WorldWideScience

Sample records for oil shale bitumen

  1. Process for refining shale bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Plauson, H

    1920-09-19

    A process is disclosed for refining shale bitumen for use as heavy mineral oil, characterized by mixtures of blown hard shale pitch and heavy mineral oil being blown with hot air at temperatures of 120 to 150/sup 0/ with 1 to 3 percent sulfur, and if necessary with 0.5 to 3 percent of an aldehyde.

  2. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  3. Gas chromatograph study of bitumen from oil shale of Amman Formation (upper cretaceous), NW Jordan

    International Nuclear Information System (INIS)

    Darwish, H.; Mustafa, H.

    1997-01-01

    The extractable organic matter of seven outcrop samples of Amman Formation Oil Shale have been analysed by Gas Chromatography (GC). The bitumen is rich in heterocompounds contents (> 60 wt%). Gas chromatograms show a predominance of iosprenoids, specially phytane over n-alkanes, and low carbon preference index (CPI). This indicates that the organic matter is immature, and its origin is mainly of marine organisms. These rocks could be possible source rocks due to the high content of hydrocarbon. (authors). 22 refs., 4 figs. 3 tabs

  4. Hydrocarbons and oxygen compounds in the bitumens of kukersite oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Pais, R; Klesment, I; Pobul, L

    1979-01-01

    This is a continuation of an earlier work which described commercial batches of kukersite in terms of oxidative kerogen destruction. The low concentration of bitumen in the kerogen and its group composition indicate that this bitumen is syngenetic. The authors studied the way in which the bitumen and kerogen are structurally connected. They also analyzed four commercial batches of kukersite and asphaltite, the organic-rich dark-colored layer found in the middle of the kukersite strate. Whereas American studies of Colorado shales containing 10-20% bitumen from organic matter have indicated, based on the identical structures of the bitumen and kerogen that there is a genetic relationship between them, the present study rarely found such structural elements in the bitumen and kerogen. The kukersite contained little bitumen--0.7% of the total organic matter. The authors believed that the different composition of the bitumen and kerogen does not prove that they are epigenetic. Kukersite also fails to follow the rule that the paraffins of ancient shales have KHapprox.1 and carbon chains shorter than C/sub 22/.

  5. Evolution of sulfur speciation in bitumen through hydrous pyrolysis induced thermal maturation of Jordanian Ghareb Formation oil shale

    Science.gov (United States)

    Birdwell, Justin E.; Lewan, Michael; Bake, Kyle D.; Bolin, Trudy B.; Craddock, Paul R.; Forsythe, Julia C.; Pomerantz, Andrew E.

    2018-01-01

    Previous studies on the distribution of bulk sulfur species in bitumen before and after artificial thermal maturation using various pyrolysis methods have indicated that the quantities of reactive (sulfide, sulfoxide) and thermally stable (thiophene) sulfur moieties change following consistent trends under increasing thermal stress. These trends show that sulfur distributions change during maturation in ways that are similar to those of carbon, most clearly illustrated by the increase in aromatic sulfur (thiophenic) as a function of thermal maturity. In this study, we have examined the sulfur moiety distributions of retained bitumen from a set of pre- and post-pyrolysis rock samples in an organic sulfur-rich, calcareous oil shale from the Upper Cretaceous Ghareb Formation. Samples collected from outcrop in Jordan were subjected to hydrous pyrolysis (HP). Sulfur speciation in extracted bitumens was examined using K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The most substantial changes in sulfur distribution occurred at temperatures up to the point of maximum bitumen generation (∼300 °C) as determined from comparison of the total organic carbon content for samples before and after extraction. Organic sulfide in bitumen decreased with increasing temperature at relatively low thermal stress (200–300 °C) and was not detected in extracts from rocks subjected to HP at temperatures above around 300 °C. Sulfoxide content increased between 200 and 280 °C, but decreased at higher temperatures. The concentration of thiophenic sulfur increased up to 300 °C, and remained essentially stable under increasing thermal stress (mg-S/g-bitumen basis). The ratio of stable-to-reactive+stable sulfur moieties ([thiophene/(sulfide+sulfoxide+thiophene)], T/SST) followed a sigmoidal trend with HP temperature, increasing slightly up to 240 °C, followed by a substantial increase between 240 and 320 °C, and approaching a constant value (∼0.95) at

  6. Shale oil. II. Gases from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil shale (from Colorado) was pyrolyzed, and the gaseous products obtained were studied. The organic material present in oil shale contains carboxyl groups that lose carbon dioxide during pyrolysis before the formation of soluble bitumen. Nitrogen was evolved as ammonia in two stages and was not continuous. The first evolution was from loosely combined nitrogen structures, whereas the second was from more stable forms. No hydrocarbons were present as such in the kerogen. The gaseous products from oil-shale pyrolysis were similar to those obtained by distillation of colophony, amber, coal, and wood. This places the kerogen of the oil shale in the same series of carbonaceous substances as those from which coals are formed. Kerogen appeared to be decomposed in three steps; namely, to insoluble bitumen, to soluble bitumen, and to oil (gas evolution accompanied each step). Its low solubility and the character of its pyrolytic gas indicated that kerogen is largely a resinous residue from vegetation of the past era and may have been formed by the tranportation of coal-forming organic debris to inland salty lakes or carried to the sea by clay-laden waters. The salt water and the natural settling action precipitated the clay and organic matter in an almost homogeneous deposit. Oil shales have existed to the present time because they have not been subjected to high pressures or elevated temperatures that would have changed them to petroleum.

  7. Process for treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process for treating oil shale is characterized in that the shale is first finely ground, then heated in the presence of steam in a high-pressure retort at 1 to 50 atmospheres pressure at a temperature of 200/sup 0/ to 450/sup 0/C and then with large amounts of water with or without materials forming emulsions with water or with oil. Solution medium suitable for bitumen or paraffin is beaten up in a rapid hammer mill until all or most all of the oil or bitumen is emulsified. The emulsion is separated by filter-pressing and centrifuging from the solid shale residue and the oil or bitumen is again separated from the emulsion medium by heating, acidulating, standing, or centrifuging, and then in known ways is further separated, refined, and worked up.

  8. Process of recovering bitumen from shale

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, H D

    1918-03-26

    A step in the recovery of bitumen from solids which consists in digesting the solids with heavy oil under the action of heat and agitation at a temperature insufficiently high to effect substantial distillation of heavy fractions, but high enough to liquefy heavy hydrocarbons contained in the solids, and then separating solid residual matter, substantially as described.

  9. Origin of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham-Craig, E H

    1915-01-01

    Kerogen was believed to be formed by the inspissation of petroleum. During this process nitrogen and sulfur compounds were concentrated in the most inspissated or weathered products. At a certain stage, reached gradually, the organic matter became insoluble in carbon-disulfide and ceased to be a bitumen. Oil shale was formed by the power of certain clays or shales to absorb inspissated petroleum, particularly unsaturated hydrocarbons. This adsorption apparently depended on the colloid content of the argillaceous rock. This rock retained these impregnated petroleum residues long after porous sandstones in the vicinity had lost all traces of petroleum by weathering and leaching.

  10. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  11. Chemical aspects of shale and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1922-01-01

    To prove that the kerogen in oil shale is a form of bitumen, several experiments were made with oil shale and a heavy asphaltic oil mixed with fuller's earth. When distilled, both the oil shale and asphalt-impregnated fuller's earth yielded paraffin oil, wax, and hydrogen sulfide (if sulfur was present). Both yielded ammonia if nitrogen was present. The organic material in each was partly isolated by extraction with pyridine and appeared to be the same. Oil shale is a marl that was saturated with oil or through which oil has passed or filtered. The insolubilities of its organic compounds are due to a slightly elevated temperature for a prolonged period and to the retaining effect exerted by the finely divided marl. The marl exerted a selective action on the oil and absorbed the asphaltum, sulfur, and nitrogen compounds from the oil. The class of oil evolved from a shale depended on the nature of the original compounds absorbed. Asphaltenes obtained from crude oil by precipitation with ethyl ether produced distillation products of water, hydrogen sulfide, ammonia, oil, wax, and a carbonaceous residue. Water was formed by decomposition of oxyasphaltenes and hydrogen sulfide by decomposition of thioasphaltenes. Ammonia was evolved during decomposition if lime was present, but if there was not sufficient free lime present, pyridine and pyrrole derivatives were redistilled as such. The oil and wax that resulted from the dry distillation were true decomposition products and equaled about 60 weight-percent of the asphaltenes. The oil and wax content of the mixture varied between 8 and 10 percent. The carbonaceous residue, which represented approximately 40 percent of the original asphaltene, was a decomposition product of the asphaltenes. Geologic comparisons of oil-shale deposits and oil-well fields were also made.

  12. Shale oil. I. Genesis of oil shales and its relation to petroleum and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil-shale kerogen originated from resinous vegetation residues of past eras, whereas well petroleum was formed from oil shales by pressure and mild heat. Petroleum migrated to its present reservoir from neighboring oil-shale deposits, leaving a residue of black bituminous shales. The high carbon dioxide content of gases present in petroleum wells originated from kerogen, as it gives off carbon dioxide gas before producing soluble oil or bitumen.

  13. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  14. Supercritical solvent extraction of oil sand bitumen

    Science.gov (United States)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  15. Oil shale technology

    International Nuclear Information System (INIS)

    Lee, S.

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail

  16. Origin of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, W G

    1923-01-01

    The theory by Jones was questioned. Oil shales do not contain partly decomposed vegetable matter, and, where particles of vegetation are identified, they do not prove that kerogen was formed in its place. Some shales do contain free oil that can be extracted with solvents.

  17. Oil shale activities in China

    International Nuclear Information System (INIS)

    Peng, D.; Jialin, Q.

    1991-01-01

    China has abundant oil shale resources, of the Early Silurian to Neogene age, the most important being the Tertiary period. The proved oil shale reserves in Fushun amount to 3.6 billion t, in Maoming 4.1 billion t. In Fushun, oil shale is produced by open-pit mining as a byproduct of coal, in Maoming it is also mined in open pits, but without coal. In China, scale oil has been produced from oil shale for 60 years. Annual production of crude shale oil amounts to about 200 000 t. The production costs of shale oil are lower than the price of crude petroleum on the world market. China has accumulated the experience and technologies of oil shale retorting. The Fushun type retort has been elaborated, in which the latent and sensible heat of shale coke is well utilized. But the capacity of such retort is relatively small, therefore it is suitable for use in small or medium oil plants. China has a policy of steadily developing shale oil industry. China is conducting oil shale research and developing oil shale processing technology. Much attention is being pay ed to the comprehensive utilization of oil shale, shale oil, and to environmental problems. In China, oil shale is mostly used for producing shale by retorting, attention will also be paid to direct combustion for power generation. Great achievements in oil shale research have been made in the eighties, and there will be a further development in the nineties. (author), 12 refs., 3 tabs

  18. Process for extracting oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process is described for recovering bituminous material from oil shale, characterized in that the oil shale is extracted with wood spirits oil (byproduct of woodspirit rectification), if necessary in admixture with other solvents in the cold or the hot.

  19. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  20. Treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Dolbear, S H

    1921-01-04

    Oil shale is treated for the separation of the valuable organic compounds, with a view to economy in subsequent destructive distillation, by grinding to powder, mixing with water to form a pulp, adding a small quantity of an oil liquid and aerating the mixture to form a froth containing the organic compounds. If the powdered shale contains sufficient free oil, the addition of oil to the pulp may be dispensed with. In some cases an electrolyte such as sulfuric acid may be added to the pulp.

  1. Process of extraction in liquid way, of the bitumen from asphaltic and bituminous rocks, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Freda, L

    1936-06-04

    A process is described for liquid extraction of the bitumen in asphaltic and bituminous rocks, shales, and the like. The substances impregnated with bitumen are suitably treated for the extraction of pitch with any given solvent derived from ethylene, in a series of apparatuses fixed and rotary at atmospheric pressure or in vacuum with vapor and hot air.

  2. Oil shale highlights

    International Nuclear Information System (INIS)

    1994-01-01

    The low prices of crude oil have continued to retard the commercial development of oil shale and other syn fuels. Although research funds are more difficult to find, some R and D work by industry, academia, and governmental agencies continues in the United States and in other parts of the world. Improvements in retorting technology, upgrading oil-shale feedstock, and developing high-value niche-market products from shale oil are three notable areas of research that have been prominent for the past several years. Although the future prices of conventional crude cannot be predicted, it seems evident that diminishing supplies and a burgeoning world population will force us to turn to alternate fossil fuels as well as to cleaner sources of non-fossil energy. (author)

  3. Oil and gas processing products to obtain polymers modified bitumen

    Directory of Open Access Journals (Sweden)

    Serhiy Pyshyev

    2017-07-01

    Full Text Available To obtain modified bitumen with excellent adhesive properties, coumarone-indene resin (CIR was used. However, bitumens modified by CIR have somewhat worse plastic properties. For the improvement of the plastic properties of road bitumen modified by coumarone-indene resin, the paper proposes to use plasticizers. Characterized by a high content of rings (aromatic-naphthenic oils, a range of compounds was used as plasticizers. Of all different plasticizers tested, the tar produced from West-Ukrainian oils has been found to be the most effective one. The optimal ratio between modified bitumen components was determined enabling to obtain the commercial product of polymers modified bitumen of BMP 60/90-52 brand. The complex thermogravimetry and differential-thermal analysis has been used to analyze the initial and modified bitumen. Bitumens modified by CIR have shown by far the highest thermal stability under operation conditions. Keywords: Bitumen, Modifier, Coumarone-indene resin, Plasticizer

  4. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  5. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  6. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  7. Distillation of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, G A

    1926-03-22

    To distill oil shales, cannel coals, and other carbonaceous materials for the extraction therefrom of hydrocarbons and volatile nitrogenous compounds, hard non-condensable gases from the condensers and scrubbers are withdrawn by blowers and admixed with burnt gases, obtained through conduits from the flues of heaters, and forced downwardly through horizontal chambers, connected by vertical conduits, of the heaters and delivered into the retort beneath the grate. Passing upwardly through the charge they vaporize the volatile substances in the shale, and a suction pump removes the vapors from the top of the retort. Immediately they are produced and at substantially the same temperature as that at which they emanate, thus preventing cracking of the oil vapors and condensation of the oil at the top of the retort. The amount of burnt flue gas admixed with the hard gases is regulated by two valves until a required uniform temperature is obtained. A generator supplies producer gas to a heater at the commencement of the retorting operation for circulation through the shale charge to initially produce oil vapors. The generator is connected by a pipe to the gas conduit leading to blowers.

  8. Recovering oil from shale

    Energy Technology Data Exchange (ETDEWEB)

    Leahey, T; Wilson, H

    1920-11-13

    To recover oil free from inorganic impurities and water, and utilize the oil vapor and tarry matter for the production of heat, shale is heated in a retort at a temperature of not less than 120/sup 0/C. The vapors pass by a pipe into a water jacketed condenser from which the condensate and gas pass through a pipe into a chamber and then by a pipe to a setting chamber from where the light oils are decanted through a pipe into a tank. The heavy oil is siphoned through a pipe into a tank, while the gas passes through a pipe into a scrubber and then into a drier, exhauster and pipe to the flue and ports, above the fire-bars, into the retort. Air is introduced through a pipe, flue, and ports.

  9. Oil shale (in memoriam)

    International Nuclear Information System (INIS)

    Strandberg, Marek

    2000-01-01

    Plans for the continued use of oil shale may lead the development of this country into an impasse. To this day no plans have been made for transition from the use of energy based on fossil fuels to that based on renewable resources. Without having any clear strategic plan politicians have been comforting both themselves and the population with promises to tackle the problem when the right time comes. Today the only enterprise whose cash flows and capital would really make it possible to reform the power industry is the firm Eesti Energia (Estonian Energy). However, its sole present shareholder - the state - prefers the sale of the firm's shares to carrying out a radical reform. At the same time, local consumers are likely to rather be willing to pay for the expensive electric energy produced from renewable resources than for that produced from fossil fuels, the price of which will also remain high due to the pollution tax. Practically it is impossible to buy a globally balanced environment for money - pollution taxes are but punitive mechanisms. The investments made into the oil-shale industry will also reinforce the cultural distance of North-East Estonia from the rest of Estonia - the uniform and prevalently Russian-speaking industrial area will be preserved as long as capital will continue to flow into the oil shale industry concentrated there. The way out would be for industries to make wider use of ecological and ecosystemic technologies and for the state to enforce ecologically balanced economic and social policies. (author)

  10. Recovering valuable shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Engler, C

    1922-09-26

    A process is described for the recovery of valuable shale oils or tars, characterized in that the oil shale is heated to about 300/sup 0/C or a temperature not exceeding this essentially and then is treated with a solvent with utilization of this heat.

  11. Mechanical lifter for recovering highly viscous oil and bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Rakhmanov, R N; Akhunov, A M; Asfandiyarov, Kh A; Maksutov, R A

    1982-01-01

    A mechanical lifter is described for recovering highly viscous oil and bitumens. The lifter differs from the known and has significant advantages over them. The lifter was made and tested on a stand well.

  12. Distilling oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, R H

    1923-04-18

    In the fractional distillation of oils from oil shale and similar materials the charge is passed continuously through a vertical retort heated externally by hot combustion gases in flues and internally by the passage of these gases through flues passing through the retort so that zones of increasing temperature are maintained. A vapor trap is provided in each zone having an exit pipe leading through a dust trap to a condenser. The bottoms of the conical vapor traps are provided with annular passages perforated to permit of steam being sprayed into the charge to form screens which prevent the vapors in different zones from mingling, and steam may also be introduced through perforations in an annular steam box. Dampers are provided to control the passage of the heating gases through the flues independently.

  13. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  14. Process of recovering shale oil

    Energy Technology Data Exchange (ETDEWEB)

    1949-01-17

    A process is disclosed for recovering oil from shale rock by means of channels cut in the shale deposit, to which heat is carried for warming the shale mass and which are separated from the fume channels formed in the shale by parts of the shale rock, characterized in that heating elements are put down in the heating channels, which occupy less cross section than these channels, and in the so-formed space between the channel wall and the heating element a filling is placed, which facilitates heat transfer between the heating element and the shale and simultaneously prevents a streaming of the oily product gasified out of the shale from working into the heating element and stopping it.

  15. Treatment of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H L

    1922-07-04

    To distill oil shale in lump form, it is fed as a continuous charge through an axially rotating externally heated retorting chamber, where the exposed surfaces of the lumps are gradually decomposed by destructive distillation, and light physical shocks are continuously administered to them, due to their tumbling-over motion and their contact with the ribs, to knock off the decomposing surfaces and present fresh surfaces for distillation. The vapors are withdrawn through a conduit, and the partially distilled lumps are fed through a shoot into a plurality of rotating externally heated retorts, similar in character to the first retort, from whence the vapors pass through a conduit to condensing apparatus, from which the permanent gases are withdrawn, and used for fuel in the distillation zone, while the residue is discharged into a water well. An auxiliary heating conduit, having a burner discharging into it, may be employed, while in some cases steam may be used if required. In two modifications, different arrangements of the retorts are shown, as well as means within the retorts for breaking up the lumps of shale.

  16. Oil shale utilization in Israel

    International Nuclear Information System (INIS)

    Kaiser, A.

    1993-01-01

    Geological surveys have confirmed the existence of substantial Israeli oil shale reserves. The proven reserves contain approximately 12 billion tons of available ores, and the potential is deemed to be much higher. Economic studies conducted by PAMA indicate promising potential for power generation via Israel oil shale combustion. Electric power from oil shale appears competitive with power generated from coal fired power plants located along the coast. PAMA's demonstration power plant has been in operation since the end of 1989. Based on the successful results of the first year of operation, PAMA and IEC are now engaged in the pre-project program for a 1000 MW commercial oil shale fired power plant, based on eight 120 MW units; the first unit is scheduled to begin operation in 1996

  17. BLM Colorado Oil Shale Leases

    Data.gov (United States)

    Department of the Interior — KMZ file Format –This data set contains the Oil Shale Leases for the State of Colorado, derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land...

  18. Production of oil from Israeli oil shale

    International Nuclear Information System (INIS)

    Givoni, D.

    1993-01-01

    Oil shale can be utilized in two-ways: direct combustion to generate steam and power or retorting to produce oil or gas. PAMA has been developing both direct combustion and retorting processes. Its main effort is in the combustion. An oil shale fired steam boiler was erected in the Rotem industrial complex for demonstration purposes. PAMA has also been looking into two alternative retorting concepts - slow heating of coarse particles and fast heating of fine particles. The present paper provides operating data of oil shale processing in the following scheme: (a) retorting in moving bed, pilot and bench scale units, and (b) retorting in a fluidized bed, bench scale units. (author)

  19. Analysis of some aromatic hydrocarbons in a benzene-soluble bitumen from Green River shale

    Energy Technology Data Exchange (ETDEWEB)

    Anders, D.E.; Doolittle, F.G.; Robinson, W.E.

    1973-01-01

    The hydrocarbon content of an aromatic fraction, isolated from the bitumen of Green River shale, was studied by mass spectrometry, infra-red spectrometry, gas chromatography and a dehydrogenation technique. The hydrocarbon types and their distribution in this aromatic fraction, as determined by mass spectrometry, are presented. The carbon-number range, empirical formulas and quantity of each compound in the major types are reported. Mass spectra of several compounds and homologous mixtures of compounds isolated from the aromatic fraction are also given.

  20. Carbon sequestration in depleted oil shale deposits

    Science.gov (United States)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  1. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis

    Science.gov (United States)

    Hu, Haiyan; Zhang, Tongwei; Wiggins-Camacho, Jaclyn D.; Ellis, Geoffrey S.; Lewan, Michael D.; Zhang, Xiayong

    2014-01-01

    This study quantifies the effects of organic-matter (OM) thermal maturity on methane (CH4) sorption, on the basis of five samples that were artificially matured through hydrous pyrolysis achieved by heating samples of immature Woodford Shale under five different time–temperature conditions. CH4-sorption isotherms at 35 °C, 50 °C, and 65 °C, and pressures up to 14 MPa on dry, solvent-extracted samples of the artificially matured Woodford Shale were measured. The results showed that CH4-sorption capacity, normalized to TOC, varied with thermal maturity, following the trend: maximum oil (367 °C) > oil cracking (400 °C) > maximum bitumen/early oil (333 °C) > early bitumen (300 °C) > immature stage (130 °C). The Langmuir constants for the samples at maximum-oil and oil-cracking stages are larger than the values for the bitumen-forming stages. The total pore volume, determined by N2 physisorption at 77 K, increases with increased maturation: mesopores, 2–50 nm in width, were created during the thermal conversion of organic-matter and a dramatic increase in porosity appeared when maximum-bitumen and maximum-oil generation stages were reached. A linear relationship between thermal maturity and Brunauer–Emmett–Teller (BET) surface area suggests that the observed increase in CH4-sorption capacity may be the result of mesopores produced during OM conversion. No obvious difference is observed in pore-size distribution and pore volume for samples with pores 2 physisorption at 273 K. The isosteric heat of adsorption and the standard entropy for artificially matured samples ranged from 17.9 kJ mol−1 to 21.9 kJ mol−1 and from −85.4 J mol−1 K−1 to −101.8 J mol−1 K−1, respectively. These values are similar to the values of immature Woodford kerogen concentrate previously observed, but are larger than naturally matured organic-rich shales. High-temperature hydrous pyrolysis might have induced Lewis acid sites on both organic and mineral surfaces

  2. Oil. The revenge of shales

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2017-01-01

    This article comments the evolutions noticed during these past years as the USA started to exploit non conventional hydrocarbons (shale gas and oil), and thus reduced their supplies from the Middle East. In reaction, OPEC members provoked a massive oil price decrease. If shale oil exploitation in the USA has slowed down for a while, it starts again: the number of platforms and production are increasing. Moreover, the profitability threshold is strongly decreasing. Argentina and China are also developing this sector, and Great-Britain and South-Africa are about to start projects. The article outlines that, even though France decided not to exploit shale gas and oil, French industries are present on this market and technology. In an interview, a representative of the French sector of non conventional hydrocarbons comments these evolutions as well as the French decision and its possible evolutions

  3. Ranking oil sands bitumen recovery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lam, A.; Nobes, D.S.; Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    The preference ranking organization method (PROMETHEE) was used to assess and rank 3 techniques for in situ bitumen recovery: (1) steam assisted gravity drainage; (2) vapour extraction (VAPEX); and (3) toe-to-heel air injection (THAI). The study used a business scenario where management-type indicators included potential production rates; estimated overall operating costs; energy consumption; facilities requirement; recovery efficiency; and energy loss. Amounts of carbon dioxide (CO{sub 2}) emissions were also considered, as well as the production depth, formation thickness, and API gravity of the produced bitumen. The study showed that THAI recovery methods had the most beneficial criteria weighting of the 3 processes, while SAGD was the least favourable choice. However, SAGD processes are the most widely used of the 3 processes, while THAI has only been demonstrated on a limited scale. It was concluded that the maturity of a technology should be weighted more heavily when using the PROMETHEE method. 8 refs., 2 tabs.

  4. Origin of Scottish oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Conacher, H R.J.

    1916-12-01

    Oil shales contain two distinct types of organic material, one is comparable to the woody material in coal and the other consists of yellow bodies. When distilled, the latter yields the liquid product typical of oil shale, whereas the woody material produces large amounts of ammonia. The yellow bodies have been described by various investigators as fossil algae, spores, or dried-up globules of petroleum. In this study it was concluded that the yellow bodies were fragments of resins set free by the decay and oxidation of the vegetable matter with which they were originally associated.

  5. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties

    Science.gov (United States)

    Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana

    2018-04-01

    Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.

  6. Desulfurization of Jordanian oil shale

    International Nuclear Information System (INIS)

    Abu-Jdayil, B. M.

    1990-01-01

    Oxy desulfurization process and caustic treatment were applied in this work to remove sulfur from Jordanian oil shale. The oxy desulfurization process has been studied in a batch process using a high pressure autoclave, with constant stirring speed, and oxygen and water were used as desulfurizing reagents. Temperature, oxygen pressure, batch time, and particle size were found to be important process variables, while solid/liquid ratio was found to have no significant effect on the desulfurization process. The response of different types of oil shale to this process varied, and the effect of the process variables on the removal of total sulfur, pyritic sulfur, organic sulfur, total carbon, and organic carbon were studied. An optimum condition for oxy desulfurization of El-Lajjun oil shale, which gave maximum sulfur removal with low loss of carbon, was determined from the results of this work. The continuous reaction model was found to be valid, and the rate of oxidation for El-Lajjun oil shale was of the first order with respect to total sulfur, organic sulfur, total carbon, and organic carbon. For pyritic sulfur oxidation, the shrinking core model was found to hold and the rate of reaction controlled by diffusion through product ash layer. An activation energy of total sulfur, organic sulfur, pyritic sulfur, total carbon, and organic carbon oxidation was calculated for the temperature range of 130 -190 degrees celsius. In caustic treatment process, aqueous sodium hydroxide at 160 degrees celsius was used to remove the sulfur from El-Lajjun oil shale. The variables tested (sodium hydroxide concentration and treatment time) were found to have a significant effect. The carbon losses in this process were less than in the oxy desulfurization process. 51 refs., 64 figs., 121 tabs. (A.M.H.)

  7. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  8. Process and apparatus for recovering of oil, bitumen, tar, resins, etc

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-06

    A process for recovering oil, bitumen, tar, and resins from oil shale, oil sands, Fuller's earth, peat, brown coal, mineral coal, and wood, through direct action of superheated steam on the material, is characterized by the fact that superheated steam with or without mixing of inert gases at a temperature, which lies below the decomposition temperature of the material being treated, is passed through the material with a high velocity. It leaves through nozzles, used in steam turbines. A method of carrying out the process in which solution medium is used for action on the material is characterized by the fact that solvents such as benzine and benzol are mixed with steam in different quantities.

  9. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  10. Preparation of cement from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1922-08-24

    A process for preparing cement from oil shale is described. The simultaneous recovery of shale oil by heating the oil shale formed into briquets with finely ground lime or limestone in a stream of hot gases is characterized by the fact that live steam or fine drops of water as preserving and carbonization means is introduced into the furnace, at the place, where the temperature of the briquet reaches about 500 to 600/sup 0/ C.

  11. The Resurgence of Shale Oil

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-09-01

    This study addresses the resilience factors of the American production of light tight oil, in particular regarding the evolution of the financial model, and the regulatory changes with the authorisation of exports for crude oil. The paper also evaluates the development perspectives of the production on the medium and long term. US production of light tight oil (LTO, commonly known as 'shale oil') experienced a spectacular expansion between 2010 and 2014, becoming the largest source of growth in world oil production. At the start of 2015, however, the sustainability of its business model became questionable. Oil prices had collapsed and uncertainty about future US production was at its height. The sharp drop in the number of drill holes as of January 2015 raised fears of a rapid fall in US petroleum output. The LTO business model, based largely on the use of debt, reinforced this projection. Independent producers were heavily indebted, and were no longer able to invest in new wells. LTO production would therefore run out of steam. Two years later, LTO has passed its first test successfully. While output of shale gas has clearly fallen, cuts have been modest and much less than had been feared, given the falls in capital spending (CAPEX) and the number of drill holes. Productivity improvements as well as cost reductions have permitted a halving of the LTO equilibrium price. Independent producers have refocused their activities on the most productive basins and sites. The essential role played by the Permian Basin should be stressed at this point. In two years, it has become a new El dorado. Despite the fall in drill holes through to May 2016, production has continued to rise and now amounts to a quarter of American oil output. Furthermore, independents have drawn extra value from their well inventories, which include drilled, but also uncompleted wells. Lastly, the impressive number of drilled wells prior to price cuts has allowed producers to maintain their output

  12. Conversion characteristics of 10 selected oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.

    1989-08-01

    The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

  13. Process for desulfurizing shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Escherich, F

    1922-12-17

    A process is described for the desulfurizing of shale oil or tar, with recovery of valuable oils and hydrocarbons, characterized in that the raw material is heated in an autoclave to a pressure of 100 atmospheres or more.

  14. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  15. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  16. Process for recovering oil from shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-20

    A process is described for recovering oil from oil-shale and the like, by the direct action of the hot gases obtained by burning the carbonized shale residue. It is immediately carried out in separate adjacent chambers, through which the feed goes from one to the other intermittently, from the upper to the lower.

  17. Isocyanate-functionalized castor oil as a novel bitumen modifier

    OpenAIRE

    Cuadri Vega, Antonio Abad; García Morales, Moisés; Navarro Domínguez, Francisco Javier; Partal López, Pedro

    2013-01-01

    The use of biomaterials from renewable sources in the synthesis of polyurethane-derived polymers is lately receiving great attention from social, environmental and economic standpoints. In this work, prepolymers having different -NCO/-OH ratio were synthesized, by reaction of 4,4´-diphenylmethane diisocyanate (MDI) with castor oil (CO), to be used as modifying agent of asphaltic bitumen. Reactions between MDI and CO, performed with -NCO/-OH molar ratios of 8:1 and 4:1, have led to suitable bi...

  18. Lessons learned from IOR steamflooding in a bitumen-light oil heterogeneous reservoir

    NARCIS (Netherlands)

    Al Mudhafar, W.J.M.; Hosseini Nasab, S.M.

    2015-01-01

    The Steamflooding was considered in this research to extract the discontinuous bitumen layers that are located at the oil-water contact for the heterogeneous light oil sandstone reservoir of South Rumaila Field. The reservoir heterogeneity and the bitumen layers impede water aquifer approaching into

  19. Refining shale-oil distillates

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, J

    1952-03-17

    A process is described for refining distillates from shale oil, brown coal, tar, and other tar products by extraction with selective solvents, such as lower alcohols, halogen-hydrins, dichlorodiethyl ether, liquid sulfur dioxide, and so forth, as well as treating with alkali solution, characterized in that the distillate is first treated with completely or almost completely recovered phenol or cresotate solution, the oil is separated from the phenolate with solvent, for example concentrated or adjusted to a determined water content of lower alcohol, furfural, halogen-hydrin, dichlorodiethyl ether, liquid sulfur dioxide, or the like, extracted, and the raffinate separated from the extract layer, if necessary after distillation or washing out of solvent, and freeing with alkali solution from residual phenol or creosol.

  20. Centennial review-forecast--oil sands, shales spar for markets

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1967-09-01

    The relationship between possible developments of tar sands and oil shale deposits to the future of the oil and gas industry is examined. The Athabasca tar sands are estimated to contain 85 billion bbl of synthetic crude oil which can be exploited using currently available mining equipment and proven techniques. Another 240 billion bbl of synthetic crude are potentially available through in-situ extraction methods. Great Canadian Oil Sands Ltd. is using an extraction procedure which involves a surface mining operation, extraction and processing of the bitumen, and product shipments via a 266-mile pipeline. This procedure will be used to produce 45,000 bpd of synthetic crude and 300 ton per day of sulfur. Syncrude Canada Ltd. and Shell Canada Ltd. both have applied to the Alberta government for permission to operate 100,000-bpd operations. Syncrudes is a mining operation and Shell plans to use in-situ extraction. A number of companies have conducted research projects concerning shale oil recovery. The majority of these projects have been aimed at improving mining operations. In-situ retorting of kerogen and extraction of oil has also received consideration.

  1. Upgrading oil sands bitumen with FLUID COKING and FLEXICOKING technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamienski, P.; Phillips, G. [ExxonMobil Research and Engineering Co., Fairfax, VA (United States); McKnight, C.; Rumball, B. [Syncrude Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    This presentation described EMRE's Fluid Coking and Flexicoking technologies that are well suited for upgrading Alberta's heavy crudes and oil sands bitumen into pipelineable crudes or synthetic crudes, which can be further processed into transportation fuels. The Fluid Coking technology uses a fluidized bed reactor that thermally converts the heavy oils into light gases, liquids and coke. The metals and much of the sulphur are concentrated in the coke. Combustion of the coke provides process heat and the remaining coke is sold or stored on site for later recovery. Syncrude Canada currently operates 3 Fluid Coking units in northern Alberta. Flexicoking extends fluid coking by integrating air gasification to produce a carbon monoxide/hydrogen rich fuel gas that helps meet fuel and energy requirements of bitumen recovery and upgrading. The yields of light gas and liquids are similar to those of the Fluid Coking process. The partial combustion of coke provides the process heat for the thermal conversion and gasification steps. The remaining coke is gasified and desulphurized using Flexsorb technology. At present, there are 5 Flexicoking units in operation around the world. Interest in the technology is growing, particularly in locations with large demand for clean fuel or electricity. It is also suitable for steam assisted gravity drainage (SAGD) operations in Alberta. This presentation outlined the operating principles of the Flexicoking integrated gasification system and compared it with more expensive oxygen gasification processes. tabs., figs.

  2. Preliminary organic geochemical investigation of the Kimmeridgian oil shales. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P F.V.; Douglas, A G

    1980-01-01

    The Kimmeridge oil shales have assumed renewed significance because of their role as the prime source-rock for North Sea oil, and because of the need to assess their potential as a possible future supply of shale oil. This paper presents the results of a preliminary investigation of selected Kimmeridge oil shales. The immature shales are rich in organic matter with a dominantly marine type II kerogen showing evidence of algal contributions and a general sparsity of land-derived, higher plant detritus. Column chromatographic and capillary column gas chromatographic examinations of bitumens, pyrolysates and pyrolysis gas chromatograms of kerogen isolates show a predominance of aromatics in the hydrocarbon fractions, with bitumen n-alkane gas chromatograms showing evidence of algal-derived organic matter with n-alkane maxima in the n-C/sub 17/ region. Possible contributions from lower land plants are indicated by a second n-alkane maximum at n-C/sub 23/, whilst higher land plant detritus makes only a limited contribution. Reflected light microscopic examination of the shales also shows a general sparsity of recognizable land-derived woody or herbaceous material. Shale oil compositions reflect their pyrolytic origin, with unsaturates forming a large part of the aliphatic hydrocarbon fraction, together with significant amounts of isoprenoid alkanes; organic sulphur compounds are also prominent in the hydrocarbon fractions. Finally, considerable amounts of sterane and pentacyclic triterpane hydrocarbons have been found in the bitumen aliphatic hydrocarbon fractions, their distributions allowing Blackstone samples to be differentiated from those of lower stratigraphic levels.

  3. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  4. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  5. Directions in refining and upgrading of heavy oil and bitumen

    International Nuclear Information System (INIS)

    Dawson, B.; Parker, R. J.; Flint, L.

    1997-01-01

    The expansion of heavy oil transportation, marketing and refining facilities over the past two decades have been reviewed to show the strides that several Canadian refiners have taken to build up the facilities required to process synthetic crude oil (SCO). Key points made at a conference, convened by the National Centre for Upgrading Technology (NCUT), held in Edmonton during September 1997 to discuss current and future directions in the refining and marketing of heavy oil, bitumen and SCO, were summarized. Among the key points mentioned were: (1) the high entry barriers faced by centralized upgraders, (2) the advantages of integrating SCO or heavy oil production with downstream refining, (3) the stiff competition from Venezuela and Mexico that both SCO and heavy oil will face in the U.S. PADD II market, (4) the differences between Canadian refiners who have profited from hydrocracking and are better able to handle coker-based SCO, and American refiners who rely chiefly on catalytic cracking and are less able to process the highly aromatic SCO, and (5) the disproportionate cost in the upgrading process represented by the conversion of asphaltenes. Challenges and opportunities for key stakeholders, i.e. producers, refiners, marketers and technology licensors also received much attention at the Edmonton conference

  6. Triterpene alcohol isolation from oil shale.

    Science.gov (United States)

    Albrecht, P; Ourisson, G

    1969-03-14

    Isoarborinol, an intact pentacyclic unsaturated alcohol, was isolated from the Messel oil shale (about 50 x 106 years old). Complex organic substances, even those very sensitive to oxidation, reduction, or acidic conditions, can thus survive without alteration for long periods.

  7. On indicators of genetic relation between uranium-bearing bitumen with oil-like substances

    International Nuclear Information System (INIS)

    Pen'kov, V.F.

    1980-01-01

    Mineralogical indicators are considered which confirm that uranium-bearing (containing pitchblende) solid carbon substrates in the process of their formation had a stage of liquid-viscous state, and were sedimented in a close association with solid oil bitumens. The following cases are studied: 1) in concentrated macroextracts of uranium-bearing bitumens fine relicts of coloured oreless bitumens, less oxidated and carbonizated, are found sporadically in the passing light; 2) indicators of the development of black uranium-bearing bitumen along separate extracts or joint agregates of kerito- and asphalt-like substrates are observed in passing light within the veinlets of solid bitumens being in carbonate rocks; 3) linses of solid bitumens of fragmentary rock have zone structure according to the observation in passing light. The direct relation between black uranium-bearing bitumens and solid hydrocarbons which can form out of oil-like substances. Initial substances for them were defferent; resinous bitumens in the first case, kerito- and asphalt-like substances - in the second one, and paraffin substances - in the third one. It shows the nonselective character of the formation out of them of black uranium-bearing bitumens due to the processes of oxidation and carbonization [ru

  8. Preparation of hydraulic cement from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement from oil-shale or oil-shale residue is characterized in that, the oil-shale or shale-coke together with a slight amount of marl is burned under sintering conditions and the residue obtained is ground to a fine dust.

  9. Method of treating oil-bearing shale

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, N H

    1926-04-14

    The process is given for treating shale or other oil-bearing mineral which consists of the application of dry heat to render the oil soluble and subjects the product of the heat treatment to an operation to extract the soluble oils.

  10. Quantitative effects of the shale oil revolution

    International Nuclear Information System (INIS)

    Belu Mănescu, Cristiana; Nuño, Galo

    2015-01-01

    The aim of this paper is to analyze the impact of the so-called “shale oil revolution” on oil prices and economic growth. We employ a general equilibrium model of the world oil market in which Saudi Arabia is the dominant firm, with the rest of the producers as a competitive fringe. Our results suggest that most of the expected increase in US oil supply due to the shale oil revolution has already been incorporated into prices and that it will produce an additional increase of 0.2% in the GDP of oil importers in the period 2010–2018. We also employ the model to analyze the collapse in oil prices in the second half of 2014 and conclude that it was mainly due to positive unanticipated supply shocks. - Highlights: • We analyze the impact of the “shale oil revolution” on oil prices and economic growth. • We employ a general equilibrium model of the oil market in which Saudi Arabia is the dominant firm. • We find that most of the shale oil revolution is already priced in. • We also analyze the decline in oil prices in the second half of 2014. • We find that unanticipated supply shocks played the major role in the fall.

  11. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  12. Oil shale mines and their realizable production

    International Nuclear Information System (INIS)

    Habicht, K.

    1994-01-01

    The production of Estonian oil shale depends on its marketing opportunities. The realizable production is a function of the oil shale price, which in turn depends on production costs. The latter are dependent on which mines are producing oil shale and on the volume of production. The purpose of the present article is to analyze which mines should operate under various realizable production scenarios and what should be their annual output so that the total cost of oil shale production (including maintenance at idle mines) is minimized. This paper is also targeted at observing the change in the average production cost per ton of oil shale depending on the realizable output. The calculations are based on data for the first four months of 1993, as collected by N. Barabaner (Estonian Academy of Sciences, Institute of Economy). The data include the total production volume and production cost from the mines of RE 'Eesti Polevkivi' (State Enterprise 'Estonian Oil Shale'). They also project expenses from mine closings in case of conservation. The latter costs were allocated among mines in direct proportion to their respective number of employees. (author)

  13. Senate hearings whet interest in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Remirez, R

    1967-06-05

    Recent oil shale hearings by the U.S. Senate disclosed the proposed leasing rules for federal oil-shale lands. In addition, Oil Shale Corp. announced that the first commercial shale-oil processing plant would be on stream in 1970. Both these announcements are expected to create a stronger interest in what is possibly the greatest untapped natural wealth in the U.S. According to the leasing rules, development leases would involve the following phases: (1) the contractor would have a 10-yr limit to conduct a research and development program on the leased territory; and (2) upon completion of a successful research program, the Interior Department will make available to lease at least enough land to sustain commercial operation. The terms that applicants will have to meet are included in this report. At the Senate hearing, discussions ranged from opinions indicating that development of oil shale recovery was not immediately necessary to opinions urging rapid development. This report is concluded with a state-of-the-art review of some of the oil shale recovery processes.

  14. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  15. Analysis of the kerogen of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Quass, F W; Down, A L

    1939-01-01

    Comments are given on the method developed by F. W. Quass for reducing the amount of mineral matter present in certain coals and oil shales (torbanites). The method consisted of grinding oil shale with water in a porcelain ball mill in the presence of oil. The oil formed a paste with the carbonaceous material, and a greater portion of the mineral matter remained suspended in the water and was separated. Ultimate analyses of the enriched samples indicated that the percent of carbon was higher, the percent of hydrogen and oxygen was lower, and the ratio of carbon to hydrogen and carbon to oxygen increased in the enriched samples.

  16. Relation of peat to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Linker, S

    1924-01-01

    Samples of oil shale from the Green River formation and from Elko (Nev.), Brazil, Austria, and South Africa were examined, and several varieties of shale were found. Green River oil shale represents three of the more common types plus one less common type. These were: contorted shale with a velvety appearance, thin paper shale resembling the curled-up leaves of a book, massive black shale resembling a piece of rubber, and a less common type, which showed the bedding planes very clearly. The Elko (Nev.) shale was a light buff color; the shale from Brazil resembled a piece of petrified peat. When the shales were cut very thin, their colors ranged from yellow to reddish-brown. The composition, as seen under the microscope, was of well-preserved plant material such as spores, pollen grains, fragments of cell tissues, algae, fungi, bacteria, macerated organic residue, small pieces of resin, animal fossils, and translucent bodies. Oil shale was produced from organic material that accumulated in peat bogs, marshes, or swamps in fresh or salt waters. The organic matter was decomposed by bacterial action. Certain parts of the plants decayed more readily than others. Before lithification occurred, a chemical action took place that changed the softer tissues of the plant debris into a gel. This collodial matter penetrated and surrounded the more resistant fragments and preserved them from further decay. Certain bog waters contain a high percentage of humic acids in solution or collodial suspension and produce insoluble humates when neutralized. These humates are probably the so-called kerogen bodies.

  17. Effect of different sizes of palm oil fuel ash (POFA) towards physical properties of modified bitumen

    Science.gov (United States)

    Raja Zulkefli, R. N. A.; Yaacob, H.; Putra Jaya, R.; Warid, M. N. M.; Hassan, N.; Hainin, M. R.; Idham, M. K.

    2018-04-01

    In the past decades, numerous numbers of studies have been carried out to find ways enhancing properties of bitumen. Other than using polymer, agricultural waste such as palm oil fuel ash (POFA) is one of the waste products that can be used to modify bitumen. In this study, the physical and rheological properties of POFA modified bitumen were examined based on different grinding hour and different percentage of POFA. The bitumen were mixed with different percentages of POFA (0, 5 and 7%) which passed through 0.075 mm sieve and grinded at different period (1 and 4 hour). The samples were then tested and compared to conventional bitumen. From TEM results, POFA grinded at 1 hour have sizes between 3-7 µm while POFA grinded for 4 hours have finer sizes between 500 nm to 3 µm. The results showed that fineness of POFA affect properties of bitumen significantly. Decreasing in penetration value and decreasing in softening temperature indicates that the modified bitumen becomes harder than conventional bitumen. Modified bitumen gives best results when added with 7% POFA sizes of 500 nm to 3 µm compared to 3 to 7 µm.

  18. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  19. Naval Petroleum and Oil Shale Reserves

    International Nuclear Information System (INIS)

    1992-01-01

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming

  20. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  1. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  2. RADIATION CHEMICAL CONVERSION OF OIL DERIVED FROM OIL-BITUMEN ROCK

    Directory of Open Access Journals (Sweden)

    Lala Jabbarova

    2014-06-01

    Full Text Available The results of research in the radiation processing of synthetic oil derived from oil–bitumen rock of the Balakhany deposit in Azerbaijan are presented. The study has been conducted on a 60Co gamma-source at a dose rate of P = 0.5 Gy/s and various absorbed doses of D = 43–216 kGy. Samples of synthetic oil from natural bitumen rocks have been analyzed by chromatography, gas chromatography–mass spectrometry, and IR-spectroscopy, and their radiation resistance has been evaluated. The results of the study allow for both assessment of the feasibility of manufacturing petrochemicals for various applications by radiation processing and use of these materials for isolating radioactive sources to preclude their impact on the environment.

  3. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  4. Preparing hydraulic cement from oil-shale slag

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-19

    A process for the preparation of hydraulic cementing material from oil shale or oil-shale slag according to Patent 411,584 is characterized by the fact that the oil-shale slag is added to burnt marl, blast-furnace slag, and the like, whereupon the mixture is milled to dust in the known way.

  5. Proceedings of the 5. NCUT upgrading and refining conference 2009 : bitumen, synthetic crude oil and heavy oil

    International Nuclear Information System (INIS)

    2009-01-01

    This conference examined various upgrading technologies related to bitumen production. It provided a forum to review new developments to exploit oil sands bitumen and extra heavy crudes in terms of production, upgrading and environmental issues facing the industry. This 2009 conference focused on the many existing and emerging technical solutions that will help consolidate the position of the vast reserves in Western Canada as a sustainable source of crudes for North America and other selected markets. Some of the technical challenges that have an effect on upgrading include poor quality bitumen and heavy oils; bitumen and diluent blending; pipeline issues; desalting; fouling and corrosion; high costs; dependence on natural gas for energy; poor middle distillates; and greenhouse gas emissions. The sessions of the conference were entitled: heavy oil and bitumen upgrading technologies; secondary upgrading and refining technologies; bitumen transportation; and bitumen and heavy oil processability. The conference featured a total of 50 presentations and posters, of which 43 have been catalogued separately for inclusion in this database. tabs., figs

  6. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  7. Process of distillation of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, A L

    1968-08-16

    In an oil-shale distillation apparatus with a single retort, in which separate zones of preheating, distillation, combustion, and cooling are maintained, the operation is conducted at a presssure higher than the atmospheric pressure, preferably at a gage pressure between about 0.35 and 7.0 bars. This permits increasing the capacity of the installation.

  8. Production of petroleum bitumen by oxidation of heavy oil residue with sulfur

    Science.gov (United States)

    Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.

    2018-03-01

    In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).

  9. Oil shales of the Lothians, Part III, the chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: Vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  10. Oil shales of the Lothians. Part III. Chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  11. Method of concentrating oil shale by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, M

    1941-01-28

    A method is described of concentrating oil shale by flotation. It is characterized by grinding the shale to a grain size which, roughly speaking, is less than 0.06 mm. and more conveniently should be less than 0.05 mm., and followed by flotation. During the process the brown foam formed is separated as concentrate, while the black-brown to all-black foam is separated as a middle product, ground fine again, and thereafter floated once more. The patent contains five additional claims.

  12. Is Estonian oil shale beneficial in the future?

    International Nuclear Information System (INIS)

    Reinsalu, Enno

    1998-01-01

    Oil shale mining production reached its maximum level of 31.35·10 6 tonnes per year in 1980. After the eighties there was a steady decline in mining. The first scientific prognoses of the inescapable decrease in oil shale mining were published in 1988. According to this, the Estonian oil shale industry would vanish in the third decade of the next century. From the beginning of the nineties, the consumption and export of electricity have dropped in Estonia. The minimum level of oil shale mining was 13.5·10 6 tonnes per year. This occurred in 1994/1995. Some increase in consumption of electric power and oil shale began at the end of 1995. Oil shale processing began to increase gradually in 1993. Oil shale is the most important fuel in Estonia today. In 1997, oil shale provided 76% of Estonia's primary energy supply and accounted for 57% of its economic value. Oil shale is the cheapest fuel in Estonia. Nowadays, oil shale provides an essential part of the fuel supply in Estonia because it is considerably cheaper than other fuels. Oil shale costs EEK 12.16 per G J. At the same time, coal costs EEK 23.41 per G J and peat costs EEK 14.80 per G J (year 1997). There are three important customers of oil shale: the electric power company Eesti Energia, the oil processing company Kiviter and the factory Kunda Nordic Cement. In 1995, the power company utilised 81% of the oil shale mass and 77% of its heating value. The state energy policy inhibits increases in the oil shale price even though the mining infrastructure is decaying. Government price policies subside oil shale processing. The energy of oil shale processing is 1.9 times cheaper than the heating value of raw oil shale for power stations. It could be considered as a state subsidisation of oil and cement export at the expense of electricity. The subsidy assigned to oil processing was of EEK 124·10 6 and to the cement industry of EEK 8.4·10 6 in year 1997 (based on heating value). State regulation of prices and

  13. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis

    International Nuclear Information System (INIS)

    Chen, Bin; Han, Xiangxin; Li, Qingyou; Jiang, Xiumin

    2016-01-01

    Highlights: • Long-chain alkenes’ formation needs less energy than short ones. • The rupture tends to happen at the middle position of long alkyl chains first. • Cycloparaffins tend to be cracked rather than to be dehydrogenated. - Abstract: The essence of kerogen decomposition in retorting process is organic carbon conversion. FTIR and GC-MS methods were employed in analyzing the conversion process of “kerogen → bitumen” and “bitumenshale oil” in this paper. To achieve a deeper investigation of thermochemical transformation of organic carbon during the oil shale retorting, a set of physical models of carbon chains were constructed and analyzed using the transition state theory (TST) of quantum chemistry with gauss03 package. According to the results, the main reactions in the transformation of kerogen to bitumen are the re-integration of macromolecular structure and the breakup of oxygen-bridged bonds. Long alkyl chains containing functional groups decompose and transform to shorter alkanes, alkenes and aliphatic free radicals. The rupture of alkanes happens first at the middle position of long carbon chains. Alkyl free radicals further convert to alkanes, alkenes or aromatic rings. The alkanes take the highest content in shale oil.

  14. Apparatus for recovering oil from Posidonien shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-04-13

    Equipment for recovering oil from shale and the like, as well as the distilling of coal is characterized in that a number of chambers provided in a known way with upper and lower air supply are arranged open to the receiver of the oil vapors through removable domes which can be attached to the usual oil-vapor carry-off. Arrangement is characterized in that the domes are movable to the side, so that they can be interchangeably attached to the different chambers.

  15. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Kern, L

    1922-07-21

    In the distillation of shale and similar materials the shale is ground and briquetted and the briquettes are placed in a retort so that air passages are left between them, after which they are uniformly and slowly heated to at least 700/sup 0/C, the air passages facilitating the escape of the oil vapors, and the slow heating preventing fusion of the flux forming constituents. After the bitumen has been driven off, air is passed into the retort and heating continued to about 1050/sup 0/C, the result being a porous product suitable for insulating purposes or as a substitute for kieselguhr. The ground shale may be mixed prior to distillation with peat, sawdust, or the like, and with substances which yield acids, such as chlorides, more particularly magnesium chloride, the acids acting on the bitumen.

  16. Process for complete conversion of coal oils, shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, P

    1911-07-08

    A process is described for complete conversion of mineral coal oil, shale oil, and other similar oils in pitch, characterized by these oils being mixed with a nonvolatile substance with a boiling point on the average higher than the boiling point of the oil to be treated, and then being heated under pressure with the introduction of air, whereby the heating is interrupted if necessary on account of the known exothermic reaction and the conversion of the oil in the pitch or its distillation can be carried out without further heating.

  17. Organic material of the Messel oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, B.; Littke, R.

    1986-05-01

    According to chemism, the Messel oil shales belong to the Kerogen type II, formed by algae with additions of huminite detritus, i.e. residues of higher plants. This has been confirmed by the organo-petrographic studies reported. The oil shale deposits are characterised by their content of organic materials, the occurrence of a cream-coloured inertinite maceral, and of siderite. Hence, two facies can be clearly discriminated, the lower one containing relatively much organic material and the cream-coloured inertinite, but no siderite, and the upper facies exhibiting just the opposite. As the detritus is finely grained and quite uniform in content of huminite and silicate material, and only few spores and pollen have been found, there is reason to assume that the two facies represent sediments formed far from the border of the lake.

  18. Subsidence prediction in Estonia's oil shale mines

    International Nuclear Information System (INIS)

    Pastarus, J.R.; Toomik, A.

    2000-01-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs

  19. Coprocessing of biooils from biomass pyrolysis and bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Feng, M.; Daruwalla, S.; Daruwalla, D.D. [Southwest Research Inst., San Antonia, TX (United States). Dept. of Chemical Engineering

    2009-07-01

    Liquid biooils can be produced from the thermochemical treatment of biomass by pyrolysis. However, because of their poor volatility, high viscosity, coking, corrosiveness, and cold flow problems, biooils cannot be used directly as transportation fuel. Biooils can be upgraded into a liquid transportation fuel by hydrodeoxygenation with typical hydrotreating procedure with sulfided cobalt and molybdenum (CoMo) or nickel molybdenum (NiMo) as catalysts in the current oil refinery facilities. Coprocessing of biooils and bitumen from oil sand provides an opportunity to process the two feeds at the same time which can be achieved by injection of pyrolytic biooils and vacuum gas oil (VGO) from bitumen into a fluid catalytic cracking (FCC) unit if the acid number of the biooils is below 35. Typically the biooils are diluted to about 1.5 to 5 per cent in the VGO feed to be processed. For the blends of VGO and biooils, the biooils appear to facilitate the cracking of the VGO and shift yields toward light ends, lower light cycle oil. They also clarify slurry oil, which makes the process more cost effective. This paper briefly reviewed the typical methods for bitumen pretreatment and preliminary upgrading. The paper also discussed the current status of coprocessing of biooils and hydrocarbons, and suggested two possible processes for coprocessing bitumen with biooils and biopitches. The impact on the hydrodesulphurization process conversion of dibenzothiophenic compounds was also studied, showing no differences of the inhibiting effect between these molecules. 8 refs., 4 tabs., 6 figs.

  20. Isothermal decomposition of Baltic oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, A Ya

    1955-01-01

    Heating oil shale at 300/sup 0/ to 440/sup 0/C yields a primary tar. Longer heating, regardless of temperature, results in the formation of heavier tar fractions. Higher temperatures tend to increase the middle and high-boiling fractions and to increase the concentration of unsaturated hydrocarbons at the expense of saturated hydrocarbons. Phenols appear, even at lower heating temperatures, indicating that aromatic structures are present or generated during the process.

  1. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  2. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  3. Research and information needs for management of oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  4. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  5. Introduction to special section: China shale gas and shale oil plays

    Science.gov (United States)

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    In the last 10 years, the success of shale gas and shale oil productions as a result of technological advances in horizontal drilling, hydraulic fracturing and nanoscale reservoir characterization have revolutionized the energy landscape in the United States. Resource assessment by the China Ministry of Land and Resources in 2010 and 2012 and by the U.S. Energy Information Administration in 2011 and 2013 indicates China’s shale gas resource is the largest in the world and shale oil resource in China is also potentially significant. Inspired by the success in the United States, China looks forward to replicating the U.S. experience to produce shale gas to power its economy and reduce greenhouse gas emissions. By 2014, China had drilled 400 wells targeting marine, lacustrine, and coastal swamp transitional shales spanning in age from the Precambrian to Cenozoic in the last five years. So far, China is the leading country outside of North America in the viable production of shale gas, with very promising prospects for shale gas and shale oil development, from the Lower Silurian Longmaxi marine shale in Fuling in the southeastern Sichuan Basin. Geological investigations by government and academic institutions as well as exploration and production activities from industry indicate that the tectonic framework, depositional settings, and geomechanical properties of most of the Chinese shales are more complex than many of the producing marine shales in the United States. These differences limit the applicability of geologic analogues from North America for use in Chinese shale oil and gas resource assessments, exploration strategies, reservoir characterization, and determination of optimal hydraulic fracturing techniques. Understanding the unique features of the geology, shale oil and gas resource potential, and reservoir characteristics is crucial for sweet spot identification, hydraulic fracturing optimization, and reservoir performance prediction.

  6. A review on technologies for oil shale surface retort

    International Nuclear Information System (INIS)

    Pan, Y.; Zhang, X.; Liu, S.; Yang, S.A.; Ren, N.

    2012-01-01

    In recent years, with the shortage of oil resources and the continuous increase in oil prices, oil shale has seized much more attention. Oil shale is a kind of important unconventional oil and gas resources. Oil shale resources are plentiful according to the proven reserves in places. And shale oil is far richer than crude oil in the world. Technology processing can be divided into two categories: surface retorting and in-situ technology. The process and equipment of surface retorting are more mature, and are still up to now, the main way to produce shale oil from oil shale. According to the variations of the particle size, the surface retorting technologies of oil shale can be notified and classified into two categories such as lump shale process and particulate shale process. The lump shale processes introduced in this article include the Fushun retorting technology, the Kiviter technology and the Petrosix technology; the particulate processes include the Gloter technology, the LR technology, the Tosco-II technology, the ATP (Alberta Taciuk Process) technology and the Enefit-280 technology. After the thorough comparison of these technologies, we can notice that, this article aim is to show off that : the particulate process that is environmentally friendly, with its low cost and high economic returns characteristics, will be the major development trend; Combined technologies of surface retorting technology and other oil producing technology should be developed; the comprehensive utilization of oil shale should be considered during the development of surface retorting technology, meanwhile the process should be harmless to the environment. (author)

  7. 1952 : bitumen beginnings

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    In 1952, Imperial Oil used trains to deliver the first volumes of Alberta crude to the west coast. The Trans Mountain crude oil pipeline system was completed in 1953. Even in the early 1950s, the McMurray tar sands were recognized as the world's largest source of petroleum, containing an estimated 100 to 300 billion barrels of bitumen. A group of 10 companies had taken out permit rights on 250,000 acres in Alberta, just west of the Saskatchewan border. They began a core hole drilling program on the leases that are now part of Syncrude Canada and Suncor extraction projects. An experimental extraction operation was also carried out by Swedish Shale Oil Company to determine the economic feasibility of oil sands development. The bitumen extraction process used at the Bitumount plant involved heat. The Sun Oil Company applied for permits covering 100,000 acres on the east side of the Athabasca River, near the Bitumount plant. The leases are currently incorporated into several oilsands development projects, including Syncrude Canada's Aurora mine. At the time, Sun Oil also launched a core hole drilling program with plans to conduct further exploratory and development drilling. Other key events in 1952 included the Bonnie Glen discovery well that produced 240 barrels per day, and approval to export gas from the Peace River region. 1 tab., 1 fig

  8. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  9. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  10. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  11. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  12. Bitumen extraction from oil sands ore-water slurry using CaO (lime) and or ozone

    Energy Technology Data Exchange (ETDEWEB)

    Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada); Burkus, Z.; Moschopedis, S.E.; Ozum, B. [Apex Engineering Inc., Calvert City, KY (United States)

    2008-10-15

    Reductions in the surface and interfacial tensions in oil sands ore-water slurry systems improve bitumen extraction processes from oil sands ore structures and promote the attachment of air bubbles to liberated bitumen droplets. This study provided details of a non-caustic bitumen extraction process where oil sands slurries were conditioned by bitumen asphaltenes modified to act as surfactants. Oil sands ore-water slurry extraction processes were optimized by adding lime (CaO) and oxidizing bitumen asphaltenes with ozone (O{sub 3}). Experiments were conducted using oil sands ore and process water samples from Alberta. Extraction tests were performed to investigate the effects of various CaO and O{sub 3} dosages and treatment retention times on bitumen extraction efficiency on operating temperatures of 20, 35 and 50 degrees C. A Dean-Stark extraction apparatus was used to determine the amount of bitumen contained in the ore, froth, and in left-over tailings. Process water and release water chemistry were also monitored. Bitumen extraction efficiency was defined as the percentage of bitumen recovered in the resulting froth. Use of the slurries allowed high extraction efficiencies at a temperature of 35 degrees C. Energy consumption and carbon dioxide (CO{sub 2}) emissions were also reduced. The study showed that both additions resulted in significant improvements in bitumen extraction efficiency. Use of the technique also eliminated the accumulation of Na{sup +} ions in produced water. It was concluded that further tests are needed in order to commercialize the CaO and O{sub 3} based techniques. 14 refs., 1 tab., 4 figs.

  13. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia

    DEFF Research Database (Denmark)

    Petersen, Henrik I.; Schovsbo, Niels H.; Nielsen, Arne Thorshøj

    2013-01-01

    -like particles and graptolite fragments. The Middle Cambrian to Furongian (upper Cambrian) shales may contain sparse fragments of vase-shaped microfossils (VSM) that seem to follow the maturation trend of chitinozoans. In the present sample set, the reflectance of chitinozoans and VSM is comparable...

  14. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  15. Improving Asphalt Mixture Performance by Partially Replacing Bitumen with Waste Motor Oil and Elastomer Modifiers

    Directory of Open Access Journals (Sweden)

    Sara Fernandes

    2017-08-01

    Full Text Available The environmental concern about waste generation and the gradual decrease of oil reserves has led the way to finding new waste materials that may partially replace the bitumens used in the road paving industry. Used motor oil from vehicles is a waste product that could answer that demand, but it can also drastically reduce the viscosity, increasing the asphalt mixture’s rutting potential. Therefore, polymer modification should be used in order to avoid compromising the required performance of asphalt mixtures when higher amounts of waste motor oil are used. Thus, this study was aimed at assessing the performance of an asphalt binder/mixture obtained by replacing part of a paving grade bitumen (35/50 with 10% waste motor oil and 5% styrene-butadiene-styrene (SBS as an elastomer modifier. A comparison was also made with the results of a previous study using a blend of bio-oil from fast pyrolysis and ground tire rubber modifier as a partial substitute for usual PG64-22 bitumen. The asphalt binders were tested by means of Fourier infrared spectra and dynamic shear rheology, namely by assessing their continuous high-performance grade. Later, the water sensitivity, fatigue cracking resistance, dynamic modulus and rut resistance performance of the resulting asphalt mixtures was evaluated. It was concluded that the new binder studied in this work improves the asphalt mixture’s performance, making it an excellent solution for paving works.

  16. Market analysis of shale oil co-products. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  17. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  18. Study on geochemical occurrences of REE in Wangqing oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Tong; Wei, Yan-zhen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Sequential chemical extraction experiment (SCEE) and Float- sink experiment (FSE) have been employed on oil shale research from Wangqing, Jilin province China, in order to determine the binding forms of rare earth elements (REE) in oil shale. The REE contents were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). Wangqing oil shale was screened into specific gravity density level: <1.5g/cm{sup 3}, 1.5-1.6g/cm{sup 3}, 1.6-2.0g/cm{sup 3}, 2.0-2.4g/cm{sup 3}, >2.4g/cm{sup 3}. The mode of occurrences of rare earth elements in Wangqing oil shale was studied by six-step SCEE. FSE results show that REEs in Wangqing oil shale exist mainly in inorganic minerals and more in excluded mineral, while SCEE results show that REEs of Wangqing oil shale is primarily occurred in minerals, including carbonate, Fe-Mn oxide, sulfide, and Si-minerals. FSE and SCEE results fully illustrate excluded mineral is mainly mode of occurrence of REEs in Wangqing oil shale, whereas inorganic minerals and organic matter is not that. The REE distribution pattern curves of FSE density and SCEE fraction products are similar with that of raw oil shale. The REE in different densities products has a close connection with terrigenous clastic rock, and the supply of terrestrial material is stable.

  19. Oil shale energy and some alternatives in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    2002-01-01

    An academic lecture delivered by prof. Ilmar Oepik at the Thermal Engineering Department of Tallinn Technical University in Dec. 2000 to mark the 120 semesters since the cum laude diploma of a mechanical engineer discusses about ineffective utilization of oil shale and developing renewable resources as an alternative to oil shale

  20. Environmental control technology for shale oil wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  1. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  2. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  3. Market analysis of shale oil co-products. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  4. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  5. Some problems of oil shale retorting in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    1994-01-01

    Oil shale in Estonia will be competitive in the long term as a primary resource for power generating. The price of energy of Estonian oil shale is at present approximately 4 times lower than of coal. The price of electricity is anticipated to grow up to EEK 1.0/kWh in year 2020. The electricity price EEK 0.2/kWh at present in Estonia does not include capital costs needed for refurbishing of Estonian oil-shale-consuming power stations between the years 2000-2010. While all the prices and calculations of the enterprise are presented with no inflation adjustment, the other operation costs of oil shale retorting are anticipated for the prognosed period to remain at the present level: power consumption kWh 280/t crude oils and other operation costs (excluding labour, raw material and power consumption) EEK 100/t of oil

  6. Effects of pollution from oil shale mining in Estonia

    International Nuclear Information System (INIS)

    Vallner, L.; Sepp, K.

    1993-01-01

    The largest commercially exploited oil shale deposit in the world is in northeast Estonia. The accumulation of solid residues by oil shale mines and processing plants has resulted in numerous dumps and ash hills, which are polluting the environment. The groundwater and streams are highly polluted by sulphates, phenols and oil products. A dump hill of radioactive wastes poses a serious threat to the Baltic Sea. Local people suffer from diseases more often than in other regions of Estonia. (author)

  7. Experimental investigation of the role of rock fabric in gas generation and expulsion during thermal maturation: Anhydrous closed-system pyrolysis of a bitumen-rich Eagle Ford Shale

    Science.gov (United States)

    Shao, Deyong; Ellis, Geoffrey S.; Li, Yanfang; Zhang, Tongwei

    2018-01-01

    Gold-tube pyrolysis experiments were conducted on miniature core plugs and powdered rock from a bitumen-rich sample of Eagle Ford Shale to investigate the role of rock fabric in gas generation and expulsion during thermal maturation. The samples were isothermally heated at 130, 300, 310, 333, 367, 400, and 425 °C for 72 h under a confining pressure of 68.0 MPa, corresponding to six levels of induced thermal maturity: pre-oil generation (130 °C/72 h), incipient oil/bitumen generation (300 and 310 °C/72 h), early oil generation (333 °C/72 h), peak oil generation (367 °C/72 h), early oil cracking (400 °C/72 h), and late oil cracking (425 °C/72 h). Experimental results show that gas retention coupled with compositional fractionation occurs in the core plug experiments and varies as a function of thermal maturity. During the incipient oil/bitumen generation stage, yields of methane through pentane (C1–C5) from core plugs are significantly lower than those from rock powder, and gases from core plugs are enriched in methane. However, the differences in C1–C5 gas yield and composition decrease throughout the oil generation stage, and by the oil cracking stage no obvious compositional difference in C1–C5 gases exists. The decrease in the effect of rock fabric on gas yield and composition with increasing maturity is the result of an increase in gas expulsion efficiency. Pyrolysis of rock powder yields 4–16 times more CO2 compared to miniature core plugs, with δ13CCO2 values ranging from −2.9‰ to −0.6‰, likely due to carbonate decomposition accelerated by reactions with organic acids. Furthermore, lower yields of gaseous alkenes and H2 from core plug experiments sugge

  8. Analysis of oil shale and oil shale products for certain minor elements

    International Nuclear Information System (INIS)

    Dickman, P.T.; Purdy, M.; Doerges, J.E.; Ryan, V.A.; Poulson, R.E.

    1977-01-01

    The University of Wyoming was contracted by the Department of Energy's Laramie Energy Research Center (LERC) to develop rapid, inexpensive, and simple methods of quantitative and qualitative elemental analysis for products used and generated in the simulated in-situ retorting of oil shale. Alpha particle spectrometry was used to determine the radioisotope content of the aqueous retort products. Alpha particles are mono-energetic and the spectrometry method employed had very low background levels (1 count per 2000 seconds). These factors allow for both the quantitative and qualitative analysis of natural radioisotopes at the 1 ppm level. Sample preparation does not require any chemical treatment. Energy dispersive x-ray fluorescence (XRF) was used for the multi-element analysis of the retort products. The XRF, integrated with a mini-computer, allows rapid analysis of several elements in multiple samples. XRF samples require minimal amounts of preparation and analytical results are highly reproducible. This paper presents the methods developed and preliminary analytical results from oil shale by-products. Results from the analysis of oil shale rocks are not yet ready for presentation

  9. The extraction of bitumen from western oil sands

    International Nuclear Information System (INIS)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report

  10. Hydrogen retorting of oil shales from Eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, Ontario (Canada)); Synnott, J.; Boorman, R.S.; Salter, R.S.

    1984-04-01

    The liquid production potential of thirty oil shale samples from Eastern Canada was determined by Fischer assay retort and pyrochem retort. For all shales, the presence of hydrogen during pyrochem retorting resulted in a significant increase in oil yields compared to Fischer assay yields. Ten oil shale samples were selected for detailed evaluation in the pyrochem retort in the presence of nitrogen and hydrogen. Besides increasing yields, the presence of hydrogen lowered the specific gravity of liquid products and the content of sulphur but increased the content of nitrogen. This was attributed to the stabilization of precursors to nitrogen compounds which prevented their polymerization. (J.H.K.)

  11. Technical and economic framework for market enhancement of shale oil

    International Nuclear Information System (INIS)

    Bunger, J.W.; Devineni, A.V.

    1992-01-01

    By now it is apparent that production of syncrude from shale oil will not be economically viable as long as there is a stable and reasonably-priced supply of petroleum. The costs and financial risks of producing syncrude from oil shale, in the face of price constraints imposed by petroleum markets, are too high to warrant private investment. A possible solution is to develop commodity and specialty products from shale oil which command a high market value. In this fashion, the economics are partially uncoupled from petroleum and an opportunity for a greater price/cost differential is provided

  12. Beneficiation-hydroretort processing of US oil shales: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    This report has been divided into three volumes. Volume I describes the MRI beneficiation work. In addition, Volume I presents the results of joint beneficiation-hydroretorting studies and provides an economic analysis of the combined beneficiation-hydroretorting approach for processing Eastern oil shales. Volume II presents detailed results of hydroretorting tests made by HYCRUDE/IGT on raw and beneficiated oil shales prepared by MRI. Volume III comprises detailed engineering design drawings and supporting data developed by the Roberts and Schaefer Company, Engineers and Contractors, Salt Lake City, Utah, in support of the capital and operating costs for a conceptual beneficiation plant processing an Alabama oil shale.

  13. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  14. The composition of acids in bitumen and in products from saponification of kerogen: Investigation of their role as connecting kerogen and mineral matrix

    Energy Technology Data Exchange (ETDEWEB)

    Razvigorova, M.; Budinova, T.; Tsyntsarski, B.; Petrova, B. [Bulgarian Academy of Sciences, Institute of Organic Chemistry, 1113 Sofia, Acad. Bonchev Str., bl. 9 (Bulgaria); Ekinci, E. [ISIK University, Kumbaba Mevkii, 34980 Istanbul (Turkey); Atakul, H. [Istanbul Technical University, Department of Chemical Engineering, Maslak, 34469 Istanbul (Turkey)

    2008-11-03

    In order to obtain more information and to understand the nature of relation between organic and mineral matter in oil shales, the compositions of soluble bitumen fractions obtained by extraction from Bulgarian oil shales before and after demineralization with 10% HCl, concentrated HF, and a HF/HCl mixture were investigated. The four extracts were quantitatively examined by IR and {sup 1}H NMR spectroscopy. The investigation of isolated acidic material of the bitumen fractions showed that the fatty acids are present in bitumen fractions as free acids, esters and salts. The amount of free acids in bitumen is very small. The dominant part of bitumen acids is associated with mineral components of the oil shales as well as part of them is included in the mineral matrix, and can be separated only after deep demineralization. The kerogen of the oil shales, obtained after separation of the bitumen fractions and mineral components, was subjected to saponification in order to determine the amount of acids, bound as esters to the kerogen matrix. The major components found were n-carboxylic, {alpha},{omega}-di-carboxylic, and aromatic acids. The connection of kerogen with mineral components is accomplished by the participation of carboxylic and complicated ester bonds. Experimental data for the composition of bitumen acids give evidence that algae and terrestrial materials are initial sources in the formation of soluble organic matter of Bulgarian oil shale. (author)

  15. Heavy oil and bitumen : thinking caps on : researchers look at new and greener ways to get at the heavy oil prize

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2008-01-15

    New steam stimulation processes developed by the Alberta Ingenuity Centre for In Situ Energy were discussed. The J-well and gravity-assisted steam stimulation (JAGD) process uses a steam injection well located within the top few metres of a reservoir and a production well comprised of an inclined J-shaped well. JAGD is a transitional cold production-to-thermal-production technology. High pressure steam is used to heat and loosen the bitumen so that it flows to the producer well below. The configuration was designed to cut through mud and shale layers and is suitable for poor quality reservoirs. Simulations conducted in Athabasca reservoirs have demonstrated that JAGD uses approximately 75 per cent of the steam typically used in steam assisted gravity drainage (SAGD) processes. The iSAGD process was designed to reposition parallel wells in order to increase oil mobility. Researchers at the centre are also investigating a catalytic air-stream process called CASPAR which aims to upgrade oil from 10 degrees API to 16 degrees API within the reservoir. The process involves a mixture of heat, catalyst hydrogen, steam, air and water in the reservoir. The process leaves heavier ends of oil underground as well as fractions of greenhouse gases (GHGs). Research is also being conducted on expanding-solvent SAGD (ES-SAGD) a process that adds butane to steam in order to reduce water use. 3 figs.

  16. Prospects for the exploitation of Jordan oil shale

    International Nuclear Information System (INIS)

    Jaber, J.O; Probert, S.D.; Badr, O.

    1997-01-01

    Oil shale is the major indigenous fossil-fuel in Jordan: its predicted reserves, of about 5·10 1 0 tonnes, should be sufficient to satisfy Jordan's energy requirements for several centuries. Jordanian oil shale has, on an average, a gross calorific value of between 5 and 7 MJ/kg, an oil yield of ∼ 10 %, and a sulfur content of approximately 3 % by weight of the raw shale (i.e. 7 to 9 % of the organic matter content). Using the oil shale as the input fuel, a multipurpose production process (i.e. retorting, electricity generation, thermal water-desalination, chemicals production as well as mineral extraction) could achieve high utilisation-factors of both its chemical and energy potentials. In the long-term, oil shale is the only indigenous energy resource that could reduce Jordan's dependence on imported crude oil and hence ease the pressure on the national economy. The conversion of oil shale into a liquid or gaseous fuel and raw materials will be of decisive importance in attempts to secure the future of energy supplies. So national efforts devoted to the exploration for, and harnessing more economically, this energy resource, while limiting the associated adverse environmental impacts, should be accelerated. (author)

  17. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  18. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  19. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  20. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  1. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor

    2011-11-01

    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  2. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  3. Conceptual design and techno-economic evaluation of efficient oil shale refinery processes ingratiated with oil and gas products upgradation

    International Nuclear Information System (INIS)

    Yang, Qingchun; Qian, Yu; Zhou, Huairong; Yang, Siyu

    2016-01-01

    Highlights: • Three integrated oil shale refinery processes are proposed. • Techno-economic performance of three proposed processes is conducted and compared. • Competitiveness of the three proposed processes is investigated at different scenarios. • A development direction for oil shale refinery industry is suggested. - Abstract: Compared with the petrochemical industry, oil shale refinery industry is still relatively backward and has many shortcomings, such as poor quality of shale oil, inefficient utilization of retorting gas, and the unsatisfactory economic performance. In the situation of the low oil price, many oil shale refinery plants are forced to stop or cut production. Thus, oil shale industry is facing a severe problem. How to relieve monetary loss or turn it into profits? This paper proposes three integrated oil shale refinery processes: an integrated with hydrogen production from retorting gas, an integrated with hydrogenation of shale oil, and an integrated with hydrogen production and oil hydrogenation. The techno-economic performance of the three different processes is conducted and compared with that of a conventional oil shale process. Results show the exergy destruction ratio of the oil shale process integrated with hydrogen production from retorting gas is the least, 41.6%, followed by the oil shale process integrated with hydrogen production and oil hydrogenation, 45.9%. Furthermore, these two proposed processes have the best economic performance. Especially they can turn losses of the conventional oil shale process into profits at the situation of low oil price. The oil shale process integrated with hydrogen production from retorting gas is recommended to the oil shale plants which use the oil shale with oil content lower than 12.9%, while the plants using oil shale with oil content higher than 12.9% are better to select the oil shale process integrated with hydrogen production and oil hydrogenation.

  4. Robotics and automation for oil sands bitumen production and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2008-07-01

    This presentation examined technical challenges and commercial challenges related to robotics and automation processes in the mining and oil sands industries. The oil sands industry has on-going cost pressures. Challenges include the depths to which miners must travel, as well as problems related to equipment reliability and safety. Surface mines must operate in all weather conditions with a variety of complex systems. Barriers for new technologies include high capital and operating expenses. It has also proven difficult to integrate new technologies within established mining practices. However, automation has the potential to improve mineral processing, production, and maintenance processes. Step changes can be placed in locations that are hazardous or inaccessible. Automated sizing, material, and ventilation systems are can also be implemented as well as tele-operated equipment. Prototypes currently being developed include advanced systems for cutting; rock bolting; loose rock detection systems; lump size estimation; unstructured environment sensing; environment modelling; and automatic task execution. Enabling technologies are now being developed for excavation, haulage, material handling systems, mining and reclamation methods, and integrated control and reliability. tabs., figs.

  5. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    Science.gov (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  6. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  7. Chemical process for improved oil recovery from Bakken shale

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, Patrick; Tang, Hongxin; Lu, Zayne [ChemEOR Inc (United States); Tang, Youngchun [Power Environmental Energy Research Institute (United States)

    2011-07-01

    This paper presents the new chemically-improved oil recovery process (IOR) process for Bakken formation reservoirs. A custom surfactant agent can be used in standard hydraulic fracturing treatments in the Bakken to increase oil recovery. The rock formation consists of three members: the lower shale, middle dolostone and the upper shale. The dolostone was deposited as a coastal carbonate during shallower water and the shales were deposited in a relatively deep marine condition. With the widespread advent of horizontal well drilling and large-volume hydraulic fracturing treatments, production from the Bakken has become very active. The experimental results exhibited that specialized surfactant formulations will interact with this mixed oil-wet low permeability middle member to produce more oil. It was also observed that oil recovery by spontaneous imbibition was fast and significant. The best surfactant found in this study is compatible with a common fracture fluid system.

  8. Emission from Estonian oil shale power plants

    International Nuclear Information System (INIS)

    Aunela, L.; Haesaenen, E.; Kinnunen, V.; Larjava, K.; Mehtonen, A.; Salmikangas, T.; Leskelae, J.; Loosaar, J.

    1995-01-01

    Flue gas emissions from pulverized oil shale fired boilers of Estonian and Baltic power plants have been studied. The concentrations of NO x , CO, C x H y , HCI, Hf and polycyclic aromatic hydrocarbons in flue gases have been found to be relatively low and acceptable according to German emission limits, for instance. Desulphurization degree of flue gases by SO 2 absorption with ash has been found to vary defending on boiler type and operation conditions. In spite of significant sulphur capture (average values for different boilers in the range between 68 and 77 % of the initial sulphur content of the fuel), SO 2 concentrations in flue gases remain still very high (up to 2600 mg/m 3 , 10% O 2 ). Very high concentrations of particles, especially at Estonian Power Plant (up o 6250 mg/m 3 , 10 % 0 2 ) have been detected. Heavy metal emissions were too high by the reason of particle control insufficiency as well. Yearly emission estimates of this study support the former Estonian ones within the range of 10-15 %. (author)

  9. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  10. A photometric method for the estimation of the oil yield of oil shale

    Science.gov (United States)

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  11. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  12. Scoping of fusion-driven retorting of oil shale

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1979-11-01

    In the time frame beyond 2005, fusion reactors are likely to make their first appearance when the oil shale industry will probably be operating with 20% of the production derived from surface retorts operating on deep mined shale from in situ retorts and 80% from shale retorted within these in situ retorts using relatively fine shale uniformly rubblized by expensive mining methods. A process was developed where fusion reactors supply a 600 0 C mixture of nitrogen, carbon dioxide, and water vapor to both surface and in situ retorts. The in situ production is accomplished by inert gas retorting, without oxygen, avoiding the burning of oil released from the larger shale particles produced in a simpler mining method. These fusion reactor-heated gases retort the oil from four 50x50x200m in-situ rubble beds at high rate of 40m/d and high yield (i.e., 95% F.A.), which provided high return on investment around 20% for the syncrude selling at $20/bbl, or 30% if sold as $30/bbl for heating oil. The bed of 600 0 C retorted shale, or char, left behind was then burned by the admission of ambient air in order to recover all of the possible energy from the shale resource. The hot combustion gases, mostly nitrogen, carbon dioxide and water vapor are then heat-exchanged with fusion reactor blanket coolant flow to be sequentially introduced into the next rubble bed ready for retorting. The advantages of this fusion-driven retorting process concept are a cheaper mining method, high yield and higher production rate system, processing with shale grades down to 50 l/mg (12 gpt), improved resource recovery by complete char utilization and low energy losses by leaving behind a cold, spent bed

  13. Volatile characteristic of trace elements during microwave pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Kong, Ling-wen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Oil shale is abundant in the world. Today, the industry of oil shale retorting for producing shale oil is developing owing to high price of oil in the world. In order to study migratory behavior of trace elements in oil shale at microwave pyrolysis, tests were performed in laboratory with oil shale of the Huadian deposit of China at different powers from 400 to 700 W. The trace elements As, Cd, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, Ba, Co, Mn present in oil shale and shale char were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). By comparing the content of trace elements in oil shale and shale char, distribution characteristics of trace elements at retorting were studied. The overall trends of volatile ratio of trace elements are ascending with higher microwave power and higher than the conventional pyrolysis. The differences in the volatile ratio indicate that the trace elements investigated are bound with the oil shale kerogen and its mineral matter in different manner. So Float-sink experiments (FSE) were performed on oil shale. Huadian oil shale has more included mineral. The volatilization of organic matter is not the main reason for the volatilization of trace elements in oil shale. The trace elements combined with the mineral elements may be also certain volatility.

  14. Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands

    International Nuclear Information System (INIS)

    Nimana, Balwinder; Canter, Christina; Kumar, Amit

    2015-01-01

    Highlights: • A model to estimate energy consumption and GHG emissions in oil sands is presented. • The model is developed from fundamental engineering principles. • Cogeneration in the oil sands has the ability to offset GHG emissions. • The effect of key parameters is investigated through a sensitivity analysis. - Abstract: A model – FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in the Oil Sands) was developed to estimate project-specific energy consumption and greenhouse gas emissions (GHGs) in major recovery and extraction processes in the oil sands, namely surface mining and in situ production. This model estimates consumption of diesel (4.4–7.1 MJ/GJ of bitumen), natural gas (52.7–86.4 MJ/GJ of bitumen) and electricity (1.8–2.1 kW h/GJ of bitumen) as fuels in surface mining. The model also estimates the consumption of natural gas (123–462.7 MJ/GJ of bitumen) and electricity (1.2–3.5 kW h/GJ of bitumen) in steam assisted gravity drainage (SAGD), based on fundamental engineering principles. Cogeneration in the oil sands, with excess electricity exported to Alberta’s grid, was also explored. Natural gas consumption forms a major portion of the total energy consumption in surface mining and SAGD and thus is a main contributor to GHG emissions. Emissions in surface mining and SAGD range from 4.4 to 7.4 gCO 2 eq/MJ of bitumen and 8.0 to 34.0 gCO 2 eq/MJ of bitumen, respectively, representing a wide range of variability in oil sands projects. Depending upon the cogeneration technology and the efficiency of the process, emissions in oil sands recovery and extraction can be reduced by 16–25% in surface mining and 33–48% in SAGD. Further, a sensitivity analysis was performed to determine the effects of key parameters on the GHG emissions in surface mining and SAGD. Temperature and the consumption of warm water in surface mining and the steam-to-oil ratio (SOR) in SAGD are major parameters

  15. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  16. Canadian heavy crude oil and bitumen: Some new and old ideas

    International Nuclear Information System (INIS)

    Scott, G.R.

    1992-01-01

    Canadian conventional heavy oil and bitumen production has been steadily increasing over the last five years. This rise is forecast to continue under modest future crude oil pricing assumptions. During 1990 and 1991, the heavy oil market suffered from wide pricing differentials relative to light crude due to market reductions in Montreal and a feedstock shift at Uno-Ven's Chicago refinery, as well as an increase in the percentage of heavy in the world crude oil supply because of the Iraqi war. These have been offset by price-related bitumen production cuts and minor refinery capacity growth at other locations. The industry is poised for positive change with modest but stable prices and reduced light-heavy differentials caused, in part, by anticipated market expansion due to the June start-up of the Conco coker (50,000 bbl/d) in Montana and the anticipated late fall start up of the Bi-Provincial Upgrader in Saskatchewan (50,000 bbl/d blend). For the future, refinery upgrading and new grass roots refinery additions are suggested for western Canada. Associated transportation savings and condensate blending stock costs are two areas of advantage. Taken together with environmental problems in other densely populated market areas, it makes sense to build new heavy processing capacity near Edmonton but only after all current capacity is debottlenecked and inexpensive additions to current facilities are completed. New capacity will only be built when the heavy/light price differential on feed stock provides economic justification. 11 refs., 2 tabs

  17. Experimental optimization of catalytic process in-situ for heavy oil and bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.; Fishwick, R.P.; Leeke, G.A.; Wood, J. [Birmingham Univ., Birmingham (United Kingdom); Rigby, S.P.; Greaves, M. [Bath Univ., Bath (United Kingdom)

    2010-07-01

    Peak crude oil production is expected to occur in the second decade of this century, followed by a phase of permanent decline in conventional crude oil production. However, very large resources of heavy oil and bitumen exist throughout the world, most notably in Canada and Venezuela. The high viscosity and density of these non-conventional crude oils require more energy intensive operations for production and upgrading, and also for transportation. As such, they are more costly to extract. This paper described some of the technological innovations that are being considered to extract heavier oil supplies with reduced environmental impact. The toe-to-heel air injection (THAI) process and its catalytic added-on (CAPRI) process combine in-situ combustion with catalytic upgrading using an annular catalyst packed around a horizontal producer well. Results of an experimental study concerning optimization of catalyst type and operating conditions showed that CAPRI can effect further upgrading of partially upgraded THAI oil, with upgrading levels of viscosity and API gravity dependent upon temperature and flow rate. 20 refs., 8 tabs., 10 figs.

  18. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...

  19. Method of removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues

    Energy Technology Data Exchange (ETDEWEB)

    Palmquist, F T.E.

    1949-09-08

    A method is described for removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues by centrifuging in the presence of oil-dissolving and paraffin-precipitating solvents, by which the precipitated paraffin is made to pass through an indifferent auxiliary liquid, in which a removal of oil takes place, characterized in that as auxiliary liquid is used a liquid or mixture of liquids whose surface tension against the oil solution is sufficiently low for the paraffin to pass the layer of auxiliary liquid in the form of separate crystals.

  20. Method of recovering oils, etc. , from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1921-05-23

    In the low-temperature distillation of bituminous shales or similar bituminous materials with high ash content for recovery of oil etc., steam or inert gases are introduced from outside through gas taps arranged in a circle in the retort. By the method used steam is introduced simultaneously in levels higher and lower than the one in which the gaseous and vaporized products are removed from the shale material and in such a manner that the zone of oil formation chiefly will be between the two places mentioned where vapors or steam are introduced into the retort. The patent has one additional claim.

  1. Oil shale research and coordination. Progress report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R

    1981-01-01

    Purpose is to evaluate the environmental and health consequences of the release of toxic trace elements by an oil shale industry. Emphasis is on the five elements As, Mo, F, Se, and B. Results of four years' research are summarized and the research results over the past year are reported in this document. Reports by the task force are included as appendices, together with individual papers on various aspects of the subject topic. Separate abstracts were prepared for the eleven individual papers. A progress report on the IWG oil shale risk analysis is included at the end of this document. (DLC)

  2. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  3. Hydrotreating of heavy gas oil derived from Athabasca bitumen using NiMo/Al2O3 catalyst containing boron and phosphorus : effects of process conditions on the product selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemistry and Chemical Engineering; Adjaye, J. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    In response to concerns regarding the depletion of conventional oil reserves, there has been much interest in modifying the hydrotreating process for upgrading tar sands and shale oils for producing transportation fuels. Oil sand bitumens and their derived products have a high level of nitrogen which deactivates the catalysts used in fluid catalytic cracking and hydrocracking. A better catalyst is needed to efficiently remove nitrogen from oil sand-derived gas oils. In this study, a trickle-bed reactor containing NiMo/Al{sub 2}O{sub 3} catalysts with boron and phosphorous was used to remove the sulfur and nitrogen from heavy gas oils derived from Athabasca bitumen. The operating conditions of the reactor in terms of temperature and pressure were described. Sulfur and nitrogen conversion was found to increase substantially with the boron catalysts. Gasoline selectivity also increased with an increase in temperature. However, a change in operating conditions did not significantly affect the net content of the gas oil fraction. This study also compared the results of using either the boron or phosphorous catalyst.

  4. 1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10 9 m 3 (1000 x 10 9 bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region

  5. Analysis and characterization of trace elements in shale oil and shale oil products by instrumental neutron activation analysis. Master's thesis

    International Nuclear Information System (INIS)

    Shaw, P.

    1978-12-01

    Trace elements and their mobilization constitute an important consideration in the development of new fossil fuel technologies. Shale oil produced by in situ retorting of oil shale is an alternative fossil energy source. This study deals with the analysis of trace elements in various shale oil products using instrumental neutron activation analysis (INAA). INAA offers several advantages for those elements for which it is applicable. The greatest advantage is the lack of sample preparation prior to analysis, which greatly simplifies the process and prevents sample contamination. The elements for which analyses are reported in this study are aluminum, antimony, arsenic, bromine, cerium, chlorine, chromium, cobalt, copper, gallium, gold, iodine, iron, manganese, mercury, molybdenum, potassium, selenium, sodium, sulfur, tungsten, vanadium, and zinc

  6. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    Science.gov (United States)

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to

  7. Energy security of supply and oil shale resources

    International Nuclear Information System (INIS)

    Elkarmi, F.

    1994-01-01

    Jordan must utilize its huge oil shale deposits in order to increase domestic security of energy supply and benefit financially. Utilization processes will require large scale financial expenditures, beyond Jordan's means. Therefore, the BOT scheme seems to be the perfects solution. Since oil shale retorting technology will produce oil which can be traded to generate valuable foreign exchange revenues, it is more advantageous than direct burning technology which produces electricity limited to local consumption regardless of economics. Under the BOT scheme, the incentive, for the foreign sponsor is to return his investment via quantities of oil; for Jordan the aim is to meet local energy demand and acquire the plant infrastructure in the long term. Recent events in the more traditional oil fields of the region make such a project in Jordan more attractive. (author) 3 tabs. 2 figs

  8. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.

    1979-01-01

    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  9. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  10. Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity

    Science.gov (United States)

    Peluso, Enzo

    The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.

  11. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  12. IARC 1987 re-evaluation of carcinogenicity of mineral oils and bitumens - CONCAWE comments and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    Following the IARC response to CONCAWE comments on their 1987 re-evaluation of carcinogenicity of mineral oils and bitumens, CONCAWE decided that a revised version of Report No. 87/63 should be published in this report. The objective is to ensure that all who may be concerned with carcinogenicity classifications of these petroleum products, including national and international regulatory authorities, are aware of the reasons for the differences between the 1984 and 1987 IARC classifications and of CONCAWE's reservations concerning the revised classifications. This document reviews important differences between the new and previous evaluations, which are summarized in tabular form, and also indicates how the differences have occurred. In addition, it provides CONCAWE's interpretation of the available evidence, taking into account points discussed with IARC. 1 tab.

  13. Delayed coking studies on Athabasca bitumen and Cold Lake heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Govindhakannan, J.; Khulbe, C. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted the results of a study that quantified the delayed coking product yields of Athabasca bitumen and Cold Lake heavy oil. It also investigated the effect of operating pressure and feed rates on product yield and quality. The effect of pressure on conversion of sulphur and nitrogen was also examined. Experimental results revealed that the yield of liquid products decreases and the yields of coke and gases increase as the operating pressure increases. Sulphur and nitrogen conversions increase with increasing pressure. In this study, the yield and quality of delayed coking products were not influenced by the variation in feed rates. It was concluded that feed rate changes do not significantly affect the yield and quality of delayed coking products because the residual liquid and coke trapped in the coker drum reside there for a duration that approaches infinity, compared to much smaller average residence time for vapor-phase compounds. tabs., figs.

  14. Preconditioning methods to improve SAGD performance in heavy oil and bitumen reservoirs with variable oil phase viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Gates, I.D. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R.; Adams, J.J.; Snowdon, L.; Jiang, C. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., Calgary, AB (Canada). Dept. of Geoscience

    2008-10-15

    This study investigated preconditioning techniques for altering reservoir fluid properties prior to steam assisted gravity drainage (SAGD) recovery processes. Viscosity-reducing agents were distributed in mobile reservoir water. Simulations were conducted to demonstrate the method's ability to modify oil viscosity prior to steam injection. The study simulated the action of water soluble organic solvents that preferentially partitioned in the oil phase. The solvent was injected with water into the reservoir in a slow waterflood that did not displace oil from the near wellbore region. A reservoir simulation model was used to investigate the technique. Shu's correlation was used to establish a viscosity correlation for the bitumen and solvent mixtures. Solvent injection was modelled by converting the oil phase viscosity through time. Over the first 2 years, oil rates of the preconditioned case were double that of the non-preconditioned case study. However, after 11 years, the preconditioned case's rates declined below rates observed in the non-preconditioned case. The model demonstrated that oil viscosity distributions were significantly altered using the preconditioners. The majority of the most viscous oil surrounding the production well was significantly reduced. It was concluded that accelerated steam chamber growth provided faster access to lower viscosity materials at the top of the reservoir. 12 refs., 9 figs.

  15. 78 FR 18547 - Oil Shale Management-General

    Science.gov (United States)

    2013-03-27

    ... the future below the point at which oil shale production would be profitable (i.e., competitive with... competition, employment, investment, productivity, innovation, or on the ability of United States-based..., innovation, or on the ability of United States-based enterprises to compete with foreign- based enterprises...

  16. Process of preparing artificial stone from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-02-10

    A process for the preparation of artificial stone from oil-shale slag is characterized by the fact that the coarse part of the ground slag before working into artificial stone is saturated with water and serves as filler, while the fine part is milled to dust and forms the binding material.

  17. Rapid estimation of organic nitrogen in oil shale wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Harris, G.J.; Daughton, C.G.

    1984-03-01

    Many of the characteristics of oil shale process wastewaters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogen heterocycles and aromatic amines. For the frequent performance assessment of waste treatment procsses designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential.

  18. Apparatus for utilizing liquid hydrocarbons such as shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, M

    1868-02-29

    The hydrocarbon liquids such as petroleum, shale oil, naphtha, cresol, coal tar, or other mineral, animal or vegetable oil are placed in a heater or special generator analogous to ordinary generators for vapors and to which the name vaporizer has been given in the description. This vaporizer is furnished with all kinds of safety devices, such as valves, manometer, float indicating the level, standard stopcock, etc., and is heated by the combustion of the vapors produced by it.

  19. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  20. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  1. Distribution of clay minerals in the process streams produced by the extraction of bitumen from Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, H.A.W.; Etsell, T.H.; Ivey, D.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Omotoso, O. [Natural Resources Canada, Devon, AB (Canada). CETC

    2009-02-15

    The clay minerals present in the oil sands were studied with particular reference to how they are partitioned in bitumen ore during the extraction process. Bitumen production from surface-mined oil sands accounts for nearly two-thirds of the total bitumen production in Alberta. Every cubic meter of mined ore results in 1.3 cubic meters of mature fine tailings (MFT). The characteristic differences between the clay minerals that report to the froth versus the tailings streams were also examined to determine which minerals could impact different unit operations in the bitumen extraction process. X-ray diffraction and random powder samples were used to quantify the clay minerals. Particle size distribution and clay activity balances were also conducted. The degree of partitioning during the conditioning and flotation stages in a batch extractor was determined by the surface properties of the clay minerals. The water-continuous tailings stream was separated into fine and coarse tailings fractions through sedimentation. The study showed that bitumen-clay interactions may be dominated by kaolinite or iron oxides. Clays are responsible for the poor settling behaviour of MFTs. The clay minerals present in the oil sands include illite, illite-smectite, kaolinite, kaolinite-smectite, and chlorite. The close proximity of the tailings ponds to the Athabasca River and volatile organic compounds (VOCs) emission require that the ponds be reclaimed to a natural landscape before mine closure. In addition to its impact on fine tailings reclamation, clay mineralogy plays a role in extraction froth flotation and emulsion stability during froth treatment. The mineralogy of the froth solids was found to be different from the mineralogy of the middlings and tailings solids. 39 refs., 6 tabs., 6 figs.

  2. Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2011-01-01

    Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm 3 H 2 /h) and 360 kW (90 Nm 3 H 2 /h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H 2 and $7.55/kg H 2 . The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H 2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H 2 at base case conditions. The life cycle CO 2 emissions is 6.35 kg CO 2 /kg H 2 including hydrogen delivery to the upgrader via compressed gas trucks. -- Highlights: ► This study involves development of a data intensive techno-economic model for estimation cost of hydrogen production from wind energy. ► Wind energy based electricity is used for electrolysis to produce hydrogen in Western Canada for bitumen upgrading for oil sands. ► Several scenarios were developed to study the electricity generation and hydrogen production from wind energy. ► The cost of production of hydrogen is significantly higher than natural based hydrogen in Western Canada.

  3. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  4. Anvil Points oil shale tailings management in Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, R.; Galli LaBerge, C.; McClurg, J. [Ecology and Environment Inc., Lancaster, NY (United States); Walsh Integrated, Lachine, PQ (Canada)

    2009-07-01

    This presentation summarized the oil shale tailings management program used at the Anvil Points mining site in Colorado. Decommissioning and reclamation of the site occurred between 1984 and 1986. The geology of the region is comprised of Tertiary bedrock sedimentary formations and Quaternary formations on the surface. Oil shales mined at the facility are from the Eocene Green River formation. While the site lies within big game winter ranges, the areas around the shale pile supports are not a significant nesting or feeding habitat for wildlife. No sensitive plants are located on the waste shale pile. The program currently includes revegetation test plots and the reclamation of an area where heating oil storage tanks were located. The dumping area is currently being monitored, and geophysical surveys are being conducted. Documents produced by mining activities are also being reviewed. Results of the study to date have indicated the presence of asbestos-containing materials, significant physical hazards, and significant cultural resources. An engineering evaluation and cost analysis has demonstrated that arsenic, beryllium, and iron exceed established soil screening levels. It was concluded that off-site removal actions will be conducted to prevent or reduce human exposure to the metals of concern. tabs., figs.

  5. Future strategies for oil shale development as a new indigenous energy resource in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Tarawneh, T.

    2011-01-01

    Indigenous oil shale deposits could satisfy Jordan's demand for liquid and gaseous fuels as well as electricity for many centuries. Markets also exist for raw and retorted oil shale, spent shale, and for sulfur recovered during the upgrading and refining of crude shale oil. Although the potential benefits of oil shale development are substantial, complex and expensive facilities would be required, and these have serious economic, environmental, and social implications for the Kingdom and its people. In January 2006, the United States Trade and Development Agency (USTDA) awarded a grant to the Jordanian Ministry of Planning and International Cooperation to support the analysis of current oil shale processing technologies and the application of international expertise to the development of a oil shale industry in Jordan. The goal of the technical assistance project was to help the Government of Jordan (GoJ) establish short and long-term strategies for oil shale development and to facilitate the commercial production of shale oil in the country. This paper discusses the results of the project. The Kingdom's current energy situation and its previous work on oil shale are summarized, and the incentives and restraints on oil shale commercialization are described. Impediments to development are identified, and possible governmental responses are assessed. (author)

  6. Simultaneous caving and surface restoration system for oil shale mining

    Energy Technology Data Exchange (ETDEWEB)

    Allsman, P.T.

    1968-10-01

    A modified caving method is introduced for mining oil shale and simultaneous restoration of the land surface by return of spent shale onto the subsided area. Other methods have been designed to mine the relatively thin richer beds occurring near outcrops in the Piceance Creek Basin of NW. Colorado. Since the discovery of the much thicker beds in the N.-central part of the basin, some attention has focused on in situ and open-pit methods of recovery. Although caving has been recognized as a possible means of mining shale, most people have been skeptical of its success. This stems from the unknown and salient factors of cavability and size of broken rock with caving. Wisdom would seem to dictate that serious evaluation of the caving method be made along with the other methods.

  7. Method of recovering oil from alum shales. [heating by electric currents

    Energy Technology Data Exchange (ETDEWEB)

    Wennerstrom, K G

    1918-06-04

    A method of treating alum shale and other bituminous shales in order to extract oil et cetera, is characterized by bringing the shale to a temperature at which it melts, and at which the necessary amount of heat is transferred to the molten shale to be distilled. The patent claim is characterized by heating the shale by means of electric current. The patent has one additional claim.

  8. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  9. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  10. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  11. Method of refining mineral and shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    1950-12-06

    A method is described for refining mineral oils, shale oils, tar oil. The oil is preferably treated with concentrated sulphuric acid, of not less than 90% by weight concentration or with chloro-sulphonic acid in order to extract the more reactive components of the oil. The solution (extract phase) is separated from the treated oil (raffinate phase) by centrifuging, characterised by centrifugally separating the extract phase from the raffinate phase before any noticeable chemical reaction with subsequent solution of acid reaction products in the raffinate phase has taken place. The acid remaining in the raffinate phase is allowed to react chemically with the more reactive constituents. The sludge formed is removed from the raffinate phase by centrifuging.

  12. The use of bitumen for storing radioactive waste resulting from oil industry containing Ra-226

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Abdulhafiz, M.; Salman, M.

    2009-12-01

    The releases of radon gas from NORM waste contained in two different forms of bitumen samples have been investigated. The artificial NORM source samples were made by mixing NORM with bitumen. The sources surrounded by different thickness of bitumen layers to prepare the first form of samples. While, the NORM powder was put inside bitumen samples prepared as a cylindrical shape with different thickness. The results showed that the release of radon from the bitumen samples was different in case of sources and powder. The results illustrated that the release of radon from the bitumen samples was decrees linearly with the samples thicknesses (in both cases source and powder). On the other hand, the release from the cement samples was proportional inversely with the different thickness (for comparison). In addition, many other supporting experiments were performed, as γ-ray spectroscopy measurements showed that the cement is better than the bitumen in shielding process, while the bitumen is better than cement to prevent the releases of radon. (authors)

  13. Chemistry of the Estonian oil-shale kukersite

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N

    1931-01-01

    Estonian oil shale is one of the oldest and richest oil shales in the world. The deposits occur in the Middle-Ordovician strata having a total thickness of 2.2 meters. The ultimate composition of the kerogen varied within the following limits: carbon 76.5 to 76.7 percent, hydrogen 9.1 to 9.2 percent, nitrogen 0.2 to 0.4 percent, sulfur 1.6 to 2.2 percent, chlorine 0.5 to 0.7 percent, and oxygen (by difference) 11.2 to 12.2 percent. The composition of kukersite kerogen corresponds nearly to the empirical formula (C/sub 8/H/sub 11/O)n. One of the most significant differences between kukersite, coal, and lignite is the amount of alkali-soluble substances present. Kukersite has almost no humic acids. Samples of kukersite were brominated and chlorinated. The halogenated shales showed a solubility in absolute alcohol of 26 percent compared to only 0.31 percent for untreated shale. Enriched shale (4.5 percent ash) did not react with chlorine as much as did raw shale. Apparently the mineral matter acted catalytically during chlorination. The amount of soluble extract obtained by solvent treatment of kukersite ranged from 0.22 percent with chloroform to 2.20 percent with tetrachloroethane. Heat was the most effective agent for the depolymerization of kukersite kerogen. The percentage loss of weight due to drying in air was much less than in the presence of carbon dioxide. The results indicated that on drying in air, the powdered shale loses water and a volatile substance, probably the oxides of carbon, up to 80/sup 0/C. Carbon dioxide was also found to be present in the gases eliminated at the temperature of initial decomposition. Pulverized shale, heated for 6 hours at 220/sup 0/C, lost 2.6 percent of its weight; its solubility in carbon disulfide was 2.11 percent. Kukersite kerogen was formed from compounds that were resistent to bacteriological decomposition, such as waxes and resins, plus decomposition products of proteins, cellulose, and putrefaction products of

  14. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  15. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  16. Paraho oil shale module. Site development plan, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  17. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  18. Process for recovering oil from shale and other bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    1918-08-23

    A process for recovering oil from shale and other bituminous minerals in rotary retorts heated from outside and flushed with water vapor or other oxygen-free gases is characterized by the fact that all kinds of minerals are carbonized, and that during the carbonization process the temperature of the superheated steam or gases is about 50/sup 0/ C higher than the temperature of the carbonized mineral.

  19. Revegetation research on oil shale lands in the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.; Cook, C.W.

    1981-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  20. Geology of the oil shales of Messel near Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G.

    1966-07-25

    The oil shale, with a thickness of nearly 190 m, represents the middle part of the strata of Messel. Freshly mined, it consists of about 40% water and about 25% organic matter. The rest are clay minerals, chiefly montmorillonite. Kaolinite, messelite, vivianite, pyrites, markasite, siderite, and gypsum occur in small quantities. The organic components are kerogens which are extraordinary rich in oxygen. They are tied adsorptively to montmorillonite. The bitumina are supposed to be chiefly derived from algae, in a smaller extent from fungi and pollen. Plants as well as the large ganoid fishes and the crocodiles indicate a tropical to subtropical climate and a larger extent of the former water system. The oil shales of Messel are preserved in a tectonic graben that is 1,000 m long and up to 700 m wide. This graben is divided into 3 depressions. Both depressions are close together in the south and diverge northward. The ground water lifted in the open mining shows high degrees of total hardness and unusual high sulfate and phosphate contents. These matters can be derived from the weathering events in the exposed oil shale. (133 refs.)

  1. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  2. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  3. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R.; Canale, A.; Bouza, A. [Departamento de Termodinamica y Fenomenos de Transporte. Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Sanchez, Y. [Departamento de Procesos y Sistemas. Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2012-01-15

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H{sub 2}), hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H{sub 2}/feed ratio and the inhibiting effect of H{sub 2}S on HDS and NH{sub 3} on HDN. (author)

  4. Deep hydrotreating of middle distillates from crude and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Landau, M.V. [The Blechner Center for Industrial Catalysis and Process Development, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    1997-06-20

    The potential scientific and technological solutions to the problems that appear as a result of shifting the hydrotreating of crude oil middle distillates and shale oils from the `normal` to the `deep` mode are considered on the basis of the reactivities and transformation routes of the least-reactive sulfur-, nitrogen-, and oxygen-containing compounds. The efficiency of selecting the optimal feedstock, increasing the process severity, improving the catalysts activity, and using alternative catalytic routes are compared, taking into account the specific issues related to deep hydrodesulfurization/hydrodenitrogenation/hydrodeoxygenation, i.e., chemical aspects, kinetics and catalysts

  5. Characteristic of oil-shale in Achibo-Sombo area of Yayu coalfield in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Tang, Z. [Exploration Institute of Shandong Coal Geology Bureau, Taian (China)

    2001-02-01

    On the basis of introducing the location, condition of strata, and the development of the coal-bearing strata of Achibo-Sombo area of Yayu coal field in Ethiopia, the distributing regularities, thickness, physical and chemical characteristics of the oil-shale in this area which are of industrial utilization are studied. And the reserves of the oil-shale has been calculated. The various aspects of industrial utilization of oil-shale are outlined. 2 figs., 3 tabs.

  6. Technical considerations for Plowshare applications to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, David B [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States); Bray, Bruce G [CER Geonuclear Corporation, Las Vegas, NV (United States); Sohns, Harold W [U. S. Bureau of Mines, Laramie, WY (United States)

    1970-05-15

    Nuclear explosions have been proposed for use in the recovery of oil from deep oil shale deposits. Before commercial feasibility can be established, a variety of technical problems must be examined. Some of these are related to nuclear explosion effects, others to the recovery of oil from the broken rock. Among the primary areas of interest are fracturing, chimney collapse, rubble size distribution, radioactivity, and retorting methods and variables. To test the concept, nuclear explosion experiments will be needed. One such experiment. Project Bronco, has been designed in detail, and is used here to illustrate a possible direction of development. The design is based on the following objectives: to evaluate the overall feasibility of nuclear breaking, followed by in situ retorting; to investigate the gross physical effects of a nuclear explosion in oil shale, and to assess the role of radioactivities in the production of oil by in situ retorting. The experimental plan provides for the accomplishment of these objectives by appropriate preshot studies, a postshot examination of explosion effects, and experimental retorting of the nuclear chimney. (author)

  7. Technical considerations for Plowshare applications to oil shale

    International Nuclear Information System (INIS)

    Lombard, David B.; Bray, Bruce G.; Sohns, Harold W.

    1970-01-01

    Nuclear explosions have been proposed for use in the recovery of oil from deep oil shale deposits. Before commercial feasibility can be established, a variety of technical problems must be examined. Some of these are related to nuclear explosion effects, others to the recovery of oil from the broken rock. Among the primary areas of interest are fracturing, chimney collapse, rubble size distribution, radioactivity, and retorting methods and variables. To test the concept, nuclear explosion experiments will be needed. One such experiment. Project Bronco, has been designed in detail, and is used here to illustrate a possible direction of development. The design is based on the following objectives: to evaluate the overall feasibility of nuclear breaking, followed by in situ retorting; to investigate the gross physical effects of a nuclear explosion in oil shale, and to assess the role of radioactivities in the production of oil by in situ retorting. The experimental plan provides for the accomplishment of these objectives by appropriate preshot studies, a postshot examination of explosion effects, and experimental retorting of the nuclear chimney. (author)

  8. Bats of the Colorado oil shale region

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.B. Jr.; Caire, W.; Wilhelm, D.E.

    1984-10-31

    New records for Myotis californicus, M. evotis, M. leibii, M. lucifugus, M. thysanodes, M. volans, M. yumanensis, Lasionycteris noctivagans, Pipistrellus hesperus, Eptesicus fuscus, Lasiurus cinereus, Plecotus townsendii, and Antrozous pallidus and their habitat occurrence in northwestern Colorado are reported. Mortality of 27 bats of six species trapped in an oil sludge pit is described. 7 references.

  9. Treating shale oil to obtain sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, H

    1921-01-21

    The process shows as its principal characteristics: (1) treating the oil with chlorsulfonic acid at a temperature of about 100/sup 0/C; (2) the transformation of the sulfonic acid obtained into salts; (3) as new industrial products, the sulfonates obtained and their industrial application as disinfectants for hides and wood.

  10. Maceral and geochemical characteristics of oil shale 2 from the Huangxian Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhuang; Lin, Mingyue; Li, Haimei; Zhang, Hongjian; Li, Shifeng; Jin, Kankun [Hebei Architectural Science and Technology Inst., Handan, Hebei (China)

    2001-07-01

    Five samples of Oil Shale 2 from the Huangxian Basin have been analysed by coal petrographic and geochemical methods in order to study its formation environment. Higher alginite ratios and hopanes in Oil Shale 2 indicate a lower plants and anoxic environment. Two ternary diagrams of 'facies diagnostic' macerals and biomarkers were used to interpret the depositional environments of organic matter in Oil Shale 2. In both diagrams, Oil Shale 2 plots in a lower plant zone, and was deposited in a deeper water environment. (Author)

  11. Depositional Environment of the Sangkarewang Oil Shale, Ombilin Basin, Indonesia

    Directory of Open Access Journals (Sweden)

    Komang Anggayana

    2014-12-01

    Full Text Available Five samples from 56 m long drill core of lacustrine Sangkarewang oil shale have been studied by means of petrography and organic geochemistry to investigate the organic matter composition and depositional environments of the shale. The organic matter consists of abundant lamalginite (30%, v/v and very limited amount of vitrinite, suggesting aquatic depositional environments with minor terrestrial influence. Organic geochemical analysis exhibits the dominance of pristane, phytane, and generally n-alkanes compounds. These compounds might originate mostly from aquatic photosynthetic organisms. The oil shale was likely deposited in anoxic lake environments, suggested by the presence of framboidal pyrite (6%, v/v and preserved organic matter with total organic carbon (TOC about 4.9%. The pristane/phytane ratio is relatively high about 3.9 and thought as source sensitive rather than redox sensitive. Hopanoid and aryl isoprenoid compounds are present in minor amounts. The latter compounds are interpreted to be derived from green sulfur bacteria dwelling in anoxic and the presence of H2S in bottom water.

  12. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  13. Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T., E-mail: tdebenest@yahoo.fr [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Turcotte, P. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagne, F., E-mail: francois.gagne@ec.gc.ca [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagnon, C.; Blaise, C. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada)

    2012-05-15

    The exploitation of Athabasca oil sands deposits in northern Alberta has known an intense development in recent years. This development has raised concern about the ecotoxicological risk of such industrial activities adjacent to the Athabasca River. Indeed, bitumen extraction generated large amounts of oil sands process-affected water (OSPW) which are discharged in tailing ponds in the Athabasca River watershed. This study sought to evaluate and compare the toxicity of OSPW and oil sands lixiviate water (OSLW) with a baseline (oil sands exposed to water; OSW) on a microalgae, Pseudokirchneriella subcapitata, at different concentrations (1.9, 5.5, 12.25, 25 and 37.5%, v/v). Chemical analyses of water-soluble contaminants showed that OSPW and OSLW were enriched in different elements such as vanadium (enrichment factor, EF = 66 and 12, respectively), aluminum (EF = 64 and 15, respectively), iron (EF = 52.5 and 17.1, respectively) and chromium (39 and 10, respectively). The toxicity of OSPW on cells with optimal intracellular esterase activity and chlorophyll autofluorescence (viable cells) (72 h-IC 50% < 1.9%) was 20 times higher than the one of OSW (72 h-IC 50% > 37.5%, v/v). OSLW was 4.4 times less toxic (IC 50% = 8.5%, v/v) than OSPW and 4.5 times more toxic than OSW. The inhibition of viable cell growth was significantly and highly correlated (<-0.7) with the increase of arsenic, beryllium, chromium, copper, lead, molybdenum and vanadium concentrations. The specific photosynthetic responses studied with JIP-test (rapid and polyphasic chlorophyll a fluorescence emission) showed a stimulation of the different functional parameters (efficiency of PSII to absorb energy from photons, size of effective PSII antenna and vitality of photosynthetic apparatus for energy conversion) in cultures exposed to OSPW and OSLW. To our knowledge, our study highlights the first evidence of physiological effects of OSPW and OSLW on microalgae.

  14. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  15. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  16. Characterization of some Jordanian oil shales by pyrolysis gas chromatography

    International Nuclear Information System (INIS)

    Jaradat, Q. M.

    1995-01-01

    Gas chromatography with flame ionization detector (GC-FID) was used to study pyrolysis of some Jordanian oil shale samples. Three sampls of different altitudes from El-Lajjun were studied. Pyrograms of solid sampls were studied at different temperature profiles. Solid-liquid extraction with water, methanol, or hexane allowed extraction of organics of different polarity. Hexane showed the highest extraction efficiency. Reproducibility of the pyrograms of the solid sample was evalualted. Relative standard deviation was 7.56%. (author). 7 refs., 8 figs

  17. Suggestive evidence on the origin of petroleum and oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J C

    1923-01-01

    Oil shales and coals originated in fresh water muds that contained large amounts of spores, algae, and other nonwoody vegetable material. This organic debris was partly decomposed by bacterial action but not enough to increase the percentage of fats by removal of other plant substances. By contrast, petroleum was formed by thorough decomposition of nonfatty material in salt water. The main difference in bacterial action was due to differences in the saline content of the water in which the organic material was deposited. In fresh water, the amount of decay was small, whereas in salt water it was nearly complete.

  18. Shale oil and gas: technical and environmental files

    International Nuclear Information System (INIS)

    Schilansky, Jean-Louis; Quehen, Audrey; Appert, Olivier; Aurengo, Andre; Candel, Sebastien; Chanin, Marie-Lise; Geoffron, Patrice; Goffe, Bruno; Marsily, Ghislain de; Pouzet, Andre; Schnapper, Dominique; Tardieu, Bernard

    2016-01-01

    This publication proposes information regarding technical and environmental issues related to shale oil and gas extraction and exploitation. It addresses various topics: hydraulic fracturing (techniques, quantity assessment, regulation), water consumption and management (problematic, quantity assessment, regulation), additives and management of production fluids (a necessary taking into account, quantity assessment, regulation), surface aquifers (surface sheets and exploration activity, quantity assessment, regulation), activity footprint (ground footprint and impact on landscape, quantity assessment, regulation), end of activity and site future (return to the initial condition, quantity assessment, regulation), seismicity (manageable seismic risks, quantity assessment, regulations), greenhouse gas emissions (development, quantity assessment, regulation), issues related to health aspects (general and specific risks, epidemiological studies)

  19. Spectroscopic and chromatographic analysis of oil from an oil shale flash pyrolysis unit

    Energy Technology Data Exchange (ETDEWEB)

    Khraisha, V.H.; Irqsousi, N.A. [University of Jordan, Amman (Jordan). Dept. of Chemical Engineering; Shabib, I.M. [Applied Science Univ., Amman (Jordan). Dept. of Chemistry

    2003-01-01

    In this investigation, spectroscopic (FT-IR, UV-Vis, {sup 1}H NMR) and chromatographic (GC) techniques were used to analyze two Jordanian shale oils, Sultani and El-Lajjun. The oils were extracted at different pyrolysis temperatures (400-500{sup o}C) using a fluidized bed reactor. The spectroscopic and chromatographic analyses show that the variation of pyrolysis temperature has no significant effect on the composition of the produced oil. The {sup 1}H NMR results indicate that the protons of methyl and methelyene represent the bulk of the hydrogen ({approx}90%) in most shale oil samples. GC analysis reveals that the oil samples contain n-alkanes with a predominant proportion of n-C{sub 25}. (Author)

  20. Hydrotreating and hydrocracking of Athabasca bitumen derived heavy gas oils using NiMo catalyst supported on titania modified alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Bakhshi, N.N.; Dalai, A.K.; Adjaye, J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering, Catalysis and Chemical Reaction Engineering Laboratories]|[Syncrude Canada Ltd., Edmonton, AB (Canada)

    2006-07-01

    Different NiMo catalysts supported on titania modified Al{sub 2}O{sub 3} were synthesized and characterized in an effort to study the hydrodenitrigenation (HDN) and hydrodesulfurization (HDS) of different gas oils derived from Athabasca bitumen. The Al{sub x}O{sub 3} supports were modified by incorporating up to 9 wt per cent titanium (Ti). All modified supports as well as fresh and spent catalysts were characterized by BET surface area, pore volume and pore diameter, XRD, TPR, TPD and SEM. A trickle-bed reactor using 3 different gas oils from the Athabasca bitumen was used to test the initial activity of these catalysts. The 3 oils were light gas oil (LGO), heavy gas oil (HGO) and blended gas oil having 50 per cent LGO and 50 per cent HGO. The study showed that nitrogen conversion increased for all the gas oils when Ti was incorporated into the alumina. With an increase in Ti concentrations from 0 to 6 wt per cent, nitrogen conversion increased from 57-69.5 wt per cent, 75-80.2 wt per cent, 83-91.5 wt per cent and for LGO, HGO and blended, respectively. Nearly 86 wt per cent sulphur conversion was obtained for all Ti concentrations for LGO, while HGO and blended sulphur conversions were in the range of 96-97 wt per cent. Detailed hydrotreating and hydrocracking of HGO was then performed using the 6 wt per cent Ti modified catalyst because it achieved the maximum nitrogen conversion. This paper also presented the temperature, pressure and liquid hourly space velocity for this catalyst along with the maximum nitrogen and sulphur conversions. Results were compared with those of commercial catalysts. tabs., figs.

  1. Studies on the utilization of PETROSIX process pyrolysed oil shale for pozzolans production

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, M C; Souza Santos, P de; Schmal, M

    1984-08-01

    It was studied the possibility of utilization the PETROSIX Process pyrolised oil-shale as a raw material in the production of cementing materials emphasizing its use as pozzolan. Analysis of X-ray diffraction and spectrophotometry were used to determine the pozzolanic characteristics of the pyrolysed oil-shale. (Author).

  2. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Design and optimization of hybrid ex situ/in situ steam generation recovery processes for heavy oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Gates, I.D. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R. [Calgary Univ., AB (Canada). Dept. of Geoscience]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    Hybrid steam-air based oil recovery techniques were investigated using advanced 3-D reactive thermal reservoir simulations. The hybrid techniques combined ex situ steam and in situ steam generation processes in order to raise efficiency, lower natural gas consumption, and reduce gas emissions. The steam-air based processes used 70 per cent of the energy of conventional steam assisted gravity drainage (SAGD) techniques to recover the same amount of oil. The process used an SAGD wellpair arrangement, where steam and air were injected through the top injection well. The kinetic parameters used in the study were developed by history matching a combustion tube experiments with Athabasca bitumen conducted to predict cumulative bitumen and gas production volumes and compositions. A total of 6 SAGD and 6 in situ combustion simulations were conducted with steam oxygen volume ratios set at 50 per cent steam and 50 per cent oxygen. Various case studies were considered over a 5 year period. Carbon dioxide (CO{sub 2}) emissions were also measured as well as cumulative water and methane consumption rates. Results of the study were used to develop an optimized hybrid operation that consisted of a SAGD well pair arrangement operating with cyclic steam-oxygen injection at high pressures. It was concluded that the high pressure operation increased the steam partial pressure within the reservoir and enhanced combustion performance. A 29 per cent improvement in the cumulative energy to oil ratio was obtained. 23 refs., 2 tabs., 9 figs.

  4. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  5. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We

  6. Change in mechanical properties of Antrim oil shale on retorting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.; Hockings, W. A.; Kim, K.

    1979-01-01

    The decomposition of kerogen in oil shale and subsequent extraction of the decomposition products during the retorting process are known to alter the pore structure, resulting in changes in permeability, deformation and strength properties. Prediction of these changes is of fundamental importance in the design of in-situ retorting processes. This paper summarizes a comprehensive laboratory investigation on the changes in mechanical properties of Antrim oil shale on retorting at 500/sup 0/C. It was observed that kerogen plays an important role in the change of the properties on retorting. When subjected to heat, the degree of deformation, the extent of fracturing and the structural instability of the specimens appeared to be strongly dependent upon kerogen content. The values of elastic modulus, strength, and density decreased whereas maximum strain at failure increased on retorting. Significant increases in permeability and porosity also resulted from retorting. The most pronounced increase was observed in the permeability in the direction parallel to bedding which exceeded in some cases as much as 3 orders of magnitude. Microscopic observations of pore structures provided a qualitative support to data obtained in measurements of porosity and permeability.

  7. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  8. Scenarios for shale oil, syncrude and electricity production in Estonia in the interim 1995-2025

    International Nuclear Information System (INIS)

    Oepik, I.

    1992-01-01

    This paper is based on the author's pre-feasibility studies of oil shale utilization in oil production, electricity generation and cement industry. The electricity generation has been calculated on the basis of 1.4 and 1.6 GW oil shale power plants with pulverized fuel combustion today. The three scenarios OILMIN, OILMED and OILMAX differ by annual oil production and different investment costs. The investments in the oil shale processing industry seem to be more profitable than those in electricity generation. It is also important to take into account that the very high sensitivity of oil market to geopolitical aspects of resources and to sudden crises, makes the crude price a stochastic parameter, which loses its indicative character for long term economic choice. Therefore it will be very important to have the electric power plants with flexible combined oil shale and coal combustion. 4 figs., 4 tabs., 6 refs

  9. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  10. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    International Nuclear Information System (INIS)

    Thiéry, Vincent; Bourdot, Alexandra; Bulteel, David

    2015-01-01

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements

  11. The US Shale Gas Revolution and Its Externality on Crude Oil Prices: A Counterfactual Analysis

    Directory of Open Access Journals (Sweden)

    Hongxun Liu

    2018-03-01

    Full Text Available The expansion of shale gas production since the mid-2000s which is commonly referred to as “shale gas revolution” has had large impacts on global energy outlook. The impact is particularly substantial when it comes to the oil market because natural gas and oil are substitutes in consumption and complements and rivals in production. This paper investigates the price externality of shale gas revolution on crude oil. Applying a structural vector autoregressive model (VAR model, the effect of natural gas production on real oil price is identified in particular, and then based on the identification, counterfactuals of oil price without shale gas revolution are constructed. We find that after the expansion of shale gas production, the real West Texas Intermediate (WTI oil price is depressed by 10.22 USD/barrel on average from 2007 to 2017, and the magnitude seems to increase with time. In addition, the period before shale gas revolution is used as a “thought experiment” for placebo study. The results support the hypothesis that real WTI oil price can be reasonably reproduced by our models, and the estimated gap for oil price during 2007–2017 can be attributed to shale gas revolution. The methodology and framework can be applied to evaluate the economic impacts of other programs or policies.

  12. Assessment of industry needs for oil shale research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  13. Geological characteristics and resource potentials of oil shale in Ordos Basin, Center China

    Energy Technology Data Exchange (ETDEWEB)

    Yunlai, Bai; Yingcheng, Zhao; Long, Ma; Wu-jun, Wu; Yu-hu, Ma

    2010-09-15

    It has been shown that not only there are abundant oil, gas, coal, coal-bed gas, groundwater and giant uranium deposits but also there are abundant oil shale resources in Ordos basin. It has been shown also that the thickness of oil shale is, usually, 4-36m, oil-bearing 1.5%-13.7%, caloric value 1.66-20.98MJ/kg. The resource amount of oil shale with burial depth less than 2000 m is over 2000x108t (334). Within it, confirmed reserve is about 1x108t (121). Not only huge economic benefit but also precious experience in developing oil shale may be obtained in Ordos basin.

  14. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz

    2017-10-18

    Over the last six years, crude oil production from shales and ultra-deep GOM in the United States has accounted for most of the net increase of global oil production. Therefore, it is important to have a good predictive model of oil production and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model thousands of wells in the Eagle Ford shale. Given well geometry, we obtain a one-dimensional nonlinear pressure diffusion equation that governs flow of mostly oil and solution gas. In principle, solutions of this equation depend on many parameters, but in practice and within a given oil shale, all but three can be fixed at typical values, leading to a nonlinear diffusion problem we linearize and solve exactly with a scaling

  15. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  16. The deep processing of oil residues conjunction with shales

    Directory of Open Access Journals (Sweden)

    Anatoly Maloletnev

    2012-12-01

    Full Text Available The results of studies on the development of a new process of thermal cracking of tar oil as a slurry with crushed oil shale to obtain components of motor fuels. The results suggest doubtless advantages of the process before the industrial of thermo cracking, since the single-stage processing of raw materials in relatively in the mild conditions (5 MPa, 425ºC, volumetric feed rate 1.0 h-1 is achieved deep destruction of tar oil (the yield petrol fraction with a bp amounts to up to 180ºC - ~12 mass % of middle distillates with a bp 180-360ºC – 43-44 mass %, of raw material for catalytic cracking of a bp 360-520ºC – ~15-16%, based on the initial tar oil. Formed like coke products and raw materials contained in V and Ni is postponed on the mineral part of slate and removed from the reaction zone with the liquid products of the process.

  17. Technical-economic parameters of the new oil shale mining-chemical complex in Northeast Estonia

    International Nuclear Information System (INIS)

    Kuzmiv, I.; Fraiman, J.

    2006-01-01

    The history of oil shale mining in Estonia has reached its century mark. Three oil shale branches have been formed and have been working on the basis of Estonian oil shale deposits: the mining industry (underground and surface extraction), the power industry (heat and electric energy generation), and the chemical industry (gas and synthetic oils). The authors attempted to summarize the experience of the activities of these branches and to make into a whole the results of their research developments in the past years, as well as to form a notion about perspectives of oil shale in Estonia. Variants of the mining-chemical oil shale complex production and trade patterns differed from used ones. Mining methods, thermal processing of oil shale, and solid, liquid, and gas waste recovery have been studied, analyzed, and worked out up to the present. Setting up a flexible trade structure within the framework of that complex is considered the main economic mechanism capable of balancing production costs of such a complex with its earnings, which could respond properly to any, even peak, fluctuations of the market for final products processed from oil shale. Data of the working 'Estonia' oil shale mine were used as the basis of the analysis and practical conclusions. Information on the mine being projected in the region of Ojamaa in the northeast of Estonia was taken as the data of the worthwhile supplier. Oil shale processing chemical complex is considered in two structural alternatives: in technological chain with the 'Estonia' mine (the first variant), and the projected mine of a new technical level (the second variant). (author)

  18. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  19. Biological marker compounds as indicators of the depositional history of the Maoming oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Brassell, S.C.; Eglinton, G.; Mo, F.J.

    1986-01-01

    The Eocene Maoming oil shale from Guangdong Province occurs as a laterally uniform stratigraphic section, typically 20-25 m thick, from which the aliphatic hydrocarbon constituents of six representative samples were investigated using GC and C-GC-MS. The sediments evaluated included the basal lignite, a vitrinite lens from the overlying claystone, and four intervals from the massive oil shale bed. As expected, the lignite and vitrinite differ markedly from the oil shales. The lignite is dominated by bacterial hopanoids and components of higher plant origin, including C/sub 29/ steroids and triterpenoids such as oleanenes. Visually, the oil shale samples show corroded and degraded phytoclasts, spores, wispy particles of fluorescent organic material attributable to dinoflagellates and, especially in the uppermost sample, colonial algal bodies. The distributions of biological markers in the oil shales show many features in common, notably a dominance of dinoflagellate-derived 4-methylsteroids, and a significant proportion of higher-plant derived n-alkanes with marked odd-over-even carbon number predominance. Overall, they exhibit several features that resemble characteristics of the Messel shale. The hydrocarbons of the lowest shale horizon suggest that there may have been a gradual transition between deposition of the original peat and the subsequent oil shales. The aliphatic hydrocarbons of the uppermost shale are dominated by a number of C/sub 31/ and C/sub 33/ botryococcane homologues and other unusual branched alkanes possibly derived from green algae. All of the samples are immature. Overall, molecular and microscopic examination of the stratigraphic succession of the Maoming oil shale suggests a shallow, lacustrine environment within which peats were deposited. This lake subsequently deepened to support abundant algal populations, especially dinoflagellates, culminating in a dominance of botryococcoid algae.

  20. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  1. Thermodynamically consistent model of brittle oil shales under overpressure

    Science.gov (United States)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  2. Tri- and tetraterpenoid hydrocarbons in the Messel oil shale

    Science.gov (United States)

    Kimble, B. J.; Maxwell, J. R.; Philp, R. P.; Eglinton, G.; Albrecht, P.; Ensminger, A.; Arpino, P.; Ourisson, G.

    1974-01-01

    The high-molecular-weight constituents of the branched and cyclic hydrocarbon fraction of the Messel oil shale (Eocene) have been examined by high-resolution gas chromatography and combined gas chromatography/mass spectrometry. The following compounds are present: perhydrolycopene, together with one or more unsaturated analogs with the same skeleton; a series of 4-methylsteranes in higher abundance than their 4-desmethyl analogs; two series of pentacyclic triterpanes, one series based on the hopane structure, and the other based on the 17 alpha-H hopane structure; and an intact triterpene hop-17(21)-ene. Only two additional triterpanes were detected in minor concentrations - namely, 30-normoretane and a C31 triterpane based on the hopane/lupane-type skeleton. The presence of these compounds suggests a significant microbial contribution to the forming sediment.

  3. Project scenarios for bitumen upgrading

    International Nuclear Information System (INIS)

    Koppel, P.E.; Mazurek, W.L.; Harji, A.

    2002-01-01

    The established reserves of Alberta's heavy oil resources are 178 billion barrels, and potential recoverable reserves are 315 billion barrels. The challenge of production includes the logistics of recovery, upgrading and transportation to market. Utilization of the bitumen is not simple because bitumen is too viscous to transport by pipeline. In addition, it is not processable by most existing refineries unless it can be upgraded through dilution. This paper examined different factors regarding the economic viability of various upgrading methods of a wide range of bitumen feedstocks. The study also examined the sensitivity of refinery demand to the prices of these feedstocks, along with the competitiveness among bitumen-based feedstock and conventional crudes. Western Canada, Ontario and the PADD II district in the United States are the 3 major markets for western Canadian bitumen based feedstock, the demand for which depends on refinery configurations and asphalt demand. This paper described the following 4 generic scenarios that describe Alberta bitumen upgrading projects: (1) adjacent to open pit mines, (2) adjacent to steam assisted gravity drainage (SAGD) facilities, (3) remotely located from resource production at an existing refinery, and (4) pipeline bitumen. It was noted that producers should determine the best way to upgrade the bitumen to ensure there is an economic market for the product, but they should also be aware not to over process the bitumen so as not to leave existing refinery facilities under-utilized. 2 refs., 1 tab., 3 figs

  4. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Deng, Sunhua; Chen, Jie; Zhang, Mingyue; Li, Shu; Shao, Yifei; Yang, Jiaqi; Li, Junfeng

    2017-01-01

    Highlights: • The maximum yield of pyrolysis oil is obtained at the pretreatment time of 2.0 h. • The higher H/C ratio of oil is obtained after hydrothermal pretreatment. • Hydrothermal treatment promotes the formation of aliphatic hydrocarbons in the oil. • Long pretreatment time causes the increase of heavier oil fraction in the oil. - Abstract: In this work, Huadian oil shale from China was treated by hydrothermal pretreatment at 200 °C with 1.0–2.5 h in order to investigate the effect of hydrothermal pretreatment on pyrolysis product distribution and characteristics of oil. The differences in the elemental composition and thermal behavior between the untreated and treated oil shale were analyzed and compared. The hydrothermal treatment process could decompose oxygen functional groups and remove some water soluble inorganics in oil shale, which decreased the formation of gas and water during the pyrolysis. However, hydrothermal pretreatment was conducive to increasing shale oil yield. The maximum of oil yield was obtained at the pretreatment time of 2.0 h. The enhancement of the free-radical reactions during the pyrolysis and the reduction of the secondary cracking reactions of the generated oil vapors were considered as the main reasons. The oil obtained by the treated oil shale had a higher H/C ratio, indicating it had high energy content. The analysis results of chemical compositions in oils showed that the relative content of aliphatic hydrocarbons significantly increased after hydrothermal pretreatment. The further analysis demonstrated that the increase in the pretreatment time caused the generated long chain hydrocarbons tended to be directly released from oil shale particles, and were condensed into the oil.

  5. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.; Schmidt, Andrew J.; Schaub, Tanner M.

    2017-02-17

    We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared to either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.

  6. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1946-08-29

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors from the zone, mixing fresh cold shale with the hydrocarbon vapors to quench the same, whereby the fresh shale is preheated, recovering hydrocarbon vapors and product vapors from the mixture and withdrawing preheated shale from the mixture and charging it to a shale distillation zone.

  7. Production of portland cement using Moroccan oil shale and comparative study between conventional cement plant and cement plant using oil shale

    International Nuclear Information System (INIS)

    Doumbouya, M.; Kacemi, K.E.; Kitane, S.

    2012-01-01

    Like the use of coal ash from power plants as an addition to cement, oil shale are used for cement production on an industrial scale in Estonia, China, USA and Germany. Oil shale can be utilized in manufacturing the cement. In addition to the utilization of these by-products after combustion, it can also reduce the required temperature for the clinkering reactions during the production of Portland clinker. We performed a study on the Moroccan oil shale to maximize the use of oil shale ash in the manufacturing of Portland cement. We found that Moroccan oil shale ash can be used up to 30% with 70% Portland clinker without altering its principle properties. The corresponding temperature required to generate the required liquid for the clinkering reactions as well as the essential ingredients for clinker was found to be around 850 to 1000 deg. C. The operating temperatures for this optimized blend ratio were found to 1000 deg. C. The resulting Portland clinker from this ratio will need further testing in accordance with international standards for Portland cement to examine properties like strength and setting time. (author)

  8. Processing options for bitumen upgrading

    International Nuclear Information System (INIS)

    Harji, A.N.; Koppel, P.E.; Mazurek, W.L.; Meysami, P.

    2003-01-01

    It is estimated that 178 billion barrels of oil can be recovered from Alberta's vast heavy oil reserves. The challenge lies in the logistics of recovering, upgrading and transporting the oil to market. The Canadian Energy Research Institute conducted a recent study to determine market potential by 2007 for diluted bitumen and synthetic crude oil produced from upgraded bitumen. The viability for a wide range of bitumen feedstocks was assessed along with the sensitivity of refinery demand to their prices. The 3 major markets for western Canadian bitumen include PADD 2 in the United States, western Canada, and Ontario. Bitumen is too viscous to transport by pipeline and cannot be processed by most of the existing refineries. Therefore, in order to develop a mass market for the product, bitumen must undergo the energy intensive upgrading process at existing refineries. The factors impacting which method of upgrading is most suitable were discussed with particular attention to the impact that Canada's ratification of the Kyoto Protocol may have on Alberta's bitumen resource in terms of costs of complying with greenhouse gas reduction initiatives. The authors emphasized that it is crucial to customize an upgrading project to meet site and market specific factors. 8 refs., 3 tabs., 3 figs

  9. Mining and oil. Oil shale's contribution to future oil supply; Bergbau und Oel. Der Beitrag des Oelschiefers zur Oelversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Eike von der [Linden Advisory, Dreieich (Germany)

    2012-05-15

    Crude oil contributes in Germany and globally approximately one third to the consumption of primary energies and actually is and in the foreseeable future will be the most important energy source. Recently shale oil as an unconventional oil has gained attention in public discussions. Depending on temperatures oil shale contains either already matured fluid shale oil or immature waxy kerogen. For determination of kerogen containing oil shale and shale oil common definitions for fluid hydrocarbons will be presented. Fluid hydrocarbons (molecular chains > C{sub 5}H{sub 12}) originate from animal substance which had been settled millions of years in sediments on sea- or lakebeds under anaerobic conditions. High pressure and high temperatures effect conversion to hydrocarbons. With sufficient permeability the liquid hydrocarbons migrate from the sediment as the source rock and get assembled in porous rocks under the cover of an impermeable rock strata, in so called entrapment structures. In case there is no impermeable rock strate the hydrocarbons will diffuse into the atmosphere. The hydrocarbons in entrapment structures are called conventional oil and are extracted by drilling wells. The extractable oil as part of the oil in place depends on the viscosity of the oil, the permeability of the host rock and applied exploitation methods which can affect pressure, viscosity and permeability. The exploitation achieves 30 to 50% of the oil in place. When the source rock consisting of strata hundreds of meters thick is not sufficiently permeable the matured hydrocarbons remain at its place of origination. These hydrocarbons are called shale oil and belong to the unconventional oil resources. For exploitation of shale oil by wells the source rock must be treated by intensive energy input, amongst others, by fracking which creates artificial permeability and by pressure which affects migration of the hydrocarbons to the well. The exploitation methods for shale oil do not

  10. Utilization of oil shale in power plants and environmental protection; Polevkivienergeetika ja keskkonna saastumine

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical Univ. (Estonia)

    1994-04-01

    Estonia n oil shale was first used as a power fuel in 1924 at the Tallinn Power Plant. The first pulverized oil-shale-fired steam boilers were used in the end of forties. A new period in the utilization of the Estonia n oil shale began in the years of 1959-1960, when the first power units were applied at the Baltic Thermal Power Plant. The project capacity of the plant was 1600 MW. In the 1973 the Estonia n thermal Power Plant was put into operation with the capacity of 1610 MW. The output of the electric power generated by oil.shale power plants in 1989, was 17.4 TWh; the maximum output was achieved in 1979 - 19.1 TWh. In 1989, the amount of the Estonia n oil shale consumed to generate electric power was equal to 22.3{center_dot}10{sup 6}t. On burning oil shale the main atmospheric pollutants are the following: nitrogen oxides, sulphur oxides, and fly ash. The concentration of nitrogen oxide in the oil-shale flue gas leaving the chimney, expressed as nitrogen dioxide by an excess air factor 1.5, is in the range of 0.15-0.20 g/m{sup 3.} The total emission of nitrogen oxide into the atmosphere is approximately 15-20 thousand ton per year. the concentration of sulphur dioxide in the oil-shale flue gas leaving the boiler by an excess air factor 1.5 in the range of 1.0-1.8 g/m{sup 3.} the total emission of sulphur dioxide into atmosphere is in range of 140-160 thousand per year. As the oil-shale ash contains a large amount of the components capable of combining with sulphur in furnace and in boiler gas passes, the sulphur binding effect from ash is high, and it is in the range of 0.75-0.85. The boilers in oil-shale power plants are equipped with two-stage ash separation systems: cyclone and electrostatic al precipitators. The fly ash concentration in oil shale flue gas after electrostatic al precipitators by excess air factor 1.5 is 1-2 g/m{sup 3.} (author).

  11. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  12. Hydrologic-information needs for oil-shale development, northwestern Colorado. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, O.J. (comp.)

    1982-04-01

    The Piceance basin of northwestern Colorado contains large reserves of oil shale. Expected development of oil shale will affect the regional hydrologic systems because most oil-shale mines will require drainage; industrial requirements for water may be large; and oil-shale mines, wastes, and retorts may affect the quantity and quality of surface water and ground water. In addition, the oil-shale industry may discharge particles and gases to the atmosphere that could alter the quality of high-altitude lakes and surface-water reservoirs. Hydrologic data need to be collected in order to plan for oil-shale development and to estimate the effects of development. Test-well drilling and aquifer testing are needed to provide a better understanding of the local and regional flow system, to furnish additional data for a model that simulates mine drainage, and to explore for water supplies in aquifers of Paleozoic and Mesozoic age. Much of the ground water in the bedrock aquifers discharges through springs, and a systematic study of the springs will help to predict the effects of mine drainage on spring discharge and quality. Surface runoff, dissolved and suspended loads in streams, and the aquatic environment in streams would be highly susceptible to the disruptions in the land surface and will require additional study in order to estimate the effects of development. A water-quality assessment is proposed for the White River basin because it is a possible source of water and a region likely to be affected by development. The effects of emissions to the atmosphere from oil-shale plants require study because these emissions may affect the quality of water in lakes downwind. Spoil piles of retorted oil shale may be very large and require study to anticipate any problems caused by leaching and erosion. Processing wastes resulting from in-situ retorts and other waste materials need to be studied in greater detail. 71 refs., 30 figs., 5 tabs.

  13. Reduction of light cycle oil in catalytic cracking of bitumen-derived crude HGOs through catalyst selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fuchen; Xu, Chunming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, 102200 (China); Ng, Siauw H. [National Centre for Upgrading Technology, 1 Oil Patch Drive, Suite A202, Devon, Alberta (Canada); Yui, Sok [Syncrude Research Centre, 9421-17 Avenue, Edmonton, Alberta (Canada)

    2007-09-15

    In an attempt to reduce the production of light cycle oil (LCO), a non-premium fluid catalytic cracking (FCC) product in North America, a large-pore catalyst containing rare-earth-exchanged Y (REY) zeolite, was used to crack two Canadian bitumen-derived crude heavy gas oils (HGOs) hydrotreated to different extents. For comparison, a regular equilibrium FCC catalyst with ultra-stable Y (USY) zeolite and a conventional western Canadian crude HGO were also included in the study. Cracking experiments were conducted in a fixed-bed microactivity test (MAT) reactor at 510 C, 30 s oil injection time, and varying catalyst-to-oil ratios for different conversions. The results show that pre-cracking of heavy molecules with wide-pore matrix, followed by zeolite cracking, enhanced conversion at the expense of light and heavy cycle oils at a constant catalyst-to-oil ratio, giving improved product selectivities (e.g., higher gasoline and lower dry gas, LCO, and coke yields, in general, at a given conversion). To systematically assess the benefits of employing the specialty catalyst over the regular catalyst in cracking Canadian HGOs, individual product yields were compared at common bases, including constant catalyst-to-oil ratios, conversions, and coke yields for three feeds, and at maximum gasoline yield for one feed. In most cases, the preferred choice of large-pore zeolite-rich catalyst over its counterpart was evident. The observed cracking phenomena were explained based on properties of catalysts and characterization data of feedstocks, including their hydrocarbon type analyses by gas chromatograph with a mass-selective detector (GC-MSD). (author)

  14. The big bitumen breakthrough

    International Nuclear Information System (INIS)

    Koch, G.

    1996-01-01

    The ongoing transformation of the oilsands and heavy oil sector from a poor cousin a few years ago into the cornerstone of the Alberta oil industry, was discussed. Much of this change is due to the development of SAGD (steam assisted gravity drainage) technology for the underground recovery of heavy oil and tarry bitumens, aided by partly government-funded research, and boosted by a revised provincial royalty regime. The thermal recovery process makes use of a pair of horizontal injection and recovery wells, drilled one above the other. The efficiency of this new technology could produce a shift in the petroleum industry's spending towards oil sands and heavy oil if investors conclude that it is more profitable to produce heavy oil than conventional light oil. Some of the oil sands producers that are poised to invest billions of dollars in various underground bitumen projects in Alberta over the next five years include Suncor, Syncrude, Alberta Energy Co., Amoco Canada, Elan Energy, Imperial Oil Resources, CS Resources, Koch Oil, and Gulf Resources. The ultimate goal is recovery costs of $6 per barrel, which is comparable to the costs of the conventional oil sector. The added advantage of oil sands production is, of course, the virtual elimination of the exploration risk. 3 figs

  15. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    International Nuclear Information System (INIS)

    Motlep, Riho; Sild, Terje; Puura, Erik; Kirsimaee, Kalle

    2010-01-01

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  16. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  17. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  18. Characteristic fly-ash particles from oil-shale combustion found in lake sediments

    International Nuclear Information System (INIS)

    Alliksaar, T.; Hoerstedt, P.; Renberg, I.

    1998-01-01

    Fly-ash particles accumulate in sediments and can be used to assess spatial distribution and temporal trends of atmospheric deposition of pollutants derived from high temperature combustion of fossil fuels. Previous work has concerned fly-ash derived from oil and coal. Oil-shale is the main fossil fuel used in Estonia and a major source of atmospheric pollution in the Baltic states. To assess if oil-shale power plants produce specific fly-ash particles scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to compare fly-ash particles from oil-shale combustion with particles from oil and coal combustion. Two types were analysed, large black (10-30μm) and small glassy (< 5 μm) spheroidal particles. Although article morphology to some extent is indicative of the fuel burnt, morphological characters are not sufficient to differentiate between particles of different origin. However, the results indicate that with EDX analysis the fly-ash from oil-shale can be distinguished form oil and coal derived particles in environmental samples. Concentrations of large black and small glassy spheroidal fly-ash particles in a sediment core from an Estonian lake showed similar trends to oil-shale combustion statistics from Estonian power plants. 27 refs., 6 figs., 2 tabs

  19. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  1. Reports on 1974 result of Sunshine Project. Research on tar sand and oil shale; 1974 nendo tar sand oyobi oil shale ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-04

    The purpose of this research is to grasp the policy of the oil sand resource countries, the properties and existing conditions of the resources, effects of the oil sand resources on a long term energy supply/demand, etc., and to clarify the meaning and position of the researches on the development of oil sand resources in the future energy policy of Japan. The quantities of oil sand resources are mostly in the process of investigation except Alberta province of Canada and are estimated to be two trillion barrels. The quantity for which strip mining is possible is about 90 billion barrels, which are mostly located in the Athabasca region. The oil sand holding countries take a policy of positively developing oil sand. No barriers are particularly provided against the introduction of foreign technology and capital. Where the prospects are possible for the development of oil sand are Canada and Venezuela. R and D should be emphasized on the refining of bitumen and the extraction method within the oil reservoir. The investment per b/d is about 15-20 thousand dollars, which is likely to be more than twice as much as for the North Sea oilfields. The properties and quality of the synthetic crude oil are superior while the risk of exploitation is small; therefore, oil sand will be competitive with crude oil in the future. (NEDO)

  2. On possibilities to decrease influence of oxidation processes on oil yield at oil shale retorting

    International Nuclear Information System (INIS)

    Yefimov, V.; Loeoeper, R.; Doilov, S.; Kundel, H.

    1993-01-01

    At the present technical level retorting is carried out so that an increase in specific air consumption results in an increase of oxygen ingress into the semi coking shaft. At the same time a direct relationship between the degree of volatiles pyrolysis and specific air consumption was observed. This regularity enables to assume that within the reaction volume there occurs most likely the thermo oxidative pyrolysis of volatile products, not the oxidation of oil shale as it is considered traditionally. The main source of oxygen ingress ed into the semi coking shaft at processing oil shale in retorts is the process of spent shale. This process is not fully elaborated for utilization in commercial scale and can not be arranged so that the ingress of oxygen into the smacking chamber could be eliminated. In case of a slower semi coke gasification process and reduced specific air consumption for gasification the absolute amount of oxygen ingress ed into the semi coking shaft also decreases. One of the efficient methods to decrease specific air consumption is to build furnaces into the semi coking chamber to obtain additional amount of heat carrier by combusting generator gas. The maximum effect is reached when steam-and-air blow is completely replaced by recycle gas: specific air consumption is reduced whereas recycle gas is deoxygenated in the cooling zone while passing through spent shale bed which has the temperature of about 500 deg C. Another possible source of oxygen to the semi coking shaft with heat carrier is production of flue gases by combusting recycle gas in burners built in retorts. We consider the recycle gas employed upon processing oil shale in retorts hardly to be an appreciable source of the oxygen ingress into the semi coking shaft. Additional amounts of residual oxygen containing in recycle gas fed into both cooling zone and furnaces are practically totally consumed at gas combusting and passing across the bed of semi coke heated up to approximately

  3. Sulphation of oil shale ash under atmospheric and pressurized combustion conditions

    International Nuclear Information System (INIS)

    Kuelaots, I.; Yrjas, P.; Hupa, M.; Ots, A.

    1995-01-01

    One of the main problems in conventional combustion boilers firing pulverized oil shale is the corrosion and fouling of heating surfaces, which is caused by sulphur compounds. Another major problem, from the environmental point of view, are the high SO 2 emissions. Consequently, the amount of sulphur in flue gases must be reduced. One alternative to lower the SO 2 , concentration is the use of new technologies, such as pressurized fluidized bed combustion (PFBC). In FBC processes, the sulphur components are usually removed by the addition of limestone (CaCO 3 ) or dolomite (CaCO 3 x MgCO 3 ) into the bed. The calcium in these absorbents react with SO 2 , producing solid CaSO 4 . However, when burning oil shale, there would be no need to add limestone or dolomite into the bed, due to the initially high limestone content in the fuel (molar ratio Ca/S =10). The capture of sulphur by oil shale ashes has been studied using a pressurized thermogravimetric apparatus (PTGA). The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. Four different materials were tested - one cyclone ash from an Estonian oil shale boiler, two size fractions of Estonian oil shale and, one fraction of Israeli oil shale. The cyclone ash was found to be the poorest sulphur absorbent. In general, the results from the sulphur capture experiments under both atmospheric and pressurized fluidized bed conditions showed that the oil shale can capture not only its own sulphur but also significant amounts of additional sulphur from another fuel if the fuels are mixed together. (author)

  4. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  5. Characterization of oil shale residue and rejects from Irati Formation by Electron Paramagnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, S.L.; Brinatti, A.M.; Saab, S.C. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Fisica; Simoes, M.L.; Martin-Neto, L. [Embrapa Instrumentacao Agropecuaria, Sao Carlos, SP (Brazil); Rosa, J.A. [IAPAR - Unidade Regional de Pesquisa, Ponta Grossa, PR (Brazil); Mascarenhas, Y. P. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2009-03-15

    In this study, sedimentary organic matter of oil shale rejects, calschist, shale fine and the so called retorted shale from Irati formation was characterized. EPR was used to analyse the samples regarding loss of signal in g = 2:003 associated to the organic free radical with the calcined samples and washing with hydrogen peroxide. The radical signal was detected in all samples, however, for the calschist and shale fine samples another signal was identified at g = 2:000 which disappeared when the sample was heated at 400 deg C. Hydrogen peroxide washing was also performed and it was noted that after washing the signal appeared around g = 2:000 for all samples, including retorted shale, which might be due to the quartz E1 defect. (author)

  6. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  7. Hydrogenate bitumen, says Canmet

    Energy Technology Data Exchange (ETDEWEB)

    Pruden, B B; Denis, J M

    1977-06-01

    The refining of Canada's heavy oils and in particular oil sand bitumens is complicated by the presence of mineral matter (clay and salt), chemically bound nickel, vanadium, iron, sulfur, and nitrogen. Upgrading is necessary before conventional refining because of the high pitch content of the bitumens. The Canada Centre for Mineral and Energy Technology (CANMET), of the Department of Energy. Mines and Resources, has developed a thermal hydrocracking process which concentrates all of the metals and mineral matter in a small pitch fraction and produces a high yield of low viscosity distillate for subsequent catalytic hydrorefining. Scientists at CANMET also have been working on the development of catalysts for an alternative direct catalytic hydrocracking process. Hydrocracking processes, when compared to the coking processes now employed or envisaged by industry for the next 5 yr, have several advantages which are listed.

  8. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L. (ed.)

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  9. Converting of oil shale and biomass into liquid hydrocarbons via pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Pütün, Ayşe Eren; Uzun, Başak Burcu; Pütün, Ersan

    2014-01-01

    Highlights: • Co-processing of oil shale with an arid land biomass for hydrocarbon production. • Co-pyrolysis in TGA and fixed-bed reactor. • Characterization of oil and char. - Abstract: In this study, co-pyrolytic behaviors of oil shale and Euphorbia rigida were investigated at different temperatures in a fixed bed reactor at 450, 500, and 550 °C with a heating rate of 10 °C/min in the presence of nitrogen atmosphere. The obtained solid product (char) and liquid product (tar) were analyzed by using different types of characterization techniques. Experimental results showed co-pyrolysis of oil shale and biomass could be an environmental friendly way for the transformation of these precursors into valuable products such as chemicals or fuels

  10. Geochemical and petrographic investigation of Himmetoglu oil shale field, Goynuk, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sener, M.; Gundogdu, M.N. [General Directorate of Mineral Research and Exploration, Ankara (Turkey)

    1996-09-01

    The Himmetoglu field is a good example of oil shale fields in Turkey. Mineral and maceral types show that the huminite and liptinite groups tend to be associated with smectite, clinoptilolite and calcite in Himmetoglu oil shale, while the liptinite group is accompanied by analcime and dolomite in bituminous laminated marl. The pH value increases from bottom (pH {lt} 9) to top (pH {gt} 9) in the Himmetoglu formation and volcanogenic materials have played a very important role in deposition of organic matter. The negative correlation between trace elements and organic carbon suggests absence of enrichment of trace elements in oil shales. The results of g.c.-m.s. and carbon isotope analysis show that there is a decrease in the amount of terrestrial organic matter and a relative decrease in maturity of the organic matter in the vertical succession from Himmetoglu oil shape up to the bituminous laminated marl. 8 refs., 6 figs., 5 tabs.

  11. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  12. Proceedings of the 3. NCUT meeting on upgrading and refining of heavy oil, bitumen and synthetic crude oil and the 2. symposium on stability and compatibility during the production, transportation and refining of petroleum

    International Nuclear Information System (INIS)

    2003-01-01

    This conference highlights new developments in refining processes for heavy oil, bitumen, and synthetic crudes. The oil sands/heavy oil industry in Canada has grown significantly in the last decade and could triple by 2012 to reach 2.6 million barrels per day. Experts from the petroleum industry, government organizations and technology providers attended this conference which identified technology gaps and areas where improvements are needed. The presentations demonstrated that many new technologies associated with heavy oil bitumen upgrading and refining have posed compatibility and stability challenges for pipeliners, upgraders and refiners. One of the issues addressed at the conference was the effect of upgrading technologies on market price due to the expected increase in production. Another important issue is how production of bitumen can be increased without significantly increasing greenhouse gas emissions from the refineries and upgrading facilities. The sessions of the conference were entitled: new technology developments in bitumen upgrading; secondary upgrading developments and expanded product opportunities; environmental issues and expanded oil sands development; and, stability and compatibility during the production, transportation and refining of petroleum. Twenty six presentations were indexed separately for inclusion in this database. tabs., figs

  13. Development of new estimation method for CO2 evolved from oil shale

    International Nuclear Information System (INIS)

    Sato, S.; Enomoto, M.

    1997-01-01

    The quality of fossil fuels tends to be evaluated by amounts of CO 2 emissions. For the evaluation of an oil shale from this point, an on-line thermogravimetric-gas chromatographic system was used to measure CO 2 evolution profiles on temperature with a small oil shale sample. This method makes it possible to estimate the amounts of CO 2 evolved from kerogen and carbonates in retorting and those from carbonates in combustion, respectively. These results will be basic data for a novel oil shale retorting process for the control of CO 2 emissions. The profiles for Thai and Colorado oil shales have shown CO 2 mainly evolved by the pyrolysis of kerogen below 550 degree C, and that evolved by the decomposition of carbonates above that temperature. On the other hand, the profile for Condor oil shale showed that most carbonates decomposed below 550 degree C, while only small amounts of carbonates decomposed above this temperature. 14 refs., 2 figs., 3 tabs

  14. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  15. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  17. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  18. The U.S. Shale Oil and Gas Resource - a Multi-Scale Analysis of Productivity

    Science.gov (United States)

    O'sullivan, F.

    2014-12-01

    Over the past decade, the large-scale production of natural gas, and more recently oil, from U.S. shale formations has had a transformative impact on the energy industry. The emergence of shale oil and gas as recoverable resources has altered perceptions regarding both the future abundance and cost of hydrocarbons, and has shifted the balance of global energy geopolitics. However, despite the excitement, shale is a resource in its nascency, and many challenges surrounding its exploitation remain. One of the most significant of these is the dramatic variation in resource productivity across multiple length scales, which is a feature of all of today's shale plays. This paper will describe the results of work that has looked to characterize the spatial and temporal variations in the productivity of the contemporary shale resource. Analysis will be presented that shows there is a strong stochastic element to observed shale well productivity in all the major plays. It will be shown that the nature of this stochasticity is consistent regardless of specific play being considered. A characterization of this stochasticity will be proposed. As a parallel to the discussion of productivity, the paper will also address the issue of "learning" in shale development. It will be shown that "creaming" trends are observable and that although "absolute" well productivity levels have increased, "specific" productivity levels (i.e. considering well and stimulation size) have actually falling markedly in many plays. The paper will also show that among individual operators' well ensembles, normalized well-to-well performance distributions are almost identical, and have remained consistent year-to-year. This result suggests little if any systematic learning regarding the effective management of well-to-well performance variability has taken place. The paper will conclude with an articulation of how the productivity characteristics of the shale resource are impacting on the resources

  19. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  20. Performance of NiWP/Al2O3 catalyst for hydroprocessing of light gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Owusu-Boakye, A.; Ferdous, D.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemistry and Chemical Engineering; Adjaye, J. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    The quality of diesel fuel in terms of cetane number and coloring is diminished if it has a high content of aromatics which cause the formation of undesirable emissions in exhaust gases. These compounds typically occur as mono, di, tri and polyaromatics. In response to strict environmental regulations, middle distillates now have fewer aromatics. Sulphur and nitrogen compounds in diesel fuels also cause the formation of SOx and NOx in the atmosphere, but the aromatic hydrogenation of diesel fuels is more complex than any of the hydrodesulphurization (HDS) or hydrodenitrogenation (HDN) processes. The NiWP/Al{sub 2}O{sub 3} catalyst in a trickle-bed reactor was used under a range of temperature and pressure conditions to study the reactivity of vacuum, atmospheric and hydrocracked light gas oils produced from Athabasca bitumen. The hydrogen feed ratio was kept constant and product samples from different feedstocks were analyzed with respect to sulfur, nitrogen and aromatic content. The study also included a comparison of gasoline selectivity and kinetic parameters for HDS and HDN reactions for the feed materials.

  1. Effect of heating rate on thermal cracking characteristics and kinetics of Xinjiang oil sand bitumen by TG-FTIR

    Science.gov (United States)

    Hao, Junhui; Zhang, Jinhong; Qiao, Yingyun; Tian, Yuanyu

    2017-08-01

    This work was aimed to investigate effects of heating rate on thermal cracking behaviors, distribution of gaseous products and activation energy of the thermal cracking process of Xinjiang oil sand bitumen (OSB). The thermal cracking experiments of Xinjiang OSB were performed by using thermogravimetric analyzer (TGA) at various heating rates of 10, 20, 50, 80 and 120 K/min. The evolving characteristic of gaseous products produced from the thermal cracking process was evaluated by the Fourier transform infrared spectrometry (FTIR) connected with TG. The kinetic parameters of the thermal cracking process of Xinjiang OSB at each of heating rate were determined by the Coats-Redfern model. The result show that the temperature intervals of DE volatilization stage and main reaction stage, the ((dw/dt) max and Tmax in thermal cracking process of Xinjiang OSB all increased with the increasing heating rate. While the heating rate has not obvious effect on the coke yield of Xinjiang OSB. Furthermore, the maximum absorbance of gaseous products and corresponding temperature became larger as the heating rate increases. The activation energy of this two stage both presented increasing trend with the rising heating rate, while the increasing content of that of DE volatilization stage was weaker compared to that of main reaction stage.

  2. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe

    NARCIS (Netherlands)

    Song, J.; Littke, R.; Weniger, P.; Ostertag-Henning, C.; Nelskamp, S.

    2015-01-01

    A suite of drilling cores and outcrop samples of the Lower Toarcian Posidonia Shale (PS) were collected from multiple locations including the Swabian Alb and Franconian Alb of Southwest-Germany, Runswick Bay of UK and Loon op Zand well (LOZ-1) of the West Netherlands Basin. In order to assess the

  3. Determination of Heating Value of Estonian Oil Shale by Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Aints

    2018-01-01

    Full Text Available The laser-induced breakdown spectroscopy (LIBS combined with multivariate regression analysis of measured data were utilised for determination of the heating value and the chemical composition of pellets made from Estonian oil shale samples with different heating values. The study is the first where the oil shale heating value is determined on the basis of LIBS spectra. The method for selecting the optimal number of spectral lines for ordinary multivariate least squares regression model is presented. The correlation coefficient between the heating value predicted by the regression model, and that measured by calorimetric bomb, was R2=0.98. The standard deviation of prediction was 0.24 MJ/kg. Concentrations of oil shale components predicted by the regression model were compared with those measured by ordinary methods.

  4. Oil shale mining and processing impact on landscapes in north-east Estonia

    International Nuclear Information System (INIS)

    Toomik, Arvi; Liblik, Valdo

    1998-01-01

    As the world's largest commercial oil shale reserve, the Estonian Oil Shale Deposit has been exploited since 1916. As a result of mining, storing of solid wastes from the oil shale separation, combustion in the power plants and its thermal processing, the landscape in northeastern Estonia has been essentially changed and the man-made landforms have developed: the new microreliefs of natural and artificial structure are formed, as well as 'mountainous' and hilly reliefs in the form of waste heaps, ash plateaus, coke-ash dumps etc. Deformed (stable) and undeformed (unstable) areas from underground mining currently cover about 220km 2 . About 90km 2 (80%) of the area damaged by open pits are recultivated and reformed as forested and agricultural (grassland) areas. The total area occupied by solid waste has reached up to 26km 2 . New technogenic landscape units, i.e. made by technical means, will essentially influence the environment

  5. The investigation for attaining the optimal yield of oil shale by integrating high temperature reactors

    International Nuclear Information System (INIS)

    Bhattacharyya, A.T.

    1984-03-01

    This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.) [de

  6. Shale oil value enhancement research. Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The first year of this effort was focussed on the following broad objectives: (1) Analyze the molecular types present in shale oil (as a function of molecular weight distribution); (2) Determine the behavior of these molecular types in liquid-liquid extraction; (3) Develop the analytical tools needed to systematize the process development; (4) Survey the markets to assure that these have high value uses for the types found in shale oil; (5) Explore selective process means for extracting/converting shale oil components into concentrates of potentially marketable components; (6) Compile overview of the venture development strategy and begin implementation of that strategy. Each of these tasks has been completed in sufficient detail that we can now focus on filling in the knowledge gaps evident from the overview.

  7. Western oil shale development: a technology assessment. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  8. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  9. Application of the High Temperature Gas Cooled Reactor to oil shale recovery

    International Nuclear Information System (INIS)

    Wadekamper, D.C.; Arcilla, N.T.; Impellezzeri, J.R.; Taylor, I.N.

    1983-01-01

    Current oil shale recovery processes combust some portion of the products to provide energy for the recovery process. In an attempt to maximize the petroleum products produced during recovery, the potentials for substituting nuclear process heat for energy generated by combustion of petroleum were evaluated. Twelve oil shale recovery processes were reviewed and their potentials for application of nuclear process heat assessed. The High Temperature Gas Cooled Reactor-Reformer/Thermochemical Pipeline (HTGR-R/TCP) was selected for interfacing process heat technology with selected oil shale recovery processes. Utilization of these coupling concepts increases the shale oil product output of a conventional recovery facility from 6 to 30 percent with the same raw shale feed rate. An additional benefit of the HTGR-R/TCP system was up to an 80 percent decrease in emission levels. A detailed coupling design for a typical counter gravity feed indirect heated retorting and upgrading process were described. Economic comparisons prepared by Bechtel Group Incorporated for both the conventional and HTGR-R/TCP recovery facility were summarized

  10. Modelling of underground geomechanical characteristics for electrophysical conversion of oil shale

    International Nuclear Information System (INIS)

    Bukharkin, A A; Koryashov, I A; Martemyanov, S M; Ivanov, A A

    2015-01-01

    Oil shale energy extraction is an urgent issue for modern science and technique. With the help of electrical discharge phenomena it is possible to create a new efficient technology for underground conversion of oil shale to shale gas and oil. This method is based on Joule heat in the rock volume. During the laboratory experiments the problem has arisen, when the significant part of a shale fragment is being heated, but the further heating is impossible due to specimen cracking. It leads to disruption in current flow and heat exchange. Evidently, in the underground conditions these failure processes will not proceed. Cement, clay and glass fiber/epoxy resin armature have been used for modelling of geomechanical underground conditions. Experiments have shown that the use of a reinforcing jacket makes it possible to convert a full rock fragment. Also, a thermal field extends radially from the centre of a tree-type structure, and it has an elliptic cross section shape. It is explained by the oil shale anisotropy connected with a rock laminar structure. Therefore, heat propagation is faster along the layers than across ones. (paper)

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  12. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  13. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    Science.gov (United States)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  14. Groundwater management for pollution control: a case study for oil shale mining in Northeast Estonia

    International Nuclear Information System (INIS)

    Erg, K.; Raukas, A.

    2001-01-01

    In Estonia oil shale is produced by underground and surface mining. The excavation methods used cause serious damage to the environment, especially to the topography, which hampers the further use of the mined-out areas. The oil shale mining has a serious impact on the environment also due to the pollution of surface and groundwater by polluted mine drainage waters, lowering of groundwater level, changing of soil properties and high air pollution rate. Decline in mining activities and the introduction of new technologies together with economic measures has improved the situation but much should be done during coming years. (author)

  15. Mason’s equation application for prediction of voltage of oil shale treeing breakdown

    Science.gov (United States)

    Martemyanov, S. M.

    2017-05-01

    The application of the formula, which is used to calculate the maximum field at the tip of the pin-plane electrode system was proposed to describe the process of electrical treeing and treeing breakdown in an oil shale. An analytical expression for the calculation of the treeing breakdown voltage in the oil shale, as a function of the inter-electrode distance, was taken. A high accuracy of the correspondence of the model to the experimental data in the range of inter-electrode distances from 0.03 to 0.5 m was taken.

  16. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  17. Impacts and mitigations of in situ bitumen production from Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, Neil

    2010-09-15

    85% or more of Alberta's oil sands is too deep to mine and will be recovered by in situ methods, i.e. from drill holes. This has been made commercially possible through the development in Alberta of Steam Assisted Gravity Drainage (SAGD). Does this impending development threaten the local ecosystem? A quantitative account is given of the principal impacts of in situ oil sands development in Alberta. Impacts on land (habitats), water, and air are considered in terms of local capacity, global benchmarks, and comparisons to alternative renewable technologies. Improvements due to new solvent-additive technology are highlighted.

  18. The revolution of shale oils in the United States. The business model is being tested

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2015-01-01

    This report proposes an overview of LTO (Light Tight Oil or shale oil) production in the USA, and examines the consequences of oil price fall on its future level. The first part gives an assessment of five years of this revolution which follows the shale gas revolution. It addresses the most remarkable evolutions: spectacular development of production, decrease of oil imports, increase of oil product exports, and a move towards oil independence. The second part highlights some peculiarities of shale oils and of the resulting business model which is much different from the Exploration/Production model for conventional oil. It analyses the LTO economy and breakeven prices required for a continued investment. Technological advances which are at the basis of this revolution are addressed, and expected improvements on a short or medium term are described. The main financial indicators are then presented as the financial situation of LTO producers is a crucial factor for future investment levels. The last chapter reports the study of the impact of price decrease on capital expenditures (CAPEX) of American producers, and on the drilling activity. It seems that LTO production will resist to price decrease

  19. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  20. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  1. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  2. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1948-08-03

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described, which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors containing shale fines from the zone, mixing sufficient fresh cold shale with the hydrocarbon vapors to quench the same and to cause condensation of the higher boiling constituents thereof, charging the mixture of vapors, condensate, and cold shale to a separation zone where the shale is maintained in a fluidized condition by the upward movement of the hydrocarbon vapors, withdrawing condensate from the separation zone and recycling a portion of the condensate to the top of the separation zone where it flows countercurrent to the vapors passing therethrough and causes shale fines to be removed from the vapors by the scrubbing action of the condensate, recovering hydrocarbon vapors and product vapors from the separation zone, withdrawing preheated shale from the separation zone and charging it to a shale distillation zone.

  3. Self lubrication of bitumen froth in pipelines

    International Nuclear Information System (INIS)

    Joseph, D.D.

    1997-01-01

    In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes' bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating

  4. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  5. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded

  6. A lithology identification method for continental shale oil reservoir based on BP neural network

    Science.gov (United States)

    Han, Luo; Fuqiang, Lai; Zheng, Dong; Weixu, Xia

    2018-06-01

    The Dongying Depression and Jiyang Depression of the Bohai Bay Basin consist of continental sedimentary facies with a variable sedimentary environment and the shale layer system has a variety of lithologies and strong heterogeneity. It is difficult to accurately identify the lithologies with traditional lithology identification methods. The back propagation (BP) neural network was used to predict the lithology of continental shale oil reservoirs. Based on the rock slice identification, x-ray diffraction bulk rock mineral analysis, scanning electron microscope analysis, and the data of well logging and logging, the lithology was divided with carbonate, clay and felsic as end-member minerals. According to the core-electrical relationship, the frequency histogram was then used to calculate the logging response range of each lithology. The lithology-sensitive curves selected from 23 logging curves (GR, AC, CNL, DEN, etc) were chosen as the input variables. Finally, the BP neural network training model was established to predict the lithology. The lithology in the study area can be divided into four types: mudstone, lime mudstone, lime oil-mudstone, and lime argillaceous oil-shale. The logging responses of lithology were complicated and characterized by the low values of four indicators and medium values of two indicators. By comparing the number of hidden nodes and the number of training times, we found that the number of 15 hidden nodes and 1000 times of training yielded the best training results. The optimal neural network training model was established based on the above results. The lithology prediction results of BP neural network of well XX-1 showed that the accuracy rate was over 80%, indicating that the method was suitable for lithology identification of continental shale stratigraphy. The study provided the basis for the reservoir quality and oily evaluation of continental shale reservoirs and was of great significance to shale oil and gas exploration.

  7. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...test_nC are sho’ T, in Trbl]e .3 d :: ab ffr stead..--staoe zerfrrmance was noted wcrh the snale fel. Wh’le a ..6 :o:n: = in Scecifiz Fuel Consumption...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine

  8. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz; Saputra, Wardana; Kirati, Wissem

    2017-01-01

    and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model

  9. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  10. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, S M

    1994-12-31

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of `LPG` in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs.

  11. Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins, the Piceance Creek basin in northwestern Colorado and the Uinta basin in northwestern Utah. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. Microgranular calcite and dolomite are the predominant mineral constituents of most of the oil shale. The microflora of the Green River formation consist of two forms that have been referred to as bacteria and many fungi spores. Two kinds of organic matter are seen in thin sections of the oil shale; one is massive and structureless and is the matrix of the other, which has definite form and consists of organisms or fragments of organisms. Most structureless organic matter is isotropic (there are two anisotropic varieties) and makes up the greater part of the total organic material.

  12. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Grimalt, J.O.; Lopez, J.F.; Albaiges, J.; Leeuw, J.W. de

    1997-01-01

    A study of the solvent extracts of four samples from two immature oil shales from Tertiary lacustrine basins, Ribesalbes and Campins (southern European rift system), deposited under reducing conditions, has allowed the identification of S-containing hopanoids and novel highly branched isoprenoids

  13. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    Azzam, S.M.

    1993-01-01

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  14. Porphyrin metabolism in lymphocytes of miners exposed to diesel exhaust at oil shale mine.

    NARCIS (Netherlands)

    Muzyka, V.; Scheepers, P.T.J.; Bogovski, S.; Lang, I.; Schmidt, N.; Ryazanov, V.; Veidebaum, T.

    2004-01-01

    The present study was carried out on the evaluation and application of new biomarkers for populations exposed to occupational diesel exhaust at oil shale mines. Since not only genotoxic effects may play an important role in the generation of tumors, the level of porphyrin metabolism was proposed as

  15. Geological settings of the protected Selisoo mire (northeastern Estonia threatened by oil shale mining

    Directory of Open Access Journals (Sweden)

    Helen Hiiemaa

    2014-05-01

    Full Text Available The protected Selisoo mire in northeastern Estonia is located above valuable oil shale resources, partly in the permitted mining area. We describe in detail the geomorphology and geological setting of the mire to understand the natural preconditions for its formation, development and preservation. We used the LiDAR-based digital elevation model for relief analysis, mapped the peat thickness with ground-penetrating radar and described the Quaternary cover through corings. Ridges, oriented perpendicular to the generally southward-sloping terrain, and shallow depressions at the surface of mineral soil have influenced mire formation and its spatio-temporal dynamics. The Quaternary cover under the mire is thin and highly variable. Therefore the mire is hydro­geologically insufficiently isolated from the limestone bedrock that is drained by the nearby oil shale mine and consequently the mining activities approaching the mire may have a negative influence on the wetland and proposed Natura 2000 site. Natura 2000 type wetlands, both protected or currently outside the nature reserves, cover a significant portion of the prospective oil shale mining areas. The distribution and resilience of those sites may significantly influence further utilization of oil shale resources.

  16. The Messel oil shale - an algae laminate. [A]. Der Messeler Oelschiefer - ein Algenlaminit

    Energy Technology Data Exchange (ETDEWEB)

    Goth, K. (Forschungsinstitut Senckenberg, Frankfurt am Main (Germany). Palaeontologische Sektion)

    1990-12-31

    The lacustrine sediment exposed at the former open cast mine 'Grube Messel', the Messel Oil Shale, consists of allochthonous, autochthonous and autigenous components. A low sedimentation rate (0,1-0,2 mm/a) and an increasing content of coarser clastic material towards the edges of the structure indicate that the Messel lake was small and deep, with a limited drainage basin. The high organic content of the oil shale is made up mainly by cell walls of the coccal green alga Tetraedron minimum. This alga bloomed once a year and caused the lamination of the sediment, which was achieved by sinking of the dead cells. Synsedimentary slumping and sliding of the uppermost sediment layers destroyed the varve pattern in several horizons. These turbidite-like layers often yield a higher amount of coarse grains than the laminations above and below. By counting the seasonal laminae, and taking into account of slumped sediments an age of one million years for the deposition of the Messel Oil Shale is suggested. In extant lakes varved sediments are usually deposited below a chemocline. Therefore a meromictic stratification of the Messel lake water column is suggested. Chemical analyses of Tetraedron minimum cell wall material revealed that it is composed of a highly aliphatic biopolymer. In the Messel Oil Shale this biopolymer forms the kerogen which is, in this case, a result of selective preservation, not of abiological random polymerization of monomers during diagnesis. (orig.) With 29 tabs., 27 figs.

  17. Shale fabric and velocity anisotropy : a study from Pikes Peak Waseca Oil Pool, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Newrick, R.T.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    The stratigraphic sequence of the Pikes Peaks region in west-central Saskatchewan consists of a thick sequence of shale overlying interbedded sandstones, shale and coal from the Mannville Group. Hydrocarbons exist in the Waseca, Sparky and General Petroleum Formations in the Pikes Peak region. The primary objective of this study was to examine the layering of clay minerals in the shale and to find similarities or differences between samples that may be associated with velocity anisotropy. Anisotropy is of key concern in areas with thick shale sequences. Several processing algorithms include corrections for velocity anisotropy in order for seismic images to be well focused and laterally positioned. This study also estimated the Thomsen parameters of anisotropy through field studies. The relationship between the shale fabric and anisotropy was determined by photographic core samples from Pike Peak using a scanning electron microscope. Shale from two wells in the Waseca Oil Pool demonstrated highly variable fabric over a limited vertical extent. No layering of clay minerals was noted at the sub-centimetre scale. Transverse isotropy of the stratigraphy was therefore considered to be mainly intrinsic. 7 refs., 3 tabs., 9 figs.

  18. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO 2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides as well as 40 K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in

  19. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    International Nuclear Information System (INIS)

    1993-01-01

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program's oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994

  20. Recovery of very viscous lubricating oils from shale-tar, etc

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, E

    1918-01-22

    A process is disclosed for the recovery of very viscous lubricating oils from brown-coal tar and shale tar, consisting in driving off from the crude tar or the tar freed from volatile constituents after removal of paraffin by precipitation with a volatile solvent such as acetone or one of its homologs, the light oils more or less completely with superheated steam from about 200 to 250/sup 0/C without any outside heating over a free flame.

  1. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  2. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  3. Preliminary analysis of surface mining options for Naval Oil Shale Reserve 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    The study was undertaken to determine the economic viability of surface mining to exploit the reserves. It is based on resource information already developed for NOSR 1 and conceptual designs of mining systems compatible with this resource. Environmental considerations as they relate to surface mining have been addressed qualitatively. The conclusions on economic viability were based primarily on mining costs projected from other industries using surface mining. An analysis of surface mining for the NOSR 1 resource was performed based on its particular overburden thickness, oil shale thickness, oil shale grade, and topography. This evaluation considered reclamation of the surface as part of its design and cost estimate. The capital costs for mining 25 GPT and 30 GPT shale and the operating costs for mining 25 GPT, 30 GPT, and 35 GPT shale are presented. The relationship between operating cost and stripping ratio, and the break-even stripping ratio (BESR) for surface mining to be competitive with room-and-pillar mining, are shown. Identification of potential environmental impacts shows that environmental control procedures for surface mining are more difficult to implement than those for underground mining. The following three areas are of prime concern: maintenance of air quality standards by disruption, movement, and placement of large quantities of overburden; disruption or cutting of aquifers during the mining process which affect area water supplies; and potential mineral leaching from spent shales into the aquifers. Although it is an operational benefit to place spent shale in the open pit, leaching of the spent shales and contamination of the water is detrimental. It is therefore concluded that surface mining on NOSR 1 currently is neither economically desirable nor environmentally safe. Stringent mitigation measures would have to be implemented to overcome some of the potential environmental hazards.

  4. Selective extraction of natural bitumen

    International Nuclear Information System (INIS)

    Starshov, M.; Starshov, I.

    1991-01-01

    The work performed in the field of natural bitumen extraction is aimed at maximum separation of organic phase. On treating bituminous rocks with solvents, the associated metals are extracted together with the organic phase and may further exert a negative effect on refining of natural bitumen. the authors propose a simplified two stage technique for the extraction of bitumen which enables to utilize V and Ni contained in the concentrate of the second stage extraction (Table). At the first stage, negative bitumen is extracted with the summary content of metals not exceeding 0.005%. This allows to avoid de metallization of native bitumen and subject it to treatment by catalytic cracking. during this stage gasoline and kerosene fractions, different oil distillates and condensates can be used as solvents. at the second stage, aromatic and halo id compounds bearing wastes and by-products, i.e. cheap and non deficient reagents, serve as solvents. The technology was tested under laboratory conditions using Tatar bituminous sands. It is also possible to use one solvent only, however, on condition that at first the oil product with the summary metal content below 0.005%, and then the remaining product is extracted. The proposed technology has proved so universal that it can be applied to refining any type of raw material to be found in the territory of the Tatar republic, using surface extraction complexes. (author). 9 refs., tab

  5. Shale oil value enhancement research. Quarterly report, March 1 - May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Activities during this quarter focused on integrating the various tasks and elements. During Phase-1, substantial effort was placed on designing and automating the identification of molecular types present in shale oil. The ability to know the molecular composition and to track a given ``target`` species through the initial concentration steps was deemed critically important to the ultimate success of the three-phase project. It has been this molecular tracking ability that clearly distinguishes the JWBA work from prior shale oil research. The major software and hardware tasks are not in place to rapidly perform these analytical efforts. Software improvements are expected as new questions arise. The existence of the major nitrogen and oxygen types in shale oil has been confirmed. Most importantly, the ability to convert higher molecular weight types to lower molecular weight types was preliminarily confirmed in the present quarter. This is significant because it confirms earlier hypothesis that values are found though out the boiling range. Potential yields of extremely high value chemicals, e.g., $1000/bbl of up to 10% by weight of the barrel remain a feasible objective. Market and economic assessment continue to show encouraging results. Markets for specialty and fine chemicals containing a nitrogen atom are expanding both in type and application. Initial discussions with pharmaceutical and agrochemical industries show a strong interest in nitrogen-based compounds. Major progress was made during this quarter in completing agreements with industry for testing of shale oil components for biological activity. Positive results of such testing will add to the previously known applications of shale oil components as pure compounds and concentrates. During this quarter, we will formulate the pilot plant strategy for Phase-11(a).

  6. Exploration and production. Know-how. Extra-heavy oils and bitumen. Reserves for the future

    International Nuclear Information System (INIS)

    2004-01-01

    How can ever-expanding needs be met without jeopardizing reserve life? The answers can be summed up in a single word: the innovation. In this framework the Group Total developed their research and development activities, which are endowed with a annual budget of more than 100 million dollars. Tools from seismic imaging to thermodynamic modeling of fluids and flows in any type of reservoir can be used in combination in order to steadily reduce uncertainties and control risks. These tools will help make technologically and economically feasible to produce new resources such extra-heavy crudes, very acid gases, deeply-buried reservoirs or oil and gas reserves situated in ultra deep waters. (A.L.B.)

  7. Process for separating and recovering oil from oil-sands, etc

    Energy Technology Data Exchange (ETDEWEB)

    Preller, H

    1921-02-24

    A process for separating and recovering oil from oil-sands, bitumen from oil-chalk, oil-shale, and coal, according to Patent 400,122, is described. It is characterized in that the mined material falling on account of its weight is exposed to the running hot water in circulation through the wash-chamber and the clarifying chamber arranged separate or built on (circulation) being obtained by pumps or injectors in a regulatable motion.

  8. Application of oxy-fuel CO2 capture for In-situ bitumen extraction from Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Mark; Goold, Scott; Laux, Stefan; Sharma, Apoorva; Aasen, Knut; Neu, Ben

    2010-09-15

    The CO2 Capture Project, along with Praxair, Devon Canada, Cenovus Energy and Statoil are executing a project to demonstrate oxy-fuel combustion as a practical and economic method for CO2 capture from once-through steam generators used in the in-situ production of bitumen in the Canadian Oil Sands. The goal of the project is to develop a reliable, lower cost solution for capturing CO2 that will eliminate up to 90% of the GHG emissions from in-situ operations. The participants will present results of Phase I of this project, and will also outline the future Phases to pilot this technology.

  9. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Hall, V.S. (comp.)

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  10. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  11. Application of organic petrography in North American shale petroleum systems: A review

    Science.gov (United States)

    Hackley, Paul C.; Cardott, Brian J.

    2016-01-01

    Organic petrography via incident light microscopy has broad application to shale petroleum systems, including delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows practitioners the ability to identify various types of organic components and demonstrates that solid bitumen is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM observation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers from inability to confirm the type of organic matter present. Herein we review organic petrography applications in the North American shale plays through discussion of incident light photographic examples. In the first part of the manuscript we provide basic practical information on the measurement of organic reflectance and outline fluorescence microscopy and other petrographic approaches to the determination of thermal maturity. In the second half of the paper we discuss applications of organic petrography and SEM in all of the major shale petroleum systems in North America including tight oil plays such as the Bakken, Eagle Ford and Niobrara, and shale gas and condensate plays including the Barnett, Duvernay, Haynesville-Bossier, Marcellus, Utica, and Woodford, among others. Our review suggests systematic research employing correlative high resolution imaging techniques and in situ geochemical probing is needed to better document hydrocarbon storage, migration and wettability properties of solid bitumen at the pressure and temperature conditions of shale reservoirs.

  12. Upgrading of bitumen using supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Kayukawa, T. [JGC Corp., Ibaraki (Japan)

    2009-07-01

    This presentation outlined the technical and economic aspects of thermal cracking by supercritical water. Supercritical water (SCW) is a commonly used method for upgrading heavy oil to produce pipeline-transportable oil from high-viscous bitumen. The process uses water and does not require hydrogen nor catalysts. Pre-heated bitumen and water enter a vertical reactor with flows of counter current at the supercritical point of water. The upgraded synthetic crude oil (SCO) and pitch are obtained from the top of the reactor when the bitumen is thermally cracked. Bench-scale studies have shown that Canadian oil sands bitumen can be converted to 80 volume per cent of SCO and 20 volume per cent of pitch. The SCO has satisfied Canadian pipeline specifications in terms of API gravity and kinetic viscosity. The kinetic viscosity of the pitch has also satisfied boiler fuel specifications. tabs., figs.

  13. The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-04-01

    Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

  14. Eo-Oligocene Oil Shales of the Talawi, Lubuktaruk, and Kiliranjao Areas, West Sumatra: Are they potential source rocks?

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.198To anticipate the increasing energy demand, additional data and information covering unconventional fossil fuels such as oil shale must be acquired to promote the usage of alternative energy sources to crude oil. The Talawi and Lubuktaruk regions situated within intra-montane Ombilin Basin, and the Kiliranjao assumed to be a small intra montane basin are occupied by Eo-Oligocene sediments of Sangkarewang and Kiliran Formations, respectively. Field activity, geochemical screening techniques, and organic petrographic analysis, supported by SEM mode, are methods used. Most of the oil shale sequence is typically of an organically rich-succession comprising predominantly well-bedded, laminated and fissile, brownish to dark grey organic-rich shale and mudstone rocks. The exinite macerals within oil shale comprise mainly Pediastrum-lamalginite with minor cutinite, resinite, liptodetrinite, sporinite, bituminite, and rare Botryococcus-telalginite. Therefore; the oil shale deposits can be described as “lamosites”. Minor vitrinite maceral is also recognized. TOC analysis on selected shale samples corresponds to a fair up to excellent category of source rock characterization. The hydrogen index (HI for all samples shows a range of values from 207 - 864, and pyrolysis yield (PY ranges from 2.67 to 79.72 mg HC/g rock. The kerogen is suggested to be of mixed Type II and Type I autochthonous materials such as alginite, with minor allochthonous substances. Oil samples collected appear to be positioned within more oil prone rather than gas prone. Thermal maturity of the oil shales gained from Tmax value and production index (PI tends to show immature to marginally/early mature stage. A consistency in the thermal maturity level results by using both Tmax and vitrinite reflectance value is recognized. On the basis of  SEM analysis, the oil shale has undergone a late eodiagenetic process. Thereby, overall, vitrinite reflectance

  15. Polar constituents isolated from Green River oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Anders, D.E.; Doolittle, F.G.; Robinson, W.E.

    1975-01-01

    The mass spectrometric, ir absorption, and NMR data were interpreted for 22 compounds obtained from a polar fraction of Green River shale. The major constituents analyzed are believed to be of the following compositional types: C/sub n/H/sub 2n/O (cyclohexanols and chain isoprenoid ketones), C/sub n/H/sub 2n-10/O (tetralones and indanones), C/sub n/H/sub 2n-7/N (tetrahydroquinolines), C/sub n/H/sub 2n-11/N(quinolines), C/sub n/H/sub 2n-1/NO (alkoxypyrrolines), C/sub n/H/sub 2n-5/NO/sub 2/ (maleimides), C/sub n/H/sub 2n-8/ (tetralins), C/sub n/H/sub 2n-12/ (naphthalenes) and C/sub n/H/sub 2n-14/ (benzylbenzenes). This work expands the present information about nitrogen, oxygen and aromatic constituents indigenous to Green River shale.

  16. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    Science.gov (United States)

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  17. The challenge of shale to the post-oil dreams of the Arab Gulf

    International Nuclear Information System (INIS)

    Sultan, Nabil

    2013-01-01

    Growth patterns in the Gulf Cooperation Council (GCC) countries suggest that demand for energy in this region is likely to increase in the years to come and this situation ultimately means that more of the region’s natural resources will need to be devoted to meeting this demand. For some of the GCC countries, the option to meet future power demands through alternative sources of energy such as nuclear power was deemed an attractive proposition. Furthermore, real investments and plans to use other alternative energy sources such as solar, wind, hydrogen and geothermal are also gaining momentum in the region. However, relatively recent developments in the technology used for extracting gas and oil from shale rock formations places a big question mark on the GCC countries’ energy plans including those relating to alternative and renewable sources of energy. This article examines the GCC’s new energy drive and explores the economic and political motivations behind it. Furthermore, the article also examines the potential impact of shale gas and oil extraction on this region’s abundant fossil-based resources and the ramifications of such impact (if it materialises) for the GCC countries’ alternative energy plans, future wealth and their political stability. - Highlights: • Shale gas (and oil) could potentially affect future oil prices. • Gas could be the future transport fuel. • Arab Gulf countries could be the victims

  18. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    Science.gov (United States)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better

  19. NMR measurement of bitumen at different temperatures.

    Science.gov (United States)

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (index (HI), fluid content and viscosity were evaluated by using corrected T2.

  20. Bitumen pyrolysis

    International Nuclear Information System (INIS)

    Braehler, G.; Noll, T.

    2014-01-01

    In the past bitumen was a preferred matrix for the embedding of low and intermediate level radioactive waste: its geological history promised long term stability in final repositories. A great variety of waste has been embedded: technological waste, spent ion exchange resins, concrete, rubble, etc. Liquid waste like evaporator concentrates can be dried and embedded simultaneously in extruders, allowing simple processes and equipment. Unfortunately, during long term intermediate storage the bituminized waste drums proved out being not as stable as expected: a significant number turned out to be no longer acceptable for final disposal, and some of them even needed repacking to enable further intermediate storage. A method to rework such drums with bituminized radioactive waste seems to be urgently needed. Pyrolysis and pyro-hydrolysis (= pyrolysis with water steam added) have a long history for the treatment of organic waste: spent solvent (TBP), spent ion exchange resins, alpha waste (predominantly PVC), etc. Due to its low process temperature and the endothermic character, such processes offer significant safety advantages, as compared to incineration or dissolving in organic solvents. Results of lab-scale investigations and concepts for facilities are presented. (authors)

  1. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  2. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  3. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  4. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H; Klevtsov, I [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1999-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  5. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  6. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  7. Technogenic waterflows generated by oil shale mining: impact on Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2000-01-01

    The correlation between natural (meteorological, hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by oil shale mining in the Purtse catchment region in northeastern Estonia during 1990-1998 has been studied. As a result of a complex effect of these factors (correlation coefficients r = 0. 60-0.86), a so-called hydrogeological circulation of water has been formed in the catchment area. It totals 25-40 % from the whole amount of mine water pumped out at the present, but in the near future it will reach even up to 50-55 %. On the ground of average data, a conceptual balance scheme of water circulation (cycles) for the Purtse catchment landscape has been worked out. It shows that under the influence of technogenic waterflows a new, anthropogenic biogeochemical matter cycling from geological environment into hydrological one has been formed in this catchment area. Transition of the macro- and microelements existing in the composition of oil shale into the aqueous solution and their distribution in mine water are in a good harmony with the so-called arrangement of the elements by the electrode potentials. The technogenic hydrochemical conditions arising in the catchment rivers will not disappear even after finishing oil shale mining. (author)

  8. Carbon Isotope Analyses of Individual Hydrocarbon Molecules in Bituminous Coal, Oil Shale and Murchison Meteorite

    Directory of Open Access Journals (Sweden)

    Kyoungsook Kim

    1998-06-01

    Full Text Available To study the origin of organic matter in meteorite, terrestrial rocks which contain organic compounds similar to the ones found in carbonaceous chondrites are studied and compared with Murchison meteorite. Hydrocarbon molecules were extracted by benzene and methanol from bituminous coal and oil shale and the extracts were partitioned into aliphatic, aromatic, and polar fractions by silica gel column chromatography. Carbon isotopic ratios in each fractions were analysed by GC-C-IRMS. Molecular compound identifications were carried by GC-MS Engine. Bituminous coal and oil shale show the organic compound composition similar to that of meteorite. Oil shale has a wide range of δ(13C, -20.1%_0 - -54.4%_0 compared to bituminous coal, -25.2%_0 - -34.3%_0. Delta values of several molecular compounds in two terrestrial samples are different. They show several distinct distributions in isotopic ratios compared to those of meteorite; Murchison meteorite has a range of δ(13C from -13%_0 to +30%_0. These results provide interpretation for the source and the formation condition of each rock, in particular alteration and migration processes of organic matter. Especially, they show an important clue whether some hydrocarbon molecules observed in meteorite are indigenous or not.

  9. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    International Nuclear Information System (INIS)

    Jaber, J.O.; Probert, S.D.; Williams, P.T.

    1998-01-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  10. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, J.O.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering; Williams, P.T. [Leeds University (United Kingdom). Dept. of Fuel and Energy

    1998-02-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  11. Mud Lake, a modern analog of oil shale deposition in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J.D.

    1987-01-01

    Mud Lake in north-central Florida was identified by Bradley as an analog of oil shale-type kerogen deposition. This lake supports an abundant diatom and algal flora which is unique in that the accumulating algal ooze does not decay as long as it stays oxygenated. This same material does not nutritionally support many invertebrates, owing to its flocculent consistency and apparent indigestibility, although fish are abundant and an occasional crocodile is found in the lake. Accumulation of the algal ooze is very slow at roughly 1 foot per 52,000 years based on radiocarbon dates. An understanding of oil shale depositional conditions could be translated into a predictive model for location and recognition of hydrocarbon generating source rocks. When oil shales are mentioned the first association is likely to be that with the Eocene Green River Formation of the Western US. Conditions leading to deposition and preservation of this massive quantity of organic debris is difficult to comprehend, but recognition of modern analogs provide an available area for study and comparison.

  12. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  13. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  14. Khadum Formation of Pre-Caucasus region as potential source of oil shales: geology and geochemistry

    Directory of Open Access Journals (Sweden)

    N.Sh. Yandarbiev1

    2017-05-01

    Full Text Available One of the main modern aim for oil industry is the development of hydrocarbon extraction technologies from «oil shale». In Russia there are kerogen-saturated carbonate-clayey-siliceous deposits of the Bazhenov Formation, carbonate rocks of the Volga-Ural and Timan-Pechora oil and gas bearing basins and clayey Maikop series of Pre-Caucasus region. The Khadum Formation is lower part of the Maikop series represented by carbonate-clay and clayey deposits. On the basis of long-term field and laboratory investigation conducted by specialists of the Oil and Gas Department from Geological Faculty of the Lomonosov Moscow State University. a comprehensive study of the lithological composition, structure, geochemical, hydrogeological and hydrodynamic characteristics of the Paleogene section and monitoring of the drilled wells, the prospects of the oil and gas potential of the Khadum deposits of the Oligocene in the Eastern Pre-Caucasus oil and gas bearing basin were estimated. 11 gas and 19 oil deposits are discovered within the Khadum deposits, and they are confined to the sand layers and lenses, but most of the Khadum section belongs to «unconventional» sources of hydrocarbons. Based on the integrated approach, a map of oil and gas potential prospects for the Khadum deposits was constructed. Highly prospective territories for drilling for oil, areas with small and medium perspectives, and gas prospecting areas have been singled out. Recommendations are given for drilling and technology for the development of the Pre-Caucasus oil shales, based on the world experience in the development of such formations.

  15. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  16. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  17. Natural zeolite bitumen cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-07-01

    A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.

  18. The need for a marketing strategy for Alberta bitumen

    International Nuclear Information System (INIS)

    Redford, D.A.

    1993-01-01

    Over the past 15 years, government and industry have invested heavily in research and development of new technology for extracting bitumen from the Alberta oil sands. The results have been a dramatic increase in the fraction of oil sands deposits that could be economically exploited and a drop in production costs. However, no rapid increase in bitumen recovery has been achieved and most new bitumen production projects have been postponed or cancelled. This is the result of very variable prices for bitumen and the inadequacy of a marketing strategy which relies on the sale of raw bitumen. Options such as transport of bitumen to southern markets are limited by the need to reduce bitumen viscosity for pipelining and by the limited market for emulsified or diluted bitumen. Another possible strategy, conversion of the bitumen to synthetic crude oil, is limited by high costs, product characteristics (too much diesel and not enough gasoline), and a market limited to specialized refineries. A third strategy is to convert and refine bitumen to transportation fuels in Alberta, using inexpensive local natural gas, and transporting the products through existing pipeline facilities. 3 figs

  19. The need for a marketing strategy for Alberta bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Redford, D.A. (Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada))

    1993-03-01

    Over the past 15 years, government and industry have invested heavily in research and development of new technology for extracting bitumen from the Alberta oil sands. The results have been a dramatic increase in the fraction of oil sands deposits that could be economically exploited and a drop in production costs. However, no rapid increase in bitumen recovery has been achieved and most new bitumen production projects have been postponed or cancelled. This is the result of very variable prices for bitumen and the inadequacy of a marketing strategy which relies on the sale of raw bitumen. Options such as transport of bitumen to southern markets are limited by the need to reduce bitumen viscosity for pipelining and by the limited market for emulsified or diluted bitumen. Another possible strategy, conversion of the bitumen to synthetic crude oil, is limited by high costs, product characteristics (too much diesel and not enough gasoline), and a market limited to specialized refineries. A third strategy is to convert and refine bitumen to transportation fuels in Alberta, using inexpensive local natural gas, and transporting the products through existing pipeline facilities. 3 figs.

  20. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  1. Evidence for polar porphyrins of bacterial and algal origin in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, R.; Callot, H.J.; Albrecht, P.

    1986-04-01

    The major part of the porphyrins of the immature Messel oil shale is composed of monocarboxylic acids (C/sub 30/-C/sub 36/) essentially complexed with nickel. These acids were separated as methyl esters by reverse phase h.p.l.c. and nine components characterized by mass and NMR spectroscopy. Structural assignments were supported by synthesis of several members and nuclear Overhauser effect experiments. Besides a major component of the DPEP series, this fraction contained other members belonging to the phyllo- and etioporphyrin series, as well as to a novel chlorophyll C derived series typical of algae. Furthermore the identification of several higher homologues (C/sub 34/-C/sub 36/) of the DPEP series, structurally related to the bacteriochlorophylls, reflects the bacterial input. The characterization of a series of petroporphyrinic acids from the polar fraction of the Messel oil shale confirms the chlorophyllic (a+b,c) origin of these porphyrins. It furthermore implies that most of the characterized petroporphyrins and the survival of carboxylic functions in this class of compounds under mild diagenetic conditions. It furthermore implies that most of the characterized petroporphyrins in Messel shale originate from photosynthetic bacteria and microscopic algae.

  2. Mineralogy and organic petrology of oil shales in the Sangkarewang Formation, Ombilin Basin, West Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052 (Australia)]|[Centre for Geological Resources, Department of Mines and Energy, Jalan Soekarno Hatta No. 444, Bandung 40254 (Indonesia); Ward, Colin R. [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052 (Australia)

    2009-01-31

    The Ombilin Basin is filled by late Eocene to early Oligocene marginal fan deposits (Brani Formation) and lacustrine shales (Sangkarewang Formation), unconformably overlain by a late Oligocene to early Miocene fluvial sequence (Sawahlunto and Sawahtambang Formations) and capped by an early to mid-Miocene marine sequence (Ombilin Formation). Significant oil shale deposits occur in the Sangkarewang Formation, intercalated with thin laminated greenish-grey calcareous sandstones. X-ray diffraction shows that the sediments consist mainly of quartz, feldspar, carbonates and a range of clay minerals, together in some cases with minor proportions of sulphides, evaporites and zeolites. Feldspar and non-kaolinite clay minerals decrease up the sequence, relative to kaolinite, suggesting a changing sediment source as the basin was filled. Calcite, thought to be mainly of authigenic origin, is also more abundant in the middle and upper parts of the sequence. The organic matter in the oil shales of the sequence is dominated by liptinite macerals, particularly alginite (mainly lamalginite) and sporinite. Cutinite also occurs in some samples, along with resinite and traces of bituminite. The dominance of lamalginite in the liptinite components suggests that the material can be described as a lamosite. Samples from the Sangkarewang Formation have vitrinite reflectance values ranging between 0.37% and 0.55%. These are markedly lower than the vitrinite reflectance for coal from the overlying Sawahlunto Formation (0.68%), possibly due to suppression associated with the abundant liptinite in the oil shales. Fischer assay data on outcrop samples indicate that the oil yield is related to the organic carbon content. Correlations with XRD data show that, with one exception, the oil yield and organic carbon can also be correlated directly to the abundance of carbonate (calcite) and inversely to the abundance of quartz plus feldspar. This suggests that the abundance of algal material in the

  3. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  4. Synthesis, characterization and performance of NiMo catalysts supported on titania modified alumina for the hydroprocessing of different gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Bakhshi, N.N.; Dalai, A.K. [Catalysis and Chemical Reactor Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Sask. (Canada); Adjaye, J. [Syncrude Canada Ltd., Edmonton Research Center, No. 9421, 17th Avenue, Edmonton, Alta. (Canada)

    2007-03-08

    In this work, a series of NiMo/Al{sub 2}O{sub 3} catalyst was prepared using different Al{sub 2}O{sub 3} supports modified by titania (0-9 wt%). All modified supports and fresh catalysts were characterized by BET surface area, pore volume and pore diameter measurement, TPR, TPD, XRD, FTIR and Raman spectroscopy analyses. The initial activity of these catalysts were tested in a trickle-bed reactor using three different gas oils such as light gas oil (LGO), blended gas oil (blended: 50% LGO and 50% HGO) and heavy gas oil (HGO), all derived from Athabasca bitumen. Little structural change in alumina was observed with the incorporation of titania. XRD analysis showed the well dispersion of Ni and Mo on the support. Titania in alumina increased the formation of polymolybdenum oxide on the catalyst as evident from TPR and Raman analyses. Weak-intermediate-strong acid sites on the catalyst were observed at all titania concentrations. The Lewis and Bronsted acidity on the catalyst surface increased with the increase in titania concentration from 0 to 9 wt%. Nitrogen conversion increased from 57 to 71 wt%, from 83 to 93 wt% and from 75 to 80 wt% for LGO, blended and HGO, respectively and also sulfur conversion of LGO increased from 86 to 92 wt% when titania concentration was increased from 0 to 9 wt%. For blended and HGO, sulfur conversion was in the range 96-99 wt% at all titania concentrations. (author)

  5. Bitumen based modified substance

    International Nuclear Information System (INIS)

    Kostolanyi, P.

    1987-01-01

    The necessary amounts of tetrahydrosilicic acid and methyl phenyl silicon oil are added to molten bitumen heated to temperatures of 50 to 200 degC. The mixture is thoroughly mixed and let to cool. The structure of the product comes close to gel and its properties (penetration, softening point, workability time, penetration index) may be changed in dependence on the amount of additions and on the time and temperature of heating. The advantage of the thus prepared modified material is its shorter workability time, its ability to bind materials with a certain water content, and its relatively low price. It may be used for fixing and storing low-and medium-level radioactive organic and thickened waste waters. (E.S.)

  6. Achievement report for fiscal 1997 on research under New Sunshine Program. Research on heavy oil hydrogenation and heavy oil/coal coprocessing; 1997 nendo jushitsuyu no suisoka shori narabi ni jushitsuyu/sekitan no coprocessing ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The achievements of the Hokkaido National Industrial Research Institute relating to the titled research are reported. In the study relating to the structural properties of heavy oils, the structures of products of Green River shale oil carbonization is analyzed, heterofunctional groups contained in the oil are subjected to FT-IR (Fourier transform infrared) spectroscopic analysis, and their forms of existence are investigated. In the study relating to the hydrogenation process of heavy oils, findings obtained from experiments are reported, which involve the processing of shale oil by hydrogenation and changes brought about in its chemical structure, hydrogenation of oil sand bitumen, kinetics of hydrocracking of bitumen at a high conversion rate, and a lumping model for bitumen hydrocracking reaction. In the study relating to the coprocessing of heavy oil/coal, coprocessing is experimented for coal and shale oil, coal and oil sand bitumen, and other combinations, and the results are reported. Also, a review is made of the transfer of hydrogen in coprocessing. (NEDO)

  7. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    International Nuclear Information System (INIS)

    Morea, Michael F.

    1999-01-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field

  8. Development and application of a permit information system for shale oil (PERMISSO). Final report appendix: summary sheets of regulations required for oil shale development, June 1978--May 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This appendix is comprised of summaries of various governmental permits, licenses and other approvals required for oil shale development. The summaries were completed during the period June--October 1978, and are current as of July 1, 1978, although more recent authority was cited in some cases. One of the major purposes of Phase II of the project will be to update these summaries as statutes and regulations are added, changed or eliminated. This updating will be particularly important in the case of environmental permits and approvals. Many legislative and regulatory changes affecting environmental requirements are pending at this time and will alter many of the summaries herein. In addition, many regulatory proposals have been or likely will be challenged in the courts. When such conflicts are resolved further changes may be in order.

  9. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  10. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3x3.0x3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992

  11. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Yang, Yu; Lu, Xiaofeng; Wang, Quanhai

    2017-01-01

    Highlights: • The co-combustion characteristic parameters were studied. • The co-combustion of oil shale and semi-coke could be expressed roughly by the addition of individual components. • Activation energy was calculated by Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. - Abstract: In the present work, thermogravimetric analysis was employed to investigate co-combustion behaviors of Fushun low calorific oil shale and its semi-coke. The synergy effect was estimated by using the interaction coefficient and the relative error of mean square root. In addition, activation energy was also calculated by means of Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. Results indicated that with the increase of oil shale mass fraction and oxygen concentration, combustion characteristics of the samples were improved. And some little interaction did occur during the co-combustion process, but it was relatively slight. Consequently, the co-combustion of oil shale and semi-coke still could be expressed roughly by the addition of individual components of the mixtures. Furthermore, activation energy of the samples decreased slowly at the initial stage attributed to the minerals’ catalytic effects, and in the final stage, it jumped to a high value, suggesting that the burnout of the samples was difficult. Besides, the mix proportion of oil shale which was added to stabilize the combustion in the circulating fluidized bed was also theoretically calculated.

  12. Assessment of in-place oil shale resources of the Eocene Green River Formation, a foundation for calculating recoverable resources

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracy

    2011-01-01

    The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.

  13. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.; Brandt, Adam R.; Cai, Hao; Wang, Michael Q.; Vafi, Kourosh; Reedy, Robert C.

    2017-01-30

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gas (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.

  14. Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

    1979-07-01

    The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

  15. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  16. New adsorbents from oil shales. Preparation, characterization and U, Th isotope adsorption tests

    International Nuclear Information System (INIS)

    Khouya, E.; Andres, Y.; Naslain, R.; Pailler, R.; Nourredine, A.

    2004-01-01

    New activated adsorbents for radionuclides have been produced from Moroccan oil shales by pyrolysis of the natural material at 550 deg C flowed by a KMnO 4 activation. The texture and composition of the native rock and the adsorbents were studied before their use in tests for adsorption of radionuclides from standard solutions prepared from uranylnitrate and thorium nitrate in equilibrium with their daughters. The distribution coefficients between solutions containing U, Th and Ra and the adsorbents were evaluated by means of specific activities, measured by γ-ray spectrometry. The adsorbents were observed to eliminate U, Th, Ra, Ac and Tl from aqueous solutions. (author)

  17. Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2013-01-01

    Highlights: • Development of a techno-economic model for UCG-CCS and SMR-CCS. • Estimation of H 2 production costs with and without CCS for UCG and SMR. • UCG is more economical for H 2 production with CCS. • SMR is more cost efficient for H 2 production without CCS. • Cost competiveness is highly sensitive to the IRR differential between UCG and SMR. - Abstract: This paper examines the techno-economic viability of hydrogen production from underground coal gasification (UCG) in Western Canada, for the servicing of the oil sands bitumen upgrading industry. Hydrogen production for bitumen upgrading is predominantly achieved via steam methane reforming (SMR); which involves significant greenhouse gas (GHG) emissions along with considerable feedstock (natural gas) cost volatility. UCG is a formidable candidate for cost-competitive environmentally sustainable hydrogen production; given its negligible feedstock cost, the enormity of deep coal reserves in Western Canada and the favourable CO 2 sequestration characteristics of potential UCG sites in the Western Canadian sedimentary basin (WCSB). Techno-economic models were developed for UCG and SMR with and without CCS, to estimate the cost of hydrogen production including delivery to a bitumen upgrader. In this paper, at base case conditions, a 5% internal rate of return (IRR) differential between UCG and SMR was considered so as to account for the increased investment risk associated with UCG. The cost of UCG hydrogen production without CCS is estimated to be $1.78/kg of H 2 . With CCS, this increases to range of $2.11–$2.70/kg of H 2 , depending on the distance of the site for CO 2 sequestration from the UCG plant. The SMR hydrogen production cost without CCS is estimated to be $1.73/kg of H 2 . In similar fashion to UCG, this rises to a range of $2.14 to $2.41/kg of H 2 with the consideration of CCS. Lastly, for hydrogen production without CCS, UCG has a superior cost competitiveness in comparison to SMR

  18. Chemical composition of anthropogenic particles on needles collected close to the Estonian oil-shale power plants

    International Nuclear Information System (INIS)

    Meinander, O.

    1995-01-01

    Within the countries surrounding the Baltic Sea, north-eastern Estonia is among the most polluted areas. Emissions from the oil-shale power plants produce air pollution problems both locally and on a larger scale. In the atmosphere, pollutants mix and convert. Consequently, the particles deposited due to the use of oil-shale can have various chemical compositions. From the point of view of air chemistry, ecological effects and air pollution modelling, knowledge of the chemical composition of the deposited particles can be of great value. The aim of this work was to study the chemical composition of single anthropogenic particles occurring on needle surfaces in north-eastern Estonia and Southern Finland close to the Estonian oil-shale power plants. For the purpose, scanning electron microscopical microanalysis was used

  19. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  20. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    Science.gov (United States)

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  1. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  2. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  3. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  4. Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian black shales at the northern margin of the Variscan mountain belt (Germany and Belgium)

    Energy Technology Data Exchange (ETDEWEB)

    Rippen, D.; Uffmann, A.K.; Littke, R. [RWTH Aachen Univ. (Germany). Energy and Mineral Resources Group (EMR)

    2013-08-01

    Ongoing exploration on unconventional gas resources in Central Europe led to a focus of interest on Paleozoic black shale formations. The work presented here comprises diverse assessment-critical data of potentially economic black shale formations of the Carboniferous, including mineralogy, geochemical data, petrophysical data and geological parameters such as burial and thermal history. The sampled and investigated Paleozoic black shales are highly mature to overmature in terms of oil generation, although some gas generation potential remains. Especially the shales of the uppermost Mississippian (Upper Alum Shale/Chokier Formation) have high contents of organic carbon, are tens of meters thick and reached the gas window. Adjacent carbonates are often stained black and rich in solid bitumen, indicating a former oil impregnation of these reservoirs. Furthermore, the geochemical and petrophysical properties of the Upper Alum Shale and Chokier Formation black shales are similar to those of already producing shale gas plays like the Barnett shale in the USA. These shale sequences are enriched in silica, needed for enhanced fraccability performance at production stage. Although all hydrocarbon potential for the Mississippian shales is exhausted, a high retention potential of thermally generated gas is favored by thick overlying sequences of greywackes and shales in most of the investigated areas. Based on these observations, the Upper Alum Shale and the Chokier formation can be regarded as potential gas shale targets. Any exploration will have to take place north of the outcrop areas, because present-day Mississippian strata are completely eroded south of the studied outcrops. Most other Mississippian and Pennsylvanian black shales are relatively thin and are therefore not considered as primary targets for shale gas plays. (orig.)

  5. Stuart oil shale project stage two: executive summary: draft environmental impact statement

    International Nuclear Information System (INIS)

    1999-09-01

    The project is an oil shale open pit mine and processing operation that is currently being commissioned 15 km north of Gladstone, Queensland, Australia, and is owned as a joint venture by Southern Pacific Petroleum N.L., Central Pacific Minerals N.L, and Suncor Energy Inc., a leading Canadian company that is an integrated energy company. The results of a comprehensive investigation are included of the potential environmental impacts of the project, and which are described in the Draft Environmental Impact Statement (EIS). In stage two, there is included the existing mine expansion as well as the construction of an additional process plant based around a larger commercial scale ATP oil shale processing plant. The new stage two operation will be developed next to and integral with services and infrastructure provided for stage one. Described are: the assessment process, regulatory framework and the project area, the needs for an alternative to the project, the proposal itself, the existing natural, social and economic impacts, and the environmental impacts as well as plans for their mitigation. In appendices there are included a draft environmental management overview strategy and an environmental management plan. The elements covered in the report by section are: background, need for the project, the proponent, legislation and approvals, project description, environmental issues and impact management

  6. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    International Nuclear Information System (INIS)

    Santos, J.V. dos; Mangrich, A.S.; Pereira, B.F.; Pillon, C.N.; Bonagamba, T.J.

    2013-01-01

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand 13 C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO 2+ correlated positively with uronic acid-type hydrophilic organic structures, determined from the 13 C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  7. Synthesis of nucleated glass-ceramics using oil shale fly ash

    International Nuclear Information System (INIS)

    Luan Jingde; Li Aimin; Su Tong; Cui Xiaobo

    2010-01-01

    Nucleated glass-ceramics materials were produced from oil shale fly ash obtained from Huadian thermal power plant in China with the addition of analytic reagent CaO. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of two parent glass samples with different alkalinity (Ak=m CaO /m SiO 2 ) were identified as Tn 1 = 810 deg. C, Tc 1 = 956 deg. C and Tn 2 = 824 o C, Tc 2 = 966 deg. C, respectively. X-ray diffraction (XRD) analysis of the produced nucleated glass-ceramics materials revealed that there was a coexistence phenomenon of multi-crystalline phase and the main crystalline phase was anorthite ([Ca,Na][AI,Si] 2 Si 2 O 8 ). The microstructure of the glass-ceramics materials was examined by scanning electron microscope (SEM). SEM observation indicated that there was an increase in the quantity of sphere-shaped crystals when crystallization time increased. Furthermore, the increase of alkalinity caused more amorphous phase occurring in glass-ceramics materials. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase and fine microstructure had high density, fine performance of resisting compression (328.92 MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall results indicated that it was a feasible attempt to produce nucleated glass-ceramics materials for building and decorative materials from oil shale fly ash.

  8. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, J.O.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering; Williams, P.T. [Leeds University (United Kingdom). Dept. of Fuel and Energy

    1998-03-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e., the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oilshale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  9. Balance of alkaline and acidic pollution loads in the area affected by oil shale combustion

    International Nuclear Information System (INIS)

    Kaasik, M.

    2000-01-01

    Field measurements of concentrations of SO 2 and NO 2 in the air and deposition of Ca 2+ , Mg 2+ , K + , Na + , SO 4 2- , NO 3 - and Cl - in northeastern Estonia were carried out in the end of winter 1998/99. Concentrations in the air were measured by passive sampling method (Palmes tubes); snow samples were used to quantify the deposition loads. The measurement domain covered entire Ida-Viru County, eastern part of Laeaene-Viru County and a few sites in Jogeva County. These measurements and comparison with earlier investigations show that in wintertime most of sulfate over the area affected by oil shale industrial complex appears to be deposited with fly ash particles. The regression formulae for wintertime sulfate and calcium deposition loads for oil-shale region are derived. The inhomogeneous chemical composition of fly ash and influence of other (domestic, traffic) emissions are suggested as possible factors affecting the ratio of sulfate and calcium deposition loads. (author)

  10. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  11. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  12. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    Science.gov (United States)

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  13. High temperature solvent extraction of oil shale and bituminous coal using binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G.K.E. [Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle, RWTH Aachen (Germany)

    1997-12-31

    A high volatile bituminous coal from the Saar Basin and an oil shale from the Messel deposit, both Germany, were extracted with binary solvent mixtures using the Advanced Solvent Extraction method (ASE). Extraction temperature and pressure were kept at 100 C, respectively 150 C, and 20,7 MPa. After the heating phase (5 min) static extractions were performed with mixtures (v:v, 1:3) of methanol with toluene, respectively trichloromethane, for further 5 min. Extract yields were the same or on a higher level compared to those from classical soxhlet extractions (3 days) using the same solvents at 60 C. Comparing the results from ASE with those from supercritical fluid extraction (SFE) the extract yields were similar. Increasing the temperature in ASE releases more soluble organic matter from geological samples, because compounds with higher molecular weight and especially more polar substances were solubilized. But also an enhanced extraction efficiency resulted for aliphatic and aromatic hydrocarbons which are used as biomarkers in Organic Geochemistry. Application of thermochemolysis with tetraethylammonium hydroxide (TEAH) using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) on the extraction residues shows clearly that at higher extraction temperatures minor amounts of free fatty acids or their methyl esters (original or produced by ASE) were trapped inside the pore systems of the oil shale or the bituminous coal. ASE offers a rapid and very efficient extraction method for geological samples reducing analysis time and costs for solvents. (orig.)

  14. Speciation of Heavy Metals in Sediment of Agbabu Bitumen deposit ...

    African Journals Online (AJOL)

    Michael Horsfall

    environmental impact assessment of bitumen exploitation on animal resources of Ode – Irele. (Lameed and Ogunsusi, 2002), compositional analysis of the oil component of the Nigerian bitumen (Oderinde and Olanipekun, 1991),. Distribution of Polycyclic Aromatic hydrocarbons in soils and water from the vicinity of Agbabu ...

  15. Risks and mitigation options for on-site storage of wastewater from shale gas and tight oil development

    International Nuclear Information System (INIS)

    Kuwayama, Yusuke; Roeshot, Skyler; Krupnick, Alan; Richardson, Nathan; Mares, Jan

    2017-01-01

    We provide a critical review of existing research and information regarding the sources of risk associated with on-site shale gas and tight oil wastewater storage in the United States, the gaps that exist in knowledge regarding these risks, policy and technology options for addressing the risks, and the relative merits of those options. Specifically, we (a) identify the potential risks to human and ecological health associated with on-site storage of shale gas and tight oil wastewater via a literature survey and analysis of data on wastewater spills and regulatory violations, (b) provide a detailed description of government regulations or industry actions that may mitigate these risks to human and ecological health, and (c) provide a critical review of this information to help generate progress toward concrete action to make shale gas and tight oil development more sustainable and more acceptable to a skeptical public, while keeping costs down. - Highlights: • We review current research/information on shale gas and tight oil wastewater storage. • Pit overflows, tank overfills, and liner malfunctions are common spill causes. • Tanks lead to smaller and less frequent spills than pits, but are not a magic bullet. • State regulations for on-site oil and gas wastewater storage are very heterogeneous.

  16. Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview

    Science.gov (United States)

    Soua, Mohamed

    2014-12-01

    During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main 'hot' shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the Ludlow-Pridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly E-W trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2 Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (ΦN), deep Resistivity (Rt) and Bulk Density (ρb) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete

  17. Bitumen performance and chemistry in solvent refined bitumen blends

    Science.gov (United States)

    Holleran, Glynn; Holleran, Irina; Wilson, Douglas J.

    2017-09-01

    In years gone past most oil companies in Australia and New Zealand (NZ) developed experts that bridged the divide between refining and paving. This was supported by laboratories in Australia and sometimes Asia. This is no longer the case and many refineries have ceased bitumen production or closed. With the market moving towards imports and control to supply companies disconnects on bitumen passing a national specification and performance on the road. This reduces both durability and increases costs. This has been addressed by development in NZ of a performance specification for hot mix asphalt binders (including modified) and work being done on sealing grades. This paper discusses the development of the HMA specification with respect to crude sources and the development of methodologies to assess imported binders for suitability in all applications including emulsion. The conclusion is that bitumen quality may be maintained by use of these methodologies that include, chromatographic analysis, measurement of thermodynamic internal stability (Heithaus), aging, and Dynamic Shear Rheometry testing and mix performance testing in the laboratory. This forms a regime capable of use in any context and this leads to better durability of surfaces and extended service life.

  18. Structural Exploration of the Two HBI Alkanes in the Chinese Maoming Oil Shale

    Science.gov (United States)

    Liao, J.; Lu, H.; Wang, Q.; Zhou, Y., Sr.

    2017-12-01

    The Maoming oil shale is notable for its high rate of oil production and abundant biomarker compounds. Apart from the odd-numbered C31 and C33botryococcanes dominant and characteristic, two highly branched isoprenoid (HBI) alkanes (Fig. 1) were exclusively occurred (Brassell et al., 1986). The first identification of the two HBI alkanes in the Maoming oil shale was based on a comparison with the mass spectrum of C20 HBI (2,6,10-trimethyl-7-(3-methylbutyl)dodecane) (Yon et al., 1982; Rowland et al., 1985 ) from Rozel Point crude oil. Brassell et al (1986) thought that the characteristic ions at m/z 308 and 336 could be indicative of an additional C10 alkyl side chain on top of the characteristic ions of m/z 168 and 197 for the C20-HBI. However, the structural speculation seemed suspicious for not only their mass spectrum but also their co-chromatography results were not identical to the later synthesized C30 HBI alkane (Rowland and Robson, 1990). In addition, the source attribution of diatoms indicated by two C30 HBIs was inconsistent with the species of B race of Botryococcus braunii indicated by the dominant distribution of botryococcanes. Thus, the thirty-year-old structural assignment of the two C30 HBI alkanes may require confirmation. At first, the monomers of two HBIs were prepared by preparative gas chromatography. The HR-EI MS (436.5003) illustrated a formula of C31H64 rather than carbon numbered C30 HBIs. Moreover, two novel polymethyl alkane structures (I, II) could be yielded by 1D and 2D NMR results (Fig. 2), which completely different from that of previously speculated C30-HBIs (Fig. 2). According to the elucidated structure, the characteristic ions at m/z 308, 336, 434 and other irons at m/z 127, 211, 225, 281, 336 were mainly corresponded to relevant cleavages. Hence, their mass spectra were basically consistent with the structure determined from the NMR data. The new structural skeleton in our results for the two compounds does not support the

  19. Effect of illite clay and divalent cations on bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-12-15

    Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.

  20. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    Directory of Open Access Journals (Sweden)

    Altun N. Emre

    2016-01-01

    Full Text Available Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspective of utilization of oil shales in a similar manner to coal and lignites, problems and restrictions related to the inorganic ash-making and potentially pollutant constituents are applied. In this respect, cleaning of this important energy source through mineral processing methods, particularly by flotation, is an outstanding option. However, on the basis of unique features and distinctive characteristics, treatment of oil shales like a type of coal is a big perception and may be highly misleading. This paper discusses specific challenges regarding flotation behavior of oil shales with reference to the surface characteristics and behavior of oil shale entities – probably the most important aspect that determines the efficiency and success of the flotation based cleaning process.

  1. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1917-02-06

    The yield of oil obtained by distilling shale is increased by first soaking the shale with about 10 percent of its volume of a liquid hydrocarbon for a period of 24 hours or longer. Distillation is carried on up to a temperature of about 220/sup 0/C., and a further 10 percent of hydrocarbon is then added and the distillation continued up to a temperature of about 400/sup 0/C.

  2. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Marshall, R.; Lauerman, V.; Yamaguchi, N.

    2001-02-01

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  3. Recent technological advances in the application of nano-catalytic technology to the enhanced recovery and upgrading of bitumen and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Almao, P. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2013-11-01

    Advances in Nanotechnology, such as manufacturing of nano-catalysts allow the online (during processing) and on site production of nano-catalysts for heavy oils upgrading. These inventions have also facilitated the development of two lines of heavy oils upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. Producing chemical upgrading of heavy oils is achievable and economically viable at lower temperatures and lower pressures than used in most upgraders if the use of nano-catalysts were implemented. The spontaneity of thermal, steam and hydro processing reactions for converting the different chemical families of hydrocarbons present in the heaviest fractions of heavy oils and bitumen (HO-B) into lighter products was shown recently. Spontaneity was measured by the value of the change of free energy at low pressure. These undesirable paths are spontaneous and uncontrollable under thermal cracking conditions, and require providing years of residence time for intermolecular hydrogen redistribution to minimize olefins polymerization, if at all possible. Instead, hydroprocessing in the presence of hydrogen activating catalysts would create an abundance of hydrogen radicals impeding large molecules condensation and olefins proliferation. In Situ Upgrading: performs coupled Enhanced Oil Recovery with In Reservoir Upgrading via Hot Fluid Injection (HFI). The heat handling of this HFI process and the production of transportable oil with no need of diluent from the start of operation completes the originality of it. This technology uses heavy fractions separated from produced oil to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. These components react in the well bore and inside the reservoir to release more heat (hydroprocessing reactions are exothermic) producing light gases and volatile hydrocarbons that contribute to increase oil detachment from the rock resulting in

  4. Assessment of undiscovered continuous oil and gas resources of Upper Cretaceous Shales in the Songliao Basin of China, 2017

    Science.gov (United States)

    Potter, Christopher J.; Schenk, Christopher J.; Pitman, Janet K.; Klett, Timothy R.; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Mercier, Tracey J.; Marra, Kristen R.; Woodall, Cheryl A.

    2018-05-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 3.3 billion barrels of oil and 887 billion cubic feet of gas in shale reservoirs of the Upper Cretaceous Qingshankou and Nenjiang Formations in the Songliao Basin of northeastern China.

  5. Characterisation of Tertiary Catalan lacustrine oil shales: Discovery of extremely organic sulphur-rich type I kerogens

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Bergen, P.F. van; Leeuw, J.W. de

    1993-01-01

    The kerogens of three Tertiary Catalan lacustrine oil shales were analyzed by light microscopy, flash pyrolysis-gas chromatography-mass spectrometry, and bulk composition methods (elemental analysis, Rock Eval pyrolysis). Two of the three kerogens (Ribesalbes and Campins) are extremely rich in

  6. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Fan, Yunlong; Yu, Zhaosheng; Fang, Shiwen; Lin, Yan; Lin, Yousheng; Liao, Yanfen; Ma, Xiaoqian

    2016-01-01

    Highlights: • Co-combustion of oil shale with municipal solid waste created significant changes. • Blending with municipal solid wastes could improve the combustion performance. • 10–30% of oil shale in the blends could be determined as the optimum ratio range. • Activation energy were calculated by the conversion rate and different proportion. - Abstract: The aim of this study is trying to reveal the thermal characteristics and kinetics of oil shale, municipal solid waste and their blends in the combustion process which are needed for efficient utilization. The combustion experiment is carried out in a thermogravimetric simultaneous thermal analyzer, where the temperature ranged from 110 °C to 900 °C at three different heating rates as 10 °C/min, 20 °C/min and 30 °C/min. Their kinetics were studied by Ozawa–Flynn–Wall and Friedmen methods. According to the data analysis, combustion characteristic index increased progressively with the increase of the proportion of municipal solid waste. And it’s suggested that there was certain interaction in the combustion process of oil shale and municipal solid waste. The average activation energy of the blends reached the minimum value, 177.7927 kJ/mol by Ozawa–Flynn–Wall method and 167.4234 kJ/mol by Friedmen method, when the proportion of MSW was 70%.

  7. Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes

    NARCIS (Netherlands)

    Bauersachs, T.; Schouten, S.; Schwark, L.

    2014-01-01

    We investigated a 150 m thick drill core section of Messel oil shale using bulk geochemical and stable isotope techniques in order to determine the organic matter sources and the environmental conditions that prevailed during the deposition of the lacustrine sequence. High Corg values (on average

  8. The Lower Jurassic Posidonia Shale in southern Germany: results of a shale gas analogue study

    Science.gov (United States)

    Biermann, Steffen; Schulz, Hans-Martin; Horsfield, Brian

    2013-04-01

    The shale gas potential of Germany was recently assessed by the Federal Institute for Geosciences and Natural Resources (2012 NiKo-Project) and is - in respect of the general natural gas occurrence in Germany - regarded as a good alternative hydrocarbon source. The Posidonia Shale in northern and southern Germany is one of the evaluated rock formation and easily accessible in outcrops in the Swabian Alps (southern Germany). The area of interest in this work is located in such an outcrop that is actively used for open pit mining next to the town of Dotternhausen, 70 km southwest of Stuttgart. 31 samples from the quarry of Dotternhausen were analyzed in order to characterize the immature Posidonia Shale (Lower Toarcian, Lias ɛ) of southern Germany as a gas shale precursor. Methods included are Rock Eval, Open Pyrolysis GC, SEM, Mercury Intrusion Porosimetry, XRD, and other. The samples of Dotternhausen contain exclusively type II kerogen. The majority of the organic matter is structureless and occurs in the argillaceous-calcareous matrix. Structured organic matter appears predominantly as alginite, in particular the algae "tasmanite" is noticeable. The TOC content ranges up to 16 wt% with a high bitumen content. The mineral content characterizes the Posidonia Shale as a marlstone or mudstone with varying clay-calcite ratios. The quartz and pyrite content reaches up to 20 wt% and 9 wt%, respectively. The rock fabric is characterized by a fine grained and laminated matrix. The mean porosity lies between 4 and 12 %. Fractures other than those introduced by sample preparation were not observed. The Posidonia Shale is predicted to have an excellent source rock potential and will generate intermediate, P-N-A low wax oil when exposed to higher P-T-conditions ("oil kitchen"). Contact surfaces between the kerogen and matrix will be vulnerable to pressure induced fracturing caused by hydrocarbon formation. Additional porosity will be formed during maturation due to the

  9. Underground fires in oil shale mines: special traits of their spreading, extinguishing and liquidating of consequences

    International Nuclear Information System (INIS)

    Parakhonsky, E.

    1995-01-01

    Danger of catching fire in oil shale underground mines has considerably increased lately because of essential increase in mechanization level and frequent violation of fire-safety regulations. The largest underground fire in Estonia took place in the most mechanized mine 'Estonia' in the end of 1988 and lasted 81 days. The fire started in one of the conveyor drifts where two belt-conveyors with rubber-rope belts and a fire pipeline were installed. At the start of the fire and beginning of extinguishing work this pipeline contained no water. Driving heads of these conveyors were installed with automatic extinguishing equipment and with different primary means against fire. When the first group of the Johvi military mine-rescue squad reached the mine they established that the conveyor drift, pillars and a part of rail drift between them were caught by fire. The conveyor belt, oil shale and feeds of conveyor drives were burning. The flame had propagated about 350 metres along the rail and conveyor drifts but the smoke had spread 4 kilometres already. Air temperature near the burning area was about 40-60 deg C, rocks from the roof supported by pillars had crashed down. The mine air was polluted by combustion products. The fire caused a noticeable pollution of mine and surface waters with phenols formed at oil shale combustion. Their limit concentration was exceeded for more than 400 times. To decrease this number, an intensive saturation of waters with atmosphere air was started. For this purpose special dams were constructed on water-diversion ditches ensuring a 0.5-0.7 m difference in water levels. Nevertheless, the phenol concentration in Rannapungerya River and Lake Peipsi still exceeded the normal level 5-6 times. However, the actual maximum concentration of phenols was considerably lower than the lethal doses for fish and other water organisms. Their mass extinction in the river or in the lake was observed neither during nor after the fire. One may conclude the

  10. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  11. Assessing impacts of oil-shale development on the Piceance Basin mule deer herd

    Energy Technology Data Exchange (ETDEWEB)

    White, G.C.; Garrott, R.A.

    1983-01-01

    Development of energy resources on big game ranges generally negatively impacts these important wildlife resources. Although habitat disturbance is generally important, this impact is overshadowed by the negative impacts due to an increasing human population in the area. Increased human activities particularly stress animals during winter periods when inadequate nutrition levels may have already severely impacted the population. Increased road traffic and poaching causes additional deaths, which a decline in survival rates expected, or at least changes in the cause of mortality. This paper describes the experimental design to monitor and mitigate the impact of oil shale development in northwestern Colorado on the Piceance Basin mule deer herd. Biotelemetry techniques are used to measure changes through time in movements, habitat utilization, and survival rates between control and treatment areas. 2 figures.

  12. Method of simultaneous recovery of oil and sulfur from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    1919-02-25

    The method consists of means for dry distillation of bituminous shales in furnaces heated from inside to recover simultaneously oil and sulfur, and is characterized by obtaining the sulfur partly in the form of sulfuretted hydrogen as a direct distillation product produced in the upper part of the furnace and partly in the form of free sulfur formed in the reduction zone of the furnace by the reduction of the sulfur dioxide formed in the burning zone. It is also characterized by the recovery of sulfur--in so far as the reduction and formation of sulfur dioxide are concerned--being regulated by means of the corresponding regulation of the proportion of the speed of discharging to the amount of air introduced into the process.

  13. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil-shale zones

    International Nuclear Information System (INIS)

    Schultz, W.E.

    1976-01-01

    A pulsed neutron generator of the deuterium-tritium reaction type irradiates earth formations in the vicinity of a borehole with 14 MeV neutrons. Gamma rays produced by the inelastic scattering of the fast neutrons are observed in four energy regions of the gamma ray energy spectrum corresponding to the inelastic scattering of neutrons by carbon, oxygen, silicon, and calcium. The carbon/oxygen, calcium/silicon, and carbon plus oxygen gamma rays are found and combined with a separately derived hydrogen index log to determine the quality of coal-bearing formations or oil-shale regions. The hydrogen index curve is found preferably by a dual-spaced detector epithermal neutron porosity logging technique or from a conventional thermal neutron gamma ray log

  14. And if France had oil, gas and ideas at the same time... Contribution to the debate on shale hydrocarbons

    International Nuclear Information System (INIS)

    2013-02-01

    This report aims at gathering available information on shale hydrocarbons in order to show that shale gas exploitation is possible in France in order to meet energy needs. After a brief presentation of these hydrocarbons and of potential resources in the world and in France, the report addresses the different stages from exploration (how to obtain a research permit, to locate potential resources, assessment of available quantities and of the economic potential of an oil field), to production (drilling, stimulation, extraction, management on a large scale and on the long term), and to site restitution (industrial site rehabilitation, economic restructuring)

  15. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jacomini, V V

    1938-06-07

    To produce valuable oils from shale by continuous distillation it is preheated by a heated fluid and introduced into a distilling retort from which the oil vapours and spent material are separately removed and the vapours condensed to recover the oil. The shale is preheated to 400 to 500/sup 0/F in the hopper by combustion gases from a flue and is fed in measured quantities to a surge drum, a loading chamber and surge drum, the latter two being connected to a steam pipe which equalises the pressure thereon. The material passes by two screw conveyors to a retort with deflector bars to scatter the material so that lean hot cycling gas flowing through a pipe is spread out as it makes its way upwardly through the shale and heats the oil so that it is driven off as vapour, collected in the lean gas and carried off through an outlet pipe. A measuring valve is provided at the bottom of a retort and cutter knives cut the spent shale and distribute cooling water thereto. The gases travel through heat exchangers and a condenser to an accumulator where the cycling gas is separated from the vapours, passed to compression, and preheated in a gas exchanger and spiral coils before it is returned to the retort. The oil passes to a storage tank by way of a unit tank in which oil vapours are recovered. Water is collected by a pipe in the tank bottom and returned by shaft to a retort.

  16. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, P.L.

    1977-02-01

    Substantial progress has been made towards implementing all of the prescribed studies and satisfying the stated objectives since the Oil Shale Rehabilitation Project was actively initiated in June 1976. Concurrent with implementation, research objectives were substantively defined and supplemented without distracting or departing from the original purpose. Current studies are designed to fill voids in the present status of knowledge regarding lands disturbed by an impending oil shale industry in Colorado. The efforts of all contributing investigators have therefore been integrated and directed toward the goal of developing methodologies requisite for restoring diverse and complex ecosystems which will require only a minimal amount of maintenance or input of scarce resources. An intensive study site southeast of the Oil Shale Tract C-a has been obtained through a Cooperative Agreement with the Bureau of Land Management. Following this agreement, most subprojects were initiated at the intensive site. Additional programs will be implemented as spent shale becomes available this summer. Studies conducted principally in the laboratory and greenhouse, such as the microbiological and plant genetic studies, have achieved significant results.

  17. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  18. Water Use and Management in the Bakken Shale Oil Play in North Dakota.

    Science.gov (United States)

    Horner, R M; Harto, C B; Jackson, R B; Lowry, E R; Brandt, A R; Yeskoo, T W; Murphy, D J; Clark, C E

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012; and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1,135,000 gallons per well in 2008 to 2,905,000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.

  19. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... utilization of bitumen and production of bitu-oil and gas by a bacterial ... nitrogen and phosphorus, with a consequent limitation on degradation of the ..... concluded that in industrial setting, carbon starvation in anaerobic ...

  20. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    OpenAIRE

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional hydrocarbon exporting countries.

  1. The Geopolitics of Shale Gas : The Implications of the US' Shale Gas Revolution on Intrastate Stability within Traditional Oil- and Natural Gas-Exporting Countries in the EU Neighborhood

    NARCIS (Netherlands)

    Jong, S. de; Auping, W.; Govers, J.; Peters, M.C.A.M.; Widdershoven, C.J.C.G.; Weterings, R.A.P.M.

    2014-01-01

    The US’ shale gas revolution could in the long term destabilize traditional oil- and gas exporters in the European Union (EU) neighborhood: A combination of substitution effects and greater energy efficiency, could put pressure on the price of oil, leading to fiscal difficulties in traditional

  2. Process for retorting shale

    Energy Technology Data Exchange (ETDEWEB)

    1952-03-19

    The method of retorting oil shale to recover valuable liquid and gaseous hydrocarbons consists of heating the oil shale in a retorting zone to a temperature sufficient to convert its kerogenic constituents to normally liquid and normally gaseous hydrocarbons by contact with hot gas previously recovered from shale, cooling the gases and vapors effluent from the retorting zone by direct countercurrent contact with fresh shale to condense the normally liquid constituents of the gases and vapors, separating the fixed gas from the liquid product, heating the fixed gas, and returning it to the retorting zone to contact further quantities of shale.

  3. Pyrolysis characteristics and kinetics of oil-based drilling cuttings in shale gas developing

    Science.gov (United States)

    Huang, Chuan; Li, Tong; Xu, Tengtun; Zeng, Yunmin; Song, Xue

    2018-03-01

    In this paper, the thermal behavior of waste oil-based drilling cuttings (from shale gas fields in Chongqing) was examined at different heating rates ranging from 5 to 15 °C min-1 in inert atmosphere using a sync analyzer of thermogravimetry (TG) and differential scanning calorimetry (DSC). Four methods were used to analyze the distributions and variations of kinetics parameter (active energy (E) and frequency gene (A)): Coats-Redfern and other three iso-conversion rate methods (Flynn-Wall-Ozawa, Vyazovkin and Friedman). The experimental results indicated that the process consists of three steps, i.e., water evaporation, volatilization of light oil component and heavy oil cracking. TG curves moved toward higher temperature zone caused by thermal hysteresis with the increase of temperature rising rate. For volatilization of lightweight components, the E calculated by three iso-conversion rate methods changed a little with conversion, and had almost the same results as the CR method (14.39˜20.08 kJ.mol-1). For reactions of heavy oil cracking with mixed mechanism, corresponding E rose gradually with the increase of reaction time. The CR method shows nonlinear trends and the reaction models and kinetic parameters cannot be extracted from CR curves. The results by three iso-conversion methods showed that apparent activation energy was given as 155.74˜561.10 kJ.mol-1, 141.06˜524.96 kJ.mol-1 and 74.37˜605.10 kJ.mol-1, respectively.

  4. [Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale].

    Science.gov (United States)

    Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong

    2013-04-01

    In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.

  5. Estimation of bitumen and clay content in fine tailings

    International Nuclear Information System (INIS)

    Motta Cabrera, S.C.; Bryan, J.; Kantzas, A.

    2007-01-01

    Fine tailings are the components of tailings ponds and the by-product of the oil sand extraction process, consisting mostly of water with small amounts of bitumen, sand, silts and clays. Because of the large volumes of tailings, an important environmental and production process issue involves the reduction of the remaining bitumen in the tailings stream. This paper presented the results of a study that used low field nuclear magnetic resonance (NMR) in order to estimate the bitumen, clay and water content of synthetic tailings samples. NMR is a non-destructive technique that is utilized to determine compositions of oil and brine emulsions and the viscosity of heavy oil and bitumen as well as in reservoir characterization, measuring properties such as permeability, porosity, mobile and immobile fluids, and fluid saturations. The study prepared and tested numerous samples with variable water, bitumen, sand and clay concentrations in the NMR tool under ambient conditions. Two qualities of water and bitumen were used to prepare the synthetic samples. Each type of water and bitumen was analyzed as a single substance and in a mixture with the typical solids found in tailings composition. These included kaolinite, illite, sodium montmorillonite and sand. These synthetic samples were analyzed using different mixing configurations, as a function of time and in two different NMR tools. It was concluded that NMR is a potential application for on-line determination of tailings streams composition. 18 refs., 3 tabs., 17 figs

  6. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK

    Science.gov (United States)

    Thomas, Merryn; Partridge, Tristan; Harthorn, Barbara Herr; Pidgeon, Nick

    2017-04-01

    Shale gas and oil production in the US has increased rapidly in the past decade, while interest in prospective development has also arisen in the UK. In both countries, shale resources and the method of their extraction (hydraulic fracturing, or 'fracking') have been met with opposition amid concerns about impacts on water, greenhouse gas emissions, and health effects. Here we report the findings of a qualitative, cross-national deliberation study of public perceptions of shale development in UK and US locations not yet subject to extensive shale development. When presented with a carefully calibrated range of risks and benefits, participants' discourse focused on risks or doubts about benefits, and potential impacts were viewed as inequitably distributed. Participants drew on direct, place-based experiences as well as national contexts in deliberating shale development. These findings suggest that shale gas development already evokes a similar 'signature' of risk across the US and UK.

  7. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  8. Pipeline transportation of emerging partially upgraded bitumen

    International Nuclear Information System (INIS)

    Luhning, R.W.; Anand, A.; Blackmore, T.; Lawson, D.S.

    2002-01-01

    The recoverable reserves of Canada's vast oil deposits is estimated to be 335 billion barrels (bbl), most of which are in the Alberta oil sands. Canada was the largest import supplier of crude oil to the United States in 2001, followed by Saudi Arabia. By 2011, the production of oil sands is expected to increase to 50 per cent of Canada's oil, and conventional oil production will decline as more production will be provided by synthetic light oil and bitumen. This paper lists the announced oil sands projects. If all are to proceed, production would reach 3,445,000 bbl per day by 2011. The three main challenges regarding the transportation and marketing of this new production were described. The first is to expand the physical capacity of existing pipelines. The second is the supply of low viscosity diluent (such as natural gas condensate or synthetic diluent) to reduce the viscosity and density of the bitumen as it passes through the pipelines. The current pipeline specifications and procedures to transport partially upgraded products are presented. The final challenge is the projected refinery market constraint to process the bitumen and synthetic light oil into consumer fuel products. These challenges can be addressed by modifying refineries and increasing Canadian access in Petroleum Administration Defense District (PADD) II and IV. The technology for partial upgrading of bitumen to produce pipeline specification oil, reduce diluent requirements and add sales value, is currently under development. The number of existing refineries to potentially accept partially upgraded product is listed. The partially upgraded bitumen will be in demand for additional upgrading to end user products, and new opportunities will be presented as additional pipeline capacity is made available to transport crude to U.S. markets and overseas. The paper describes the following emerging partial upgrading methods: the OrCrude upgrading process, rapid thermal processing, CPJ process for

  9. Shale processing

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, W H

    1928-05-29

    The process of treating bituminiferous solid materials such as shale or the like to obtain valuable products therefrom, which comprises digesting a mixture of such material in comminuted condition with a suitable digestion liquid, such as an oil, recovering products vaporized in the digestion, and separating residual solid matter from the digestion liquid by centrifuging.

  10. Preparation of nano-sized {alpha}-Al{sub 2}O{sub 3} from oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan [College of Chemistry, Jilin University, Changchun 130026 (China)

    2010-01-15

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized {alpha}-Al{sub 2}O{sub 3}. Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of {alpha}-Al{sub 2}O{sub 3}. The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO{sub 2}), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles. (author)

  11. Process for separating and recovering oil from oil-sands, etc

    Energy Technology Data Exchange (ETDEWEB)

    Preller, H

    1920-07-14

    A process for separating and recovering oil from oil-sands, bitumen from oil-chalk, oil shale, and coal is characterized in that the material to be separated feeds, by a self-acting feeding arrangement, to a system with slowly rotating drums alternating in different directions and thereby it is exposed to the action of hot water running opposite to the rotation, direction of the drum, with addition of extraction-medium, so that the light material is washed out and rises to the top. It is carried off, while the heavy material sinks to the bottom and, by bucket-conveyor is removed.

  12. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  13. Genotoxicity and carcinogenicity of diesel soot and oil shale dust, two markedly different particles with associated organic content

    International Nuclear Information System (INIS)

    Mauderly, J.L.; Barr, E.B.; Bechtold, W.E.

    1987-01-01

    Levels of DNA adducts in lungs of rats were measured by 32 P postlabeling techniques after 240-mo exposure to either diesel exhaust or oil shale dusts. Preliminary results suggest that whole-lung adduct levels from chronic inhalation exposures are not predictive for carcinogenicity. Lung tumors were observed in animals exposed to diesel exhaust. Carcinogenicity was correlated to the mutagenicity of extracts and severity of epithelial proliferation

  14. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spatial and Temporal Characteristics of Historical Oil and Gas Wells in Pennsylvania: Implications for New Shale Gas Resources.

    Science.gov (United States)

    Dilmore, Robert M; Sams, James I; Glosser, Deborah; Carter, Kristin M; Bain, Daniel J

    2015-10-20

    Recent large-scale development of oil and gas from low-permeability unconventional formations (e.g., shales, tight sands, and coal seams) has raised concern about potential environmental impacts. If left improperly sealed, legacy oil and gas wells colocated with that new development represent a potential pathway for unwanted migration of fluids (brine, drilling and stimulation fluids, oil, and gas). Uncertainty in the number, location, and abandonment state of legacy wells hinders environmental assessment of exploration and production activity. The objective of this study is to apply publicly available information on Pennsylvania oil and gas wells to better understand their potential to serve as pathways for unwanted fluid migration. This study presents a synthesis of historical reports and digital well records to provide insights into spatial and temporal trends in oil and gas development. Areas with a higher density of wells abandoned prior to the mid-20th century, when more modern well-sealing requirements took effect in Pennsylvania, and areas where conventional oil and gas production penetrated to or through intervals that may be affected by new Marcellus shale development are identified. This information may help to address questions of environmental risk related to new extraction activities.

  16. Porphyrin metabolism in lymphocytes of miners exposed to diesel exhaust at oil shale mine

    Energy Technology Data Exchange (ETDEWEB)

    Muzyka, V.; Bogovski, S.; Lang, I.; Schmidt, N.; Ryazanov, V.; Veidebaum, T. [Laboratory of Environmental Carcinogens, Institute of Experimental and Clinical Medicine, Hiiu 42, Tallinn 11619 (Estonia); Scheepers, P.T.J. [Department of Epidemiology and Biostatistics, University Medical Centre St Radboud, P.O. Box 9101, Nijmegen NL 6500 HB (Netherlands)

    2004-04-25

    The present study was carried out on the evaluation and application of new biomarkers for populations exposed to occupational diesel exhaust at oil shale mines. Since not only genotoxic effects may play an important role in the generation of tumors, the level of porphyrin metabolism was proposed as a biomarker of diesel exhaust exposure effects. The data on determination of 5-aminolevulinic acid (ALA) synthesis and heme formation in lymphocytes from groups of 50 miners exposed to diesel exhaust and 50 unexposed surface workers of oil shale mine are presented. All workers were examined and interviewed using structured questionnaires. The levels of benzene, carbon monoxide and nitric oxides in air as well as concentrations of 1-nitropyrene and elemental carbon in particulate matter were used for evaluation of exposure to diesel exhaust in mine. The levels of ALA and protoporphyrin (PP), activities of ALA synthetase (ALA-S) and ferrochelatase (FC), as well as levels of PP associated with DNA (PP/DNA) were investigated in lymphocytes spectrophotometrically. Significant differences in activity of ALA synthesis and heme formation between exposed miners and surface workers were found (207{+-}23 vs. 166{+-}14 pmol/10{sup 6} lymp./30' for ALA-S and 46.1{+-}3.8 vs. 54.8{+-}4.1 pmol/10{sup 6} lymp./60' for FC activities, respectively, P<0.001). ALA-S activity was higher and ALA accumulated in lymphocytes of exposed miners. Inhibition of FC activity caused PP cellular accumulation and an increase in the PP/DNA level (P<0.05). Tobacco smoking led to the increase of ALA biosynthesis in lymphocytes of both surface and underground smokers. The comparison of data obtained for non-smokers and smokers of both groups of workers has shown a significant difference (P<0.05). The work duration of underground or surface workers did not significantly influence the investigated biochemical parameters. The determination of ALA synthesis in lymphocytes could be a useful biomonitoring

  17. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Lauerman, V.

    2001-01-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs

  18. Characterization of Tertiary Catalan lacustrine oil shales: Discovery of extrmely organic sulphur-rich Type I kerogens

    Energy Technology Data Exchange (ETDEWEB)

    Sinninghe Damste, J.S.; Heras, F.X.C. De Las; Bergen, P.F. Van; Leeuw, J.W. De (Delft Univ. of Technology (Netherlands))

    1993-01-01

    The kerogens of three Tertiary Catalan lacustrine oil shales were analyzed by light microscopy, flash pyrolysis-gas chromatography-mass spectrometry, and bulk composition methods (elemental analysis, Rock Eval pyrolysis). Two of the three kerogens (Ribesalbes and Campins) are extremely rich in organic sulfur (atomic S[sub org]/C ratio > 0.04) and hydrogen (atomic ratio H/C ratio > 1.5) and are, consequently, classified as Type I-S kerogens. Very characteristic distribution patterns of flash pyrolysis products (e.g., alkan-9- and -10-ones, alkadienes) of the Ribesalbes kerogen revealed that it is predominantly composed of fossilized organic matter of the freshwater alga Botryococcus braunii. These two findings demonstrate that sulfurization of organic matter may also occur in lacustrine sediments provided that sulfate is supplied by external sources. Data on the third kerogen sample (Cerdanya) suggest that the freshwater alga Pediastrum may contain a (partly) aromatic biomacromolecule that is selectively preserved upon diagenesis. These findings testify to the large variability in palaeodepositional conditions in lacutrine environments. A comparison of the biomarker composition of the extract of the Ribesalbes oil shale with the kerogen composition indicate that biomarkers often cannot be used to assess the major sources of organic matter in such settings. A similar conclusion can be drawn from a comparison of literature data concerning the Messel Oil Shale. 75 refs., 18 figs., 7 tabs.

  19. Characterization of Tertiary Catalan lacustrine oil shales: Discovery of extremely organic sulphur-rich Type I kerogens

    Science.gov (United States)

    Sinninghe Damsté, Jaap S.; de las Heras, F. Xavier C.; van Bergen, Pim F.; de Leeuw, Jan W.

    1993-01-01

    The kerogens of three Tertiary Catalan lacustrine oil shales were analyzed by light microscopy, flash pyrolysis-gas chromatography-mass spectrometry, and bulk composition methods (elemental analysis, Rock Eval pyrolysis). Two of the three kerogens (Ribesalbes and Campins) are extremely rich in organic sulphur (atomic S org/C ratio > 0.04) and hydrogen (atomic ratio H/C ratio > 1.5) and are, consequently, classified as Type I-S kerogens. Very characteristic distribution patterns of flash pyrolysis products (e.g., alkan-9- and -10-ones, alkadienes) of the Ribesalbes kerogen revealed that it is predominantly composed of fossilized organic matter of the freshwater alga Botryococcus braunii. These two findings demonstrate that sulphurization of organic matter may also occur in lacustrine sediments provided that sulphate is supplied by external sources. Data on the third kerogen sample (Cerdanya) suggest that the freshwater alga Pediastrum may contain a (partly) aromatic biomacromolecule that is selectively preserved upon diagenesis. These findings testify to the large variability in palaeodepositional conditions in lacustrine environments. A comparison of the biomarker composition of the extract of the Ribesalbes oil shale with the kerogen composition indicate that biomarkers often cannot be used to assess the major sources of organic matter in such settings. A similar conclusion can be drawn from a comparison of literature data concerning the Messel Oil Shale.

  20. HDN and HDS of different gas oils derived from Athabasca bitumen over phosphorus-doped NiMo/{gamma}-Al{sub 2}O{sub 3} carbides

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, Sask. S7N 5A9 (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, Alta. T6N 1H4 (Canada)

    2006-10-26

    A series of phosphorous-doped {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide catalysts (PNiMo{sub 2}C/Al{sub 2}O{sub 3}) with 0-4.5wt.% Ni, 13wt.% Mo and 2.5wt.% P were synthesized and characterized by elemental analysis, pulsed CO chemisorption, surface area measurement, X-ray diffraction (XRD), near-edge X-ray absorption fine structure (NEXAFS), DRIFT spectroscopy of CO adsorption and H{sub 2} temperature programmed reduction. XRD indicated the formation of pure {beta}-Mo{sub 2}C phase in these catalysts, whereas the near edge X-ray absorption fine structure of C K-edge confirmed the formation of carbidic carbons. DRIFT spectra of adsorbed CO revealed that Ni or P addition to Mo{sub 2}C/Al{sub 2}O{sub 3} catalyst not only increases the number of surface Mo sites, but also promotes the reducibility of Mo. The partial sulfidation of Mo{sub 2}C phase in the presence of H{sub 2}S/H{sub 2} gas mixture at 370{sup o}C was evidenced by DRIFTS of adsorbed CO. The HDN and HDS activities of these PNiMo{sub 2}C/Al{sub 2}O{sub 3} catalysts were performed in a trickle bed reactor using light gas oil (LGO) and heavy gas oil (HGO) derived from Athabasca bitumen at 8.8MPa and compared with the unpromoted Mo carbide (Mo{sub 2}C/Al{sub 2}O{sub 3}), P doped Mo carbide (PMo{sub 2}C/Al{sub 2}O{sub 3}) and Ni promoted Mo carbide (NiMo{sub 2}C/Al{sub 2}O{sub 3}). The P doped Ni-Mo bimetallic carbide catalysts showed enhanced HDN activity compared to the Mo{sub 2}C/Al{sub 2}O{sub 3}, NiMo{sub 2}C/Al{sub 2}O{sub 3} and PMo{sub 2}C/Al{sub 2}O{sub 3} catalysts. The maximum N and S conversions, respectively, were obtained over PNiMo{sub 2}C/Al{sub 2}O{sub 3} and NiMo{sub 2}C/Al{sub 2}O{sub 3} catalysts containing 2.5wt.% Ni. (author)

  1. Naphtha interaction with bitumen and clays : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Afara, M.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation described a preliminary study conducted to characterize naphtha interactions with bitumen and clays. Coarse tailings, fluid-fine tailings, and froth treatment tailings are produced as a result of surface mine oil sands operations. Solvents are used to produce the bitumens, but the actual fraction of the solvent that evaporates and contributes to VOCs from tailing ponds is poorly understood. This study examined the interactions between the solvent, bitumen and mineral components in froth treatment tails. The study was conducted with aim of quantifying the VOC or solvent escaping from the froth treatment tailings. Samples containing bitumen, clay, a bitumen-clay mixture, or MFT were spiked with 3000 ppm of solvent. The amount of naphtha released was monitored by gas chromatography, mass spectrometry, and flame ionization detection of the evolved gases. The results were expressed as a percentage of the total hydrocarbon peak area of the sample versus a control. Results of the study showed that the naphtha interacted more strongly with the bitumen than with kaolinite and the clay minerals from the oil sands. Although initial solvent evaporation was reduced in the presence of bitumens and clays, long-term solvent releases will need to be quantified. tabs., figs.

  2. An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity

    Directory of Open Access Journals (Sweden)

    Xinjing Li

    2016-10-01

    Full Text Available Over-high maturity is one of the most vital characteristics of marine organic-rich shale reservoirs from the Lower Paleozoic in the south part of China. The organic matter (OM in shale gas reservoirs almost went through the entire thermal evolution. During this wide span, a great amount of hydrocarbon was available and numerous pores were observed within the OM including kerogen and solid bitumen/pyrobitumen. These nanopores in solid bitumen/pyrobitumen can be identified using SEM. The imaging can be dissected and understood better based on the sequence of diagenesis and hydrocarbon charge with the shape of OM and pores. In terms of the maturity process showed by the various typical cases, the main effects of the relationship between the reservoir porosity and organic carbon abundance are interpreted as follows: the change and mechanism of reservoirs properties due to thermal evolution are explored, such as gas carbon isotope from partial to complete rollover zone, wettability alteration from water-wet to oil-wet and then water-wet pore surface again, electrical resistivity reversal from the increasing to decreasing stage, and nonlinearity fluctuation of rock elasticity anisotropy. These indicate a possible evolution pathway for shale gas reservoirs from the Lower Paleozoic in the southern China, as well as the general transformation processes between different shale reservoirs in thermal stages.

  3. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  4. Shaft-retort for treating waste materials, like washery waste, bituminous shale, oil-bearing sands and the like

    Energy Technology Data Exchange (ETDEWEB)

    Koppers, H

    1916-10-29

    A shaft-retort for converting waste materials, like washery waste, bituminous shale, oil-bearing sands, brown coal and non-coking mineral coal to oil and tar by supplying heat through the shaft wall formed of an iron-sheet to the material, which is forced through a feeding member perforated for the removal of gases and vapors, and moved downward in a thin layer on the shaft wall; that is characterized by the fact that the iron heating sheet is made rotatable for the purpose of equalizing overheating of itself and the material to be treated.

  5. Bitumen still seen as potential anchor on crude prices

    International Nuclear Information System (INIS)

    Jaremko, G.

    2001-01-01

    Researchers at the Canadian Energy Research Institute have released a 225-page technical report on downstream oil-refining markets entitled 'Markets for Canadian bitumen-based feedstock'. The report claims that 22 of 27 refineries that buy western Canadian production are not planning to improve their ability to process heavy grades of oil any time soon. Instead, investments will focus on complying with environmental requirements for reformulated refined products, particularly to eliminate sulphur impurities in gasoline and diesel fuel. Another focus will be to upgrade raw bitumen output into synthetic crude. It was shown that over the next 7 years, Canadian and U.S. oil markets have the potential to increase growth in bitumen production from 244,000 barrels per day (bpd) to 555,000 bpd. The potential for additional, upgraded synthetic crude oil is even greater, from 450,000 bpd to 806,000 bpd. Increasing the output of synthetic crude oil is considered to be an effective way to reduce North America's reliance on imported oil. Untreated, discount-priced bitumen can replace diminishing Canadian and U.S. production of refinery-ready light oil. The report projects that a US$1-per-barrel discount for Canadian heavy oil would generate sales of 140,000 barrels daily. The effect of a $1 discount would be almost twice as great for synthetic crude oil. Heavy oil sales rely greatly on maintaining a discount off prices for light grades. A $1-per-barrel premium could destroy demand for bitumen-based blends. Moody's Investors Service claims that deep discounting reflects global market conditions, risking Canadian production of heavy oil grades and seasonal lows in demand for bitumen as a raw material for asphalt

  6. Use of oil shale ash in road construction: results of follow-up environmental monitoring.

    Science.gov (United States)

    Reinik, Janek; Irha, Natalya; Koroljova, Arina; Meriste, Tõnis

    2018-01-05

    Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013-2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.

  7. Pressurized fluidized-bed hydroretorting of eastern oil shales. Progress report, September 1992--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  8. Migration through soil of organic solutes in an oil-shale process water

    Science.gov (United States)

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  9. Kerogen-bound and free hopanoic acids in the messel oil shale kerogen.

    Science.gov (United States)

    Abbott, G D; Bashir, F Z; Sugden, M A

    2001-08-01

    The distribution of the free and bound hopanoic acids in both unheated and heated (350 degrees C for 50 h) kerogens, isolated from the Messel oil shale, were analyzed by GC-MS. The bound acids were released by subjecting the kerogen to three different treatments, namely, thermochemolysis in the presence of tetramethylammonium hydroxide (TMAH), as well as basic and acidic hydrolyses. All of these methods gave a series of hopanoic acids ranging from C(30) to C(34), in which the biological 17beta, 21beta(H) configuration is prominent. Both 22R and 22S epimers are present for the C(30) acid, whereas the others are dominated by the sidechain 22R-configuration. Thermochemolysis in the presence of TMAH was the most efficient in releasing kerogen-bound hopanoids. Following pyrolysis, the acids are generated and released into the free fraction with apparent epimerization occurring at C-17, C-21, and C-22. The bound hopanoic acids may be both chemically bonded as well as possibly being physically encapsulated within the macromolecular fraction of sedimentary organic matter. They are therefore either generated by breaking the bonds which bind them to the kerogen or they are released as a result of the macromolecular cage being broken apart. Copyright 2001 Wiley-Liss, Inc.

  10. Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.

    Science.gov (United States)

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2018-06-01

    Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to stimulate oil flow. Most of the water used returns to the surface as produced water (PW) containing different constituents. Some of these contents are total dissolved solids and radionuclides. The most predominant radionuclide in PW is radium-226 (Ra-226) of which level depends on several factors including the content of certain cations. A multivariate regression model was developed to predict Ra-226 in PW from the Bakken Shale based on the levels of barium, strontium, and calcium. The simulated Ra-226 activity concentration in PW was 535 pCi/L supporting extremely limited actual data based on three PW samples from the Bakken (527, 816, and 1210 pCi/L). The simulated activity concentration was further analyzed by studying its impact in the event of a PW spill reaching a surface water body that provides drinking water, irrigation water for crops, and recreational fishing. Using food transfer factors found in the literature, the final annual effective dose rate for an adult in ND was estimated. The global average annual effective dose rate via food and drinking water is 0.30 mSv, while the predicted dose rate in this study was 0.49 mSv indicating that there is potential risk to human health in ND due to Ra-226 in PW spills. This predicted dose rate is considered the best case scenario as it is based on the simulated Ra-226 activity concentration in PW of 535 pCi/L which is close to the low end actual activity concentration of 527 pCi/L. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  12. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  13. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 2.The effect on forest condition in a pine stand

    International Nuclear Information System (INIS)

    Terasmaa, T.; Pikk, J.

    1995-01-01

    First years after the treatment (in 1987) of forest soil with mineral fertilizers and powdered oil-shale ash in a heavily damaged 50-year-old Scots pine ecosystem showed a comparatively small effect (B<0.95) of liming on the stand characters. However, in comparison with the effect of only NPK fertilization on the volume growth and the health state of trees, liming (NPK+oil-shale ash) tended to increase the positive influence of fertilizers. Under the influence of oil-shale ash the mortality of the trees was lower, the density of the stand rose more, and the mean radial increment of trees was by 26% greater than after the NPK treatment without a lime agent. On the whole, the effect of oil-shale ash liming on the growth and health condition of the pine stand was not high. However, the first results of its experimental use on mineral forest soil cannot serve as the basis for essential conclusions. Still, the results give us some assurance to continue our experimental work with powdered oil-shale ash in forests with the purpose of regulating the high acidity of forest soils in some sites to gain positive shifts in the forest life. Taking into account the low price of the powdered oil-shale ash and the plentiful resources of this liming material in Estonia, even a small trend towards an improvement of forest condition on poor sandy soils would be a satisfactory final result of the work. It is essential to note that oil-shale ash is not only a simple liming material, but also a lime fertilizer consisting of numerous chemical elements necessary for plant growth. 2 tabs., 3 figs., 18 refs

  14. Oil-bearing inclusions in vein quartz and kalcite and, bitumens in veins: Testament to multiple phases of hydrocarbon migration in the Barrandian basin (lower Palaeozoic), Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Suchý, V.; Dobeš, P.; Sýkorová, Ivana; Machovič, Vladimír; Stejskal, M.; Kroužek, J.; Chudoba, J.; Matějovský, L.; Havelcová, Martina; Matysová, Petra

    2010-01-01

    Roč. 27, č. 1 (2010), s. 285-297 ISSN 0264-8172 R&D Projects: GA AV ČR(CZ) IAA3012703; GA AV ČR IAA300460804 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrocarbon * fluid inclusion * bitumen Subject RIV: DD - Geochemistry Impact factor: 2.130, year: 2010

  15. Sweet spots for hydraulic fracturing oil or gas production in underexplored shales using key performance indicators: Example of the Posidonia Shale formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelkamp, S.

    2015-01-01

    While extensive data and experiences are available for hydraulic fracturing and hydrocarbon production from shales in the U.S.A., such a record is lacking in many underexplored shale basins worldwide. As limited data is usually available in these basins, analysis of shale prospectivity and

  16. Autosolvent effect of bitumen in thermal cracking; Netsubunkai hanno ni okeru bitumen no jiko yobai koka

    Energy Technology Data Exchange (ETDEWEB)

    Mikuni, M.; Sato, M.; Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Nagaishi, H.; Sasaki, M.; Yoshida, T. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    Tar sand bitumen is petroleum-based ultra-heavy oil, and has a great amount of reserve like coal. However, there are still a lot of problems for its highly effective utilization. This paper discusses whether the light components in bitumen show independent behavior during the thermal cracking of heavy components, or not. Solvent effect and reaction mechanism during the thermal cracking are also derived from the change of their chemical structures. Athabasca tar sand bitumen was separated into light and heavy fractions by vacuum distillation based on D-1660 of ASTM. Mixtures of the both fractions at various ratios were used as samples. Negative effect of the light fraction on cracking of the heavy fraction was observed with dealkylation and paraffin formation Polymerization of the dealkylated light fraction to the heavy fraction was suggested due to lack of hydrogen in the thermal cracking under nitrogen atmosphere, which resulted in the formation of polymer. 3 refs., 6 figs.

  17. Comparison of product selectivity during hydroprocessing of bitumen derived gas oil in the presence of NiMo/Al{sub 2}O{sub 3} catalyst containing boron and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    D. Ferdous; A.K. Dalai; J. Adjaye [University of Saskatchewan, SK (Canada). Catalysis and Chemical Reactor Engineering Laboratories, Department of Chemical Engineering

    2006-06-15

    A detailed experimental study was performed in a trickle-bed reactor using bitumen derived gas oil. The objective of this work was to compare the activity of NiMo/Al{sub 2}O{sub 3} catalyst containing boron or phosphorus for the hydrotreating and mild hydrocracking of bitumen derived gas oil. Experiments were performed at the temperature and LHSV of 340-420{sup o}C and 0.5-2 h{sup -1}, respectively, using NiMo/Al{sub 2}O{sub 3} catalysts containing 1.7 wt% boron or 2.7 wt% phosphorus. In the temperature range of 340-390{sup o}C, higher nitrogen conversion was observed from boron containing catalyst than that from phosphorus containing catalyst whereas in the same temperature range, phosphorus containing catalyst gave higher relative removal of sulfur than boron containing catalyst. Phosphorus containing catalyst showed excellent hydrocracking and mild hydrocracking activities at all operating conditions. Higher naphtha yield and selectivity were obtained using phosphorus containing catalyst at all operating conditions. Maximum gasoline selectivity of {approximately}45 wt% was obtained at the temperature, pressure, and LHSV of 400{sup o}C, 9.4 MPa and 0.5 h{sup -1}, respectively, using catalyst containing 2.7 wt% phosphorus. 40 refs., 13 figs., 1 tab.

  18. Decision 99-8 : Shell Canada Limited application to construct and operate an oil sands bitumen upgrader in the Fort Saskatchewan area : Shell Canada Products Limited application to amend refinery approval in the Fort Saskatchewan area

    International Nuclear Information System (INIS)

    1999-01-01

    The Alberta Energy and Utilities Board considered an application by Shell Canada Limited to construct and operate an oil sands bitumen upgrader on Shell's property adjoining the existing Scotford refinery in the County of Strathcona. The upgrader would process bitumen from Shell's proposed Muskeg River Mine, located 70 km north of Fort McMurray, and other feedstocks available in the area. The Board also considered an application for an amendment to the existing Scotford refinery approval, Industrial Development Permit 89-10, for the processing of 3.75 million cubic metres per year of sour conversion feedstock. Under a coordinated application process, Shell filed a joint Shell Scotford Upgrader application/Environmental Impact Assessment. Issues considered with respect to these applications were: technology selection, air/health, sulphur recovery, noise/traffic, and land use conflict. Shell stated that its Scotford refinery is the most energy efficient refinery in the Americas and that is has the highest liquid yield per unit volume of crude oil feedstock of any refinery in the world. The refinery's hydrocracking capacity would make it possible to use hydro-conversion technology for its upgrader which is environmentally advantageous. After examining all of the evidence pertaining to the applications, the Board found the projects to be in the public interest and is prepared to approve the Scotford Upgrader and Scotford Refinery modifications assuming that certain prescribed conditions are met

  19. Parachute Creek Shale Oil Program Environmental Monitoring Program. Quarterly report, fourth quarter, October 1-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The document contains environmental compliance data collected in the fourth quarter of 1991, contents of reports on compliance data submitted to regulatory agencies, and supplemental analytical results from retorted shale pile runoff water collected following a storm event during the third quarter of 1991

  20. Unocal Parachute Creek Shale Oil Program Environmental Monitoring Program. Annual report, October 1, 1990-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains summaries of compliance and supplemental environmental and industrial hygiene and health surveillance monitoring conducted during the period; compliance permits, permit changes, and Notices of Violations discussions; statistical significance of Employee General Health information, medical histories, physical exams, pulmonary functions, clinical tests and demographics; independent audit reports; and a description of retorted shale disposal activities

  1. Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O' Rourke, J.A.; Wagner, P.

    1982-04-01

    The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

  2. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1978--May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.W.

    1979-03-01

    The following document is a third-year progress report for the period June 1, 1978 to May 31, 1979. The overall objective of the project is to study the effects of seeding techniques, species mixtures, fertilizer, ecotypes, improved plant materials, mycorrhizal fungi, and soil microorganisms on the initial and final stages of reclamation obtained through seeding and subsequent succession on disturbed oil shale lands. Plant growth medias that are being used in field-established test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Because of the long-term nature of successional and ecologically oriented studies the project is just beginning to generate significant publications. Several of the studies associated with the project have some phases being conducted principally in the laboratories and greenhouses at Colorado State Univerisity. The majority of the research, however, is being conducted on a 20 hectare Intensive Study Site located near the focal points of oil shale activity in the Piceance Basin. The site is at an elevation of 2,042 m, receives approximately 30 to 55 cm of precipitation annually, and encompasses the plant communities most typical of the Piceance Basin. Most of the information contained in this report originated from the monitoring and sampling of research plots established in either the fall of 1976 or 1977. Therefore, data that have been obtained from the Intensive Study Site represent only first- or second-year results. However, many trends have been identified in thesuccessional process and the soil microorganisms and mycorrhizal studies continue to contribute significant information to the overall results. The phytosociological study has progressed to a point where field sampling is complete and the application and publication of this materials will be forthcoming in 1979.

  3. Leaching of PAHs from agricultural soils treated with oil shale combustion ash: an experimental study.

    Science.gov (United States)

    Jefimova, Jekaterina; Adamson, Jasper; Reinik, Janek; Irha, Natalya

    2016-10-01

    The present study focuses on the fate of polycyclic aromatic hydrocarbons (PAHs) in soils amended with oil shale ash (OSA). Leachability studies to assess the release of PAHs to the environment are essential before the application of OSA in agriculture. A quantitative estimation of the leaching of PAHs from two types of soil and two types of OSA was undertaken in this study. Two leaching approaches were chosen: (1) a traditional one step leaching scheme and (2) a leaching scheme with pretreatment, i.e.., incubation of the material in wet conditions imitating the field conditions, followed by a traditional leaching procedure keeping the total amount of water constant. The total amount of PAHs leached from soil/OSA mixtures was in the range of 15 to 48 μg/kg. The amount of total PAHs leached was higher for the incubation method, compared to the traditional leaching method, particularly for Podzolic Gleysols soil. This suggests that for the incubation method, the content of organic matter and clay minerals of the soil influence the fate of PAHs more strongly compared to the traditional leaching scheme. The amount of PAHs leached from OSA samples is higher than from soil/OSA mixtures, which suggests soils to inhibit the release of PAHs. Calculated amount of PAHs from experimental soil and OSA leaching experiments differed considerably from real values. Thus, it is not possible to estimate the amount of PAHs leached from soil/OSA mixtures based on the knowledge of the amount of PAHs leached from soil and OSA samples separately.

  4. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  5. Total lead (Pb) concentration in oil shale ash samples based on correlation to isotope Pb-210 gamma-spectrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaasma, T.; Kiisk, M.; Tkaczyk, A.H. [University of Tartu (Estonia); Bitjukova, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    Estonian oil shale consists of organic matter and mineral material and contains various amounts of heavy metals as well as natural radionuclides (from the U-238 and Th-232 series and K-40). Previous research has shown that burning oil shale in the large power plants causes these radionuclides to become enriched in different ash fractions and be partially emitted to the atmosphere via fly ash and flue gases. The activity concentrations (Bq/kg) of these nuclides in different oil shale ash fractions vary significantly. This is influenced by the boiler parameters and combustion conditions - prevailing temperatures, pressure, ash circulating mechanisms, fly ash particle size, chemical composition of ash and coexistence of macro and micro components. As with radionuclides, various heavy metals remain concentrated in the ash fractions and are released to the atmosphere (over 20 tons of Pb per year from Estonian oil shale power plants). Lead is a heavy metal with toxic influence on the nervous system, reproductive system and different organs in human body. Depending on the exposure pathways, lead could pose a long term health hazard. Ash samples are highly heterogeneous and exhibit great variability in composition and particle size. Determining the lead concentration in ash samples by modern methods like inductively coupled plasma mass spectroscopy (ICP-MS), flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectroscopy (GFAAS) and other techniques often requires time consuming, multistage and complex chemical sample preparation. The list of possible methods to use is lengthy, but it is a challenge to choose a suitable one to meet measurement needs and practical considerations. The detection limits, capital costs and maintenance expenses vary between the instruments. This work presents the development of an alternative measurement technique for our oil shale ash samples. Oil shale ash was collected from different boilers using pulverized fuel

  6. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  7. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  8. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    The degradation of bitumen was found to be associated with the production of carbon (IV) oxide, natural gas and oil. As a result of using nitrogen limited and phosphate limited media, 1750 and 1250 cm3 of gas and 0.95 and 0.85 g/l of oil were obtained respectively. Nitrogen and phosphate limitation have profound effect on ...

  9. High performance liquid chromatographic separation of polycyclic aromatic hydrocarbons on microparticulate pyrrolidone and application to the analysis of shale oil

    International Nuclear Information System (INIS)

    Mourey, T.H.; Siggia, S.; Uden, P.C.; Crowley, R.J.

    1980-01-01

    A chemically bonded pyrrolidone substrate is used for the high performance liquid chromatographic separation of polycyclic aromatic hydrocarbons. The cyclic amide phase interacts electronically with the polycyclic aromatic hydrocarbons in both the normal and reversed phase modes. Separation is effected according to the number of aromatic rings and the type of ring condensation. Information obtained is very different from that observed on hydrocarbon substrates, and thus these phases can be used in a complementary fashion to give a profile of polycyclic aromatics in shale oil samples. 7 figures, 1 table

  10. Impact of oil shale mining and mine closures on hydrological conditions of North-East Estonian rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2004-01-01

    The attention is focused on the formation of hydrological and hydrogeological interconnections between the catchment areas of Purtse, Rannapungerja, Puhajoe and Vasavere rivers after closing (in 1997-2002) and flooding the Ahtme, Tammiku, Sompa and Kohtla oil shale underground mines. The multivariate relationship between the changes in mine water amounts directed into the rivers, annual runoff due to mine water inlets, groundwater underground flow, outflow module and other factors (as variables) were studied. A complex of linear regression formulas was derived to calculate the amounts of mine water outputs into the rivers and water distribution in order to regulate the hydrological regime of investigated rivers. (author)

  11. Major and trace elements in Mahogany zone oil shale in two cores from the Green River Formation, piceance basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.

    1983-01-01

    The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements

  12. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, R.; Bauder, C.; Callot, H.J.; Albrecht, P. (Univ. Louis Pasteur, Strasbourg (France))

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry, and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3), and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical Treibs scheme,' including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  13. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    Science.gov (United States)

    Ocampo, Rubén; Bauder, Claude; Callot, Henry J.; Albrecht, Pierre

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3) and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical "Treibs scheme," including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  14. An overview of US refinery configurations and operations (within western Canada supply orbit) : Who currently uses bitumen and SCO? Just how much heavy oil/bitumen is it possible to accept?

    International Nuclear Information System (INIS)

    Flint, L.

    1997-01-01

    A list of US refiners, names and locations that take relatively major heavy crude oil and synthetic crude oil (SCO) volumes from Western Canada was provided. It was suggested that in the near future, production of Canadian heavy crude will not be constrained by supply limits but rather by refinery process capabilities. An overview of refining capacity and heavy oil processing capacity by PADD in kbpsd was presented. The Northern Tier US States (PADD II, PADD IV and Washington/Oregon in PADD V) constitute a total of 4.4 million bpcd refining capacity at 95 per cent utilization. Of this, about 3.4 million bpcd is in PADD II. Montana in PADD IV is the only area dependent solely on Canadian heavy crude supplies. Main competition for Canadian heavy crude comes from Alaska, Mexico, and Venezuela. 1 tab., 2 figs

  15. The Devonian Marcellus Shale and Millboro Shale

    Science.gov (United States)

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  16. Organic metamorphism in the California petroleum basins; Chapter B, Insights from extractable bitumen and saturated hydrocarbons

    Science.gov (United States)

    Price, Leigh C.

    2000-01-01

    Seventy-five shales from the Los Angeles, Ventura, and Southern San Joaquin Valley Basins were extracted and analyzed. Samples were chosen on the basis of ROCK-EVAL analyses of a much larger sample base. The samples ranged in burial temperatures from 40 ? to 220 ? C, and contained hydrogen-poor to hydrogen-rich organic matter (OM), based on OM visual typing and a correlation of elemental kerogen hydrogen to carbon ratios with ROCK-EVAL hydrogen indices. By extractable bitumen measurements, rocks with hydrogen- poor OM in the Los Angeles Basin began mainstage hydrocarbon (HC) generation by 90 ? C. The HC concentrations maximized by 165 ? C, and beyond 165 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all began decreasing to low values reached by 220 ? C, where HC generation was largely complete. Rocks with hydrogen-poor OM in the Southern San Joaquin Valley Basin commenced mainstage HC generation at 135 ? C and HC concentrations maximized by 180 ? C. Above 180 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all decreased to low values reached by 214 ? C, again the process of HC generation being largely complete. In both cases, bell-shaped HC-generation curves were present versus depth (burial temperature). Mainstage HC generation had not yet begun in Ventura Basin rocks with hydrogen-poor OM by 140 ? C. The apparent lower temperature for initiation of mainstage generation in the Los Angeles Basin is attributed to very recent cooling in that basin from meteoric-water flow. Thus, HC generation there most probably occurred at higher burial temperatures. In contrast, mainstage HC generation, and all aspects of organic metamorphism, were strongly suppressed in rocks with hydrogen-rich OM at temperatures as high as 198 ? C. For example, shales from the Wilmington field (Los Angeles Basin) from 180 ? to 198 ? C retained ROCK-EVAL hydrogen indices of 550- 700 and had saturated-HC coefficients of only 4-15 mg/g organic carbon. The rocks

  17. Bitumen to refined products and petrochemicals : a preliminary assessment

    International Nuclear Information System (INIS)

    Crandall, G.

    2004-01-01

    Purvin and Gertz is an energy consulting firm that provides advise to the energy sector. A review of western Canadian crude oil supply suggests that oil sands production will surpass declining conventional production. Oil sands supply includes synthetic crude oil (SCO), bitumen and diluent. It is expected that oil sands will increase from 42 per cent of western supply in 2002 to 78 per cent in 2015. This presentation reviewed the potential of Alberta's oil sands and presented a recent study of refined products and petrochemicals from bitumen. Upgrading, refining and petrochemical case studies were presented. In particular, the author examined if a Canadian oil sands upgrading project with high capital costs can be competitive with competing projects in the United States and internationally. In addition to supply and demand issues, the presentation examined infrastructure capability and market potential in the United States. The economic potential and risks of preferred business cases compared to upgrading to SCO were also evaluated. tabs., figs

  18. Integrated oil production and upgrading using molten alkali metal

    Science.gov (United States)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  19. BX in-situ oil-shale project. Quarterly technical progress report, June 1, 1981-August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, P.M.

    1981-09-20

    June 1, 1981-August 31, 1981 was the third consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. Injection was continuous except for the period of July 14th to August 1st when the injection was suspended during the drilling of core hole BX-37. During the quarter, 99,760 barrels of water as superheated steam were injected into Project injection wells at an average well head temperature of 752/sup 0/F and an average wellhead pressure of 1312 PSIG. During the same period, 135,469 barrels of fluid were produced from the Project production wells for a produced to injected fluid ratio of 1.36 to 1.0. Net oil production during the quarter was 38 barrels.

  20. DETERMINATION OF OPTIMAL CONTOURS OF OPEN PIT MINE DURING OIL SHALE EXPLOITATION, BY MINEX 5.2.3. PROGRAM

    Directory of Open Access Journals (Sweden)

    Miroslav Ignjatović

    2013-04-01

    Full Text Available By examination and determination of optimal solution of technological processes of exploitation and oil shale processing from Aleksinac site and with adopted technical solution and exploitation of oil shale, derived a technical solution that optimize contour of the newly defined open pit mine. In the world, this problem is solved by using a computer program that has become the established standard for quick and efficient solution for this problem. One of the computer’s program, which can be used for determination of the optimal contours of open pit mines is Minex 5.2.3. program, produced in Australia in the Surpac Minex Group Pty Ltd Company, which is applied at the Mining and Metallurgy Institute Bor (no. of licenses are SSI - 24765 and SSI - 24766. In this study, authors performed 11 optimization of deposit geo - models in Minex 5.2.3. based on the tests results, performed in a laboratory for soil mechanics of Mining and Metallurgy Institute, Bor, on samples from the site of Aleksinac deposits.

  1. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  2. Organic constituents in sour condensates from shale-oil and petroleum-crude runs at Sohio's Toledo refinery: identification and wastewater-control-technology considerations

    Energy Technology Data Exchange (ETDEWEB)

    Wingender, R J; Harrison, W; Raphaelian, L A

    1981-02-01

    Samples of sour condensate generated from the continuous processing of both crude shale oil and petroleum crude were collected and extracted with methylene chloride. The extracts were analyzed using capillary-column gas chromatography/mass spectrometry at Argonne National Laboratory and Radian Corporation. Qualitatively, the predominant types of organic compounds present in the shale-oil sour condensate were pyridines and anilines; semiquantitatively, these compounds were present at a concentration of 5.7 ppM, or about 78% of the total concentration of components detected. In contrast, straight-chain alkanes were the predominant types of compounds found in the sour condensate produced during isocracking of conventional crude oil. The approximate concentration of straight-chain alkanes, 8.3 ppM, and of other branched and/or unsaturated hydrocarbons, 6.8 ppM, amounted to 88% of the total concentration of components detected in the sour condensate from the petroleum-crude run. Nitrogen compounds in the shale-oil sour condensate may necessitate alterations of the sour water and refinery wastewater-treatment facilities to provide for organics degradation and to accommodate the potentially greater ammonia loadings. This would include use of larger amounts of caustic to enhance ammonia removal by steam stripping. Possible problems associated with biological removal of organic-nitrogen compounds should be investigated in future experimental shale-oil refining runs.

  3. Irradiation tests on bitumen and bitumen coated materials

    International Nuclear Information System (INIS)

    Tabardel-Brian, R.; Rodier, J.; Lefillatre, G.

    1969-01-01

    The use of bitumen as a material for coating high-activity products calls for prior study of the resistance of bitumen to irradiation. After giving briefly the methods of preparation of bitumen- coated products, this report lists the equipment which has been used for carrying out the β and γ irradiations of these products, and gives the analytical results obtained as a function of the dose rates chosen and of the total integrated dose. Finally, some conclusions have been drawn concerning the best types of bitumen. It should be stressed that some bitumens apparently underwent no degradation whatsoever nor any volume increase, for a total integrated dose of 1.8 x 10 10 rads. (authors) [fr

  4. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Justice, P M

    1917-09-19

    Light paraffin oils and other oils for motors are obtained from shale, and benzene, toluene, and solvent naphtha are obtained from coal by a process in which the coal or shale is preferably powered to pass through a mesh of 64 to the inch and is heated with a mixture of finely ground carbonate or the like which under the action of heat gives off carbonic acid, and with small iron scrap or its equivalent which is adapted to increase the volume of hydrocarbons evolved. The temperature of the retort is maintained between 175 and 800/sup 0/C., and after all the vapors are given off at the higher temperature a fine jet of water may be injected into the retort and the temperature increased. The produced oil is condensed and purified by fractional distillation, and the gas formed is stored after passing it through a tower packed with coke saturated with a non-volatile oil with recovery of an oil of light specific gravity which is condensed in the tower. The residuum from the still in which the produced oil is fractionated may be treated with carbonate and iron, as in the first stage of the process, and the distillate therefrom passed to a second retort containing manganese dioxide and iron scrap preferably in the proportion of one part or two. The mixture, e.g., one containing shale or oil with six to thirteen percent of oxygen, to which is added three to eight per cent of carbonate, and from one and a half to four per cent of scrap iron, is conveyed by belts and an overhead skip to a hopper of a retort in a furnace heated by burners supplied with producer gas. The retort is fitted with a detachable lid and the vapors formed are led by a pipe to a vertical water-cooled condenser with a drain-cock which leads the condensed oils to a tank, from which a pipe leads to a packed tower for removing light oils and from which the gas passes to a holder.

  5. Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste

    International Nuclear Information System (INIS)

    1975-05-01

    Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements

  6. Barnett shale completions

    Energy Technology Data Exchange (ETDEWEB)

    Schein, G. [BJ Services, Dallas, TX (United States)

    2006-07-01

    Fractured shales yield oil and gas in various basins across the United States. A map indicating these fractured shale source-reservoir systems in the United States was presented along with the numerous similarities and differences that exist among these systems. Hydrocarbons in the organic rich black shale come from the bacterial decomposition of organic matter, primary thermogenic decomposition of organic matter or secondary thermogenic cracking of oil. The shale may be the reservoir or other horizons may be the primary or secondary reservoir. The reservoir has induced micro fractures or tectonic fractures. This paper described the well completions in the Barnett Shale in north Texas with reference to major players, reservoir properties, mineralogy, fluid sensitivity, previous treatments, design criteria and production examples. The Barnett Shale is an organic, black shale with thickness ranging from 100 to 1000 feet. The total organic carbon (TOC) averages 4.5 per cent. The unit has undergone high rate frac treatments. A review of the vertical wells in the Barnett Shale was presented along with the fracture treatment schedule and technology changes. A discussion of refracturing opportunities and proppant settling and transport revealed that additional proppant increases fluid recovery and enhances production. Compatible scale inhibitors and biocides can be