zhao, Peng; Gou, Shaohua; Wang, Jun

    2016-04-15

    Synthesis of 2-alkenylquinoline by reductive olefination of quinoline N-oxide under metal-free conditions is disclosed. Practically, the reaction could be performed with quinoline as starting material via a one-pot, two-step process. A possible mechanism is proposed that involves a sequential 1,3-dipolar cycloaddition and acid-assisted ring opening followed by a dehydration process.

  3. Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, Ian P; Webb, David J; Kalli, Kyriacos

    2011-01-01

    mode PCF with a core diameter of 6μm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths...

  4. Modified Julia Olefination on Anhydrides: Extension and Limitations. Application to the Synthesis of Maculalactone B.

    Science.gov (United States)

    Dussart, Nicolas; Trinh, Huu Vinh; Gueyrard, David

    2016-10-07

    The preparation of exo-enol esters from cyclic anhydrides is reported using a modified Julia olefination. The reaction is highly stereoselective. The Smiles rearrangement can be performed in a one-pot process, giving a straightforward access to exo-enol lactones. Furthermore, the reaction was extended to semistabilized sulfones, and this methodology was applied to the synthesis of maculalactone B.

  5. Radiation hardening lacquer binding agent based on a polyester resin with at least 3.5 double links pr. 1000 molecular weight units

    International Nuclear Information System (INIS)

    Crimlisk, D.J.; Wright, A.; Groves, T.E.

    1976-01-01

    The binding agent is suitable for hardening by electrons with an energy of between 100,000 and 500,000eV. It consists mainly of a solution of a polyester resin with at least 3.5 double links per 1000 mol, in an olefine-unsaturated monomer. The molecular weight of the polyester is between 800 and 1100 and the ratio of the number of double links in the monomer to that in the resin (degree of unsaturation) is in the range 0.75-2.0, or more specifically, between 1 and 1.5. Cellulose acetate/butyrate (CAB) and/or a butylated melamine/formaldehyde resin may be added to improve the surface properties. Likewise from 0.1 to 0.5% polyethylene wax may be added to give a better surface finish and hardness. (JIW)

  6. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    Science.gov (United States)

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  7. Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction

    NARCIS (Netherlands)

    Wu, L.; Hensen, E.J.M.

    2014-01-01

    Several approaches to improve the catalytic performance of SSZ-13 and SAPO-34 for application as acid catalysts in the methanol-to-olefins (MTO) reaction were explored. Silylation of mesoporous SSZ-13 with a Si/Al ratio of 20 zeolite resulted in increased lifetime in the MTO reaction. Lowering the

  8. Oxidative Heck Reaction as a Tool for Para-selective Olefination of Aniline: A DFT Supported Mechanism.

    Science.gov (United States)

    Moghaddam, Firouz Matloubi; Pourkaveh, Raheleh; Karimi, Ashkan

    2017-10-06

    This study describes the first para-selective palladium-catalyzed alkenylation of tertiary amines. This regioselective C-H activation was conducted without any chelation moieties. A series of olefins were reacted under mild reaction conditions at 60 °C, and the corresponding products were obtained in good yields with high selectivity.

  9. Palladium-catalyzed C-H olefination of uracils and caffeines using molecular oxygen as the sole oxidant.

    Science.gov (United States)

    Zhang, Xinyu; Su, Lv; Qiu, Lin; Fan, Zhenwei; Zhang, Xiaofeng; Lin, Shen; Huang, Qiufeng

    2017-04-18

    The palladium-catalyzed oxidative C-H olefination of uracils or caffeines with alkenes using an atmospheric pressure of molecular oxygen as the sole oxidant has been disclosed. This novel strategy offers an efficient and environmentally friendly method to biologically important C5-alkene uracil derivatives or C8-alkene caffeine derivatives.

  10. Bio-inspired iron and manganese complexes derived from mixed N,O ligands for the oxidation of olefins

    NARCIS (Netherlands)

    Moelands, M.A.H.

    2014-01-01

    This Thesis describes the synthesis and structural analysis of bio-inspired iron and manganese complexes used for the catalytic oxidation of olefin substrates. The development of catalytic systems for oxidation chemistry that are based on first row transition metals and that apply a green oxidant

  11. Palladium-Catalyzed C-H Functionalization Using Guanidine as a Directing Group: Ortho Arylation and Olefination of Arylguanidines

    Science.gov (United States)

    Shao, Jiaan; Chen, Wenteng; Giulianotti, Marc A.; Houghten, Richard A.; Yu, Yongping

    2012-01-01

    Palladium-catalyzed C-H functionalization using guanidine as the directing group was achieved under mild reaction conditions. Various guanidine derivatives were produced in moderate to good yields by using simple unactivated arenes or ethyl acrylate as the source of arylation or olefination respectively. PMID:23095022

  12. Extremely efficient catalysis of carbon-carbon bond formation using "click" dendrimer-stabilized palladium nanoparticles.

    Science.gov (United States)

    Astruc, Didier; Ornelas, Cátia; Diallo, Abdou K; Ruiz, Jaime

    2010-07-20

    This article is an account of the work carried out in the authors' laboratory illustrating the usefulness of dendrimer design for nanoparticle palladium catalysis. The "click" synthesis of dendrimers constructed generation by generation by 1-->3 C connectivity, introduces 1,2,3-triazolyl ligands insides the dendrimers at each generation. Complexation of the ligands by Pd(II) followed by reduction to Pd(0) forms dendrimer-stabilized Pd nanoparticles (PdNPs) that are extremely reactive in the catalysis of olefin hydrogenation and C-C bond coupling reactions. The stabilization can be outer-dendritic for the small zeroth-generation dendrimer or intra-dendritic for the larger first- and second-generation dendrimers. The example of the Miyaura-Suzuki reaction that can be catalyzed by down to 1 ppm of PdNPs with a "homeopathic" mechanism (the less, the better) is illustrated here, including catalysis in aqueous solvents.

  13. Dual Ligand-Enabled Nondirected C-H Olefination of Arenes.

    Science.gov (United States)

    Chen, Hao; Wedi, Philipp; Meyer, Tim; Tavakoli, Ghazal; van Gemmeren, Manuel

    2018-02-23

    The application of the Pd-catalyzed oxidative C-H olefination of arenes, also known as the Fujiwara-Moritani reaction, has traditionally been limited by the requirement for directing groups on the substrate or the need to use the arene in large excess, typically as a (co)solvent. Herein the development of a catalytic system is described that, through the combined action of two complementary ligands, makes it possible to use directing-group-free arenes as limiting reagents for the first time. The reactions proceed under a combination of both steric and electronic control and enable the application of this powerful reaction to valuable arenes, which cannot be utilized in excess. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The FCC process as a producer of light olefins

    International Nuclear Information System (INIS)

    Yung, K.Y.; Yanik, S.; O'Connor, P.; Pouwels, C.

    1992-01-01

    To reduce emissions from the gasoline engine, aromatics content and vapor pressure of the motor gasoline pool will be reduced and a minimum amount of oxygen will be mandated. This reformulation will limit the application of high octane components like benzene, toluene and butanes and will require the use of oxygenates. To compensate for the loss in octane, the use of alkylate and, of course also oxygenates will grow. The Fluid Catalytic Cracking Unit is, as producer of (olefinic) propanes, butanes and pentanes, an important feedstock producer for alkylate and oxygenate producing process. Hence, process adjustments and FCC catalyst formations to increase the yield of above desirable light products are of prime importance and will be dealt with in this paper

  15. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  16. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  17. From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks

    Directory of Open Access Journals (Sweden)

    Matthew R. Farrow

    2014-05-01

    Full Text Available A bottom up approach is employed in the design of novel materials: first, gas-phase “double bubble” clusters are constructed from high symmetry, Th, 24 and 96 atom, single bubbles of ZnO and GaN. These are used to construct bulk frameworks. Upon geometry optimization—minimisation of energies and forces computed using density functional theory—the symmetry of the double bubble clusters is reduced to either C1 or C2, and the average bond lengths for the outer bubbles are 1.9 Å, whereas the average bonds for the inner bubble are larger for ZnO than for GaN; 2.0 Å and 1.9 Å, respectively. A careful analysis of the bond distributions reveals that the inter-bubble bonds are bi-modal, and that there is a greater distortion for ZnO. Similar bond distributions are found for the corresponding frameworks. The distortion of the ZnO double bubble is found to be related to the increased flexibility of the outer bubble when composed of ZnO rather than GaN, which is reflected in their bulk moduli. The energetics suggest that (ZnO12@(GaN48 is more stable both in gas phase and bulk frameworks than (ZnO12@(ZnO48 and (GaN12@(GaN48. Formation enthalpies are similar to those found for carbon fullerenes.

  18. Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode

    NARCIS (Netherlands)

    Illa, Xavi; de Malsche, Wim; Gardeniers, Johannes G.E.; Desmet, Gert; Romano-Rodriguez, Albert

    2010-01-01

    Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have

  19. A selective C-H insertion/olefination protocol for the synthesis of α-methylene-γ-butyrolactone natural products.

    Science.gov (United States)

    Lloyd, Matthew G; D'Acunto, Mariantonietta; Taylor, Richard J K; Unsworth, William P

    2016-02-07

    A regio- and stereoselective one-pot C-H insertion/olefination protocol has been developed for the late stage installation of α-methylene-γ-butyrolactones into conformationally restricted cyclohexanol-derivatives. The method has been successfully applied in the total synthesis of eudesmanolide natural product frameworks, including α-cyclocostunolide.

  20. CAD/CAM for Double Woven Fabric

    Directory of Open Access Journals (Sweden)

    Moussa Alali

    2014-02-01

    Full Text Available To bond the two layers in double fabrics, various types of stitching can be distinguished such as self-stitching, double stitching, center warp stitching, center weft stitching, and so on. In this article, a mathematic model based on a software program has been developed to automatically generate a double fabric stitched by additional warp called center warp. Each layer has been represented in a 2D binary matrix, and a new matrix called warps order matrix has been defined to demonstrate the modality of position of the center warps in relating to the top and bottom fabrics’ warps. After insertion of all warps in the extended weave matrix, the lifter conditions has been discussed and the stitching points have been determined.

  1. Olefin Metathesis with Ru-Based Catalysts Exchanging the Typical N-Heterocyclic Carbenes by a Phosphine–Phosphonium Ylide

    Directory of Open Access Journals (Sweden)

    Laia Arnedo

    2017-03-01

    Full Text Available Density functional theory (DFT calculations have been used to describe the first turnover of an olefin metathesis reaction calling for a new in silico family of homogenous Ru-based catalysts bearing a phosphine–phosphonium ylide ligand, with ethylene as a substrate. Equal to conventional Ru-based catalysts bearing an N-heterocyclic carbene (NHC ligand, the activation of these congeners occurs through a dissociative mechanism, with a more exothermic first phosphine dissociation step. In spite of a stronger electron-donating ability of a phosphonium ylide C-ligand with respect to a diaminocarbene analogue, upper energy barriers were calculated to be on average ca. 5 kcal/mol higher than those of Ru–NHC standards. Overall, the study also highlights advantages of bidentate ligands over classical monodentate NHC and phosphine ligands, with a particular preference for the cis attack of the olefin. The new generation of catalysts is constituted by cationic complexes potentially soluble in water, to be compared with the typical neutral Ru–NHC ones.

  2. Prenylcoumarins in One or Two Steps by a Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination/Cyclization Sequence.

    Science.gov (United States)

    Schultze, Christiane; Schmidt, Bernd

    2018-05-04

    The one-pot synthesis of 8-prenylcoumarins from 1,1-dimethylallylated salicylaldehydes and the stabilized ylide [(ethoxycarbonyl)methylene]triphenylphosphorane under microwave conditions was found to have a limited scope. The sequence suffers from a difficult and sometimes low-yielding synthesis of the precursors and from a competing deprenylation upon microwave irradiation. This side reaction occurs in particular with electron rich arenes with two or more alkoxy groups at adjacent positions, a prominent substitution pattern in naturally occurring 8-prenylcoumarins. Both limitations of this one-step sequence were overcome by a two-step synthesis consisting of a microwave-promoted tandem allyl ether Claisen rearrangement/Wittig olefination and a subsequent olefin cross metathesis with 2-methyl-2-butene. The cross metathesis step proceeds with a high selectivity and yields exclusively the desired prenyl, rather than the alternative crotyl substituent. Several naturally occurring 8-prenylcoumarins that were previously inaccessible have been synthesized in good overall yields along this route.

  3. A new approach to ferrocene derived alkenes via copper-catalyzed olefination

    Directory of Open Access Journals (Sweden)

    Vasily M. Muzalevskiy

    2015-11-01

    Full Text Available A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  4. Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 1/4 olefins by tert. -butyl hydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmann, J; Hoeft, E; Boeden, H F; Dilcher, H

    1979-09-01

    Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 14/ olefins by tert.-butyl hydroperoxide (TBHP) avoids large product losses to side reactions, associated with the use of homogeneous catalysts, such as Mo(CO)/sub 6/. With an unsupported MoO/sub 3/ catalyst, 48% TBHP conversion was achieved after one hour (vs. 24% after two hours for Mo(CO)/sub 6/) in 1-octene epoxidation at 90/sup 0/C and 2:1:3 octene/TBHP/toluene (solvent) molar ratio. The use of silica-supported catalysts, such as Bi/sub 9/PMo/sub 12/O/sub 52//30% SiO/sub 2/ (ACN, an industrial catalyst for acrylonitrile), MoO/sub 3//30% SiO/sub 2/ (D-1), 3MoO/sub 3/-Sb/sub 2/O/sub 5//50% SiO/sub 2/ (D-2), or 2MoO/sub 3/-As/sub 2/O/sub 3//50% SiO/sub 2/ (D-3) increased the conversion to 68, 67, 70, and 73%, respectively, with up to 95-99% selectivities for the epoxide. Under optimum conditions of 3:1 olefin/TBHP, 110/sup 0/C, and 2-4 g/l. catalyst, TBHP conversions in epoxidation of 1-tetradecene in a batch reactor over ACN, D-2, and D-3 after two hours were 94, 88, and 91%, respectively, but they decreased to 52, 78, and 79%, respectively, after five two-hour operating cycles. In epoxidation of 1-decene or a mixture of decene isomers (a model for the industrial olefin mixtures obtained by paraffin dehydrogenation via the Parex process) carried out in a continuous flow reactor over the D-3 catalyst at 90/sup 0/-110/sup 0/C, stable catalytic activities with TBHP conversions of approx. 90% and 90-96% selectivities for epoxides were observed for about 900 hr.

  5. Three-body calculation of Be double-hypernuclei

    Indian Academy of Sciences (India)

    Energy levels and bond energy of the double- hypernucleus are calculated by considering two- and three-cluster interactions. Interactions between constituent particles are contact interactions for reproducing the low binding energy of nuclei. The effective action is constructed to involve three-body forces. In this paper ...

  6. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    Science.gov (United States)

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  7. An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.

    Science.gov (United States)

    Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias

    2012-08-16

    An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.

    Science.gov (United States)

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu

    2011-01-04

    Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.

  9. Effects of the Linking of Cyclopentadienyl and Ketimide Ligands in Titanium Half-sandwich Olefin Polymerization Catalysts

    Czech Academy of Sciences Publication Activity Database

    Varga, Vojtěch; Večeřa, M.; Gyepes, R.; Pinkas, Jiří; Horáček, Michal; Merna, J.; Lamač, Martin

    2017-01-01

    Roč. 9, č. 16 (2017), s. 3160-3172 ISSN 1867-3880 R&D Projects: GA ČR(CZ) GA14-08531S; GA ČR(CZ) GA17-13778S Institutional support: RVO:61388955 Keywords : ketimide ligands * olefin polymerization catalysts * cyclopentadienyl Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.803, year: 2016

  10. The role of alkenes produced during hydrous pyrolysis of a shale

    Energy Technology Data Exchange (ETDEWEB)

    Leif, R.N.; Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States). College of Oceanic and Atmospheric Sciences

    2000-07-01

    Hydrous pyrolysis experiments conducted on Messel shale with D{sub 2}O demonstrated that a large amount of deuterium becomes incorporated into the hydrocarbons generated from the shale kerogen. In order to understand the pathway of deuterium (and protium) exchange and the role of water during hydrous pyrolysis, we conducted a series of experiments using aliphatic compounds (1,13-tetradecadiene, 1-hexadecene, eicosane and dotriacontane) as probe molecules. These compounds were pyrolyzed in D{sub 2}O, shale/D{sub 2}O, and shale/H{sub 2}O and the products analyzed by GC-MS. In the absence of powdered shale, the incorporation of deuterium from D{sub 2}O occurred only in olefinic compounds via double bond isomerization. The presence of shale accelerated deuterium incorporation into the olefins and resulted in a minor amount of deuterium incorporation in the saturated n-alkanes. The pattern of deuterium substitution of the diene closely matched the deuterium distribution observed in the n-alkanes generated from the shale kerogen in the D{sub 2}O/shale pyrolyses. The presence of the shale also resulted in reduction (hydrogenation) of olefins to saturated n-alkanes with concomitant oxidation of olefins to ketones. These results show that under hydrous pyrolysis conditions, kerogen breakdown generates n-alkanes and terminal n-alkenes by free radical hydrocarbon cracking of the aliphatic kerogen structure. The terminal n-alkenes rapidly isomerize to internal alkenes via acid-catalyzed isomerization under hydrothermal conditions, a significant pathway of deuterium (and protium) exchange between water and the hydrocarbons. These n-alkenes simultaneously undergo reduction to n-alkanes (major) or oxidation to ketones (minor) via alcohols formed by the hydration of the alkenes. (Author)

  11. Remote meta-C-H olefination of phenylacetic acids directed by a versatile U-shaped template.

    Science.gov (United States)

    Deng, Youqian; Yu, Jin-Quan

    2015-01-12

    meta-C-H olefination of phenylacetic acid derivatives has been achieved using a commercially available nitrile-containing template. The identification of N-formyl-protected glycine as the ligand (Formyl-Gly-OH) was crucial for the development of this reaction. Versatility of the template approach in accommodating macrocyclopalladation processes with different ring sizes is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Rearrangement of 1-Methylcyclohex-1-ene during the Hydrodesulfurization of FCC Gasoline over Supported Co(Ni)Mo/Al2O3 Sulfide Catalysts: the Isolation and Identification of Branched Cyclic C7 Olefins

    Czech Academy of Sciences Publication Activity Database

    Žáček, Petr; Kaluža, Luděk; Karban, Jindřich; Storch, Jan; Sýkora, Jan

    2014-01-01

    Roč. 112, č. 2 (2014), s. 335-346 ISSN 1878-5190 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 ; RVO:61388963 Keywords : hydrodesulfurization * olefin hydrogenation * branched cyclic olefins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.170, year: 2014

  13. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW trans......This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....

  14. Lubricant for corrosion protection of the inner chambers of internal combustion engines. Schutzschmiermittel zum Korrosionsschutz der Innenraeume von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Ettig, A.; Ferke, M.; Fueloep, J.; Gal, L.; Gyoengyoessy, L.; Horvath, R.; Keresztessy, Z.; Keresztessy, M.; Papp, I.

    1987-09-17

    The invention is concerned with lubricants for corrosion protecion in internal combustion engines which contain (a) 85 to 99 weight-% of a base oil and/or engine oil, (b) 0.1 to 1.0 weight-% of a corrosion and simultaneously emulsification inhibitor from a monoester, diester or triester of fatty acids with a double bond, (c) 0.1 to 6.0 weight-% of an additive improving the viscosity index and adhesiveness, from a polyolefin or olefin copolymer or a polyacrylic or polymethacrylic acid ester and also, if necessary (d) 0.1 to 8.0 weight-% of a detergent additive with neutralizing effect. The effect of these protective lubricants is by far better as of those known up to now.

  15. Vibrational polarizabilities of hydrogen-bonded water

    International Nuclear Information System (INIS)

    Torii, Hajime

    2013-01-01

    Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed

  16. Alkylation of mixed olefins with isobutane in a stratco chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vichailak, M. [ABB Lummus Global Inc., Houston, TX (United States); Hopper, J.R.; Yaws, C.L. [Lamar Univ., Beaumont, TX (United States); Pike, R.W. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-12-31

    The 17 reaction model for the sulfuric acid alkylation of isobutane with propylene as proposed by Langley and Pike has been used to simulate the effluent refrigeration reactor. The simulation conditions selected to minimize the formation of light and heavy by-product were determined to be: Temperature: 9 - 10 {degrees}C,- Isobutane/Olefin Ratio: 8 - 10; % Volume of Acid: 50 %. The reactor effluent composition from the simulation program has been used to compare with several sets of published data with reasonable agreement. This model has been extrapolated to simulate the alkylation of isobutane with butylenes and amylenes. The model will be optimized with commercial data. 9 refs., 6 figs., 1 tab.

  17. InCl3/NaClO: a reagent for allylic chlorination of terminal olefins

    International Nuclear Information System (INIS)

    Pisoni, Diego S.; Gamba, Douglas; Fonseca, Carlos V.; Costa, Jesse S. da; Petzhold, Cesar L.; Oliveira, Eduardo R. de; Ceschi, Marco A.

    2006-01-01

    Indium trichloride promotes the chlorination of terminal olefins in the presence of sodium hypochlorite with good results. Carvone was chosen as a model compound to examine some of the general features of this reaction, such as stoichiometry, temperature, reaction time and product conversion. Treatment of β-pinene with sodium hypochlorite in the presence of indium trichloride resulted in a facile rearrangement to selectively yield perillyl chloride, which is an important precursor for C-7 oxygenated limonenes. (author)

  18. Photoinduced Intramolecular Bifurcate Hydrogen Bond: Unusual Mutual Influence of the Components.

    Science.gov (United States)

    Sigalov, Mark V; Shainyan, Bagrat A; Sterkhova, Irina V

    2017-09-01

    A series of 7-hydroxy-2-methylidene-2,3-dihydro-1H-inden-1-ones with 2-pyrrolyl (3), 4-dimethylaminophenyl (4), 4-nitrophenyl (5), and carboxyl group (6) as substituents at the exocyclic double bond was synthesized in the form of the E-isomers (4-6) or predominantly as the Z-isomer (3) which in solution is converted to the E-isomer. The synthesized compounds and their model analogues were studied by NMR spectroscopy, X-ray analysis, and MP2 theoretical calculations. The E-isomers having intramolecular O-H···O═C hydrogen bond are converted by UV irradiation to the Z-isomers having bifurcated O-H···O···H-X hydrogen bond. Unexpected shortening (and, thus, strengthening) of the O-H···O═C component of the bifurcated hydrogen bond upon the formation of the C═O···H-X hydrogen bond was found experimentally, proved theoretically (MP2), and explained by a roundabout interaction of the H-donor (HX) and H-acceptor (C═O) via the system of conjugated bonds.

  19. Synthesis of Lipophilic Antioxidants by a Lipase-B-Catalyzed Addition of Peracids to the Double Bond of 4-Vinyl-2-methoxyphenol.

    Science.gov (United States)

    Zago, Erika; Durand, Erwann; Barouh, Nathalie; Lecomte, Jérôme; Villeneuve, Pierre; Aouf, Chahinez

    2015-10-21

    4-Vinyl guaiacol (2) was lipophilized through the electrophilic addition of peracids to its vinylic double bond. Those peracids were formed in situ, by the Candida antarctica lipase-B-assisted perhydrolysis of carboxylic acids ranging from C2 to C18, in hydrogen peroxide solution. The addition of peracids with 4-8 carbons in their alkyl chains led to the formation of two regioisomers, with the prevalence of hydroxyesters bearing a primary free hydroxyl (4c-4e). This prevalence became more pronounced when peracids with longer alkyl chains (C10-C18) were used. In this case, only isomers 4f-4h were formed. The antioxidant activity of the resulting hydroxyesters was assessed by means of the conjugated autoxidizable triene (CAT) assay, and it was found out that the 4-vinyl guaiacol antioxidant activity was significantly increased by grafting alkyl chains with 2-8 carbons.

  20. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Sogand [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Charghand, Mojtaba [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of)

    2014-02-01

    Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion. - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH{sub 3}-TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH{sub 3}-TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive