WorldWideScience

Sample records for oil shale bitumen

  1. Oil Shale

    Science.gov (United States)

    Birdwell, Justin E.

    2017-01-01

    Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

  2. Developments in Oil Shale

    Science.gov (United States)

    2008-11-17

    demonstration (RD&D). The ongoing program will confirm whether an economically significant shale oil volume can be extracted under current operating...Petroleum Trade, [http://www.eia.doe.gov/emeu/mer/pdf/pages/sec1_15.pdf]. 2 Oil sands yield a bitumen substantially heavier most crude oils and shale oil. 3...hydrocarbon products that can be extracted from the shale. The most promising oil shales occur in the Green River formation that underlies 16,000 square

  3. Chemistry of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Iida, T.

    1974-01-01

    A review with several references covers the formation, distribution, and mining of oil shales of Fu-Shun colliery; retorting furnaces for oil shale; refining of crude shale oils; and components of oil from Fu-Shun oil shales including pyrolle, matrine, fatty acid anilides, 2,4,5-trimethylpyrrole, and middle-layer bases.

  4. Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis%桦甸油页岩热解过程中热沥青的组成变化规律

    Institute of Scientific and Technical Information of China (English)

    畅志兵; 初茉; 张超; 白书霞; 林浩

    2016-01-01

    将桦甸油页岩分别在300、350、400、450、500和550℃热解得到半焦,对半焦进行逐级抽提和酸洗,得到自由沥青、碳酸盐束缚沥青和硅酸盐束缚沥青,采用柱层析、FT-IR和GC-MS表征不同沥青的化学组成和结构特征,探讨沥青的化学组成变化及与矿物质的相互作用。结果表明,沥青总产率先增大后减小并在400℃取得最大值4.63%,400-450℃大量沥青分解生成页岩油,使沥青产率降至0.98%。350-450℃自由沥青主要发生羧酸脱羧、酯基分解和长链烷烃裂解反应,使羧酸和酯类化合物含量降低、烷烃碳链长度缩短。干酪根分解生成的羧酸与碳酸盐反应生成羧酸盐,使400℃碳酸盐束缚沥青中羧酸含量达78.82%;含氧化合物可与黏土矿物结合,且烷烃可进入蒙脱石层间,使400℃硅酸盐束缚沥青中含氧化合物和烷烃各占80.79%和19.21%。%The variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis was studied. Spent shale samples obtained by retorting oil shale at 300-550℃ were subjected to sequential Soxhlet extraction-acid pickling-Soxhlet extraction procedures to obtain free bitumen ( FB ) , bitumen bound with carbonates ( BB-1 ) and bitumen bound with silicates ( BB-2 ) . The bitumen samples were characterized by liquid chromatography fractionation, FT-IR and GC-MS. The results show that the total bitumen yield first increases and then decreases with increasing temperature from 300 to 550℃, and reached the maximum value of 4 . 63% at 400℃. Especially, the intense vaporization and decomposition of bitumen occurring at 400-450 ℃ causes a dramatic decrease in bitumen yield from 4. 63% to 0. 98%. Decarboxylation of aliphatic acids, decomposition of esters and cracking of long-chain alkanes take place at 350-450 ℃, which decreases the contents of acids and esters in FB and shortens the chain length of alkanes. The carboxylic acids derived from kerogen

  5. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  6. Geolipids in the oil shale from Aleksinac (Yugoslavia)

    Energy Technology Data Exchange (ETDEWEB)

    Vitorovic, D.; Saban, M.

    1983-01-01

    The oil shale from Aleksinac (Yugoslavia) is a lacustrine sediment of Micocene age. Both the soluble portion of the organic matter (the bitumen) and the insoluble kerogen of this shale were studied extensively. In this paper, isolation and identification of various types of geolipids from the Aleksinac shale, carried out in the last few years, will be reviewed. A thorough examination of the bitumen was expected to give additional data on the origin of the organic matter as well as on the sedimentation conditions and postburial changes. (JMT)

  7. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  8. Power from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Wohlfarth, A.; Schwartz, M.; Luria, S.

    1988-02-01

    The possibilities for burning oil shale directly to generate a substantial fraction of Israel's electric power are to be investigated by means of a demonstration plant. The plant incorporates a fluidized bed reactor in which combustion tests have shown Israeli oil-shale will burn with high carbon utilization and without the need for supplementary fuel. Sulphur dioxide emissions are nearly all absorbed by the limestone that makes up about 50% of the shale. The design is for co-generation, supplying low pressure process steam for a chemical plant and electricity to the grid. Economic evaluation suggests that oil shale power generation in Israel could in the future be at least competitive with coal and under some circumstances have a cost advantage.

  9. Origin of Unliberated Bitumen in Athabasca Oil Sands

    Institute of Scientific and Technical Information of China (English)

    TuYun; J.B.O'Carroll; B.D.Sparks; L.S.Kotlyar; S.Ng; K.H.Chung; G.Cuddy

    2005-01-01

    Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM.It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is """"""""unliberated"""""""", and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU).Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.

  10. Interaction forces in bitumen extraction from oil sands.

    Science.gov (United States)

    Liu, Jianjun; Xu, Zhenghe; Masliyah, Jacob

    2005-07-15

    Water-based extraction process (WBEP) has been successfully applied to bitumen recovery from Athabasca oil sand ore deposits in Alberta. In this process, two essential steps are involved. The bitumen first needs to be "liberated" from sand grains, followed by "aeration" with air bubbles. Bitumen "liberation" from the sand grains is controlled by the interaction between the bitumen and sand grains. Bitumen "aeration" is dependent, among other mechanical and hydrodynamic variables, on the hydrophobicity of the bitumen surface, which is controlled by water chemistry and interactions between bitumen and fine solids. In this paper, the interaction force measured with an atomic force microscope (AFM) between bitumen-bitumen, bitumen-silica, bitumen-clays and bitumen-fines is summarized. The measured interaction force barrier coupled with the contacted adhesion force allows us to predict the coagulative state of colloidal systems. Zeta potential distribution measurements, in terms of heterocoagulation, confirmed the prediction of the measured force profiles using AFM. The results show that solution pH and calcium addition can significantly affect the colloidal interactions of various components in oil sand extraction systems. The strong attachment of fines from a poor processing ore on bitumen is responsible for the corresponding low bitumen flotation recovery. The identification of the dominant non-contact forces by fitting with the classical DLVO or extended DLVO theory provides guidance for controlling the interaction behavior of the oil sand components through monitoring the factors that could affect the non-contact forces. The findings provide insights into megascale industrial operations of oil sand extraction.

  11. Bitumen recovery from surface mined oil sands recycle water ponds

    Energy Technology Data Exchange (ETDEWEB)

    Mikula, R.J.; Munoz, V.A.; Elliott, G. L. [Natural Resources Canada, CanmetENERGY, Devon, Alberta (Canada)

    2011-07-01

    In surface mined oil sands, high bitumen recovery can be achieved but tailings have accumulated over the years. Several technologies have been proposed for recovering bitumen from tailings, but because this bitumen carries high surfactant concentrations there have been processing problems. This paper presents the application of oxidized ore characterization and processing methods to process tailings pond bitumen. Laboratory tests were carried out to characterize bitumen samples coming from four different tailings sources and tests were run with caustic additive. Results showed that high caustic additions can be applied to surfactant rich tailings pond bitumen to avoid downstream froth treatment emulsion problems; the oxidation degree should be carefully monitored. This study demonstrated that the use of caustic additive, already used for oxidized ores, can be applied to treat the bitumen recovered from tailings streams.

  12. Fire and explosion hazards of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  13. Fire and explosion hazards of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  14. ESTIMATE OF WORLD HEAVY CRUDE OIL AND NATURAL BITUMEN RESOURCES.

    Science.gov (United States)

    Meyer, Richard F.; Schenk, Christopher J.

    1985-01-01

    The quantity of heavy hydrocarbons - heavy crude oil and natural bitumens - known or surmised to be present in the earth is large. The total is estimated to fall in the range of 5,879,712-5,942,139 million barrels. The portion of this that may ultimately prove recoverable is small, perhaps on the order of 500,000 million barrels of heavy crude oil and 200,000 million barrels of bitumen.

  15. Characterization and Thermal/Catalytic Upgrading of Kerogen in a Green River Oil Shale

    OpenAIRE

    Yeboah, Isaac

    2015-01-01

    Comprehensive structural characterization of oil shale (kerogen) and subsequent upgrading to fuels are of paramount scientific and industrial importance, calling for a better understanding. In this work, an oil shale from Green River formation was employed and characterized by multiple techniques such as Rock-Eval pyrolysis, TOC, XRD, FTIR and TGA-MS. It is found that the inorganic matter were mainly calcite, dolomite and Fe-doped quartz, while the organic matter consists of soluble bitumen a...

  16. High efficiency shale oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  17. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis

    Science.gov (United States)

    Hu, Haiyan; Zhang, Tongwei; Wiggins-Camacho, Jaclyn D.; Ellis, Geoffrey S.; Lewan, Michael D.; Zhang, Xiayong

    2014-01-01

    This study quantifies the effects of organic-matter (OM) thermal maturity on methane (CH4) sorption, on the basis of five samples that were artificially matured through hydrous pyrolysis achieved by heating samples of immature Woodford Shale under five different time–temperature conditions. CH4-sorption isotherms at 35 °C, 50 °C, and 65 °C, and pressures up to 14 MPa on dry, solvent-extracted samples of the artificially matured Woodford Shale were measured. The results showed that CH4-sorption capacity, normalized to TOC, varied with thermal maturity, following the trend: maximum oil (367 °C) > oil cracking (400 °C) > maximum bitumen/early oil (333 °C) > early bitumen (300 °C) > immature stage (130 °C). The Langmuir constants for the samples at maximum-oil and oil-cracking stages are larger than the values for the bitumen-forming stages. The total pore volume, determined by N2 physisorption at 77 K, increases with increased maturation: mesopores, 2–50 nm in width, were created during the thermal conversion of organic-matter and a dramatic increase in porosity appeared when maximum-bitumen and maximum-oil generation stages were reached. A linear relationship between thermal maturity and Brunauer–Emmett–Teller (BET) surface area suggests that the observed increase in CH4-sorption capacity may be the result of mesopores produced during OM conversion. No obvious difference is observed in pore-size distribution and pore volume for samples with pores 2 physisorption at 273 K. The isosteric heat of adsorption and the standard entropy for artificially matured samples ranged from 17.9 kJ mol−1 to 21.9 kJ mol−1 and from −85.4 J mol−1 K−1 to −101.8 J mol−1 K−1, respectively. These values are similar to the values of immature Woodford kerogen concentrate previously observed, but are larger than naturally matured organic-rich shales. High-temperature hydrous pyrolysis might have induced Lewis acid sites on both organic and mineral surfaces

  18. Paraho oil shale project. [Coloardo

    Energy Technology Data Exchange (ETDEWEB)

    Pforzheimer, H.

    1976-01-01

    The Paraho Oil Shale Project is a privately financed program to prove the Paraho retorting process and hardware on oil shale at Anvil Points, Colo., near Rifle. The project was launched in late 1973 under the sponsorship of 17 participants many of whom were active in earlier oil shale research. Two new Paraho retorts, a pilot and a semiworks size unit, were installed at Anvil Points. The oil-shale mine on the adjacent Naval Oil Shale Reserve was reactivated. The mine and new retorts were put into operation during 1974. The pilot plant is used to explore operating parameters in order to define conditions for testing in the larger semiworks size retort. The experimental operations in 1974 set the stage for the successful runs in 1975 and early 1976. The results of the Paraho operations to date have been encouraging. They demonstrate that the process works, that the equipment is durable, and that both are environmentally acceptable on a pilot and a semiworks plant scale.

  19. The extraction of bitumen from western oil sands. Quarterly report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-07-01

    Accomplishments are briefly described for the following tasks: environmental impact statement; coupled fluidized bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost examination study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; determine thickener requirements; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  20. Oil-shale plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Suurkuusk, T. (Power Engineering Department, Tallinn Technical University, Tallinn, Estonia (SU))

    1991-08-01

    The specific feature of the Estonian energy system is the oil-shale based energy production. The total capacity of the Estonian energy system is 3311 MW, and from this 3104 MW is oil-shale based. There are four oil-shale based power plants in the North-East region of Estonia. (author).

  1. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    Science.gov (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  2. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  3. Application of polymers to modify bitumen obtained from waxy oils

    OpenAIRE

    Гринишин, Олег Богданович; Фридер, Ірина Вікторівна

    2013-01-01

    The article describes one of the ways of solution of the actual problem of obtaining quality bituminous materials from residues of paraffin oil recycling. The authors examined the modification of bitumen with polymers, in particular with petroleum resins, polyethylene, and industrial modifiers Elvaloy 4170 and Butonal NS 198. The study was carried out in two ways. We have studied the basic regularities of the joint oxidation of paraffin tar and oil polymerous resins. It was found that the pre...

  4. The extraction of bitumen from western oil sands: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  5. The extraction of bitumen from western oil sands: Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  6. Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen.

    Science.gov (United States)

    Zargar, Majid; Ahmadinia, Esmaeil; Asli, Hallizza; Karim, Mohamed Rehan

    2012-09-30

    The ageing of the bitumen during storage, mixing, transport and laying on the road, as well as in service life, are the most important problems presented by the use of bitumen in pavements. This paper investigates the possibility of using waste cooking oil (WCO), which is a waste material that pollutes landfills and rivers, as an alternative natural rejuvenating agent for aged bitumen to a condition that resembles the original bitumen. With this target, the physical and chemical properties of the original bitumen, aged bitumen and rejuvenated bitumen were measured and compared by the bitumen binder tests - softening point, penetration, Brookfield viscosity, dynamic shear rheometer and Fourier transform infrared spectroscopy. In addition, the behaviour of the WCO rejuvenated bitumen is investigated and compared with virgin bitumen after using the rolling thin film oven ageing process. In general, the results showed that using 3-4% of WCO the aged bitumen group 40/50 was rejuvenated to a condition that closely resembled the physical, rheological properties of the original bitumen (80/100), however, there was a difference in the tendency to ageing between the WCO rejuvenated bitumen and the virgin bitumen during mixing, transport and laying on the road.

  7. Heavy Oil and Natural Bitumen Resources in Geological Basins of the World

    Science.gov (United States)

    Meyer, Richard F.; Attanasi, E.D.; Freeman, P.A.

    2007-01-01

    Heavy oil and natural bitumen are oils set apart by their high viscosity (resistance to flow) and high density (low API gravity). These attributes reflect the invariable presence of up to 50 weight percent asphaltenes, very high molecular weight hydrocarbon molecules incorporating many heteroatoms in their lattices. Almost all heavy oil and natural bitumen are alteration products of conventional oil. Total resources of heavy oil in known accumulations are 3,396 billion barrels of original oil in place, of which 30 billion barrels are included as prospective additional oil. The total natural bitumen resource in known accumulations amounts to 5,505 billion barrels of oil originally in place, which includes 993 billion barrels as prospective additional oil. This resource is distributed in 192 basins containing heavy oil and 89 basins with natural bitumen. Of the nine basic Klemme basin types, some with subdivisions, the most prolific by far for known heavy oil and natural bitumen volumes are continental multicyclic basins, either basins on the craton margin or closed basins along convergent plate margins. The former includes 47 percent of the natural bitumen, the latter 47 percent of the heavy oil and 46 percent of the natural bitumen. Little if any heavy oil occurs in fore-arc basins, and natural bitumen does not occur in either fore-arc or delta basins.

  8. Lessons learned from IOR steamflooding in a bitumen-light oil heterogeneous reservoir

    NARCIS (Netherlands)

    Al Mudhafar, W.J.M.; Hosseini Nasab, S.M.

    2015-01-01

    The Steamflooding was considered in this research to extract the discontinuous bitumen layers that are located at the oil-water contact for the heterogeneous light oil sandstone reservoir of South Rumaila Field. The reservoir heterogeneity and the bitumen layers impede water aquifer approaching into

  9. The extraction of bitumen from western oil sands. Quarterly report, July--September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-11-01

    This report cites task number followed by a brief statement of each task and the action taken this quarter. The tasks are: NEPA environmental information statement; coupled fluidized-bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels, and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost estimation study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; development studies of disposal of sand by conveying or pumping of high solids concentration sand-water slurries; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  10. Cementing Properties of Oil Shale Ash

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The oil crisis has prompted renewed interest in direct burning of oil shale as an alternative energy source.A major problem in this process is the large portion of ash produced.The cementing properties of this ash were investigated to determine its applicability as a building material.By means of XRD, IR, NMR and ICP, we have studied the effects of burning temperature on the reactivity of ash.Maximum reactivity was obtained with ash samples produced at 700 °C to 900 °C.In this range, the strength of oil-shale-based material, with properties similar to cement, which is composed of oil shale and several other kinds of solid wastes, can achieve the standard of 42.5# cement.Our study has provided an experimental foundation and theoretical base for a massive utilization of oil shale.

  11. Oil shale mining and processing in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Viilup, V. (Eesti Polevkivi Co., Johvi (Estonia))

    1994-01-01

    The overview begins with some background information containing historical data about the shale oil deposite in Estonia, which are well known since the 17th century. One major issue is the importance of the deposits in Estonia regarding the energy supply. Shale oil mining has been taking place there since 1919. More detailed information is supplied about the geology of those deposits that are close to the surface. They, today, are being exploited in six underground mines as well as three surface mines. Recent, most modern, technology is applied for working these mines. The mining methods, as well as the machines used for exploiting the shale oil, will be described in some more detail, followed by a closer look on the numerous possibilities of application of the shale oil products. In order to complete the overview some data and production numbers will be supplied. (orig.)

  12. Military jet fuel from shale oil

    Science.gov (United States)

    Coppola, E. N.

    1980-01-01

    Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrotreating, and extraction processes are briefly examined and their production capabilities are assessed.

  13. Upgrading oil sands bitumen with FLUID COKING and FLEXICOKING technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamienski, P.; Phillips, G. [ExxonMobil Research and Engineering Co., Fairfax, VA (United States); McKnight, C.; Rumball, B. [Syncrude Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    This presentation described EMRE's Fluid Coking and Flexicoking technologies that are well suited for upgrading Alberta's heavy crudes and oil sands bitumen into pipelineable crudes or synthetic crudes, which can be further processed into transportation fuels. The Fluid Coking technology uses a fluidized bed reactor that thermally converts the heavy oils into light gases, liquids and coke. The metals and much of the sulphur are concentrated in the coke. Combustion of the coke provides process heat and the remaining coke is sold or stored on site for later recovery. Syncrude Canada currently operates 3 Fluid Coking units in northern Alberta. Flexicoking extends fluid coking by integrating air gasification to produce a carbon monoxide/hydrogen rich fuel gas that helps meet fuel and energy requirements of bitumen recovery and upgrading. The yields of light gas and liquids are similar to those of the Fluid Coking process. The partial combustion of coke provides the process heat for the thermal conversion and gasification steps. The remaining coke is gasified and desulphurized using Flexsorb technology. At present, there are 5 Flexicoking units in operation around the world. Interest in the technology is growing, particularly in locations with large demand for clean fuel or electricity. It is also suitable for steam assisted gravity drainage (SAGD) operations in Alberta. This presentation outlined the operating principles of the Flexicoking integrated gasification system and compared it with more expensive oxygen gasification processes. tabs., figs.

  14. Highlights of the Messel Oil Shale

    Institute of Scientific and Technical Information of China (English)

    Stephan Schaal

    2008-01-01

    The Messel oil shale, Germany, was deposited in a maar crater that formed 47 million years ago. Since 1975 the Senckenberg Research Institute in Frankfurt am Main, has conducted systematic scientific excavations of this oil shale with much success. Besides plants and insects, more than 130 species of well-preserved fossil vertebrates like reptiles, fishes, birds and mammals have been found and have made Messel world-famous. Some examples of these vertebrates are presented.

  15. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  16. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  17. Geolipids in the oil shale from Aleksinac (Yugoslavia)

    Energy Technology Data Exchange (ETDEWEB)

    Vitorovic, D.; Saban, M.

    1983-02-01

    Most of the geolipids so far identified in the oil shale from Aleksinac represent well known /eta/ and ubiquitous constituents of sediments: /eta/-alkanes, aliphatic and cyclic isoprenoid alkanes including steranes, triterpanes and tetraterpanes and aliphatic and aromatic mono- and dicarboxylic acids. Moreover, several classes of compounds were identified which were also known as constituents of some ancient sediments but were not found to be ubiquitous, such as aliphatic isoprenoid ketones C/sub 13/ and C/sub 18/, aliphatic methyl ketones C/sub 13/-C/sub 24/ and the triterpenoid ketone adiantone. However, in the Aleksinac shale bitumen geolipid constituents were identified which had not been found earlier in ancient sediments: a homologous C/sub 7/-C/sub 15/ series of aliphatic /tau/homologous series of 4 members of sigma-lactones, two cyclic ..gamma..-lactones (dihydro- and tetrahydroactinidiolide), as well as a homologous series of methyl esters of fatty acids (C/sub 4/-C/sub 25/). The composition and distribution of identified geolipids suggest: a) that the Aleksinac oil shale is a non-mature sediment (relatively high content of oxygen compounds with unchanged biolipid molecules, high /eta/-alkane CPI values, relatively high amount of unstable stereoisomers in the fraction of steranes and triterpanes) and b) that the organic matter of Aleksinac shale is of mixed origin; the following precursors of the organic substance were incorporated in this lacustrine sediment: residues of continental plants, ferns and algae, as well as residues of micro-organisms, most probably of those which took part in early diagenetic changes of sedimented organic matter.

  18. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  19. EVALUATION AND STANDARDIZATION OF ESTONIAN OIL SHALE QUALITY CHARACTERISTICS

    OpenAIRE

    Aruküla, Heino

    1997-01-01

    The most important mineral wealth of Estonia is oil shale, which is used as fuel for generating electricity, thermal energy, for producing the shale oil, impregnation oil, cement, concrete and other products.Estonian oil shale (Kukersite) deposit occupies an extensive territory (about of 1830 square km). Proved reserves in this deposit were estimated' about 4 billions tons of bil shale. (Fig. 1). The industrial oil shale seam (thickness 2,5 - 3,2 m) contains 6 "oil shale' layers (A - F2) whic...

  20. Low temperature extraction and upgrading of oil sands and bitumen in supercritical fluid mixtures.

    Science.gov (United States)

    Brough, Sarah A; Riley, Sandra H; McGrady, G Sean; Tanhawiriyakul, Supaporn; Romero-Zerón, Laura; Willson, Christopher D

    2010-07-21

    Preliminary results are reported for the extraction and catalytic hydrocracking of Alberta bitumen and oil sands using supercritical fluid mixtures; high levels of extraction and upgrading were attained using reaction conditions significantly milder than those previously reported.

  1. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A suit of oil shales, predominated by black argillaceous silicalite and finely laminated black-brown shale, has been discovered in a set of carbonaceous-siliceous mudstone formations (350 m in thickness) in the third member of Xiamaling Formation of the Upper Proterozoic Qingbaikou Series (900―873 MaBP), Xiahuayuan, Hebei Province, China. The oil shale, combustible with strong bitumen odour, has su- per-high TOC contents ranging from 21.4% to 22.9%, bitumen “A” contents from 0.58% to 0.88% and oil length from 5.29% to 10.57%. The ultrathin section observation of the shale and the identification of its kerogen demonstrate that its hydrocarbon-generative parent material is mainly benthonic Rhodophyta whose specific tetrasporangia are legible and abundant. It is rarely reported in the literature that such a hydrocarbon-generative parent material, composed mainly of Rhodophyta and with extraordinarily high contents of TOC and bitumen “A”, developed into a set of high-quality source rocks. The extracts of the oil shale are characteristic of richness in 17α(H)-diahopanes and n-alkyl tricyclic terpenoids but low in steranes. Such a biomarker feature is obviously different from that of the extracts from other Proterozoic marine carbonate source rocks of the studied area. Since the biological constitution of this oil shale is rather simple, it is clear that these biomarkers most likely represent to certain extent the specific mo- lecular constitutions of the benthonic Rhodophyta identified in the ultrathin sections of the samples. Studies on its lithologic association and depositional sequences suggest that this suit of the carbona- ceous-siliceous mudstone formation, which contains oil shales, was probably developed in an under- compensation deep-bay environment when a maximum transgression occurred during the formation of the third member of Xiamaling Formation. The high concentration of SiO2 in this organic-rich rock and the positive correlation between TOC

  2. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago

    Institute of Scientific and Technical Information of China (English)

    ZHANG ShuiChang; ZHANG BaoMin; BIAN LiZeng; JIN ZhiJun; WANG DaRui; CHEN JianFa

    2007-01-01

    A suit of oil shales, predominated by black argillaceous silicalite and finely laminated black-brown shale, has been discovered in a set of carbonaceous-siliceous mudstone formations(350 m in thickness)in the third member of Xiamaling Formation of the Upper Proterozoic Qingbaikou Series(900-873 MaBP), Xiahuayuan, Hebei Province, China. The oil shale, combustible with strong bitumen odour, has super-high TOC contents ranging from 21.4%to 22.9%,bitumen"A"contents from 0.58%to 0.88%and oil length from 5.29%to 10.57%.The ultrathin section observation of the shale and the identification of its kerogen demonstrate that its hydrocarbon-generative parent material is mainly benthonic Rhodophyta whose specific tetrasporangia are legible and abundant. It is rarely reported in the literature that such a hydrocarbon-generative parent material, composed mainly of Rhodophyta and with extraordinarily high contents of TOC and bitumen "A", developed into a set of high-quality source rocks. The extracts of the oil shale are characteristic of richness in 17α(H)-diahopanes and n-alkyl tricyclic terpenoids but low in steranes. Such a biomarker feature is obviously different from that of the extracts from other Proterozoic marine carbonate source rocks of the studied area. Since the biological constitution of this oil shale is rather simple, it is clear that these biomarkers most likely represent to certain extent the specific molecular constitutions of the benthonic Rhodophyta identified in the ultrathin sections of the samples. Studies on its lithologic association and depositional sequences suggest that this suit of the carbonsceous-siliceous mudstone formation, which contains oil shales, was probably developed in an undercompensation deep-bay environment when a maximum transgression occurred during the formation of the third member of Xiamaling Formation. The high concentration of SiO2 in this organic-rich rock and the positive correlation between TOC and some trace elements such as

  3. Piceance Basin Oil Shale Data: Assays, Boreholes and Formation Tops

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This database contains Oil Shale Assays, Borehole Locations and Formation Tops that were used in support of the 2009 Oil Shale Assessment (Survey Fact Sheet...

  4. CO2 Sequestration within Spent Oil Shale

    Science.gov (United States)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  5. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  6. Oil Shale: History, Incentives, and Policy

    Science.gov (United States)

    2006-04-13

    of Crude Oil (for July 2005 to Jan. 2006), at [http://tonto.eia.doe.gov/dnav/pet/pet_pri_rac2_dcu_nus_m.htm]. Crude oil production costs vary widely by... oil production declined through the 1970s, many marginally profitable and often smaller refineries were closed or idled.48 Of the 324 refineries...whereas Shell’s estimate is based on oil field-based technology for resource extraction. The Ideal Size for an Oil Shale Facility As domestic crude

  7. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  8. Pyrolysis and co-pyrolysis of coal and oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Qiumin Zhang; Demin He; Jun Guan [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2007-07-01

    Pyrolysis and co-pyrolysis of coal and oil shale was investigated by using Yilan oil shale, Longkou oil shale, Huolinhe lignite, Taiji gas coal and Ruqigou anthracite as raw materia1s. A fixed-bed pyrolysis and co-pyrolysis of these coal and oil shale were investigated. The results indicated that synergetic effect existed with the oil yield increased, water yield decreased, and the synergetic effect varied with the mass percentage of coal differed. The co-pyrolysis oil yield of Yilan oil shale and Ruqigou anthracite is a little higher than the linear sum of their oil yield in the pyrolysis process. But for the co-pyrolysis of Taiji gas coal and Yilan oil shale, no significant change of the oil yield was found. Huolinhe lignite and Longkou oil shale were chosen as the material for the solid heat carrier experiment. Synergetic effect analyses of both the fixed-bed pyrolysis and the retorting process with solid heat carrier were given. Huolinhe lignite is an ideal material for oil recovery by pyrolysis, with high volatile and low ash, its oil content is 8.55%. Longkou oil shale is an ideal material for oil recovery by pyrolysis, with high oil content of 14.38%. The optimum co-pyrolysis temperature for Huolinhe lignite and Longkou oil shale is 510{sup o}C. Synergetic effect was found with the oil increased 9% and water decreased 36%. 5 refs., 2 figs., 10 tabs.

  9. RADIATION CHEMICAL CONVERSION OF OIL DERIVED FROM OIL-BITUMEN ROCK

    Directory of Open Access Journals (Sweden)

    Lala Jabbarova

    2014-06-01

    Full Text Available The results of research in the radiation processing of synthetic oil derived from oil–bitumen rock of the Balakhany deposit in Azerbaijan are presented. The study has been conducted on a 60Co gamma-source at a dose rate of P = 0.5 Gy/s and various absorbed doses of D = 43–216 kGy. Samples of synthetic oil from natural bitumen rocks have been analyzed by chromatography, gas chromatography–mass spectrometry, and IR-spectroscopy, and their radiation resistance has been evaluated. The results of the study allow for both assessment of the feasibility of manufacturing petrochemicals for various applications by radiation processing and use of these materials for isolating radioactive sources to preclude their impact on the environment.

  10. 17alpha/H/ hopane identified in oil shale of the Green River formation /Eocene/ by carbon-13 NMR.

    Science.gov (United States)

    Balogh, B.; Wilson, D. M.; Christiansen, P.; Burlingame, A. L.

    1973-01-01

    During an investigation of C-13 NMR shifts and the structural correspondence of pentacyclic triterpenes a C-13 NMR study was conducted on one of the most abundant components of the hexane soluble fraction of oil shale bitumen of the Green River formation. A rigorous proof was derived exclusively from C-13 NMR data for the structure of the important triterpenoid fossil molecule. It was established that the structure of the isolated triterpane was 17alpha(H) hopane.

  11. ECONOMIC SIGNIFICANCE OF DESIGN, DEVELOPMENT, AND EXTRACTION OF BITUMEN FROM BITUMINOUS SAND AND HEAVY OIL IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Nwizug-bee L. K.

    2016-09-01

    Full Text Available Nigeria has the largest oil sands and bitumen resources in Africa and is one of the main leading countries in the world from the point of view of its significant potential heavy oil deposits. Research of geological and physicochemical properties confirmed that the Nigerian bitumen is an important energy source and an alternative source of hydrocarbon feedstock for the petrochemical industry. Nigeria imports black oil for the petrochemical industry and its heavy oil can act in place of this black oil. In addition, researchers have successfully established the possibility of producing electrical energy from this heavy oil. Tar sands and bitumen are able to help improve the economy of Nigeria

  12. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia

    DEFF Research Database (Denmark)

    Petersen, Henrik I.; Schovsbo, Niels H.; Nielsen, Arne T.

    2013-01-01

    to that of graptolites at the same level of maturity. Reflectance measurements of solid bitumen are a poor maturity indicator, probably because bitumen can have various origins and morphologies and it may not be indigenous to the host rock. (C) 2013 Elsevier B.V. All rights reserved.......-Lower Paleozoic rocks containing vitrinite, starts, accordingly, at 1.56% R-o graptolite reflectance. Porous/granular vitrinite-like particles occur in minor amounts and they may represent graptolite fragments with a non-smooth surface. They generally yield slightly higher reflectance than non-granular vitrinite...

  13. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  14. Comparative study on direct burning of oil shale and coal

    Science.gov (United States)

    Hammad, Ahmad; Al Asfar, Jamil

    2017-07-01

    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  15. Combustion characteristics of Daqing oil shale and oil shale semi-cokes

    Institute of Scientific and Technical Information of China (English)

    MIAO Zhen-yong; WU Guo-guang; LI Ping; ZHAO Na; WANG Pan-cheng; MENG Xian-liang

    2009-01-01

    Thermo-gravimetric-analysis (TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it. The effect of prior pyrolysis and TGA heating rate on the combustion process was studied. Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature. The ignition temperature increases as the volatile content of the sample decreases. TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature. But the peak of combustion shifts to higher temperatures as the heating rate is increased. The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.

  16. Polar constituents isolated from Aleksinac oil shale. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Saban, M. (Univ. of Beograd, Yugoslavia); Porter, S.; Costello, C.; Djuricic, M.; Vitorovic, D.

    1980-01-01

    Continuing an investigation of the composition of bitumen from Aleksinac (Yugoslavia) shale, we report here in the bitumen extracted with benzene the following compounds: aromatic hydrocarbons, C/sub n/H/sub 2n-14/ (biphenyls) and C/sub n/H/sub 2n-18/ (anthracenes and/or phenanthrenes), oxygen compounds C/sub n/H/sub 2n/O/sub 2/ (methyl esters of fatty acids), C/sub n/H/sub 2n/O (aliphatic methyl ketones), and the triterpenoid ketone adiantone. The presence of these compounds in the bitumen is due to diagenetic changes of precursor biological material; adiantone alone presumably represents an intact residue of Miocene ferns.

  17. Environmental Impact of Estonian Oil Shale CFB Firing

    Science.gov (United States)

    Loosaar, J.; Parve, T.; Konist, A.

    Oil shale based power production has been the basement of Estonia's energetical independency and economy for over 60 years. At the same time oil shale power plants emissions still give the biggest share of Estonian stationary source pollution, having significant impact to the environment. Thanks to the introduction of oil shale large scale CFB firing, reduction of the total environmental impact was achieved in last years.

  18. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    Science.gov (United States)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will

  19. An oil spill decision matrix in response to surface spills of various bitumen blends.

    Science.gov (United States)

    King, Thomas L; Robinson, Brian; Cui, Fangda; Boufadel, Michel; Lee, Kenneth; Clyburne, Jason A C

    2017-07-19

    Canada's production, transport, and sale of diluted bitumen (dilbit) products are expected to increase by a million barrels per day over the next decade. The anticipated growth in oil production and transport increases the risk of oil spills in aquatic areas and places greater demands on oil spill capabilities to respond to spills, which have raised stakeholder concerns. Current oil spill models only predict the transport of bitumen blends that are used in contingency plans and oil spill response strategies, rather than changes in the oil's physical properties that are relevant to spill response. We conducted weathering studies of five oil products (two conventional oils and three bitumen blends) in the Department of Fisheries and Oceans' flume tank. We also considered two initial oil slick thicknesses, 4.0 mm and 7.0 mm. We found that there is a major difference in the time evolution of oil properties (density and viscosity), raising doubts on weathering models that do not consider the thickness of oil. We also developed empirical expressions for the evolution of the density and viscosity of these oil products. The findings from the 4.0 mm results were incorporated with data from the literature to provide an update on the factors to consider during the decision making for spills of diluted bitumen products. The matrix indicated that most response options, including chemical dispersants, work much more effectively within 48 hours of the initiation of weathering. After this window of opportunity closes, natural attenuation or in situ burning is the only option remaining, but containment of oil is a limiting factor for in situ burning.

  20. Effects of Different Ultrasound Irradiation Frequencies and Water Temperatures on Extraction Rate of Bitumen from Oil Sand

    Science.gov (United States)

    Okawa, Hirokazu; Saito, Tomonao; Hosokawa, Ryota; Nakamura, Takashi; Kawamura, Youhei; Sugawara, Katsuyasu

    2010-07-01

    Low (28 kHz) and high (200 kHz) frequency sonication combined with hot water treatments at 45 and 75 °C were investigated to assess the effects of different ultrasound frequencies and water temperatures on the extraction of bitumen from oil sand. A mechanical stirrer was also used to compare the efficiency of separation. Bitumen extraction tests were performed under argon, air, and nitrogen atmospheres. Sonication at 200 kHz was shown to extract bitumen effectively from oil sand at 75 °C. The bitumen extraction rate for sonication at 200 kHz was slightly higher than that at 28 kHz. For low temperature (45 °C) solutions, only sonication at 28 kHz could extract bitumen from oil sand, demonstrating that sonication at 28 kHz can effectively breakdown the oil sand aggregates into a suspension.

  1. Sterane distribution of solid bitumen pyrolyzates. Changes with biodegradation of crude oil in the Ouachita Mountains, Oklahoma

    Science.gov (United States)

    Curiale, J.A.; Harrison, W.E.; Smith, G.

    1983-01-01

    Solid bitumens (grahamite and impsonite) of southeastern Oklahoma have been shown to originate from near-surface alteration of crude oil (Curiale, 1981; Curiale and Harrison, 1981). Pyrolysis of these solids has been employed to compare the sterane distribution of geographically proximate oils to that of the bitumens. The ratio of rearranged to regular steranes is higher in the pyrolyzates than in the oils, a finding consistent with a bitumen origin due to biodegradation of oil. The remaining presence of steranes, particularly regular steranes, in the bitumens suggests that sterane occlusion may have occurred prior to or during the alteration process, thus removing tetracyclic compounds from the influence of microbial attack. These data suggest that pyrolysis- GC MS offers a viable approach to correlation problems involving solid bitumens. ?? 1983.

  2. ECONOMIC SIGNIFICANCE OF DESIGN, DEVELOPMENT, AND EXTRACTION OF BITUMEN FROM BITUMINOUS SAND AND HEAVY OIL IN NIGERIA

    OpenAIRE

    Nwizug-bee L. K.

    2016-01-01

    Nigeria has the largest oil sands and bitumen resources in Africa and is one of the main leading countries in the world from the point of view of its significant potential heavy oil deposits. Research of geological and physicochemical properties confirmed that the Nigerian bitumen is an important energy source and an alternative source of hydrocarbon feedstock for the petrochemical industry. Nigeria imports black oil for the petrochemical industry and its heavy oil can act in place of this bl...

  3. Isoprenoid hydrocarbons in oil shales from the Aleksinac deposit

    Energy Technology Data Exchange (ETDEWEB)

    Saban, M.; Tesic, Z.; Vitorovic, D.

    1983-01-01

    It is established that the basic components of the fraction of branched and cyclic alkanes, isolated from shale bitumens, are aliphatic and polycyclic isoprenoid compounds. All members of the homological C15 to C20 series are identified among the aliphatic compounds, except for C17; C27 to C29 stearines and methyl to C29 styrene are discovered among the polycyclic compounds and C27 to C29 triterpenes and bicyclic tetraterpenes are identified among the pentacyclic compounds.

  4. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    Science.gov (United States)

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  5. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  6. Market analysis of shale oil co-products. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  7. Market enhancement of shale oil: The native products extraction technology

    Energy Technology Data Exchange (ETDEWEB)

    Bunger, J.W. (Bunger (James W.) and Associates, Inc., Salt Lake City, UT (United States)); DuBow, J.B. (Utah Univ., Salt Lake City, UT (United States))

    1991-10-01

    The overall objective of this work was to assess the feasibility of enhancing shale oil commercialization through SO/NPX technology. Specific objectives were: (1) To determine the properties and characteristics of fractions isolable from shale oil utilizing separation sequences which are based on thermodynamic considerations; (2) To identify product streams of market value for promising technology development; (3)To conduct technology development studies leading to a shale oil extraction and processing sequence which promises economic enhancement of shale oil commercialization; (4) To develop an analytical methodology and model for obtaining engineering design data required for process development; (5) To estimate the economics of SO/NPX including the potential for enhancing the profitability of a commercial-scale shale oil MIS retort.

  8. Non-isothermal pyrolysis kinetics of three Turkish oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Dogon, O.M.; Uysal, B.Z. [Gazi University, Ankara (Turkey). Dept. of Chemical Engineering

    1996-10-01

    A non-isothermal experimental study using thermogravimetric analysis (t.g.a.) was conducted to determine the overall kinetics of pyrolysis of three Turkish oil shales: Beypazari, Seyitomer and Himmetoglu. The integral method was used in the analysis of the t.g.a. data to determine first-order pyrolysis kinetics. Particle sizes of 0.7, 1.3. and 2.6 mm and final temperatures of 400, 550 and 700{degree}C were used. Himmeltoglue oil shale was found to give better yields than the other two shales. The extent of pyrolysis was found to be practically independent of particle size for all the shales. The rates of decomposition of Seyitomer and Himmetoglu oil shales were found to change at critical temperatures of {approximately} 300 and {approximately} 350{degree}C respectively. Porosities and surface areas of raw and spent shales were also determined. 35 refs., 3 figs., 5 tabs.

  9. Electromagnetic Heating of Heavy Oil and Bitumen: A Review of Experimental Studies and Field Applications

    OpenAIRE

    Albina Mukhametshina; Elena Martynova

    2013-01-01

    Viscosity is a major obstacle in the recovery of low API gravity oil resources from heavy oil and bitumen reservoirs. While thermal recovery is usually considered the most effective method for lowering viscosity, for some reservoirs introducing heat with commonly implemented thermal methods is not recommended. For these types of reservoirs, electromagnetic heating is the recommended solution. Electromagnetic heating targets part of the reservoir instead of heating the bulk of the reservoir, w...

  10. Risk assessment methodology in oil shale mining

    Energy Technology Data Exchange (ETDEWEB)

    Sabanov, S. [Tallinn Univ. of Technology, Tallinn (Estonia)

    2009-07-01

    The safety challenges posed by different mining processes were discussed in terms of geotechnical risk factors. Various mining processes can result in work hazards, a production shut-down, economic damage to the enterprise, and environmental impacts. In Estonia, risk assessment methods are utilized in different branches of industry. However, the literature on solving mining problems is limited. Various methods are applicable for solving complicated mining problems. This paper elaborated on a modified risk assessment methodology for oil shale mining in Estonia. The paper specifically discussed problems associated with oil shale mining as well as risk assessment methods such as risk analysis and risk evaluation. Topics that were introduced included risk analysis; risk identification; risk estimation; risk evaluation; risk mitigation; and risk acceptance. The modified risk assessment methodology was successfully applied to the extraction of mineral resources, stability of a mining block, and their influence on the environment. It was concluded that the methodology provides opportunity to find improved methods for new mine planning in accordance with environmental performances and the economical profit for companies. 8 refs., 2 figs.

  11. Ion chromatographic analysis of oil shale leachates

    Energy Technology Data Exchange (ETDEWEB)

    Butler, N.L.

    1990-10-01

    In the present work an investigation of the use of ion chromatography to determine environmentally significant anions present in oil shale leachates was undertaken. Nadkarni et al. have used ion chromatography to separate and quantify halogen, sulfur and nitrogen species in oil shales after combustion in a Parr bomb. Potts and Potas used ion chromatography to monitor inorganic ions in cooling tower wastewater from coal gasification. Wallace and coworkers have used ion chromatography to determine anions encountered in retort wastewaters. The ions of interest in this work were the ions of sulfur oxides including sulfite (SO{sub 3}{sup 2{minus}}), sulfate (SO{sub 4}{sup 2{minus}}), thiosulfate (S{sub 2}O{sub 3}{sup 2{minus}}), dithionite (S{sub 2}O{sub 4}{sup 2{minus}}), dithionate (S{sub 2}O{sub 6}{sup 2{minus}}), peroxyodisulfate (S{sub 2}O{sub 8}{sup 2{minus}}), and tetrathionate (S{sub 4}O{sub 6}{sup 2{minus}}), and thiocyanate (SCN{sup {minus}}), sulfide (S{sup 2{minus}}) hydrosulfide (HS{sup {minus}}), cyanide (CN{sup {minus}}), thiocyanate (SCN{sup {minus}}), and cyanate (OCN{sup {minus}}). A literature search was completed and a leaching procedure developed. 15 refs., 6 figs., 1 tab.

  12. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  13. Potential small-scale development of western oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

    1989-10-01

    Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

  14. Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011

    Science.gov (United States)

    Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael

    2011-01-01

    Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.

  15. Oil shale resources of the Uinta Basin, Utah and Colorado

    Science.gov (United States)

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.

  16. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  17. Electromagnetic Heating of Heavy Oil and Bitumen: A Review of Experimental Studies and Field Applications

    Directory of Open Access Journals (Sweden)

    Albina Mukhametshina

    2013-01-01

    Full Text Available Viscosity is a major obstacle in the recovery of low API gravity oil resources from heavy oil and bitumen reservoirs. While thermal recovery is usually considered the most effective method for lowering viscosity, for some reservoirs introducing heat with commonly implemented thermal methods is not recommended. For these types of reservoirs, electromagnetic heating is the recommended solution. Electromagnetic heating targets part of the reservoir instead of heating the bulk of the reservoir, which means that the targeted area can be heated up more effectively and with lower heat losses than with other thermal methods. Electromagnetic heating is still relatively new and is not widely used as an alternate or addition to traditional thermal recovery methods. However, studies are being conducted and new technologies proposed that could help increase its use. Therefore, the objective of this study is to investigate the recovery of heavy oil and bitumen reservoirs by electromagnetic heating through the review of existing laboratory studies and field trials.

  18. Oil-shale mining in Maoming basin of China

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell-Tapping, H.J.

    1989-03-01

    The Maoming basin in Guangdong Province is one of the major oil-shale mining areas of China and is situated about 300 km southwest of Hong Kong. This Tertiary basin produces oil from shales mined from a 5-km long open-faced pit on the crest of an anticline in the center of an uplifted and tilted graben. The oil shale extends about 30 km in a northwest-southeast line, and the beds dip as much as 10/degree/ toward metamorphic mountains to the northeast. In the surrounding area are numerous oil seeps, especially in ponds, water wells, and at the foundations of buildings. Holes with oil shows, made to test the extent of the oil shale, have been drilled to a depth of 1000 m. At the base of the mine face is a limestone hardground on top of which is a coal seam about 0.5 m thick that can be traced throughout the basin. Atop this Paleocene coal bed are Eocene oil-shale and thin sandstone beds in five repeated sections, each about 15 m thick, called the Youganwou formation. All kinds of freshwater fossils - fish, insects, plants, turtles, and tree trunks - are found in a near-perfect state of preservation in these oil-rich shales and coal sections. The estimated oil content of the rock is about 8% of good-quality oil with plenty of light ends.

  19. Improving Asphalt Mixture Performance by Partially Replacing Bitumen with Waste Motor Oil and Elastomer Modifiers

    Directory of Open Access Journals (Sweden)

    Sara Fernandes

    2017-08-01

    Full Text Available The environmental concern about waste generation and the gradual decrease of oil reserves has led the way to finding new waste materials that may partially replace the bitumens used in the road paving industry. Used motor oil from vehicles is a waste product that could answer that demand, but it can also drastically reduce the viscosity, increasing the asphalt mixture’s rutting potential. Therefore, polymer modification should be used in order to avoid compromising the required performance of asphalt mixtures when higher amounts of waste motor oil are used. Thus, this study was aimed at assessing the performance of an asphalt binder/mixture obtained by replacing part of a paving grade bitumen (35/50 with 10% waste motor oil and 5% styrene-butadiene-styrene (SBS as an elastomer modifier. A comparison was also made with the results of a previous study using a blend of bio-oil from fast pyrolysis and ground tire rubber modifier as a partial substitute for usual PG64-22 bitumen. The asphalt binders were tested by means of Fourier infrared spectra and dynamic shear rheology, namely by assessing their continuous high-performance grade. Later, the water sensitivity, fatigue cracking resistance, dynamic modulus and rut resistance performance of the resulting asphalt mixtures was evaluated. It was concluded that the new binder studied in this work improves the asphalt mixture’s performance, making it an excellent solution for paving works.

  20. Trace elements in oil shale. Progress report, 1979-1980

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1980-01-01

    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  1. Effects of pollution from oil shale mining in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Vallner, L. (AN Ehstonskoj SSR, Tallin (Estonia). Inst. Geologii); Sepp, K. (Taru Univ. (Estonia). Dept. of Geography)

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  2. Enhanced Microbial Pathways for Methane Production from Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  3. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    Science.gov (United States)

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  4. Oil shale program. Eighteenth quarterly report, April 1980-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. L. [ed.

    1980-11-01

    Instrumentation and evaluation activities are in progress at two DOE-supported in situ oil shale field projects, namely, the Geokinetics Oil Shale Project near Vernal, Utah, and the Occidental Oil Shale Project near DeBeque, Colorado. In support of these projects, it is necessary to develop new and advanced instrumentation systems and associated deployment, recording and analysis techniques that are unique to the field project needs. A rock mechanics program provides material properties, material response models and computational methods for use in the design analysis, and evaluation functions. In addition, retorting studies are in progress on problems unique to the low void conditions encountered in field experiments.

  5. Characterization of nitrogen compound types in hydrotreated Paraho shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, S.A.; Latham, D.R.

    1980-10-01

    Results from the separation and characterization of nitrogen compound types in hydrotreated Paraho shale oil samples were obtained. Two samples of Paraho shale oil were hydrotreated by Chevron Research Company such that one sample contained about 0.05 wt. percent nitrogen and the other sample contained about 0.10 wt. percent nitrogen. A separation method concentrate specific nitrogen compound types was developed. Characterization of the nitrogen types was accomplished by infrared spectroscopy, mass spectrometry, potentiometric titration, and elemental analysis. The distribution of nitrogen compound types in both samples and in the Paraho crude shale oil is compared.

  6. Morphology of retorted oil shale particles

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.; Mahajan, O.P.

    The formation of two distinct coked particle morphotypes, namely exfoliated and peripheral, during oil shale retorting and their implications toward the coking mechanism are discussed. Rapid heating causes swelling, exfoliation, and formation of a matrix of veinlets and cracks; these changes lead to uniform coking within the particle body. In contrast, slow heating produces the peripheral morphotype with a low coke density at the center and a high coke density at the periphery. The difference in the coking morphology of the two particle types has been explained on the basis of kerogen pyrolysis kinetics. Of the two morphotypes, peripheral coke makes the particles stronger and more resistant to size attrition. In addition to the formation of coke in the particle body of the two morphotypes, coke is also formed on the outer surface of both the particle types. It has been concluded that more coke is produced from the secondary decomposition reactions than directly from the kerogen itself. 25 references, 8 figures.

  7. The composition of acids in bitumen and in products from saponification of kerogen: Investigation of their role as connecting kerogen and mineral matrix

    Energy Technology Data Exchange (ETDEWEB)

    Razvigorova, M.; Budinova, T.; Tsyntsarski, B.; Petrova, B. [Bulgarian Academy of Sciences, Institute of Organic Chemistry, 1113 Sofia, Acad. Bonchev Str., bl. 9 (Bulgaria); Ekinci, E. [ISIK University, Kumbaba Mevkii, 34980 Istanbul (Turkey); Atakul, H. [Istanbul Technical University, Department of Chemical Engineering, Maslak, 34469 Istanbul (Turkey)

    2008-11-03

    In order to obtain more information and to understand the nature of relation between organic and mineral matter in oil shales, the compositions of soluble bitumen fractions obtained by extraction from Bulgarian oil shales before and after demineralization with 10% HCl, concentrated HF, and a HF/HCl mixture were investigated. The four extracts were quantitatively examined by IR and {sup 1}H NMR spectroscopy. The investigation of isolated acidic material of the bitumen fractions showed that the fatty acids are present in bitumen fractions as free acids, esters and salts. The amount of free acids in bitumen is very small. The dominant part of bitumen acids is associated with mineral components of the oil shales as well as part of them is included in the mineral matrix, and can be separated only after deep demineralization. The kerogen of the oil shales, obtained after separation of the bitumen fractions and mineral components, was subjected to saponification in order to determine the amount of acids, bound as esters to the kerogen matrix. The major components found were n-carboxylic, {alpha},{omega}-di-carboxylic, and aromatic acids. The connection of kerogen with mineral components is accomplished by the participation of carboxylic and complicated ester bonds. Experimental data for the composition of bitumen acids give evidence that algae and terrestrial materials are initial sources in the formation of soluble organic matter of Bulgarian oil shale. (author)

  8. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  9. Is there widespread metal contamination from in-situ bitumen extraction at Cold Lake, Alberta heavy oil field?

    Science.gov (United States)

    Skierszkan, Elliott K; Irvine, Graham; Doyle, James R; Kimpe, Linda E; Blais, Jules M

    2013-03-01

    The extraction of oil sands by in-situ methods in Alberta has expanded dramatically in the past two decades and will soon overtake surface mining as the dominant bitumen production process in the province. While concerns regarding regional metal emissions from oil sand mining and bitumen upgrading have arisen, there is a lack of information on emissions from the in-situ industry alone. Here we show using lake sediment records and regionally-distributed soil samples that in the absence of bitumen upgrading and surface mining, there has been no significant metal (As, Cd, Cu, Hg, Ni, Pb, V) enrichment from the Cold Lake in-situ oil field. Sediment records demonstrate post-industrial Cd, Hg and Pb enrichment beginning in the early Twentieth Century, which has leveled off or declined since the onset of commercial in-situ bitumen production at Cold Lake in 1985.

  10. Investigation of hydrocarbon components of Yugoslav shale ''bitumen''

    Energy Technology Data Exchange (ETDEWEB)

    Vitorovic, D.; Saban, M.

    1972-02-01

    An investigation of hydrocarbon components in the solid, geolipid portion of Aleksinac shale showed that the n-paraffin fraction consists of a C/sub 13/-C/sub 37/ homologous series with odd-carbon-numbered C/sub 25/-C/sub 37/ members predominating; and that the branched-cyclic fraction contains considerable amounts of phytane and pristane, constituents postulated to be cholestane and coprostane and a series of isoalkanes, and a large number of unidentified components. Two different separation schemes involving extraction, and silica gel and molecular sieve adsorption chromatography were used and analysis was by various gas chromatographic techniques.

  11. Technology experience and economics of oil shale mining in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1995-11-01

    The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

  12. Recultivation work in the oil shale basin of Estonia, USSR

    Energy Technology Data Exchange (ETDEWEB)

    Luik, H.

    1980-01-01

    Soviet Estonia, situated in northwestern USSR has important mineral resources of oil shale, the majority of which is deep-mined. Recultivation of exhausted oil shale pits, begun in 1959, has proceeded at an average of 150 ha/yr. Selective mining is adopted, followed quickly by physical recontouring and cultivation work. Maintenance and improvement of soil fertility is emphasized. Afforestation is the main form of biological recultivation. The most successful trees have been Pinus sylvestris, Betula verrucosa, Larix europea, and Larix japonica.

  13. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  14. Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops.

    Science.gov (United States)

    Wong, Man-Ling; An, Dongshan; Caffrey, Sean M; Soh, Jung; Dong, Xiaoli; Sensen, Christoph W; Oldenburg, Thomas B P; Larter, Steve R; Voordouw, Gerrit

    2015-10-01

    Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity.

  15. Recultivation work in the oil shale basin of Estonia, USSR

    Energy Technology Data Exchange (ETDEWEB)

    Luik, H.

    1980-01-01

    Soviet Estonia is situated in the northwestern part of the Soviet Union. The most important mineral resources are oil shale, phosphorite, peat and construction materials. Oil shale production is about 30 x 10/sup 6/ tonnes a year. The oil shale is partly surface mined but the majority is deep mined. Recultivation of exhausted oil shale pits started in 1959 and has proceeded at an average of 150 ha per annum. In the course of recultivation a process of selective mining is adopted, this is followed quickly by physical recontouring and cultivation work. Particular attention is given to the maintenance and improvement of soil fertility. Afforestation is the main form of biological recultivation with more than 2450 ha of exhausted oil shale workings having been planted. The most successful trees have been Pinus sylvestris, Betula verrucosa, Larix europea and Larix japonica. The development of mining and land use in the oil shale basin is closely regulated. To ensure efficient mining development and to maximise nature conservation and recreation potential a scheme of functional zoning has been drawn up and a policy of progressive recultivation has been adopted.

  16. Oil shale in the United States: prospects for development

    Energy Technology Data Exchange (ETDEWEB)

    Drabenstott, M.; Duncan, M.; Borowski, M.

    1984-05-01

    The development of an oil shale industry has had its ups and downs throughout this century. Despite vast reserves of recoverable shale oil, energy prices usually have been high enough to make extraction of that oil commercially viable. The tripling and then tripling again of world oil prices in the 1970s gave initial promise that development had become economically feasible. After only a few years of rapid development activity, however, the effort was brought to a near-halt by falling world oil prices. The results were a substantial reduction in economic activity for northwestern Colorado and, maybe more importantly, sharply lower expectations for the region's future economic growth. In both the upturn and the downturn, the local public sector was essentially shielded from financial stress because the energy companies helped fund public spending on infrastructure and services. The future for oil shale remains uncertain. A few energy companies continue to pursue their development plans. To spur development of commercial scale plants, Synthetic Fuels Corporation has made loan and price guarantees to energy firms. Some projects may soon be extracting oil, providing needed technological and financial information on various techniques of oil extraction. But the future for oil shale remains clouded by uncertainties regarding the cost of producing syncrude and future oil prices. Environmental issues could also hamper oil shale development. Therefore, oil shale remains, as it has for more than a century, a technical and economic enigma that has only begun to be understood and developed. 8 references, 3 figures, 3 tables

  17. Study of oil and residual fractions in products of thermal destruction of bitumen beds

    Energy Technology Data Exchange (ETDEWEB)

    Diskina, D.Ye.; Kadyrov, M.U.; Shabalina, T.N.; Soldatova, V.G.; Tokareva, R.V.; Tyshchenko, N.Ye.; Usacheva, G.M.; Vigdergauz, M.S.

    1981-01-01

    Investigation of average and heavy fractions derived from thermodestruction products in the bitumen bed at Mordovo-Karmal in Tatariya. Composition of average fractions is characterized by presence of unsaturated and a certain volume of oxygen-containing compounds, as well as high content of S and a low congelation temp. With respect to content of aromatic compounds, these fractions are similar to fractions of sulphurous oils. Residual fractions (..-->..350/sup 0/) were studied by conversion chromatography; these have low values of viscosity, density, content of S (in comparison with the same fractions of Mordovo-Karmal oil). Examines potential directions for utilizing these fractions.

  18. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  19. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    Science.gov (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  20. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G.J.

    1982-02-01

    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current and historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.

  1. 加拿大Athabasca油砂中部分沥青质油不易分离的原因%Origin of Unliberated Bitumen in Athabasca Oil Sands

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM.It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is "unliberated", and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU).Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.

  2. Heavy oil and bitumen : thinking caps on : researchers look at new and greener ways to get at the heavy oil prize

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2008-01-15

    New steam stimulation processes developed by the Alberta Ingenuity Centre for In Situ Energy were discussed. The J-well and gravity-assisted steam stimulation (JAGD) process uses a steam injection well located within the top few metres of a reservoir and a production well comprised of an inclined J-shaped well. JAGD is a transitional cold production-to-thermal-production technology. High pressure steam is used to heat and loosen the bitumen so that it flows to the producer well below. The configuration was designed to cut through mud and shale layers and is suitable for poor quality reservoirs. Simulations conducted in Athabasca reservoirs have demonstrated that JAGD uses approximately 75 per cent of the steam typically used in steam assisted gravity drainage (SAGD) processes. The iSAGD process was designed to reposition parallel wells in order to increase oil mobility. Researchers at the centre are also investigating a catalytic air-stream process called CASPAR which aims to upgrade oil from 10 degrees API to 16 degrees API within the reservoir. The process involves a mixture of heat, catalyst hydrogen, steam, air and water in the reservoir. The process leaves heavier ends of oil underground as well as fractions of greenhouse gases (GHGs). Research is also being conducted on expanding-solvent SAGD (ES-SAGD) a process that adds butane to steam in order to reduce water use. 3 figs.

  3. Aquathermolysis of crude oils and natural bitumen: chemistry, catalysts and prospects for industrial implementation

    Science.gov (United States)

    Tumanyan, B. P.; Petrukhina, N. N.; Kayukova, G. P.; Nurgaliev, D. K.; Foss, L. E.; Romanov, G. V.

    2015-11-01

    The results of studies of alterations in the elemental and SARA compositions and physicochemical and rheological properties of highly viscous heavy crude oils upon catalytic and non-catalytic aquathermolysis are generalized. The chemistry of transformations of model hydrocarbons and heteroatomic compounds in aqueous media at high temperature, including subcritical and supercritical conditions, is considered. Comparative analysis of methods for activation of oil conversion via aquathermolysis using hydrogen donors, oil-soluble and water-soluble nanodispersed catalysts, ionic hydrogenation processes and various ways for reservoir heating is presented. Problems and prospects of oil-field implementation of catalytic aquathermolysis for upgrading heavy oils and natural bitumen are discussed. The bibliography includes 234 references.

  4. The mechanisms of electrical heating for the recovery of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W. [McMillan-McGee Corp., Edmonton, AB (Canada); Vermeulen, F.E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    This paper described the Electro-Thermal Dynamic Stripping Process (ET-DSP), a thermal recovery process in which oil sands are electrically heated. This technology has evolved since the 1970s as an alternative to steam assisted gravity drainage (SAGD) and surface mining of Alberta's oil sands. The heat and mass transfer mechanisms associated with electrical heating were examined along with the gravity forces to better understand how the heated bitumen is recovered from the oil sand. Initially, all fluids are immobile. Heat is created in the oil sand as a current flows through the connate water. This results in a pressure and temperature distribution that is characteristic to an electrical heating process. The electrical heating process changes as the temperature of the oil sand increases and as the bitumen is produced. The heat, mass and electromagnetic fields are strongly coupled and are in a transient state throughout the recovery process. This paper presented the main mechanism for electrical heating in terms of equations. A 3-dimensional quasi-harmonic finite element electromagnetic model was coupled to a mass and energy equation and solved in time. A thermal recovery strategy was then presented in terms of electrode spacing, duration of heating, energy supply and ideal operating conditions.

  5. Cooee bitumen:

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Schrøder, Thomas; Dyre, J. C.

    2013-01-01

    We study chemical aging in “Cooee bitumen” using molecular dynamic simulations. This model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: “2 resins → 1 asphaltene.” Molecular...... dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule are determined for the four...

  6. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  7. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    Science.gov (United States)

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  8. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    Science.gov (United States)

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  9. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  10. SFC status report on major shale oil projects

    Energy Technology Data Exchange (ETDEWEB)

    Zukor, S.H.

    1982-06-01

    The SFC was created by the Energy Security Act on June 30, 1980. Solicitations for financial assistance from the DOE came from Union Oil and the Tosca company, both for projects near Parachute, Colorado. Both projects received DOE assistance. The first SFC solicitations came in 1981. 6 Of 28 solicitations were for shale oil. In January 1983, seven phase I maturity criteria were applied to the projects and the list was reduced to eleven--only one of which was for shale oil. The SFC will now meet to consider which of the eleven projects that met the maturity criteria of Phase I can also meet the six Phase I criteria. Of the shale oil projects that lacked maturity, a brief is included that indicates SFC policy will tradeoff some near-term production for diversity that will enhance long term use.

  11. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  12. Beneficiation-hydroretort processing of US oil shales, engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  13. OIL SHALE ASH UTILIZATION IN INDUSTRIAL PROCESSES AS AN ALTERNATIVE RAW MATERIAL

    OpenAIRE

    Azeez Mohamed, Hussain; Campos, Leonel

    2016-01-01

    Oil shale is a fine-grained sedimentary rock with the potential to yield significant amounts of oil and combustible gas when retorted. Oil shale deposits have been found on almost every continent, but only Estonia, who has the 8th largest oil shale deposit in the world has continuously utilized oil shale in large scale operations. Worldwide, Estonia accounts for 80% of the overall activity involving oil shale, consuming approximately 18 million tons while producing 5–7 million tons of oil sha...

  14. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  15. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...

  16. Robotics and automation for oil sands bitumen production and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2008-07-01

    This presentation examined technical challenges and commercial challenges related to robotics and automation processes in the mining and oil sands industries. The oil sands industry has on-going cost pressures. Challenges include the depths to which miners must travel, as well as problems related to equipment reliability and safety. Surface mines must operate in all weather conditions with a variety of complex systems. Barriers for new technologies include high capital and operating expenses. It has also proven difficult to integrate new technologies within established mining practices. However, automation has the potential to improve mineral processing, production, and maintenance processes. Step changes can be placed in locations that are hazardous or inaccessible. Automated sizing, material, and ventilation systems are can also be implemented as well as tele-operated equipment. Prototypes currently being developed include advanced systems for cutting; rock bolting; loose rock detection systems; lump size estimation; unstructured environment sensing; environment modelling; and automatic task execution. Enabling technologies are now being developed for excavation, haulage, material handling systems, mining and reclamation methods, and integrated control and reliability. tabs., figs.

  17. Tiger Team Assessment of the Naval Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    OpenAIRE

    1992-01-01

    This report documents the Tiger Team Assessment of the Naval Petroleum and Oil Shale Reserves in Colordao, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 (NPR-3) located near Casper, Wyoming; Naval Oil Shale Reserve Number 1 (NOSR-1) and Naval Oil Shale Reserve Number 3 (NOSR-3) located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 (NOSR-2) located near Vernal, Utah, which was not examined as part of this assessment.

  18. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    Science.gov (United States)

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to

  19. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  20. Oil shale research and coordination. Progress report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1981-01-01

    Purpose is to evaluate the environmental and health consequences of the release of toxic trace elements by an oil shale industry. Emphasis is on the five elements As, Mo, F, Se, and B. Results of four years' research are summarized and the research results over the past year are reported in this document. Reports by the task force are included as appendices, together with individual papers on various aspects of the subject topic. Separate abstracts were prepared for the eleven individual papers. A progress report on the IWG oil shale risk analysis is included at the end of this document. (DLC)

  1. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.

    1979-01-01

    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  2. Comparison of the Acceptability of Various Oil Shale Processes

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; McConaghy, J R

    2006-03-11

    While oil shale has the potential to provide a substantial fraction of our nation's liquid fuels for many decades, cost and environmental acceptability are significant issues to be addressed. Lawrence Livermore National Laboratory (LLNL) examined a variety of oil shale processes between the mid 1960s and the mid 1990s, starting with retorting of rubble chimneys created from nuclear explosions [1] and ending with in-situ retorting of deep, large volumes of oil shale [2]. In between, it examined modified-in-situ combustion retorting of rubble blocks created by conventional mining and blasting [3,4], in-situ retorting by radio-frequency energy [5], aboveground combustion retorting [6], and aboveground processing by hot-solids recycle (HRS) [7,8]. This paper reviews various types of processes in both generic and specific forms and outlines some of the tradeoffs for large-scale development activities. Particular attention is given to hot-recycled-solids processes that maximize yield and minimize oil shale residence time during processing and true in-situ processes that generate oil over several years that is more similar to natural petroleum.

  3. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  4. Organic geochemical characterization of Aleksinac oil shale deposit (Serbia)

    Science.gov (United States)

    Gajica, Gordana; Kašanin-Grubin, Milica; Šajnović, Aleksandra; Stojanović, Ksenija; Kostić, Aleksandar; Jovančićević, Branimir

    2016-04-01

    Oil shales represent a good source of energy and industrial raw material. The Aleksinac oil shale deposit is the biggest and most important oil shale deposit in Serbia. It covers an area of over 20 km2, and it has three fields: "Dubrava", "Morava" and "Logorište". The potential reserves of oil shale in the Aleksinac deposit are estimated at about 2.1 billion tons. The genesis of oil shales is associated with the lacustrine depositional environments, which existed from Upper to Lower Miocene. In order to determine the generative potential, type of organic matter (OM) and thermal maturity, Rock-Eval pyrolysis was used. In analyzed oil shale samples the content of total organic carbon (TOC), as a general indicator of petroleum generation potential, range from 1.48 to 29.57%. The content of naturally generated hydrocarbons, expressed as S1 peak from the Rock-Eval pyrolysis in most analyzed samples have extremely low values 0.002-0.28, which indicate low maturity level [1]. The pyrolysable hydrocarbons expressed as S2 peak from the Rock-Eval pyrolysis, represent the potential to generate hydrocarbons and with that the potential of oil generation through thermal decomposition of kerogen. S2 ranging 3.93-141.36 mg HC/g rock is higher than 20 mg HC/g rock and indicates excellent source rock potential [1]. In order to accept a formation as a source rock, it should exhibit TOC more than 0.5 % and sufficient maturity, but also OM types should be suitable for the oil and gas generation. The kerogen type is determined by Hydrogen Index (HI) and diagram HI vs. Tmax (temperature, corresponding to S2 peak maximum). HI in range 265-728 mg HC/g TOC, indicates Type I and Type II kerogen or their mixture i.e. oil prone kerogen [1], whereas only one sample appears to be oil/gas prone (Type II/III). Similar results are obtained by plotting the Tmax against HI. Maturation degree depends on the overall thermal history of the evaluated rocks; it is very important parameter for evaluation

  5. Oil shale production and power generation in Estonia; Economic and environmental dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Barabaner, N.I.; Kaganovich, I.Z. (Estonian Academy of Sciences, Tallinn (Estonia). Inst. of Economics)

    1993-06-01

    Combustive oil shale is the main type of fuel used in Estonian power plants. The economic state of the oil shale mining industry has deteriorated during the last decade. The development of oil shale production and use in power generation is accompanied by severe environmental pollution. The future of shale based power generation in Estonia depends on building new small capacity mines, in conjunction with the renovation and reconstruction of existing power plants and implementing measures to protect the environment. (author)

  6. CFBC to burn oil shale in the northern Negev

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, M.; Podshivalov, V. (Israel Electric Corp., Haifa (Israel)); Wohlfarth, A.; Schwartz, M. (PAMA, Mishov Rotem (Israel))

    1994-09-01

    This paper describes a 525 MWe power station designed to run on a high sulphur, high moisture content oil shale. Fluidized bed combustion is expected to be used by all three of the main 150 MWe units as well as by the initial demonstration unit which is rated at some 75 MWe. (UK)

  7. Alkylthiophenes as sensitive indicators of palaeoenvironmental changes : a study of a Cretaceous oil shale from Jordan

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kohnen, M.E.L.; Rijpstra, W.I.C.; Leeuw, J.W. de

    1990-01-01

    Thirteen samples of the immature, Cretaceous Jurf ed Darawish oil shade (Jordan) were analysed quantitatively for aliphatic hydrocarbons and alkylthiophenes in the bitumens by gas chromatography-mass spectrometry after isolation of appropriate fractions.

  8. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  9. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We

  10. Environmental effects of soil contamination by shale fuel oils.

    Science.gov (United States)

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.

  11. Changes in Texture and Retorting Yield in Oil Shale During Its Bioleaching by Bacillus Mucilaginosus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-qing; REN He-jun; LIU Na; ZHANG Lan-ying; ZHOU Rui

    2013-01-01

    Bioleaching of oil shale by Bacillus mucilaginosus was carried out in a reaction column for 13 d.The pH value of the leaching liquor decreased steadily from 7.5 to 5.5 and the free silicon dioxide concentration reached approximately 200 mg/L in it.Scanning electron microscopy(SEM) observations revealed that a mass of small particles separated from the matrix of oil shale.Energy dispersive spectrometry(EDS) analysis implied that the total content of Si,O,A1 was decreased in the particle area of the matrix.These facts indicate that the silicate was removed,leading to the structural transformation of oil shale.Comparison of the shale oil yields before and after bioleaching illustrated that approximately 10% extra shale oil was obtained.This finding suggests that the demineralisation of the oil shale by silicate bacteria improves shale oil yield.

  12. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  13. Geochemical Features of Shale Hydrocarbons of the Central Part of Volga-Ural Oil and Gas Province

    Science.gov (United States)

    Nosova, Fidania F.; Pronin, Nikita V.; Plotnikova, Irina N.; Nosova, Julia G.

    2014-05-01

    This report contains the results of the studies of shale hydrocarbons from carbonate-siliceous rocks on the territory of South-Tatar arch of Volga-Ural oil and gas province of the East European Platform. The assessment of the prospects of shale hydrocarbon in Tatarstan primarily involves finding of low permeable, poor-porous shale strata that would be rich in organic matter. Basing on the analysis of the geological structure of the sedimentary cover, we can distinguish three main objects that can be considered as promising targets for the study from the point of the possible presence of shale hydrocarbons: sedimentary deposits Riphean- Vendian; Domanicoid high-carbon rocks of Devonian time; sedimentary strata in central and side areas of Kama-Kinel deflection system. The main object of this study is Domanicoid high-carbon rocks of Devonian time. They are mainly represented by dark gray, almost black bituminous limestones that are interbedded with calcareous siliceous shales and cherts. Complex studies include the following: extraction of bitumen from the rock, determination of organic carbon content, determination of the group and elemental composition of the bitumen, gas chromatographic studies of the alkanoic lube fractions of bitumoid and oil, gas chromato-mass spectrometry of the naphthenic lube fractions of bitumoid and oil, pyrolysis studies of the rock using the Rock -Eval method (before and after extraction), study of trace-element composition of the rocks and petrologen, comparison in terms of adsorbed gas and studying of the composition of adsorbed gases. Group and elemental analyses showed that hydrocarbons scattered in the samples contain mainly resinous- and asphaltene components, the share lube fraction is smaller. The terms sediment genesis changed from weakly to strongly reducing. According to the results of gas chromatography, no biodegradation processes were observed. According to biomarker indicators in the samples studied there is some certain

  14. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  15. Bitumen recovery from oil-sand extraction tailings: Part One: Bench-scale tests

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y. H.; Mikhail, M. W.; Salama, A. I. A. [Canada Centre for Mineral and Energy Technology Western Research Centre, Devon, AB (Canada); Burns, B. [Suncor Energy Inc., Calgary, AB (Canada)

    1999-09-01

    Residual bitumen from extraction plant tailings were recovered in bench-scale tests using conventional froth flotation, flotation columns, air-sparged hydrocyclones, and various combinations of these techniques. A flowsheet combining the use of mechanically agitated flotation cells with a stationary separator was developed. Results indicate that this process is effective in recovering bitumen from tailings with low bitumen content. Investigation of the flotation kinetics in a batch flotation cell provided information on the relationship between retention and froth quality. The effect of operating parameters on bitumen flotation and the dispersion of bubbles and bitumen was also examined. Results suggests that properly increasing the turbulence energy level in flotation units will improve the recovery of bitumen by flotation. It is believed that that this is due to the interaction between bitumen droplets and bubbles and the increase in of liquid/air interfacial area. 3 refs., 13 figs.

  16. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Directory of Open Access Journals (Sweden)

    R. Chacón

    2012-03-01

    Full Text Available A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H2, hydrogen sulfide (H2S and ammonia (NH3 in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS and hydrodenitrogenation (HDN and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H2/feed ratio and the inhibiting effect of H2S on HDS and NH3 on HDN.

  17. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  18. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  19. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  20. Preconditioning methods to improve SAGD performance in heavy oil and bitumen reservoirs with variable oil phase viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Gates, I.D. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R.; Adams, J.J.; Snowdon, L.; Jiang, C. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., Calgary, AB (Canada). Dept. of Geoscience

    2008-10-15

    This study investigated preconditioning techniques for altering reservoir fluid properties prior to steam assisted gravity drainage (SAGD) recovery processes. Viscosity-reducing agents were distributed in mobile reservoir water. Simulations were conducted to demonstrate the method's ability to modify oil viscosity prior to steam injection. The study simulated the action of water soluble organic solvents that preferentially partitioned in the oil phase. The solvent was injected with water into the reservoir in a slow waterflood that did not displace oil from the near wellbore region. A reservoir simulation model was used to investigate the technique. Shu's correlation was used to establish a viscosity correlation for the bitumen and solvent mixtures. Solvent injection was modelled by converting the oil phase viscosity through time. Over the first 2 years, oil rates of the preconditioned case were double that of the non-preconditioned case study. However, after 11 years, the preconditioned case's rates declined below rates observed in the non-preconditioned case. The model demonstrated that oil viscosity distributions were significantly altered using the preconditioners. The majority of the most viscous oil surrounding the production well was significantly reduced. It was concluded that accelerated steam chamber growth provided faster access to lower viscosity materials at the top of the reservoir. 12 refs., 9 figs.

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. (Alabama Univ., University, AL (United States)); Chiang, S.H.; Venkatadri, R. (Pittsburgh Univ., PA (United States)); Misra, M. (Nevada Univ., Reno, NV (United States))

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  2. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.W. (REM Engineering Services, Morgantown, WV); Shadle, L.J.; Hill, D. (REM Engineering Services, Morgantown, WV)

    2007-01-01

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  3. Assessment of Physicochemical Properties of some Bitumens from ...

    African Journals Online (AJOL)

    natural bitumen resources and potentials for sustained production of bitumen in large quantity, but basic applicable public ... sands, lean sands, shales and heavy crudes. (FMSMD, 2006). .... whilst taking care to prevent local overheating and.

  4. Modelling the drying of a parallelepipedic oil shale particle

    Energy Technology Data Exchange (ETDEWEB)

    Porto, P.S.S.; Lisboa, A.C.L. [State University of Campinas (UNICAMP), SP (Brazil). School of Chemical Engineering], Emails: porto@feq.unicamp.br, lisboa@feq.unicamp.br

    2005-04-15

    A numerical model is proposed to describe the process of drying a parallelepipedic oil shale particle. Assuming Fick's law, the diffusion equation for the shape of the particle was used. The objective of the study was to develop a computer program in Fortran to estimate the moisture content of an oil shale particle undergoing drying as a function of time and position. The average moisture content was also obtained. The model takes into account the migration of water by diffusion within the solid and its loss at the interface. The model results were compared to experimental data from an apparatus which measured the mass loss of a particle. The apparatus comprised an electronic balance attached by a thin wire to the particle placed inside an incubator. (author)

  5. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  6. Porous structure and specific surface of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Lopachenok, L.V.; Belyanin, Yu.I.; Proskuryakov, V.A.

    1976-01-01

    The total oil shale pore volume, measured by mercury porometry and benzene picnometry, was 0.157 cu m/g (0.225 cc/cc), with 62% of it made up of 200 to 600 angstrom pores and 3.2% of pores below 31.4 angstroms. The oil shale and kerogen specific surface, measured by low-temperature adsorption of radioactive krypton, decreased from 8.7 to 4.1 sq m/g with increase in the organic matter content from 29 to 97.16%. Crushing in a ball mill changed only the particle external surface and thus did not increase adsorptivity relative to flotation concentration reagents.

  7. Subsidence prediction in Estonia's oil shale mines

    Energy Technology Data Exchange (ETDEWEB)

    Pastarus, J.R. [Tallinn Technical University, Tallinn (Estonia); Toomik, A. [Institute of Ecology, Johvi (Estonia)

    2000-07-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs.

  8. Modelling the drying of a parallelepipedic oil shale particle

    Directory of Open Access Journals (Sweden)

    P. S. S. Porto

    2005-06-01

    Full Text Available A numerical model is proposed to describe the process of drying a parallelepipedic oil shale particle. Assuming Fick's law, the diffusion equation for the shape of the particle was used. The objective of the study was to develop a computer program in Fortran to estimate the moisture content of an oil shale particle undergoing drying as a function of time and position. The average moisture content was also obtained. The model takes into account the migration of water by diffusion within the solid and its loss at the interface. The model results were compared to experimental data from an apparatus which measured the mass loss of a particle. The apparatus comprised an electronic balance attached by a thin wire to the particle placed inside an incubator.

  9. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J H; Huss, E B; Ott, L L; Clarkson, J E; Bishop, M O; Taylor, J R; Gregory, L J; Morris, C J

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data in a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.

  10. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J H; Huss, E B; Ott, L L; Clarkson, J E; Bishop, M O; Taylor, J R; Gregory, L J; Morris, C J

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data in a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.

  11. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  12. Paraho oil shale module. Site development plan, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  13. Revegetation research on oil shale lands in the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.; Cook, C.W.

    1981-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  14. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI`s archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970`s and early 1980`s. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  15. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  16. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  17. Geology of the oil shales of Messel near Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G.

    1966-07-25

    The oil shale, with a thickness of nearly 190 m, represents the middle part of the strata of Messel. Freshly mined, it consists of about 40% water and about 25% organic matter. The rest are clay minerals, chiefly montmorillonite. Kaolinite, messelite, vivianite, pyrites, markasite, siderite, and gypsum occur in small quantities. The organic components are kerogens which are extraordinary rich in oxygen. They are tied adsorptively to montmorillonite. The bitumina are supposed to be chiefly derived from algae, in a smaller extent from fungi and pollen. Plants as well as the large ganoid fishes and the crocodiles indicate a tropical to subtropical climate and a larger extent of the former water system. The oil shales of Messel are preserved in a tectonic graben that is 1,000 m long and up to 700 m wide. This graben is divided into 3 depressions. Both depressions are close together in the south and diverge northward. The ground water lifted in the open mining shows high degrees of total hardness and unusual high sulfate and phosphate contents. These matters can be derived from the weathering events in the exposed oil shale. (133 refs.)

  18. Dioxin emission from two oil shale fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Herrmann, T. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Roots, O. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. The two power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85% of the total consumption of oil shale in the country. These power plants are the world's largest thermal power stations burning low-grade oil shale. These measurements of dioxin air emission from oil shale fuelled plants are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from oil shale power plants in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region.

  19. The extraction of bitumen from western tar sands. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  20. The extraction of bitumen from western tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  1. Energy supply strategy: getting technology commercialized, shale oil and enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Steger, J.E.; Sullo, P.; Michaelis, M.; Nason, H.K.

    1979-12-01

    Purpose is to identify factors inhibiting the near-term investment of industrial funds for producing oil from shale and through enhanced oil recovery, and to estimate the investment and production which would result if these deterrents were removed and suitable incentives provided. The barriers are discussed under the following categories: economic, environmental, institutional/regulatory, and technical. (DLC)

  2. MAPPING POTENTIAL AREAS OF GROUND SUBSIDENCE IN ESTONIAN UNDERGROUND OIL SHALE MINING DISTRICT

    OpenAIRE

    Valgma, Ingo

    1999-01-01

    Northeast part of Estonia has been subject to oil shale mining since 1916. Oil shale as main source for power industry in Estonia is mined in amount of 12 million tonnes per year. The underground production rate is about 6 million tonnes of the mineral annually. Currently three open casts and six underground mines are operating, hi past 6 underground oil shale mines have been closed. Totally 979 million tonnes of rock, including oil shale has been mined underground. Today, about 305 km2 area ...

  3. Oil shale in the Piceance Basin: an analysis of land use issues

    Energy Technology Data Exchange (ETDEWEB)

    Rubenson, D.; Pei, R.

    1983-07-01

    The purpose of this study was to contribute to a framework for establishing policies to promote efficient use of the nation's oil shale resources. A methodology was developed to explain the effects of federal leasing policies on resource recovery, extraction costs, and development times associated with oil shale surface mines. This report investigates the effects of lease size, industrial development patterns, waste disposal policies, and lease boundaries on the potential of Piceance Basin oil shale resource. This approach should aid in understanding the relationship between federal leasing policies and requirements for developing Piceance Basin oil shale. 16 refs., 46 figs. (DMC)

  4. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, December 1991--February 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1992-03-01

    The objective is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Easter oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. Accomplishments for this period are presented for the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. 24 figs., 19 tabs. (AT)

  5. Depositional Environment of the Sangkarewang Oil Shale, Ombilin Basin, Indonesia

    Directory of Open Access Journals (Sweden)

    Komang Anggayana

    2014-12-01

    Full Text Available Five samples from 56 m long drill core of lacustrine Sangkarewang oil shale have been studied by means of petrography and organic geochemistry to investigate the organic matter composition and depositional environments of the shale. The organic matter consists of abundant lamalginite (30%, v/v and very limited amount of vitrinite, suggesting aquatic depositional environments with minor terrestrial influence. Organic geochemical analysis exhibits the dominance of pristane, phytane, and generally n-alkanes compounds. These compounds might originate mostly from aquatic photosynthetic organisms. The oil shale was likely deposited in anoxic lake environments, suggested by the presence of framboidal pyrite (6%, v/v and preserved organic matter with total organic carbon (TOC about 4.9%. The pristane/phytane ratio is relatively high about 3.9 and thought as source sensitive rather than redox sensitive. Hopanoid and aryl isoprenoid compounds are present in minor amounts. The latter compounds are interpreted to be derived from green sulfur bacteria dwelling in anoxic and the presence of H2S in bottom water.

  6. Geochemical features and genesis of the natural gas and bitumen in paleo-oil reservoirs of Nanpanjiang Basin, China

    Institute of Scientific and Technical Information of China (English)

    ZHAO MengJun; ZHANG ShuiChang; ZHAO Lin; DA Jiang

    2007-01-01

    Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argillaceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000-4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.

  7. Geochemical features and genesis of the natural gas and bitumen in paleo-oil reservoirs of Nanpanjiang Basin, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argilla- ceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000--4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.

  8. Dioxin and PAH emissions from a shale oil processing plant in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, O.; Jensen, A.A. [FORCE Technology, Soborg (Denmark); Roots, O. [Estonian Environmental Research Centre (EERC), Tallinn (Estonia); Herrmann, T. [ERGO Forschungsgesellschaft GmbH, Hamburg (Germany); Tordik, A. [AS Narva Elektrijaamad, Narva (Estonia)

    2004-09-15

    In March 2003, dioxin emissions were measured from a shale oil producing plant located near the city of Narva in Estonia. The measurement was a part of a project on measuring the dioxin emission from four oil shale fired boilers at two power plants located near the city of Narva in Estonia. These power plants produce more than 90% of the electricity consumption in Estonia by combusting more than 10 million tons of oil shale per year, which is around 85 % of the total consumption of oil shale in the country. The oil plant is the second largest consumer of oil shale, with an annual consumption of around 800,000 ton. Two other smaller plants producing oil from oil shale is known to exist in Estonia, and one in Australia. These measurements of dioxin air emission from oil shale pyrolysis are the first performed in Estonia. The aim of the measurements was to get background data for the estimation of the annual dioxin emission from the use of oil shale in pyrolysis processes in Estonia, in order to improve or qualify the estimation based on emissions factors for large coal fired power stations given in the recent DANCEE Project: Survey of anthropogenic sources of dioxins in the Baltic Region. The Danish environmental assistance to Eastern Europe (DANCEE) has sponsored the project, and dk-TEKNIK ENERGY and ENVIRONMENT (now FORCE Technology) was responsible for the measurements, which where conducted in cooperation with EERC in Tallinn.

  9. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R.; Canale, A.; Bouza, A. [Departamento de Termodinamica y Fenomenos de Transporte. Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Sanchez, Y. [Departamento de Procesos y Sistemas. Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2012-01-15

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H{sub 2}), hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H{sub 2}/feed ratio and the inhibiting effect of H{sub 2}S on HDS and NH{sub 3} on HDN. (author)

  10. Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Susanjib; Kumar, Amit [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2010-02-15

    In this study, forest residues (limbs, tops, and branches) and straw (from wheat and barley) are considered for producing biohydrogen in Western Canada for upgrading of bitumen from oil sands. Two types of gasifiers, namely, the Battelle Columbus Laboratory (BCL) gasifier and the Gas Technology Institute (GTI) gasifier are considered for biohydrogen production. Production costs of biohydrogen from forest and agricultural residues from a BCL gasification plant with a capacity of 2000 dry tonnes/day are 1.17 and 1.29/kg of H{sub 2}, respectively. For large-scale biohydrogen plant, GTI gasification is the optimum technology. The delivered-biohydrogen costs are 2.19 and 2.31/kg of H{sub 2} at a plant capacity of 2000 dry tonnes/day from forest and agricultural residues, respectively. Optimum capacity for biohydrogen plant is 3000 dry tonnes/day for both residues in a BCL gasifier. In a GTI gasifier, although the theoretical optimum sizes are higher than 3000 dry tonnes/day for both feedstocks, the cost of production of biohydrogen is flat above a plant size of 3000 dry tonnes/day. Hence, a plant at the size of 3000 dry tonnes/day could be built to minimize risk. Carbon credits of 119 and 124/tonne of CO{sub 2} equivalent are required for biohydrogen from forest and agricultural residues, respectively. (author)

  11. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    Science.gov (United States)

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  12. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI's archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970's and early 1980's. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  13. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  14. Flow of products of thermal decomposition of oil shale through porous skeleton

    Science.gov (United States)

    Knyazeva, A. G.; Maslov, A. L.

    2016-11-01

    Oil shale is sedimentary rock formed by the accumulation of pelagic sediments, minerals and their further transformation. Experimental investigation of shale decomposition is very complex and expensive. The model of underground oil shale retorting is formulated in this paper. Model takes into account the reactions in solid phase and in fluid, mass and heat exchange, gaseous product flow in pores. Example of the numerical solution of the developed system of equations for the particular problem is shown.

  15. Inflation and government indecisiveness: key deterrents to significant shale oil production by 1985

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    This work examines the progress of the shale oil industry in its efforts to achieve production of synthetic crude oil from oil shale on a profitable, commercial basis. A projection is made regarding the ability of the shale oil industry to produce 1,000,000 bbl of synthetic crude oil by 1985. That year was chosen because of the long lead time required to obtained leases; to acquire investment capital; to gain approval of environmental impact documents; and to acquire the equipment and construct plants of sufficient magnitude to be economically feasible. 31 references.

  16. Effect of mineral matter and phenol in supercritical extraction of oil shale with toluene

    Science.gov (United States)

    Abourriche, A.; Ouman, M.; Ichcho, S.; Hannache, H.; Pailler, R.; Naslain, R.; Birot, M.; Pillot, J.-P.

    2005-03-01

    In the present work, Tarfaya oil shale was subjected to supercritical toluene extraction. The experimental results obtained show clearly that the mineral matter and phenol have a significant effect on the yield and the composition of the obtained oil.

  17. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  18. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals.

  19. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  20. Purification of Indonesian oil sands bitumen%印尼油砂沥青的净化工艺

    Institute of Scientific and Technical Information of China (English)

    罗宽勇; 韩冬云; 李福起; 石薇薇; 庞海全; 曹祖宾

    2016-01-01

    溶剂萃取法分离油砂制得油砂沥青中含大量机械杂质,影响沥青的品质及后期加工利用。通过XRD和激光粒度仪表征了机械杂质的矿物组成和粒度分布等特性。针对机械杂质的特性,开发了复配试剂,通过稀释剂降黏沥青、复配试剂净化沥青、稀释剂回收再生及循环利用3个操作单元对油砂沥青进行了脱杂净化实验,并分析了净化机理。结果表明:降黏过程,温度70℃、时间10min、稀释剂与沥青比0.3g/g,稀释沥青70℃黏度为3.2Pa·s;净化过程,6%盐酸与稀释沥青比0.2mL/g、CaCl2与稀释沥青比0.01g/g,温度70℃,混合时间10min,沉降时间20min,机械杂质脱除率可达到93.5%;回收及循环过程,稀释剂回收率为98%,循环使用5次,机械杂质脱除率仍92%以上。该工艺具有沉降时间短、机械杂质脱除彻底的优点。%Oil sands bitumen obtained from solvent extraction contained a great amount of mechanical impurities(MI),which was harmful to the post processing of bitumen. The characterization of mineral components of MI by XRD and particle size distribution of MI by laser particle analyzer were presented. Compound reagent was developed for the removal of MI and the reaction mechanism was presented. The technology consisted of three steps,namely,dilution of bitumen by diluent(P1), purification of diluted bitumen by compound reagent(P2)and recovery of diluent(P3). In P1,under the optimal reaction conditions of 70℃,10min,m(diluent)/m(bitumen)=0.3g/g,the viscosity of diluted bitumen at 70℃ was 3.2Pa·s. In P2,under the optimal reaction conditions ofV(HCl,6%)/m(diluted bitumen)=0.2mL/g,m(CaCl2)/m(diluted bitumen)=0.01g/g,70℃,mixing time 10min,settling time 20min,the mechanical impurities removal rate(MIRR)could reach 93.5%. In P3,the recovery rate of diluent was 98%,MIRR remained above 92% after diluent being recycled 5 times. The technology has the advantages of short

  1. Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Debenest, T; Turcotte, P; Gagné, F; Gagnon, C; Blaise, C

    2012-05-15

    The exploitation of Athabasca oil sands deposits in northern Alberta has known an intense development in recent years. This development has raised concern about the ecotoxicological risk of such industrial activities adjacent to the Athabasca River. Indeed, bitumen extraction generated large amounts of oil sands process-affected water (OSPW) which are discharged in tailing ponds in the Athabasca River watershed. This study sought to evaluate and compare the toxicity of OSPW and oil sands lixiviate water (OSLW) with a baseline (oil sands exposed to water; OSW) on a microalgae, Pseudokirchneriella subcapitata, at different concentrations (1.9, 5.5, 12.25, 25 and 37.5%, v/v). Chemical analyses of water-soluble contaminants showed that OSPW and OSLW were enriched in different elements such as vanadium (enrichment factor, EF=66 and 12, respectively), aluminum (EF=64 and 15, respectively), iron (EF=52.5 and 17.1, respectively) and chromium (39 and 10, respectively). The toxicity of OSPW on cells with optimal intracellular esterase activity and chlorophyll autofluorescence (viable cells) (72h-IC 50%37.5%, v/v). OSLW was 4.4 times less toxic (IC 50%=8.5%, v/v) than OSPW and 4.5 times more toxic than OSW. The inhibition of viable cell growth was significantly and highly correlated (copper, lead, molybdenum and vanadium concentrations. The specific photosynthetic responses studied with JIP-test (rapid and polyphasic chlorophyll a fluorescence emission) showed a stimulation of the different functional parameters (efficiency of PSII to absorb energy from photons, size of effective PSII antenna and vitality of photosynthetic apparatus for energy conversion) in cultures exposed to OSPW and OSLW. To our knowledge, our study highlights the first evidence of physiological effects of OSPW and OSLW on microalgae. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  2. Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T., E-mail: tdebenest@yahoo.fr [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Turcotte, P. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagne, F., E-mail: francois.gagne@ec.gc.ca [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagnon, C.; Blaise, C. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada)

    2012-05-15

    The exploitation of Athabasca oil sands deposits in northern Alberta has known an intense development in recent years. This development has raised concern about the ecotoxicological risk of such industrial activities adjacent to the Athabasca River. Indeed, bitumen extraction generated large amounts of oil sands process-affected water (OSPW) which are discharged in tailing ponds in the Athabasca River watershed. This study sought to evaluate and compare the toxicity of OSPW and oil sands lixiviate water (OSLW) with a baseline (oil sands exposed to water; OSW) on a microalgae, Pseudokirchneriella subcapitata, at different concentrations (1.9, 5.5, 12.25, 25 and 37.5%, v/v). Chemical analyses of water-soluble contaminants showed that OSPW and OSLW were enriched in different elements such as vanadium (enrichment factor, EF = 66 and 12, respectively), aluminum (EF = 64 and 15, respectively), iron (EF = 52.5 and 17.1, respectively) and chromium (39 and 10, respectively). The toxicity of OSPW on cells with optimal intracellular esterase activity and chlorophyll autofluorescence (viable cells) (72 h-IC 50% < 1.9%) was 20 times higher than the one of OSW (72 h-IC 50% > 37.5%, v/v). OSLW was 4.4 times less toxic (IC 50% = 8.5%, v/v) than OSPW and 4.5 times more toxic than OSW. The inhibition of viable cell growth was significantly and highly correlated (<-0.7) with the increase of arsenic, beryllium, chromium, copper, lead, molybdenum and vanadium concentrations. The specific photosynthetic responses studied with JIP-test (rapid and polyphasic chlorophyll a fluorescence emission) showed a stimulation of the different functional parameters (efficiency of PSII to absorb energy from photons, size of effective PSII antenna and vitality of photosynthetic apparatus for energy conversion) in cultures exposed to OSPW and OSLW. To our knowledge, our study highlights the first evidence of physiological effects of OSPW and OSLW on microalgae.

  3. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We

  4. Developments in CO2 mineral carbonation of oil shale ash.

    Science.gov (United States)

    Uibu, M; Velts, O; Kuusik, R

    2010-02-15

    Solid waste and atmospheric emissions originating from power production are serious problems worldwide. In the Republic of Estonia, the energy sector is predominantly based on combustion of a low-grade carbonaceous fossil fuel: Estonian oil shale. Depending on the combustion technology, oil shale ash contains 10-25% free lime. To transport the ash to wet open-air deposits, a hydraulic system is used in which 10(7)-10(8) cubic meters of Ca(2+)-ion-saturated alkaline water (pH level 12-13) is recycled between the plant and sedimentation ponds. The goals of the current work were to design an ash-water suspension carbonation process in a continuous mode laboratory-scale plant and to search for potential means of intensifying the water neutralization process. The carbonation process was optimized by cascading reactor columns in which the pH progressed from alkaline to almost neutral. The amount of CO(2) captured from flue gases can reach 1-1.2 million ton at the 2007 production level of the SC Narva Power Plants. Laboratory-scale neutralization experiments were carried out to compare two reactor designs. Sedimentation of PCC particles of rhombohedral crystalline structure was demonstrated and their main characteristics were determined. A new method providing 50x greater specific intensity is also discussed.

  5. Environmental hazard of oil shale combustion fly ash.

    Science.gov (United States)

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Oxidation of visbreaker bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Saporito, S.

    1989-07-01

    A series of oxidation tests was carried out on a small-scale blowing unit fed with two different visbreaker (VB) bitumens, and with two straight-run (SR) soft bitumens for reference. The purpose was to study the possibility of applying the blowing process to VB feeds, and to evaluate process kinetics and product characteristics. The results showed that industrial blowing of VB bitumens is feasible and that the rate of reaction can be expressed by a first order equation with respect to change in softening point. Production of distillate oils was quite high, especially when iron trichloride was used as a catalyst; in industrial application it is suggested that VB bitumens may be oxidized without any catalyst, the kinetics of the non-catalytic process being satisfactory. Air consumption was unsteady compared with the SR operation, and plugging of the air coil was more frequent. 20 refs., 3 figs., 3 tabs.

  7. Experience and prospects of oil shale utilization for power production in Russia

    Science.gov (United States)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  8. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Thiéry, Vincent, E-mail: vincent.thiery@mines-douai.fr [Mines Douai, LGCgE-GCE, F-59508 Douai (France); Université de Lille (France); Bourdot, Alexandra, E-mail: alexandra.bourdot@gmail.com [Mines Douai, LGCgE-GCE, F-59508 Douai (France); Bulteel, David, E-mail: david.bulteel@mines-douai.fr [Université de Lille (France)

    2015-08-15

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements.

  9. Assessment of industry needs for oil shale research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  10. Geological characteristics and resource potentials of oil shale in Ordos Basin, Center China

    Energy Technology Data Exchange (ETDEWEB)

    Yunlai, Bai; Yingcheng, Zhao; Long, Ma; Wu-jun, Wu; Yu-hu, Ma

    2010-09-15

    It has been shown that not only there are abundant oil, gas, coal, coal-bed gas, groundwater and giant uranium deposits but also there are abundant oil shale resources in Ordos basin. It has been shown also that the thickness of oil shale is, usually, 4-36m, oil-bearing 1.5%-13.7%, caloric value 1.66-20.98MJ/kg. The resource amount of oil shale with burial depth less than 2000 m is over 2000x108t (334). Within it, confirmed reserve is about 1x108t (121). Not only huge economic benefit but also precious experience in developing oil shale may be obtained in Ordos basin.

  11. Technical-economic parameters of the new oil shale mining-chemical complex in Northeast Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmiv, I. [Estonian Oil Shale Company ' Eesti Polevkivi, Johvi (Estonia); Fraiman, J. [Mining Engineer, Kohtla-Jarve (Estonia)

    2006-05-15

    The history of oil shale mining in Estonia has reached its century mark. Three oil shale branches have been formed and have been working on the basis of Estonian oil shale deposits: the mining industry (underground and surface extraction), the power industry (heat and electric energy generation), and the chemical industry (gas and synthetic oils). The authors attempted to summarize the experience of the activities of these branches and to make into a whole the results of their research developments in the past years, as well as to form a notion about perspectives of oil shale in Estonia. Variants of the mining-chemical oil shale complex production and trade patterns differed from used ones. Mining methods, thermal processing of oil shale, and solid, liquid, and gas waste recovery have been studied, analyzed, and worked out up to the present. Setting up a flexible trade structure within the framework of that complex is considered the main economic mechanism capable of balancing production costs of such a complex with its earnings, which could respond properly to any, even peak, fluctuations of the market for final products processed from oil shale. Data of the working 'Estonia' oil shale mine were used as the basis of the analysis and practical conclusions. Information on the mine being projected in the region of Ojamaa in the northeast of Estonia was taken as the data of the worthwhile supplier. Oil shale processing chemical complex is considered in two structural alternatives: in technological chain with the 'Estonia' mine (the first variant), and the projected mine of a new technical level (the second variant). (author)

  12. Reclamation studies on oil shale lands in northwestern Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.W.; Redente, E.F.

    1980-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Some of the more significant results are: (1) a soil cover of at least 61 cm in conjunction with a capiallary barrier provided the best combination of treatments for the establishment of vegetation and a functional microbial community, (2) aboveground production values for native and introduced species mixtures are comparable after three growing seasons, (3) cover values for native species mixtures are generally greater than for introduced species, (4) native seed mixtures, in general, allow greater invasion to occur, (5) sewage sludge at relatively low rates appears to provide the most beneficial overall effect on plant growth, (6) cultural practices, such as irrigated and mulching have significant effects on both above- and belowground ecosystem development, (7) topsoil storage after 1.5 years does not appear to significantly affect general microbial activities but does reduce the mycorrhizal infection potential of the soil at shallow depths, (8) populations of mycorrhizal fungi are decreased on severely disturbed soils if a cover of vegetation is not established, (9) significant biological differences among ecotypes of important shrub species have been identified, (10) a vegetation model is outlined which upon completion will enable the reclamation specialist to predict the plant species combinations best adapted to specific reclamation sites, and (11) synthetic strains of two important grass species are close to development which will provide superior plant materials for reclamation in the West.

  13. Technology Status of Extracting Bitumen from Oil Sand using Hot alkaline Water%油砂沥青热碱水萃取分离技术现状

    Institute of Scientific and Technical Information of China (English)

    罗茂; 耿安松; 廖泽文

    2011-01-01

    作为非常规石油资源的油砂受到愈来愈多的重视.本文评述了世界油砂资源开发现状和中国油砂资源的利用前景,总结了工业上成熟的油砂沥青热碱水萃取技术分离沥青的流程,论述了热碱水萃取过程中沥青与矿物、粘土和气泡之间相互作用及其对沥青分离效率的影响;全面总结了油砂沥青热碱水萃取过程中温度、pH值、多价阳离子和加工助剂等物理化学条件对沥青与矿物之间相互作用和沥青有效分离的影响.最后指出油砂沥青热碱水萃取分离的最优化实验技术研究是值得进一步深入研究的方向,原子力显微镜的运用和不同萃取技术的综合运用将在改善沥青的萃取分离效果上发挥作用.%As an unconventional fuel resource, tar sand is widely considered to be an important supplement for oil production in the near future due to the skyrocketing price of crude oil and the increasing demand of fuel resources in the world. This paper reviewed oil sand utilization worldwide and the prospect of oil sand exploitation in China.The commercial procedures for hot water based bitumen extraction and subsequent bitumen purification were reviewed. Interactions of bitumen-minerals, bitumen-clay and bitumen-gas bubbles were discussed. The effect of various physical, chemical parameters, such as water temperature, pH value, metal ions in the slurring water and various processing additives, to the interactions of bitumen-mineral and the final recovery of bitumen is systematically summarized. The reviewers believed that finding optimized technique for the hot water based bitumen extraction and separation will be a potential future research focus, and believed that application of Atom Force Microscopy and synthetic utilization of various extraction methods will play an important role in enhancing oil sand bitumen extraction.

  14. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    Energy Technology Data Exchange (ETDEWEB)

    Albulescu, P.; Mazzella, G.

    1987-06-01

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  15. In-situ bitumen extraction associated with increased petrogenic polycyclic aromatic compounds in lake sediments from the Cold Lake heavy oil fields (Alberta, Canada).

    Science.gov (United States)

    Korosi, Jennifer B; Cooke, Colin A; Eickmeyer, David C; Kimpe, Linda E; Blais, Jules M

    2016-11-01

    Most future growth in the Alberta bituminous sands will be based on thermal in-situ recovery technologies. To date, however, most attention on the environmental effects of bitumen recovery has focused on surface mining in the Athabasca region. Recent uncontrolled bitumen flow-to-surface incidents (FTS; appearance at the surface of bitumen emulsions from deep subsurface recovery zones) reported at the Cold Lake heavy oil fields highlight the need to better understand the potential role of in-situ extraction as a source of contaminants to landscapes and surface waters. We analyzed sediment cores from a lake located ∼2 km away from a recent bitumen FTS incident to provide a long-term perspective on the delivery of metals, polycyclic aromatic compounds (PACs), and polychlorinated biphenyls (PCBs) to surface freshwaters, and to assess whether the onset of local in-situ bitumen extraction can be linked to contaminant increases in nearby lakes. An increase in alkyl PACs coincided with the onset and expansion of commercial in-situ bitumen extraction, and multiple lines of evidence indicate a petrogenic source for recent alkyl PAC enrichment. However, no coincident increase in vanadium (enriched in bitumen) occurred that would suggest the source of petrogenic PAC enrichment is direct input of bituminous particles. Our results show that, similar to surface mining in the Athabasca region, activities associated with in-situ extraction can increase the burden of petrogenic PACs in nearby lakes, but many questions still remain regarding the exact sources and pathways of PACs into the environment. Given that more than 80% of Alberta's bitumen reserves can only be accessed using in-situ technologies, we recommend that this be made a research priority.

  16. THE SURFACE MINER SUSTAINABLE TECHNOLOGY INTRODUCTION FOR OIL-SHALE MINING IN ESTONIA

    OpenAIRE

    Nikitin, Oleg; Väli, Erik; Sabanov, Sergei; Pastarus, Jyri-Rivaldo

    2007-01-01

    The paper introduces a high-selective oil-shale mining technology and the first results of surface miner Wirtgen 2500SM tests. The technology allows to decrease oil-shale loses from 10-15% up to 5-7%. Mining process of the surface miner has a lower disturbing impact, which is topical in open pits and quarries especially in densely populated areas. The low level of dust and noise emissions and also very’ low vibration are arguments to mine oil shale with surface miner instead of drilling-blast...

  17. Survival of the Unfit : Path Dependence and the Estonian Oil Shale Industry

    OpenAIRE

    HOLMBERG Rurik

    2008-01-01

    Estonia is the only country in the world, which is totally dependent on oil shale in its energy system. Although this fossil fuel exists in enormous quantities around the world, it has so far not been utilized on a larger scale. The reasons for this have been both economic and, in recent times, ecological. It can therefore be argued that in most cases, oil shale represents an inferior solution compared to other energy sources. This work examines why a technology utilizing oil shale has develo...

  18. Multiscale Characterization of Geological Properties of Oil Shale

    Science.gov (United States)

    Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.

    2015-12-01

    Detailed characterization of geologic properties of oil shale is important for predictive modeling of geomechanics as well as heat and mass transfer in these geomaterials. Specifically, quantitative knowledge of the spatial distribution of thermal, hydraulic, and mechanical properties is requisite. The primary parameter upon which these properties strongly depend is kerogen content. We have developed a simple but accurate method for quantifying the spatial distribution of kerogen content, spanning scales from a few microns to a hundred feet. Our approach is based on analyzing raw optical images. Promising results regarding the viability of this approach, based on comparison with lab measurements, are presented for the well-known Mahogany Zone of the Green River Formation, Utah. A combination of Scanning Electron Microscopy (SEM) and appropriately chosen mixing rules allows for the quantification of thermal, hydraulic, and mechanical properties with micron-scale resolution. Numerical upscaling can subsequently produce averaged properties at the scale of individual grid blocks in field-scale simulators.

  19. Thermodynamically consistent model of brittle oil shales under overpressure

    Science.gov (United States)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  20. Market Efficiency in the Crude Oil Futures Market - an Empirical Study after the Shale Oil Revolution

    OpenAIRE

    Lade, Ragne Myrhol

    2016-01-01

    This thesis has studied efficiency in the crude oil futures market for WTI and the Brent Blend for a period including the “shale oil revolution”. The main objective was to provide new information by investigating a period in time not much explored in already published articles. Furthermore, the thesis sought to close a gap of earlier empirical studies performed, by combining the two crude oil types and including up to 6 months maturities for futures contracts, while at the same time having a ...

  1. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.; Schmidt, Andrew J.; Schaub, Tanner M.

    2017-02-17

    We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared to either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.

  2. The influence of solvent and demulsifier additions on nascent froth formation during flotation recovery of Bitumen from Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Stasiuk, E.N. [Chemistry Department, University of Calgary, Calgary, AB (Canada); Schramm, L.L. [Petroleum Recovery Institute, Alberta Research Council, 250 Karl Clark Road , T6N 1E4 Edmonton, AB (Canada)

    2001-10-25

    In the commercial slurry conditioning and flotation process applied to Athabasca oil sands the primary bituminous froth can contain significant amounts of emulsified water and suspended solids. Previous work [Fuel Process. Technol. 56 (1998) 243] has shown that a small chemical addition during the nascent froth process can yield froth of higher quality, without sacrificing bitumen recovery or increasing tight emulsion-forming tendency. In the present work we have investigated the addition of demulsifiers, mostly water-in-oil (W/O) emulsion breaking agents, in an attempt to encourage water droplet coalescence and separation from nascent froth. It was found that certain combinations of high HLB surfactants and solvents can be added in small amounts during the nascent froth process to cause significant reductions in froth water content without sacrificing bitumen recovery. The existence of an optimum surfactant concentration for such beneficial additives correlates with a minimum in interfacial tension and is consistent with conventional oilfield demulsifier experience. The application of our results could lead to a substantial increase in the throughput capacity of froth handling and treatment plants.

  3. The Vapex process: non-thermal recovery of bitumen and heavy oil for improved economics and climate change advantage

    Energy Technology Data Exchange (ETDEWEB)

    Luhning, R.W. [Petroleum Recovery Inst., Calgary, AB (Canada); Luhning, C.P. [Suncor Energy Inc., Calgary, AB (Canada)

    1999-07-01

    The Vapex process, the injection of a combination of vaporized solvents into heavy oil and bitumen reservoirs for in situ recovery of the oil is discussed. In the process, the oil is diluted with the solvent, causing the oil's viscosity to be reduced thus enabling the oil to drain into the horizontal production well. The process is non-thermal, i.e. it does not require the reservoir to be heated, hence it has the potential to greatly reduce greenhouse gas emissions, a necessary feature of thermal processes used to enhance the recovery of oil sands and heavy oils. The economic advantages of the Vapex process are demonstrated on the basis of experimental results from three reservoirs and field scale numerical simulation. An overview of the integrated physical model, numerical simulation, facilities design, well specifications and production/transportation/marketing work that underlie the economic calculations is provided. A substantial experimental field pilot plant to validate the preliminary results and to test the assumptions about the Vapex process is under consideration. 15 refs., 6 tabs, 13 figs.

  4. Mechanism of Solid Bitumen in Silurian Sandstones of Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Zhang Jinglian; Zhu Bingquan

    1997-01-01

    @@ There are a large amount of solid bitumen within Silurian sandstones in Tabei, Tazhong, Kalpin uprifts of the Tarim Basin. Petroleum geochemists are interested in the super giant fossil oil pool. Unfortunately,some key questions have not been solved, such as: what generated the bitumen? When did the bitumen generate and when did the bitumen accumulated in the sandstones?

  5. Radial patterns of bitumen dykes around Quaternary volcanoes, provinces of northern Neuquén and southernmost Mendoza, Argentina

    Science.gov (United States)

    Cobbold, Peter R.; Ruffet, Gilles; Leith, Leslie; Loseth, Helge; Rodrigues, Nuno; Leanza, Hector A.; Zanella, Alain

    2014-12-01

    Where the Neuquén Basin of Argentina abuts the Andes, hundreds of veins of solid hydrocarbon (bitumen) are visible at the surface. Many of these veins became mines, especially in the last century. By consensus, the bitumen has resulted from maturation of organic-rich shales, especially the Vaca Muerta Fm of Late Jurassic age, but also the Agrio Fm of Early Cretaceous age. To account for their maturation, recent authors have invoked regional subsidence, whereas early geologists invoked magmatic activity. During 12 field seasons (since 1998), we have tracked down the bitumen localities, mapped the veins and host rocks, sampled them, studied their compositions, and dated some of them. In the provinces of northern Neuquén and southernmost Mendoza, the bitumen veins are mostly sub-vertical dykes. They tend to be straight and continuous, crosscutting regional structures and strata of all ages, from Jurassic to Palaeocene. Most of the localities lie within 70 km of Tromen volcano, although four are along the Rio Colorado fault zone and another two are at the base of Auca Mahuida volcano. On both volcanic edifices, lavas are of late Pliocene to Pleistocene age. Although regionally many of the bitumen dykes tend to track the current direction of maximum horizontal tectonic stress (ENE), others do not. However, most of the dykes radiate outward from the volcanoes, especially Tromen. Thicknesses of dykes tend to be greatest close to Tromen and where the host rocks are the most resistant to fracturing. Many of the dykes occur in the exhumed hanging walls of deep thrusts, especially at the foot of Tromen. Here the bitumen is in places of high grade (impsonite), whereas further out it tends to be of medium grade (grahamite). A few bitumen dykes contain fragments of Vaca Muerta shale, so that we infer forceful expulsion of source rock. At Curacó Mine, some shale fragments contain bedding-parallel veins of fibrous calcite (beef) and these contain some bitumen, which is

  6. Piceance Creek Basin, Colorado, Oil Shale Geodatabase (Compiled from 3 legacy publications)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is a digital reproduction of three legacy USGS oil shale publications--MF-958 (Pitman and Johnson, 1978), MF-1069 (Pitman, 1979), and OC-132 (Pitman...

  7. Oil Shale Core Hole and Rotary Hole Locations in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes and rotary holes in the state of Colorado and is available as an ESRI shapefile, Google...

  8. Oil Shale Core Holes Containing Nahcolite in the State of Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This file contains points that describe locations of oil shale core holes that contain nahcolite in the state of Colorado and is available as an ESRI shapefile,...

  9. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200° C) and constant oil shale grade, both the relative dielectric constant (ε') and imaginary permittivity (ε'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ε' decreases or remains constant with oil shale grade, while ε'' increases or shows no trend with oil shale grade. At higher temperatures (>200º C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ε'' fluctuates. At these temperatures, maximum values for both ε' and ε'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  10. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, J. Alexandra; Soong, Yee; Hedges, Sheila [National Energy Technology Laboratory, Pittsburgh, PA (United States); Stanchina, William [National Energy Technology Laboratory, Pittsburgh, PA (United States); Department of Electrical and Computer Engineering, University of Pittsburgh, PA (United States)

    2011-01-15

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (< 200 C) and constant oil shale grade, both the relative dielectric constant ({epsilon}') and imaginary permittivity ({epsilon}'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, {epsilon}' decreases or remains constant with oil shale grade, while {epsilon}'' increases or shows no trend with oil shale grade. At higher temperatures (> 200 C) and constant frequency, {epsilon}' generally increases with temperature regardless of grade while {epsilon}'' fluctuates. At these temperatures, maximum values for both {epsilon}' and {epsilon}'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools. (author)

  11. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  12. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine...microbiological growth of shale DFM and shale JP-5 was investigated by inoculating a mixture of fuel and 0 nutrient medium with Cladosporium resinae

  13. Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

    1987-09-01

    In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

  14. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  15. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  16. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  17. Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound.

    Science.gov (United States)

    Abramov, O V; Abramov, V O; Myasnikov, S K; Mullakaev, M S

    2009-03-01

    In the present paper, the kinetics of the water extraction of bitumen from tar sand and crude oil or residual fuel oil from model contaminated soils under the effect of ultrasound is studied. The influence of process temperature, ultrasound power, the nature, and properties of the components of heterogeneous mixtures being separated, and the concentration of added alkaline reagents on the rate and degree of oil recovery is investigated. A functional form of the dependencies of separation efficiency on the mean size of solid particles and the temperature of a working medium is found. Optimum concentrations of reagents in the process solution are determined. It is shown that the spent solution of sodium silicate can be multiply used for separation, its reuse even speeding up the yield of oil in the initial period. Taking into account obtained results, a multipurpose pilot plant with a flow-type reactor for ultrasonic extraction of petroleum and its products from contaminated soils was manufactured and tested. During tests, the purification of sandy soil contaminated with residual fuel oil was carried out which verified the results of laboratory studies.

  18. Military Fuels Refined from Paraho-II Shale Oil.

    Science.gov (United States)

    1981-03-01

    Laboratories showed that growth of Cladosporium resinae was supported by the shale-derived JP-5 and DFM. 1t The performances of shale fuels in a turbine...27 11 Corrosion Tendencies of Shale Fuels ............................. 28 12 Growth Rating of Cladosporium Resinae in Tubes After Days of...screw cap test tubes and overlayed with 3 ml of the test fuel. Each tube was inoculated with one drop of a spore suspension of Cladosporium resinae , QM

  19. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    Science.gov (United States)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  20. COOEE bitumen: chemical aging

    CERN Document Server

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

    2013-01-01

    We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  1. Assessment of undiscovered oil and gas resources of the Mississippian Sunbury shale and Devonian–Mississippian Chattanooga shale in the Appalachian Basin Province, 2016

    Science.gov (United States)

    Higley, Debra K.; Rouse, William A.; Enomoto, Catherine B.; Trippi, Michael H.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Tennyson, Marilyn E.; Drake, Ronald M.; Finn, Thomas M.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Doolan, Colin; Le, Phuong A.; Schenk, Christopher J.

    2016-11-08

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources that total 464 million barrels of oil and 4.08 trillion cubic feet of gas in the Lower Mississippian Sunbury Shale and Middle Devonian–Lower Mississippian Chattanooga Shale of the Appalachian Basin Province.

  2. PROBLEMS AND PROSPECTS OF PETROLEUM BITUMEN PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. A. Belova

    2016-01-01

    Full Text Available Abstract. The world production petroleum bitumen for road construction is considered. The problems and prospects of the bitumen production in the world and Russia are shown.At present leading positions on Russian bitumen market occupy the companies Gazprom Oil, Rosneft and Lukoyl. They cover nearly 80% of total volume of bitumen production in the RF.In world road construction practice the residual road oil bitumen is basically used, from which more than 80% of motor roads are built in the west.The significant quality growth of oil bitumen was the result of the appearance of modified and polymeric-bitumen bindings(PBB. Amongst block polymer of the styrene (SBC - styrene block copolymer, used in road construction, the main modifier for production of polymer-modified bitumen in the world is butadiene styrene thermoelastolayer SBS (SBS - styrene butadiene styrene.In 2014 at Moscow NPZ the installation on production PMB of new generation G-Way Styrelf is launched. The installation was built by the joint-venture Gazprom Oil" and French concern Total and is considered to produce 60 thousand tons of PMB and 7 thousand tons of bitumen emulsion per annum. The production is realized in accordance with technology Styrelf, designed by concern Total and adapted to Russian climatic conditions. The Russian bitumen is in demand on foreign market as well. 

  3. High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  4. Reduction of light cycle oil in catalytic cracking of bitumen-derived crude HGOs through catalyst selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fuchen; Xu, Chunming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, 102200 (China); Ng, Siauw H. [National Centre for Upgrading Technology, 1 Oil Patch Drive, Suite A202, Devon, Alberta (Canada); Yui, Sok [Syncrude Research Centre, 9421-17 Avenue, Edmonton, Alberta (Canada)

    2007-09-15

    In an attempt to reduce the production of light cycle oil (LCO), a non-premium fluid catalytic cracking (FCC) product in North America, a large-pore catalyst containing rare-earth-exchanged Y (REY) zeolite, was used to crack two Canadian bitumen-derived crude heavy gas oils (HGOs) hydrotreated to different extents. For comparison, a regular equilibrium FCC catalyst with ultra-stable Y (USY) zeolite and a conventional western Canadian crude HGO were also included in the study. Cracking experiments were conducted in a fixed-bed microactivity test (MAT) reactor at 510 C, 30 s oil injection time, and varying catalyst-to-oil ratios for different conversions. The results show that pre-cracking of heavy molecules with wide-pore matrix, followed by zeolite cracking, enhanced conversion at the expense of light and heavy cycle oils at a constant catalyst-to-oil ratio, giving improved product selectivities (e.g., higher gasoline and lower dry gas, LCO, and coke yields, in general, at a given conversion). To systematically assess the benefits of employing the specialty catalyst over the regular catalyst in cracking Canadian HGOs, individual product yields were compared at common bases, including constant catalyst-to-oil ratios, conversions, and coke yields for three feeds, and at maximum gasoline yield for one feed. In most cases, the preferred choice of large-pore zeolite-rich catalyst over its counterpart was evident. The observed cracking phenomena were explained based on properties of catalysts and characterization data of feedstocks, including their hydrocarbon type analyses by gas chromatograph with a mass-selective detector (GC-MSD). (author)

  5. Oil shale plant siting methodology: A guide to permits and approvals

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, J.S.; Hill, S.; Barker, F.; Renk, R.; Dean, J.

    1988-09-01

    This report is a guide to the permits and approvals required to develop an oil shale resource. The permitting requirements of the federal government, six states (Colorado, Utah, Wyoming, Indiana, Kentucky, and Ohio), and selected county or local governments are reviewed. The permits and approvals are organized into nine categories: (1) mineral leases and rights-of-way, (2) acquisition of a water supply, (3) environmental impact statement, (4) environmental quality (air quality, water quality, waste disposal, and wildlife values), (5) historical and cultural protection, (6) land use and socioeconomics, (7) prospecting and mining, (8) safety and health, and (9) transportation and communication. This report also contains examples of the permitting process required for the startup of two hypothetical oil shale plants. The first example is for a hypothetical 50,000 barrel-per-day oil shale plant located near Rio Blanco, Colorado. This plant uses conventional open pit mining and surface (Lurgi) processing of the shale. The permitting costs for this plant, including baseline data acquisition and monitoring, exceed $2 million. The second example, a 5,000 barrel-per-day demonstration plant in eastern Montgomery County, Kentucky, is based on open pit mining and surface (Hytort) processing of the shale. Permitting costs for the demonstration plant, including an environmental impact statement, could approach $500,000. Several potential impediments to the development of an oil shale resource are identified and discussed. 33 refs., 11 figs., 10 tabs.

  6. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  7. Hydrodenitrogenation of Aleksinac shale oil distillates in a pilot trickle-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Saban, M.D.; Skala, D.U.; Jovanovic, J.A.; Mayn, V.W.; Rahimian, I.G.-H. (University of Belgrade, Belgrade (Yugoslavia). Faculty of Technology and Metallurgy)

    1992-02-01

    Hydrodenitrogenation (HDN) of the Aleksinac shale oil distillates was studied in a pilot trickle-bed reactor at 340-435{degree}C, 8.0 MPa, 1-4.57 h{sup -1} liquid hourly space velocity (LHSV) and 500 cm{sup 3} (STP) of H{sub 2}/cm{sup 3} oil. The commercial Co-Mo/Al{sub 2}O{sub 3} and Ni-Mo/Al{sub 2}O{sub 3} presulfided catalysts were evaluated for the HDN of three different shale oil distillates. The initial HDN catalyst deactivation was followed using a linear catalyst deactivation model. The Ni-Mo/Al{sub 2}O{sub 3} catalyst showed somewhat higher initial HDN activity and lower initial deactivation rate than the Co-Mo/Al{sub 2}O{sub 3} catalyst for the first 30-45 h on shale oil feedstock. Nitriles in shale oil first undergo HDN reaction at mild operating conditions, much faster than five-and six-membered nitrogen heterocyclic compounds. The overall HDN kinetics of refractive nitrogen in shale oil was analyzed using a modified pseudo-first order behaviour. The on-line measured hydrogen consumption was in the range 200-300 cm{sup 3}(STP)/cm{sup 3} for HDN{gt}80% regardless of the catalyst type and feedstock. 31 refs., 7 figs., 7 tabs.

  8. Investigation into co-pyrolysis characteristics of oil shale and coal

    Institute of Scientific and Technical Information of China (English)

    Miao Zhenyong; Wu Guoguang; Li Ping; Meng Xianliang; Zheng Zhilei

    2012-01-01

    Samples of five types of coal and oil shale from the Daqing region have been subjected to co-pyrolysis in different blending ratios with thermo-gravimetry (TG).given a heating rate of 30 ℃/min to a final temperature of 900 ℃.Investigations on pyrolysis of mixing coal and oil shale in different proportions were carried out,indicating that the main scope of weight loss corresponding to hydrocarbon oil and gas release was between 350 and 550 ℃.At higher temperatures,significant weight loss was attributed to coke decomposition.Characteristic pyrolysis parameters of blends from oil shale and the high ranked XZ coal varied with the blending ratio,but oil shale dominated the process.At the same blending proportions,highly volatile medium and low ranked coal of low moisture and ash content reacted well during pyrolysis and could easily create synergies with oil shale.Medium and high ranked coal with high moisture content played a negative role in co-pyrolysis.

  9. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  10. Interactive Matching between the Temperature Profile and Secondary Reactions of Oil Shale Pyrolysis

    DEFF Research Database (Denmark)

    Zhang, Yu; Han, Zhennan; Wu, Hao;

    2016-01-01

    degrees C and a shale char bed operating at different temperatures. At low temperatures (550 degrees C), severe cracking occurred, converting both heavy and light oil to carbon and gas. The desirably matched reactor temperature profile for high oil yield is discussed via analysis of the tendency......This article investigates the effect of the reactor temperature profile on the distribution and characteristics of the products from fixed-bed pyrolysis of oil shale. Experiments were performed in a one-stage fixed-bed reactor and in a two-stage fixed-bed reactor. In the one-stage reactor......, the shale oil yield reached 7.40 wt % with a reactor temperature profile from 900 to 550 degrees C and decreased to 2.23 wt % with the reverse temperature profile. The effect of the temperature profile was investigated further in the two-stage fixed-bed reactor combining a pyrolysis stage operating at 550...

  11. Estonia`s oil shale industry - meeting environmental standards of the future

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, T. [Jaakko Poyry International, Helsinki (Finland); Bird, G.; Wallace, D. [Alberta Research Council, Edmonton (Canada)] [and others

    1995-12-31

    Oil shale is Estonia`s greatest mineral resource. In the 1930s, it was used as a source of gasoline and fuel oil, but now it is mined primarily for thermal generation of electricity. With the loss of its primary market for electricity in the early 1990s and in the absence of another domestic source of fuel Estonia once again is considering the use of a larger proportion of its shale for oil production. However, existing retorting operations in Estonia may not attain western European environmental standards and desired conversion efficiencies. As a reference point, the Estonian authorities have documented existing environmental impacts. It is evaluating technologies to reduce the impacts and is setting a direction for the industry that will serve domestic needs. This paper provides a description of the existing oil shale industry in Estonia and options for the future.

  12. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Several oil shale beds, over 10 m thick, occur at the base of the first member of the Upper Cretaceous Qingshankou Formation (K2qn1) in the Songliao Basin. They act both as excellent source rocks for conventional oil and as potential oil deposit for shale oil production. Here we combine micropaleon-tology with organic geochemistry to investigate the paleo-depositional environment and organic source characteristics of the oil shales and black shales. Our results indicate that algal remains are dominant microfossils in K2qn1 oil shales, and their relatively high abundance suggests a major algal thriving event during the oil shale deposition. The presence of fresh water and brackish water species, Sentusidinium, Vesperopsis and Nyktericysta, and marine or brackish water deltaic and lagoonal species such as Kiokansium and Dinogymniopsis demonstrate that this paleo-continental lake was influenced by marine transgressions at the time of K2qn1 oil shale formation. The extremely low pristine/phytane ratios, relatively high abundance of gammacerane and 4-methyl steranes, and low δ 13C values of C14-C37 n-alkanes in the oil shale organic extracts indicate the deposition of oil shales in anoxic and highly stratified water columns and the significant contribution of lacustrine algae to sedimentary organic matter. High molecular-weight paraffinic hydrocarbons with unusually high abundance of nC43, nC45, and nC47 may be related to special algal species associated with marine transgression events. The giant water body of Songliao paleo-lake and the change in the organic and chemical environment (such as nutrition source and water column salinity) associated with seawater transgression into the lake are among the most important reasons for oil shales in the Songliao Basin being different from mudstone and oil shale in other rifted basins.

  13. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  14. Oil shale mining cost analysis. Volume I. Surface retorting process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

    1981-01-01

    An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

  15. Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography

    Science.gov (United States)

    Saif, Tarik; Lin, Qingyang; Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-07-01

    The structure and connectivity of the pore space during the pyrolysis of oil shales determines hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture networks during oil shale pyrolysis using synchrotron X-ray microtomography. Immature Green River (Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to 500°C while being periodically imaged with a 2 µm voxel size. The structural transformation of both organic-rich and organic-lean layers within the shale was quantified. The images reveal a dramatic change in porosity accompanying pyrolysis between 390 and 400°C with the formation of micron-scale heterogeneous pores. With a further increase in temperature, the pores steadily expand resulting in connected microfracture networks that predominantly develop along the kerogen-rich laminations.

  16. Organic Solvent Extraction of Bitumen from Canada Oil Sands%有机溶剂萃取加拿大油砂应用研究

    Institute of Scientific and Technical Information of China (English)

    冯杰; 李鑫钢; 许宁津; 隋红

    2015-01-01

    Organic solvent extraction used for extraction of bitumen from oil sand was introduced,and the process has two stages:bitumen phase dissolution and separation of bitumen,solvent and sands.In this study,toluene,heptane,acetone,ethyl acetate,toluene/heptane,acetone/heptane and ethyl acetate/heptane were used as the solvent to investigate the total recovery of bitumen and the extraction efficiency of four defined fractions (saturates,aromatics,resins and asphaltenes) in bitumen.The result of the surface tension of bitumen/solvent showed that the surface tension varied only based on the type of solvent used and remained relatively unchanged during the extraction process of bitumen from oil sands.Mixture solvent systems were good for oil sand separation due to the extraction efficiency and the low surface tension.%介绍了溶剂作为萃取剂分离油砂的技术,溶剂萃取油砂过程包含两个阶段:沥青相向溶剂的溶解过程和沥青、溶剂与砂粒的分离过程.考察了单一溶剂甲苯、丙酮、乙酸乙酯和甲苯/正庚烷、丙酮/正庚烷、乙酸乙酯/正庚烷组成的复合溶剂体系在相同条件下对油砂沥青的萃取率,在此基础上进一步对比了不同溶剂体系对沥青四组分饱和分、芳香分、胶质和沥青质的萃取效果,同时考察了不同浓度的沥青-溶剂溶液的表面张力,结果表明在油砂萃取过程中沥青-溶剂体系的表面张力主要取决于所选溶剂的种类,而沥青的浓度对溶液表面张力的影响不大.混合溶剂体系甲苯/正庚烷、丙酮/正庚烷、乙酸乙酯/正庚烷相比纯溶剂萃取率较高,其沥青溶液表面张力较低,是良好的分离油砂溶剂体系.

  17. OCCIDENTAL VERTICAL MODIFIED IN SITU PROCESS FOR THE RECOVERY OF OIL FROM OIL SHALE. PHASE II

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Reid M.

    1980-09-01

    The progress presented in this report covers the period June 1, 1980 through August 31, 1980 under the work scope for.Phase II of the DOE/Occidental Oil Shale, Inc. (OOSI) Cooperative Agreement. The major activities at OOSI 1s Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7, 8 and 8x; completing Mini-Retort (MR) construction; continuing surface facility construction; tracer testing the MR 1 s; conducting Retorts 7 & 8 related Rock Fragmentation tests; setting up and debugging the Sandia B-61 trailer; and preparing the Phase II instrumentation plan.

  18. Selective catalytic reduction of NO by ammonia over oil shale ash and fly ash catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Changtao Yue; Shuyuan Li [University of Petroleum, Beijing (China). State Key Lab of Heavy Oil Processing

    2003-07-01

    Acid rain and urban air pollution, produced mainly by pollutants such as SOX and NOX and other volatile organic compounds, has become the most serious environmental problem. The selective catalytic reduction (SCR) of NO with NH{sub 3} in the presence of oxygen is a wellproven method to limit the NOX emissions. The work in this field has been the subject of much research in recent years. In this paper, NO reduction with NH{sub 3} over oil shale ash or fly ash catalysts was studied. Fe, Cu, V or Ni as active elements was loaded by adding aqueous solutions of the metal nitrate over the oil shale ash or fly ash support. The activities of the catalysts for NO removal were measured in a fixed-bed reactor. According to the results, oil shale ash or fly ash, after pre-treatment, can be reasonably used as the SCR catalyst support to remove NO from flue gas. Cu gave the highest catalytic activity and NO conversion for fly ash while V for oil shale ash. As the support, fly ash is more feasible than oil shale ash. Because of their low cost and high efficiency, the catalysts should be used in the SCR process. Further research on this subject is necessary in the future to understand more details of the SCR system and issue of pollution control. 9 refs., 2 figs., 2 tabs.

  19. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  20. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND.

  1. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  2. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    Science.gov (United States)

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  3. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  4. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe

    NARCIS (Netherlands)

    Song, J.; Littke, R.; Weniger, P.; Ostertag-Henning, C.; Nelskamp, S.

    2015-01-01

    A suite of drilling cores and outcrop samples of the Lower Toarcian Posidonia Shale (PS) were collected from multiple locations including the Swabian Alb and Franconian Alb of Southwest-Germany, Runswick Bay of UK and Loon op Zand well (LOZ-1) of the West Netherlands Basin. In order to assess the th

  5. Shale oil value enhancement research. Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The first year of this effort was focussed on the following broad objectives: (1) Analyze the molecular types present in shale oil (as a function of molecular weight distribution); (2) Determine the behavior of these molecular types in liquid-liquid extraction; (3) Develop the analytical tools needed to systematize the process development; (4) Survey the markets to assure that these have high value uses for the types found in shale oil; (5) Explore selective process means for extracting/converting shale oil components into concentrates of potentially marketable components; (6) Compile overview of the venture development strategy and begin implementation of that strategy. Each of these tasks has been completed in sufficient detail that we can now focus on filling in the knowledge gaps evident from the overview.

  6. Western oil shale development: a technology assessment. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  7. Oil shale mining and processing impact on landscapes in north-east Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Toomik, Arvi; Liblik, Valdo [North-East Estonian Department of Institute of Ecology, 15 Pargi Street, EE2045 Johvi (Estonia)

    1998-07-06

    As the world`s largest commercial oil shale reserve, the Estonian Oil Shale Deposit has been exploited since 1916. As a result of mining, storing of solid wastes from the oil shale separation, combustion in the power plants and its thermal processing, the landscape in northeastern Estonia has been essentially changed and the man-made landforms have developed: the new microreliefs of natural and artificial structure are formed, as well as `mountainous` and hilly reliefs in the form of waste heaps, ash plateaus, coke-ash dumps etc. Deformed (stable) and undeformed (unstable) areas from underground mining currently cover about 220km{sup 2}. About 90km{sup 2} (80%) of the area damaged by open pits are recultivated and reformed as forested and agricultural (grassland) areas. The total area occupied by solid waste has reached up to 26km{sup 2}. New technogenic landscape units, i.e. made by technical means, will essentially influence the environment

  8. Method for forming an in situ oil shale retort with horizontal free faces

    Science.gov (United States)

    Ricketts, Thomas E.; Fernandes, Robert J.

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  9. Modelling of underground geomechanical characteristics for electrophysical conversion of oil shale

    Science.gov (United States)

    Bukharkin, A. A.; Koryashov, I. A.; Martemyanov, S. M.; Ivanov, A. A.

    2015-11-01

    Oil shale energy extraction is an urgent issue for modern science and technique. With the help of electrical discharge phenomena it is possible to create a new efficient technology for underground conversion of oil shale to shale gas and oil. This method is based on Joule heat in the rock volume. During the laboratory experiments the problem has arisen, when the significant part of a shale fragment is being heated, but the further heating is impossible due to specimen cracking. It leads to disruption in current flow and heat exchange. Evidently, in the underground conditions these failure processes will not proceed. Cement, clay and glass fiber/epoxy resin armature have been used for modelling of geomechanical underground conditions. Experiments have shown that the use of a reinforcing jacket makes it possible to convert a full rock fragment. Also, a thermal field extends radially from the centre of a tree-type structure, and it has an elliptic cross section shape. It is explained by the oil shale anisotropy connected with a rock laminar structure. Therefore, heat propagation is faster along the layers than across ones.

  10. Shale Hydrocarbon Prospecting in the Central Part of the Volga-Ural Oil and Gas Province

    Science.gov (United States)

    Muslimov, Renat Kh.; Plotnikova, Irina N.

    2014-05-01

    Until now nobody has prospected or estimated the oil shale resources in Tatarstan, although the high-carbon rocks of Domanikoidtype often became an object of studies dedicated to assessment of the generation potential of liquid and gaseous hydrocarbons. The evaluation of oil-shale deposits in Tatarstan should base on the well-known geological, geochemical and technological criteria. The main, determining conditions for shale oil and gas deposit formation are the following: high content of organic matter (OM) in the rock, and its certain catagenetic maturity; special features of the mineral composition of rocks that contribute to the formation of fractures; and the presence of overlying and underlying impermeable dense strata that ensure the safety of hydrocarbons in the shale series. In Tatarstan, the development prospects of shale oil fields should be associated primarily with the rocks ofDomanikoid formations of Upper Devonian - such as Semiluksky (Domanik) horizon, as well asRechitsky (Mendymsky) horizon and Domanikoid formations of central and side areas of the Kama-Kinel trough system. Studies on Domanikwere started in the middle of the last century, when the Ural-Volga region experienced active interest for oil exploration. Then the research of Domanikoid series was carried out at the Department of Oil and Gas Geology, Kazan State University. Butback then the prospecting was not clearly associated with an estimate of shale oil resources. As revealed during rock geochemical studies of the rock, the average content of organic matter in deposits of Semiluksky and Mendymsky horizons is 8.35 and 2.56 % respectively, which is enough to takethese horizons as the main object of research and resource assessment. The presence of silica rocks and dense limestone in such a large proportion is a favorable factor in terms of assessing the effectiveness of fracturing. So we have a quite clear understanding of how to explore Domanik. In fact, the geological structure of our

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  12. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  13. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  14. A novel method for recovery of acidic sludge of used-motor oil reprocessing industries to bitumen using bentonite and SBS

    OpenAIRE

    Ahmad Jonidi Jafari; malek hassanpour; Mitra Gholam; Mehdi Farzadkia

    2014-01-01

    ABSTRACT Acidic sludge is a by-product from used motor oil reprocessing industries, which thousand tons of this sludge are disposed into the environment as a hazardous waste material daily. The acidic sludge contains unsaturated compounds that are polar and asphaltene. The bitumen under certain conditions is produced from mixing of bentonite, polymer styrene – butadiene – styrene (SBS), and acidic sludge. Context and purpose: The objective of this study was the recovery of acidic sludge...

  15. Geochemical characteristics of light hydrocarbons in cracking gases from chloroform bitumen A,crude oil and its fractions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The composition characteristics of light hydrocarbons from crude oil,chloroform bitumen A,saturated hydrocarbon fraction,aromatic hydrocarbon fraction,and asphaltene fraction during cracking have been studied systematically. The results revealed that the content of n-alkanes,branched alkanes and cycloalkanes in light hydrocarbons from the samples gradually decreased as the simulation temperature increased,and finally almost depleted completely,while the abundance of methane,benzene and its homologues increased obviously and became the main products. The ratios of benzene/n-hexane and toluene/n-heptane can be used as measures for oil cracking levels. Variation characteristics of maturity parameters of light hydrocarbons,for example,iC4/nC4,iC5/nC5,isoheptane value,2,2-DMC4/nC6,and 2-MC6+3-MC6/nC7 for different samples with increasing pyrolysis temperature,are consistent with those in petroleum reservoirs,indicating that these parameters may be efficient maturity index.

  16. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.

    Science.gov (United States)

    Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  18. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  19. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  20. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Wendy; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  1. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy

    Science.gov (United States)

    Paris, P.; Piip, K.; Lepp, A.; Lissovski, A.; Aints, M.; Laan, M.

    2015-05-01

    Laser-induced plasma emission spectra of Estonian oil shale and associated limestone with varying moisture content were studied. Time gated spectra excited by 1064 nm laser radiation were recorded. Spectral lines for determination of plasma parameters were selected. Moisture causes the reduction of the intensity of the total emission, and increases the intensity of the Hα line. It was found that the effect of the moisture content on the plasma temperature and electron concentration was inconsiderable. Using the ratio of intensities of Hα and Mg spectral lines, it was possible to distinguish reliably between limestone and oil shale independently of their moisture content.

  2. 页岩油分类与评价%Classification and evaluation of shale oil

    Institute of Scientific and Technical Information of China (English)

    张金川; 林腊梅; 李玉喜; 唐玄; 朱亮亮; 邢雅文; 姜生玲; 荆铁亚; 杨升宇

    2012-01-01

    Shale oil is liquid hydrocarbon formed in the effective source rocks with free phase(condense oil),adsorbed and dissolved phase(dissolved in gas,kerogen and residual water).According to hydrocarbon phase,genesis and exploration procedures of hydrocarbon within the shale,the shale oil and gas are classified into two groups and eight classes.Based on the shale oil characteristics in China,the shale oil forming conditions and distribution law were concluded.Large scale distribution of effective shales,development of organic rich shales in deep water-half deep water with thermal maturity,and good matrix physical properties are the necessary conditions for the formation of shale oil.Furthermore,we created the shale oil development mode in the continental faulted lake basin,and pointed out that the probability volumetric calculation method can be used to assess shale oil resource,and also put forward the parameter system and criteria for shale oil prospective area,favorable area and target area.The success in shale oil development has significant impact on the energy consumption structure in China.%页岩油是以游离(含凝析态)、吸附及溶解(可溶解于天然气、干酪根和残余水等)态等多种方式赋存于有效生烃泥页岩地层层系中且具有勘探开发意义的非气态烃类。根据泥页岩地层中所含烃类相态、成因机理及勘探开发等特点,将页岩类油气划分为页岩气和页岩油等两类八种。结合页岩油特点,指出了我国页岩油形成条件和分布规律,即规模分布的有效生烃泥页岩、形成于深水-半深水相的富有机质泥页岩、较高的有机质丰度和适当的热演化程度以及较好的基质物性条件等是页岩油形成的主要条件。建立了中国陆相断陷湖盆页岩油发育模式,指出概率体积法可以作为页岩油资源评价的主要方法,提出了页岩油远景区、有利区及目标区优选的参数体系和标准。作为非常规

  3. Solvent extraction of bitumen from oil sands amended with ionic liquid%离子液体促进溶剂萃取油砂沥青

    Institute of Scientific and Technical Information of China (English)

    张坚强; 李鑫钢; 隋红

    2014-01-01

    Both traditional water extraction and solvent extraction to extract bitumen from oil sands have their drawbacks,such as sand/clay entraining into bitumen and bitumen remaining in residual sands. To resolve these problems,an ionic liquid ([Emim]BF4) was used to enhance bitumen recovery from Canadian oil sands by methyl acetate/n-heptane. FTIR and SEM were used to qualitatively analyze the cleanliness of bitumen and residual sand. Quantitative results of fine sand/clay in bitumen and organic matter remaining in residual sand were also obtained by coupling SEM with Elementar and ICP. The optimal volume ratio of methyl acetate to n-heptane was 2∶3. Meanwhile [Emim]BF4 increased bitumen recovery ratio to 94.20%, 7.92% higher than composite solvent extraction without [Emim]BF4. The results obtained from FTIR , SEM , Elementar and ICP demonstrated that [Emim]BF4 could enhance bitumen separation efficiently. Negligible sand/clay was entrained in extracted bitumen,and no IL or bitumen was found in the treated sand.%传统水洗法和溶剂萃取法萃取油砂沥青时,存在沥青中含有沙土和残沙中含有油等缺点。为解决上述缺点,本文采用不同比例的乙酸甲酯/正庚烷复合溶剂萃取油砂沥青,研究了离子液体(1-丁基-3-甲基咪唑四氟硼酸盐,[Emim]BF4)对该溶剂萃取体系的萃取率和分离洁净程度的影响。采用红外光谱仪和扫描电镜对萃取后的残沙和沥青的洁净程度进行了定性分析,并结合元素分析仪和电感耦合等离子体发射光谱仪获得萃取后残沙和沥青的洁净程度的定量结果。实验结果表明:当复合溶剂体积比为2∶3时,[Emim]BF4促使沥青回收率达到最大值94.20%,比单纯复合溶剂萃取体系的最大萃取率高7.92%;通过上述测试方法的定性和定量分析,证明了[Emim]BF4能有效解决沥青夹带沙土和残沙中含油的问题。

  4. Reducing CO2 emission from bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2011-07-15

    The treatment of sand oil can result in significant CO2 emission. Ceramatec Inc. has developed a technology to reduce the emission of CO2 during the upgrading of feedstocks bearing heteroatoms. This technology can be applied to kerogen derived oil (shale oil) and heavy oil as well as to bitumen from oil sands. Metallic sodium is used as the reducing and heteroatom scavenging agent. Hydrogen, methane or other hydrocarbons may be used to cap radicals formed in the process. But using methane can lead to lower material and capital costs, greater product yield, and lower CO2 emission. During the upgrading process, the aromatic constituents remain in the product, after treatment with sodium and removal of sulphur, nitrogen and metals. Aromatic saturation is not required with sodium, so less hydrogen is needed which leads to reduced CO2 emission. The reason is that CO2 is emitted in the steam methane reforming (SMR) process where hydrogen is produced. An example is introduced to demonstrate the reduction of CO2 emission from hydrogen production. Another advantage of the sodium/methane upgrading process is the incorporation of methane into the fuel. In addition, the total acid number, TAN, becomes negligible in the sodium upgrading processes. Ceramatec has also developed a process for the recovery of sodium from the sodium salts generated in the sodium/methane upgrading process.

  5. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  6. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  7. Karelian shungite—an indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry

    Science.gov (United States)

    Melezhik, V. A.; Fallick, A. E.; Filippov, M. M.; Larsen, O.

    1999-07-01

    The ca. 2.0-Ga-old, 600-m-thick upper Zaonezhskaya Formation near Lake Onega, NW Russia, contains unusually high concentrations of C org (up to 98%), averaging around 25%. The formation contains an estimated 25×10 10 tonnes of organic carbon accumulated within an area of 9000 km 2. Organic material is represented by shungite, which forms a black, dense, amorphous or nanocrystalline mass consisting of C with traces of N, O, S, and H. Autochthonous shungite occurs as disseminated organic material (0.1-50% C org) which, when mixed with migrated bitumen (now pyrobitumen), appears as coal-like seams and lenses of semilustrous and semimat layer-shungite rocks (oil shales, 50-75% C org). The migrated bitumen (originally petroleum), represented by the lustrous vein- and layer-shungite, conformably fills interbedding spaces or cross-cutting joints and usually contains 80-98% C org. The shungite-bearing rocks of the upper Zaonezhskaya Formation represent one of the most richest accumulations of organic material reported from the Palaeoproterozoic, and one of the geologically earliest stages of petroleum generation. The sediments of the Zaonezhskaya Formation were initially deposited in brackish water in a non-euxinic, lagoonal environment. The high C/S ratio (8-1000) with a zero intercept on the C-S cross-plot indicates that deposition occurred in sulphur-poor water. Intensive synchronous volcanism may have contributed to both the enhanced delivery of nutrients and elevated sedimentation rate, and eventually to the high degree of preservation of organic material. The integrated data suggest that the organic material has a biogenic origin, most likely algal or bacterial. The organic material suffered complex catagenetic and metamorphic alteration which is reflected in: (1) the four-modal distribution of C org content (with maxima at 5, 30, 65 and 95%); (2) highly variable δ 13C org (-45‰ to -17‰); (3) bimodal distribution of δ 13C org (with maxima at -28 and -39

  8. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  9. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded

  10. Native bitumens in surficial soils of the Athabasca oil sands region : preliminary characterization and assessment of contaminant mobility

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, M.; Fleming, I. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Civil and Geological Engineering; Headley, J. [Environment Canada, Saskatoon, SK (Canada). National Hydrology Research Centre

    2009-07-01

    A study was conducted on bitumen tarballs located in surficial soils in Alberta's Athabasca region. The tarballs occur in every soil type in the region, and pose a challenge to oil sands operators who hope to use the soils for reclamation activities. Chromatographic analyses have shown that the tarballs contain variable petroleum hydrocarbon concentrations and possess a characteristic chromatographic footprint. The Canadian Council of Ministers of the Environment has characterized the hydrocarbons according to various fractions. A soil-column leaching study is also being conducted by the University of Saskatchewan on heavily-impacted tarball soil under unsaturated conditions. Results of the study have indicated that the soil has low levels of contaminant mobility and degradation. Hydrocarbon concentrations in leachate water are less than 20 per cent of ground water guidelines for Alberta. It was concluded that after respiration over 9 months, the most active soil column in the study degraded only 2.7 g of an estimated 650 g.

  11. Case study of an application of computer mapping in oil-shale resource mapping

    Energy Technology Data Exchange (ETDEWEB)

    Davis, F.G.F. Jr.; Smith, J.W.

    1979-01-01

    The Laramie Energy Technology Center, U.S. Department of Energy, is responsible for evaluating the resources of potential oil and the deposit characteristics of oil shales of the Green River Formation in Colorado, Utah, and Wyoming. While the total oil shale resource represents perhaps 2 trillion barrels of oil, only parts of this total are suitable for any particular development process. To evaluate the resource according to deposit characteristics, a computer system for making resource calculations and geological maps has been established. The system generates resource tables where the calculations have been performed over user-defined geological intervals. The system also has the capability of making area calculations and generating resource maps of geological quality. The graphics package that generates the maps uses corehole assay data and digitized map data. The generated maps may include the following features: selected drainages, towns, political boundaries, township and section surveys, and corehole locations. The maps are then generated according to user-defined scales.

  12. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  13. Environmental assessment: Geokinetics, Inc. oil shale research project, Uintah County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Geokinetics, Inc. (GKI) proposes to complete the remaining experimental program to develop the LOFRECO modified horizontal in situ oil shale retorting process. This Environmental Assessment Report addresses the impacts of the project, located in a remote area of east-central Utah, about 70 miles south of both Vernal and Roosevelt.

  14. Geochemical Characteristics and its Geological Significance of Oil Shale from the Youganwo Formation, Maoming Basin, China

    Science.gov (United States)

    Zhou, Yuanyuan; Qiu, Nansheng

    2016-04-01

    Geochemical elements of oil shale in the Maoming Basin were analyzed to discuss provenance attribute and depositional environment of the Youganwo formation. Experimental date of the major elements, trace elements and rare earth elements of 24 samples from the Maoye 1 well were examined.The analyzed oil shale samples were characterized by enrichment of Th, U, Pb and LREE, depleted of Zr, Cr and Hf,negative Eu and Ce anomalies, indicating that these samples were originated from continental crust. The chemical index of alteration (CIA) values and the Zr/Sc-Th/Sc diagrams indicate that source rocks had undergone intense chemical weathering and deposition recirculation. Based on the La/Th-Hf and La/Yb-∑REE diagrams and the negative anomaly of Eu element, the oil shale in the Maoming Basin has diverse sources, which mainly came from felsic source region of the upper crust or the mixture of felsic volcanic rocks, granite and sedimentary rocks. Ratios of the Sr/Cu, MgO/CaO suggest that oil shale was formed in fresh water under warm and humid climate, shallow water column became deeper during the middle and late sedimentary period. The depositional environment is interpreted to be limnetic with weak reduction at the early stage and gradually turned into semi-deep to deep lacustrine.

  15. Modeling calcium dissolution from oil shale ash: Part 2.. Continuous washing of the ash layer

    Energy Technology Data Exchange (ETDEWEB)

    Velts, O.; Kallas, J. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia); Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Hautaniemi, M.; Kuosa, M. [Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Kuusik, R. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia)

    2010-05-15

    In the present work a possible approach to the utilization of oil shale ash containing free lime in precipitated calcium carbonate (PCC) production is elucidated. This paper investigates the Ca (calcium) dissolution process during continuous washing of pulverized firing (PF) and fluidized bed combustion (FBC) oil shale ash layers in a packed-bed leaching column. The main characteristics of the Ca dissolution process from ash are established. The effect of water flow rate is investigated by conducting leaching experiments of oil shale ashes formed in boilers operating with different combustion technologies. The values of the overall and liquid phase mass transfer coefficients are evaluated based on experiments using the developed ash layer washing model. The model is a set of partial differential equations that describe the changes in Ca content in the stagnant layer of ash and in the water flowing through the ash layer. An example in which the model is applied to environmental assessment and estimation of Ca leaching from industrial oil shale ash fields is provided. (author)

  16. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.

    Science.gov (United States)

    Kaasik, Ago; Vohla, Christina; Mõtlep, Riho; Mander, Ulo; Kirsimäe, Kalle

    2008-02-01

    The P-retention in hydrated calcareous ash sediment from oil-shale burning thermal power plants in Estonia was studied. Batch experiments indicate good (up to 65 mg P g(-1)) P-binding capacity of the hydrated oil-shale ash sediment, with a removal effectiveness of 67-85%. The high phosphorus sorption potential of hydrated oil-shale ash is considered to be due to the high content of reactive Ca-minerals, of which ettringite Ca6Al2(SO4)3(OH)12.26H2O and portlandite Ca(OH)2 are the most important. The equilibrium dissolution of ettringite provides free calcium ions that act as stable nuclei for phosphate precipitation. The precipitation mechanism of phosphorus removal in hydrated ash plateau sediment is suggested by Ca-phosphate formation in batch experiments at different P-loadings. Treatment with a P-containing solution causes partial-to-complete dissolution of ettringite and portlandite, and precipitation of Ca-carbonate and Ca-phosphate phases, which was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM)-EDS studies. Thus, the hydrated oil-shale ash sediment can be considered as a potential filtration material for P removal in constructed wetlands for wastewater treatment.

  17. Geological settings of the protected Selisoo mire (northeastern Estonia threatened by oil shale mining

    Directory of Open Access Journals (Sweden)

    Helen Hiiemaa

    2014-05-01

    Full Text Available The protected Selisoo mire in northeastern Estonia is located above valuable oil shale resources, partly in the permitted mining area. We describe in detail the geomorphology and geological setting of the mire to understand the natural preconditions for its formation, development and preservation. We used the LiDAR-based digital elevation model for relief analysis, mapped the peat thickness with ground-penetrating radar and described the Quaternary cover through corings. Ridges, oriented perpendicular to the generally southward-sloping terrain, and shallow depressions at the surface of mineral soil have influenced mire formation and its spatio-temporal dynamics. The Quaternary cover under the mire is thin and highly variable. Therefore the mire is hydro­geologically insufficiently isolated from the limestone bedrock that is drained by the nearby oil shale mine and consequently the mining activities approaching the mire may have a negative influence on the wetland and proposed Natura 2000 site. Natura 2000 type wetlands, both protected or currently outside the nature reserves, cover a significant portion of the prospective oil shale mining areas. The distribution and resilience of those sites may significantly influence further utilization of oil shale resources.

  18. The serious effect of oil shale industry on air quality in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Raetsep, A.; Liblik, V. [Estonian Academy of Sciences, Tallinn (Spain). North-East Estonian Dept. Inst. of Ecology

    1995-12-31

    Oil shale is the most important mineral resource of Estonia and that is why the extremely serious environmental problems in north-eastern Estonia (Ida-Virumaa) during the last decades are frequently connected with mining, combustion and thermal processing of this resource. Estonian oil shale is unique due to its composition containing besides chemically complicated organic matter (24-30 %) many mineral components as Mg- and Ca-carbonates, clay minerals, quartz, orthoclase, gypsum, heavy metals etc. Organic matter (kerogene) contains in addition to carbon (77.5 %) and hydrogen (9.7 %, atomic ratio H/C=1.5), oxygen (10 %), sulphur (1.5-1.7 %), nitrogen (0.5 %) and chlorine (0.8%). Such complicated physico-chemical structure (organic-mineral high-molecular complex) decomposes during the processes of oil shale combustion and thermal processing (semi-coking) causing in different ways the volatilization of hundreds of toxic chemical compounds into atmospheric air. Dispersion of those in the atmosphere has influenced and influences seriously the chemical composition of the air in north-eastern region of Estonia. In this presentation the effect of aerotechnogenic influxes as dangerous environmental factors, connected immediately with utilization of oil shale, on the state of atmospheric air and on formation of concentration fields of pollutants in north-eastern Estonia is analyzed and discussed

  19. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paris, P., E-mail: peeter.paris@ut.ee; Piip, K.; Lepp, A.; Lissovski, A.; Aints, M.; Laan, M.

    2015-05-01

    Laser-induced plasma emission spectra of Estonian oil shale and associated limestone with varying moisture content were studied. Time gated spectra excited by 1064 nm laser radiation were recorded. Spectral lines for determination of plasma parameters were selected. Moisture causes the reduction of the intensity of the total emission, and increases the intensity of the H{sub α} line. It was found that the effect of the moisture content on the plasma temperature and electron concentration was inconsiderable. Using the ratio of intensities of H{sub α} and Mg spectral lines, it was possible to distinguish reliably between limestone and oil shale independently of their moisture content. - Highlights: • Laser induced plasma emission spectra of both; Estonian oil shale and limestone with varying moisture content were studied. • The temporal change of the laser induced plasma plume temperature T{sub e} and electron density n{sub e} were evaluated. • Plasma temperature and electron concentration changed with the moisture content inconsiderably. • Limestone and oil shale are distinguished independently of their moisture content by the intensity ratio of H{sub α} and Mg lines.

  20. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  1. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  2. Impact of salinity on bitumen extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, H.A.W; Schaffer, M. [Total EandP Canada Ltd (Canada); Gingras, J.P. [TOTAL Petrochemicals Mont-Lacq Research and Development (France)

    2011-07-01

    In the oil sands industry, the hot water extraction process is used to extract bitumen. Recovery of bitumen is thus dependent on the water chemistry. Previous studies identified that divalent cations such as calcium present in water have a negative effect on bitumen recovery but the effect of monovalent cations such as sodium at high concentrations is still unknown. This paper assessed the potential impact of both monovalent and divalent cations on bitumen recovery. Extraction tests were conducted with two low grade and one average grade ore and with different water chemistries. Results showed that monovalent cations can have a negative impact on bitumen recovery for specific ore types. The study was not successful in determining the responsible mechanism but it is presumed to be related to coagulation of fine clays. This paper highlighted that monovalent cations can impact the bitumen recovery; further work is required to determine the responsible factors.

  3. A novel method for recovery of acidic sludge of used-motor oil reprocessing industries to bitumen using bentonite and SBS

    Directory of Open Access Journals (Sweden)

    Ahmad Jonidi Jafari

    2014-04-01

    Full Text Available ABSTRACT Acidic sludge is a by-product from used motor oil reprocessing industries, which thousand tons of this sludge are disposed into the environment as a hazardous waste material daily. The acidic sludge contains unsaturated compounds that are polar and asphaltene. The bitumen under certain conditions is produced from mixing of bentonite, polymer styrene – butadiene – styrene (SBS, and acidic sludge. Context and purpose: The objective of this study was the recovery of acidic sludge to bitumen using additives such as bentonite and SBS. Also, the effect of additives with different weight percentages (wt%(on the performance parameters of bitumen was evaluated. At first, spilled oil was separated from the acidic sludge by a centrifugal concentrator. Then, concentrated acidic sludge and additives were mixed in together. Finally, the performance tests were carried out to compare the quality of acidic sludge with the obtained products.The results indicated that performance parameters such as softening point (SP, weight loss, penetration degree, PI, Frass breaking point, and temperature susceptibility (TS were promoted from 37°C, 1.3%, 230 dmm, -0.07854, -5°C and 0.0451 to 54°C, 1%, 130 dmm, 2.7094, -11°C , 0.02721, respectively. According to the paired sample t-test analysis, a significant difference was found between the bentonite dosage and the improved performance parameters from concentrated acidic sludge and obtained products (pvalue ≤.001. The bentonite and SBS with 2 and 4 wt%, respectively were determined as the suitable additives in the recovery of acidic sludge to bitumen.

  4. Pyrolysis and Hydropyrolysis of Kentucky Oil Shale with Product Oil Characterization.

    Science.gov (United States)

    2014-09-26

    Reacticn Time (min.) j67 J n IcT .± o ! dram At i(aliv. This result reinforces the conc lusion that the rates of the gas forming reactions are slow...bonds hold in the kerogen in the. i nur ian1C mal rix of the oil shale react by ’"capping" r., Ict Io 11 in the presen’e of the free radical scavanging...8217 Al.,AP’x IF HFATFP TEF RERATUP1 EX(’EDS 740 - >32 !’ ’ = 1 TO( lt’r,, P!ER ( 163𔄀) --: .,!":I !’! 3! F ElT I’,EN -. ’ ’l .., ) (1 A, SES 1)ATA E A E

  5. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

  6. Application of organic petrography in North American shale petroleum systems: A review

    Science.gov (United States)

    Hackley, Paul C.; Cardott, Brian J.

    2016-01-01

    Organic petrography via incident light microscopy has broad application to shale petroleum systems, including delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows practitioners the ability to identify various types of organic components and demonstrates that solid bitumen is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM observation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers from inability to confirm the type of organic matter present. Herein we review organic petrography applications in the North American shale plays through discussion of incident light photographic examples. In the first part of the manuscript we provide basic practical information on the measurement of organic reflectance and outline fluorescence microscopy and other petrographic approaches to the determination of thermal maturity. In the second half of the paper we discuss applications of organic petrography and SEM in all of the major shale petroleum systems in North America including tight oil plays such as the Bakken, Eagle Ford and Niobrara, and shale gas and condensate plays including the Barnett, Duvernay, Haynesville-Bossier, Marcellus, Utica, and Woodford, among others. Our review suggests systematic research employing correlative high resolution imaging techniques and in situ geochemical probing is needed to better document hydrocarbon storage, migration and wettability properties of solid bitumen at the pressure and temperature conditions of shale reservoirs.

  7. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  8. Preliminary analysis of surface mining options for Naval Oil Shale Reserve 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    The study was undertaken to determine the economic viability of surface mining to exploit the reserves. It is based on resource information already developed for NOSR 1 and conceptual designs of mining systems compatible with this resource. Environmental considerations as they relate to surface mining have been addressed qualitatively. The conclusions on economic viability were based primarily on mining costs projected from other industries using surface mining. An analysis of surface mining for the NOSR 1 resource was performed based on its particular overburden thickness, oil shale thickness, oil shale grade, and topography. This evaluation considered reclamation of the surface as part of its design and cost estimate. The capital costs for mining 25 GPT and 30 GPT shale and the operating costs for mining 25 GPT, 30 GPT, and 35 GPT shale are presented. The relationship between operating cost and stripping ratio, and the break-even stripping ratio (BESR) for surface mining to be competitive with room-and-pillar mining, are shown. Identification of potential environmental impacts shows that environmental control procedures for surface mining are more difficult to implement than those for underground mining. The following three areas are of prime concern: maintenance of air quality standards by disruption, movement, and placement of large quantities of overburden; disruption or cutting of aquifers during the mining process which affect area water supplies; and potential mineral leaching from spent shales into the aquifers. Although it is an operational benefit to place spent shale in the open pit, leaching of the spent shales and contamination of the water is detrimental. It is therefore concluded that surface mining on NOSR 1 currently is neither economically desirable nor environmentally safe. Stringent mitigation measures would have to be implemented to overcome some of the potential environmental hazards.

  9. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    Science.gov (United States)

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diametersoperations for power generation, which also take advantage of the high heating value of the emulsion components. The ability of CML to stabilize emulsions and to contribute in their combustion was tested with light fuels (kerosene, diesel, and jet fuel) after formulation of high internal phase systems (70% oil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results highlight the possibilities in high volume application for lignin biomacromolecules.

  10. Column flotation of bitumen at Fort Hills

    Energy Technology Data Exchange (ETDEWEB)

    Lizama, H.M. [Teck Cominco, Vancouver, BC (Canada); Romero, D. [UTS Energy Corp., Calgary, AB (Canada); Armour, M. [Petro-Canada, Calgary, AB (Canada)

    2008-05-15

    Flotation columns are used by mineral processors to separate mineral species. The separation is based on the premise that different mineral particles have different surface hydrophobicities. There are 2 carrier phases, notably air bubbles moving up and aqueous pulp moving down. Hydrophobic particles predominantly adhere to rising air bubbles and form a froth, while hydrophilic particles remain in aqueous suspension and flow down and out the bottom of the column. This paper described a demonstration plant near Fort McMurray where bitumen extraction was tested. The plant included 2 columns for bitumen flotation. Oil sands material was passed through a roll sizer and fed to a countercurrent drum separator, where it was mixed with water at 75 degrees C. Column data from the demonstration plant provided the opportunity to examine the separation behaviour during flotation of bitumen. The bitumen grade was described only in terms of bitumen content and solids content in order to simplify the interpretation of the bitumen flotation data. Bitumen/solids separation in the first column was successful at 50 to 60 degrees C, with feeds having bitumen grades between 1 and 19 per cent, and where the solids had about 60 per cent fines. Bitumen/solids separation did not occur in the second column at 50 to 60 degrees C, with feeds having bitumen grades between 8 and 63 per cent, and where the solids had about 90 per cent fines. The lack of separation was probably due to high solids entrainment in the flotation froth. It was concluded that bitumen column flotation data can be analyzed and interpreted by adopting mineral processing principles. Bitumen/solids separation can be evaluated and predicted by plotting solids recovery as a function of bitumen recovery. 7 refs., 1 tab., 6 figs.

  11. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Minnick, Matthew D [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Mattson, Earl D [Idaho National Lab. (INL), Idaho Falls, ID (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States) Dept. of Cilvil and Environmental Engineering; Murray, Kyle E. [Univ. of Oklahoma, Norman, OK (United States) Oklahoma Geological Survey

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  12. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Activities during this quarter focused on integrating the various tasks and elements. During Phase-1, substantial effort was placed on designing and automating the identification of molecular types present in shale oil. The ability to know the molecular composition and to track a given ``target`` species through the initial concentration steps was deemed critically important to the ultimate success of the three-phase project. It has been this molecular tracking ability that clearly distinguishes the JWBA work from prior shale oil research. The major software and hardware tasks are not in place to rapidly perform these analytical efforts. Software improvements are expected as new questions arise. The existence of the major nitrogen and oxygen types in shale oil has been confirmed. Most importantly, the ability to convert higher molecular weight types to lower molecular weight types was preliminarily confirmed in the present quarter. This is significant because it confirms earlier hypothesis that values are found though out the boiling range. Potential yields of extremely high value chemicals, e.g., $1000/bbl of up to 10% by weight of the barrel remain a feasible objective. Market and economic assessment continue to show encouraging results. Markets for specialty and fine chemicals containing a nitrogen atom are expanding both in type and application. Initial discussions with pharmaceutical and agrochemical industries show a strong interest in nitrogen-based compounds. Major progress was made during this quarter in completing agreements with industry for testing of shale oil components for biological activity. Positive results of such testing will add to the previously known applications of shale oil components as pure compounds and concentrates. During this quarter, we will formulate the pilot plant strategy for Phase-11(a).

  13. Self lubrication of bitumen froth in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.D. [Univ. of Minnesota, Minneapolis, MN (United States)

    1997-12-31

    In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes` bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating.

  14. Gasification of oil shale for hydrogen containing gas production

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); United Research and Development Center Ltd., Moscow (Russian Federation); Strizhakova, Yu. [Samara State Technical Univ. (Russian Federation); Zhagfarov, F.G.; Usova, T.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2010-12-30

    Qualified using of combustible shale, peat and wood for production of fuel and chemical products is a very actual problem for our country because of their large resource. It is possible to carry out two principal different ways of their use: thermal processing and gasification with following processing of gas products. Production of synthesis gas with composition CO:H{sub 2}=1:2 (vol) is possible at gasification of combustible shale. This gas is converted into the mixture of hydrocarbons over cobalt catalysts at 170-280 C at 1-3 bar. The hydrocarbons can be used as motor, including diesel, or reactive fuel. We proposed the effective catalysts at which conversion of synthesis gas in liquid products equals 80-90%. (orig.)

  15. Variations in the geochemistry of closely interbedded oil-prone coals and shales

    Energy Technology Data Exchange (ETDEWEB)

    Curry, D.J. (Exxon Production Research, Houston, TX (United States))

    1994-07-01

    Paralic and deltaic environments frequently contain closely interbedded oil-prone coals and carbonaceous shales of similar organic facies. However, differences in depositional and diagenetic conditions can result in significant variations in geochemistry between these coals and shales. These variations are observed in sediments from a range of ages and areas, including Australia, New Zealand, and Indonesia. For example, pristane/phytane and pristane/n-C[sub 17] ratios are frequently higher in coals than in associated shales, although n-alkane distributions are similar. The C[sub 27] Ts/Tm ratios are frequently much lower in coals, although most other biomarker ratios are generally the same for coals and shales. However, absolute biomarker concentrations, particularly of C[sub 27] Tm hopane, can be two to four times higher in coals. Significantly, many coals contain high concentrations of diasteranes (equivalent to those observed in shales). Differences in other parameters such as the C[sub 30] diahopane/C[sub 30] hopane ratios and pyrolysate compositions are also evident. Data indicate that rocks begin to become more coal-like at TOCs of approximately 25%. The variations in these parameters are probably the result of variability in early depositional and diagenetic conditions, such as eH, pH, and microbial action. In addition, these parameters are probably influenced by the effects of an organic vs. an inorganic matrix. The impact of this variability must be considered when conducting oil-source correlation studies and when assessing the relative contributions of coals and shales to the generation of oil in a basin.

  16. Modeling of oil mist and oil vapor concentration in the shale shaker area on offshore drilling installations.

    Science.gov (United States)

    Bråtveit, Magne; Steinsvåg, Kjersti; Lie, Stein Atle; Moen, Bente E

    2009-11-01

    The objective of this study was to develop regression models to predict concentrations of oil mist and oil vapor in the workplace atmosphere in the shale shaker area of offshore drilling installations. Collection of monitoring reports of oil mist and oil vapor in the mud handling areas of offshore drilling installations was done during visits to eight oil companies and five drilling contractors. A questionnaire was sent to the rig owners requesting information about technical design of the shaker area. Linear mixed-effects models were developed using concentration of oil mist or oil vapor measured by stationary sampling as dependent variables, drilling installation as random effect, and potential determinants related to process technical parameters and technical design of the shale shaker area as fixed effects. The dataset comprised stationary measurements of oil mist (n = 464) and oil vapor (n = 462) from the period 1998 to 2004. The arithmetic mean concentrations of oil mist and oil vapor were 3.89 mg/m(3) and 39.7 mg/m(3), respectively. The air concentration models including significant determinants such as viscosity of base oil, mud temperature, well section, type of rig, localization of shaker, mechanical air supply, air grids in outer wall, air curtain in front of shakers, and season explained 35% and 17% of the total variance in oil vapor and oil mist, respectively. The developed models could be used to indicate what impact differences in technical design and changes in process parameters have on air concentrations of oil mist and oil vapor. Thus, the models will be helpful in planning control measures to reduce the potential for occupational exposure.

  17. Molecular characterization and comparison of shale oils generated by different pyrolysis methods using FT-ICR mass spectrometry

    Science.gov (United States)

    Jin, J.M.; Kim, S.; Birdwell, J.E.

    2011-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.

  18. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Hall, V.S. (comp.)

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  19. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  20. A dual-porosity model for simulating solute transport in oil shale

    Science.gov (United States)

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  1. 页岩灰对油页岩低温干馏产物的影响%Impact of the Shale Ash on the Low-temperature Carbonization of the Oil Shale

    Institute of Scientific and Technical Information of China (English)

    牛玉梅; 张静; 孟宪鑫; 邢方亮; 朱晓霞

    2011-01-01

    分别介绍了油页岩低温干馏试验、油页岩与页岩灰掺混的干馏试验,结果表明,其他条件相同时,页岩灰与油页岩以4:1比例掺混时,油页岩干馏所产页岩油(凝点10℃,密度0.898 2g/cm3)与油页岩不掺混页岩灰干馏所得页岩油(凝点26℃,密度0.909 6g/cm3)相比,页岩油品质有所提升,有助于后续加工.%In the low-temperature carbonization process of the oil shale, the process conditions of the shale oil production in the presence of gray shale was introduced in this paper. The studies have shown that in the temperature around 520℃, comparing with shale oil (solidifying point of 26℃, density of 0.909 6g/cm3) produced by distillation of oil shale without mixing gray shale, shale oil (solidifying point of 10℃, density of 0.898 2g/cm3) produced by distillation of oil shale under the dry distillation conditions of oil shale and gray shale in a ratio of 4:1, enjoys higher quality and is helpful for subsequent processing.

  2. Impacts and mitigations of in situ bitumen production from Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, Neil

    2010-09-15

    85% or more of Alberta's oil sands is too deep to mine and will be recovered by in situ methods, i.e. from drill holes. This has been made commercially possible through the development in Alberta of Steam Assisted Gravity Drainage (SAGD). Does this impending development threaten the local ecosystem? A quantitative account is given of the principal impacts of in situ oil sands development in Alberta. Impacts on land (habitats), water, and air are considered in terms of local capacity, global benchmarks, and comparisons to alternative renewable technologies. Improvements due to new solvent-additive technology are highlighted.

  3. Eo-Oligocene Oil Shales of the Talawi, Lubuktaruk, and Kiliranjao Areas, West Sumatra: Are they potential source rocks?

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.198To anticipate the increasing energy demand, additional data and information covering unconventional fossil fuels such as oil shale must be acquired to promote the usage of alternative energy sources to crude oil. The Talawi and Lubuktaruk regions situated within intra-montane Ombilin Basin, and the Kiliranjao assumed to be a small intra montane basin are occupied by Eo-Oligocene sediments of Sangkarewang and Kiliran Formations, respectively. Field activity, geochemical screening techniques, and organic petrographic analysis, supported by SEM mode, are methods used. Most of the oil shale sequence is typically of an organically rich-succession comprising predominantly well-bedded, laminated and fissile, brownish to dark grey organic-rich shale and mudstone rocks. The exinite macerals within oil shale comprise mainly Pediastrum-lamalginite with minor cutinite, resinite, liptodetrinite, sporinite, bituminite, and rare Botryococcus-telalginite. Therefore; the oil shale deposits can be described as “lamosites”. Minor vitrinite maceral is also recognized. TOC analysis on selected shale samples corresponds to a fair up to excellent category of source rock characterization. The hydrogen index (HI for all samples shows a range of values from 207 - 864, and pyrolysis yield (PY ranges from 2.67 to 79.72 mg HC/g rock. The kerogen is suggested to be of mixed Type II and Type I autochthonous materials such as alginite, with minor allochthonous substances. Oil samples collected appear to be positioned within more oil prone rather than gas prone. Thermal maturity of the oil shales gained from Tmax value and production index (PI tends to show immature to marginally/early mature stage. A consistency in the thermal maturity level results by using both Tmax and vitrinite reflectance value is recognized. On the basis of  SEM analysis, the oil shale has undergone a late eodiagenetic process. Thereby, overall, vitrinite reflectance

  4. Eo-Oligocene Oil Shales of the Talawi, Lubuktaruk, and Kiliranjao Areas, West Sumatra: Are they potential source rocks?

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.198To anticipate the increasing energy demand, additional data and information covering unconventional fossil fuels such as oil shale must be acquired to promote the usage of alternative energy sources to crude oil. The Talawi and Lubuktaruk regions situated within intra-montane Ombilin Basin, and the Kiliranjao assumed to be a small intra montane basin are occupied by Eo-Oligocene sediments of Sangkarewang and Kiliran Formations, respectively. Field activity, geochemical screening techniques, and organic petrographic analysis, supported by SEM mode, are methods used. Most of the oil shale sequence is typically of an organically rich-succession comprising predominantly well-bedded, laminated and fissile, brownish to dark grey organic-rich shale and mudstone rocks. The exinite macerals within oil shale comprise mainly Pediastrum-lamalginite with minor cutinite, resinite, liptodetrinite, sporinite, bituminite, and rare Botryococcus-telalginite. Therefore; the oil shale deposits can be described as “lamosites”. Minor vitrinite maceral is also recognized. TOC analysis on selected shale samples corresponds to a fair up to excellent category of source rock characterization. The hydrogen index (HI for all samples shows a range of values from 207 - 864, and pyrolysis yield (PY ranges from 2.67 to 79.72 mg HC/g rock. The kerogen is suggested to be of mixed Type II and Type I autochthonous materials such as alginite, with minor allochthonous substances. Oil samples collected appear to be positioned within more oil prone rather than gas prone. Thermal maturity of the oil shales gained from Tmax value and production index (PI tends to show immature to marginally/early mature stage. A consistency in the thermal maturity level results by using both Tmax and vitrinite reflectance value is recognized. On the basis of  SEM analysis, the oil shale has undergone a late eodiagenetic process. Thereby, overall, vitrinite reflectance

  5. The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-04-01

    Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

  6. Investigation on water-assisted solvent extraction of bitumen from oil sands%水辅助溶剂法提取油砂中的沥青

    Institute of Scientific and Technical Information of China (English)

    杨红强; 丁明山; 胡斌; 任嗣利

    2014-01-01

    开发了一种水辅助溶剂法从油砂中提取沥青的技术。该方法通过在油砂固相与有机溶剂间介入水层提取油砂中的沥青。以内蒙古扎赉特旗油砂矿为研究对象,考察了温度、剂砂质量比、提取时间、甲苯在复合溶剂中的含量及溶剂的种类与性质对沥青回收率高低的影响,结果表明:最佳提取条件为提取温度50℃,剂砂质量比1∶1,提取时间25min。沥青回收率与提取溶剂的性质紧密相关,水层介入有效降低了固体微粒组分在有机相中的含量,且便于后续的有机相与泥砂相的分离。通过对各种溶剂提取的沥青进行组分分析,发现各种溶剂对沥青提取能力的差异性源于溶剂的化学组成和结构不同。本文相关研究结果对溶剂法提取油砂中沥青技术及溶剂种类的选择具有指导作用。%Water-assisted solvent extraction processes (WASEPs) were developed by introducing a water layer between the oil sands and solvent to extract bitumen. The function of the introduced water layer in the WASEPs is to effectively reduce the fine solids content in the solvent phase and make it easy to separate bitumen solution from solids. Effects of the solvent type on bitumen recovery were investigated and the extraction conditions were optimized. The results showed that bitumen recovery was closely related to the solvent compositions and chemical structure. The optimal extraction condition was stirring at 50℃ for 25 minutes using a ratio of oil sands to solvent at 1∶1(wt/wt). The reason of different extraction abilities for various solvents was revealed by analyzing the component of extracted bitumen. It may be useful to guide the solvent extraction processes and solvent selection.

  7. Volatility of bitumen prices and implications for the industry

    Science.gov (United States)

    Attanasi, E.D.

    2008-01-01

    Sustained crude oil price increases have led to increased investment in and production of Canadian bitumen to supplement North American oil supplies. For new projects, the evaluation of profitability is based on a prediction of the future price path of bitumen and ultimately light/medium crude oil. This article examines the relationship between the bitumen and light crude oil prices in the context of a simple error-correction economic-adjustment model. The analysis shows bitumen prices to be significantly more volatile than light crude prices. Also, the dominant effect of an oil price shock on bitumen prices is immediate and is amplified, both in absolute terms and percentage price changes. It is argued that the bitumen industry response to such market risks will likely be a realignment toward vertical integration via new downstream construction, mergers, or on a de facto basis by the establishment of alliances. ?? 2008 International Association for Mathematical Geology.

  8. Occurrence of oil and gas in Devonian shales and equivalents in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Schwietering, J. F.

    1981-03-01

    During the Devonian, an epicontinental sea was present in the Appalachian basin. The Catskill Clastic Wedge was formed in the eastern part of the basin by sediments derived from land along the margin of the continent. Three facies are recognized in the Catskill Clastic Wedge: (1) a red-bed facies deposited in terrestrial and nearshore marine environments; (2) a gray shale and sandstone facies deposited in a shallow- to moderately-deep marine environment; and (3) a dark-gray shale and siltstone facies deposited in the deepest part of the epicontinental sea. Oil and natural gas are being produced from Devonian shales in the western part of West Virginia and from upper Devonian sandstones and siltstones in the north-central part of the state. It is suggested that in addition to extending known areas of gas production, that drilling for natural gas be conducted in areas underlain by organic-rich shales and thick zones of interbedded siltstone and shale in the Devonian section in central, southern, and western West Virginia. The most promising areas for exploration are those areas where fractures are associated with folds, faults, and lineaments. 60 references.

  9. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    OpenAIRE

    Altun N. Emre

    2016-01-01

    Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspecti...

  10. In-bed sulphur capture during pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA))

    1991-11-01

    The Institute of Gas Technology is developing a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The sulphur present in the Eastern oil shales is converted to H{sub 2}S during hydroretorting. A solid sorbent (limestone or siderite) may be added to the PFH reactor with the oil shale to achieve in-bed desulphurization. The effects of operating conditions on the effectiveness of in-bed sulphur capture with limestone and siderite have been investigated. Reactivities of a limestone and a siderite towards H{sub 2}S were determined in experiments conducted in an ambient pressure thermogravimetric analyser. These tests were conducted in the temperature range of 480-565{degree}C using solid sorbents with an average particle diameter of 0.018 cm ({minus}60{plus}100 mesh). The results of thermogravimetric analysis tests indicate that both limestone and siderite should be capable of capturing a significant fraction of H{sub 2}S removal with in-bed sorbents. The results of these tests confirm that a significant fraction of H{sub 2}S produced in the PFH reactor can be removed with in-bed sorbents. 10 refs., 8 figs., 6 tabs.

  11. Paleoenvironmental signals and paleoclimatic condition of the Early Maastrichtian oil shales from Central Eastern Desert, Egypt

    Science.gov (United States)

    Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.

    2016-04-01

    Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.

  12. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Zumberge, J.E. (GeoMark Research Inc., Houston, TX (United States)); Macko, S. (Univ. of Virginia, Charlottesville, VA (United States)) Engel, M. (Univ. of Oklahoma, Norman, OK (United States)) (and others)

    1996-01-01

    Two of the largest gas fields in the world, Hasi R'Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have been generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.

  13. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Zumberge, J.E. [GeoMark Research Inc., Houston, TX (United States); Macko, S. [Univ. of Virginia, Charlottesville, VA (United States)] Engel, M. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1996-12-31

    Two of the largest gas fields in the world, Hasi R`Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have been generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.

  14. Drilling rig noise assessment model vs. field monitoring results Imperial Oil Resources Cold Lake in-situ bitumen development area

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.; MacDonald, T. [Imperial Oil Resources, Calgary, AB (Canada). Cold Lake Projects; Wright, R. [HFP Acoustical Consultants Corp., Calgary, AB (Canada)

    2007-07-01

    Oil and gas companies in Alberta must comply with the noise-emissions standards in the Noise Control Directive 038 of the Alberta Energy and Utilities Board (EUB). Licensees are responsible for risk when choosing sites and designing facilities. As such, they are required to work proactively to minimize potential impacts of new developments and must report existing noise levels. Imperial Oil Resources (IOR) Cold Lake operation is Canada's largest in-situ bitumen development facility which undergoes significant, ongoing development including the addition of up to 10 new multi-well production sites per year. In this study, the following equipment was assessed as a component of the noise impact assessment: the draw works, rotary table and drilling floor operations of a typical pad-drilling rig; the equipment skid for a typical diesel-electric rig, which includes two diesel engines, mud pumps and mud tanks; and, the equipment skid for a typical all electric rig, which includes only the mud pumps and mud tanks. Drilling rig noise measurements taken in 2006 at at two operating drill rigs were compared with 1996 drilling rig noise measurements. Sound level measurements at the U08 and U09 operating drill rigs were completed at distances of 5 m, 10 m, 20 m and 40 m and the measurements were used to calculate sound power levels for the drilling floor. A comparison of predicted sound levels to measured sound levels was then presented. Higher sound power level values in the 2006 measurements were due to equipment noise being centered at the drilling complex as opposed to the rig floor in 1996. The 2006 field monitoring data were then used by HFP Acoustical Consultants to update the predictive model which was provided to IOR in January 2006. The updated sound levels around the electric drilling rigs range from approximately 60 dBA near the edge of the lease up to 83 dBA near the noisiest equipment. It was concluded that the predictions from the model remain conservative and

  15. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  16. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  17. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. [Alabama Univ., University, AL (United States). Mineral Resources Inst.

    1991-12-31

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  18. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. (Alabama Univ., University, AL (United States). Mineral Resources Inst.)

    1991-01-01

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  19. New pitches with enhanced graphitization ability obtained from Moroccan oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Abourriche, A.; Oumam, M.; Mouhssim, A.; Dahiri, M.; Hannache, H. [Laboratoire des Materiaux Thermostructuraux, Faculte des Sciences Ben Mminutes or feetsik, B.P. 7955, Casablanca (Morocco); Chollon, G.; Pailler, R.; Naslain, R. [Laboratoire des Composites Thermostructuraux, UMR 5801, CNRS-CEA-SNECMA-Universite Bordeaux I, Domaine Universitaire, 3 Allee de la Boetie, F-33600 Pessac (France); Birot, M.; Pillot, J.-P. [Laboratoire de Chimie Organique et Organometallique, UMR 5802, CNRS-Universite Bordeaux I, 351 cours de la Liberation, F-33405 Talence Cedex (France)

    2004-06-01

    New pitches were obtained from the extraction of Moroccan oil shales. Their pyrolysis was studied in the temperature range of 1100-2800C by Raman spectroscopy and X-ray diffraction. The graphitization degree of the resulting carbon was tightly dependent on the composition of the pitch. Moreover, it was shown that phenol was a suitable extraction solvent to produce graphitizable carbon at relatively low temperature (T{>=}1800C)

  20. Evidence of stability of sedimentary organic matter during bacterial desilicification of an oil shale (SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    DRAGOMIR VITOROVIC

    2001-02-01

    Full Text Available Aleksinac oil shale organic matter appeared to remain unchanged, according to ele-mental, IR, P-GC and P-GC-MS analytical characterization, after exposure to Bacillus circulans-Jordan desilicification for 30 days. These experiments indicate that “siliceous bacteria” may have potential as an alternative, “biochemical agent” for the isolation of native kerogen, and justify further efforts toward continuedevaluation of this advantageous process.

  1. Geological settings of the protected Selisoo mire (northeastern Estonia) threatened by oil shale mining

    OpenAIRE

    Helen Hiiemaa; Mario Mustasaar; Marko Kohv; Tiit Hang; Argo Jõeleht; Katrin Lasberg; Volli Kalm

    2014-01-01

    The protected Selisoo mire in northeastern Estonia is located above valuable oil shale resources, partly in the permitted mining area. We describe in detail the geomorphology and geological setting of the mire to understand the natural preconditions for its formation, development and preservation. We used the LiDAR-based digital elevation model for relief analysis, mapped the peat thickness with ground-penetrating radar and described the Quaternary cover through corings. Ridges, oriented perp...

  2. The distribution of worm borings in brachiopod shells from the Caradoc Oil Shale of Estonia.

    OpenAIRE

    Vinn, Olev

    2005-01-01

    International audience; Abundant worm borings were found in some brachiopod shells (Clitambonites, Estlandia, Nicolella) from the Ordovician (Caradoc) oil shale in North Estonia. 9 of 21 brachiopod genera (43 %) have been bored. Excluding the size and thickness of valves, no common morphological feature discriminates the brachiopods with borings from those without them. The Trypanites are host-specific, and the frequency of bored valves varies from 6.5 % in Bekkerina to 51 % in Estlandia. The...

  3. Withdrawal of gases and liquids from an in situ oil shale retort

    Science.gov (United States)

    Siegel, Martin M.

    1982-01-01

    An in situ oil shale retort is formed within a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale. A production level drift extends below the fragmented mass, leaving a lower sill pillar of unfragmented formation between the production level drift and the fragmented mass. During retorting operations, liquid and gaseous products are recovered from a lower portion of the fragmented mass. A liquid outlet line extends from a lower portion of the fragmented mass through the lower sill pillar for conducting liquid products to a sump in the production level drift. Gaseous products are withdrawn from the fragmented mass through a plurality of gas outlet lines distributed across a horizontal cross-section of a lower portion of the fragmented mass. The gas outlet lines extend from the fragmented mass through the lower sill pillar and into the production level drift. The gas outlet lines are connected to a gas withdrawal manifold in the production level drift, and gaseous products are withdrawn from the manifold separately from withdrawal of liquid products from the sump in the production level drift.

  4. CO2 mineral sequestration in oil-shale wastes from Estonian power production.

    Science.gov (United States)

    Uibu, Mai; Uus, Mati; Kuusik, Rein

    2009-02-01

    In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.

  5. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  6. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  7. Medium and Long Term Crude Oil Price Outlook: Economic research on shale oil and gas production behavior in the United States (Japanese)

    OpenAIRE

    2015-01-01

    It has been pointed out that the steep fall in crude oil prices after the latter half of 2014 has been strongly affected by both demand side factors such as the slowdown of world economic growth and supply side factors such as a massive increase in shale oil production in the United States and other structural factors. Shale oil and gas production is well known for its different aspects compared to conventional oil and gas production such as differences in oil and gas reserves, differences in...

  8. Geokinetics in situ shale oil recovery project. Third annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L.

    1980-05-01

    Objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conductd at a field site located 70 miles south of Vernal, Utah. During 1979, five retorts were blasted. Four of these were small retorts (approx. 7000 tons), designed to collect data for improving the blast method. The fifth retort was a prototype of a full-sized retort measuring approximately 200 ft on each side. Two retorts, blasted the previous year, were burned, and a third retort was ignited near the end of the year. A total of 5170 bbl of oil was produced during the year.

  9. The Long-Run Oil-Natural Gas Price Relationship And The Shale Gas Revolution

    OpenAIRE

    2015-01-01

    The gas extraction technological developments of the 2000s have allowed shale gas production, which in the US has become a significant part of the total gas production. Such a significant change might have affected the long-run relationship between oil and natural gas prices postulated by several authors. By using monthly data of oil and gas prices, as well as gas quantities from 1997 to 2013, we test for the presence of a long-run relationship, allowing also for possible breaks. We first sho...

  10. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  11. 水基提取技术用于油砂分离的研究进展%Research progress in water-based bitumen extraction from oil sands

    Institute of Scientific and Technical Information of China (English)

    任嗣利

    2011-01-01

    As an unconventional oil resource, oil sands and its processing technology has attracted much attention in China in recent years. Water-based extraction processes are the most important method to recover bitumen from oil sands. Two key steps are involved in this process: bitumen liberation from the sand grains and bitumen aeration followed by flotation to form a bitumen-rich froth. Any factor that causes poor liberation or poor aeration will result in a poor bitumen recovery. With the use of the advanced analytical instrumentations, such as the atomic force microscope (AFM), the understanding for the bitumen extraction from oil sands is extended from the macroscopic scale to the molecular level. It is found that the wettability of solids and water chemistry play significant roles in the processability of oil sands. Mechanisms related to the bitumen extraction processes are discussed in detail. The procedures of recovering bitumen from oil sands in industry are also briefly described.%油砂作为一种重要的非常规油气资源,其分离技术的研究近些年来引起了国内科研工作人员的重视.介绍了目前世界上最重要的油砂分离技术——水基提取技术的基本原理及影响油砂分离的重要影响因素,阐述了油砂结构、特性与水基提取分离的重要关系及分离条件对沥青回收率的重要影响作用,同时探讨了原子力显微镜用于油砂水基分离过程中相关微观机理研究的重要应用,最后对水基提取技术用于油砂工业生产的流程进行了简单介绍.

  12. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats

    Science.gov (United States)

    Brittingham, Margaret C.; Maloney, Kelly O.; Farag, Aïda M.; Harper, David D.; Bowen, Zachary H.

    2014-01-01

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  13. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  14. Jet Fuel from Shale Oil - 1981 Technology Review,

    Science.gov (United States)

    1981-12-01

    PA 18105 Inc. Waverly Glover ASD/PMRSA WPAFB, OH 45433 Timothy N. Gootee AFWAL/POFF WPAFB, OH 45433 Dr. Shri K. Goya ! Amoco Oil Co. - R&D...Engineering Box 3965 San Francisco , CA 94119 Barry E. McMillen WPAFB - AFWAL/POFF 9578 Lower Valley Pk. Medway, OH 45341 Warren K. McOmber

  15. Effect of mineral matter and phenol in supercritical extraction of oil shale with toluene

    Energy Technology Data Exchange (ETDEWEB)

    Abourriche, A.; Ouman, M.; Ichcho, S.; Hannache, H. [Universite Hassan II, Lab. des Materiaux Thermostructuraux, Faculte des Sciences Ben M' Sik, Casablanca (Morocco); Pailler, R.; Naslain, R. [Laboratoire des Composites Thermostructuraux (LCTS), 33 - Pessac (France); Birot, M.; Pillot, J.P. [Bordeaux-1 Univ., Lab. de Chimie Organique et Organometallique, UMR 5802 CNRS, 33 - Talence (France)

    2005-03-01

    In the present work, Tarfaya oil shale was subjected to supercritical toluene extraction. The experimental results obtained show clearly that the mineral matter and phenol have a significant effect on the yield and the composition of the obtained oil. The yield and the composition of oil obtained by toluene+phenol extraction were markedly different from that obtained by toluene. Higher yield and maturation of the obtained oil of the toluene+phenol extraction indicate that the phenol not only acts as an extraction solvent but also reacts with the molecules from kerogen. This can be explained by the presence of a very reactive O-H group able to react with the majority of the kerogen functions.

  16. Proximate analysis of coal, oil shale, low quality fossil fuels and related materials by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Warne, S.S.J. (University of Newcastle, Newcastle, NSW (Australia). Dept. of Geology)

    The massive oil price increases of the 'oil crises' of 1973 and 1979 followed by continuing volatile price fluctuations have reduced the over-dependence on oil by increased coal utilization and generated interest in oil shale. Basic to the economic viability of this is the detailed characterization of a wide range of coals, particularly those of poorer quality (high ash) and lower cost. Fundamental to this is 'proximate analysis' where increased speed, lower unit cost per determination together with complementary and related determinations have been achieved by the technique of thermogravimetry. Other applications using different furnace atmosphere combinations and magnetic fields have contributed further data of economic and environmental importance. 18 refs., 5 figs.

  17. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  18. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    Science.gov (United States)

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  19. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types-I,-II,IIS, and -III

    Science.gov (United States)

    Schimmelmann, Arndt; Lewan, Michael D.; Wintsch, Robert P.

    1999-11-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381°C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330°C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ≈ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381°C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350°C for 72 h, or 330°C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115°C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  20. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III

    Science.gov (United States)

    Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.

    1999-01-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381??C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330??C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ~ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 ??C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350??C for 72 h, or 330??C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115??C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  1. INVESTIGATION OF RHEOLOGICAL PROPERTIES OF MODIFIED BITUMEN

    Directory of Open Access Journals (Sweden)

    Erofeev Vladimir Trofimovich

    2016-08-01

    Full Text Available At the present time the most widely used type of road pavement is asphalt-concrete pavement produced on the basis of oil bitumen. One of the efficient ways to increase the quality and durability of asphalt-concrete pavement is modification of bitumen. Though Russian specialists still don’t have the global view of the ideal and real asphalt cement, the requirements to its quality and durability indicators in the composition of road structure haven’t yet formed. The authors present the investigation results of the properties of oil asphalt cement containing 0.5-2.0% of modifier “Olazol”. The physical, mechanical and rheological properties of the modified bitumen are determined. The dependences of the dynamic viscosity of the modified bitumen from the quantity of introduced modifier, shear rate and reheat temperature are analyzed.

  2. Geostatistical modeling of facies, bitumen grade and particle size distribution for the Joslyn oil sand open pit mine project

    Energy Technology Data Exchange (ETDEWEB)

    Babak, Olena; Insalaco, Enzo; Mittler, Andreas [Total EandP Canada Ltd. (Canada)

    2011-07-01

    The Joslyn North Mine Project is currently in the pre-development stage; the aim of this study is to use different available data to draw a geological model of facies, bitumen grade, full particle size distribution (PSD) and ore/waste discrimination. The study was conducted with the database of around 800 wells, stochastic, indicator and Gaussian simulations were performed along with a sensitivity study. Results demonstrated the importance of some parameters for evaluating grade cases including variogram uncertainty, sampling limitations and errors in geostatistical workflow. In addition, modeling the full PSD dataset was shown to be useful. This study demonstrated how to use available database through an overall workflow to develop case scenarios for bitumen in place in ore and characterize the ore material.

  3. Development and application of a permit information system for shale oil (PERMISSO). Final report appendix: summary sheets of regulations required for oil shale development, June 1978--May 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This appendix is comprised of summaries of various governmental permits, licenses and other approvals required for oil shale development. The summaries were completed during the period June--October 1978, and are current as of July 1, 1978, although more recent authority was cited in some cases. One of the major purposes of Phase II of the project will be to update these summaries as statutes and regulations are added, changed or eliminated. This updating will be particularly important in the case of environmental permits and approvals. Many legislative and regulatory changes affecting environmental requirements are pending at this time and will alter many of the summaries herein. In addition, many regulatory proposals have been or likely will be challenged in the courts. When such conflicts are resolved further changes may be in order.

  4. Preliminary Study on PAHs Distribution in High-grade Oil Shale and Its Spontaneous Combustion Product in Fushun, Liaoning Province

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liping; ZENG Rongshu; XU Wendong

    2007-01-01

    Spontaneous combustion of oil shale is very common as a result of long-time exposure to the air in the Fushun West Open-Pit Mine and West Dump. The PAHs in the high-grade oil shale and its spontaneous combustion product were analyzed semiquantitatively by GC-MS in order to investigate their distribution in different states and their potential negative effects on the environment. Totally 57and 60 PAHs and their alkyl homologues were identified in the two analyzed samples, among which the alkyl derivatives were predominant, taking up to about 65 % in the total PAHs. Those low-molecular mass PAHs (3- or 4-ring) were the main compounds in the two samples. Ten of sixteen USEPA priority pollutant PAHs were detected in two samples, of which phenanthrene was the richest whose contents were 6.93% and 15.03%. Based on comparison of analysis results, the amount and contents of PAHs,except for triaromatic steroid group, were higher in the burning oil shale. So it can be determined that the effects caused by spontaneous combustion of oil shale would be more serious and that the effects of the Fushun oil shale and its spontaneous combustion on the environment should not be ignored in the future work.

  5. Airborne Trace Gas and Aerosol Measurements in Several Shale Gas Basins during the SONGNEX (Shale Oil and Natural Gas Nexus) Campaign 2015

    Science.gov (United States)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2015-12-01

    Oil and natural gas from tight sand and shale formations has increased strongly over the last decade. This increased production has been associated with emissions of methane, non-methane hydrocarbons and other trace gases to the atmosphere, which are concerns for air quality, climate and air toxics. The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) aircraft campaign took place in 2015, when the NOAA WP-3 aircraft conducted 20 research flights between March 19 and April 27, 2015 in the following shale gas regions: Denver-Julesberg, Uintah, Upper Green River, San Juan, Bakken, Barnett, Eagle Ford, Haynesville, Woodford, and Permian. The NOAA P3 was equipped with an extensive set of gas phase measurements, including instruments for methane, ethane, CO, CO2, a new H3O+CIMS, canister and cartridge samples for VOCs, HCHO, glyoxal, HNO3, NH3, NOx, NOy, PANs, ozone, and SO2. Aerosol number and size distributions were also measured. This presentation will focus on an overview of all the measurements onboard the NOAA WP-3 aircraft and discuss the differences between the shale gas regions. Due to a drop in oil prices, drilling for oil decreased in the months prior to the mission, but nevertheless the production of oil and natural gas were near the all-time high. Many of the shale gas basins investigated during SONGNEX have quite different characteristics. For example, the Permian Basin is a well-established field, whereas the Eagle Ford and the Bakken saw an almost exponential increase in production over the last few years. The basins differ by the relative amounts of natural gas versus oil that is being produced. Previous work had shown a large variability in methane emissions relative to the production (leak rate) between different basins. By including more and qualitatively different basins during SONGNEX, the study has provided an extensive data set to address how emissions depend on raw gas composition, extraction techniques and regulation. The influence of these

  6. Economic and social impacts of rapid shale oil development in western North Dakota

    Science.gov (United States)

    Fernando, Wannakuwatte Mitiwaduge Felix Nirmal

    This dissertation comprises of five qualitative and exploratory studies. The studies focus on the social and economic impacts of rapid shale oil development, which is colloquially referred to as an "oil boom" on the communities and its members in western North Dakota. The dissertation presents a detailed exploration of the impacts and implications of the boom on community values and attitudes, quality of life, and community development. Impact of the boom on each topic is presented as an independent article or chapter. The data for the dissertation was collected through open-ended, face-to-face interviews. The findings highlight the opportunities created by the boom, barriers inhibiting community development, and the solutions necessary to achieve the community development potential created by the economic activity of the oil boom.

  7. Oil shale resources in the Eocene Green River Formation, Greater Green River Basin, Wyoming, Colorado, and Utah

    Science.gov (United States)

    ,

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.

  8. Study of the environmental hazard caused by the oil shale industry solid waste.

    Science.gov (United States)

    Põllumaa, L; Maloveryan, A; Trapido, M; Sillak, H; Kahru, A

    2001-01-01

    The environmental hazard was studied of eight soil and solid waste samples originating from a region of Estonia heavily polluted by the oil shale industry. The samples were contaminated mainly with oil products (up to 7231mg/kg) and polycyclic aromatic hydrocarbons (PAHs; up to 434mg/kg). Concentrations of heavy metals and water-extractable phenols were low. The toxicities of the aqueous extracts of solid-phase samples were evaluated by using a battery of Toxkit tests (involving crustaceans, protozoa, rotifers and algae). Waste rock and fresh semi-coke were classified as of "high acute toxic hazard", whereas aged semi-coke and most of the polluted soils were classified as of "acute toxic hazard". Analysis of the soil slurries by using the photobacterial solid-phase flash assay showed the presence of particle-bound toxicity in most samples. In the case of four samples out of the eight, chemical and toxicological evaluations both showed that the levels of PAHs, oil products or both exceeded their respective permitted limit values for the living zone (20mg PAHs/kg and 500mg oil products/kg); the toxicity tests showed a toxic hazard. However, in the case of three samples, the chemical and toxicological hazard predictions differed markedly: polluted soil from the Erra River bank contained 2334mg oil/kg, but did not show any water-extractable toxicity. In contrast, spent rock and aged semi-coke that contained none of the pollutants in hazardous concentrations, showed adverse effects in toxicity tests. The environmental hazard of solid waste deposits from the oil shale industry needs further assessment.

  9. Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

    1979-07-01

    The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

  10. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land.

    Science.gov (United States)

    Xia, H P

    2004-01-01

    Vetiver grass (Vetiveria zizanioides), bahia grass (Paspalum notatum), St. Augustine grass (Stenotaphrum secundatum), and bana grass (Pennisetum glaucumxP. purpureum) were selected to rehabilitate the degraded ecosystem of an oil shale mined land of Maoming Petro-Chemical Company located in Southwest of Guangdong Province, China. Among them, vetiver had the highest survival rate, up to 99%, followed by bahia and St. Augustine, 96% and 91%, respectively, whereas bana had the lowest survival rate of 62%. The coverage and biomass of vetiver were also the highest after 6-month planting. Fertilizer application significantly increased biomass and tiller number of the four grasses, of which St. Augustine was promoted most, up to 70% for biomass, while vetiver was promoted least, only 27% for biomass. Two heavy metals, lead (Pb) and cadmium (Cd) tested in this trial had different concentrations in the oil shale residue, and also had different contents and distributions in the four grass species. Concentrations of Pb and Cd in the four grasses presented a disparity of only 1.6-3.8 times, but their uptake amounts to the two metals were apart up to 27.5-35.5 times, which was chiefly due to the significantly different biomasses among them. Fertilizer application could abate the ability of the four species to accumulate heavy metals, namely concentration of heavy metals in plants decreased as fertilizer was applied. The total amount of metals accumulated by each plant under the condition of fertilization did not decrease due to an increase of biomass. In summary, vetiver may be the best species used for vegetation rehabilitation in oil shale disposal piles.

  11. Atmospheric behaviour of oil-shale combustion fly ash in a chamber study

    Science.gov (United States)

    Teinemaa, Erik; Kirso, Uuve; Strommen, Michael R.; Kamens, Richard M.

    There are huge world deposits of oil shale, however, little is known about the fate of atmospheric oil-shale combustion fly ash. In the present work, oil-shale combustion fly-ash aerosol was investigated under simulated daytime and nighttime conditions. Fly-ash particles collected from the Baltic Power Plant (Estonia) were injected directly to a 190 m 3 outdoor Teflon film chamber. The initial concentration of particles was in the range from 15 to 20 mg/m 3. Particle size distributions were monitored continuously by various optical and electrical devices. During the course of an experiment the particle phase was collected on filters, and the gas phase was collected using denuders. The initial aerosol mass concentration decreased quickly due to the deposition of larger particles. Since fine particles dominated the count distribution, the change in aerosol number concentration was less significiant than the mass concentration over time. Experimental data showed a bimodal particle size distribution with maximums at about 0.07 and 4 μm. SEM images of aerosol particles also provided particle shape and size distribution information. The respirable fraction of particles, which contributes most to the health effects of the aerosol, significantly increased during the experiment, being 25% by mass immediately after the injection of fly ash and achieving 65% at the end of the experiment. Results of CG/MS analysis confirm the presence of different polycyclic aromatic hydrocarbons (PAHs) in the particle phase of the aerosol. Some of the individual compounds included phenanthrene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. Several PAHs were found in the gas phase of the chamber after fly ash had aged for 2 h, indicating that PAHs desorbed from the particles over time.

  12. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine

    Energy Technology Data Exchange (ETDEWEB)

    Karu, H. [Tartu Univ., Tartu (Estonia). Inst. of Ecology and Earth Sciences; Tallinn Univ., Tallinn (Estonia). Inst. of Ecology; Szava-Kovats, R.; Kull, O. [Tartu Univ., Tartu (Estonia). Inst. of Ecology and Earth Sciences; Pensa, M. [Tallinn Univ., Tallinn (Estonia). Inst. of Ecology

    2009-08-15

    The carbon balance of ecosystems emerging on former opencast mining areas was discussed. Since the carbon content of mine spoils is usually very low, soils developing on mine spoils can act as important sinks for carbon dioxide (CO{sub 2}) through accumulation of biomass and soil organic carbon (SOC). This study estimated the rate of carbon accumulation and its distribution along forest ecosystem partitions in young Scots pine plantations in the Narva opencast oil shale mine in Estonia. Although plantations established on mine spoils are useful sites to study carbon sequestration in forests, mine soils often contain large amounts of fossil carbon, which complicates the estimation of carbon sequestration. Measurement of radiocarbon activity has been used to differentiate between plant-derived recent carbon and fossil carbon. The objectives of this study were to estimate the rate of carbon accumulation in young Scots pine plantations growing on severely degraded land; to determine the distribution of sequestered carbon along forest ecosystem partitions; and to develop a simple and robust method for finding the recent carbon contribution to total SOC. The plantations of Scots pine showed remarkably good growth on calcareous and stony oil shale mining spoils, having the potential to accumulate over 130 t C per ha less than 40 years after establishment. Most of the sequestered carbon was allocated to tree stems, with their portion increasing with age from 28 to 51 per cent. The portion of recent SOC increased from 5 to 23 per cent, indicating that soils contribute significantly to carbon accumulation during early forest succession on degraded land. According to our results, soils contribute a significant part to total stand carbon sequestration. However, large uncertainties remain concerning the average rate of SOC accumulation in reclaimed oil shale opencast mines because of the high variability of the parent substrate. 50 refs., 5 tabs., 4 figs.

  13. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  14. Occupational exposure to asbestos during renovation of oil-shale fuelled power plants in Estonia.

    Science.gov (United States)

    Kangur, Maie

    2007-01-01

    Many thousands of tonnes of asbestos were used in buildings in the past, especially for thermal insulation of pipes and boilers in power plants. Occupational exposure to asbestos dust now mainly occurs during demolition, renovation and routine maintenance activities. The objective of this study was to evaluate occupational exposure to airborne asbestos during renovation of solid oil-shale fuelled power plants carried out in 2001-2003. Air monitoring inside and outside of the renovation area was performed. The concentration of airborne fibres in the working environment increased during renovation but the valid limit value (0.1 fibres/cm(3)) was not exceeded.

  15. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  16. Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio).

    Science.gov (United States)

    Kreitsberg, Randel; Baršienė, Janina; Freiberg, Rene; Andreikėnaitė, Laura; Tammaru, Toomas; Rumvolt, Kateriina; Tuvikene, Arvo

    2013-12-01

    In North-East Estonia, considerable amounts of toxicants (e.g. polycyclic aromatic hydrocarbons (PAHs), phenols, heavy metals) leach into water bodies through discharges from the oil-shale industry. In addition, natural and anthropogenic hypoxic events in water bodies affect the health of aquatic organisms. Here we report a study on the combined effects of contaminated sediment and hypoxia on the physiology of gibel carp (Carssius auratus gibelio). We conducted a laboratory exposure study that involved exposure to polluted sediments from oil-shale industries (River Purtse) and sediments from a relatively clean environment (River Selja), together with sediments spiked with PAHs. The oxygen content (saturation vs. hypoxia (oil-shale industry on fish health parameters was clear under different oxygen levels. © 2013 Elsevier Inc. All rights reserved.

  17. Siberian Platform: Geology and Natural Bitumen Resources

    Science.gov (United States)

    Meyer, Richard F.; Freeman, P.A.

    2006-01-01

    Summary: The Siberian platform is located between the Yenisey River on the west and the Lena River on the south and east. The Siberian platform is vast in size and inhospitable in its climate. This report is concerned principally with the setting, formation, and potential volumes of natural bitumen. In this report the volumes of maltha and asphalt referred to in the Russian literature are combined to represent natural bitumen. The generation of hydrocarbons and formation of hydrocarbon accumulations are discussed. The sedimentary basins of the Platform are described in terms of the Klemme basin classification system and the conditions controlling formation of natural bitumen. Estimates of in-place bitumen resources are reviewed and evaluated. If the bitumen volume estimate is confined to parts of identified deposits where field observations have verified rock and bitumen grades values, the bitumen resource amounts to about 62 billion barrels of oil in-place. However, estimates of an order of magnitude larger can be obtained if additional speculative and unverified rock volumes and grade measures are included.

  18. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    Science.gov (United States)

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  19. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    Science.gov (United States)

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40

  20. Physico-chemical modification of asphalt bitumens by reactive agents

    OpenAIRE

    Cuadri Vega, Antonio Abad

    2013-01-01

    Bitumen, a by-product from crude oil distillation, has long been used in numerous engineering applications that range from the construction of road pavements to waterproof membranes for the roofing industry. On account of its properties (impermeability, adhesiveness, elasticity, ductility, etc.), bitumen is the most suitable material to be used as a binder of mineral aggregates for paving industry, and consequently, roads are mainly constructed using a composite mixture of bitumen (~ 5 wt.%) ...

  1. Hot bitumen grouting rediscovered

    Energy Technology Data Exchange (ETDEWEB)

    Naudts, A. [ECO Grouting Specialists, Grand Valley, ON (Canada)

    2001-10-01

    The article extols the value of hot bitumen grouting, in conjunction with cement-based grout, as a fast, safe, environmentally-friendly and cost-effective sealant. A major advantage of bitumen grout is that blown bitumen will never wash out. The article discusses the properties and some applications of bitumen grout. A diagram shows an application of bitumen and cement-based grout at a large dam. Examples of preventing water flow in dams, in a coal mine and in a potash mine are also given.

  2. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  3. Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian black shales at the northern margin of the Variscan mountain belt (Germany and Belgium)

    Energy Technology Data Exchange (ETDEWEB)

    Rippen, D.; Uffmann, A.K.; Littke, R. [RWTH Aachen Univ. (Germany). Energy and Mineral Resources Group (EMR)

    2013-08-01

    Ongoing exploration on unconventional gas resources in Central Europe led to a focus of interest on Paleozoic black shale formations. The work presented here comprises diverse assessment-critical data of potentially economic black shale formations of the Carboniferous, including mineralogy, geochemical data, petrophysical data and geological parameters such as burial and thermal history. The sampled and investigated Paleozoic black shales are highly mature to overmature in terms of oil generation, although some gas generation potential remains. Especially the shales of the uppermost Mississippian (Upper Alum Shale/Chokier Formation) have high contents of organic carbon, are tens of meters thick and reached the gas window. Adjacent carbonates are often stained black and rich in solid bitumen, indicating a former oil impregnation of these reservoirs. Furthermore, the geochemical and petrophysical properties of the Upper Alum Shale and Chokier Formation black shales are similar to those of already producing shale gas plays like the Barnett shale in the USA. These shale sequences are enriched in silica, needed for enhanced fraccability performance at production stage. Although all hydrocarbon potential for the Mississippian shales is exhausted, a high retention potential of thermally generated gas is favored by thick overlying sequences of greywackes and shales in most of the investigated areas. Based on these observations, the Upper Alum Shale and the Chokier formation can be regarded as potential gas shale targets. Any exploration will have to take place north of the outcrop areas, because present-day Mississippian strata are completely eroded south of the studied outcrops. Most other Mississippian and Pennsylvanian black shales are relatively thin and are therefore not considered as primary targets for shale gas plays. (orig.)

  4. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  5. Modeling calcium dissolution from oil shale ash: Part 1. Ca dissolution during ash washing in a batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Velts, O.; Kallas, J. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia); Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Hautaniemi, M. [Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Kuusik, R. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia)

    2010-05-15

    Batch dissolution experiments were carried out to investigate Ca leachability from oil shale ashes formed in boilers operating with different combustion technologies. The main characteristics of Ca dissolution equilibrium and dynamics, including Ca internal mass transfer through effective diffusion coefficients inside the ash particle were evaluated. Based on the collected data, models allowing simulation of the Ca dissolution process from oil shale ashes during ash washing in a batch reactor were developed. The models are a set of differential equations that describe the changes in Ca content in the solid and liquid phase of the ash-water suspension. (author)

  6. Long-Term Acid-Generating and Metal Leaching Potential of a Sub-Arctic Oil Shale

    Directory of Open Access Journals (Sweden)

    Kathryn A. Mumford

    2014-04-01

    Full Text Available Shales are increasingly being exploited for oil and unconventional gas. Exploitation of sub-arctic oil shales requires the creation of gravel pads to elevate workings above the heaving effects of ground ice. These gravel pads can potentially generate acidic leachate, which can enhance the mobility of metals from the shale. To examine this potential, pyrite-bearing shale originating from sub-Arctic gravel pad sites were subjected to leaching tests for 600 days at initial pH values ranging from 2 to 5, to simulate potential real world conditions. At set times over the 600 day experiment, pH, oxidation reduction potential (ORP, dissolved oxygen and temperature were recorded and small liquid samples withdrawn and analysed for elemental concentrations using total reflection X-ray fluorescence spectrometry (TRXRF. Six of eight shale samples were found to be acid generating, with pH declining and ORP becoming increasingly positive after 100 days. Two of the eight shale samples produced increasingly alkaline leachate conditions with relatively low ORP after 100 days, indicating an inbuilt buffering capacity. By 600 days the buffering capacity of all samples had been consumed and all leachate samples were acidic. TRXRF analyses demonstrated significant potential for the leaching of S, Fe, Ni, Cu, Zn and Mn with greatest concentrations found in reaction vessels with most acidic pH and highest ORP.

  7. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  8. Source characterization studies at the Paraho semiworks oil shale retort. [Redistribution of trace and major elements

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, J.S.; Wilkerson, C.L.; Evans, J.C.; Sanders, R.W.; Abel, K.W.

    1979-05-01

    In order to determine the redistribution of trace and major elements and species during aboveground oil shale retorting, a comprehensive program was carried out for the sampling and analysis of feedstock, products, effluents, and ambient particulates from the Paraho Semiworks Retort. Samples were obtained during two periods in 1977 when the retort was operating in the direct mode. The data were used to construct mass balances for 31 trace and major elements in various effluents, including the offgas. The computed mass balances indicated that approx. 1% or greater fractions of the As, Co, Hg, N, Ni, S, and Se were released during retorting and redistributed to the product oil, retort water, or product offgas. The fraction released for these seven elements ranged from approx. 1% for Co and Ni to 50 to 60% for Hg and N. Approximately 20% of the S and 5% each of the As and Se were released. Ambient aerosols were found to be elevated near the retorting facility and associated crushing and retorted shale disposal sites. Approximately 50% of these particles were in the respirable range (< 5 ..mu..m). The elevated dust loadings are presented very local, as indicated by relatively low aerosol loadings at background sites 100 to 200 m away. State-of-the-art dust control measures were not employed. 15 figures, 19 tables.

  9. Removal of Cu2+from Aqueous Solutions Using Na-A Zeolite from Oil Shale Ash

    Institute of Scientific and Technical Information of China (English)

    包维维; 刘璐; 邹海峰; 甘树才; 徐学纯; 季桂娟; 高桂梅; 郑克岩

    2013-01-01

    Na-A zeolite was synthesized using oil shale ash (OSA), which is a solid by-product of oil shale proc-essing. The samples were characterized by various techniques, such as scanning electron microscopy, X-ray diffrac-tion and Brunauer Emmet Teller method. The batch isothermal equilibrium adsorption experiments were performed to evaluate the ability of Na-A zeolite for removal of Cu (II) from aqueous solutions. The effects of operating pa-rameters, such as concentration of copper solutions, adsorbent dosages, pH value of solutions and temperature, on the adsorption efficiency were investigated. The equilibrium adsorption data were fitted with Langmuir and Freundlich models. The maximum adsorption capacity of Na-A zeolite obtained from the Langmuir adsorption iso-therm is 156.7 mg·g−1 of Cu (II). The increase of pH level in the adsorption process suggests that the uptake of heavy metals on the zeolite follows an ion exchange mechanism. The batch kinetic data fit the pseudo-second order equation well. The thermodynamic parameters, such as changes in Gibbs free energy (ΔG), enthalpy (ΔH) and en-tropy (ΔS), are used to predict the nature of the adsorption process. The negativeΔG values at different tempera-tures confirm that the adsorption processes are spontaneous.

  10. Developments in CO{sub 2} mineral carbonation of oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    Uibu, M., E-mail: maiuibu@staff.ttu.ee [Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Velts, O.; Kuusik, R. [Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2010-02-15

    Solid waste and atmospheric emissions originating from power production are serious problems worldwide. In the Republic of Estonia, the energy sector is predominantly based on combustion of a low-grade carbonaceous fossil fuel: Estonian oil shale. Depending on the combustion technology, oil shale ash contains 10-25% free lime. To transport the ash to wet open-air deposits, a hydraulic system is used in which 10{sup 7}-10{sup 8} cubic meters of Ca{sup 2+}-ion-saturated alkaline water (pH level 12-13) is recycled between the plant and sedimentation ponds. The goals of the current work were to design an ash-water suspension carbonation process in a continuous mode laboratory-scale plant and to search for potential means of intensifying the water neutralization process. The carbonation process was optimized by cascading reactor columns in which the pH progressed from alkaline to almost neutral. The amount of CO{sub 2} captured from flue gases can reach 1-1.2 million ton at the 2007 production level of the SC Narva Power Plants. Laboratory-scale neutralization experiments were carried out to compare two reactor designs. Sedimentation of PCC particles of rhombohedral crystalline structure was demonstrated and their main characteristics were determined. A new method providing 50x greater specific intensity is also discussed.

  11. Groundwater flow model of the Estonian oil shale mining area towards to innovative system

    Energy Technology Data Exchange (ETDEWEB)

    Lind, H. [Tallinn Univ. of Technology (Estonia). Dept. of Mining

    2010-07-01

    Changes in the Estonian groundwater regime are anticipated as oil shale deposits are mined. This paper described a dynamic groundwater flow model used to develop a 3-D groundwater elevation map of the Estonian oil shale mining area. The model was used to provide preliminary estimations of water inflow into the working underground mine areas. The model included 9 closed underground mines, 5 active mine sites, and 2 small open-cast sites. The closed mine sites were filled with water flowing in from the working mine sites. New mines and dewatering programs are planned for the future. A database from observation wells installed within the Keila-Kukruse aquifer was used to extract outputs and determine time steps. The model included 35 pumping stations from the active mine sites. The hydraulic properties for each model layer were defined in 4 model zones. Results of the model showed higher water in-flows from the closed underground sites than earlier predictions had anticipated. 9 refs., 1 tab., 4 figs.

  12. CO2 Rebinding by Oil Shale CFBC Ashes: Effect of Pre-Treatment

    Science.gov (United States)

    Trikkel, Andres; Keelmann, Merli; Aranson, Aljona; Kuusik, Rein

    Power production in Estonia is predominantly based on combustion of a local low-grade fossil fuel Estonian oil shale. Due to the high content of carbonaceous mineral matter in oil shale, its combustion is related to formation of lime-containing ashes (content of free CaO 10-30%) which could be utilized as sorbents for CO2. In the present research CO2 uptake by circulating fluidized bed and pulverized firing ashes from different technological devices (furnace, cyclones etc) of an operating power plant was studied and the effect of pre-treatment (grinding, calcination at different temperatures) of these ashes on their capture capacity was estimated using thermogravimetric, SEM, X-Ray and EDX analysis methods. It was found that capture capacities were determined mainly by free CaO content in the ashes, thereby, fluidized bed ashes showed higher CaO conversion levels (19.2-74.2%) as compared to pulverized firing ones (8.7-51.8%). Pre-treatment conditions influenced noticeably CO2 uptake. Grinding decreased CO2 capture capacity of fluidized bed ashes, calcination at higher temperatures decreased capture capacity of both types of ashes. Clarification of this phenomenon was given. Kinetic analysis of the process has been carried out, mechanism of the reactions and respective kinetic constants have been estimated.

  13. Releases of natural radionuclides from oil-shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Realo, E.; Realo, K.; Jogi, J. [AN Ehstonskoj SSR, Tartu (Estonia). Inst. Fiziki

    1996-11-01

    In the vicinity of two large oil-shale-fired power plants in northeast Estonia, depth-dependent activity concentrations of natural radionuclides in soil were determined by gamma spectrometry. In the surface soil considerably higher (or lower) concentrations of {sup 40}k, {sup 226}Ra and {sup 232}Th were found than in deeper soil layers. The observed increase or decrease of the enrichment of radionuclides for different sampling sites was dependent on the relative concentrations of radionuclides in fly-ash and in deep soil layers. The fraction of the radionuclides deposited onto the ground was characterized by a mean {sup 226}Ra/{sup 232}Th activity concentration ratio of 2.2, approximately equal to the one (2.1) found for oil-shale filter ash. The atmospheric deposition rates of fly-ash radionuclides onto the ground were estimated and compared to other relevant published data. The migration of the deposited fly-ash radionuclides into soil was satisfactorily described assuming an exponential depth distribution with the relaxation length value, {alpha}{sup -1} = 2.9 {+-} 0.6 cm, for both {sup 226}Ra and {sup 232}Th. (Author).

  14. High-resistance controlled yielding supporting technique in deep-well oil shale roadways

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Bai Jianbiao; Wang Xiangyu; Wang Junde; Xue Shizhi; Xu Ke

    2014-01-01

    In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is:to‘resist’ by high pre-tightening force and high stiff-ness in the early stage, to‘yield’ by making use of the controlled deformation of a yielding tube in the middle stage, and to‘fix’ by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of‘high pre-tightening force yielding anchor bolt+small-bore pre-tight-ening force anchor cable+rebar ladder beam+rhombic metal mesh+lagging gunite’ has been estab-lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rhe-ology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.

  15. The specific carbon isotopic compositions of branched and cyclic hydrocarbons from Fushun oil shale

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; WU Baoxiang; ZHENG Guodong; ZHANG Hui; ZHENG Chaoyang

    2004-01-01

    Various branched and cyclic hydrocarbons are isolated from the Fushun oil shale and their carbon isotopes are determined. The analytical results show that the branched and cyclic hydrocarbons are fully separated from n-alkanes by 5 A Molecular-sieve adduction using long time and cold solvent. The branched and cyclic hydrocarbon fraction obtained by this method is able to satisfy the analytic requests of GC-IRMS. The carbon isotopic compositions of these branched and cyclic hydrocarbons obtained from the sample indicate that they are derived from photoautotrophic algae, chemoautotrophic bacteria (-3.4‰ --39.0‰) and methanotrophic bacteria (-38.4‰--46.3‰). However the long-chain 2-methyl-branched alkanes indicate that their carbon isotopic compositions reflect biological origin from higher plants. The carbon isotopic composition of C30 4-methyl sterane (-22.1‰) is the heaviest in all studied ste- ranes, showing that the carbon source or growth condition for its precursor, dinoflagellate, may be different from that of regular steranes. The variation trend of δ13C values between isomers of hopanes shows that 13C-enriched precursors take precedence in process of their epimerization. Methanotrophic hopanes presented reveal the processes of strong transformation of organic matter and cycling of organic carbon in the water column and early diagenesis of oil shale.

  16. 含沥青储层的测井识别及评价%Log Identification and Evaluation for Bitumen-bearing Reservoir

    Institute of Scientific and Technical Information of China (English)

    陈明江; 任兴国

    2012-01-01

    以塔里木盆地某区块泥盆系K组含沥青储层为例探讨含沥青储层的测井评价方法.分析沥青对储层物性及产能的影响,通过2口井测井曲线的对比分析,指出含沥青储层的测井响应特征,并建立含沥青储层的测井识别图版,将含沥青储层与泥质区分开.在定性识别的基础上,利用自然伽马与中子一密度交会法计算储层泥质含量的差值作为储层沥青相对含量,建立有效孔隙度校正模型,提高有效孔隙度计算精度,为准确评价储层提供依据.通过分析储层沥青相对含量及孔隙度在平面上的变化趋势,指出区块内油藏东部受破坏程度比西部强.%The deposition of bitumen in reservoir has serious bad effect on physical properties and productivity of reservoir, which may leads to wrong log interpretation results. This paper takes the bitumen-bearing reservoir in Devonian K group in a zone in Talimu basin as an example to discuss how to evaluate bitumen-bearing reservoir. First of all, the effect of bitumen on the physical properties and productivity of reservoir is analyzed and then the log responses of bitumen-bearing reservoir are identified by comparing logs from two different wells. A cross-plot for identifying bitumen-bearing reservoir is created to distinguish between bitumen and shale. The relative abundance of bitumen in reservoir is derived from the difference between shale content which is calculated with gamma log and from neutron-density cross-plot. A formula for porosity correction is created, which helps to improve the accuracy of porosity and provide foundation for accurate reservoir evaluation. At last, the horizontal variation trend of relative abundance of bitumen in reservoir is studied, which shows that the oil pool is damaged more seriously in the east part of the area than in the west.

  17. Assessment of undiscovered oil and gas resources of the Devonian Marcellus Shale of the Appalachian Basin Province

    Science.gov (United States)

    Coleman, James L.; Milici, Robert C.; Cook, Troy A.; Charpentier, Ronald R.; Kirshbaum, Mark; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated a mean undiscovered natural gas resource of 84,198 billion cubic feet and a mean undiscovered natural gas liquids resource of 3,379 million barrels in the Devonian Marcellus Shale within the Appalachian Basin Province. All this resource occurs in continuous accumulations. In 2011, the USGS completed an assessment of the undiscovered oil and gas potential of the Devonian Marcellus Shale within the Appalachian Basin Province of the eastern United States. The Appalachian Basin Province includes parts of Alabama, Georgia, Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The assessment of the Marcellus Shale is based on the geologic elements of this formation's total petroleum system (TPS) as recognized in the characteristics of the TPS as a petroleum source rock (source rock richness, thermal maturation, petroleum generation, and migration) as well as a reservoir rock (stratigraphic position and content and petrophysical properties). Together, these components confirm the Marcellus Shale as a continuous petroleum accumulation. Using the geologic framework, the USGS defined one TPS and three assessment units (AUs) within this TPS and quantitatively estimated the undiscovered oil and gas resources within the three AUs. For the purposes of this assessment, the Marcellus Shale is considered to be that Middle Devonian interval that consists primarily of shale and lesser amounts of bentonite, limestone, and siltstone occurring between the underlying Middle Devonian Onondaga Limestone (or its stratigraphic equivalents, the Needmore Shale and Huntersville Chert) and the overlying Middle Devonian Mahantango Formation (or its stratigraphic equivalents, the upper Millboro Shale and middle Hamilton Group).

  18. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    Science.gov (United States)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  19. 贵州晴隆锑矿古油藏沥青地球化学特征及成因%Geochemical Characteristics and Genesis of Bitumen in Paleo-oil Reservoir in Qinglong Antimony Deposit,Guizhou

    Institute of Scientific and Technical Information of China (English)

    王鹏鹏; 胡煜昭; 刘路; 张桂权

    2016-01-01

    There is rich organic inclusion in Qinglong antimony deposit. However,the source of this organic matter hasnˊt been found out. A paleo-oil reservoir was found in the periphery of Qinglong antimony mine. The bitumen in the paleo-oil reservoir mainly distrib-utes in the Emeishan basalt and the Dachang tuff of Upper Permian and the Maokou limestone of Middle Permian. Bitumen mainly oc-curs in crevices,pores and caves. In order to find the source and origin of the bitumen,the geochemical characteristics of the bitumen are tested and analyzed to provide a new basis for the exploration of Qinglong antimony deposit. The test results show that the average mass fraction of C,H,N and O in the bitumen is 86. 67%,3. 32%,0. 27% and 3. 52% separately,and the average atom ratio of H to C and O to C is 0. 46 and 0. 03 separately. The maturity of the bitumen is high,and its Ro is 1. 99% ~2. 30%. The measured value of carbon isotope of the bitumen is -27. 7‰~ -28. 8‰,and the average is -28. 1‰. Based on the study of the geochemical character-istics of the bitumen in the paleo-oil reservoir,it is held that the bitumen in the paleo-oil reservoir is mainly from Devonian hydrocarbon source rock. The bitumen is the pyrobitumen formed by thermal cracking due to the rise of the Paleo geothermal temperature in paleo-oil reservoir.%晴隆锑矿含有丰富的有机包裹体,然而这些有机质的来源一直未能查清。在晴隆锑矿外围找矿时发现一个古油藏。晴隆锑矿古油藏的沥青主要分布在上二叠统峨眉山玄武岩、上二叠统大厂层凝灰岩和中二叠统茅口组灰岩中,主要储集空间以裂缝、孔隙和溶洞为主。本文旨在通过对沥青地球化学特征进行分析测试来探讨沥青来源及成因,试图为晴隆锑矿找矿勘查提供新依据。测试结果表明:晴隆锑矿古油藏沥青C元素质量分数平均86.67%,H平均3.32%,N平均0.27%,O平均3.52%;H、C原子比平均0.46

  20. Biomarker geochemistry of bituminous shale sequence and crude oil in the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, Turkey

    Science.gov (United States)

    Kara-Gulbay, Reyhan; Erdogan, Mert; Korkmaz, Sadettin; Kadinkiz, Gökhan

    2016-04-01

    In the Ereǧli-Bor Basin (Konya-Niǧde), Central Anatolia, bituminous shale sequence with thickness ranging between 72 and 160 m occurs in lacustrine deposits of Upper Miocene-Pliocene age. The live oil has also been observed in this bituminous shale sequence. Rock-Eval/TOC, GC and GC-MS analyses were conducted on selected bituminous shale samples from four borehole (key-12/1, key-12/2, key-12/3 key-12/4) and one crude oil sample from a borehole (key-12/2) in the basin. In this study, organic matter type, maturity and depositional environment of bituminous shale are evaluated and the origin of crude oil is determined by the bituminous shale-crude oil correlation. The total organic carbon (TOC) values of the bituminous shale samples range from 1.21-13.98 wt% with an average TOC value of 4.75wt%. The bituminous shale sequence is characterized by high HI (127-662 mg HC/g TOC) and low OI (7-50 mgCO2/TOC). Tmax varies from 332-419ᵒC. Very low Pr/Ph ratios of bituminous shale (0.09-0.22) are indicative of anoxic depositional conditions. C27 is dominate sterane for bituminous shale and crude oil samples with C27>C29>C28. Normal steranes are more dominant compare to iso- and diasteranes. Ouite high sterane/hopane ratios (1.14-2.70) indicate dominant algal organic matter input for bituminous shale and source rock of crude oil. C31R/hopane ratio for bituminous shale and crude oil samples are very low (0.09-0.13) and these ratio show a lacustrine depositional envirronment for bituminous shale and source rock of crude oil. Sterane and terpane distributions of bituminous shale and crude oil are very similar. A very good correlation in terms of biomarker between bituminous shale and crude oil samples indicate that source rock of crude oil is bituminous shale. The 22S/(22R + 22S) C32 homohopane ratios of bituminous shale and crude oil samples are found to be 0.56 and 0.61, indicating that homohopane isomerization has attained equilibrium and bituminous shale and crude oil are

  1. The production of stable bitumen-polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, J.; Sokic, M. (Faculty of Technology and Metallurgy, Univ. Belgrade (Yugoslavia)); Smiljanic, M.; Pab, I. (Highway Inst., Belgrade (Yugoslavia)); Neumann, H.J.; Rahimian, I. (German Inst. for Petroleum Research, Clausthal-Zellerfeld (Germany))

    1993-01-01

    If either blown bitumen or bitumens of inadequate origin and type are used for the production of bitumen-polymer blends containing SBS- and/or SBR-elastomers, it is often not possible to obtain stable homogeneous bitumen-polymer blends. In that case pretreatment of the elastomer component is necessary. The production of stable bitumen-polymer blends from SBS- and SBR-elastomers and blown bitumens from Yugoslav refineries in Novi Sad and Pancevo were studied in this paper. Pretreatment of the elastomer components was performed with a residue of the distillation of fatty acids and/or with pyrolysis oil from a naphtha steam pyrolysis unit. Infrared spectroscopy was used to determine the kinetics of the dissolution of the elastomers in the bitumen. The rate of dissolution of SBR-elastomer was practically independent of the bitumen type. In the case of SBS-elastomer, however, the kinetics of the dissolving process was strongly influenced by the bitumen type. The origin of bitumen influenced the dissolution kinetics too. (orig.).

  2. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    Directory of Open Access Journals (Sweden)

    Altun N. Emre

    2016-01-01

    Full Text Available Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspective of utilization of oil shales in a similar manner to coal and lignites, problems and restrictions related to the inorganic ash-making and potentially pollutant constituents are applied. In this respect, cleaning of this important energy source through mineral processing methods, particularly by flotation, is an outstanding option. However, on the basis of unique features and distinctive characteristics, treatment of oil shales like a type of coal is a big perception and may be highly misleading. This paper discusses specific challenges regarding flotation behavior of oil shales with reference to the surface characteristics and behavior of oil shale entities – probably the most important aspect that determines the efficiency and success of the flotation based cleaning process.

  3. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    Science.gov (United States)

    ,

    2008-01-01

    Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47

  4. The comparative study of solvents to expedite removal of bitumen.

    Science.gov (United States)

    Iuchi, Manabu; Sugiyama, Masahide; Oyatsu, Yasuyuki; Fukai, Takao

    2009-03-01

    Hot-bitumen burn is a unique case in all types of burns. This melting substance is difficult to remove when it adheres to the skin and solidifies. It causes burns and sticks to the skin when it is cooled to the skin temperature. Some reports are available on many kinds of solvents for the removal of solid bitumen. However, there have thus far been no comparative studies. It is necessary to seek for an optimum method to remove bitumen without consuming so much time and with minimum injury to the skin. The selected solvents in this study were petrolatum, olive oil, salad oil, butter, Neosporin ointment and De-solv-it. They were often reported as being effective for hot-bitumen burn injuries with little irritation for a damaged skin. It is easy to purchase them commercially. Each solvent was poured over the bitumen in a test tube. Afterwards, the concentrations of the bitumen in the solvents were quantified with the fluorescence measurement technique. We consider De-solv-it is the one of the best solvent for the removal of bitumen and highly recommended for hot-bitumen burns. The results of this study suggest that dressing change should be done every 4 to 8 h or as frequently as needed until the bitumen is entirely removed.

  5. A multiple lines of evidence approach for the ecological risk assessment of an accidental bitumen release from a steam assisted gravity drainage (SAGD) well in the Athabasca oil sands region.

    Science.gov (United States)

    Berger, Robert G; Aslund, Melissa Whitfield; Sanders, Greg; Charlebois, Michael; Knopper, Loren D; Bresee, Karl E

    2016-01-15

    To assess the ecological impacts of two independent accidental bitumen releases from two steam assisted gravity drainage (SAGD) wells in the Athabasca oil sands region, a multiple lines of evidence (LOE) approach was developed. Following the release in 2010, action was taken to minimize environmental impact, including the selective removal of the most highly impacted vegetation and the use of oil socks to minimize possible runoff. An ecological risk assessment (ERA) was then conducted based on reported concentrations of bitumen related contaminants in soil, vegetation, and water. Results of biological assessments conducted at the site were also included in the risk characterization. Overall, the conclusion of the ERA was that the likelihood of long-term adverse health effects to ecological receptors in the area was negligible. To provide evidence for this conclusion, a small mammal sampling plan targeting Southern red-back voles (Myodes gapperi) was carried out at two sites and two relevant reference areas. Voles were readily collected at all locations and no statistically significant differences in morphometric measurements (i.e., body mass, length, foot length, and adjusted liver weight) were found between animals collected from impact zones of varying levels of coverage. Additionally, no trends corresponding with bitumen coverage were observed with respect to metal body burden in voles for metals that were previously identified in the source bitumen. Hepatic ethoxyresorufin-O-deethylase (EROD) activity was statistically significantly elevated in voles collected from the high impact zones of sites compared to those collected from the reference areas, a finding that is indicative of continued exposure to contaminants. However, this increase in EROD was not correlated with any observable adverse population-wide biological outcomes. Therefore the biological sampling program supported the conclusion of the initial ERA and supported the hypothesis of no significant

  6. Formation of nanoporous pyrobitumen residues during maturation processes within the Barnett Shale (Fort Worth Basin)

    Science.gov (United States)

    Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.-M.; Horsfield, B.

    2012-04-01

    Hydrocarbon generation processes occur within organic-rich shales as a response to increases in thermal maturation. Shale gas reservoir quality is thought to be largely dependent on the extent to which solid organic material has been converted to pore space during catagenesis. Although pores may drastically vary in variety and abundance within differing shales, the occurrence of nanopores within organic particles has recently been documented for an important number of gas shale systems (i.e., Barnett, Haynesville, Utica, Eagle Ford, Woodford, Horn River, Marcellus, Posidonia …). However, despite their ubiquitous nature, the formation and the geochemical nature of these nanoporous organic compounds remain unclear. Here, we present the characterization of samples from the organic-rich Mississippian Barnett shale gas system (Fort Worth Basin, Texas, USA) at varying stages of thermal maturation. Using a combination of compositional organic geochemistry and spectromicroscopy techniques, including synchrotron-based scanning transmission X-ray microscopy (STXM - data collected using the CLS 10ID-1 STXM beamline) and transmission electron microscopy (TEM), we document a net increase in sample geochemical heterogeneity with increasing maturity. In addition to the presence of bitumen in samples of oil window maturity, very likely genetically derived from thermally degraded kerogen, the formation of nanoporous pyrobitumen has been inferred for samples of gas window maturity, likely resulting from the formation of gaseous hydrocarbons by secondary cracking of bitumen compounds. By providing in-situ insights into the fate of bitumen and pyrobitumen as a response to the thermal evolution of the macromolecular structure of kerogen, the present contribution constitutes an important step towards better constraining hydrocarbon generation processes occurring within unconventional gas shale systems.

  7. Assessment of undiscovered continuous oil resources in the Wolfcamp shale of the Midland Basin, Permian Basin Province, Texas, 2016

    Science.gov (United States)

    Gaswirth, Stephanie B.; Marra, Kristen R.; Lillis, Paul G.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Schenk, Christopher J.; Klett, Timothy R.; Le, Phuong A.; Tennyson, Marilyn E.; Hawkins, Sarah J.; Brownfield, Michael E.; Pitman, Janet K.; Finn, Thomas M.

    2016-11-15

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of gas in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province, Texas.

  8. Analysis and Modeling of Wangqing Oil Shale Drying Characteristics in a Novel Fluidized Bed Dryer with Asynchronous Rotating Air Distributor

    Institute of Scientific and Technical Information of China (English)

    Yang Ning; Zhou Yunlong; Miao Yanan

    2016-01-01

    In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of lfuidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in lfuidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model ifts properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles’ pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of lfuidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.

  9. Irradiation of organic matter by uranium decay in the Alum Shale, Sweden

    Science.gov (United States)

    Lewan, M. D.; Buchardt, B.

    1989-06-01

    The Alum Shale of Sweden contains black shales with anomalously high uranium concentrations in excess of 100 ppm. Syngenetic or early diagenetic origin of this uranium indicates that organic matter within these shales has been irradiated by decaying uranium for approximately 500 Ma. Radiation-induced polymerization of alkanes through a free-radical cross-linking mechanism appears to be responsible for major alterations within the irradiated organic matter. Specific radiation-induced alterations include generation of condensate-like oils at reduced yields from hydrous pyrolysis experiments, decrease in atomic H/C ratios of kerogens, decrease in bitumen/organic-carbon ratios, and a relative increase in low-molecular weight triaromatic steroid hydrocarbons. Conversely, stable carbon isotopes of kerogens, reflectance of vitrinite-like macerais, oil-generation kinetics, and isomerization of 20R to 20S αα C 29-steranes were not affected by radiation. The radiation dosage needed to cause the alterations observed in the Alum Shale has been estimated to be in excess of 10 5 Mrads with respect to organic carbon. This value is used to estimate the potential for radiation damage to thermally immature organic matter in black shales through the geological rock record. High potential for radiation damage is not likely in Cenozoic and Mesozoic black shales but becomes more likely in lower Paleozoic and Precambrian black shales.

  10. CT Experiment Research of Oil Shale under High Temperature%油页岩高温CT实验研究

    Institute of Scientific and Technical Information of China (English)

    杨栋; 康志勤; 赵静; 赵阳升

    2011-01-01

    The microcharacters of three kinds of oil shale from Nong' an, Changqing and Daqing were investigated under different temperatures from 100℃ to 600℃ by using high resolution CT test system. The comparison of the CT images of the oil shales under 100℃ and 600℃,reveals that: for oil shale from Nong'an, a great mount of crack 1 occurred with increasing temperature, but these cracks closed under even higher temperature; for oil shale from Changqing,there were many initial stratifications and high density minerals, cracks were continuously increasing with increasing temperature; for oil shale from Daqing, its pyrolysis style was closer to that of coal, there were many interconneted holes developed under high temperature. So the thermal crack characters of oil shale from different places were quite different. This difference was directly related to the difference in the techuological parameters for final oil shale heating production.%利用高分辨率显微CT实验系统,对农安、长庆和大庆的油页岩从100℃到600℃不同温度下的细观变化进行了CT测试.通过对比100℃与600℃三个矿区油页岩CT图像的变化,实验结果揭示农安油页岩随温度升高,首先会产生大量热破裂,但部分裂缝会在更高的温度下闭合;长庆的油页岩层理发育且密度大的矿物较多,随温度的升高,其内部的裂缝一直在增加.大庆油页岩更接近煤的热解模式,在高温作用下,会形成大量的连通空洞.与其他两矿油页岩相比,大庆油页岩在高温下孔隙、裂隙的发育最为明显.这种差异反映了油页岩油母成因的本质差别,这种不同将直接导致油页岩最终开采工艺参数选择的不同.

  11. Assessment of continuous oil resources in the Wolfcamp shale of the Midland Basin, Permian Basin Province, Texas, 2016

    Science.gov (United States)

    Gaswirth, Stephanie B.

    2017-03-06

    The U.S. Geological Survey completed a geology-based assessment of undiscovered, technically recoverable continuous petroleum resources in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province of west Texas. This is the first U.S. Geological Survey evaluation of continuous resources in the Wolfcamp shale in the Midland Basin. Since the 1980s, the Wolfcamp shale in the Midland Basin has been part of the “Wolfberry” play. This play has traditionally been developed using vertical wells that are completed and stimulated in multiple productive stratigraphic intervals that include the Wolfcamp shale and overlying Spraberry Formation. Since the shift to horizontal wells targeting the organic-rich shale of the Wolfcamp, more than 3,000 horizontal wells have been drilled and completed in the Midland Basin Wolfcamp section. The U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of associated gas in the Wolfcamp shale in the Midland Basin.

  12. Minimum bed parameters for in situ processing of oil shale. Third quarterly report, April 1-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Tyner, C. E.

    1980-11-01

    Oil shale retort runs 028 (16% void) and 029 (7% void), composed of competent shale blocks plus shale rubble, were completed. Retort 028, processed with air at a flux of 0.017 kg/sub air//m/sup 2/ /sub shale/.second, had peak temperatures of 700/sup 0/C, a retorting rate of 1.1 m/day, and a yield of 82% FA. Retort 029, processed with air at a flux of 0.027 kg/sub air//m/sup 2//sub shale/.second, had peak temperatures of 750/sup 0/C, a retorting rate of 1.6 m/day, and a yield of 75% FA. Comparisons of retort model calculations with experimental data from previous retort run 027 (16% void, air flux of .029 kg/sub air//m/sup 2//sub shale/.second were good; observed experimental yield was 95% FA, calculated yield, 92.8%; experimental retorting rates varied from 9.5 to 8.9 cm/h, calculated rates from 10.3 to 10.0 cm/h; observed local heating rates ranged from 29 to 14/sup 0/C/h, calculated heating rates from 20 to 16/sup 0/C/h; and observed peak temperatures ranged from 815 to 825/sup 0/C, calculated from 820 to 825/sup 0/C.

  13. Evaluation of oil shale from Eastern Canada by retorting and by concentration of a kerogen-rich fraction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.W.; Abbott, D.

    1981-12-16

    An apparatus was developed for testing the retorting behaviour of oil shales under pressures up to 500 psi hydrogen and 700/sup 0/C. Equipment was also constructed and brought into service for the determination of oil yields by the Fischer assay method. Six samples of Albert shale of varying oil content (<10 to 40-50 gals/ton) were tested by the Fischer method and by hydrogen retorting to determine yields of liquid distillate under different conditions of retorting. The Fischer assays gave oil yields of 2.9 to 47.5 gals/ton which corresponded to carbon conversion of 50.5 to 87.8 per cent. The hydrogen retorting tests at 700/sup 0/C and 500/sup 0/C gave carbon conversion rates of 53 to 87 per cent which are comparable to that for the Fischer retorting. Retorting at 500/sup 0/C gave oil yields similar to the Fischer assay but at 700/sup 0/C oil yields were reduced, 4 to 30 gals/ton, although gas yields increased. In the retorting tests performed, the use of hydrogen at 500 psi did not increase yields. More work is needed to understand the retorting behaviour of New Brunswick and other Canadian oil shales. Retorting tests for resource assessment purposes are also needed. These should be coupled to determining the rate of carbon conversion and hence the effectiveness of the retorting technique. Petrographic, chemical and thermogravimetric analyses of the oil shales were undertaken to characterize the materials for retorting tests. The second part of the project involved producing a kerogen concentrate by standard beneficiation methods, spherical agglomeration, gravity methods and by flotation. Only gravity separation showed promise of being a viable industrial process. Fine grinding and gravity separation gave high concetrations up to 70 gals/ton but yields were low. 11 figs., 13 tabs.

  14. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  15. Evaluation of physical-chemical and biological treatment of shale oil retort water

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

    1982-09-01

    Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

  16. Bitumen performance and chemistry in solvent refined bitumen blends

    Science.gov (United States)

    Holleran, Glynn; Holleran, Irina; Wilson, Douglas J.

    2017-09-01

    In years gone past most oil companies in Australia and New Zealand (NZ) developed experts that bridged the divide between refining and paving. This was supported by laboratories in Australia and sometimes Asia. This is no longer the case and many refineries have ceased bitumen production or closed. With the market moving towards imports and control to supply companies disconnects on bitumen passing a national specification and performance on the road. This reduces both durability and increases costs. This has been addressed by development in NZ of a performance specification for hot mix asphalt binders (including modified) and work being done on sealing grades. This paper discusses the development of the HMA specification with respect to crude sources and the development of methodologies to assess imported binders for suitability in all applications including emulsion. The conclusion is that bitumen quality may be maintained by use of these methodologies that include, chromatographic analysis, measurement of thermodynamic internal stability (Heithaus), aging, and Dynamic Shear Rheometry testing and mix performance testing in the laboratory. This forms a regime capable of use in any context and this leads to better durability of surfaces and extended service life.

  17. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, P.L.

    1977-02-01

    Substantial progress has been made towards implementing all of the prescribed studies and satisfying the stated objectives since the Oil Shale Rehabilitation Project was actively initiated in June 1976. Concurrent with implementation, research objectives were substantively defined and supplemented without distracting or departing from the original purpose. Current studies are designed to fill voids in the present status of knowledge regarding lands disturbed by an impending oil shale industry in Colorado. The efforts of all contributing investigators have therefore been integrated and directed toward the goal of developing methodologies requisite for restoring diverse and complex ecosystems which will require only a minimal amount of maintenance or input of scarce resources. An intensive study site southeast of the Oil Shale Tract C-a has been obtained through a Cooperative Agreement with the Bureau of Land Management. Following this agreement, most subprojects were initiated at the intensive site. Additional programs will be implemented as spent shale becomes available this summer. Studies conducted principally in the laboratory and greenhouse, such as the microbiological and plant genetic studies, have achieved significant results.

  18. Oil shale fueled FBC power plant - ash deposits and fouling problems

    Energy Technology Data Exchange (ETDEWEB)

    O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster [Geological Survey of Israel, Jerusalem (Israel)

    2007-12-15

    41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local 'oil shale', which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. 17 refs., 14 figs., 5 tabs.

  19. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  20. Rheological properties of styrene butadiene styrene polymer modified road bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey [University of Nottingham, Nottingham (United Kingdom). Nottingham Centre for Pavement Engineering, School of Civil Engineering

    2003-10-01

    The use of polymers for the modification of bitumen in road paving applications has been growing rapidly over the last decade as government authorities and paving contractors seek to improve road life in the face of increased traffic. Currently, the most commonly used polymer for bitumen modification is the elastomer styrene butadiene styrene (SBS) followed by other polymers such as styrene butadiene rubber, ethylene vinyl acetate and polyethylene. This paper describes the polymer modification of two penetration grade bitumens with SBS. Six polymer modified bitumens (PMBs) were produced by mixing the bitumens from two crude oil sources with a linear SBS copolymer at three polymer contents. The rheological characteristics of the SBS PMBs were analysed by means of conventional as well as dynamic mechanical analysis using a dynamic shear rheometer (DSR). The results of the investigation indicate that the degree of SBS modification is a function of bitumen source, bitumen polymer compatibility and polymer concentration, with the higher polymer concentrations in a high aromatic content bitumen producing a highly elastic network which increases the viscosity, complex modulus and elastic response of the PMB, particularly at high service temperatures. However, ageing of the SBS PMBs tends to result in a reduction of the molecular size of the SBS copolymer with a decrease in the elastic response of the modified road bitumen. 25 refs., 11 figs., 6 tabs.

  1. Recent technological advances in the application of nano-catalytic technology to the enhanced recovery and upgrading of bitumen and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Almao, P. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2013-11-01

    Advances in Nanotechnology, such as manufacturing of nano-catalysts allow the online (during processing) and on site production of nano-catalysts for heavy oils upgrading. These inventions have also facilitated the development of two lines of heavy oils upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. Producing chemical upgrading of heavy oils is achievable and economically viable at lower temperatures and lower pressures than used in most upgraders if the use of nano-catalysts were implemented. The spontaneity of thermal, steam and hydro processing reactions for converting the different chemical families of hydrocarbons present in the heaviest fractions of heavy oils and bitumen (HO-B) into lighter products was shown recently. Spontaneity was measured by the value of the change of free energy at low pressure. These undesirable paths are spontaneous and uncontrollable under thermal cracking conditions, and require providing years of residence time for intermolecular hydrogen redistribution to minimize olefins polymerization, if at all possible. Instead, hydroprocessing in the presence of hydrogen activating catalysts would create an abundance of hydrogen radicals impeding large molecules condensation and olefins proliferation. In Situ Upgrading: performs coupled Enhanced Oil Recovery with In Reservoir Upgrading via Hot Fluid Injection (HFI). The heat handling of this HFI process and the production of transportable oil with no need of diluent from the start of operation completes the originality of it. This technology uses heavy fractions separated from produced oil to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. These components react in the well bore and inside the reservoir to release more heat (hydroprocessing reactions are exothermic) producing light gases and volatile hydrocarbons that contribute to increase oil detachment from the rock resulting in

  2. Numerical Simulation Study on Parameters related to Athabasca Bitumen Recovery with SAGD

    OpenAIRE

    Marianayagam, Kristin Reka

    2012-01-01

    The world’s total oil reserves are to some extent dominated by heavy oil. The heavy oil reserves are doubled in volume compared to conventional oil reserves. As conventional oil reservoirs are depleting, heavy oil and bitumen possesses a great potential in covering parts of the future energy demand. The possibility of horizontal drilling has created a pathway for SAGD (Steam Assisted Gravity Drainage), which is the most preferred heavy oil and bitumen recovery method. The mechanism of SAGD in...

  3. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    NARCIS (Netherlands)

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional hydro

  4. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    NARCIS (Netherlands)

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional

  5. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... utilization of bitumen and production of bitu-oil and gas ... Five strains of bacteria; Pseudomonas fragi, Streptococcus zymogenes, Pseudomonas aeruginosa, ... Thermophile Halophile sulphur (THS) medium containing (g/l).

  6. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, April, May, June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L.

    1980-08-01

    The Retort No. 18 burn was terminated on May 11, 1980. A total of 5547 barrels of shale oil or 46 percent of in-place resource was recovered from the retort. The EPA-DOE/LETC post-burn core sampling program is underway on Retort No. 16. Eleven core holes (of 18 planned) have been completed to date. Preliminary results indicate excellent core recovery has been achieved. Recovery of 702 ft of core was accomplished. The Prevention of Significant Deterioration (PSD) permit application was submitted to the EPA regional office in Denver for review by EPA and Utah air quality officials. The application for an Underground Injection Control (UIC) permit to authorize GKI to inject retort wastewater into the Mesa Verde Formation is being processed by the State of Utah. A hearing before the Board of Oil, Gas and Mining is scheduled in Salt Lake City, Utah, for July 22, 1980. Re-entry drilling on Retort No. 24 is progressing and placement of surface equipment is underway. Retort No. 25 blasthole drilling was completed and blast preparations are ongoing. Retort No. 25 will be blasted on July 18, 1980. The retort will be similar to Retort No. 24, with improvements in blasthole loading and detonation. US Patent No. 4,205,610 was assigned to GKI for a shale oil recovery process. Rocky Mountain Energy Company (RME) is evaluating oil shale holdings in Wyoming for application of the GKI process there.

  7. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation. Topical report for Task 4, Beneficiation research

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. [Alabama Univ., University, AL (United States); Chiang, S.H.; Venkatadri, R. [Pittsburgh Univ., PA (United States); Misra, M. [Nevada Univ., Reno, NV (United States)

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  8. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK

    Science.gov (United States)

    Thomas, Merryn; Partridge, Tristan; Harthorn, Barbara Herr; Pidgeon, Nick

    2017-04-01

    Shale gas and oil production in the US has increased rapidly in the past decade, while interest in prospective development has also arisen in the UK. In both countries, shale resources and the method of their extraction (hydraulic fracturing, or 'fracking') have been met with opposition amid concerns about impacts on water, greenhouse gas emissions, and health effects. Here we report the findings of a qualitative, cross-national deliberation study of public perceptions of shale development in UK and US locations not yet subject to extensive shale development. When presented with a carefully calibrated range of risks and benefits, participants' discourse focused on risks or doubts about benefits, and potential impacts were viewed as inequitably distributed. Participants drew on direct, place-based experiences as well as national contexts in deliberating shale development. These findings suggest that shale gas development already evokes a similar 'signature' of risk across the US and UK.

  9. Shale oil value enhancement research. Quarterly report, June 1 - August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bunter, J.W.; Russell, C.P.; Tsai, J.C.H.; Cogswell, D.E.; Mihamou, H.; Wright, A.D. [Bunger (James W.) and Associates, Inc., Salt Lake City, UT (United States)

    1996-12-31

    The overall objective is to develop a new technology for manufacturing valuable marketable products from shale oil. The quarter`s efforts were concentrated on (a) THDA and reaction of alkylpyridines at elevated conditions, (b) compound type analysis of kerogen oil and its derived products, (b) thermal hydrodealkylation of the > 290{degrees}C polar fraction, (c) secondary reactions of pyridinic type compounds to form marketable products, and (d) preparation of presentation to the Dawnbreaker Commercial Assistance Program. Excellent progress is being made in all cases. Our market analysis and industrial feedback indicate that the low molecular weight pyridines are the main market driving force. We are concentrating our effort toward increasing the yield of ``light`` pyridines before the end of Phase II(a). Our current laboratory set-up can only produce analytical quantity of samples, which is not sufficient for marketing purpose. However, the completion of a secondary flow THDA unit for a pilot-scale production depends on the availability of the Phase-II(b) and Phase-III funding.

  10. Extraction of Peace River bitumen using supercritical ethane

    Science.gov (United States)

    Rose, Jeffrey Lawrence

    2000-10-01

    As the supply of conventional crude oil continues to decline, petroleum companies are looking for alternative hydrocarbon sources. The vast reserves of heavy oil and bitumen located in northern Alberta are among the alternatives. The challenge facing engineers is to develop a process for recovering this oil which is economic, efficient and environmentally acceptable. Supercritical fluid extraction is one method being investigated which could potentially meet all of these criteria. In this study, Peace River bitumen was extracted using supercritical ethane. The bitumen was mixed with sand and packed into a semi-batch extractor. Ethane contacted the bitumen/sand mixture and the fraction of the bitumen soluble in the ethane was removed and subsequently collected in a two phase separator. The flow of ethane was such that the experiments were governed by equilibrium and not mass transfer. Experimental temperatures and pressures were varied in order to observe the effect of these parameters on the mass and composition of the extracted material. The extraction yields increased as the temperature decreased and pressure increased. Samples were collected at various time intervals to measure changes in the properties of the extracted bitumen over the duration of the process. As the extraction proceeded, the samples became heavier and more viscous. The bitumen feed was characterised and the experimental data was then modelled using the Peng-Robinson equation of state. The characterisation process involved the distillation of the bitumen into five fractions. The distillation curve and density of each fraction was measured and this data was used in conjunction with correlations to determine the critical properties of the bitumen. Interaction parameters in the equation of state were then optimised until the predicted composition of extracted bitumen matched the experimental results.

  11. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  12. Oil shale project: run summary for small retort Run S-11

    Energy Technology Data Exchange (ETDEWEB)

    Sandholtz, W.A.; Ackerman, F.J.; Bierman, A.; Kaehler, M.; Raley, J.; Laswell, B.H.; Tripp, L.J. (eds.)

    1978-06-01

    Results are reported on retort run S-11 conducted to observe the effects of combustion retorting with undiluted air at relatively rapid burn (retorting) rates and to provide a base case for retorting small uniform shale (Anvil Points master batch -2.5 +- 1.3 cm) with undiluted air. It was found that a 0.6 m/sup 3//m/sup 2//minute superficial gas velocity gave an average rate of propagation of the combustion peak of about 2.7 m/day and an average maximum temperature on the centerline of the rubble bed of 1003/sup 0/C. Oil yield was 93 percent of Fischer assay. For small uniform shale particles (-2.5 + 1.3 cm) it is concluded that only small losses in yield (92 percent vs 96 percent in Run S-10) result from high retorting rates. Maximum temperature considerations preclude going to higher rates with undiluted air. Without diluent, a larger air flux would give excessive bed temperatures causing rock melting and potential closure to gas flow. In experimental retorts, another problem of excessive temperatures is potential damage to metal walls and in-situ sensors. No advantage is seen to using recycled off-gas as a combustion gas diluent. Inert diluents (e.g. nitrogen or steam) may be necessary for process control, but the fuel values in the off-gas should best be used for energy recovery rather than burned in the retort during recycle. Another consideration from model calculations is that the use of recycle gas containing fuel components retards the retorting rate and so is undesirable. No further recycle experiments are planned as the results of this run proved satisfactory.

  13. [Analyzing and modeling methods of near infrared spectroscopy for in-situ prediction of oil yield from oil shale].

    Science.gov (United States)

    Liu, Jie; Zhang, Fu-Dong; Teng, Fei; Li, Jun; Wang, Zhi-Hong

    2014-10-01

    In order to in-situ detect the oil yield of oil shale, based on portable near infrared spectroscopy analytical technology, with 66 rock core samples from No. 2 well drilling of Fuyu oil shale base in Jilin, the modeling and analyzing methods for in-situ detection were researched. By the developed portable spectrometer, 3 data formats (reflectance, absorbance and K-M function) spectra were acquired. With 4 different modeling data optimization methods: principal component-mahalanobis distance (PCA-MD) for eliminating abnormal samples, uninformative variables elimination (UVE) for wavelength selection and their combina- tions: PCA-MD + UVE and UVE + PCA-MD, 2 modeling methods: partial least square (PLS) and back propagation artificial neural network (BPANN), and the same data pre-processing, the modeling and analyzing experiment were performed to determine the optimum analysis model and method. The results show that the data format, modeling data optimization method and modeling method all affect the analysis precision of model. Results show that whether or not using the optimization method, reflectance or K-M function is the proper spectrum format of the modeling database for two modeling methods. Using two different modeling methods and four different data optimization methods, the model precisions of the same modeling database are different. For PLS modeling method, the PCA-MD and UVE + PCA-MD data optimization methods can improve the modeling precision of database using K-M function spectrum data format. For BPANN modeling method, UVE, UVE + PCA-MD and PCA- MD + UVE data optimization methods can improve the modeling precision of database using any of the 3 spectrum data formats. In addition to using the reflectance spectra and PCA-MD data optimization method, modeling precision by BPANN method is better than that by PLS method. And modeling with reflectance spectra, UVE optimization method and BPANN modeling method, the model gets the highest analysis precision

  14. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Science.gov (United States)

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.

  15. In-place oil shale resources in the saline-mineral and saline-leached intervals, Parachute Creek Member of the Green River Formation, Piceance Basin, Colorado

    Science.gov (United States)

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.; Dietrich, John D.

    2014-01-01

    A recent U.S. Geological Survey analysis of the Green River Formation of the Piceance Basin in western Colorado shows that about 920 and 352 billion barrels of oil are potentially recoverable from oil shale resources using oil-yield cutoffs of 15 and 25 gallons per ton (GPT), respectively. This represents most of the high-grade oil shale in the United States. Much of this rich oil shale is found in the dolomitic Parachute Creek Member of the Green River Formation and is associated with the saline minerals nahcolite and halite, or in the interval where these minerals have been leached by groundwater. The remaining high-grade resource is located primarily in the underlying illitic Garden Gulch Member of the Green River Formation. Of the 352 billion barrels of potentially recoverable oil resources in high-grade (≥25 GPT) oil shale, the relative proportions present in the illitic interval, non-saline R-2 zone, saline-mineral interval, leached interval (excluding leached Mahogany zone), and Mahogany zone were 3.1, 4.5, 36.6, 23.9, and 29.9 percent of the total, respectively. Only 2 percent of high-grade oil shale is present in marginal areas where saline minerals were never deposited.

  16. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product.

  17. Inorganic wastes in manufacturing of glass-ceramics. Slurry of phosphorous fertilizer production and oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovsky, A.V.; Mendez-Nonell, J.; Escalante-Garcia, J.I.; Pech-Canul, M.I.; Vargas-Gutierrez, G. [Department of Engineering Ceramics of CINVESTAV-IPN, Unidad Saltillo-Monterrey, km 13.5, Apartado Postal 663, CP 25000, Saltillo, Coahuila (Mexico); Gorokhovsky, V.A.; Mescheryakov, D.V. [Department of Building Materials of Saratov State Technical University, Saratov (Russian Federation)

    2001-11-01

    The use of bicomponent raw material mixtures of industrial wastes to produce pyroxene glass ceramics was investigated. It is shown that oil shale ash from heat power stations can promote the production of crystalline phases and the slurry from phosphorous fertilizer production can provide sufficient concentration of nucleating agents. Mechanical and chemical properties, as well as the structure and crystallization mechanism were characterized. An increase of phosphorous oxide and fluorine concentrations leads to a change of the crystallization mechanism.

  18. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: Carbonation mechanism, modeling, and product characterization

    Energy Technology Data Exchange (ETDEWEB)

    Velts, O., E-mail: olga.velts@ttu.ee [Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia); Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, Lappeenranta FI-53851 (Finland); Uibu, M.; Kallas, J.; Kuusik, R. [Laboratory of Inorganic Materials, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia)

    2011-11-15

    Highlights: {yields} A method for converting oil shale waste ash into precipitated CaCO{sub 3} is elucidated. {yields} We discuss the mechanism of hazardous alkaline ash leachates carbonation. {yields} We report a model describing precipitation of CaCO{sub 3} from multi-ionic ash leachates. {yields} Model enables simulation of reactive species concentration profiles. {yields} Product contained {approx}96% CaCO{sub 3} with 4-10 {mu}m size calcite or/and vaterite particles. - Abstract: In this paper, a method for converting lime-containing oil shale waste ash into precipitated calcium carbonate (PCC), a valuable commodity is elucidated. The mechanism of ash leachates carbonation was experimentally investigated in a stirred semi-batch barboter-type reactor by varying the CO{sub 2} partial pressure, gas flow rate, and agitation intensity. A consistent set of model equations and physical-chemical parameters is proposed to describe the CaCO{sub 3} precipitation process from oil shale ash leachates of complex composition. The model enables the simulation of reactive species (Ca{sup 2+}, CaCO{sub 3}, SO{sub 4}{sup 2-}, CaSO{sub 4}, OH{sup -}, CO{sub 2}, HCO{sub 3}{sup -}, H{sup +}, CO{sub 3}{sup 2-}) concentration profiles in the liquid, gas, and solid phases as well as prediction of the PCC formation rate. The presence of CaSO{sub 4} in the product may also be evaluated and used to assess the purity of the PCC product. A detailed characterization of the PCC precipitates crystallized from oil shale ash leachates is also provided. High brightness PCC (containing up to {approx}96% CaCO{sub 3}) with mean particle sizes ranging from 4 to 10 {mu}m and controllable morphology (such as rhombohedral calcite or coexisting calcite and spherical vaterite phases) was obtained under the conditions studied.

  19. Rheological aspects of the rejuvenation of aged bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Romera, Ramon; Santamaria, Anton; Pena, Juan Jose; Munoz, Maria Eugenia [University of the Basque Country UPV/EHU, Polymer Science and Technology Department, San Sebastian (Spain); Barral, Marisol; Garcia, Esteban [Asfaltos Naturales de Campezo, Vitoria (Spain); Janez, Victorio

    2006-04-15

    Rheological techniques are used to investigate the rejuvenation of aged bitumen. The thermal transition associated with the collapse of the compact structure constituted by asphaltene is determined by Dynamic Mechanical Thermal Analysis. For aged bitumen, this transition shifts to a higher temperature but when rejuvenating agents are added, the transition returns to its original value. The ''rutting factor,'' G*/sin {delta} allows to define the maximum temperature the binder can reach without permanent deformation. The employed rejuvenating agents are suitable because permanent deformation is postponed. Viscosity results reveal that aged bitumen needs a high mixing temperature (>200 C) to behave like a fluid material able to wet, adhere, and envelop aggregates. The addition of rejuvenating agents considerably reduces mixing and compaction temperatures. The mixture of 80% aged bitumen - 20% recycled motor oil, obtained exclusively from waste materials is an apt binder that can compete satisfactorily with new 60/70 bitumen. (orig.)

  20. A new laboratory approach to shale analysis using NMR relaxometry

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically

  1. Assessing the geochemical variability of oil shale in the Attarat Um Ghudran deposit, Jordan

    Directory of Open Access Journals (Sweden)

    Margus Voolma

    2016-05-01

    Full Text Available The Cretaceous to Palaeogene oil shale (OS of Jordan is predominantly calcareous mudstone with intervals of mostly siliceous minerals, quartz and cristobalite–tridymite. Oil shale is rich in organic sulphur and trace elements. According to preliminary micropalaeontological data, the OS succession of the studied area, the south-central part of the Attarat Um Ghudran (AUG deposit in central Jordan, is of Maastrichtian age. A representative collection of 392 samples from 9 drill cores reliably characterizes the sequence of the OS seam, on average 70 m thick. The composition of AUG OS varies significantly. The major compounds CaO and SiO2 range within 3–70 wt% and 10–50 wt%, respectively, and also the contents of organic matter, MgO, P2O5, Al2O3 and S change. The concentrations of metals (especially Zn, V, Cr, Ni and Mo change many dozens of times in the cross section. The aim of our statistical analysis was to determine the most significant OS types and their positions in the OS sequence. Two multivariate statistical analysis methods, principal components analysis (PCA and hierarchical clustering of PCA groups, gave an interpretable result. Four principal components account for 88.6% of data variability. Variation in six main chemical components or groups of components is reflected in parameters of the four principal components. The component PC1 accounts for 47% of the data variance, expressing the highest correlation with organic matter, S, Cr, Cu, Ni, Zn, Mo, and PC2 accounts for 22.82% of the data variability, being strongly correlated with TiO2, Al2O3, Fe2O3, SiO2 and K2O and negatively correlated with CaO. The next two significant component groups express covariance with CaO and MgO. The applied statistical analysis proves to be a powerful tool for the interpretation of the chemically variable structure of the OS unit when using a representative enough sample collection. In the complex study of the OS unit, variation in the chemical

  2. Predicting the Toxicity of Oil-shale Industry Wastewater by its Phenolic Composition.

    Science.gov (United States)

    Kahru, A; Põllumaa, L; Reiman, R; Rätsep, A

    1999-01-01

    The chemical composition and toxicity of five phenolic wastewater samples collected from the Kohtla-Järve (Estonia) oil-shale industry region were analysed. The total phenolic contents (HPLC data) of these samples ranged from 0.7mg/l to 195mg/l. A total of 11 phenolic compounds were found in the wastewater samples, the most abundant being phenol (up to 84mg/l) and p-cresol (up to 74mg/l). Artificial phenolic mixtures were also composed, to mimic the content of phenolic compounds in the wastewater samples. The theoretical toxicities of these artificial mixtures were calculated by using the toxicities of the individual phenolic constituents to photobacteria (the BioTox™ test) and were assumed to have an additive mode of action. From the BioTox data, the additive toxic effects of phenolic compounds in the artificial mixtures were confirmed to be highly probable. The toxicities of the wastewater samples and their artificial phenolic analogues (mixtures) were studied by using a battery of Toxkit microbiotests (Daphtoxkit F™ magna, Thamnotoxkit F™, Protoxkit F™ and Rotoxkit F™) and three photobacterial tests (Microtox™, BioTox™ and Vibrio fischeri 1500). The wastewaters were classified as toxic (two samples), very toxic (two samples) and extremely toxic (one sample). Comparison of the test battery responses showed that the industrial wastewaters were 2-28-fold more toxic than the respective artificial phenolic mixtures. The photobacterial tests proved to be the most appropriate for screening purposes. This was the first attempt to use a test battery approach in the toxicity testing of Estonian wastewaters. The study showed that the toxicity of oil-shale industry wastewaters could not be predicted solely on the basis of their phenolic composition, since only 7-50% of their toxicity was shown to be due to phenolic compounds. It is true, to a certain extent, that the majority of environmental samples are usually very complex and contain various types of

  3. A novel application of Egyptian oil shale as a filler in the production of lithium lubricating grease

    Energy Technology Data Exchange (ETDEWEB)

    Al Wakeel, M. [Ain Shams Univ., Cairo (Egypt). Geology Department; Al Adly, R. [Egyptian Petroleum Research Inst., Nasr City, Cairo (Egypt)

    2005-12-15

    This article reports on the preparation and characterization of six formulations of grease based on soybean soapstock and aromatic extracts using oil shale as a filler. The oil shale that occurs within the Quseir-Safaga district is subjected to a detailed petrography, size distribution, mineralogy, and chemical studies. The total extracted hydrocarbon content, using an organic solvent, is analyzed for molecular weight by gel permeation chromatography (GPC). The physicochemical properties of the aromatic extracts are determined. The processing conditions following the blending are optimized to produce the appropriate lithium soap structure, as well as dispersion of the filler. The work also includes a study of the competitive effectiveness of different grades of aromatic extracts and also various percentages of oil shale, along with an evaluation of their effects on the properties of formulated lubricating greases. The prepared greases are assessed in accordance with National Lubricating Grease Institute (NLGI) and Egyptian Standard (ES). It is concluded that the above-mentioned ingredients can be used for the preparation of lithium greases. (author)

  4. Atomistic modeling of oil shale kerogens and asphaltenes along with their interactions with the inorganic mineral matrix

    Energy Technology Data Exchange (ETDEWEB)

    Facelli, Julio [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Pimienta, Ian [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-31

    The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

  5. In Western Liaoning province area oil shale need for geological exploration and mining development%辽西地区油页岩矿急待勘查开发

    Institute of Scientific and Technical Information of China (English)

    宫占全

    2011-01-01

    当前国际能源的短缺,油页岩炼制页岩油可替代石油能源.辽西地区油页岩矿分布广泛,资源储量规模巨大,综合开发利用经济价值高.为早日改变辽西的贫穷与落后,勘查开发油页岩矿迫在眉睫.%The current international energy shortage, Shale oil shale oil refining alternative energy sources. In liaoning province oil shale contains western region ore widely distributed, Contain oil shale mineral resources is very big, Contain oil shale ore comprehensive exploitation and utilization of economic value is very big. In western liaoning province area accelerate transformation of poverty and backwardness, Geology exploration and mining development including oil shale ore is imminent.

  6. Evaluation of adsorbents for treating stable oil/water/mineral emulsions produced during in-situ bitumen/heavy oil recovery operations. Phase 2. Final report. [Fly ash, red mud and Minuto coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-29

    The objective was to make a preliminary assessment of the technical and economic feasibility of treating emulsions from in-situ bitumen/heavy oil recovery operations for recovery of the oil and preparation of suitable water for boiler feed utilizing adsorbents developed within the Separation and Characterization laboratory of Energy Mines and Resources Canada. This project was completed in two phases. In the first phase, a report was prepared which focussed on the characterization of the adsorption behaviour of the novel adsorbents, determination of an appropriate mode of operation and of the approximate cost for producing water for boiler feed. Three adsorbents (fly ash, red mud, Minto coal) were evaluated with respect to their potential for the treatment produced water. Fly ash and Minto coal were determined to have the best potential based on isotherms for total suspended oil (TSO) removal at two pH levels. The most appropriate mode of operation for these two adsorbents was slurry contact followed by precipitation clarification. During the second phase, work was focussed on the development and characterization of the slurry contact and clarification process for the treatment of produced water utilizing the novel adsorbents Minto coal and fly ash and the development of methods that could be used for the recovery of the adsorbed oil and regeneration of the spent adsorbents. The mechanism of oil removal by Minto coal was determined to be emulsion destabilization and precipitation caused by a coagulation type reaction with iron released from the coal, rather than an adsorbtion of oil on organics on the coal surface as originally believed. This study has shown that virgin Minto coal can effectively destabilize wellhead emulsions and that the oil can be separated from the destabilized emulsion by either precipitation or filtration. 3 figs., 15 tabs.

  7. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  8. EVALUATION OF TECHNOLOGICAL SOLUTIONS FOR THE DESIGN AND DEVELOPMENT OF HEAVY OIL AND BITUMEN FIELDS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Nwizug-bee L. K.

    2016-06-01

    Full Text Available In Nigeria, belt of bituminous sand stretches to the East of Ijebu-Ode (Ogun State in the district of Siluko and Akotogbo, Okitipupa (Ondo Sate and Edo State. It covers a distance of approximately 110 km and lies in the upper cretaceous sequence of the Abeokuta formation in the eastern Dahomey Basin. Reserves of bituminous sand in Nigeria is estimated to be around 30- 40 billion barrels with a possibility to extract 3654 × 106 barrels. From the approximately 30-40 billion barrels of oil sand, Ogun State has more than 40% in reserve. However, this huge stock of oil sand in Nigeria is yet to be exploited. This article provides an assessment of technological solutions for the design and development of tar sand fields in Nigeria. Reserves of oil sand in Nigeria are the biggest in the whole of Africa

  9. Properties Analysis and Processing Scheme of Baoming Shale Oil From Xinjiang%新疆宝明页岩油性质分析及加工方案

    Institute of Scientific and Technical Information of China (English)

    金阳; 韩冬云; 曹祖宾; 庞海全; 王艳清; 李文岐

    2016-01-01

    Properties of Baoming shale oil were analyzed.Baoming shale oil contains more than 50% the normal pressure fractions, which contains about 40% of diesel fraction. Compared with the properties of different regional shale oil, Baoming shale oil has low viscosity, low paraffin content, low condensation point, and belongs to low sulfur intermediate based oil with high nitrogen content. For the properties of the oil and the use direction of the product, simple processing scheme was put forward, which could provide the reference to the oil shale processing in the future.%对宝明页岩油的性质进行了分析,宝明页岩油含有50%以上的常压馏分,其中柴油馏分的质量收率占40%左右。将宝明页岩油与不同区域页岩油的性质进行对比表明,宝明页岩油的粘度、含蜡量及凝点都比较低,属于含氮量较高的低硫中间基油。针对油品的性质及产品的使用方向,简单提出加工方案,为今后页岩油的加工利用提供参考。

  10. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    Science.gov (United States)

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller.

  11. Cytochrome P4501A induction and porphyrin accumulation in PLHC-1 fish cells exposed to sediment and oil shale extracts.

    Science.gov (United States)

    Huuskonen, S E; Tuvikene, A; Trapido, M; Fent, K; Hahn, M E

    2000-01-01

    The present study describes the use of a fish hepatoma cell line (PLHC-1) in monitoring the biological effects of sediments collected from recipient waters of the oil shale industry. Sampling sites were located in River Purtse and River Kohtla in northeast Estonia. The effects of pure oil shale on the PLHC-1 cells were also studied. The cells were exposed to n-hexane-extracted samples in 48-well plates for 24 h, and 7-ethoxyresorufin O-deethylase (EROD) activity, total protein, and porphyrin content were measured in the exposed cells. Polycyclic aromatic hydrocarbon (PAH) contents in the samples were measured by high-performance liquid chromatography (HPLC). All the sediment and oil shale samples induced CYP1A activity and led to porphyrin accumulation in the cells. The most potent inducers were the sediments collected near the oil shale processing plants (site Lüganuse in River Purtse and Kohtla in River Kohtla), as well as those at the most downstream site in River Purtse (Purtse). These samples possessed high total PAH contents, ranging from 4,270 to nearly 150,000 microg/kg dry sediment. The presence of other lipophilic organic contaminants in the samples was not determined in this study. Both EROD activity and porphyrin content exhibited biphasic induction curves, and the ED(50)(1) values for EROD activity were lower than the ED(50)s for porphyrin content. 2,3,7, 8-Tetrachlorodibenzo-p-dioxin induction equivalents (TCDD-EQs) calculated from EROD induction potencies correlated well with total PAHs (r(2) = 0.827 and p = 0.003 for log-transformed data) and also with individual PAHs. TCDD-EQs for porphyrin content did not correlate significantly with total PAHs (log-log r(2) = 0.785, p = 0. 116). The biological potency and PAH contamination of the samples showed the same rank order, except at Lüganuse, where sediment extracts induced CYP1A and porphyrins more than could have been expected based on PAH contents. Bioassay-derived induction EQs (normalized to

  12. Residual shale-oil/diesel-engine operating compatibility program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.; Derbidge, C.; Kuby, W.; Niven, H.; Richard, R.

    1983-10-01

    As part of a DOE study to determine the effective utilization of alternate fuels in medium-speed diesel engines, a residual shale oil (RSO) was fired in an APE-Allen, 1000-rpm, 9.5-in. bore diesel engine. Various fuel injection modes were considered. Based on a fuel characterization study and go/no-go tests, it was determined that the direct firing of 100 percent RSO gave performance comparable with that using No. 2 diesel fuel; consequently, performance/endurance tests were performed using 100 percent RSO. Conclusions of this test program are: Laboratory tests showed low levels of corrosion and deposit-causing elements. Therefore, corrosion and wear of engine components, when using RSO, should be no worse than for standard diesel fuel. The high wax content of RSO requires heating for supply, handling, and injection systems. Laboratory tests showed that the cetane number of RSO was equivalent to No. 2 diesel; hence, no engine modifications should be needed to burn RSO. The engine performance on RSO was essentially similar to standard diesel fuel. The thermal efficiency was slightly lower and Bosch smoke and particulates were slightly higher, especially at low load. Soft carbon deposits, formed on injectors when using RSO, did not affect performance. The 115-hour endurance test showed no significant performance deterioration. The deposit accumulation in combustion chambers and ports was not severe but was greater than standard diesel fuel would produce. Longer endurance tests are required to fully establish this conclusion. 41 figures, 21 tables.

  13. Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model

    Energy Technology Data Exchange (ETDEWEB)

    Earl D Mattson; Larry Hull

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.

  14. Analysis of Paraho oil shale products and effluents: an example of the multi-technique approach

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, J. S.; Wilkerson, C. L.; Evans, J. C.; Sanders, R. W.

    1979-06-10

    Inorganic analysis of solid, liquid and gaseous samples from the Paraho Semiworks Retort was completed using a multitechnique approach. The data were statistically analyzed to determine both the precision of each method and to see how closely the various techniques compared. The data were also used to determine the redistribution of 31 trace and major elements in the various effluents, including the offgas for the Paraho Retort operating in the direct mode. The computed mass balances show that approximately 1% or greater fractions of the As, Co, Hg, N, Ni, S and Se are released during retorting and redistributed to the product shale oil, retort water or product offgas. The fraction for these seven elements ranged from almost 1% for Co and Ni to 50 to 60% for Hg and N. Approximately 20% of the S and 5% of the As and Se are released. The mass balance redistribution during retorting for Al, Fe, Mg, V and Zn was observed to be no greater than .05%. These redistribution figures are generally in agreement with previous mass balance studies made for a limited number of elements on laboratory or smaller scale pilot retorts. 7 tables.

  15. Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.

    Science.gov (United States)

    Metslaid, Sandra; Stanturf, John A; Hordo, Maris; Korjus, Henn; Laarmann, Diana; Kiviste, Andres

    2016-07-01

    Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson's correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June-July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated.

  16. Investigation on pyrolysis of Moroccan oil shale/plastic mixtures by thermogravimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aboulkas, A.; El harfi, K. [Laboratoire de Chimie Physique, Departement de chimie, Faculte des Sciences, Semlalia, Universite Cadi Ayyad, BP 2390, 40001 Marrakech (Morocco); Departement de chimie, Faculte polydisciplinaire de Beni-Mellal, Universite Sultan Moulay Slimane, BP 592, 23000 Beni-Mellal (Morocco); Nadifiyine, M. [Laboratoire de Chimie Physique, Departement de chimie, Faculte des Sciences, Semlalia, Universite Cadi Ayyad, BP 2390, 40001 Marrakech (Morocco); El bouadili, A. [Departement de chimie, Faculte polydisciplinaire de Beni-Mellal, Universite Sultan Moulay Slimane, BP 592, 23000 Beni-Mellal (Morocco)

    2008-11-15

    Thermal degradation processes for a series of mixtures of oil shale/plastic were investigated using thermogravimetric analysis (TGA) at four heating rates of 2, 10, 20 and 50 K min{sup -} {sup 1} from ambient temperature to 1273 K. High density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene (PP) were selected as plastic samples. Based on the results obtained, three thermal stages were identified during the thermal degradation. The first is attributed to the drying of absorbed water; the second was dominated by the overlapping of organic matter and plastic pyrolysis, while the third was linked to the mineral matter pyrolysis, which occurred at much higher temperatures. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. The maximum degradation temperatures of each component in the mixture were higher than those of the individual components; thus an increase in thermal stability was expected. In addition, a kinetic analysis was performed to fit thermogravimetric data. A reasonable fit to the experimental data was obtained for all materials and their mixtures. (author)

  17. Wet peroxide oxidation and catalytic wet oxidation of stripped sour water produced during oil shale refining.

    Science.gov (United States)

    Prasad, Jaidev; Tardio, James; Jani, Harit; Bhargava, Suresh K; Akolekar, Deepak B; Grocott, Stephen C

    2007-07-31

    Catalytic wet oxidation (CWO) and wet peroxide oxidation (WPO) of stripped sour water (SSW) from an oil shale refinery was investigated. Greater than 70% total organic carbon (TOC) removal from SSW was achieved using Cu(NO(3))(2) catalysed WO under the following conditions using a glass lined reaction vessel: 200 degrees C, pO(2)=0.5MPa, 3h, [Cu(NO(3))(2)]=67mmol/L. Significant TOC removal ( approximately 31%) also occurred in the system without added oxygen. It is proposed that this is predominantly due to copper catalysed oxidative decarboxylation of organics in SSW based on observed changes in copper oxidation state. Greater than 80% TOC removal was achieved using WPO under the following conditions: 150 degrees C, t=1.5h, [H(2)O(2)]=64g/L. Significantly more TOC could be removed from SSW by adding H(2)O(2) in small doses as opposed to adding the same total amount in one single dose. It was concluded that WPO was a far more effective process for removing odorous compounds from SSW.

  18. Wet scrubbing for control of particular emissions from oil shale retorting

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, G.M.; Thurnau, R.C.; Lotwala, J.T.

    1981-01-01

    A mobile pilot-scale venturi scrubber was tested for control of particulate emissions from the Laramie Energy Techonolgy Center's 136-mg (150-ton)-capacity oil shale retort. The entire retort off-gas flow of 15.4 m/sup 3//min (545 ft/sup 3//min), discharged from a heat exchanger at a temperature of 58 /degree/C and saturated with water, was scrubbed at liquid-to-gas ratios of l.5 to 2.4 L/m/sup 3/. Sampling and analysis of the scrubber inlet and outlet gases were conducted to determine particulate removal. Outlet particulate concentrations were consistently reduced to 35 mg/m/sup 3/, even through inlet loadings varied from 125 to 387 mg/m/sup 3/ and 50 weight percent of the particles were less than four micrometers in diameter. Particulate control efficiencies up to 94 percent were achieved, although no correlation to liquid-to-gas ratio was observed. Simultaneous control of ammonia emissions, at efficiencies up to 75 percent, was also observed. 5 refs.

  19. Water Usage for In-Situ Oil Shale Retorting – A Systems Dynamics Model

    Energy Technology Data Exchange (ETDEWEB)

    Earl D. Mattson; Larry Hull; Kara Cafferty

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an insitu retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The major water consumption was during the remediation of the insitu retorting zone.

  20. Calculations of the effect of boiling water on bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Kantzas, A. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; McGee, B. [E-T Energy Limited, Calgary, AB (Canada)

    2006-07-01

    Alberta's vast resources of heavy oil and bitumen are playing an increasing role as a main resource for crude oil. Thermal recovery methods for heavy oil and bitumen include steam injection and steam flooding in which thermal energy is given to the oil to reduce its viscosity and allow it to flow towards a production spot. A viable alternative to steam injection is the electromagnetic heating method for heavy oil and bitumen reservoirs. Electromagnetic heating transfers heat to heavy oil reservoirs based on electromagnetic energy and can be used in situations where steam injection may not work well. The process can also be used to preheat the reservoir before steam injection. This study examined the possible displacement mechanisms of such processes with particular focus on the physics of boiling water in porous media as a potential displacement agent for heavy oil and bitumen. It is very possible that water could vaporize while being electrically heated and the vaporized water could push more heavy oil or bitumen out of reservoir. As such, higher oil recovery could be expected due to water vaporization. The role of water vaporization during electrical heating process was examined and a methodology to estimate the magnitude of incremental oil recovery was developed based on simple conceptual models with numerical simulators and illustrative experiments. The primary contributors of this process appear to be a combination of drainage, imbibition, viscosity reduction and gas expansion. The study showed that the expansion of water into steam could very efficiently flush oil out of pore spaces. It was concluded that water vaporization inside the reservoir can be an additional driving force for heavy oil or bitumen production, and that this alternative to steam injection can offer energy savings for the recovery process. 10 refs., 4 tabs., 6 figs., 1 appendix.

  1. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry.

    Science.gov (United States)

    Kahru, Anne; Maloverjan, Alla; Sillak, Helgi; Põllumaa, Lee

    2002-01-01

    Phenol, cresols, dimethylphenols and resorcinols considered major pollutants in the oil-shale semi-coke dump leachates (up to 380 mg phenols/L) that contaminate the surrounding soils and pose a threat to the groundwater in the North-East of Estonia. However; despite high residual concentrations of polyaromatic hydrocarbons (PAHs) and oil products in these soils, the concentration of phenols (especially their water-extractable fraction) was low, not exceeding 0.7 mg/kg dwt. The aim of the current study was to evaluate the role of biodegradation and aging on the decrease of hazard caused by phenolic pollution. The extractability of phenols (phenol, cresols, dimethylphenols and resorcinols) and their biodegradability by the microbial population was studied in the 13 soils sampled from the Estonian oil-shale region, territories of former gas stations, and from presumably non-polluted areas. Phenol, 5-methylresorcinol, p-cresol and resorcinol could be considered easily degradable in the soils as the microbial populations from majority of the soils studied were able to grow on mineral medium supplemented with these phenols as a single source of carbon. 2,3- and 2,4- and 3,4-dimethylphenols could be considered less easily biodegradable. The semi-coke dump leachate polluted soil (containing no dibasic phenols, 43 mg of monobasic phenols, 1348 mg of oil products and 35 mg of PAHs per g dwt) was analyzed chemically (HPLC) and toxicologically (Flash-Assay using Vibrio fischeri) for the leaching of phenols during shaking of soil-water slurries for 24 h. Only 5.8% of the total concentration of phenols was water-extractable, whereas about 50% of the leached amount was biodegraded by the soil microorganisms. Phenol and cresols were biodegraded by 80%, but the concentration of dimethylphenols practically did not change. The pollutants (measured as total water-extractable toxicity) were desorbed from the soil particles by the 8th h of extraction, whereas the toxicity of the aqueous

  2. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  3. Markets for Canadian bitumen-based feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lauerman, V. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2001-07-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs.

  4. Comparison of column phase configurations for comprehensive two dimensional gas chromatographic analysis of crude oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.C.; Harynuk, J.; Marriott, P. [RMIT University, Melbourne (Australia). Dept. of Applied Chemistry; Logan, G.A.; Grosjean, E. [Geoscience Australia, Canberra (Australia); Ryan, D. [Charles Sturt University, Wagga Wagga (Australia). School of Science and Technology

    2006-09-15

    An inverted phase (polar to non-polar) column set has been compared with a non-polar to polar column set for the GC x GC separation of petroleum hydrocarbons. This column configuration is shown to provide greatly enhanced resolution for less polar compounds and makes greater use of the two dimensional separation space. It improves resolution of a greater number of components within one analysis and offers new possibilities for crude oil fingerprinting. (Author)

  5. A rheological study of behavior of polymer-bitumen blends

    Energy Technology Data Exchange (ETDEWEB)

    Djonlagic, J. [Belgrade Univ. (Yugoslavia). Faculty of Technology and Metallurgy; Dunjic, B. [Belgrade Univ. (Yugoslavia). Faculty of Technology and Metallurgy; Javanovic, J.A. [Belgrade Univ. (Yugoslavia). Faculty of Technology and Metallurgy

    1996-12-01

    The influence of the elastomer such as SBS and SBR and their mixtures on the structure and rheological properties of blown bitumen B 65 blends, was studied. The crude oil denoted as SEB (Soviet Export Blend) was used to obtain the B 65 sample. (orig./HS) [Deutsch] Es wurde die Wirkung der SBR- und SBS-Elastomere und ihrer Mischungen, auf die Struktur und die rheologischen Eigenschaften des aus geblasenem Bitumen B 65 hergestellten Polymer-Bitumens (PmB), untersucht. Die B 65 Probe stammte aus dem Erdoel SEB (Soviet Export Blend). (orig./HS)

  6. Sweet spots for hydraulic fracturing oil or gas production in underexplored shales using key performance indicators: Example of the Posidonia Shale formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelkamp, S.

    2015-01-01

    While extensive data and experiences are available for hydraulic fracturing and hydrocarbon production from shales in the U.S.A., such a record is lacking in many underexplored shale basins worldwide. As limited data is usually available in these basins, analysis of shale prospectivity and identific

  7. Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O' Rourke, J.A.; Wagner, P.

    1982-04-01

    The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

  8. Economics derived from detailed and definitive design of Superior's Circlar Grate Retort for an 18,000 BPD oil shale demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, D.F.; Fishback, J.W.

    1983-04-01

    Superior Oil Company has continued efforts to reduce to practice the Superior retorting technology as applied to oil shale. From February 1981 to October 1982, Superior has participated in a cost sharing agreement with the Department of Energy for detailed design of the Superior Circular Grate Retort, definitive design of retort ancillaries, auxiliaries and offsites, and mining, and for capital and operating cost estimates for a nominal 18,000 BPD oil shale plant. The terms, detailed design and definitive design, are defined. The design documents are described in sufficient detail to render an overview to the reader of the basis used for project cost estimates and economic analysis.

  9. Assessment of potential shale oil and tight sandstone gas resources of the Assam, Bombay, Cauvery, and Krishna-Godavari Provinces, India, 2013

    Science.gov (United States)

    Klett, Timothy R.; Schenk, Christopher J.; Wandrey, Craig J.; Brownfield, Michael E.; Charpentier, Ronald R.; Tennyson, Marilyn E.; Gautier, Donald L.

    2014-01-01

    Using a well performance-based geologic assessment methodology, the U.S. Geological Survey estimated a technically recoverable mean volume of 62 million barrels of oil in shale oil reservoirs, and more than 3,700 billion cubic feet of gas in tight sandstone gas reservoirs in the Bombay and Krishna-Godavari Provinces of India. The term “provinces” refer to geologically defined units assessed by the USGS for the purposes of this report and carries no political or diplomatic connotation. Shale oil and tight sandstone gas reservoirs were evaluated in the Assam and Cauvery Provinces, but these reservoirs were not quantitatively assessed.

  10. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  11. Assessment of continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale of the Piceance Basin, Uinta-Piceance Province, Colorado and Utah, 2016

    Science.gov (United States)

    Hawkins, Sarah J.; Charpentier, Ronald R.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Brownfield, Michael E.; Finn, Tom M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phoung A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2016-06-08

    The U.S. Geological Survey (USGS) completed a geology-based assessment of the continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale within the Piceance Basin of the Uinta-Piceance Province (fig. 1). The previous USGS assessment of the Mancos Shale in the Piceance Basin was completed in 2003 as part of a comprehensive assessment of the greater UintaPiceance Province (U.S. Geological Survey Uinta-Piceance Assessment Team, 2003). Since the last assessment, more than 2,000 wells have been drilled and completed in one or more intervals within the Mancos Shale of the Piceance Basin (IHS Energy Group, 2015). In addition, the USGS Energy Resources Program drilled a research core in the southern Piceance Basin that provided significant new geologic and geochemical data that were used to refine the 2003 assessment of undiscovered, technically recoverable oil and gas in the Mancos Shale.

  12. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1978--May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.W.

    1979-03-01

    The following document is a third-year progress report for the period June 1, 1978 to May 31, 1979. The overall objective of the project is to study the effects of seeding techniques, species mixtures, fertilizer, ecotypes, improved plant materials, mycorrhizal fungi, and soil microorganisms on the initial and final stages of reclamation obtained through seeding and subsequent succession on disturbed oil shale lands. Plant growth medias that are being used in field-established test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Because of the long-term nature of successional and ecologically oriented studies the project is just beginning to generate significant publications. Several of the studies associated with the project have some phases being conducted principally in the laboratories and greenhouses at Colorado State Univerisity. The majority of the research, however, is being conducted on a 20 hectare Intensive Study Site located near the focal points of oil shale activity in the Piceance Basin. The site is at an elevation of 2,042 m, receives approximately 30 to 55 cm of precipitation annually, and encompasses the plant communities most typical of the Piceance Basin. Most of the information contained in this report originated from the monitoring and sampling of research plots established in either the fall of 1976 or 1977. Therefore, data that have been obtained from the Intensive Study Site represent only first- or second-year results. However, many trends have been identified in thesuccessional process and the soil microorganisms and mycorrhizal studies continue to contribute significant information to the overall results. The phytosociological study has progressed to a point where field sampling is complete and the application and publication of this materials will be forthcoming in 1979.

  13. 煤与油页岩共生成矿系统%Coal and Oil Shale Paragenetic Mineralization System

    Institute of Scientific and Technical Information of China (English)

    吕大炜; 李莹; 刘海燕; 李增学; 王东东; 刘莹; 王平丽

    2015-01-01

    To reveal the principle of coal and oil existence together in a same basin and mutual dependence, constraint as well as para⁃genetic mineralization, comprehensively analyzed the basin, brought forward the coal and oil shale paragenetic mineralization system and its impacting factors. Main geological factors include static factors of coal and oil shale associated rock series, coal and oil shale layers and their roof, floor rocks, as well as overburden;and dynamic factors of tectonic evolution, climate during the associated rock se⁃ries forming, paleontologic evolution and zoning in the basin, periphery fossil plants distribution, water media property changes (water body layering mechanism), gathering and flowing, from all these factors determined main geological process of the system. Based on ba⁃sin evolutional history, mineralization conserving mechanism and later stage reformation, divided the coal and oil shale paragenetic min⁃eralization system into four subsystems:mineralization subsystem, mineral-bearing basin subsystem, coal and oil shale (group) subsys⁃tem and coal and oil shale-bearing block subsystem. The subsystems can be described through sections, plans and special technologi⁃cal maps, drawings reflecting various geological factors and geological process, as well as reserve data, evolution events of various min⁃eral resources.%为了揭示煤与油页岩共生于同一盆地相互依存、相互制约和共生成矿等原理,通过对煤与油页岩共生盆地特征综合分析,提出了煤与油页岩共生成矿系统并分析其影响因素,指出主要地质要素包括煤与油页岩共生岩系、煤及油页岩层、顶底板岩层以及上覆岩层等静态因素,和构造演化、煤与油页岩共生岩系形成的气候、盆地内的古生物演化与分带(层)、盆地边缘地区古植物的分布、水介质的性质变化(水体分层机制)、聚集及流动等的动态因素,由此确定了二者共

  14. Phosphoric acid activation of Morrocan oil shale of Timahdit: Influence of the experimental conditions on yield and surface area of adsorbents

    Science.gov (United States)

    Ichcho, S.; Khouya, E.; Abourriche, A.; Ezzine, M.; Hannache, H.; Naslain, R.; Pailler, R.

    2005-03-01

    The use of Moroccan oil shale for the preparation of adsorbents by chemical activation with phosphoric acid is analysed. The results indicate that this material is promising for this application. The effect of different conditions of preparation on the yield and surface area is discussed. These parameters are H{3}PO{4}/shale weight ratio, carbonisation temperature, carbonisation time and concentration of H{3}PO{4}.

  15. Breaking water-in-bitumen emulsions using polyoxyalkylated DETA demulsifier

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Wu, J.; Dabros, T.; Hamza, H. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre; Wang, S.; Bidal, M.; Venter, J. [Champion Technologies, Sherwood Park, AB (Canada); Tran, T. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-08-01

    The economic importance of bitumen and heavy oil in North America is growing as conventional oil reserves decline. It is estimated that there are 2.5 trillion barrels of oil reserves in northern Alberta, of which most exist as oil sands. Bitumen is currently produced from open pit oil sand mining combined with steam assisted gravity drainage (SAGD). Bitumen is first liberated from the sand and then from a slurry called bitumen froth which contains about 60 per cent bitumen, 30 per cent water and 10 per cent solids by weight. Gravitational settling or centrifugation is used to further dilute the froth with light hydrocarbon solvents. Water-in-oil emulsions are broken down by adding emulsion breaking chemicals. In this study, experimental demulsifiers based on the diethylene triamine (DETA) series with various propylene oxide monomer (PO) and ethylene oxide monomer (EO) contents were manufactured and their relative solubility number (RSN) values were determined. A measurement of the dehydration efficiency of these demulsifiers suggests that some of the DETA products have the potential to perform as well as the demulsifiers currently used in a commercial plant. RSN values were well correlated with EO and PO numbers. Optimal dehydration efficiency also corresponded to the PO-to-EO ratio. 21 refs., 2 tabs., 10 figs.

  16. Sources and Utilization of Oil Shale Residue%油页岩灰渣的来源及综合利用技术磁

    Institute of Scientific and Technical Information of China (English)

    周建敏; 牛显春

    2013-01-01

    In this paper ,oil shale and oil shale ash utilization technology are reviewed .The comprehensive utilization of oil shale were sum-marized ,and the oil shale residue in the preparation of construction materials ,fine chemical products ,agricultural fertilizer and waste gas and waste water treatment and other areas of current research status and prospect are analyzed .The comprehensive utilization of the oil shale residue can bring the well benefit in resource ,environment ,economy and society ,and there is great significance for realizing sustainable development .%  对油页岩的特和油页岩灰渣利用技术进行了概述,重点对油页岩的综合利用进行了综述,并对油页岩渣在制备建筑材料、精细化工产品、农业肥料和废气和废水处理等领域的研究现状和前景进行了分析和论述。油页岩渣的综合利用能取得良好的资源、环境、经济及社会效益,对于实现资源的可持续发展具有重大意义。

  17. Shale oil value enhancement research. Quarterly report, January 1, 1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Activities during this quarter focused on (a) compound type analysis of shale oil and its extraction products, (b) thermal hydrodealkylation of the > 290{degrees}C polar fraction, and (c) economic analysis of the SPX project. At the end of this quarter, Mr. Jerry Wiser - the chief process engineer of JWBA, took a job with an equipment and engineering firm in the Salt Lake City. Jerry still maintains his contact with us as an Associate of the company. With regard to the SPX project, Jerry`s contribution included the process control and automation of various process units including the 15-stage distillation column and the continuous liquid-liquid extraction column. He also participated in data processing of the microanalysis of the complex hydrocarbon mixtures. All of the works he was involved in are fully functional and well-documented. At this transition stage, his previous duty is fulfilled by other JWBA staff. The current SPX team is well-suited for the upcoming tasks of running the PDU`s and preparing samples for introduction to potential partners and buyers. The dialog with potential industrial partners is continuing. We keep receiving inquires about our pyridine technology, including companies outside of United States. We are also preparing for presentation of a business plan before the Dawnbreaker commercialization assistance program. At the present time, although we can put together a {open_quotes}presentable{close_quotes} package, the lack of manufacturing plan and proof of market assurance (the originally proposed Phase-III work which has yet to be funded) may turn out to be critical for making this project commercial attractive.

  18. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  19. Autosolvent effect of bitumen in thermal cracking; Netsubunkai hanno ni okeru bitumen no jiko yobai koka

    Energy Technology Data Exchange (ETDEWEB)

    Mikuni, M.; Sato, M.; Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Nagaishi, H.; Sasaki, M.; Yoshida, T. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    Tar sand bitumen is petroleum-based ultra-heavy oil, and has a great amount of reserve like coal. However, there are still a lot of problems for its highly effective utilization. This paper discusses whether the light components in bitumen show independent behavior during the thermal cracking of heavy components, or not. Solvent effect and reaction mechanism during the thermal cracking are also derived from the change of their chemical structures. Athabasca tar sand bitumen was separated into light and heavy fractions by vacuum distillation based on D-1660 of ASTM. Mixtures of the both fractions at various ratios were used as samples. Negative effect of the light fraction on cracking of the heavy fraction was observed with dealkylation and paraffin formation Polymerization of the dealkylated light fraction to the heavy fraction was suggested due to lack of hydrogen in the thermal cracking under nitrogen atmosphere, which resulted in the formation of polymer. 3 refs., 6 figs.

  20. Total lead (Pb) concentration in oil shale ash samples based on correlation to isotope Pb-210 gamma-spectrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaasma, T.; Kiisk, M.; Tkaczyk, A.H. [University of Tartu (Estonia); Bitjukova, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    Estonian oil shale consists of organic matter and mineral material and contains various amounts of heavy metals as well as natural radionuclides (from the U-238 and Th-232 series and K-40). Previous research has shown that burning oil shale in the large power plants causes these radionuclides to become enriched in different ash fractions and be partially emitted to the atmosphere via fly ash and flue gases. The activity concentrations (Bq/kg) of these nuclides in different oil shale ash fractions vary significantly. This is influenced by the boiler parameters and combustion conditions - prevailing temperatures, pressure, ash circulating mechanisms, fly ash particle size, chemical composition of ash and coexistence of macro and micro components. As with radionuclides, various heavy metals remain concentrated in the ash fractions and are released to the atmosphere (over 20 tons of Pb per year from Estonian oil shale power plants). Lead is a heavy metal with toxic influence on the nervous system, reproductive system and different organs in human body. Depending on the exposure pathways, lead could pose a long term health hazard. Ash samples are highly heterogeneous and exhibit great variability in composition and particle size. Determining the lead concentration in ash samples by modern methods like inductively coupled plasma mass spectroscopy (ICP-MS), flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectroscopy (GFAAS) and other techniques often requires time consuming, multistage and complex chemical sample preparation. The list of possible methods to use is lengthy, but it is a challenge to choose a suitable one to meet measurement needs and practical considerations. The detection limits, capital costs and maintenance expenses vary between the instruments. This work presents the development of an alternative measurement technique for our oil shale ash samples. Oil shale ash was collected from different boilers using pulverized fuel

  1. Research progress on factors affecting VAPEX performance in exploitation of heavy oil and bitumen%稠油和沥青VAPEX技术影响因素的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵法军; 刘永建; 吴永彬; 哈斯; 谈龙日

    2012-01-01

    Since the exploitation of unconventional oil resources like heavy oil and bitumen is increasingly important due to gradual exhaustion of conventional light oil resources,the vapor extraction(VAPEX) technology in exploitation of heavy oil and bitumen deposits has become a promising process.This paper discusses the influence factors of VAPEX,including heavy oil viscosity,solvent diffusion and dispersion coefficients,solvent injection temperature and pressure,solvent injection rate,geological factors,etc.The critical mathematical equations and the mathematical model characterizing the relationship between the factors above and heavy oil/bitumen production rate are deduced.The outlook and development trend of VAPEX technology are analyzed,such as experimental model modification based on the difference between mathematical model and actual reservoir model,VAPEX combined with SAGD process,solvent diffusion coefficients at different temperatures and pressures,and application of mixed solvent systems.%由于常规稀油石油资源逐渐枯竭,作为非常规石油资源的稠油和沥青的开采日益重要,稠油和沥青的蒸气萃取(VAPEX)技术已经成为一项非常有前途的开采工艺。本文讨论了影响稠油和沥青VAPEX技术的各种因素,包括稠油黏度,溶剂在稠油中的扩散系数,溶剂的分散度,溶剂注入时的温度、压力,溶剂的注入速度,地质因素等。列出了这些因素之间重要的数学关系式以及这些因素与稠油和沥青质产量之间的数学模型,对VAPEX技术发展前景和未来研究方向进行了总体展望:由于模型与实际油藏的差异造成结果偏差因而需修正实验模型;VAPEX和SAGD的混合使用;不同温度、压力下溶剂的扩散系数;混合溶剂的使用。

  2. Biological effects and toxicity of diluted bitumen and its constituents in freshwater systems.

    Science.gov (United States)

    Dew, William A; Hontela, Alice; Rood, Stewart B; Pyle, Greg G

    2015-11-01

    Approximately 50 billion cubic meters of bitumen resides within the oil sands region of Alberta, Canada. To facilitate the transport of bitumen from where it is extracted to where it is processed, the bitumen is diluted with natural gas condensate ('dilbit'), synthetic crude from hydrocracking bitumen ('synbit'), or a mixture of both ('dilsynbit'). A primary consideration for the effects of diluted bitumen products on freshwater organisms and ecosystems is whether it will float on the water surface or sink and interact with the stream or lake sediments. Evidence from a spill near Kalamazoo, MI, in 2010 and laboratory testing demonstrate that the nature of the spill and weathering of the dilbit, synbit or dilsynbit prior to and during contact with water will dictate whether the product floats or sinks. Subsequent toxicological data on the effects of dilbit and other diluted bitumen products on freshwater organisms and ecosystems are scarce. However, the current literature indicates that dilbit or bitumen can have significant effects on a wide variety of toxicological endpoints. This review synthesizes the currently available literature concerning the fate and effects of dilbit and synbit spilled into freshwater, and the effects of bitumen and bitumen products on aquatic organisms and ecosystems. Dilbit is likely to provide ecological impacts that are similar to and extend from those that follow from exposure to lighter crude oil, but the prospect of bitumen settling after binding to suspended sediments elevates the risk for benthic impacts in streams and lakes.

  3. USGS National Assessment of Oil and Gas Project - Shale Gas Assessment Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has compiled a map of shale gas assessments in the United States that were completed by 2012, such assessments having been included as...

  4. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination?

    Science.gov (United States)

    Brocks, Jochen J.

    2011-06-01

    Archean shales from the Pilbara in Western Australia contain biomarkers that have been interpreted as evidence for the existence of cyanobacteria and eukaryotes 2.7 billion years (Ga) ago, with far reaching implications for the evolution of Earth's early biosphere. To re-evaluate the provenance of the biomarkers, this study determined the spatial distribution of hydrocarbons in the original drill core material. Rock samples were cut into millimeter-thick slices, and the molecular content of each slice was analyzed. In core from the Hamersley Group (˜2.5 Ga), C chromatographic phenomena associated with live-oil escape and contaminant diffusion have strong effects on molecular ratios and maturity parameters, potentially with broad implications for oil-source rock correlation studies and paleoenvironmental interpretations. For the Archean shales, the live-oil effect is consistent with some of the observed patterns, but only the contamination model fully explains the complex chromatographic fingerprints. Therefore, the biomarkers in the Pilbara samples have an anthropogenic origin, and previous conclusions about the origin of eukaryotes and oxygenic photosynthesis based on these samples are not valid. However, the study also identified indigenous molecules. The spatial distribution of particular aromatic hydrocarbons suggests they are syngenetic. Although devoid of biological information, these aromatics now represent the oldest known clearly-indigenous terrestrial liquid hydrocarbons.

  5. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  6. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals.