WorldWideScience

Sample records for ohio closure sites

  1. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating

  2. Technical assistance to Ohio closure sites; Recommendations toaddress contaminated soils, concrete, and corrective action managementunit/groundwater contamination at Ashtabula, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Charoglu, Emily; Eddy-Dilek, Carol; Gombert, Dirk; Hazen, Terry; Johnson, Bob; Looney, Brian; Krstich, Michael A.; Rautman, Chris; Tripp,Julia; Whitmill, Larry

    2002-08-26

    The Ashtabula Environmental Management Project (AEMP) at Department of Energy-Ohio (DOE-OH) requested technical assistance from the EM-50 Lead Lab to aid in defining new cost and time effective approaches in the following problem areas: soils, concrete, and groundwater/Corrective Action Management Unit (CAMU) at RMIES in Ashtabula, Ohio. Attachment 1 provides the site request for assistance. The technical assistance team assembled for this request is provided in Attachment 2. These individuals reviewed key site information prior to convening with DOE and contractor personnel (RMIES and Earthline) for a three-and-a-half-day meeting to better understand baseline technologies, limitations, and site-specific issues. After listening to presentations about the nature and extent of known contamination, the team broke out into several groups to brainstorm ideas and develop viable solutions. This executive summary details unresolved issues requiring management attention as well as recommendations to address soils, concrete, and groundwater/CAMU. It also provides a summary of additional technical assistance that could be provided to the site. More details are presented in the body of this report.

  3. FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J E; Scott, J E; Mathews, S E

    2004-09-29

    Lawrence Livermore National Laboratory of the University of California (LLNL) operates two Class II surface impoundments that store wastewater that is discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater is the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years has significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners are nearing the end of their service life. The purpose of this project is to clean close the surface impoundments and provide new wastewater storage using portable, above ground storage tanks at six locations. The tanks will be installed prior to closure of the impoundments and will include heaters for allowing evaporation during relatively cool weather. Golder Associates (Golder) has prepared this Final Closure Plan (Closure Plan) on behalf of LLNL to address construction associated with the clean closure of the impoundments. This Closure Plan complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR {section}21400). As required by these regulations and guidance, this Plan provides the following information: (1) A site characterization, including the site location, history, current operations, and geology and hydrogeology; (2) The regulatory requirements relevant to clean closure of the impoundments; (3) The closure procedures; and, (4) The procedures for validation and documentation of clean closure.

  4. Adapting MARSSIM for FUSRAP site closure.

    Science.gov (United States)

    Johnson, Robert; Durham, L; Rieman, C

    2003-06-01

    The Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) provides a coherent, technically defensible process for establishing that exposed surfaces satisfy site cleanup requirements. Unfortunately, many sites have complications that challenge a direct application of MARSSIM. Example complications include Record of Decision (ROD) requirements that are not MARSSIM-friendly, the potential for subsurface contamination, and incomplete characterization information. These types of complications are typically the rule, rather than the exception, for sites undergoing radiologically-driven remediation and closure. One such site is the Formerly Utilized Sites Remedial Action Program (FUSRAP) Linde site in Tonawanda, New York. Cleanup of the site is currently underway. The Linde site presented a number of challenges to designing and implementing a closure strategy consistent with MARSSIM. This paper discusses some of the closure issues confronted by the U.S. Army Corps of Engineers Buffalo District at the Linde site and describes how MARSSIM protocols were adapted to address these issues.

  5. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  6. Final Clean Closure Report Site 300 Surface Impoundments Closure Lawrence Livermore National Laboratory Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, K

    2006-02-14

    Lawrence Livermore National Laboratory operated two Class II surface impoundments that stored wastewater that was discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater was the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners were nearing the end of their service life. The purpose of this project was to clean close the surface impoundments and provide new wastewater storage using above ground storage tanks at six locations. The tanks were installed and put into service prior to closure of the impoundments. This Clean Closure Report (Closure Report) complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR section 21400). As required by these regulations and guidance, this Closure Report provides the following information: (1) a brief site description; (2) the regulatory requirements relevant to clean closure of the impoundments; (3) the closure procedures; and (4) the findings and documentation of clean closure.

  7. Ohio state information handbook: formerly utilized sites remedial action program

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-09

    This volume is one of a series produced under contract with the DOE, by POLITECH CORPORATION to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Ohio. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full test of relevant statutes and regulations.

  8. Suitability of Exoseal Vascular Closure Device for Antegrade Femoral Artery Puncture Site Closure

    Energy Technology Data Exchange (ETDEWEB)

    Schmelter, Christopher, E-mail: christopher.schmelter@klinikum-ingolstadt.de; Liebl, Andrea; Poullos, Nektarios [Klinikum Ingolstadt, Department of Diagnostic and Interventional Radiology (Germany); Ruppert, Volker [Klinikum Ingolstadt, Department of Vascular Surgery (Germany); Vorwerk, Dierk [Klinikum Ingolstadt, Department of Diagnostic and Interventional Radiology (Germany)

    2013-06-15

    Purpose. To assess the efficacy and safety of the Exoseal vascular closure device for antegrade puncture of the femoral artery. Methods. In a prospective study from February 2011 to January 2012, a total of 93 consecutive patients received a total of 100 interventional procedures via an antegrade puncture of the femoral artery. An Exoseal vascular closure device (6F) was used for closure in all cases. Puncture technique, duration of manual compression, and use of compression bandages were documented. All patients were monitored by vascular ultrasound and color-coded duplex sonography of their respective femoral artery puncture site within 12 to 36 h after angiography to check for vascular complications. Results. In 100 antegrade interventional procedures, the Exoseal vascular closure device was applied successfully for closure of the femoral artery puncture site in 96 cases (96 of 100, 96.0 %). The vascular closure device could not be deployed in one case as a result of kinking of the vascular sheath introducer and in three cases because the bioabsorbable plug was not properly delivered to the extravascular space adjacent to the arterial puncture site, but instead fully removed with the delivery system (4.0 %). Twelve to 36 h after the procedure, vascular ultrasound revealed no complications at the femoral artery puncture site in 93 cases (93.0 %). Minor vascular complications were found in seven cases (7.0 %), with four cases (4.0 %) of pseudoaneurysm and three cases (3.0 %) of significant late bleeding, none of which required surgery. Conclusion. The Exoseal vascular closure device was safely used for antegrade puncture of the femoral artery, with a high rate of procedural success (96.0 %), a low rate of minor vascular complications (7.0 %), and no major adverse events.

  9. Site-Specific Earthquake Response Analysis for Portsmouth Gaseous Diffusion Plant, Portsmouth, Ohio

    Science.gov (United States)

    1993-08-01

    Paducah Gaseous Diffusion Plant (PGDP), located near Paducah , Kentucky, under the same IAG and is reported under...Specific Earthquake Response Analysis for Portsmouth Gaseous Diffusion Plant , Portsmouth, Ohio by David W. Sykora, Jennifer J. Davis Geotechnical Laboratory...PAPER Miscellaneous Paper GL-93-13 August 1993 Site-Specific Earthquke Response Analysis for Portsmouth Gaseous Diffusion Plant , Portsmouth, Ohio by

  10. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  11. CLOSURE OF OFF-SITE TELNET

    CERN Multimedia

    Denise Heagerty

    2002-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE TELNET ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from Tuesday 28 January 2003 If you use telnet to access CERN computers from outside CERN then please see the link below for alternative access means and further advice http://cern.ch/security/telnet Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  12. Closure of Off-Site FTP

    CERN Multimedia

    2004-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE FTP ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from: Tuesday 20th January 2004 If you use ftp to access CERN computers from outside CERN then please see the link below for alternative access means and further advice: http://cern.ch/security/ftp Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  13. Closure of Off-Site FTP

    CERN Multimedia

    2003-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE FTP ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from: Tuesday 20th January 2004 If you use ftp to access CERN computers from outside CERN then please see the link below for alternative access means and further advice: http://cern.ch/security/ftp Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  14. Closure of Off-Site Telnet

    CERN Multimedia

    2003-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE TELNET ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from Tuesday 28th January 2003 If you use telnet to access CERN computers from outside CERN then please see the link below for alternative access means and further advice http://cern.ch/security/telnet Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  15. Closure of fascial defect at trocar sites after laparoscopic surgery.

    Science.gov (United States)

    Sahin, Mustafa; Eryilmaz, Ramazan; Okan, Ismail

    2006-01-01

    As laparoscopic surgery evolves, a growing number of different abdominal operations can now be performed. This necessitates the use of multiple large trocars. Herniation through the fascial defect created by trocar entry in laparoscopic interventions has been reported at a rate of 1-6%. We describe a simple closure technique for fascial defects at trocar sites after laparoscopic surgery. To facilitate the closure of the fascial defects of > or = 10 mm trocar entry sites, the surgeon places the upper end of a dissecting forceps through the fascial defect and tilts it so that the abdominal of the peritoneum comes into contact with its flat surface. The assistant retracts the skin and subcutaneous tissue and the "J" needle with the appropriate suture material is then used to take a stitch through the fascia under direct vision. The sharp end of the needle is prevented from coming into contact with any deeper structure as it slides on the flat surface of the dissecting forceps. The stitch is then pulled up to lift the edge of the fascia and the needle is passed from the opposite edge of the fascia in the same manner and then the suture is ligated. The aforementioned technique is easy to perform and facilitates the closure of the fascial defect at trocar sites, and there is no extra cost for the procedure.

  16. Energy balance closure at ChinaFLUX sites

    Institute of Scientific and Technical Information of China (English)

    LI Zhengquan; YU Guirui; WEN Xuefa; ZHANG Leiming; REN Chuanyou; FU Yuling

    2005-01-01

    Network of eddy covariance observation is measuring long-term carbon and water fluxes in contrasting ecosystems and climates. As one important reference of independently evaluating scalar flux estimates from eddy covariance, energy balance closure is used widely in study of carbon and water fluxes. Energy balance closure in ChinaFLUX was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat) against available energy (net radiation, soil heat flux, canopy heat storage) and the energy balance ratio (EBR) and the frequency distribution of relative errors of energy balance (δ). The trends of diurnal and seasonal variation of energy balance in ChinaFLUX were analyzed. The results indicated that the imbalance was prevalent in all observation sites, but there were little differences among sites because of the properties variation of sites. The imbalance was greater during nocturnal periods than daytime and closure was improved with friction velocity intensifying. Generally the results suggested that estimates of the scalar turbulent fluxes of sensible and latent heat were underestimated and/or that available energy was overestimated. Finally, we discussed certain factors that are contributed to the imbalance of energy, such as systematic errors associated with the sampling mismatch, systematic instrument bias, neglected energy sinks, low and high frequency loss of turbulent fluxes and advection of heat and water vapor.

  17. Incidence of Ostomy Site Incisional Hernias after Stoma Closure.

    Science.gov (United States)

    Sharp, Stephen P; Francis, Jacquelyn K; Valerian, Brian T; Canete, Jonathan J; Chismark, A David; Lee, Edward C

    2015-12-01

    This study sought to evaluate the incidence of ostomy site incisional hernias after stoma reversal at a single institution. This is a retrospective analysis from 2001 to 2011 evaluating the following demographics: age, gender, indication for stoma, urgent versus elective operation, time to closure, total follow-up time, the incidence of and reoperation for stoma incisional hernia, diabetes, postoperative wound infection, smoking status within six months of surgery, body mass index, and any immunosuppressive medications. A total of 365 patients were evaluated. The median follow-up time was 30 months. The clinical hernia rate was 19 percent. Significant risk factors for hernia development were age, diabetes, end colostomies, loop colostomies, body mass index >30, and undergoing an urgent operation. The median time to clinical hernia detection was 32 months. Sixty-four percent of patients required surgical repair of their stoma incisional hernia. A significant number of patients undergoing stoma closure developed an incisional hernia at the prior stoma site with the majority requiring definitive repair. These hernias are a late complication after stoma closure and likely why they are under-reported in the literature.

  18. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  19. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2006-09-01

    This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  20. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2006-09-01

    This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  1. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  2. 78 FR 59650 - Reorganization of Foreign-Trade Zone 40 Under Alternative Site Framework Cleveland, Ohio

    Science.gov (United States)

    2013-09-27

    ... Lorain Counties, Ohio, in and adjacent to the Cleveland Customs and Border Protection port of entry, FTZ... by September 30, 2020, to a five-year ASF sunset provision for magnet sites that would terminate... is admitted for a bona fide customs purpose by September 30, 2016. Signed at Washington, DC,...

  3. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-06-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  4. Closure Report for Corrective Action Unit 540: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Lloyd

    2006-10-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 540: Spill Sites, Nevada Test Site, Nevada. This CR complies with the requirements of the 'Federal Facility Agreement and Consent Order' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 540 is located within Areas 12 and 19 of the Nevada Test Site and is comprised of the following Corrective Action Sites (CASs): CAS 12-44-01, ER 12-1 Well Site Release; CAS 12-99-01, Oil Stained Dirt; CAS 19-25-02, Oil Spill; CAS 19-25-04, Oil Spill; CAS 19-25-05, Oil Spill; CAS 19-25-06, Oil Spill; CAS 19-25-07, Oil Spill; CAS 19-25-08, Oil Spills (3); and CAS 19-44-03, U-19bf Drill Site Release. The purpose of this CR is to provide documentation supporting recommendations of no further action for the CASs within CAU 540. To achieve this, the following actions were performed: (1) Reviewed the current site conditions, including the concentration and extent of contamination; (2) Performed closure activities to address the presence of substances regulated by 'Nevada Administrative Code' 445A.2272 (NAC, 2002); and (3) Documented Notice of Completion and closure of CAU 540 issued by the Nevada Division of Environmental Protection.

  5. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  6. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead

  7. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-07-01

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain on the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.

  8. Closure Report for Corrective Action Unit 346: Areas 8, 10 Housekeeping Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-08-01

    This Closure Report documents the closure activities conducted for Corrective Action Unit (CAU) 346: Areas 8, 10 Housekeeping Sites. CAU 346 is listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996) and consists of the following 14 Corrective Action Sites (CASs) located in Areas 8 and 10 of the Nevada Test Site (NTS): (1) CAS 08-22-04: Drums (2); (2) CAS 08-22-11: Drums; Bucket; (3) CAS 08-24-02: Battery; (4) CAS 10-14-01: Transformer; (5) CAS 10-22-06: Drum (Gas Block); (6) CAS 10-22-10: Drum (Gas Block); (7) CAS 10-22-12: Drum (Gas Block); (8) CAS 10-22-13: Drum (Gas Block); (9) CAS 10-22-16: Drum (Gas Block); (10) CAS 10-22-22: Drum; (11) CAS 10-22-25: Drum; (12) CAS 10-22-36: Paint Can; (13) CAS 10-22-37: Gas Block; and (14) CAS 10-24-11: Battery. Closure activities consisted of closing each CAS by removing debris and/or material, disposing of the generated waste, and verifying that each site was clean-closed by visual inspection and/or laboratory analysis of soil verification samples.

  9. Closure

    NARCIS (Netherlands)

    Stigter, C.J.

    1988-01-01

    At least an easier task than I have carried out the previous hour when we discussed the preliminary conclusions and recommendations has, as a compensation I guess, been given to me as well. To say a few words as a closure of this symposium. The beginning of such a series of closing statements is mos

  10. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  11. Closure Report for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada. CAU 573 comprises the two corrective action sites (CASs): 05-23-02-GMX Alpha Contaminated Are-Closure in Place and 05-45-01-Atmospheric Test Site - Hamilton- Clean Closure. The purpose of this CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 573 based on the implementation of the corrective actions. Corrective action activities were performed at Hamilton from May 25 through June 30, 2016; and at GMX from May 25 to October 27, 2016, as set forth in the Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) for Corrective Action Unit 573: Alpha Contaminated Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices. Verification sample results were evaluated against data quality objective criteria developed by stakeholders that included representatives from the Nevada Division of Environmental Protection and the DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) during the corrective action alternative (CAA) meeting held on November 24, 2015. Radiological doses exceeding the final action level were assumed to be present within the high contamination areas associated with CAS 05-23-02, thus requiring corrective action. It was also assumed that radionuclides were present at levels that require corrective action within the soil/debris pile associated with CAS 05-45-01. During the CAU 573 CAA meeting, the CAA of closure in place with a use restriction (UR) was selected by the stakeholders as the preferred corrective action of the high contamination areas at CAS 05-23-02 (GMX), which contain high levels of removable contamination; and the CAA of clean closure was selected by the

  12. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This closure report documents the strategy and analytical results that support the clean closure or closure in place of each of the components within CAU 93. In addition, the report documents all deviations from the approved closure plan and provides rationale for all deviations.

  13. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-03-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process.

  14. Hydrologic characteristics of low-impact stormwater control measures at two sites in northeastern Ohio, 2008-13

    Science.gov (United States)

    Darner, Robert A.; Shuster, William D.; Dumouchelle, Denise H.

    2015-01-01

    This report updates and examines hydrologic data gathered to characterize the performance of two stormwater-control measure (SCM) sites in the Chagrin River watershed, Ohio. At the Sterncrest Drive site, roadside bioswales and rain gardens were used to alleviate drainage problems in this residential neighborhood area. At the Washington Street site, a treatment train (including a pervious-paver system, rain garden, and bioswales) was used to reduce and delay stormwater runoff at a small business development. Selected metrics were used to demonstrate SCM system performance with regard to stormwater-management objectives at each site. Rain-garden overflow-frequency data collected at the Sterncrest Drive site during 2008–13 were used to characterize system sensitivity to rainfall characteristics. Approximately 70 percent of storms exceeding 0.75 inches during 3 hours or more resulted in overflows. Drainage-design features that may restrict flow through the system were identified. Overall, the data and local observations confirmed the continued success of the SCM at the Sterncrest Drive site in preventing roadway closure due to flooding. The additional years of data collected at the Washington Street site indicated that a previous analysis of increased runoff removal, based on only the first 2 years (2009–10) of data, provided premature conclusions. With 5 years of data (2009–13) and adjusting for changes in rainfall characteristics, it appears that the percentage of runoff removed by the system is decreasing; however, the lag time (time from onset of rainfall to runoff) has remained nearly constant. The annual mean percent removal for 2010–13 ranged from 55 to 37 percent with an overall mean of 45 percent, and this does meet the project objective of reducing runoff from the business complex. One possible explanation for the combination of increased volume of runoff and no change in the timing of runoff is the preferential flow paths developed in the SCM

  15. Cleanups In My Community (CIMC) - Base Realignment and Closure (BRAC) Superfund Sites, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Base Realignment and Closure (BRAC) Superfund Sites as part of the CIMC web service. EPA works with DoD to facilitate the reuse...

  16. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio.

    Science.gov (United States)

    Francy, Donna S; Brady, Amie M G; Ecker, Christopher D; Graham, Jennifer L; Stelzer, Erin A; Struffolino, Pamela; Dwyer, Daryl F; Loftin, Keith A

    2016-09-01

    Cyanobacterial harmful algal blooms (cyanoHABs) and associated toxins, such as microcystin, are a major global water-quality issue. Water-resource managers need tools to quickly predict when and where toxin-producing cyanoHABs will occur. This could be done by using site-specific models that estimate the potential for elevated toxin concentrations that cause public health concerns. With this study, samples were collected at three Ohio lakes to identify environmental and water-quality factors to develop linear-regression models to estimate microcystin levels. Measures of the algal community (phycocyanin, cyanobacterial biovolume, and cyanobacterial gene concentrations) and pH were most strongly correlated with microcystin concentrations. Cyanobacterial genes were quantified for general cyanobacteria, general Microcystis and Dolichospermum, and for microcystin synthetase (mcyE) for Microcystis, Dolichospermum, and Planktothrix. For phycocyanin, the relations were different between sites and were different between hand-held measurements on-site and nearby continuous monitor measurements for the same site. Continuous measurements of parameters such as phycocyanin, pH, and temperature over multiple days showed the highest correlations to microcystin concentrations. The development of models with high R(2) values (0.81-0.90), sensitivities (92%), and specificities (100%) for estimating microcystin concentrations above or below the Ohio Recreational Public Health Advisory level of 6μgL(-1) was demonstrated for one site; these statistics may change as more data are collected in subsequent years. This study showed that models could be developed for estimates of exceeding a microcystin threshold concentration at a recreational freshwater lake site, with potential to expand their use to provide relevant public health information to water resource managers and the public for both recreational and drinking waters.

  17. Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-04-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

  18. Environmental control technology survey of selected US strip mining sites. Volume 2A: Ohio: water quality impacts and overburden chemistry of Ohio study site

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, J E; Henricks, J D; Olsen, R D; Schubert, J P; Sobek, A A; Wilkey, M L; Johnson, D O

    1979-05-01

    An intensive study of water, overburden, and coal chemistry was conducted at a large surface mine in Ohio from May 1976 through July 1977. Sampling sites were chosen to include the final mine effluent at the outflow of a large settling pond and chemically-treated drainage from a coal storage pile. Samples were collected semimonthly and analyzed for total dissolved solids, total suspended solids, alkalinity, acidity, sulfate, chloride, and 16 metals. Field measurements included pH, flow rate, dissolved oxygen, and specific conductance. The final effluent, where sampled, generally complied with Office of Surface Mining reclamation standards for pH, iron, and total suspended solids. Comparison of the final effluent with water quality of an unnamed tributary above the mine suggested that elevated values for specific conductance, total dissolved solids, sulfate, calcium, magnesium, manganese, and zinc were attributable to the mine operation. In general, there were observable seasonal variations in flow rates that correlated positively to suspended solids concentrations and negatively to concentrations of dissolved constituents in the final effluent. Drainage from the coal storage pile contained elevated levels of acidity and dissolved metals which were not reduced significantly by the soda ash treatment. The storage pile drainage was diluted, however, by large volumes of alkaline water in the settling pond. Analysis of overburden and coal indicated that the major impact of mine drainage was pyrite oxidation and hydrolysis in the Middle Kittanning Coal and in the Lower Freeport Shale overlying the coal. However, the presence of a calcite-cemented section in the Upper Freeport Sandstone contributed substantial self-neutralizing capacity to the overburden section, resulting in generally alkaline drainage at this site.

  19. Environmental control technology survey of selected US strip mining sites. Volume 2A: Ohio: water quality impacts and overburden chemistry of Ohio study site

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, J E; Henricks, J D; Olsen, R D; Schubert, J P; Sobek, A A; Wilkey, M L; Johnson, D O

    1979-05-01

    An intensive study of water, overburden, and coal chemistry was conducted at a large surface mine in Ohio from May 1976 through July 1977. Sampling sites were chosen to include the final mine effluent at the outflow of a large settling pond and chemically-treated drainage from a coal storage pile. Samples were collected semimonthly and analyzed for total dissolved solids, total suspended solids, alkalinity, acidity, sulfate, chloride, and 16 metals. Field measurements included pH, flow rate, dissolved oxygen, and specific conductance. The final effluent, where sampled, generally complied with Office of Surface Mining reclamation standards for pH, iron, and total suspended solids. Comparison of the final effluent with water quality of an unnamed tributary above the mine suggested that elevated values for specific conductance, total dissolved solids, sulfate, calcium, magnesium, manganese, and zinc were attributable to the mine operation. In general, there were observable seasonal variations in flow rates that correlated positively to suspended solids concentrations and negatively to concentrations of dissolved constituents in the final effluent. Drainage from the coal storage pile contained elevated levels of acidity and dissolved metals which were not reduced significantly by the soda ash treatment. The storage pile drainage was diluted, however, by large volumes of alkaline water in the settling pond. Analysis of overburden and coal indicated that the major impact of mine drainage was pyrite oxidation and hydrolysis in the Middle Kittanning Coal and in the Lower Freeport Shale overlying the coal. However, the presence of a calcite-cemented section in the Upper Freeport Sandstone contributed substantial self-neutralizing capacity to the overburden section, resulting in generally alkaline drainage at this site.

  20. Closure Report for Housekeeping Category Corrective Action Unit 387: Spill Sites and Releases, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-10-01

    This Closure Report documents the closure activities conducted for CAU 387: Spill Sites and Releases. Closure activities were performed in two phases. Phase I activities consisted of collecting waste characterization samples of soil at appropriate sites. The results were used to determine how waste generated during closure activities would be handled and disposed (i.e., as nonhazardous sanitary or hazardous waste). Phase 2 activities consisted of closing each CAS by removing debris and/or soil, disposing of the generated waste, and verifying that each site was clean-closed by visual inspection and/or collecting soil verification samples for laboratory analysis. Additionally, seven sites were closed with no further action after concurrence with Nevada Division of Environmental Protection (NDEP). Four other sites were moved into different CAUs in Appendix III of the FFACO because the housekeeping process was not adequate to close them. Copies of the analytical results for the site verification samples are included in Appendix A. Copies of the Sectored Housekeeping Site Closure Verification Forms for each of the 16 CAS are included in Appendix B.

  1. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-31

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  2. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office

  3. Fly ash leachate generation and qualitative trends at Ohio test sites

    Energy Technology Data Exchange (ETDEWEB)

    Solc, J.; Foster, H.J.; Butler, R.D. [Energy & Environmental Research Center, Grand Forks, ND (United States)

    1995-12-01

    Under the sponsorship of the U.S. Department of Energy, the environmental impact and potential contamination from landfilled fly ash (coal conversion solid residues - CCSRs) have been studied at field sites in Ohio. The progressive increase of moisture content within pilot cells over depth and time facilitated intensive chemical processes and generation of highly alkaline (pH of 10 to 12) leachate. Chemistry of pore water from lysimeters and ASTM leachate from fly ash and soil cores indicate the leachate potential to migrate out of deposit and impact the pore water quality of surrounding soils. Na, SO{sub 4} and, particularly, K, Cl, pH, and EC appeared to be valuable indicator parameters for tracking potential leachate transport both within the cells and below the ash/soil interface.

  4. Closure Report for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-09-01

    Corrective Action Unit (CAU) 121 is identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008) as Storage Tanks and Miscellaneous Sites. CAU 121 consists of the following three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 12-01-01, Aboveground Storage Tank; (2) CAS 12-01-02, Aboveground Storage Tank; and (3) CAS 12-22-26, Drums; 2 AST's. CAU 121 closure activities were conducted according to the FFACO and the Streamlined Approach for Environmental Restoration Plan for CAU 121 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007). Field work took place from February through September 2008. Samples were collected to determine the path forward to close each site. Closure activities were completed as defined in the plan based on sample analytical results and site conditions. No contaminants of concern (COCs) were present at CAS 12-01-01; therefore, no further action was chosen as the corrective action alternative. As a best management practice (BMP), the empty aboveground storage tank (AST) was removed and disposed as sanitary waste. At CAS 12-01-02, polychlorinated biphenyls (PCBs) were present above the preliminary action level (PAL) in the soil beneath the AST that could possibly have originated from the AST contents. Therefore, PCBs were considered COCs, and the site was clean closed by excavating and disposing of soil containing PCBs. Approximately 5 cubic yards (yd{sup 3}) of soil were excavated and disposed as petroleum hydrocarbon PCB remediation waste, and approximately 13 yd3 of soil were excavated and disposed as PCB remediation waste. Cleanup samples were collected to confirm that the remaining soil did not contain PCBs above the PAL. Other compounds detected in the soil above PALs (i.e., total petroleum hydrocarbons [TPH] and semi-volatile organic compounds [SVOCs

  5. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland... addressed the Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact... in the following paragraphs. As stated in the Final TC&WM EIS, for the actions related to tank waste...

  6. Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada Geotechnical Sciences

    2005-06-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report – Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

  7. Closure Report for Corrective Action Unit 538: Spill Sites, Nevada Test Site, Nevada with ROTC-1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2007-02-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 538, Spill Sites, located at the Nevada Test Site (NTS) in Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The corrective action sites (CASs) within CAU 538 are located within Areas 2, 3, 6, 12, and 23 of the NTS. The purpose of this CR is to provide documentation for the absence of contamination or that the closure objectives have been met for each CAS within CAU 538.

  8. Middlesex FUSRAP Site - A Path to Site-Wide Closure - 13416

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David M. [ECC, 110 Fieldcrest Ave, Ste 31, Edison, NJ, 08837 (United States); Edge, Helen [US Army Corps of Engineers - NYD, 26 Federal Plaza, Room 1811, New York, NY, 10278 (United States)

    2013-07-01

    The road-map to obtaining closure of the Middlesex Sampling Plant FUSRAP site in Middlesex, New Jersey (NJ) has required a multi-faceted approach, following the CERCLA Process. Since 1998, the US ACE, ECC, and other contractors have completed much of the work required for regulatory acceptance of site closure with unrestricted use. To date, three buildings have been decontaminated, demolished, and disposed of. Two interim storage piles have been removed and disposed of, followed by the additional removal and disposal of over 87,000 tons of radiologically and chemically-impacted subsurface soils by the summer of 2008. The US ACE received a determination from the EPA for the soils Operable Unit, (OU)-1, in September 2010 that the remedial excavations were acceptable, and meet the criteria for unrestricted use as required by the 2004 Record of Decision (ROD) for OU-1. Following the completion of OU-1, the project delivery team performed additional field investigation of the final Operable Unit for Middlesex, OU-2, Groundwater. As of December 2012, the project delivery team has completed a Supplemental Remedial Investigation, which will be followed with a streamlined Feasibility Study, Proposed Plan, and ROD. Several years of historical groundwater data was available from previous investigations and the FUSRAP Environmental Surveillance Program. Historical data indicated sporadic detections of Volatile Organic Compounds (VOCs), primarily trichloroethylene (TCE), carbon tetrachloride (CT), and methyl tert-butyl ether (MTBE), with no apparent trend or pattern indicating extent or source of the VOC impact. In 2008, the project delivery team initiated efforts to re-assess the Conceptual Site Model (CSM) for groundwater. The bedrock was re-evaluated as a leaky multi-unit aquifer, and a plan was developed for additional investigations for adequate bedrock characterization and delineation of groundwater contaminated primarily by CT, TCE, and tetrachloroethene (PCE). The

  9. Seed Bank Variation under Contrasting Site Quality Conditions in Mixed Oak Forests of Southeastern Ohio, USA

    Directory of Open Access Journals (Sweden)

    Christine J. Small

    2010-01-01

    Full Text Available Seed bank composition was sampled in 192–2.5 m2 quadrats, established in six regenerating clearcut (∼7 years and six second-growth (∼125 years mixed-oak forest stands in southeastern Ohio. Seed bank and aboveground composition diverged markedly (Sørensen's coefficient <10%, emphasizing the importance of fast-growing, early-successional germinants to early ecosystem recovery. Seed richness was significantly (P<.01 higher in clearcut stands, suggesting declining richness with stand age. Richness estimations 28%–60% higher than observed values demonstrated high seed bank heterogeneity, emphasizing the need for intensive sampling to assess temperate forest seed bank variation. Site quality (topographic aspect strongly influenced seed bank composition, with greater importance of early-successional trees, thicket-forming shrubs, and nonnative species on mesic sites. Thus, forest seed banks are likely to play an important, site-dependent role in shaping competitive environments for commercially important timber species after harvesting and soil disturbance and have the potential for marked influence on postharvest forest development.

  10. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  12. Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-08-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

  13. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  14. Closure Report for Housekeeping Category Corrective Action Unit 524 Nevada Test Site Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2000-11-01

    This Closure Report for Corrective Action Unit (CAU) 524 summarizes the disposition of four Corrective Action Sites (CAS) located in Area 25 of the Nevada Test Site, Nevada. The table listed in the report provides a description of each CAS and the status of its associated waste as listed in the ''Federal Facilities Agreement and Consent Order'' (FFACO, 1996). Copies of the Sectored Housekeeping Site Closure Verification Form for each CAS are included as Attachment A. Two of the sites required sampling for waste disposal purposes, CAS 25-22-18 and 25-22-20. The material sampled at these two sites were found to be not hazardous. Results of the sampling are included in Attachment B.

  15. Closure Report for Housekeeping Category Corrective Action Unit 524 Nevada Test Site Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2000-11-01

    This Closure Report for Corrective Action Unit (CAU) 524 summarizes the disposition of four Corrective Action Sites (CAS) located in Area 25 of the Nevada Test Site, Nevada. The table listed in the report provides a description of each CAS and the status of its associated waste as listed in the ''Federal Facilities Agreement and Consent Order'' (FFACO, 1996). Copies of the Sectored Housekeeping Site Closure Verification Form for each CAS are included as Attachment A. Two of the sites required sampling for waste disposal purposes, CAS 25-22-18 and 25-22-20. The material sampled at these two sites were found to be not hazardous. Results of the sampling are included in Attachment B.

  16. Closure Report for Corrective Action Unit 177: Mud Pits and Cellars Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2007-02-01

    This Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 177: Mud Pits and Cellars, Nevada Test Site, Nevada. This Closure Report complies with the requirements of the Federal Facility Agreement and Consent Order (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The Corrective Action Sites (CASs) within CAU 177 are located within Areas 8, 9, 19, and 20 of the Nevada Test Site. The purpose of this Closure Report is to provide documentation supporting the completed corrective actions and data that confirm the corrective actions implemented for CAU 177 CASs.

  17. Clear-sky radiative closure for the Cabauw Baseline Surface Radiation Network site, the Netherlands

    NARCIS (Netherlands)

    Wang, P.; Knap, W.H.; Kuipers Munneke, P.; Stammes, P.

    2009-01-01

    In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, Netherlands (51.97°N, 4.93°E). The analysis is based on an exceptional period of fine weather during the first half of May 2008, resulting in a selection of 72 comparis

  18. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

  19. Clear-sky radiative closure for the Cabauw Baseline Surface Radiation Network site, the Netherlands

    NARCIS (Netherlands)

    Wang, P.; Knap, W.H.; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; Stammes, P.

    2009-01-01

    In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, Netherlands (51.97°N, 4.93°E). The analysis is based on an exceptional period of fine weather during the first half of May 2008, resulting in a selection of 72

  20. Buffer, backfill and closure process report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, Patrik (ed.)

    2010-11-15

    This report gives an account of how processes in buffer, deposition tunnel backfill and the closure important for the long-term evolution of a KBS-3 repository for spent nuclear fuel, will be documented in the safety assessment SR-Site

  1. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2009-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify

  2. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  3. Closure Report for Housekeeping Category Corrective Action Unit 345 Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2000-11-01

    This Closure Report for Corrective Action Unit (CAU) 345 summarizes the disposition of ten Corrective Action Sites (CAS) located in Areas 2 and 9 of the Nevada Test Site, Nevada. The table listed in the report provides a description of each CAS and the status of its associated waste as listed in the ''Federal Facilities Agreement and Consent Order'' (FFACO, 1996). Copies of the Sectored Housekeeping Site Closure Verification Form for each CAS are included as Attachment A. The battery at CAS 09-24-04 required sampling for waste disposal purposes. The waste was found to be not hazardous. Results of the sampling are included in Attachment B.

  4. Closure plan for CAU No. 93: Area 6 steam cleaning effluent ponds, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The steam cleaning effluent ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site (NTS). Nevada Operations Office operates the NTS and has entered into a trilateral agreement with the State of Nevada and the Defense Special Weapons Agency (DSWA). The trilateral agreement provides a framework for identifying, characterizing, remediating, and closing environmental sites on the NTS and associated bombing ranges. The SCEP waste unit consists of: two steam cleaning effluent ponds; layout pad and associated grease trap; Building 6-623 steam cleaning pad; test pad; Building 6-623 grease trap; Building 6-800 steam cleaning pad; Building 6-800 separator; Building 6-621 sump; and the concrete asbestos piping connecting these components to both SCEPs. Clean closure is the recommended closure strategy for the majority of the components within this CAU. Four components of the unit (Building 6-621 Sump, Test Pad Grease Trap, Building 6-623 Steam Cleaning Pad, and North SCEP pipeline) are recommended to be closed in place. This closure plan provides the strategy and backup information necessary to support the clean closure of each of the individual components within CAU 93. Analytical data generated during the characterization field work and earlier sampling events indicates the majority of CAU 93 soil and infrastructure is non-hazardous (i.e., impacted primarily with petroleum hydrocarbons).

  5. Percutaneous suture-mediated closure of femoral access sites deployed through the procedure sheath: initial clinical experience with a novel vascular closure device.

    Science.gov (United States)

    Eggebrecht, Holger; Naber, Christoph; Woertgen, Uta; Ringe, Sonia; Konorza, Thomas F M; Schmermund, Axel; von Birgelen, Clemens; Haude, Michael; Kroeger, Knut; Erbel, Raimund; Baumgart, Dietrich

    2003-03-01

    The objective of this study was to assess the initial safety and feasibility of a novel suture-mediated device for closure of femoral access sites immediately after diagnostic or interventional cardiac catheterization. In a prospective study, 150 patients (mean age, 61.5 years; 109 male) underwent femoral access closure with a novel suture closure device (Superstitch, Sutura) immediately after diagnostic (n = 106) or interventional (n = 44) catheterization procedures, independently of the coagulation status. All patients were monitored for 24 hr after the procedure. The closure device was successfully deployed in 92% of patients. Immediate hemostasis was achieved in 77% of patients with no differences between patients undergoing diagnostic catheterization or coronary interventions (79% vs. 73%; P = 0.659). After 2 min of additional light manual compression, hemostasis was achieved in 92% of patients. There was one major complication requiring vascular surgery (0.7%). The novel suture closure device is a safe and effective device that allows for immediate closure of femoral puncture sites after both diagnostic and interventional procedures with a low rate of major complications.

  6. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  7. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  8. Final Monitoring Plan for Site Closure at Inman, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Inman, Kansas, is a rural town located in southwest McPherson County, in sections 8, 9, 16, and 17, Township 21 South, Range 4 West (Figure 1.1). There are 1,377 people in 513 households, as of the census of 2010. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), operated a grain storage facility at the southern edge of the city of Inman, Kansas, from 1954 to 1965. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In 1997, trace to low levels of carbon tetrachloride (below the maximum contamination level [MCL] of 5.0 μg/L) were detected in three private wells near the former grain storage facility at Inman, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. No public water supply wells were identified within 1 mi of the town by the KDHE in 1998. Carbon tetrachloride is the contaminant of primary concern at sites associated with grain storage operations. To determine whether the former CCC/USDA facility at Inman is a potential contaminant source and its possible relationship to the carbon tetrachloride contamination in groundwater, the CCC/USDA agreed to conduct a multi-phase investigation at Inman. The investigation was performed by the Environmental Science Division of Argonne National Laboratory in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the USDA.

  9. Clear-sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, Netherlands

    Science.gov (United States)

    Wang, Ping; Knap, Wouter H.; Kuipers Munneke, Peter; Stammes, Piet

    2009-07-01

    In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, Netherlands (51.97°N, 4.93°E). The analysis is based on an exceptional period of fine weather during the first half of May 2008, resulting in a selection of 72 comparisons, on 6 days, between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiances. The data span a wide range of aerosol properties, water vapor columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. The wavelength dependence of the aerosol optical thickness, single scattering albedo, and asymmetry parameter was taken into account. On the basis of these data, excellent closure was obtained: the mean differences between model and measurements are 2 W/m2 (+0.2%) for the direct irradiance, 1 W/m2 (+0.8%) for the diffuse irradiance, and 2 W/m2 (+0.3%) for the global irradiance. The good results were obtained because of proper specification of the DAK model input and the high quality of the AERONET and BSRN measurements. The sensitivity of the achieved closure to uncertainties in the aerosol optical thickness, single scattering albedo, and asymmetry parameter was examined. Furthermore, several sensitivity experiments related to the wavelength dependence of the aerosol optical properties and the treatment of water vapor were performed. It appeared that a correct description of the wavelength dependence of the aerosol optical properties is important for achieving broadband closure. However, broadband closure can also be obtained by means of using spectrally averaged values of the single scattering albedo and the asymmetry parameter. Cancellation of errors in different parts of the solar spectrum also contributes to the achieved closure.

  10. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-10-01

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in

  11. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  12. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  13. Addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-31

    This addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, DOE/NV--1480, dated July 2012, documents repairs of erosion and construction of engineered erosion protection features at Corrective Action Site (CAS) 02-37-02 (MULLET) and CAS 09-99-06 (PLAYER). The final as-built drawings are included in Appendix A, and photographs of field work are included in Appendix B. Field work was completed on March 11, 2013.

  14. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-02-28

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  15. 75 FR 34172 - Rexam Closure Systems, Inc., a Subsidiary of Rexam PLC, Including On-Site Leased Workers From...

    Science.gov (United States)

    2010-06-16

    ... Unemployment Insurance (UI) Wages Are Paid Through Owens Illinois Manufacturing, Hamlet, NC; Amended... workers of Rexam Closure Systems, Inc., a subsidiary of Rexam PLC, Hamlet, North Carolina. The notice was... from Olston Staffing were employed on-site at the Hamlet, North Carolina location of Rexam Closure...

  16. No-drain DIEP Flap Donor-site Closure Using Barbed Progressive Tension Sutures

    OpenAIRE

    Nagarkar, Purushottam; Lakhiani, Chrisovalantis; Cheng, Angela; Lee, Michael; Teotia, Sumeet; Saint-Cyr, Michel

    2016-01-01

    Background: The use of progressive tension sutures has been shown to be comparable to the use of abdominal drains in abdominoplasty. However, the use of barbed progressive tension sutures (B-PTSs) in deep inferior epigastric artery perforator (DIEP) flap donor-site closure has not been investigated. Methods: A retrospective chart review was performed on patients with DIEP flap reconstruction in a 3-year period at 2 institutions by 2 surgeons. Patients were compared by method of DIEP donor-sit...

  17. Optimization of the Area 5 Radioactive Waste Management Site Closure Cover

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Greg; Yucel, Vefa

    2009-04-01

    The U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” requires that performance assessments demonstrate that releases of radionuclides to the environment are as low as reasonably achievable (ALARA). Quantitative cost benefit analysis of radiation protection options is one component of the ALARA process. This report summarizes a quantitative cost benefit analysis of closure cover thickness for the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. The optimum cover thickness that maintains doses ALARA is shown to be the thickness with the minimum total closure cost. Total closure cost is the sum of cover construction cost and the health detriment cost. Cover construction cost is estimated based on detailed cost estimates for closure of the 92-acre Low-Level Waste Management Unit (LLWMU). The health detriment cost is calculated as the product of collective dose and a constant monetary value of health detriment in units of dollars per unit collective dose. Collective dose is the sum of all individual doses in an exposed population and has units of person-sievert (Sv). Five discrete cover thickness options ranging from 2.5 to 4.5 meters (m) (8.2 to 15 feet [ft]) are evaluated. The optimization was subject to the constraints that (1) options must meet all applicable regulatory requirements and that (2) individual doses be a small fraction of background radiation dose. Total closure cost is found to be a monotonically increasing function of cover thickness for the 92-ac LLWMU, the Northern Expansion Area, and the entire Area 5 RWMS. The cover construction cost is orders of magnitude greater than the health detriment cost. Two-thousand Latin hypercube sampling realizations of the relationship between total closure cost and cover thickness are generated. In every realization, the optimum cover thickness is 2.5 m (8.2 ft) for the 92-ac Low-Level Waste Management Unit, the Northern Expansion Area, and the entire

  18. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-30

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  19. Closure Report for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burmeister and Patrick Matthews

    2012-11-01

    The corrective action sites (CASs) within CAU 465 are located within Areas 6 and 27 of the NNSS. CAU 465 comprises the following CASs: • 00-23-01, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie site. • 00-23-02, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Dog site. • 00-23-03, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie Prime and Anja sites. • 06-99-01, Hydronuclear, located in Area 6 of the NNSS and known as the Trailer 13 site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 465 were met. From September 2011 through July 2012, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 465: Hydronuclear, Nevada National Security Site, Nevada.

  20. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  1. Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-12-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration Plan (SAFER) Plan for CAU 326 (US Department of Energy, Nevada Operations Office [DOE/NV, 2001]). CAU 326 consists of four Corrective Action Sites (CASs), 06-25-01, 06-25-02, 06-25-04, and 27-25-01. CAS 06-25-01 is a release site associated with an underground pipeline that carried heating oil from the heating oil underground storage tank (UST), Tank 6-CP-1, located to the west of Building CP-70 to the boiler in Building CP-1 located in the Area 6 Control Point (CP) compound. This site was closed in place administratively by implementing use restrictions. CAS 06-25-02 is a hydrocarbon release associated with an active heating oil UST, Tank 6-DAF-5, located west of Building 500 at the Area 6 Device Assembly Facility. This site was closed in place administratively by implementing use restrictions. CAS 06-25-04 was a hydrocarbon release associated with Tank 6-619-4. This site was successfully remediated when Tank 6-619-4 was removed. No further action was taken at this site. CAS 27-25-01 is an excavation that was created in an attempt to remove hydrocarbon-impacted soil from the Site Maintenance Yard in Area 27. Approximately 53 cubic meters (m{sup 3}) (70 cubic yards [yd{sup 3}]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated from the site in August of 1994. Clean closure of this site was completed in 2002 by the excavation and disposal of approximately 160 m{sup 3} (210 yd{sup 3}) of PCB-impacted soil.

  2. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and

  3. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  4. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  5. Closure Report for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Gustafason

    2001-03-01

    The Area 25 Vehicle Washdown, Corrective Action Unit (CAU) 240, was clean-closed following the approved Corrective Action Decision Document closure alternative and in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU consists of thee Corrective Action Sites (CASs): 25-07-01 - Vehicle Washdown Area (Propellant Pad); 25-07-02 - Vehicle Washdown Area (F and J Roads Pad); and 25-07-03 - Vehicle Washdown Station (RADSAFE Pad). Characterization activities indicated that only CAS 25-07-02 (F and J Roads Pad) contained constituents of concern (COCs) above action levels and required remediation. The COCs detected were Total Petroleum Hydrocarbons (TPH) as diesel, cesium-137, and strontium-90. The F and J Roads Pad may have been used for the decontamination of vehicles and possibly disassembled engine and reactor parts from Test Cell C. Activities occurred there during the 1960s through early 1970s. The F and J Roads Pad consisted of a 9- by 5-meter (m) (30- by 15-foot [ft]) concrete pad and a 14- by 13-m (46-by 43-ft) gravel sump. The clean-closure corrective action consisted of excavation, disposal, verification sampling, backfilling, and regrading. Closure activities began on August 21, 2000, and ended on September 19, 2000. Waste disposal activities were completed on December 12, 2000. A total of 172 cubic meters (223 cubic yards) of impacted soil was excavated and disposed. The concrete pad was also removed and disposed. Verification samples were collected from the bottom and sidewalls of the excavation and analyzed for TPH diesel and 20-minute gamma spectroscopy. The sample results indicated that all impacted soil above remediation standards was removed. The closure was completed following the approved Corrective Action Plan. All impacted waste was disposed in the Area 6 Hydrocarbon Landfill. All non-impacted debris was disposed in the Area 9 Construction Landfill and the Area 23 Sanitary Landfill.

  6. Hydrologic Characteristics of Low-Impact Stormwater Control Measures at Two Sites in Northeastern Ohio, 2008-13 (USGS Scientific Investigations Report 2015-5030)

    Science.gov (United States)

    This report updates and examines hydrologic data gathered to characterize the performance of two stormwater control measures (SCM) sites in the Chagrin River watershed, Ohio. At the Sterncrest Drive site, roadside bioswales and rain gardens were used to alleviate drainage problem...

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 383: Area E-Tunnel Sites, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is the joint responsibility of DTRA and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense. Corrective Action Unit 383 is comprised of three Corrective Action Sites (CASs) and two adjacent areas: • CAS 12-06-06, Muckpile • CAS 12-25-02, Oil Spill • CAS 12-28-02, Radioactive Material • Drainage below the Muckpile • Ponds 1, 2, and 3 The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure with no further corrective action, by placing use restrictions at the three CASs and two adjacent areas of CAU 383.

  8. Clay Cap Test Program for the Mixed Waste Management Facility closure at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J.W. (Main (Charles T.), Inc., Charlotte, NC (USA))

    1989-01-01

    A 58 acre low-level radioactive waste disposal facility at the Savannah River Site, a Department of Energy facility near Aiken, South Carolina, requires closure with a RCRA clay cap. A three-foot thick can requiring 300,000 cubic yards of local Tertiary Kaolin clay with an in-situ permeability of less than or equal to 1 {times} 10{sup -7} centimeters per second is to be constructed. The Clay Cap Test Program was conducted to evaluate the source, lab permeability, in-situ permeability, compaction characteristics, representative kaolin clays from the Aiken, SC vicinity. 11 refs., 8 figs., 1 tab.

  9. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  10. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2006-03-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

  11. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions

  12. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination

  13. Clear-sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, the Netherlands

    Science.gov (United States)

    Wang, P.; Knap, W. H.; Kuipers Munneke, P.; Stammes, P.

    2009-04-01

    During the last two decades, several attempts have been made to achieve agreement between clear-sky shortwave broadband irradiance models and surface measurements of direct and diffuse irradiance. In general, models and measurements agreed well for the direct component but closing the gap for diffuse irradiances remained problematic. The number of studies reporting a satisfactory degree of closure for both direct and diffuse irradiance is still limited, which motivated us to perform the study presented here. In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, the Netherlands (51.97 °N, 4.93 °E). The analysis is based on an exceptional period of fine weather in the first half of May 2008 during the Intensive Measurement Period At the Cabauw Tower (IMPACT), an activity of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Although IMPACT produced a wealth of data, it was decided to conduct the closure analysis using routine measurements only, provided by BSRN and the Aerosol Robotic Network (AERONET), completed with radiosonde obervations. The rationale for this pragmatic approach is the possibility of applying the method presented here to other periods and (BSRN) sites, where routine measurements are readily available, without having to deal with the investments and restrictions of an intensive observation period. The analysis is based on a selection of 72 comparisons on 6 days between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiance. The data span a wide range of aerosol properties, water vapour columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. On the basis of these data excellent closure was obtained: the mean differences between model and measurements are 2 W/m2 (+0.2%) for direct

  14. Closure Report for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-07-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 499: Hydrocarbon Spill Site, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 499: Hydrocarbon Spill Site, Tonopah Test Range (TTR), Nevada (US Department of Energy, Nevada Operations Office [DOE/NV], 2001). CAU 499 consists of one Corrective Action Site (CAS): RG-25-001-RD24: Radar 24 Diesel Spill Site which is approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of Avenue 24. The Hydrocarbon Spill Site is a diesel fuel release site that is assumed to have been caused by numerous small historical over-fillings, spills, and leaks from an above-ground storage tank (AST) over a period of approximately 36 years. The tank was located on the east side of Building 24-50 on the TTR.

  15. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-04-30

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  17. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  18. Cloudy sky shortwave radiative closure for a Baseline Surface Radiation Network site

    Science.gov (United States)

    Wang, Ping; Knap, Wouter H.; Stammes, Piet

    2011-04-01

    A shortwave radiative closure analysis for cloudy skies is presented for the Cabauw Baseline Surface Radiation Network (BSRN) site (51.97°N, 4.93°E). The cloudy cases are carefully selected to be overcast, single-layer, homogeneous, nonprecipitating water clouds. We selected in total 639 cases on 9 days between May 2008 and May 2009 and on 30 January 2007. The Doubling-Adding KNMI (DAK) code is used to simulate global irradiances. The cloud optical thickness is derived from the cloud liquid water path from microwave radiometer (MWR) measurements and the MODIS L2 cloud effective radius product. The scattering phase matrix of the cloud particles is calculated using a Mie code with the two-parameter Gamma size distribution. The MWR integrated water vapor column and an aerosol climatology are also used in the simulations. The cloudy cases cover a large range of liquid water path (30-400 g/m2), water vapor column (0.7-3.1 cm), and solar zenith angle (41°-75°). The mean difference between simulated global irradiances and BSRN measurements is 6 W/m2 (5%), with a standard deviation of 14 W/m2 (13%). This difference is within the uncertainties of the model input parameters and measurement errors. The correlation coefficient between the measured and simulated global irradiances is 0.95. The good closure results demonstrate the high quality of the MODIS effective radius data and MWR liquid water path data and the accuracy of the DAK model for the selected water cloud cases. Furthermore, the effects of clouds, aerosols, water vapor, and surface albedo on the global irradiance have been analyzed carefully. The sensitivity study shows that in order to achieve the closure with an uncertainty of a few W/m2, more frequent effective radius data, simultaneous aerosol and cloud measurements, and surface albedo measurements are essential.

  19. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ``A Through K`` evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site.

  20. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  1. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2002-03-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench).

  2. Closure Report for Corrective Action Unit 566: EMAD Compound, Nevada National Security Site, Nevada with ROTC-1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 566: EMAD Compound, Nevada National Security Site, Nevada. Corrective Action Unit 566 comprises Corrective Action Site (CAS) 25-99-20, EMAD Compound, located within Area 25 of the Nevada National Security Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 566 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 566 issued by the Nevada Division of Environmental Protection. From October 2010 through May 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 566: EMAD Compound, Nevada National Security Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 566. Assessment of the data from collected soil samples, and from radiological and visual surveys of the site, indicates the FALs were exceeded for polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and radioactivity. Corrective actions were implemented to remove the following: • Radiologically contaminated soil assumed greater than FAL at two locations • Radiologically contaminated soil assumed greater than FAL with

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  4. Outcome-Based Planning-Hanford's Shift Towards Closure and Shrinking the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, W. W.; Holten, R.; Johnson, W.; Reichmuth, B.; White, M.; Wood, T.

    2002-02-26

    -based contracts are being realigned to reflect the outcome orientation, including issuing a new River Corridor closure contract. This paper summarizes the outcome-based planning approach for other sites and interested parties. A brief introduction to the Hanford Site, along with detailed descriptions of the three outcomes is provided. This paper also summarizes the analyses and resulting products that were prepared in shifting to an outcome-based approach for closing the Hanford Site.

  5. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  6. Closure Report for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Al Wickline

    2007-08-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 553 are located within Areas 19 and 20 of the Nevada Test Site. Corrective Action Unit 553 is comprised of the following CASs: •19-99-01, Mud Spill •19-99-11, Mud Spill •20-09-09, Mud Spill •20-99-03, Mud Spill The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 553 were met. To achieve this, the following actions were or will be performed: •Review the current site conditions including the concentration and extent of contamination. •Implement any corrective actions necessary to protect human health and the environment. •Properly dispose of corrective action and investigation wastes. •Document the Notice of Completion and closure of CAU 553 to be issued by Nevada Division of Environmental Protection.

  7. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  8. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-01

    Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

  9. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  10. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yin, Yan, E-mail: yinyan@nuist.edu.cn [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xiao, Hui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yu, Xingna [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Hao, Jian; Chen, Kui [Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); and others

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol–radiation and aerosol–cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core–shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ± 6% and ± 14% for external mixture and ± 9% and ± 31% for core–shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate. - Highlights: • A spherical Mie

  11. Role of Arginine-304 in the Diphosphate-Triggered Active Site Closure Mechanism of Trichodiene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Vedula,L.; Cane, D.; Christianson, D.

    2005-01-01

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PPi) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PPi bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg{sup 2+}{sub 3-}PP{sub i}, in which R304 donates hydrogen bonds to PP{sub i} and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP{sub i} in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP{sub i} and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg{sup 2+}{sub 3-}PP{sub i} binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP{sub i} leaving group.

  12. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  13. Closure Report for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burmeister

    2009-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 117 comprises Corrective Action Site (CAS) 26-41-01, Pluto Disassembly Facility, located in Area 26 of the Nevada Test Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 117 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 117 issued by the Nevada Division of Environmental Protection. From May 2008 through February 2009, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 117, Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. The purpose of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 117. Assessment of the data generated from closure activities indicated that the final action levels were exceeded for polychlorinated biphenyls (PCBs) reported as total Aroclor and

  14. The Observation on Efficacy of Angio-seal Closure Device in the Femoral Arterial Puncture Site after PCI

    Institute of Scientific and Technical Information of China (English)

    Zhang Bin; Jin Lijun; Wei Shuishen; Fang Xianhong; Wu Handong; Dong Taiming; Yan hong; Liao Hongtao

    2006-01-01

    Objective To evaluatereliability and safety of Angio-seal hemostasis device applied to the femoral arterial puncture site after percutaneous coronary intervention (PCI). Methods In 40 patients after PCI in our institute during the period between May 2002 and December 2003, Angioseal device were used to seal the femoral arterial puncture site. Results All the Angioseal devices were successfully deployed in 40 patients (successful rate:100%); the mean time to hemostasis was 45±12 sec;the mean time to ambulate after angioseal closure was 1.9±0.5 hours. No major groin and systemic complication was observed. There was minor groin oozing in 2 cases and small hemotoma in 1 patient.Conclusions Angio-seal closure device of the femoral artery puncture site after a percutaneous coronary procedure is safe. It can shorten the time to hemostasis,leads to early mobilization, and reduce groin complication. The disadvantage is relatively expensive.

  15. Health assessment for TRW Proposed National Priorities List (NPL) Site, Minerva, Stark County, Ohio, Region 5. CERCLIS No. OHD004179339. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-31

    The TRW site is a Proposed National Priorities List (NPL) site located about one mile northeast of downtown Minerva, Stark County, Ohio. Previous disposal practices by the former TRW plant (currently owned by PCC Airfoils, Inc.) introduced polychlorinated biphenyls (PCBs) and volatile organic compounds (VOCs) into on-site and off-site soils and ground water. Off-site residential wells were contaminated with elevated levels of VOCs, especially vinyl chloride. In 1985, contaminated soils and sediments from the former disposal areas were excavated and disposed of in an on-site secure landfill (cell). In addition, in 1986 a Consent Order between TRW and the Ohio Environmental Protection Agency was signed, in which TRW agreed to implement an on-site and off-site ground water 'pump and treat' operation to intercept the VOC contaminant plumes. The site is of potential public health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 557, Spills and Tank Sites, in Areas 1, 3, 6, and 25 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order. Corrective Action Unit 557 comprises the following corrective action sites (CASs): • 01-25-02, Fuel Spill • 03-02-02, Area 3 Subdock UST • 06-99-10, Tar Spills • 25-25-18, Train Maintenance Bldg 3901 Spill Site The purpose of this Corrective Action Decision Document/Closure Report is to identify and provide the justification and documentation that supports the recommendation for closure of the CAU 557 CASs with no further corrective action. To achieve this, a corrective action investigation (CAI) was conducted from May 5 through November 24, 2008. The CAI activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada.

  17. A bis(heptafulvenyl)-dicyanoethylene thermoswitch with two sites for ring closure

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Petersen, Anne Ugleholdt; Tortzen, Christian;

    2012-01-01

    Suitably functionalized vinylheptafulvenes (VHFs) act as thermoswitches undergoing ring closure to the corresponding dihydroazulenes (DHAs). Here we present the synthesis of a new such thermoswitch incorporating two heptafulvene rings on a dicyanoethylene unit. The synthetic protocol explores both...

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Mark J

    2007-03-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

  19. Closure Letter Report for Corrective Action Unit 496: Buried Rocket Site - Antelope Lake

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-05-01

    A Streamlined Approach for Environmental Restoration (SAFER) Plan for investigation and closure of CAU 496, Corrective Action Site (CAS) TA-55-008-TAAL (Buried Rocket), at the Tonopah Test Range (TTR), was approved by the Nevada Department of Environmental Protection (NDEP) on July 21,2004. Approval to transfer CAS TA-55-008-TAAL from CAU 496 to CAU 4000 (No Further Action Sites) was approved by NDEP on December 21, 2005, based on the assumption that the rocket did not present any environmental concern. The approval letter included the following condition: ''NDEP understands, from the NNSA/NSO letter dated November 30,2005, that a search will be conducted for the rocket during the planned characterization of other sites at the Tonopah Test Range and, if found, the rocket will be removed as a housekeeping measure''. NDEP and U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office personnel located the rocket on Mid Lake during a site visit to TTR, and a request to transfer CAS TA-55-008-TAAL from CAU 4000 back to CAU 496 was approved by NDEP on September 11,2006. CAS TA-55-008-TAAL was added to the ''Federal Facility Agreement and Consent Order'' of 1996, based on an interview with a retired TTR worker in 1993. The original interview documented that a rocket was launched from Area 9 to Antelope Lake and was never recovered due to the high frequency of rocket tests being conducted during this timeframe. The interviewee recalled the rocket being an M-55 or N-55 (the M-50 ''Honest John'' rocket was used extensively at TTR from the 1960s to early 1980s). A review of previously conducted interviews with former TTR personnel indicated that the interviewees confused information from several sites. The location of the CAU 496 rocket on Mid Lake is directly south of the TTR rocket launch facility in Area 9 and is consistent with information gathered on the lost rocket during recent

  20. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  1. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  2. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-09-01

    The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

  3. Postoperative recovery after mandibular third molar surgery: a criteria for selection of type of surgical site closure.

    Science.gov (United States)

    Damodar, Neeliahgari Durga Akhila; Nandakumar, Hanumanthaiah; Srinath, Narashimha Murthy

    2013-01-01

    This study sought to evaluate postoperative recovery after mandibular third molar surgery, with and without the use of sutures. This study utilized 50 healthy subjects (19 females and 31 males, 18-40 years of age) with bilateral impacted third molars. Two impacted teeth were removed from each patient (60 min maximum operating time). For each patient, the surgical site on one side of the mouth was closed for primary healing by using nonresorbable sutures, while the surgical site on the other side of the mouth was left open for secondary healing. Postoperative recovery was assessed by determining pain (using a visual analog scale) and swelling (by measuring anatomical landmarks pre- and postoperatively on Days 2, 5, and 7) Any incidence of socket infection and hemorrhage were considered to be complications. Both statistical analysis and clinical observation showed that the surgical sites with nonresorbable sutures showed greater swelling and a higher intensity of pain than the surgical sites without sutures; however, there were no statistical or clinical differences in pain and swelling postsurgery at Day 7. The results suggest secondary closure (that is, without sutures) after third molar surgery will produce less postoperative discomfort than primary closure (with nonresorbable sutures).

  4. Closure Report for Corrective Action Unit 548: Areas 9, 10, 18, 19, and 20 Housekeeping Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-27

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 548, Areas 9, 10, 18, 19, and 20 Housekeeping Sites, and complies with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 548 consists of the following Corrective Action Sites (CASs), located in Areas 9, 10, 12, 18, 19, and 20 of the Nevada National Security Site: · CAS 09-99-02, Material Piles (2) · CAS 09-99-04, Wax, Paraffin · CAS 09-99-05, Asbestos, Vermiculite · CAS 09-99-07, Tar Spill · CAS 10-22-02, Drums · CAS 10-22-05, Gas Block · CAS 10-22-07, Gas Block · CAS 10-22-34, Drum · CAS 10-22-38, Drum; Cable · CAS 12-99-04, Epoxy Tar Spill · CAS 12-99-08, Cement Spill · CAS 18-14-01, Transformers (3) · CAS 19-22-01, Drums · CAS 19-22-11, Gas Block (2) · CAS 19-44-01, Fuel Spill · CAS 20-22-07, Drums (2) · CAS 20-22-09, Drums (3) · CAS 20-22-14, Drums (2) · CAS 20-22-16, Drums (2) · CAS 20-24-09, Battery Closure activities began in July 2011 and were completed in December 2011 and included removal and disposal of material piles, spills, sanitary debris, a lead acid battery, lead and steel shot, and stained soil. Activities were conducted according to the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). Closure activities generated sanitary waste, hydrocarbon waste, low-level waste, hazardous waste, and mixed waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for

  5. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

  6. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2003-07-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well.

  7. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, S.

    1997-04-01

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

  8. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2001-08-01

    The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay

  9. 简析生活垃圾卫生填埋场封场设计%Closure Design of Domestic Waste Sanitary Landfill Sites

    Institute of Scientific and Technical Information of China (English)

    吴健萍

    2011-01-01

    Functions of closure of domestic waste sanitary landfill sites were sketched. Main contents about closure design were analyzed, including landfill pile shaping, structure determining of closure cover system, collection and drainage of landfill gas, and collection and discharge of rainwater in landfill pile.%简述了生活垃圾卫生填埋场封场的作用,分析了封场设计中堆体整形、封场覆盖系统结构的确定、填埋气体的收集导排、垃圾堆体雨水的收集排放等主要内容.

  10. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  11. PERFORMANCE ASSESSMENT TO SUPPORT CLOSURE OF SINGLE-SHELL TANK WASTE MANAGEMENT AREA C AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BERGERON MP

    2010-01-14

    Current proposed regulatory agreements (Consent Decree) at the Hanford Site call for closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C in the year 2019. WMA C is part of the SST system in 200 East area ofthe Hanford Site and is one of the first tank farm areas built in mid-1940s. In order to close WMA C, both tank and facility closure activities and corrective actions associated with existing soil and groundwater contamination must be performed. Remedial activities for WMA C and corrective actions for soils and groundwater within that system will be supported by various types of risk assessments and interim performance assessments (PA). The U.S. Department of Energy, Office of River Protection (DOE-ORP) and the State ofWashington Department of Ecology (Ecology) are sponsoring a series of working sessions with regulators and stakeholders to solicit input and to obtain a common understanding concerning the scope, methods, and data to be used in the planned risk assessments and PAs to support closure of WMA C. In addition to DOE-ORP and Ecology staff and contractors, working session members include representatives from the U.S. Enviromnental Protection Agency, the U.S. Nuclear Regulatory Commission (NRC), interested tribal nations, other stakeholders groups, and members of the interested public. NRC staff involvement in the working sessions is as a technical resource to assess whether required waste determinations by DOE for waste incidental to reprocessing are based on sound technical assumptions, analyses, and conclusions relative to applicable incidental waste criteria.

  12. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Badden, Janet W. [Washington River Protection Solutions, LLC, Richland, WA (United States); Connelly, Michael P. [Washington River Protection Solutions, LLC, Richland, WA (United States); Seeley, Paul N. [Cenibark International, Inc., Kennewick (United States); Hendrickson, Michelle L. [Washington State Univ., Richland (United States). Dept. of Ecology

    2013-01-10

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  13. Prediction of Post-Closure Water Balance for Monolithic Soil Covers at Waste Disposal Sites in the Greater Accra Metropolitan Area of Ghana

    OpenAIRE

    Kodwo Beedu Keelson

    2014-01-01

    The Ghana Landfill Guidelines require the provision of a final cover system during landfill closure as a means of minimizing the harmful environmental effects of uncontrolled leachate discharges. However, this technical manual does not provide explicit guidance on the material types or configurations that would be suitable for the different climatic zones in Ghana. The aim of this study was to simulate and predict post-closure landfill cover water balance for waste disposal sites located i...

  14. Mud Pit Risk-Based Closure Strategy Report, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Brain Hoenes

    2004-08-01

    This report presents the findings of the human and ecological risk assessment for the NTS mud pits. The risk assessment utilizes data from 52 of the 270 NTS mud pits in conjunction with corroborative data from 87 other DOE mud pits associated with nuclear testing (at locations on the NTS, in the western United States, and Alaska) as well as relevant process knowledge. Based on the risk assessment findings, the report provides a strategy for further evaluation, characterization, and closure of all 270 NTS mud pit CASs using the Streamlined Approach for Environmental Restoration (SAFER).

  15. Safety and Efficacy of the Prostar XL Vascular Closing Device for Percutaneous Closure of Large Arterial Access Sites

    Directory of Open Access Journals (Sweden)

    Christoph Thomas

    2013-01-01

    Full Text Available Purpose. The purpose of this study is to retrospectively evaluate the efficacy and safety of the Prostar XL device for percutaneous large access site closure in an unselected patient and operator collective. Materials and Methods. All patients ( who had received percutaneous vascular closing with the Prostar XL device in our institution with follow-up data of at least 6 months were retrospectively included. Primary (freedom from surgical conversion and continued (freedom from groin surgery in further course technical success and major (deviations from expected outcome requiring surgery and minor (other deviations from expected outcome complications were assessed. Success and complications rates were correlated with delivery system size (Mann-Whitney Rank Sum Tests and operator experience (paired samples t-test. Results. Rates of primary and continued technical success as well as major and minor complications were 93.6%, 89.7%, 10.3%, and 10.3% (groin based and 90.0%, 84.0%, 16.0%, and 16.0% (patient based, respectively. No correlation of success and complications rate was found with delivery system sizes and operator experience. Conclusions. Application of the Prostar XL device for percutaneous closure of large arterial access sites is safe with a relatively high rate of technical success and low rate of major complications. Sizes of the delivery systems and the experience of the operator did not influence the results.

  16. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-12-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 504: 16a-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 504, 16a-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 504 is comprised of four Corrective Action Sites (CASs): • 16-06-01, Muckpile • 16-23-01, Contaminated Burial Pit • 16-23-02, Contaminated Area • 16-99-01, Concrete Construction Waste Corrective Action Site 16-23-01 is not a burial pit; it is part of CAS 16-06-01. Therefore, there is not a separate data analysis and assessment for CAS 16-23-01; it is included as part of the assessment for CAS 16-06-01. In addition to these CASs, the channel between CAS 16-23-02 (Contaminated Area) and Mid Valley Road was investigated with walk-over radiological surveys and soil sampling using hand tools. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 504. A CADD was originally submitted for CAU 504 and approved by the Nevada Division of Environmental Protection (NDEP). However, following an agreement between NDEP, DTRA, and the DOE, National Nuclear Security Administration Nevada Site Office to change to a risk-based approach for assessing the corrective action investigation (CAI) data, NDEP agreed that the CAU could be re-evaluated using the risk-based approach and a CADD/CR prepared to close the site.

  19. Short- and midterm results of the fascia suture technique for closure of femoral artery access sites after endovascular aneurysm repair.

    Science.gov (United States)

    Montán, Carl; Lehti, Leena; Holst, Jan; Björses, Katarina; Resch, Timothy A

    2011-12-01

    To evaluate the midterm outcomes and potential risk factors associated with the fascia suture technique (FST) for closure of femoral artery access sites after percutaneous endovascular aneurysm repair (EVAR). Between April 2007 and April 2008, 100 consecutive EVAR cases were evaluated retrospectively. A third of the procedures were emergent (16 ruptured aneurysms). Of the 187 femoral access sites, 160 (85.5%) were closed by the FST as a first choice. Pre- and postoperative chart and imaging data were collected from computerized medical records for analysis of demographics and the rate of complications (bleeding, infection, thrombosis, pseudoaneurysms, and stenosis). Preoperative risk factors for FST failure were analyzed with regard to obesity (based on the subcutaneous fat layer), plaque at the femoral access site, and stenosis based on the pre- and 1-year postoperative computed tomography scans. Of the 160 FST closures, 146 (91.3%) were technically successful. The 14 (8.8%) technical failures were converted to open cutdown intraoperatively because of bleeding (11, 6.8%), inadequate limb perfusion (2, 1.2%), and a broken guidewire (1, 0.6%). Two (1.2%) pseudoaneurysms required surgical repair after 2 weeks. Data from the 1-year follow-up showed no signs of increased stenosis, thrombosis, or formation of plaque. Nine small (<1 cm(3)) pseudoaneurysms were detected and managed conservatively. No preoperative risk factors were associated with FST failure. The fascia suture technique seems to be safe, effective, and simple to use for closing percutaneous access sites after EVAR. Complications are rare, and the outcome is not affected by obesity, femoral calcification, or femoral artery stenosis.

  20. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Kristin M. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2015-01-07

    The Office of River Protection under the U.S. Department of Energy is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C under the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO). A baseline risk assessment (BRA) of current conditions is based on available characterization data and information collected at WMA C. The baseline risk assessment is being developed as a part of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Corrective Measures Study (CMS) at WMA C that is mandatory under Comprehensive Environmental Response, Compensation, and Liability Act and RCRA corrective action. The RFI/CMS is needed to identify and evaluate the hazardous chemical and radiological contamination in the vadose zone from past releases of waste from WMA C. WMA C will be under Federal ownership and control for the foreseeable future, and managed as an industrial area with restricted access and various institutional controls. The exposure scenarios evaluated under these conditions include Model Toxics Control Act (MTCA) Method C, industrial worker, maintenance and surveillance worker, construction worker, and trespasser scenarios. The BRA evaluates several unrestricted land use scenarios (residential all-pathway, MTCA Method B, and Tribal) to provide additional information for risk management. Analytical results from 13 shallow zone (0 to 15 ft. below ground surface) sampling locations were collected to evaluate human health impacts at WMA C. In addition, soil analytical data were screened against background concentrations and ecological soil screening levels to determine if soil concentrations have the potential to adversely affect ecological receptors. Analytical data from 12 groundwater monitoring wells were evaluated between 2004 and 2013. A screening of groundwater monitoring data against background concentrations and Federal maximum concentration levels was used to determine vadose zone

  1. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-03-01

    This report summarizes the 2011 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site1). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi.

  2. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-21

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  3. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-12-31

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  4. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-01-01

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  5. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This report summarizes the annual inspection, sampling, and maintenance activities performed on and near the Salmon, Mississippi, Site in calendar year 2009. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report complies with the annual report requirement. The Salmon, MS, Site is located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS The site encompasses 1,470 acres and is not open to the general public. The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned responsibility for the site effective October 1, 2006

  6. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-03-01

    This report summarizes the annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site in calendar year 2010. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon, MS, Site is a federally owned site located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS (Figure 1). The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the 1,470-acre site. DOE's Office of Legacy Management (LM) is the operating agent for the surface and subsurface real estate.

  7. Developing a strategy and closure criteria for radioactive and mixed waste sites in the ORNL remedial action program: Regulatory interface

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J.R.

    1987-09-01

    Some options for stabilization and treatment of contaminated sites can theoretically provide a once-and-for-all solution (e.g., removal or destruction of contaminants). Most realizable options, however, leave contaminants in place (in situ), potentially isolated by physical or chemical, but more typically, by hydrologic measures. As a result of the dynamic nature of the interactions between contaminants, remedial measures, and the environment, in situ stablization measures are likely to have limited life spans, and maintenance and monitoring of performance become an essential part of the scheme. The length of formal institutional control over the site and related questions about future uses of the land and waters are of paramount importance. Unique features of the ORNL site and environs appear to be key ingredients in achieving the very long term institutional control necessary for successful financing and implementation of in situ stabilization. Some formal regulatory interface is necessary to ensure that regulatory limitations and new guidance which can affect planning and implementation of the ORNL Remedial Action Program are communicated to ORNL staff and potential technical and financial limitations which can affect schedules or alternatives for achievement of long-term site stabilization and the capability to meet environmental regulations are provided to regulatory bodies as early as possible. Such an interface should allow decisions on closure criteria to be based primarily on technical merit and protection of human health and the environment. A plan for interfacing with federal and state regulatory authorities is described. 93 refs., 1 fig., 4 tabs.

  8. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2016-08-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  9. CORRECTIVE ACTION DECISION DOCUMENT/CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 527: HORN SILVER MINE, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-08-01

    This Corrective Action Decision Document/Closure Report (CADDKR) has been prepared for Corrective Action Unit (CAU) 527: Horn Silver Mine, Nevada Test Site (NTS), Nevada, in accordance with the Federal Facility Agreement and Consent Order (1996). Corrective Action Unit 527 is located within Area 26 of the NTS and consists of CAS 26-20-01, Contaminated Waste Dump No.1. This CADDKR refers to the site as CAU 527 or the Horn Silver Mine (HSM). This CADDKR provides or references the specific information necessary to support the closure of this CAU. Corrective action investigation activities were performed from November 12,2003 through January 21,2004. Additional sampling of liquid obtained from HSM-3 was conducted on May 3,2004. Corrective action investigation activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 527 (NNSAiNV, 2002a). Assessment of the data generated from investigation activities identified the explosive nitrobenzene as a contaminant of concern (COC) on the floor of the 500-foot drift (HSM No.2). No other COCs were identified in the rock samples collected during the investigation activities. The air samples collected from borings HSM-1, HSM-2, and HSM-3 showed volatile organic compounds (primarily gasoline-related contaminants) to be present above the acceptable residential exposure criteria in the boreholes. A conservative modeling effort demonstrated that these concentrations would not migrate to the surface at concentrations that will present an unacceptable risk to future land users. However, other COCs are assumed to exist based on historical documentation on the types of waste placed in the shaft; therefore, the mine including the 300- and 500-foot drifts is considered to be contaminated above action levels. Current results of the field investigation show there are no active transport mechanisms or exposure routes for the contaminants identified in the 500-foot drift. The analytical data did

  10. Post-Closure Inspection and Monitoring Report for the Salmon, Mississippi, Site Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-05-01

    This report summarizes inspection and monitoring activities performed on and near the Salmon, Mississippi, Site in calendar year 2007. The Draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report is submitted to comply with that requirement. The Tatum Salt Dome was used by the U.S. Atomic Energy Commission (AEC) for underground nuclear testing during the cold war. The land surface above the salt dome, the Salmon Site, is located in Lamar County, Mississippi, approximately 12 miles west of Purvis (Figure 1). The U.S. Department of Energy (DOE), the successor to the AEC, is responsible for long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned this responsibility effective October 2006.

  11. Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.; Coel, B.J.; Butler, R.D.

    1994-10-01

    New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

  12. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    This report summarizes the 2012 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. A revised plan is in preparation. The Long-Term Surveillance Plan for the Salmon, Mississippi, Site is intended for release in 2013. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi The State of Mississippi owns the surface real estate subject to certain restrictions related to subsurface penetration. The State is the surface operator; the Mississippi Forestry Commission is its agent. The federal government owns the subsurface real estate (including minerals and some surface features), shares right-of-entry easements with the State, and retains rights related to subsurface monitoring. The U.S. Department of Energy (DOE) Office of Legacy Management (LM), a successor agency to the U.S. Atomic Energy Commission, is responsible for the long-term surveillance of the subsurface real estate

  13. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  14. Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burmeister

    2007-09-01

    This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs).

  15. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    Energy Technology Data Exchange (ETDEWEB)

    K. Winterholler

    2007-01-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  16. The Use of ExoSeal Vascular Closure Device for Direct Antegrade Superficial Femoral Artery Puncture Site Hemostasis

    Energy Technology Data Exchange (ETDEWEB)

    Rimon, Uri, E-mail: rimonu@sheba.health.gov.il; Khaitovich, Boris, E-mail: borislena@012.net.il [Tel-Aviv University, Diagnostic and Interventional Imaging Department, Chaim Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler School of Medicine (Israel); Yakubovich, Dmitry, E-mail: Dmitry.Yakubovitch@sheba.health.gov.il [Tel-Aviv University, Vascular Surgery Department, Chaim Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler School of Medicine (Israel); Bensaid, Paul, E-mail: paulbensaid@hotmail.com; Golan, Gil, E-mail: gilgolan201@gmail.com [Tel-Aviv University, Diagnostic and Interventional Imaging Department, Chaim Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler School of Medicine (Israel); Silverberg, Daniel, E-mail: Daniel.Silverberg@sheba.health.gov.il [Tel-Aviv University, Vascular Surgery Department, Chaim Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler School of Medicine (Israel)

    2015-06-15

    PurposeThis study was designed to assess the efficacy and safety of the ExoSeal vascular closure device (VCD) to achieve hemostasis in antegrade access of the superficial femoral artery (SFA).MethodsWe retrospectively reviewed the outcome of ExoSeal VCD used for hemostasis in 110 accesses to the SFA in 93 patients between July 2011 and July 2013. All patients had patent proximal SFA based on computer tomography angiography or ultrasound duplex. Arterial calcifications at puncture site were graded using fluoroscopy. The SFA was accessed in an antegrade fashion with ultrasound or fluoroscopic guidance. In all patients, 5–7F vascular sheaths were used. The ExoSeal VCD was applied to achieve hemostasis at the end of the procedure. All patients were clinically examined and had ultrasound duplex exam for any puncture site complications during the 24 h postprocedure.ResultsIn all procedures, the ExoSeal was applied successfully. We did not encounter any device-related technical failure. There were four major complications in four patients (3.6 %): three pseudoaneurysms, which were treated with direct thrombin injection, and one hematoma, which necessitated transfusion of two blood units. All patients with complications were treated with anticoagulation preprocedure or received thrombolytic therapy.ConclusionsThe ExoSeal VCD can be safely used for antegrade puncture of the SFA, with a high procedural success rate (100 %) and a low rate of access site complications (3.6 %)

  17. Morphologic features of puncture sites after exoseal vascular closure device implantation: Changes on follow-up computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hwa Seong; Jang, Joo Yeon; Kim, Tae Un; Lee, Jun Woo; Park, Jung Hwan; Choo, Ki Seok; Cho, Mong; Yoon, Ki Tae; Hong, Young Ki; Jeon, Ung Bae [Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of)

    2017-05-15

    The study aimed to evaluate the morphologic changes in transarterial chemoembolization (TACE) puncture sites implanted with an ExoSeal vascular closure device (VCD) using follow-up computed tomography (CT). 16 patients who used ExoSeal VCD after TACE were enrolled. Using CT images, the diameters and anterior wall thicknesses of the puncture sites in the common femoral artery (CFA) were compared with those of the contralateral CFA before TACE, at 1 month after every TACE session, and at the final follow-up period. The rates of complications were also evaluated. There were no puncture- or VCD-related complications. Follow-up CT images of the CFA's of patients who used ExoSeal VCDs showed eccentric vascular wall thickening with soft-tissue densities considered to be hemostatic plugs. Final follow-up CT images (mean, 616 days; range, 95–1106 days) revealed partial or complete resorption of the hemostatic plugs. The CFA puncture site diameters did not differ statistically from those of the contralateral CFA on the final follow-up CT (p > 0.05), regardless of the number of VCDs used. Follow-up CT images of patients who used ExoSeal VCDs showed no significant vascular stenosis or significant vessel wall thickening.

  18. Consecutive flap transfer for repairing massive soft tissue defects in the opisthenar with improved donor site closure

    Institute of Scientific and Technical Information of China (English)

    Wu Lehao; Tong Dedi; Zhu Shan; Zang Mengqing; Tian Guanglei; Chen Shanlin

    2014-01-01

    Objective:To explore a surgical model of utilizing consecutive free scapular flap and adjacent pedicled flap transfer for repairing massive soft tissue defects on the dorsum of the hand while minimizing the donor site morbidity.Methods:Six patients with massive soft tissue injuries on the opisthenar and forearm were treated with free scapular flaps.Afterwards,a pedicled flap adjacent to the donor site was transferred to cover the donor site defect by direct closure.Results:All six free scapular flaps survived without signs of infection.Three adjacent pedicled flaps presented minor signs of insufficient blood flow on the distal apex,which resolved after six weeks with only conservative therapy.All the incisions healed without other complications.At six-month follow-up,the patients regained full shoulder function.Conclusion:With the assistance of an adjacent pedicled flap,the scapular flap is a highly applicable approach in repairing massive soft tissue defects in the opisthenar.It can achieve positive outcomes in both reconstructive and aesthetic aspects.

  19. Closure of the tunnel linking the CERN sites | Exceptional opening of Gate E

    CERN Multimedia

    GS-IS

    2013-01-01

    The tunnel linking the CERN sites will be closed to traffic from 19 to 26 July inclusive for the installation of an access system using number-plate recognition.   During this period, Gate E will be open, exceptionally, in both directions from Monday until Friday from 7.00 a.m. to 7.00 p.m. under the same access conditions as for the tunnel linking the CERN sites, laid down in the following document: http://hoststates.web.cern.ch/hoststates/documents/8200980415.pdf.

  20. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box

  1. Prospective comparison of collagen plug (angio-seal{sup TM}) and suture-mediated (the closer S{sup TM}) closure devices at femoral access sites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yulri; Roh, Hong Gee; Choo, Sung Wook; Lee, Sung Hoon; Shin, Sung Wook; Do, Young Soo; Byun, Hong Sik; Park, Kwang Bo; Jeon, Pyoung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2005-12-15

    Rapid and effective hemostasis at femoral puncture sites minimizes both the hospital stay and patient discomfort. Therefore, a variety of arterial closure devices have been developed to facilitate the closure of femoral arteriotomy. The objective of this prospective study was to compare the efficacy of two different closure devices; a collagen plug device (Angio-Seal) and a suture-mediated closure device (the Closer S). From March 28, 2003 to August 31, 2004, we conducted a prospective study in which 1,676 cases of 1,180 patients were treated with two different types of closure device. Angio-Seal was used in 961 cases and the Closer S in 715 cases. The efficacy of the closure devices was assessed, as well as complications occurring at the puncture sites. Successful immediate hemostasis was achieved in 95.2% of the cases treated with Angio-Seal, and in 89.5% of the cases treated with the Closer S ({rho} < 0.05). The rates of minor and major complications occurring between the two groups were not significantly different. In the Closer S group, we observed four major complications (0.6%), that consisted of one massive retroperitoneal hemorrhage (surgically explored) and three pseudoaneurysms. In the Angio-Seal group, we observed three major complications (0.3%) that consisted of one femoral artery occlusion, one case of infection treated with intravenous antibiotics and one pseudoaneurysm. The use of Angio-Seal was found to be more effective than that of the Closer S with regard to the immediate hemostasis of the femoral puncture sites. However, we detected no significant differences in the rate at which complications occurred.

  2. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was

  3. Response of eastern Indian Ocean (ODP Site 762B benthic foraminiferal assemblages to the closure of the Indonesian seaway

    Directory of Open Access Journals (Sweden)

    Ajai Kumar Rai

    2012-06-01

    Full Text Available Pliocene-Pleistocene deep sea benthic foraminifera from ODP Site 762B in the eastern Indian Ocean were examined to understand the tectonically/climatically induced palaeoceanographic changes. In addition to already published data on this site by Rai & Singh (2001, some more faunal parameters were considered in the present work. Characteristic benthic foraminiferal assemblages as well as more diverse fauna during the early Pliocene (before 3.5 Ma reflected relatively oligotrophic and warm bottom water conditions. At the beginning of the late Pliocene (i.e. ~ 3 ± 0.5 Ma relative abundances of Uvigerina proboscidea, infaunal taxa and high productivity taxa increased, whereas faunal diversity showed a distinct decline, suggesting the development of pronounced upwelling resulting in higher surface water productivity. The strongly reduced inflow of warm and oligotrophic water masses as the South Equatorial Current (SEC from the South Pacific to the eastern Indian Ocean due to the effective closure of the Indonesian seaway increased the surface water productivity. The closing of the Indonesian seaway during the late Pliocene was also responsible for the cessation of the warm, southward-flowing Leeuwin Current (LC and the greater influence of the cold, deep and northward-flowing Western Australian Current (WAC in the eastern Indian Ocean.

  4. TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    Energy Technology Data Exchange (ETDEWEB)

    Winterholler, K.

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  5. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-08-01

    This Post-Closure Inspection and Monitoring Report provides the results and inspections and monitoring for Corrective Action Unit 110: Area 3 Waste Management Division U-3ax/bl Crater, Nevada Test Site, Nevada. This report includes an analysis and summary of the site inpsections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at Corrective Action Unit 110, for the annual period July 2005 thrugh June 2006.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews and Dawn Peterson

    2011-09-01

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20, 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting verification

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 554: Area 23 Release Site Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Evenson, Grant

    2005-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 554, Area 23 Release Site, located in Mercury at the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit (CAU) 554 is comprised of one corrective action site (CAS): CAS 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 554 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from January 18 through May 5, 2005, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site (NNSA/NSO, 2004) and Records of Technical Change No. 1 and No. 2. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern are present. (2) If contaminants of concern are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 554 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against preliminary action levels (PALs) established in the CAU 554 CAIP for total petroleum hydrocarbons (TPH) benzo(a)pyrene, dibenz(a,h)anthracene, and trichloroethene (TCE). Specifically: (1) The soil beneath and laterally outward from former underground storage tanks at CAS 23-02-08 contains TPH-diesel-range organics (DRO) above the PAL of 100 milligrams per kilogram, confined vertically from a depth of approximately 400 feet (ft) below ground

  8. Closure Report for Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-01-01

    This closure report documents that the closure activities performed at Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits, were in accordance with the Nevada Division of Environmental Protection approved Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 358.

  9. Closure of connection to off-site DNS services from within CERN

    CERN Multimedia

    IT Department

    2008-01-01

    The internet Domain Name System (DNS) service is a mechanism which translates the names of computers into IP addresses (a sort of telephone book). For reasons of security, users of computers on the CERN site are required to use only the DNS services supported centrally by IT. This is in order to avoid possible breaches of the CERN Central Firewall as well as assorted vulnerabilities which have recently been exploited in DNS code by criminals. The DNS service uses IP port 53, which is already blocked coming into CERN, and which will be blocked in the outward direction from 28 October. For correctly configured CERN machines or any portable using automatic configuration (via the DHCP protocol), this change will be transparent. However, portable machines brought onto the CERN site which are not set up to use DHCP will need to have the IP address of the CERN DNS services correctly set in their configuration. How to do this is explained in http://cern.ch/dns. In case of questions...

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 554: Area 23 Release Site Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Evenson, Grant

    2005-07-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 554, Area 23 Release Site, located in Mercury at the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit (CAU) 554 is comprised of one corrective action site (CAS): (1) CAS 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 554 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from January 18 through May 5, 2005, as set forth in the ''Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site'' (NNSA/NSO, 2004) and Records of Technical Change No. 1 and No. 2. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern are present. (2) If contaminants of concern are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 554 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against preliminary action levels (PALs) established in the CAU 554 CAIP for total petroleum hydrocarbons (TPH) benzo(a)pyrene, dibenz(a,h)anthracene, and trichloroethene (TCE). Specifically: (1) The soil beneath and laterally outward from former underground storage tanks at CAS 23-02-08 contains TPH-diesel-range organics (DRO) above the PAL of 100 milligrams per kilogram, confined vertically from a depth of approximately 400

  11. Full Life Cycle Research at the Ketzin Pilot Site, Germany - From Safe and Successful CO2 Injection Operation to Post-Injection Monitoring and Site Closure

    Science.gov (United States)

    Liebscher, A. H.

    2016-12-01

    The Ketzin pilot site near Berlin, Germany, was initiated in 2004 as the first European onshore storage project for research and development on geological CO2 storage. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section; full abandonment of this well finished in 2015 after roughly 2 years of well closure monitoring. Abandonment of the remaining 4 wells will be finished by 2017 and hand-over of liability to the competent authority is planned for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (oxyfuel power plant CO2 with purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40 - 45°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and temporal in-reservoir behaviour of the injected CO2 even for small quantities. After the cessation of CO2 injection, post-injection monitoring continued and two additional

  12. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  13. CLOSURE OF THE SELF-SERVICE STORES ON THE MEYRIN AND PREVESSIN SITES

    CERN Multimedia

    SPL Division

    2001-01-01

    Following a study pointing to the low turnover of a large proportion of the items stocked, the low average value of 'purchases' and the relatively high running costs, the Management Board decided at its meeting on 28.5.2001 to close the self-service stores on the Meyrin and Prévessin sites at the end of 2001, provided that all items were available via EDH by then and that satisfactory access could be provided for the CERN users. As these conditions have now been fulfilled, users are hereby informed that the self-service stores will be closed as follows: The Meyrin self-service store will close as of 1st December 2001. The Prévessin self-service store will close as of 1st January 2002. All standard items (including nuts, bolts, screws, nails and rivets - item 47 of the stores catalogue) may be ordered from the Central Store via EDH using the 'Material Request' form and will be delivered within 24 hours. In urgent cases, items may be collected from one of the emergency counters at the ...

  14. Development of molecular closures for the reference interaction site model theory with application to square-well and Lennard-Jones homonuclear diatomics.

    Science.gov (United States)

    Munaò, Gianmarco; Costa, Dino; Caccamo, Carlo

    2016-10-19

    Inspired by significant improvements obtained for the performances of the polymer reference interaction site model (PRISM) theory of the fluid phase when coupled with 'molecular closures' (Schweizer and Yethiraj 1993 J. Chem. Phys. 98 9053), we exploit a matrix generalization of this concept, suitable for the more general RISM framework. We report a preliminary test of the formalism, as applied to prototype square-well homonuclear diatomics. As for the structure, comparison with Monte Carlo shows that molecular closures are slightly more predictive than their 'atomic' counterparts, and thermodynamic properties are equally accurate. We also devise an application of molecular closures to models interacting via continuous, soft-core potentials, by using well established prescriptions in liquid state perturbation theories. In the case of Lennard-Jones dimers, our scheme definitely improves over the atomic one, providing semi-quantitative structural results, and quite good estimates of internal energy, pressure and phase coexistence. Our finding paves the way to a systematic employment of molecular closures within the RISM framework to be applied to more complex systems, such as molecules constituted by several non-equivalent interaction sites.

  15. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Sappey, A.D.; French, P.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  16. Port-site transversus abdominis fascia closure reduced the incidence of incisional hernia following retroperitoneal laparoscopic nephrectomy.

    Science.gov (United States)

    Takei, A; Sazuka, T; Nakamura, K; Nihei, N; Ichikawa, T

    2016-10-01

    The incidence of incisional hernia after laparoscopic surgery is reportedly 0-5.2 %; there are only a few reports of that following retroperitoneal laparoscopic nephrectomy. We evaluated the incidence of and risk factors for incisional hernia after retroperitoneal laparoscopic nephrectomy, and the efficacy of our novel prophylaxis technique. A total of 207 renal cell carcinoma patients who underwent laparoscopic nephrectomy at Chiba University Hospital were retrospectively enrolled in this study. We compared the incidences of incisional hernia following the transperitoneal vs. retroperitoneal approaches, and, among the latter group, the incidences with vs. without use of our prophylaxis method. Also among the retroperitoneal-approach group, we evaluated selected patient characteristics as potential hernia risk factors. The rate of incisional hernias was 14 (8.7 %) after 161 retroperitoneal laparoscopic nephrectomies and one (2.2 %) after 46 transperitoneal laparoscopic nephrectomies (P = 0.132). For those undergoing the retroperitoneal approach, 14 (11.3 %) hernias were identified in 124 non-prophylaxed patients and none in 37 prophylaxed patients. Transversus abdominis fascia closure was a statistically significant factor for reducing the incidence of incisional hernia after retroperitoneal laparoscopic nephrectomy (P = 0.0324): rectus abdominis muscle thickness ≤7 mm and perioperative blood loss >100 ml were statistically significant independent risk factors, by multivariate analysis. To prevent incisional hernia after retroperitoneal laparoscopic nephrectomy in the patients with risk factors, it is useful to close the transversus abdominis fascia at the port sites from inside the surgical cavity, through the open specimen-removal trocar port site, under direct observation.

  17. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  18. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  19. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Allison Urban

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site.

  20. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS.

  1. ABDOMINAL CLOSURE WITH ANTI BACTERIAL COATED SUTURE MATERIALS AND ITS RELATION TO THE INCIDENCE OF POST OPERATIVE SUPERFICIAL SURGICAL SITE INFECTION RATES

    OpenAIRE

    Josephine Pudumai Selvi; Celine Foustina Mary; Karthikeyan Rajashekar

    2017-01-01

    BACKGROUND Surgical site infection (SSI) is an immense burden on healthcare resources even in the modern era of immaculate sterilization approaches and highly effective antibiotics. An estimated 234 million various surgical procedures, involving skin incisions requiring various types of wound closure techniques, are performed in the world, with the majority resulting in a wound healing by primary intention. Triclosan (5-chloro-2-(2, 4-dichlorophenoxy) phenol) is a broad-spectrum b...

  2. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2010-04-01

    Corrective Action Unit 560 comprises seven corrective action sites (CASs): •03-51-01, Leach Pit •06-04-02, Septic Tank •06-05-03, Leach Pit •06-05-04, Leach Bed •06-59-03, Building CP-400 Septic System •06-59-04, Office Trailer Complex Sewage Pond •06-59-05, Control Point Septic System The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 560 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from October 7, 2008, through February 24, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada, and Record of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: •Determine whether contaminants of concern (COCs) are present. •If COCs are present, determine their nature and extent. •Provide sufficient information and data to complete appropriate corrective actions. The CAU 560 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: •No contamination exceeding the FALs was identified at CASs 03-51-01, 06-04-02, and 06-59-04. •The soil at the base of the leach pit chamber at CAS 06-05-03 contains arsenic above the FAL of 23 milligrams per kilogram (mg/kg) and polychlorinated biphenyl (PCBs) above the FAL of 0.74 mg/kg, confined vertically from a depth of approximately 5 to 20 feet (ft) below ground surface. The contamination is confined laterally to the walls of the

  4. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, Alissa J. [Nevada Field Office, Las Vegas, NV (United States)

    2015-01-01

    This report serves as the combined annual report for post-closure activities for several Corrective Action Units (CAUs). The locations of the sites are shown in Figure 1. This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site, which will be prepared in approximately June 2015. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. It is recommended to continue

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 546: Injection Well and Surface Releases Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 546, Injection Well and Surface Releases, at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 546 is comprised of two corrective action sites (CASs): • 06-23-02, U-6a/Russet Testing Area • 09-20-01, Injection Well The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 546. To achieve this, corrective action investigation (CAI) activities were performed from May 5 through May 28, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada (NNSA/NSO, 2008). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether a contaminant of concern is present at a given CAS. • Determine whether sufficient information is available to evaluate potential corrective action alternatives at each CAS. The CAU 546 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Because DQO data needs were met, and corrective actions have been implemented, it has been determined that no further corrective action (based on risk to human receptors) is necessary for the CAU 546 CASs. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective actions are needed for CAU 546 CASs. • No Corrective Action Plan is required. • A Notice of Completion to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site

  6. Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Idaho Cleanup Project

    2006-06-01

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

  7. Site Development, Operations, and Closure Plan Topical Report 5 An Assessment of Geologic Carbon Sequestration Options in the Illinois Basin. Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Robert [Univ. of Illinois, Champaign, IL (United States); Payne, William [Schlumberger Carbon Services, Houston, TX (United States); Kirksey, Jim [Univ. of Illinois, Champaign, IL (United States)

    2015-06-01

    The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.

  8. Design and proof of function of a closure system for an HLW-repository in rock salt. Results of the preliminary safety analysis for the Gorleben site (VSG)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Hoeppe, Nina; Breustedt, Michael; Engelhardt, Hans-Joachim; Wolf, Johanna [DBE Technology GmbH, Peine (Germany); Buhmann, Dieter; Czaikowski, Oliver; Herbert, Horst-Juergen; Wieczorek, Klaus; Xie, Mingliang [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Braunschweig (Germany)

    2015-07-01

    Within the preliminary safety analysis for the Gorleben site (VSG), a closure system was designed in order to complement the containment providing rock zone (CRZ) by sealing and backfilling measures. The design procedure as well as the technical proof of function was mainly performed according to standard procedures in civil engineering. In the context of VSG, rough individual technical proofs of several measures were carried out. Meanwhile, this gap has been closed by subsequent investigations. Altogether the results of all the individual technical proofs of function indicate that safe containment of radioactive waste is a realistic possibility at the Gorleben site.

  9. Closure Report for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks Nevada National Security Site, Nevada with ROTC-1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Kauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: • 25-99-21, Area 25 Railroad Tracks • 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: • Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination. • Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26. • Collected ballast and soil samples and calculated internal dose estimates for radiological releases. • Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases. • Removed lead bricks as potential source material (PSM) and collected verification samples. • Implemented corrective actions as necessary to protect human health and the environment. • Properly disposed of corrective action and investigation wastes. • Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From November 29

  10. Development of molecular closures for the reference interaction site model theory with application to square-well and Lennard-Jones homonuclear diatomics

    Science.gov (United States)

    Munaò, Gianmarco; Costa, Dino; Caccamo, Carlo

    2016-10-01

    Inspired by significant improvements obtained for the performances of the polymer reference interaction site model (PRISM) theory of the fluid phase when coupled with ‘molecular closures’ (Schweizer and Yethiraj 1993 J. Chem. Phys. 98 9053), we exploit a matrix generalization of this concept, suitable for the more general RISM framework. We report a preliminary test of the formalism, as applied to prototype square-well homonuclear diatomics. As for the structure, comparison with Monte Carlo shows that molecular closures are slightly more predictive than their ‘atomic’ counterparts, and thermodynamic properties are equally accurate. We also devise an application of molecular closures to models interacting via continuous, soft-core potentials, by using well established prescriptions in liquid state perturbation theories. In the case of Lennard-Jones dimers, our scheme definitely improves over the atomic one, providing semi-quantitative structural results, and quite good estimates of internal energy, pressure and phase coexistence. Our finding paves the way to a systematic employment of molecular closures within the RISM framework to be applied to more complex systems, such as molecules constituted by several non-equivalent interaction sites.

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 477: Area 12 N-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 477, N-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 477 is comprised of one Corrective Action Site (CAS): • 12-06-03, Muckpile The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure with no further action, by placing use restrictions on CAU 477.

  12. Corrective Action Decision Document/Closure Report for Corrective Action Unit 478: Area 12 T-Tunnel Ponds, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 478, Area 12 T-Tunnel Ponds. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 478 is comprised of one corrective action site (CAS): • 12-23-01, Ponds (5) RAD Area The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 478.

  13. Corrective Action Decision Document/Closure Report for Corrective Action Unit 559: T Tunnel Compressor/Blower Pad, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 559, T-Tunnel Compressor/Blower Pad. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 559 is comprised of one Corrective Action Site (CAS): • 12-25-13, Oil Stained Soil and Concrete The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 559.

  14. Corrective Action Decision Document/Closure Report for Corrective Action Unit 476: Area 12 T-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 476, Area 12 T-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 476 is comprised of one Corrective Action Site (CAS): • 12-06-02, Muckpile The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 476.

  15. Independent Verification Survey Report for the Offsite Portion of the Potential Release Site-7 Abandoned Sanitary Line, Miamisburg Closure Project, Miamisburg, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    P.C. Weaver

    2008-08-15

    The ORISE objective was to confirm that the remedial action process implemented by the contractor was in accordance with the PRS-7 Work Package. Following removal of the sanitary line, the soil beneath the line would be sampled to determine if remediation was required (ARC 2007a).

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2006-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 551, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) that are shown on Figure 1-2 and listed below: CAS 12-01-09, Aboveground Storage Tank and Stain; CAS 12-06-05, U-12b Muckpile; CAS 12-06-07, Muckpile; and CAS 12-06-08, Muckpile. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 551: Area 12 Muckpiles'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 551 in place with administrative controls. This justification is based upon process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NSO, 2004). The CAIP provides information relating to the history, planning, and scope of the investigation; therefore, this information will not be repeated in the CADD/CR. Corrective Action Unit 551, Area 12 Muckpiles, consists of four inactive sites located in the southwestern portion of Area 12. The four CAU 551 sites consist of three muckpiles, and an aboveground storage tank (AST) and stain. The CAU 551 sites were all used during underground nuclear testing at the B-, C-, D- and F-Tunnels in the late 1950s and early 1960s and have mostly remained inactive since that period.

  17. Letter Report to Address Comments on the Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada, Revision 0, March 2008

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-03-17

    The Closure Report (CR) for Corrective Action Unit (CAU) 224, Decon Pad and Septic Systems, was approved by the Nevada Department of Environmental Protection (NDEP) on November 01, 2007. The approval letter contained the following two comments: Comment 1--For 06-05-01, 06-17-04, 06-23-01 provide evidence that the 6 inch VCP pipe originating from building CP-2 is no longer active and sealed to prevent possible future contamination. Comment 2--For the area that includes 06-03-01, provide evidence that active lines are no longer feeding the North and South lagoons and have been sealed to prevent possible future contamination. To address these comments, closure documentation was reviewed, and site visits were conducted to locate and document the areas of concern. Additional fieldwork was conducted in March 2008 to seal the lines and openings described in the two comments. Photographs were taken of the closed drains and lines to document that the NDEP comments were adequately addressed and potential inadvertent discharge to the environment has been eliminated. Investigation and closure documentation was reviewed to identify the locations of potential drains, lines, and other features that could receive and/or transmit liquid. Based on the investigation findings and subsequent closure activities, no openings, distribution boxes, or other features (excluding known floor drains at CP-2) that could receive liquid were found at the CP-2 location (Figure 1), and potential manholes for the north and south sewage lagoons were identified for Corrective Action Site (CAS) 06-03-01 (Figure 2). The distribution box identified in Figure 1 was not located during the investigation and was assumed to have been previously removed.

  18. 75 FR 28655 - Rexam Closure Systems, Inc. a Subsidiary of Rexam PLC Including On-Site Leased Workers From...

    Science.gov (United States)

    2010-05-21

    ...) Wages Are Paid Through Owens Illinois Manufacturing Hamlet, NC; Amended Certification Regarding... Closure Systems, Inc., a subsidiary of Rexam PLC, Hamlet, North Carolina. The notice was published in the..., Hamlet, North Carolina, who became totally or partially separated from employment on or after November 10...

  19. Corrective Action Decision Document/Closure Report for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-06-01

    Corrective Action Unit 367 comprises four corrective action sites (CASs): • 10-09-03, Mud Pit • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-45-03, Uncle Crater Site The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation of the corrective actions and site closure activities implemented at CAU 367. A corrective action of closure in place with use restrictions was completed at each of the three crater CASs (10-45-01, 10-45-02, and 10-45-03); corrective actions were not required at CAS 10-09-03. In addition, a limited soil removal corrective action was conducted at the location of a potential source material release. Based on completion of these correction actions, no additional corrective action is required at CAU 367, and site closure is considered complete. Corrective action investigation (CAI) activities were performed from February 2010 through March 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of non-test or other releases (e.g., migration in washes and potential source material). Based on the proximity of the Uncle, Ess, and Sedan craters, the impact of the Sedan test on the fallout deposited from the two earlier tests, and aerial radiological surveys, the CAU 367 investigation was designed to study the releases from the three crater CASs as one combined release (primary release). Corrective Action Site 10-09-03, Mud Pit, consists of two mud pits identified at CAU 367. The mud pits are considered non-test releases or other releases and were investigated independent of the three crater CASs. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 367 dataset of

  20. The Effect of Platelet-Rich Fibrin, Calcium Sulfate Hemihydrate, Platelet-Rich Plasma and Resorbable Collagen on Soft Tissue Closure of Extraction Sites

    Directory of Open Access Journals (Sweden)

    Lisa M. Yerke

    2017-05-01

    Full Text Available Rapid and complete soft tissue healing after tooth extraction minimizes surgical complications and facilitates subsequent implant placement. We used four treatment methods and assessed changes in soft tissue socket closure following tooth extraction in humans. The effects of platelet-rich fibrin-calcium sulfate hemihydrate (PRF-CSH, platelet-rich plasma-calcium sulfate hemihydrate (PRP-CSH, a resorbable collagen dressing (RCD, and no grafting material were compared in a randomized, controlled pilot study with a blinded parallel design (N = 23. Patients with a hopeless tooth scheduled for extraction were randomly assigned to one of the four treatment groups. Socket measurements were obtained immediately after extraction and treatment, as well as after 21 days. There was a significant decrease in the total epithelialized external surface area of the extraction sockets in each group at all time points. However, there were no significant differences in soft tissue closure (p > 0.05 at any time point and PRF-CSH or PRP-CSH did not provide any additional benefit to enhance the soft tissue closure of extraction sockets compared with either RCD or sites without graft.

  1. RCRA closure of mixed waste impoundments

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, F.J. [Doty and Associates (United States); Greengard, T.C.; Arndt, M.B. [Rockwell International (United States)

    1989-11-01

    A case study of a RCRA closure action at the Rocky Flats Plant is presented. Closure of the solar evaporation ponds involves removal and immobilization of a mixed hazardous/radioactive sludge, treatment of impounded water, groundwater monitoring, plume delineation, and collection and treatment of contaminated groundwater. The site closure is described within the context of regulatory negotiations, project schedules, risk assessment, clean versus dirty closure, cleanup levels, and approval of closure plans and reports. Lessons learned at Rocky Flats are summarized.

  2. Network Meta-analysis of Randomized Trials on the Safety of Vascular Closure Devices for Femoral Arterial Puncture Site Haemostasis

    OpenAIRE

    Jun Jiang; Junjie Zou; Hao Ma; Yuanyong Jiao; Hongyu Yang; Xiwei Zhang; Yi Miao

    2015-01-01

    The safety of vascular closure devices (VCDs) is still debated. The emergence of more related randomized controlled trials (RCTs) and newer VCDs makes it necessary to further evaluate the safety of VCDs. Relevant RCTs were identified by searching PubMed, EMBASE, Google Scholar and the Cochrane Central Register of Controlled Trials electronic databases updated in December 2014. Traditional and network meta-analyses were conducted to evaluate the rate of combined adverse vascular events (CAVEs)...

  3. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-02-24

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2010-07-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 371, Johnnie Boy Crater and Pin Stripe, located within Areas 11 and 18 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit (CAU) 371 comprises two corrective action sites (CASs): • 11-23-05, Pin Stripe Contamination Area • 18-45-01, U-18j-2 Crater (Johnnie Boy) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 371 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at both CASs. Corrective action investigation (CAI) activities were performed from January 8, 2009, through February 16, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 371 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were not found to be present in the surface soil. However, it was assumed that radionuclides are present in subsurface media within the Johnnie Boy crater and the fissure at Pin Stripe. Due to the assumption of radiological dose exceeding the FAL, corrective actions were undertaken

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick K. [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-02-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 550: Smoky Contamination Area, Nevada National Security Site, Nevada. CAU 550 includes 19 corrective action sites (CASs), which consist of one weapons-related atmospheric test (Smoky), three safety experiments (Ceres, Oberon, Titania), and 15 debris sites (Table ES-1). The CASs were sorted into the following study groups based on release potential and technical similarities: • Study Group 1, Atmospheric Test • Study Group 2, Safety Experiments • Study Group 3, Washes • Study Group 4, Debris The purpose of this document is to provide justification and documentation supporting the conclusion that no further corrective action is needed for CAU 550 based on implementation of the corrective actions listed in Table ES-1. Corrective action investigation (CAI) activities were performed between August 2012 and October 2013 as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area; and in accordance with the Soils Activity Quality Assurance Plan. The approach for the CAI was to investigate and make data quality objective (DQO) decisions based on the types of releases present. The purpose of the CAI was to fulfill data needs as defined during the DQO process. The CAU 550 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sloop, Christy

    2013-04-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): • 03-23-09, T-3 Contamination Area • 03-23-10, T-3A Contamination Area • 03-23-11, T-3B Contamination Area • 03-23-12, T-3S Contamination Area • 03-23-13, T-3T Contamination Area • 03-23-14, T-3V Contamination Area • 03-23-15, S-3G Contamination Area • 03-23-16, S-3H Contamination Area • 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.

  7. Achieving closure at Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 274: Septic Systems, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-09-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 274, Septic Systems, Nevada Test Site (NTS), Nevada in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit (CAU) 274 is comprised of five corrective action sites (CASs): (1) CAS 03-02-01, WX-6 ETS Building Septic System; (2) CAS 06-02-01, Cesspool; (3) CAS 09-01-01, Spill Site; (4) CAS 09-05-01, Leaching Pit; and (5) CAS 20-05-01, Septic System. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the closure of CAU 274 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from November 14 through December 17, 2005 as set forth in the CAU 274 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If contaminants of concern are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 274 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. No analytes were detected at concentrations exceeding the FALs. No COCs have been released to the soil at CAU 274, and corrective action is not required. Therefore, the DQO data needs were met, and it was determined that no corrective action based on risk to human receptors is necessary for the site. All FALs were calculated using the industrial site worker scenario except for benzo(a)pyrene, which was

  9. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  10. Water Quality, Cyanobacteria, and Environmental Factors and Their Relations to Microcystin Concentrations for Use in Predictive Models at Ohio Lake Erie and Inland Lake Recreational Sites, 2013-14

    Science.gov (United States)

    Francy, Donna S.; Graham, Jennifer L.; Stelzer, Erin A.; Ecker, Christopher D.; Brady, Amie M G.; Pam Struffolino,; Loftin, Keith A.

    2015-11-06

    Harmful cyanobacterial “algal” blooms (cyanoHABs) and associated toxins, such as microcystin, are a major water-quality issue for Lake Erie and inland lakes in Ohio. Predicting when and where a bloom may occur is important to protect the public that uses and consumes a water resource; however, predictions are complicated and likely site specific because of the many factors affecting toxin production. Monitoring for a variety of environmental and water-quality factors, for concentrations of cyanobacteria by molecular methods, and for algal pigments such as chlorophyll and phycocyanin by using optical sensors may provide data that can be used to predict the occurrence of cyanoHABs.

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 234: Mud Pits, Cellars, and Mud Spills Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 234, Mud Pits, Cellars, and Mud Spills, located in Areas 2, 3, 4, 12, and 15 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit 234 is comprised of the following 12 corrective action sites: •02-09-48, Area 2 Mud Plant #1 •02-09-49, Area 2 Mud Plant #2 •02-99-05, Mud Spill •03-09-02, Mud Dump Trenches •04-44-02, Mud Spill •04-99-02, Mud Spill •12-09-01, Mud Pit •12-09-04, Mud Pit •12-09-08, Mud Pit •12-30-14, Cellar •12-99-07, Mud Dump •15-09-01, Mud Pit The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 234 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 234: Mud Pits, Cellars, and Mud Spills (NNSA/NSO, 2007). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: •Determine whether contaminants of concern are present. •If contaminants of concern are present, determine their extent. •Provide sufficient information and data to complete appropriate corrective actions. The CAU 234 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs.

  12. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, Alissa J. [NSTec

    2015-01-14

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): • CAU 90, Area 2 Bitcutter Containment • CAU 91, Area 3 U-3fi Injection Well • CAU 92, Area 6 Decon Pond Facility • CAU 110, Area 3 WMD U-3ax/bl Crater • CAU 111, Area 5 WMD Retired Mixed Waste Pits • CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

  13. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    Energy Technology Data Exchange (ETDEWEB)

    Badden, Janet W.; Connelly, Michael P. [Washington River Protection Services, P.O. Box 850, Richland, Washington, 99352 (United States); Seeley, Paul N. [Cenibark International, Inc., 104318 Nicole Drive, Kennewick, Washington, 99338-7596 (United States); Hendrickson, Michelle L. [Washington State Department of Ecology, 3100 Port of Benton Blvd, Richland, Washington, 99354 (United States)

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies

  14. Tank closure reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, T.B.

    1997-04-18

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2005-12-01

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are according to the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) (Figure 1-1) listed below: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J- and K-Tunnels. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site (NTS), Nevada.'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 309 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted according to the CAIP (NNSA/NSO, 2004), which provides information relating to the history, planning, and scope of the investigation. Therefore, this information will not be repeated in this CADD/CR.

  16. Closure Report for Corrective Action Units 530, 531, 532, 533, 534, 535: NTS Mud Pits, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-07-01

    This Closure Report (CR) presents information supporting the recommendation of no further action for the following six Corrective Action Units (CAUs): (1) CAU 530 - LANL Preshot Mud Pits; (2) CAU 531 - LANL Postshot Mud Pits; (3) CAU 532 - LLNL Preshot Mud Pits; (4) CAU 533 - LLNL Postshot Mud Pits; (5) CAU 534 - Exploratory/Instrumentation Mud Pits; and (6) CAU 535 - Mud Pits/Disposal Areas. This CR complies with the requirements of the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. CAUs 530-535 are located in Areas 1-10, 14, 17, 19, and 20 of the Nevada Test Site and are comprised of 268 Corrective Action Sites (CASs) listed in Table 1-1. The purpose of this CR is to validate the risk-based closure strategy presented in the ''Mud Pit Risk-Based Closure Strategy Report'' (RBCSR) (NNSA/NSO, 2004) and the CAUs 530-535 SAFER Plan (NNSA/NSO, 2005b). This strategy uses 52 CASs as a statistical representation of CAUs 530-535 to confirm the proposed closure alternative, no further action, is sufficient to protect human health and the environment. This was accomplished with the following activities: A field investigation following a probabilistic sampling design to collect data that were used in a non-carcinogenic risk assessment for human receptors; Visual habitat surveys to confirm the lack of habitat for threatened and endangered species; Disposal of debris and waste generated during field activities; and Document Notice of Completion and closure of CAUs 530-535 issued by Nevada Division of Environmental Protection. The field investigation and site visits were conducted between August 31, 2005 and February 21, 2006. As stated in the RBCSR and Streamlined Approach for Environmental Restoration (SAFER) Plan, total petroleum hydrocarbons-diesel-range organics (TPH-DRO) was the only contaminant of potential

  17. Prediction of Post-Closure Water Balance for Monolithic Soil Covers at Waste Disposal Sites in the Greater Accra Metropolitan Area of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2014-04-01

    Full Text Available The Ghana Landfill Guidelines require the provision of a final cover system during landfill closure as a means of minimizing the harmful environmental effects of uncontrolled leachate discharges. However, this technical manual does not provide explicit guidance on the material types or configurations that would be suitable for the different climatic zones in Ghana. The aim of this study was to simulate and predict post-closure landfill cover water balance for waste disposal sites located in the Greater Accra Metropolitan Area using the USGS Thornthwaite monthly water balance computer program. Five different cover soil types were analyzed under using historical climatic data for the metropolis from 1980 to 2001. The maximum annual percolation and evapotranspiration rates for the native soil type were 337 mm and 974 mm respectively. Monthly percolation rates exhibited a seasonal pattern similar to the bimodal precipitation regime whereas monthly evapotranspiration did not. It was also observed that even though soils with a high clay content would be the most suitable option as landfill cover material in the Accra metropolis the maximum thickness of 600 mm recommended in the Ghana Landfill Guidelines do not seem to provide significant reduction in percolation rates into the buried waste mass when the annual rainfall exceeds 700 mm. The findings from this research should provide additional guidance to landfill managers on the specification of cover designs for waste disposal sites with similar climatic conditions.

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-08-01

    The purpose of this CADD/CR is to provide documentation and justification that no further corrective action is needed for the closure of CAU 571 based on the implementation of corrective actions. This includes a description of investigation activities, an evaluation of the data, and a description of corrective actions that were performed. The CAIP provides information relating to the scope and planning of the investigation. Therefore, that information will not be repeated in this document.

  19. Corrective Action Decision Document/Closure Report for Corrective Action Unit 511: Waste Dumps (Piles and Debris) Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, Laura

    2005-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 511, Waste Dumps (Piles & Debris). The CAU is comprised of nine corrective action sites (CASs) located in Areas 3, 4, 6, 7, 18, and 19 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 511 is comprised of nine CASs: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 511 with no further corrective action. To achieve this, corrective action investigation (CAI) and closure activities were performed from January 2005 through August 2005, as set forth in the ''Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris)'' (NNSA/NSO, 2004) and Record of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 511 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs. Analytes detected during the CAI were evaluated against appropriate preliminary

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  1. Comparison of Exo-Seal(®) and Angio-Seal (®) for arterial puncture site closure: A randomized, multicenter, single-blind trial.

    Science.gov (United States)

    Ketterle, Johannes; Rittger, Harald; Helmig, Inga; Klinghammer, Lutz; Zimmermann, Stefan; Hohenforst-Schmidt, Wolfgang; Brachmann, Johannes; Nef, Holger; Achenbach, Stephan; Schlundt, Christian

    2015-08-01

    The use of extravascular femoral closure devices in patients undergoing coronary angiography/intervention has not been sufficiently evaluated. We sought to define the impact of an extravascular polyglycolic acid (PGA) plug for the closure of a femoral access site in patients undergoing coronary angiography and/or percutaneous coronary intervention. In this prospective, single-blind, multicenter trial we randomly assigned 319 patients to vessel closure with Angio-Seal(®) or Exo-Seal(®). We hypothesized that the use of an extravascular closure device is not inferior to an anchor/plug-mediated device regarding the occurrence of the composite primary endpoint: hematoma > 5 cm, significant groin bleeding (TIMI major bleed), false aneurysm, and device failure. There was no significant difference in patient baseline characteristics or procedural results. After 24 h the primary endpoint occurred in nine patients (5.6 %) in the Angio-Seal(®) group and in 13 patients (8.2 %) inthe Exo-Seal(®) group (p = 0.38). Hematoma > 5 cm was noted in three patients (1.9 %) receiving Angio-Seal(®) vs. two patients (1.3 %) receiving Exo-Seal(®) (p = 0.99). In one patient (0.6 %) of the Exo-Seal(®) group, TIMI major bleeding occurred, requiring transfusion (p = 0.49). There were four (2.5 %) false aneurysms found in patients treated with Angio-Seal(®) and two (1.3 %) in patients treated with Exo-Seal(®) (p = 0.68). There was a trend for a higher incidence of device failure in the Exo-Seal(®) group (1.2 vs. 5.2 %, p = 0.06). At telephone interview after 30 days, there was no significant difference found regarding the events readmission with surgery of puncture site, infection, bleeding, hematoma, or pain. In the present study, there were no significant differences found regarding the occurrence of hematoma > 5 cm, major bleeding, false aneurysm, and device failure between Angio-Seal(®) and Exo-Seal(®) 24 h after device implantation.

  2. Completion of five years of safe CO2 injection and transition into the post-closure phase at the Ketzin pilot site

    Science.gov (United States)

    Martens, Sonja; Moeller, Fabian; Streibel, Martin; Liebscher, Axel; Ketzin Group

    2014-05-01

    The injection of CO2 at the Ketzin pilot site in Germany ended after five years in August 2013. We present the key results from site operation and outline future activities within the post-closure phase. From June 2008 onwards, a total amount of 67 kt of CO2 was safely injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. The CO2 used was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (power plant CO2 with purity > 99.7%) was injected in 2011. During regular operation, the CO2 was pre-heated on-site to 45°C before injection in order to avoid pressure build-up within the reservoir. During the final months of injection a "cold-injection" experiment with a stepwise decrease of the injection temperature down to 10°C was conducted between March and July 2013. In summer 2013, the injection of a mixture of 95% CO2 and 5% N2 was also tested. After ceasing the injection in August the injection facility and pipeline were removed in December 2013. Geological storage of CO2 at the Ketzin pilot site has so far proceeded in a safe and reliable manner. As a result of one of the most comprehensive R&D programs worldwide, a combination of different geochemical and geophysical monitoring methods is able to detect even small quantities of CO2 and map their spatial extent. After the cessation of CO2 injection a series of activities and further investigations are involved in the post-closure phase. The aim is that Ketzin will for the first time ever close the complete life-time cycle of a CO2 storage site at pilot scale. The five wells (1 injection/observation well, 4 pure observation wells) will be successively abandoned within the next few years while monitoring is continuing. The partial plugging of one observation well in the reservoir section was already completed in fall 2013. The new four-years project COMPLETE (CO2 post-injection monitoring and post-closure phase at

  3. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  4. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  5. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2004-12-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement

  6. Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2001-07-01

    This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 2000a).

  7. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part II; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del II

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  8. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part III; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del III

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  9. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part I; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del I

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  10. ABDOMINAL CLOSURE WITH ANTI BACTERIAL COATED SUTURE MATERIALS AND ITS RELATION TO THE INCIDENCE OF POST OPERATIVE SUPERFICIAL SURGICAL SITE INFECTION RATES

    Directory of Open Access Journals (Sweden)

    Josephine Pudumai Selvi

    2017-07-01

    Full Text Available BACKGROUND Surgical site infection (SSI is an immense burden on healthcare resources even in the modern era of immaculate sterilization approaches and highly effective antibiotics. An estimated 234 million various surgical procedures, involving skin incisions requiring various types of wound closure techniques, are performed in the world, with the majority resulting in a wound healing by primary intention. Triclosan (5-chloro-2-(2, 4-dichlorophenoxy phenol is a broad-spectrum bactericidal agent that has been used for more than 40 years in various products, such as toothpaste and soaps. Higher concentrations of Triclosan work as a bactericide by attacking different structures in the bacterial cytoplasm and cell membrane. Use of Triclosan-coated sutures should theoretically result in the reduction of SSI. The aim of the study is to assess the abdominal closure with antibacterial coated suture materials and its relation to the incidence of post-operative superficial surgical site infection rates. MATERIALS AND METHODS The data will be collected from hospital records of surgery performed, post-operative daily progress notes and outpatient folders and telephonic conversations with patients after discharge. All patients undergoing laparotomy procedure for any cause. 100 patients divided as 50 in each group. RESULTS The positive outcome of infection (21.5% in patients using ordinary sutures was significantly differed with the positive outcome of infection (11.4% of Triclosan coated sutures. CONCLUSION In conclusion since there was a definite advantage inferred to the patients by using Triclosan coated polyglactin 910, it is the opinion of the researcher that Triclosan coated sutures has a role to play in reducing SSI in clean wounds and its use should be confined to areas where its application has proven benefits. However more studies should be done to clearly define its role and indications in surgery.

  11. Network Meta-analysis of Randomized Trials on the Safety of Vascular Closure Devices for Femoral Arterial Puncture Site Haemostasis.

    Science.gov (United States)

    Jiang, Jun; Zou, Junjie; Ma, Hao; Jiao, Yuanyong; Yang, Hongyu; Zhang, Xiwei; Miao, Yi

    2015-09-08

    The safety of vascular closure devices (VCDs) is still debated. The emergence of more related randomized controlled trials (RCTs) and newer VCDs makes it necessary to further evaluate the safety of VCDs. Relevant RCTs were identified by searching PubMed, EMBASE, Google Scholar and the Cochrane Central Register of Controlled Trials electronic databases updated in December 2014. Traditional and network meta-analyses were conducted to evaluate the rate of combined adverse vascular events (CAVEs) and haematomas by calculating the risk ratios and 95% confidence intervals. Forty RCTs including 16868 patients were included. Traditional meta-analysis demonstrated that there was no significant difference in the rate of CAVEs between all the VCDs and manual compression (MC). Subgroup analysis showed that FemoSeal and VCDs reported after the year 2005 reduced CAVEs. Moreover, the use of VCDs reduced the risk of haematomas compared with MC. Network meta-analysis showed that AngioSeal, which might be the best VCD among all the included VCDs, was associated with reduced rates of both CAVE and haematomas compared with MC. In conclusion, the use of VCDs is associated with a decreased risk of haematomas, and FemoSeal and AngioSeal appears to be better than MC for reducing the rate of CAVEs.

  12. Corrective Action Decision Document/Closure Report for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Laura Pastor

    2005-09-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 552, Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the corrective action site (CAS) that is shown on Figure 1-2 and listed below: 12-23-05, Ponds. The ponds were originally constructed to catch runoff from the muckpile. As the muckpile continued to be extended to the north and to the east, it became impossible to ensure that all of the runoff from the muckpile was funneled into the pond. Some of the runoff from the muckpile continues to be caught in the upper pond, but portions of the muckpile have eroded, diverting much of the runoff away from the ponds. Regarding the other ponds, there is no evidence that any of the overflow ponds ever received runoff from overflow of the upper pond. The muckpile was removed from CAU 552 because an active leachfield exists within the muckpile and there are current activities at G-Tunnel. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada'', Rev. 1 (NNSA/NSO, 2005). Corrective Action Unit 552, Area 12 Muckpile and Ponds, consists of one site located in the southern portion of Area 12. Corrective Action Site 12-23-05 consists of dry ponds adjacent to the G-Tunnel muckpile. The ponds were used to contain effluent from the G-Tunnel. The purpose of this CADD/CR is to provide justification for the closure of CAU 552 with no further

  13. Corrective Action Decision Document/Closure Report for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2004-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Site (CAS) 25-23-17, Contaminated Wash, is the only CAS in CAU 529 and is located in Area 25 of the NTS, in Nye County, Nevada (Figure 1-2). Corrective Action Site 25-23-17, Contaminated Wash, was divided into nine parcels because of the large area impacted by past operations and the complexity of the source areas. The CAS was subdivided into separate parcels based on separate and distinct releases as determined and approved in the Data Quality Objectives (DQO) process and Corrective Action Investigation Plan (CAIP). Table 1-1 summarizes the suspected sources for the nine parcels. Corrective Action Site 25-23-17 is comprised of the following nine parcels: (1) Parcel A, Kiwi Transient Nuclear Test (TNT) 16,000-foot (ft) Arc Area (Kiwi TNT); (2) Parcel B, Phoebus 1A Test 8,000-ft Arc Area (Phoebus); (3) Parcel C, Topopah Wash at Test Cell C (TCC); (4) Parcel D, Buried Contaminated Soil Area (BCSA) l; (5) Parcel E, BCSA 2; (6) Parcel F, Borrow Pit Burial Site (BPBS); (7) Parcel G, Drain/Outfall Discharges; (8) Parcel H, Contaminated Soil Storage Area (CSSA); and (9) Parcel J, Main Stream/Drainage Channels.

  14. Index of current water-resources activities in Ohio, 1985

    Science.gov (United States)

    Eberle, Michael

    1985-01-01

    This report summarizes the U. S. Geological Survey 's Water Resources Division 's program in Ohio in 1985. The work of the Ohio District is carried out through the District office in Columbus and a field office in New Philadelphia. Collection of basic data needed for continuing determination and evaluation of the quantity, quality, and use of Ohio 's water resources is the responsibility of the District 's Hydrologic Surveillance Section. The Hydrologic Investigations Section conducts analytical and interpretive water-resource appraisals describing the occurrence, availability, and the physical, chemical, and biological characteristics of surface and groundwater. In addition to introductory material describing the structure of the Ohio District, information is presented on current projects, sites at which basic surface- and groundwater data are collected , and reports of Ohio 's water resources published by the U.S. Geological Survey and cooperating agencies. (USGS)

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David Strand

    2006-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 219, Septic Systems and Injection Wells, in Areas 3, 16, and 23 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 219 is comprised of the following corrective action sites (CASs): (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 219 with no further corrective action beyond the application of a use restriction at CASs 16-04-01, 16-04-02, and 16-04-03. To achieve this, corrective action investigation (CAI) activities were performed from June 20 through October 12, 2005, as set forth in the CAU 219 Corrective Action Investigation Plan and Record of Technical Change No. 1. A best management practice was implemented at CASs 16-04-01, 16-04-02, and 16-04-03, and corrective action was performed at CAS 23-20-01 between January and April 2006. In addition, a use restriction will be applied to CASs 16-04-01, 16-04-02, and 16-04-03 to provide additional protection to Nevada Test Site personnel. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 219 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling

  16. Corrective Action Decision Document/ Closure Report for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-09-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit 556, Dry Wells and Surface Release Points, located at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 556 is comprised of four corrective action sites (CASs): • 06-20-04, National Cementers Dry Well • 06-99-09, Birdwell Test Hole • 25-60-03, E-MAD Stormwater Discharge and Piping • 25-64-01, Vehicle Washdown and Drainage Pit The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 556 with no further corrective action. To achieve this, corrective action investigation (CAI) activities began on February 7 and were completed on June 19, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada (NNSA/NSO, 2007). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 556 data were evaluated based on the data quality assessment process, which demonstrated the quality and acceptability of the data for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the COCs for each CAS. The results of the CAI identified COCs at one of the four CASs in CAU 556 that required the completion of a corrective action. Assessment of the data generated from investigation activities conducted at CAU 556 revealed the following: • Corrective Action Sites 06-20-04, 06-99-09, and 25-64-01 do not contain contamination at

  17. From Site Characterization through Safe and Successful CO2 Injection Operation to Post-injection Monitoring and Site Closure - Closing the Full Life Cycle Research at the Ketzin Pilot Site, Germany

    Science.gov (United States)

    Liebscher, Axel

    2017-04-01

    Initiated in 2004, the Ketzin pilot site near Berlin, Germany, was the first European onshore storage project for research and development on geological CO2 storage. After comprehensive site characterization the site infrastructure was build comprising three deep wells and the injection facility including pumps and storage tanks. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into an Upper Triassic saline sandstone aquifer at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section with CO2 resistant cement; full abandonment of this well finished in 2015 after roughly 2 years of cement plug monitoring. Abandonment of the remaining wells will be finished by summer 2017 and hand-over of liability to the competent authority is scheduled for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the oxyfuel pilot capture facility "Schwarze Pumpe" (purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and

  18. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  19. Corrective Action Decision Document/Closure Report for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-08-01

    Corrective Action Unit 375 comprises three corrective action sites (CASs): (1) 25-23-22, Contaminated Soils Site; (2) 25-34-06, Test Cell A Bunker; and (3) 30-45-01, U-30a, b, c, d, e Craters. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 375 based on the implementation of corrective action of closure in place with administrative controls at CAS 25-23-22, no further action at CAS 25-34-06, and closure in place with administrative controls and removal of potential source material (PSM) at CAS 30-45-01. Corrective action investigation (CAI) activities were performed from July 28, 2010, through April 4, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 375 dataset of investigation results was evaluated based on the data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were assumed to be present within the default contamination boundaries at CASs 25-23-22 and 30-45-01. No contaminants were identified at CAS 25-34-06, and no corrective action is necessary. Potential source material in the form of lead plate, lead-acid batteries, and oil within an abandoned transformer were identified at CAS 30-45-01, and corrective actions were undertaken that

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick and Sloop, Christy

    2011-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 372, Area 20 Cabriolet/Palanquin Unit Craters, located within Areas 18 and 20 at the Nevada National Security Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 372 comprises four corrective action sites (CASs): • 18-45-02, Little Feller I Surface Crater • 18-45-03, Little Feller II Surface Crater • 20-23-01, U-20k Contamination Area • 20-45-01, U-20L Crater (Cabriolet) The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 372 based on the implementation of the corrective action of closure in place with administrative controls at all CASs. Corrective action investigation (CAI) activities were performed from November 9, 2009, through December 10, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 372 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL was established of 25 millirem per year based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present at all four CASs. It is assumed that radionuclide levels present within the Little Feller I and Cabriolet high

  1. Patient Satisfaction After Femoral Arterial Access Site Closure Using the ExoSeal{sup ®} Vascular Closure Device Compared to Manual Compression: A Prospective Intra-individual Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, Claus Christian, E-mail: claus.christian.pieper@ukb.uni-bonn.de; Thomas, Daniel, E-mail: daniel.thomas@ukb.uni-bonn.de [University of Bonn, Department of Radiology (Germany); Nadal, Jennifer, E-mail: jennifer.nadal@ukb.uni-bonn.de [University of Bonn, Institute for Medical Biometry, Informatics and Epidemiology (Germany); Willinek, Winfried A., E-mail: w.willinek@bk-trier.de; Schild, Hans Heinz, E-mail: hans.schild@ukb.uni-bonn.de; Meyer, Carsten, E-mail: carsten.meyer@ukb.uni-bonn.de [University of Bonn, Department of Radiology (Germany)

    2016-01-15

    PurposeTo intra-individually compare discomfort levels and patient satisfaction after arterial access closure using the ExoSeal{sup ®} vascular closure device (VCD) and manual compression (MC) in a prospective study design.MethodsPatients undergoing two planned interventions from 07/2013 to 09/2014 could participate in the study. Access closure was performed with an ExoSeal{sup ®}-VCD in one and MC in the other intervention. Patients were clinically and sonographically examined and were given questionnaires 1 day after intervention [groin- and back-pain during bedrest (100-point visual analog scale; 0: no pain); comfortability of bedrest (10-point Likert scale, 1: comfortable), satisfaction with closure (10-point Likert scale, 1: very satisfied)]. Results were analyzed in a cross-over design.Results48 patients (29 male, median age 62.5 (32–88) years) were included. An ExoSeal{sup ®}-VCD was used first in 25 cases. As four of these subsequently refused MC as second intervention, data from 44 patients could be analyzed. All closures were technically successful (successful device deployment) without major complications. Groin- and back-pain after VCD-use/MC was 0 (0–15) vs. 10 (0–80) and 0 (0–75) vs. 25 (0–90), respectively (p < 0.0001). Bedrest after VCD-use was more comfortable than after MC [1 (range 1–7) vs. 6 (2–10); p < 0.0001]. Satisfaction with the closure procedure and with the intervention in general was higher after VCD-use compared to MC [1 (1–3) vs. 5 (2–10) and 1 (1–2) vs. 2 (1–4), respectively; p < 0.0001].ConclusionIntra-individual comparison showed pain levels and discomfort to be significantly lower after ExoSeal{sup ®} use compared to MC. VCD closure was associated with higher satisfaction both with the closure itself and with the intervention in general.

  2. Restaurant closures

    CERN Multimedia

    Novae Restauration

    2012-01-01

    Christmas Restaurant closures Please note that the Restaurant 1 and Restaurant 3 will be closed from Friday, 21 December at 5 p.m. to Sunday, 6 January, inclusive. They will reopen on Monday, 7 January 2013.   Restaurant 2 closure for renovation To meet greater demand and to modernize its infrastructure, Restaurant 2 will be closed from Monday, 17 December. On Monday, 14 January 2013, Sophie Vuetaz’s team will welcome you to a renovated self-service area on the 1st floor. The selections on the ground floor will also be expanded to include pasta and pizza, as well as snacks to eat in or take away. To ensure a continuity of service, we suggest you take your break at Restaurant 1 or Restaurant 3 (Prévessin).

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Matthews

    2011-09-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 365 based on the implementation of the corrective action of closure in place with a use restriction (UR). Corrective action investigation (CAI) activities were performed from January 18, 2011, through August 2, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 365 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in supporting the DQO decisions. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present to the southwest of the Baneberry crater. It was also assumed that radionuclide levels present within the crater and fissure exceed the FAL. Corrective actions were undertaken that consisted of establishing a UR and posting warning signs for the crater, fissure, and the area located to the southwest of the crater where soil concentrations exceeded the FAL. These URs were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: (1) No further corrective actions beyond what are described in this document are necessary for CAU 365. (2) A Notice of Completion to

  4. Use of vacuum-assisted closure device in a disastrous form of abdominal sepsis and stoma site infection: systematic review and report of a case.

    Science.gov (United States)

    Popović, Milos; Barisić, Goran; Marković, Velimir; Petrović, Jelena; Krivokapić, Zoran

    2012-01-01

    Use of Vacuum-Assisted Closure (VAC) for treatment of open abdomen has been established predominantly in cases of severe abdominal trauma, resulting with high percentage of primary fascial closure. The role of VAC technique in cases of severe diffuse peritonitis is not definitely incorrigible. However, in cases of severe complicated abdominal sepsis VAC come up as a last resort.

  5. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-09-01

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada, as shown in Figure 1-1. Field activities were conducted in accordance with the revised sampling approach outlined in the Addendum to the Closure Report (CR) for CAU 329 (NNSA/NSO, 2005) to support data collection requirements. The previous annual monitoring program for CAU 329 was initiated in August 2000 using soil-gas samples collected from three specific intervals at the DRA-0 and DRA-3 monitoring wells. Results of four sampling events from 2000 through 2003 indicated there is uncertainty in the approach to establish a rate of natural attenuation as specified in ''Streamlined Approach for Environmental Restoration (SAFER) Work Plan for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada'' (DOE/NV, 1999). As a result, the Addendum to the CR (NNSA/NSO, 2005) was completed to address this uncertainty by modifying the previous approach. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination.

  6. Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station

    Science.gov (United States)

    Scheidegger, Brianne T.; Lively, Michael L.

    2012-01-01

    This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.

  7. Ohio Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Bouguer anomaly grid for the state of Ohio. Number of columns is 187 and number of rows is 217. The order of the data is from the lower left to the...

  8. Who Are Ohio's Migrants?

    Science.gov (United States)

    Hintz, Joy; Mecartney, John

    Identifying and defining Ohio's migrant population, the document also seeks to destroy many of the myths that exist about migrant workers. The survey, made in September 1972, found that 90% of the state's 35,000 workers were Spanish speaking. The document also gives information on migrant recruitment, crew leaders, income, housing, crops,…

  9. Addendum to the Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Mark J

    2013-10-01

    This document constitutes an addendum to the Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada as described in the document Recommendations and Justifications To Remove Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order dated September 2013. The Use Restriction Removal document was approved by the Nevada Division of Environmental Protection on October 16, 2013. The approval of the UR Removal document constituted approval of each of the recommended UR removals. In conformance with the UR Removal document, this addendum consists of: This page that refers the reader to the UR Removal document for additional information The cover, title, and signature pages of the UR Removal document The NDEP approval letter The corresponding section of the UR Removal document This addendum provides the documentation justifying the cancellation of the UR for CAS 04-26-03, Lead Bricks. This UR was established as part of FFACO corrective actions and was based on the presence of lead contamination at concentrations greater than the action level established at the time of the initial investigation.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 482: Area 15 U15a/e Muckpiles and Ponds Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-09-30

    This Corrective Action Decision Document /Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 482 U15a/e Muckpiles and Ponds. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 482 is comprised of three Corrective Action Sites (CASs) and one adjacent area: CAS 15-06-01, U15e Muckpile; CAS 15-06-02, U15a Muckpile; CAS 15-38-01, Area 15 U15a/e Ponds; and Drainage below the U15a Muckpile. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure with no further corrective action, by placing use restrictions on the three CASs and the adjacent area of CAU 482. To support this recommendation, a corrective action investigation (CAI) was performed in September 2002. The purpose of the CAI was to fulfill the following data needs as defined during the Data Quality Objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to determine appropriate corrective actions. The CAU 482 dataset from the CAI was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Tier 2 FALS were determined for the hazardous constituents of total petroleum hydrocarbons (TPH)-diesel-range organics (DRO) and the radionuclides americium (Am)-241, cesium (Cs)-137, plutonium (Pu)-238, and Pu-239. The Tier 2 FALs were calculated for the radionuclides using site-specific information. The hazardous constituents of TPH-DRO were compared to the PALs

  11. Characterization and closure of the Met Lab Carolina Bay at the Savannah River site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Jerome, K.M.; Frazier, W.L.; Haselow, L.A.; Voss, L.

    1993-07-01

    The Met Lab Carolina Bay is subject to Subtitle C of RCRA and CERCLA requirements. Located in the northwestern section of the Savannah River Site, the Met Lab Carolina Bay is a marshy, oval-shaped natural depression covering approximately six acres. The Carolina Bay received wastes from three sources: the Met Lab Basin A-007 drainage outfall, the A-Area coal-fire power plant A-008 drainage outfall and the A/M-Area vehicle maintenance parking lot stormwater runoff A-009 outfall. Two characterization efforts conducted in 1988/89 and 1991 indicate the presence of metals in the sediments and soils of the bay. The greatest concentrations of the metals and organics being in the north-central portion of the bay. The metals and organics were primarily associated with surface sediments and the organic-rich soil layer to a depth of about two feet. Conclusions from the Human Health Baseline Risk indicate the future on-unit resident exposure to sediments and soil poses an unacceptable level of risk to human health. However, the assumptions built into the calculations lead to conservative human health risk findings. A qualitative Ecological Risk Assessment was performed on the Carolina Bay. This ecological assessment, based on historical and existing sampling data, was found to be insufficient to make a definitive decision on the contaminants` effects on the ecology of the bay. The proposed action for the Carolina Bay is to conduct an ecological characterization. It appears that the ecological risks will be in the driving factor in determining the remedial action for the Met Lab Carolina Bay.

  12. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan

    Science.gov (United States)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2016-03-01

    A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4-), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March-April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and "siliceous dust" were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of "EC + OM" in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5.

  13. Annual report RCRA post-closure monitoring and inspections for CAU 112: Area 23 hazardous waste trenches, Nevada Test Site, for the period October 1996--October 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Area 23 Hazardous Waste Trenches were closed in-place in September 1993. Post-closure monitoring of the Area 23 Hazardous Waste Trenches began in October 1993. The post-closure monitoring program is used to verify that the Area 23 Hazardous Waste Trench covers are performing properly, and that there is no water infiltrating into or out of the waste trenches. The performance of the Area 23 Hazardous Waste Trenches is currently monitored using 30 neutron access tubes positioned on and along the margins of the covers. Soil moisture measurements are obtained in the soils directly beneath the trenches and compared to baseline conditions from the first year of post-closure operation. This report documents the post-closure activities between October 1996 and October 1997.

  14. Design of closure works

    NARCIS (Netherlands)

    Verhagen, H.J.

    2007-01-01

    This chapter discusses the design aspects of estuary and river closures and those of reservoir dams and certain other hydraulic structures. The focus of this chapter is on closures, not on the situation after the closure has been completed.

  15. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2006-08-01

    This Post-Closure Inspection and Monitoring Report (PCIMR) provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 WMD [Waste Management Division] U-3ax/bl Crater. This PCIMR includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110, for the annual period July 2005 through June 2006. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, cover vegetation, perimeter fence, and UR warning signs was good. Settling was observed that exceeded the action level as specified in Section VILB.7 of the Hazardous Waste Permit Number NEV HW009 (Nevada Division of Environmental Protection, 2000). This permit states that cracks or settling greater than 15 centimeters (6 inches) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection. Along the east edge of the cover (repaired previously in August 2003, December 2003, May 2004, October 2004), an area of settling was observed during the December 2005 inspection to again be above the action level, and required repair. This area and two other areas of settling on the cover that were first observed during the December 2005 inspection were repaired in February 2006. The semiannual subsidence surveys were done in September 2005 and March 2006. No significant subsidence was observed in the survey data. Monument 5 shows the greatest amount of subsidence (-0.015 m [-0.05 ft] compared to the baseline survey of 2000). This amount is negligible and near the resolution of the survey instruments; it does not indicate that subsidence is occurring on the cover. Soil moisture results obtained to date indicate that the CAU 110 cover is performing as expected. Time Domain Reflectometry (TDR) data indicated an increase in soil moisture (1

  16. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L. [and others

    1998-08-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report.

  17. Libraries in Ohio: MedlinePlus

    Science.gov (United States)

    ... this page: https://medlineplus.gov/libraries/ohio.html Libraries in Ohio To use the sharing features on ... org/communityhealthlibrary/communityhealthlibrary.asp Athens Ohio University Alden Library 30 Park Place Athens, OH 45701-2978 740- ...

  18. Better Buildings NW Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Kevin [Toledo-Lucas County Port Authority, Toledo, OH (United States)

    2015-03-04

    When the Toledo Lucas County Port Authority (TLCPA) filed for the Department of Energy EECBG grant in late 2009, it was part of a strategic and Board backed objective to expand the organization’s economic development and financing programs into alternative energy and energy efficiency. This plan was filed with the knowledge and support of the areas key economic development agencies. The City of Toledo was also a key partner with the Mayor designating a committee to develop a Strategic Energy Policy for the City. This would later give rise to a Community Sustainability Strategic Plan for Toledo, Lucas County and the surrounding region with energy efficiency as a key pillar. When the TLCPA signed the grant documents with the DOE in June of 2010, the geographic area was severely distressed economically, in the early stages of a recovery from over a 30% drop in business activity and high unemployment. The TLCPA and its partners began identifying potential project areas well before the filing of the application, continuing to work diligently before the formal award and signing of the grant documents. Strong implementation and actions plans and business and financing models were developed and revised throughout the 3 year grant period with the long term goal of creating a sustainable program. The TLCPA and the City of Toledo demonstrated early leadership by forming the energy improvement district and evaluating buildings under their control including transportation infrastructure and logistics, government services buildings and buildings which housed several for profit and not for profit tenants while completing significant energy efficiency projects that created public awareness and confidence and solid examples of various technologies and energy savings. As was stated in the DOE Award Summary, the undertaking was focused as a commercial program delving into Alternative Energy Utility Districts; what are referred to in Ohio Statute as Energy Special Improvement

  19. Northwest Ohio Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Kevin

    2015-03-04

    EXECUTIVE SUMMARY When the Toledo Lucas County Port Authority (TLCPA) filed for the Department of Energy EECBG grant in late 2009, it was part of a strategic and Board backed objective to expand the organization’s economic development and financing programs into alternative energy and energy efficiency. This plan was filed with the knowledge and support of the areas key economic development agencies. The City of Toledo was also a key partner with the Mayor designating a committee to develop a Strategic Energy Policy for the City. This would later give rise to a Community Sustainability Strategic Plan for Toledo, Lucas County and the surrounding region with energy efficiency as a key pillar. When the TLCPA signed the grant documents with the DOE in June of 2010, the geographic area was severely distressed economically, in the early stages of a recovery from over a 30% drop in business activity and high unemployment. The TLCPA and its partners began identifying potential project areas well before the filing of the application, continuing to work diligently before the formal award and signing of the grant documents. Strong implementation and actions plans and business and financing models were developed and revised throughout the 3 year grant period with the long term goal of creating a sustainable program. The TLCPA and the City of Toledo demonstrated early leadership by forming the energy improvement district and evaluating buildings under their control including transportation infrastructure and logistics, government services buildings and buildings which housed several for profit and not for profit tenants while completing significant energy efficiency projects that created public awareness and confidence and solid examples of various technologies and energy savings. As was stated in the DOE Award Summary, the undertaking was focused as a commercial program delving into Alternative Energy Utility Districts; what are referred to in Ohio Statute as Energy Special

  20. Investigation of impacts to federally endangered freshwater mussels of the Lower Ohio River: Chemical and biological survey for environmental contaminants adjacent to the Republic Creosoting Hazardous Waste Site near Joppa, Illinois

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A survey for contaminants in bed sediments and freshwater mussels was conducted in the region of the Lower Ohio River adjacent to the Republic Creosoting hazardous...

  1. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  2. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and

  4. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada: For Fiscal Year 2015 (October 2014–September 2015), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-03-01

    This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs); CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2015 (October 2014 through September 2015). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and are summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report.

  5. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada: For Fiscal Year 2015 (October 2014–September 2015), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-03-01

    This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs); CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2015 (October 2014 through September 2015). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and are summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report.

  6. On Symbolism in Winesburg, Ohio

    Institute of Scientific and Technical Information of China (English)

    朱海萍

    2005-01-01

    As a writing technique, symbolism has a great tradition in American literature, and it plays an important role in Winesburg, Ohio.The author in this thesis attempts to analyze Winesburg, Ohio by exploring its symbolism through an analysis of the major symbols.

  7. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  8. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  9. Closure Report for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2004-08-01

    The purpose of this CR is to document that closure activities have met the approved closure standards detailed in the NDEP-approved CAP for CAU 271. The purpose of the Errata Sheet is as follows: In Appendix G, Use Restriction (UR) Documentation, the UR form and drawing of the UR area do not reflect the correct coordinates. Since the original UR was put into place, the UR Form has been updated to include additional information that was not on the original form. This Errata Sheet replaces the original UR Form and drawing. In place of the drawing of the UR area, an aerial photograph is included which reflects the UR area and the correct coordinates for the UR area.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and

  11. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for fiscal year 2013 (October 2012 - September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    None,

    2014-01-31

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches.

  12. Cloud condensation nuclei (CCN and HR-ToF-AMS measurements at a coastal site in Hong Kong: size-resolved CCN activity and closure analysis

    Directory of Open Access Journals (Sweden)

    J. W. Meng

    2014-04-01

    Full Text Available The cloud condensation nuclei (CCN properties of atmospheric aerosols were measured on 1–30 May 2011 at a coastal site in Hong Kong. Size-resolved CCN activation curves, the ratio of number concentration of CCN (NCCN to aerosol concentration (NCN as a function of particle size, were obtained at supersaturation (SS = 0.15%, 0.35%, 0.50%, and 0.70% using a DMT CCN counter (CCNc and a TSI scanning mobility particle sizer (SMPS. The mean bulk size-integrated NCCN ranged from ∼500 cm−3 at SS = 0.15% to ∼2100 cm−3 at SS = 0.70%, and the mean bulk NCCN / NCN ratio ranged from 0.16 at SS = 0.15% to 0.65 at SS = 0.70%. The average critical mobility diameters (D50 at SS = 0.15%, 0.35%, 0.50%, and 0.70% were 116 nm, 67 nm, 56 nm, and 46 nm, respectively. The corresponding average hygroscopic parameters (κCCN were 0.39, 0.36, 0.31, and 0.28. The decrease in κCCN can be attributed to the increase in organic to inorganic volume ratio as particle size decreases, as measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS. The κCCN correlates reasonably well with κAMS based on size-resolved AMS measurements: κAMS = κorg × forg + κinorg × finorg, where forg and finorg are the organic and inorganic volume fractions, respectively, κorg = 0.1 and κinorg = 0.6, with a R2 of 0.51. In closure analysis, NCCN was estimated by integrating the measured size-resolved NCN for particles larger than D50 derived from κ assuming internal mixing state. Estimates using κAMS from size-resolved AMS measurements show that the measured and predicted NCCN were generally within 10% of each other at all four SS. The deviation increased to 26% when κAMS was calculated from bulk PM1 AMS measurements of particles because PM1 was dominated by particles of 200 nm to 500 nm in diameter, which had a larger inorganic fraction than those of D50 (particle diameter AMS over the course of campaign was found to give an NCCN prediction

  13. "Wagging the Dog" in Ohio.

    Science.gov (United States)

    Peck, Jacqueline K.

    1998-01-01

    Urges teachers who have replaced teacher-planned and implemented instruction with less effective instruction because of the Ohio Proficiency Tests to recast their teacher role from passive technician to that of proactive decision-maker. (NH)

  14. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  15. Closure Issues with Families.

    Science.gov (United States)

    Craig, Steven E.; Bischof, Gary H.

    Closure of the counseling relationship constitutes both an ending and a beginning. Although closure signifies the ending of the present counseling relationship, many family counselors conceptualize closure as the start of a working relationship between counselor and family that may be summoned in future times of crisis or during a difficult life…

  16. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa

    Science.gov (United States)

    Majozi, Nobuhle P.; Mannaerts, Chris M.; Ramoelo, Abel; Mathieu, Renaud; Nickless, Alecia; Verhoef, Wouter

    2017-07-01

    Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004-2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in

  17. Closure The Definitive Guide

    CERN Document Server

    Bolin, Michael

    2010-01-01

    If you're ready to use Closure to build rich web applications with JavaScript, this hands-on guide has precisely what you need to learn this suite of tools in depth. Closure makes it easy for experienced JavaScript developers to write and maintain large and complex codebases -- as Google has demonstrated by using Closure with Gmail, Google Docs, and Google Maps. Author and Closure contributor Michael Bolin has included numerous code examples and best practices, as well as valuable information not available publicly until now. You'll learn all about Closure's Library, Compiler, Templates, tes

  18. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  19. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the...

  20. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient... consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP)...

  1. Closure Operators and Closure Systems on Quantaloid-Enriched Categories

    Institute of Scientific and Technical Information of China (English)

    Min LIU; Bin ZHAO

    2013-01-01

    In this paper,we introduce the fundamental notions of closure operator and closure system in the framework of quantaloid-enriched category.We mainly discuss the relationship between closure operators and adjunctions and establish the one-to-one correspondence between closure operators and closure systems on quantaloid-enriched categories.

  2. Staying the Course: Racing for Ohio's Students

    Science.gov (United States)

    Logan, Debra Kay

    2010-01-01

    With the change in Ohio's Operating Standards in July of 2002, students across Ohio began losing school library learning opportunities. District after district made financially based decisions to minimize, and in a few cases totally eliminate, school library programs. Across the state, many of Ohio's children lost precious learning opportunities.…

  3. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  4. HOW OHIO HELPS MIGRANT CHILDREN.

    Science.gov (United States)

    Elizabeth S. Magee Education and Research Foundation, Inc., Cleveland, OH.

    PRESENTED WERE PROBLEMS OF OHIO MIGRANT WORKERS, MOSTLY TEXANS OF MEXICAN BACKGROUND, WHOSE CHILDREN WERE DEFICIENT IN EDUCATIONAL GROWTH. THE GROWTH OF THE SUMMER SCHOOL PROGRAM BEGAN IN 1957 WITH AN INVESTIGATION THAT POINTED OUT THE NEED OF SUCH SCHOOLS FOR MIGRANT CHILDREN. IN 1958, TWO SUMMER SCHOOL CLASSES WERE HELD, IN 1959, THE TWO CLASSES…

  5. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    Energy Technology Data Exchange (ETDEWEB)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  6. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 110: AREA 3 WMD U-3AX/BL CRATER, NEVADA TEST SITE, NEVADA FOR THE PERIOD JULY 2004 - JUNE 2005

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-08-01

    This Post-Closure Inspection and Monitoring report provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 Waste Management Division (WMD) U-3ax/bl Crater. This report includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110, for the annual period July 2004 through June 2005. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, cover vegetation, perimeter fence, and use restriction warning signs was good. Settling was observed that exceeded the action level as specified in Section VII.B.7 of the Hazardous Waste Permit Number NEV HW009 (Nevada Division of Environmental Protection, 2000). This permit states that cracks or settling greater than 15 centimeters (cm) (6 inches [in]) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection.

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada National Security Site, Nevada with ROTC 1 and 2, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2011-07-01

    Corrective Action Unit 374 comprises five corrective action sites (CASs): • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 374 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at CASs 18-23-01 and 20-45-03, and a corrective action of removing potential source material (PSM) was conducted at CAS 20-45-03. The other CASs require no further action; however, best management practices of removing PSM and drums at CAS 18-22-06, and removing drums at CAS 18-22-08 were performed. Corrective action investigation (CAI) activities were performed from May 4 through October 6, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigating the primary release of radionuclides and investigating other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 374 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were found to be present in the surface soil that was sampled. It is assumed that radionuclide levels present in subsurface media within the craters and ejecta fields (default contamination boundaries) at the Danny Boy and

  8. Post-Closure Monitoring Report for Corrective Action Unit 98, Frenchman Flat, Underground Test Area, Nevada National Security Site, Nevada for Calendar Year 2016 (January 2016–December 2016), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States)

    2017-06-01

    Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are evaluated to determine whether the UR boundaries remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Additionally, monitoring data are used to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries (CBs) calculated with the models are the primary basis of the UR boundaries. In summary, the monitoring results from 2016 indicate the regulatory controls on the closure of CAU 98 remain effective in protection of human health and the environment. Recommendations resulting from this first year of monitoring activities include formally incorporating wells UE-5 PW-1, UE-5 PW-2, and UE-5 PW-3 into the groundwater-level monitoring network given their strategic location in the basin; and early development of a basis for trigger levels for the groundwater-level monitoring given the observed trends. Additionally, it is recommended to improve the Real Estate/Operations Permit process for capturing information important for evaluating the impact of activities on groundwater resources, and to shift the reporting requirement for this annual report from the second quarter of the federal fiscal year (end of March) to the second quarter of the calendar year (end of June).

  9. Eyelid closure at death

    Directory of Open Access Journals (Sweden)

    A D Macleod

    2009-01-01

    Full Text Available Aim: To observe the incidence of full or partial eyelid closure at death. Materials and Methods: The presence of ptosis was recorded in 100 consecutive hospice patient deaths. Results: Majority (63% of the patients died with their eyes fully closed, however, 37% had bilateral ptosis at death, with incomplete eye closure. In this study, central nervous system tumor involvement and/or acute hepatic encephalopathy appeared to be pre-mortem risk factors of bilateral ptosis at death. Conclusion: Organicity and not psychogenicity is, therefore, the likely etiology of failure of full eyelid closure at death.

  10. RCRA Post-Closure Monitoring and Inspection Report for CAU 91: Area 3 U-3fi Waste Unit, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    D. F. Emer

    2001-02-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Resource Conservation and Recovery Act Unit, located in Area 3 of the Nevada Test Site, Nye County, Nevada, during the October 1999 to October 2000 period. Inspections of the U-3fi Resource Conservation and Recovery Act Unit are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-feet [ft]) ER3-3 monitoring well and detect changes that maybe indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that maybe indicative of subsidence within the disposal unit itself. Physical inspections of the closure were completed in March and September 2000 and indicated that the site is in good condition with no significant findings noted. The directional survey which is required to be completed every five years was run in the ER3-3 casing to determine if subsidence was occurring in the U-3fi emplacement borehole. Small changes were noted which are attributed to initial settling of the sand pack stemming. No evidence of subsidence within the emplacement borehole was observed. The subsidence survey for the October 1999 to October 2000 monitoring period indicated an increase in elevation of 0.244 centimeters (cm) (0.008 ft) compared to the previous year, July 1999. All changes in subsidence survey data taken to date are so small as to be at the survey instrument resolution level and it is not clear if they represent subsidence or measurement error. There is no clear evidence for any subsidence of the monument. Soil moisture monitoring results indicate dry stable conditions

  11. Addendum to the Closure Report for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada (Revision 0)

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burmeister

    2011-03-01

    Corrective Action Unit (CAU) 484 Streamlined Approach for Environmental Restoration (SAFER) activities called for the identification and remediation of surface hot spot depleted uranium (DU) with some excavation to determine the vertical extent of contamination (NNSA/NSO, 2004). During the CAU 484 SAFER investigation (conducted November 2003 through August 2007), approximately 50 locations containing DU were identified on Antelope Lake. All but four locations (CA-1, SA-5-9, SA-12-15, and SA-4) were remediated. Figure 1-1 shows locations of the four use restriction (UR) sites. The four locations were determined to have failed the SAFER conceptual site model assumption of a small volume hot spot. Two of the locations (CA-1 and SA-5-9) were excavated to depths of 3.5 to 7 feet (ft) below ground surface (bgs), and a third location (SA-12-15) with a footprint of 30 by 60 ft was excavated to a depth of 0.5 ft. At the fourth site (SA-4), the discovery of unexploded ordnance (UXO) halted the excavation due to potential safety concerns. Remediation activities on Antelope Lake resulted in the removal of approximately 246 cubic yards (yd3) of DU-impacted soil from the four UR sites; however, Kiwi surveys confirmed that residual DU contamination remained at each of the four sites. (The Kiwi was a Remote Sensing Laboratory [RSL] vehicle equipped with a data-acquisition system and four sodium iodide gamma detectors. Surveys were conducted with the vehicle moving at a rate of approximately 10 miles per hour with the gamma detectors positioned 14 to 28 inches [in.] above the ground surface [NNSA/NSO, 2004]).

  12. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2013-04-03

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Final...

  13. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, with Errata Sheet, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2007-01-01

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination. Field activities were conducted under the Addendum to the CR to collect sufficient data to determine the rate of biodegradation for TPH contamination at CAU 329 to support closure requirements. Reconstruction of the monitoring system at the site and quarterly soil-gas sampling were conducted to collect the required data. Because existing Wells DRA-0 and DRA-3 were determined to be insufficient to provide adequate data, soil-gas monitoring Wells DRA-10 and DRA-11 were installed. Two soil-gas sampling events were conducted to establish a baseline for the site, and subsequent quarterly sampling was conducted as part of the quarterly soil-gas sampling program. In addition, soil samples were collected during well drilling activities so comparisons might be made between the initial soil contamination levels in 2000 and the concentrations present at the time of the well installation.

  14. The Use of Future First Planning, the Triad, and Performance-Based Contracting to Accelerate Site Closure at Seymour Johnson AFB

    Science.gov (United States)

    2009-05-01

    Offsite Test) Move to Next MIP Location I I O I OT-29 Characterization Actions Performed Membrane Interface Probe Characterization  55 points...removal of 2,000 tons of impacted soil Excavation extents based on Triad delineation results – soil removed from 2 areas OT-29 Biopile Construction...Actions Completed:  Constructed biopile to treat petroleum/VOC-impacted soil on-site  Biopile actively vented and moisture content managed  Highly

  15. 76 FR 79593 - Approval, and Promulgation of Air Quality Implementation Plans; Ohio; Redesignation of the Ohio...

    Science.gov (United States)

    2011-12-22

    ...) of the CAA. Ohio's contingency measures include a Warning Level Response and an Action Level Response... emissions inventory for the Ohio portion of the Huntington-Ashland area as meeting the comprehensive emissions inventory requirement of the Clean Air Act (CAA or Act). Ohio's maintenance plan submission...

  16. Geothermal investigations in Ohio and Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Y.; Heimlich, R.A.; Palmer, D.F.; Shannon, S.S. Jr.

    1982-04-01

    New values of heat flow were determined for the Appalachian Plateau in eastern Ohio and northwestern Pennsylvania. Corrected values for wells in Washington and Summit Counties, Ohio, are 1.36 and 1.37 heat-flow units (HFU), respectively. Those of 1.84 and 2.00 HFU define a previously unknown heat-flow high in Venango and Clarion counties, Pennsylvania. Thermal conductivity was measured for core samples from 12 wells in Ohio and 6 wells in Pennsylvania. Heat production was determined for 34 core and outcrop samples from Ohio, Pennsylvania, and New Jersey.

  17. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2008-03-31

    screening method was also useful in identifying unnecessary items that were not significant given the site-specific geology and proposed scale of the Ohio River Valley CO{sub 2} Storage Project. Overall, the FEP database approach provides a comprehensive methodology for assessing potential risk for a practical CO{sub 2} storage application. An integrated numerical fate and transport model was developed to enable risk and consequence assessment at field scale. Results show that such an integrated modeling effort would be helpful in meeting the project objectives (such as site characterization, engineering, permitting, monitoring and closure) during different stages. A reservoir-scale numerical model was extended further to develop an integrated assessment framework which can address the risk and consequence assessment, monitoring network design and permitting guidance needs. The method was used to simulate sequestration of CO{sub 2} in moderate quantities at the Mountaineer Power Plant. Results indicate that at the relatively low injection volumes planned for pilot scale demonstration at this site, the risks involved are minor to negligible, owing to a thick, low permeability caprock and overburden zones. Such integrated modeling approaches coupled with risk and consequence assessment modeling are valuable to project implementation, permitting, monitoring as well as site closure.

  18. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  19. Evaluation of Devonian-shale potential in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Komar, C. A.

    1981-01-01

    The purpose of this report is to inform interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Appalachian basin in eastern Ohio. Geologic data and interpretations are summarized, and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented. A complete list of EGSP sponsored work pertinent to the Devonian shales in Ohio is contained as an appendix to this report. Radioactive shale zones are also mapped.

  20. 300 Area waste acid treatment system closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  1. 78 FR 47816 - Ohio Disaster # OH-00040

    Science.gov (United States)

    2013-08-06

    ... ADMINISTRATION Ohio Disaster OH-00040 AGENCY: U.S. Small Business Administration . ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Ohio dated 07/29/2013... INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409...

  2. 77 FR 16315 - Ohio Disaster #OH-00032

    Science.gov (United States)

    2012-03-20

    ... ADMINISTRATION Ohio Disaster OH-00032 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Ohio dated 03/13/2012... CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409 3rd Street...

  3. Meta-analysis of randomized and quasi-randomized clinical trials of topical antibiotics after primary closure for the prevention of surgical-site infection.

    Science.gov (United States)

    Heal, C F; Banks, J L; Lepper, P; Kontopantelis, E; van Driel, M L

    2017-08-01

    Surgical-site infections (SSIs) increase patient morbidity and costs. The aim was to identify and synthesize all RCTs evaluating the effect of topical antibiotics on SSI in wounds healing by primary intention. The search included Ovid MEDLINE, Ovid Embase, the Cochrane Wounds Specialized Register, Central Register of Controlled Trials and EBSCO CINAHL from inception to May 2016. There was no restriction of language, date or setting. Two authors independently selected studies, extracted data and assessed risk of bias. When sufficient numbers of comparable trials were available, data were pooled in meta-analysis. Fourteen RCTs with 6466 participants met the inclusion criteria. Pooling of eight trials (5427 participants) showed that topical antibiotics probably reduced the risk of SSI compared with no topical antibiotic (risk ratio (RR) 0·61, 95 per cent c.i. 0·42 to 0·87; moderate-quality evidence), equating to 20 fewer SSIs per 1000 patients treated. Pooling of three trials (3012 participants) for risk of allergic contact dermatitis found no clear difference between antibiotics and no antibiotic (RR 3·94, 0·46 to 34·00; very low-quality evidence). Pooling of five trials (1299 participants) indicated that topical antibiotics probably reduce the risk of SSI compared with topical antiseptics (RR 0·49, 0·30 to 0·80; moderate-quality evidence); 43 fewer SSIs per 1000 patients treated. Pooling of two trials (541 participants) showed no clear difference in the risk of allergic contact dermatitis with antibiotics or antiseptic agents (RR 0·97, 0·52 to 1·82; very low-quality evidence). Topical antibiotics probably prevent SSI compared with no topical antibiotic or antiseptic. No conclusion can be drawn regarding whether they cause allergic contact dermatitis. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  4. The myth of closure.

    Science.gov (United States)

    Boss, Pauline; Carnes, Donna

    2012-12-01

    Therapies for grief and loss have traditionally focused on the work of grieving. The goal was to reach an endpoint, now popularly called closure. There are, however, many people who, through no fault of their own, find a loss so unclear that there can be no end to grief. They have not failed in the work of grieving, but rather have suffered ambiguous loss, a type of loss that is inherently open ended. Instead of closure, the therapeutic goal is to help people find meaning despite the lack of definitive information and finality. Hope lies in increasing a family's tolerance for ambiguity, but first, professionals must increase their own comfort with unanswered questions. In this article, the authors, one a poet, the other a family therapist and theorist, offer a unique blending of theory, reflection, and poetry to experientially deepen the process of self-reflection about a kind of loss that defies closure. © FPI, Inc.

  5. Community Surveys: Low Dose Radiation. Fernald, Ohio and Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Mertz; James Flynn; Donald G. MacGregor; Theresa Satterfield; Stephen M. Johnson; Seth Tuler; Thomas Webler

    2002-10-16

    This report is intended to present a basic description of the data from the two community surveys and to document the text of the questions; the methods used for the survey data collection; and a brief overview of the results. Completed surveys were conducted at local communities near the Rocky Flats, Colorado and the Fernald, Ohio sites; no survey was conducted for the Brookhaven, New York site. Fernald. The Fernald sample was randomly selected from 98% of all potential residential telephones in the townships of Ross, Morgan, and Crosby. The only telephone exchanges not used for the Fernald study had 4%, or fewer, of the holders of the telephone numbers actually living in either of the three target townships. Surveying started on July 24, 2001 and finished on August 30, 2001. A total of 399 completed interviews were obtained resulting in a CASRO response rate of 41.8%. The average length of an interview was 16.5 minutes. Rocky Flats. The sample was randomly selected from all potential residential telephones in Arvada and from 99% of the potential telephones in Westminster. Surveying started on August 10, 2001 and finished on September 25, 2001. A total of 401 completed interviews were obtained with a CASRO response rate of 32.5%. The average length of an interview was 15.7 minutes. Overall, respondents hold favorable views of science. They indicate an interest in developments in science and technology, feel that the world is better off because of science, and that science makes our lives healthier, easier, and more comfortable. However, respondents are divided on whether science should decide what is safe or not safe for themselves and their families. The majority of the respondents think that standards for exposure to radiation should be based on what science knows about health effects of radiation and on what is possible with today's technology. Although few respondents had visited the sites, most had heard or read something about Fernald or Rocky Flat s in

  6. Mail Office annual closure

    CERN Multimedia

    2013-01-01

    On the occasion of the annual closure of CERN, there will be no mail distributed on Friday 20 December 2013 but mail will be collected in the morning. Nevertheless, you will still be able to bring your outgoing mail to Building 555-R-002 until 12 noon.  

  7. MNC Subsidiary Closure

    DEFF Research Database (Denmark)

    de Faria, Pedro; Preto, Miguel Torres; Sofka, Wolfgang

    2013-01-01

    We investigate the consequences of MNC subsidiary closures for employees who lose their jobs. We ask to what degree the foreign knowledge that they were exposed to is valued in their new job. We argue theoretically that this foreign knowledge is both valuable and not readily available in the host...

  8. MNC Subsidiary Closure

    DEFF Research Database (Denmark)

    de Faria, Pedro; Sofka, Wolfgang; Torres Preto, Miguel

    We investigate the consequences of MNC subsidiary closures for employees who lose their jobs. We ask to what degree the foreign knowledge that they were exposed to is valued in their new job. We argue theoretically that this foreign knowledge is both valuable and not readily available in the host...

  9. Countermeasures of Environmental Management for Large-scale Landfill Sites after Closure: The Case of Laogang Domestic Waste Landfill Site in Shanghai%大型填埋场封场后环境管理对策研究——以上海市老港生活垃圾填埋场为例

    Institute of Scientific and Technical Information of China (English)

    邰俊

    2012-01-01

    以上海市老港生活垃圾填埋场1~3期为例,以历年常规监测数据为基础,分析了填埋场2007-2009年的污染物排放和环境质量动态变化情况,识别填埋场的现状环境问题,提出填埋场封场后应重视建立环境管理机构、制定环境管理制度、开展例行检查、实施长期监测等环境管理措施.%Taking Laogang Domestic Waste Landfill Site (Phase Ⅰ—Ⅲ) in Shanghai as an example, according to routine monitoring data, the pollutant emission and dynamic variation of environmental quality in the landfill site from 2007 to 2009 were analyzed, and the environmental problems in the landfill site were identified. Some measures of environmental management for the landfill sites after closure were put forward, such as establishing organization of environmental management, formulating policies of environmental management, implementing routine inspection and long-term monitoring.

  10. Ring closure in actin polymers

    Science.gov (United States)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  11. A case against closure

    Directory of Open Access Journals (Sweden)

    Olin, Doris

    2005-01-01

    Full Text Available Este artigo examina a objeção ao fechamento [dedutivo] que surge no contexto de certos paradoxos epistêmicos, paradoxos cuja conclusão é que a crença justificada pode ser inconsistente. É universalmente aceito que, se essa conclusão é correta, o fechamento deve ser rejeitado, para que se evite a crença justificada em enunciados contraditórios (P, ~P. Mas, mesmo que os argumentos desses paradoxos - o paradoxo da falibilidade (do prefácio e o paradoxo da loteria - seja mal sucedidos, eles, ainda assim, sugerem a existência de evidência independente para uma objeção mais direta contra o fechamento. O exame do argumento da falibilidade revela uma exigência de modéstia epistêmica que viola o fechamento a partir de múltiplas premissas. A reflexão sobre o paradoxo da loteria nos confronta com um dilema em que cada alternativa fornece um contra-exemplo ao fechamento a partir de uma única premissa. Seja ou não possível a inconsistência racional, há uma objeção contra o fechamento. This paper examines the case against closure that arises in the context of certain epistemic paradoxes, paradoxes whose conclusion is that it is possible for justified belief to be inconsistent. It is generally agreed that if this conclusion is correct, closure must be rejected in order to avoid justified belief in contradictory statements (P, ~P. But even if the arguments of these paradoxes – the fallibility (preface paradox and the lottery paradox – are unsuccessful, they nonetheless suggest independent grounds for a more direct case against closure. Examination of the fallibility argument reveals a requirement of epistemic modesty that violates multiple premise closure. Reflection on the lottery paradox presents us with a dilemma in which each alternative provides a counterexample to single premise closure. Whether or not rational inconsistency is possible, there is a case against closure.

  12. NORTHERN OHIO AEROSOL STUDY: STAPHYLOCOCCUS AUREUS EVALUATION

    Science.gov (United States)

    A consortium of Universities, located in northwest Ohio have received funds to conduct a comprehensive evaluation of land applied biosolids in that state. This USDA funded study includes observing land application practices and evaluating biosolids, soils, runoff water and bioaer...

  13. NORTHERN OHIO AEROSOL STUDY: STAPHYLOCOCCUS AUREUS EVALUATION

    Science.gov (United States)

    A consortium of Universities, located in northwest Ohio have received funds to conduct a comprehensive evaluation of land applied biosolids in that state. This USDA funded study includes observing land application practices and evaluating biosolids, soils, runoff water and bioaer...

  14. Summer season | Cafeteria closures

    CERN Multimedia

    2013-01-01

    Please note the following cafeteria closures over the summer season: Bldg. 54 closed from 29/07/2013 to 06/09/2013. Bldg. 13: closed from 13/07/2013 to 06/09/2013. Restaurant No. 2, table service (brasserie and restaurant): closed from 01/08/2013 to 06/09/2013. Bldg. 864: closed from 29/07/2013 to 06/09/2013. Bldg. 865: closed from 29/07/2013 to 06/09/2013.

  15. Summer season | Cafeteria closures

    CERN Multimedia

    2013-01-01

    Please note the following cafeteria closures over the summer season: Bldg. 54 closed from 29/07/2013 to 06/09/2013. Bldg. 13: closed from 13/07/2013 to 06/09/2013. Restaurant No. 2, table service (brasserie and restaurant): closed from 01/08/2013 to 06/09/2013. Bldg. 864: closed from 29/07/2013 to 06/09/2013. Bldg. 865: closed from 29/07/2013 to 06/09/2013.

  16. RELAP-7 Closure Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, R. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansel, J. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sharpe, J. P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johns, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 code utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.

  17. Solar heating system installed at Troy, Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This document is the Final Report of the Solar Energy System located at Troy-Miami County Public Library, Troy, Ohio. The completed system is composed of tree basic subsystems: the collector system consisting of 3264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which includes a 5000-gallon insulated steel tank; and the distribution and control system which includes piping, pumping and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and is, therefore, a retrofit system. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  18. History of Sandia National Laboratories` auxiliary closure mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Weydert, J.C. [Sandia National Labs., Albuquerque, NM (United States); Ponder, G.M. [Geo-Centers, Inc., Albuquerque, NM (United States)

    1993-12-01

    An essential component of a horizontal, underground nuclear test setup at the Nevada Test Site is the auxiliary closure system. The massive gates that slam shut immediately after a device has been detonated allow the prompt radiation to pass, but block debris and hot gases from continuing down the tunnel. Thus, the gates protect experiments located in the horizontal line-of-sight steel pipe. Sandia National Laboratories has been the major designer and developer of these closure systems. This report records the history of SNL`s participation in and contributions to the technology of auxiliary closure systems used in horizontal tunnel tests in the underground test program.

  19. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  20. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  1. Accelerating cleanup: Paths to closure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  2. Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme’s active site closure

    Directory of Open Access Journals (Sweden)

    Park Jaeok

    2012-12-01

    Full Text Available Abstract Background Human farnesyl pyrophosphate synthase (FPPS controls intracellular levels of farnesyl pyrophosphate, which is essential for various biological processes. Bisphosphonate inhibitors of human FPPS are valuable therapeutics for the treatment of bone-resorption disorders and have also demonstrated efficacy in multiple tumor types. Inhibition of human FPPS by bisphosphonates in vivo is thought to involve closing of the enzyme’s C-terminal tail induced by the binding of the second substrate isopentenyl pyrophosphate (IPP. This conformational change, which occurs through a yet unclear mechanism, seals off the enzyme’s active site from the solvent environment and is essential for catalysis. The crystal structure of human FPPS in complex with a novel bisphosphonate YS0470 and in the absence of a second substrate showed partial ordering of the tail in the closed conformation. Results We have determined crystal structures of human FPPS in ternary complex with YS0470 and the secondary ligands inorganic phosphate (Pi, inorganic pyrophosphate (PPi, and IPP. Binding of PPi or IPP to the enzyme-inhibitor complex, but not that of Pi, resulted in full ordering of the C-terminal tail, which is most notably characterized by the anchoring of the R351 side chain to the main frame of the enzyme. Isothermal titration calorimetry experiments demonstrated that PPi binds more tightly to the enzyme-inhibitor complex than IPP, and differential scanning fluorometry experiments confirmed that Pi binding does not induce the tail ordering. Structure analysis identified a cascade of conformational changes required for the C-terminal tail rigidification involving Y349, F238, and Q242. The residues K57 and N59 upon PPi/IPP binding undergo subtler conformational changes, which may initiate this cascade. Conclusions In human FPPS, Y349 functions as a safety switch that prevents any futile C-terminal closure and is locked in the “off” position in the

  3. 77 FR 21099 - Public Water System Supervision Program Approval for the State of Ohio

    Science.gov (United States)

    2012-04-09

    ... AGENCY Public Water System Supervision Program Approval for the State of Ohio AGENCY: Environmental... has tentatively approved three revisions to the State of Ohio's public water system supervision... of Ohio's public water system supervision program, thereby giving Ohio EPA primary...

  4. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada, For the Period July 2007-June 2008

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-08-01

    This Post-Closure Inspection and Monitoring Report (PCIMR) provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 WMD [Waste Management Division] U-3ax/bl Crater. This PCIMR includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110 for the period July 2007 through June 2008. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, perimeter fence, and use restriction (UR) warning signs was good. However, settling was observed that exceeded the action level as specified in Section VII.B.7 of the Hazardous Waste Permit Number NEV HW021 (Nevada Division of Environmental Protection, 2005). This permit states that cracks or settling greater than 15 centimeters (6 inches) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection. Two areas of settling and cracks were observed on the south and east edges of the cover during the September 2007 inspection that exceeded the action level and required repair. The areas were repaired in October 2007. Additional settling and cracks were observed along the east side of the cover during the December 2007 inspection that exceeded the action level, and the area was repaired in January 2008. Significant animal burrows were also observed during the March 2008 inspection, and small mammal trapping and relocation was performed in April 2008. The semiannual subsidence surveys were performed in September 2007 and March 2008. No significant subsidence was observed in the survey data. Monument 5 shows the greatest amount of subsidence (-0.02 m [-0.08 ft] compared to the baseline survey of 2000). This amount is negligible and near the resolution of the survey instruments; it does not indicate that subsidence is occurring overall on

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada, Revision 0 with ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Kidman, Raymond [Navarro, Las Vegas, NV (United States); Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-08-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 541 based on the no further action alternative listed in Table ES-1.

  6. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep

  7. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Energy Technology Data Exchange (ETDEWEB)

    K. Lorenz; R. Lal

    2007-12-31

    This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development. Reclamation is important both for preserving the environmental quality and increasing agronomic yields. Since reclamation treatments have significant influence on the rate of soil development, a study on subplots was designed with the objectives of assessing the potential of different biosolids on soil organic C (SOC) sequestration rate, soil development, and changes in soil physical and water transmission properties. All sites are owned and maintained by American Electric Power (AEP). These sites were reclaimed by two techniques: (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover.

  8. Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio.

    Science.gov (United States)

    Tuovinen, Olli H; Deshmukh, Vaidehi; Özkaya, Bestamin; Radosevich, Mark

    2015-01-01

    The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of (14)CO2 during incubation of soil samples with [U-ring-(14)C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another.

  9. 77 FR 31010 - Proposed CERCLA Agreement for Recovery of Past Response Costs; Piqua Hospital Site

    Science.gov (United States)

    2012-05-24

    ... Recovery of Past Response Costs; Piqua Hospital Site AGENCY: Environmental Protection Agency. ACTION... Piqua Hospital Site (Site ID Number B5RB) in Piqua, Ohio with the following settling parties: Hospdela... reference the Piqua Hospital Site in Piqua, Ohio and EPA Docket No. V-W-09-C-922 and should be addressed to...

  10. 40 CFR 265.280 - Closure and post-closure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Closure and post-closure. 265.280 Section 265.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... location, topography, and surrounding land use, with respect to the potential effects of pollutant...

  11. A regenerative approach towards mucosal fenestration closure.

    Science.gov (United States)

    Gandi, Padma; Anumala, Naveen; Reddy, Amarender; Chandra, Rampalli Viswa

    2013-06-06

    Mucosal fenestration is an opening or an interstice through the oral mucosa. A lesion which occurs with greater frequency than generally realised, its occurrence is attributed to a myriad of causes. Mucogingival procedures including connective tissue grafts, free gingival grafts and lateral pedicle grafts are generally considered to be the treatment of choice in the closure of a mucosal fenestration. More often, these procedures are performed in conjunction with other procedures such as periradicular surgery and with bone grafts. However, the concomitant use of gingival grafts and bone grafts in mucosal fenestrations secondary to infections in sites exhibiting severe bone loss is highly debatable. In this article, we report two cases of mucosal fenestrations secondary to trauma and their management by regenerative periodontal surgery with the placement of guided tissue regeneration membrane and bone graft. The final outcome was a complete closure of the fenestration in both the cases.

  12. Pyrolusite Process® to remove acid mine drainage contaminants from Kimble Creek in Ohio: A pilot study

    Science.gov (United States)

    Shiv Hiremath; Kirsten Lehtoma; Mike Nicklow; Gary. Willison

    2013-01-01

    The Kimble Creek abandoned coal mine site, located on Wayne National Forest in southeastern Ohio, is among several abandoned coal mine sites that have been responsible for the acid mine drainage (AMD) polluting ground and surface water. Materials released by AMD include iron, aluminum, manganese, other hazardous substances, and acidity that are harmful to aquatic life...

  13. BRAC-Mandated Military Airfield Closures: Short and Long-Term Economic Impacts on Small and Medium-Sized Communities

    Science.gov (United States)

    2012-02-15

    In 1993, Stenberg and Rowley studied communities who lost bases between 1961 and 1988 (pre-BRAC). They found that in two-thirds of the cases...this period – for example, Newark AFB, Ohio. Bases 9 Peter Stenberg and Thomas D. Rowley, “A...St. Martin’s Press, 1998. Stenberg , Peter and Thomas D. Rowley. “A Comparison of Military Base Closures in Metro and Nonmetro Counties.” Government

  14. Planning for integrated mine closure

    Energy Technology Data Exchange (ETDEWEB)

    Linda Starke (ed.)

    2008-07-01

    This document presents an Integrated Mine Closure Planning Toolkit for the mining and metals sector. The toolkit is intended to be used to promote a more disciplined approach to integrated closure planning and to increase the uniformity of good practices across the sector. The concepts apply equally well to both large and small companies. The document is not intended to be prescriptive; it provides a suite of tools that can be brought to bear in formulating well-considered decisions when planning for closure. It uses a risk and opportunity based process to guide the practitioner through the iterative process of preparing for planned closure. The first section, with head office and mine management personnel as the primary audience, describes the participants of effective closure planning. Sections 2 and 3 provide the frameworks for a conceptual closure plan and a detailed plan. The key audiences for these two sections are mine management and head office personnel, financial modellers and estimators, governments, academics and non-governmental organizations. The forth section addresses decommissioning and post closure planning, and Section 5 draws together the conclusions and outlines several unresolved issues. The five narrative sections are followed by Section 6 which outlines 13 tools, some of which are already available in earlier ICMM publications, member practices and other sector-affiliated publications. Others have been developed to cover identified gaps. These tools provide the practitioner with practical work processes, examples and contexts within which to apply closure planning discipline.

  15. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  16. Review of "Yearning to Break Free: Ohio Superintendents Speak out"

    Science.gov (United States)

    Horn, Catherine; Dworkin, Gary

    2011-01-01

    The report, Yearning to Break Free: Ohio Superintendents Speak Out, describes findings of a survey of 246 Ohio school superintendents about critical issues facing the state's educational system. In particular, the intent of the study was to examine how superintendents might do more with fewer resources. The authors conclude that Ohio districts…

  17. Detection of underground voids in Ohio by use of geophysical methods

    Science.gov (United States)

    Munk, Jens; Sheets, R.A.

    1997-01-01

    Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio

  18. Solar energy system economic evaluation for Solaron Akron, Akron, Ohio

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.

  19. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    Science.gov (United States)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection

  20. Percutaneous transfemoral placement of a new flexible stent-graft into the thoracic aorta followed by a percutaneous suture-mediated closure of the access site - initial experience; Perkutane transfemorale implantation einer neuen, flexiblen thorakalen Aortenendoprothese unter Verwendung eines perkutanen Nahtsystems zum Gefaessverschluss - erste Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Manke, C.; Lenhart, M.; Strotzer, M.; Feuerbach, S.; Link, J. [Klinikum der Univ. Regensburg (Germany). Inst. fuer Roentgendiagnostik; Kobuch, R.; Merk, J.; Birnbaum, F. [Klinikum der Univ. Regensburg (Germany). Klinik und Poliklinik fuer Herz-, Thorax- und herznahe Gefaesschirurgie

    2001-05-01

    To evaluate the transfemoral placement of a new, flexible stent-graft into the thoracic aorta and the suture-mediated closure of the femoral access. Patients and Methods: five patients were treated endovascularly with a stent-graft for an aneurysm (n = 3) or acute dissection (n = 2) of the thoracic aorta via a femoral 24 F sheath. The femoral access site was closed with two suture-mediated closure devices after placement of the stent-graft. Results: the aneurysm or the false lumen was excluded from perfusion by the placement of the stent-graft in all patients. Hemostasis at the femoral access site was successful in all patients with the percutaneous suture device. A minor stenosis of the femoral artery was found angiographically in four patients after suture-mediated closure. Besides a reversible renal failure due to the medically induced hypotension for the treatment of an acutely ruptured aneurysm, no complications resulted from the stent-graft placement or the percutaneous suture. Conclusion: the percutaneous transfemoral placement of stent-grafts in the thoracic aorta using a suture-mediated closure of the access site is technically feasible. Long-term results of the technique have to be awaited. (orig.) [German] Evaluation der transfemoralen Implantation einer neuen, flexiblen thorakalen Aortenprothese unter Verwendung eines perkutanen Nahtsystems zum Verschluss des femoralen Zugangs. Patienten und Methoden: fuenf Patienten wurden wegen Aneurysma (n = 3) oder akuter Dissektion (n = 2) der thorakalen Aorta endovaskulaer ueber eine perkutan eingebrachte 24F-Schleuse mit einem Stentgraft versogt. Der femorale Zugang wurde nach Plazierung der Endoprothese mit zwei perkutanen Nahtgeraeten verschlossen. Ergebnisse: bei allen Patienten fuehrte die Platzierung der Prothese zur Ausschaltung des Aneurysmas oder des falschen Lumens von der Perfusion. Mit der perkutanen Gefae paragraph naht konnte in allen Faellen ein Verschluss des femoralen Zugangs erreicht werden. In

  1. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  2. Positive Catch & Economic Benefits of Periodic Octopus Fishery Closures: Do Effective, Narrowly Targeted Actions 'Catalyze' Broader Management?

    Directory of Open Access Journals (Sweden)

    Thomas A Oliver

    Full Text Available Eight years of octopus fishery records from southwest Madagascar reveal significant positive impacts from 36 periodic closures on: (a fishery catches and (b village fishery income, such that (c economic benefits from increased landings outweigh costs of foregone catch. Closures covered ~20% of a village's fished area and lasted 2-7 months.Octopus landings and catch per unit effort (CPUE significantly increased in the 30 days following a closure's reopening, relative to the 30 days before a closure (landings: +718%, p<0.0001; CPUE: +87%, p<0.0001; n = 36. Open-access control sites showed no before/after change when they occurred independently of other management ("no ban", n = 17/36. On the other hand, open-access control sites showed modest catch increases when they extended a 6-week seasonal fishery shutdown ("ban", n = 19/36. The seasonal fishery shutdown affects the entire region, so confound all potential control sites.In villages implementing a closure, octopus fishery income doubled in the 30 days after a closure, relative to 30 days before (+132%, p<0.001, n = 28. Control villages not implementing a closure showed no increase in income after "no ban" closures and modest increases after "ban" closures. Villages did not show a significant decline in income during closure events.Landings in closure sites generated more revenue than simulated landings assuming continued open-access fishing at that site (27/36 show positive net earnings; mean +$305/closure; mean +57.7% monthly. Benefits accrued faster than local fishers' time preferences during 17-27 of the 36 closures. High reported rates of illegal fishing during closures correlated with poor economic performance.We discuss the implications of our findings for broader co-management arrangements, particularly for catalyzing more comprehensive management.

  3. 76 FR 44647 - Ohio Disaster #OH-00029

    Science.gov (United States)

    2011-07-26

    ... ADMINISTRATION Ohio Disaster OH-00029 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for the... Disaster Assistance, U.S. Small Business Administration, 409 3rd Street, SW., Suite 6050, Washington,...

  4. Poultry Producer. Ohio's Competency Analysis Profile.

    Science.gov (United States)

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Ohio Competency Analysis Profile (OCAP), derived from a modified Developing a Curriculum (DACUM) process, is a comprehensive and verified employer competency list for a poultry producer program. It contains units (with or without subunits), competencies, and competency builders that identify the occupational, academic, and employability…

  5. Columbus Saves: Saving Money in Ohio

    Science.gov (United States)

    Shockey, Susan

    2004-01-01

    The "Columbus Saves" educational program is a broad-based community coalition made up of more than 40 local organizations from the education, nonprofit, government, faith-based, and private sectors. Common goals of partners in reaching Columbus, Ohio's 1.5 million residents are to: (a) promote increased savings through education and…

  6. Industrial Maintenance. Ohio's Competency Analysis Profile.

    Science.gov (United States)

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for industrial maintenance occupations. The list contains units (with and without subunits), competencies, and competency…

  7. Energy Drink Use Among Ohio Appalachian Smokers.

    Science.gov (United States)

    Davison, Genevieve; Shoben, Abigail; Pasch, Keryn E; Klein, Elizabeth G

    2016-10-01

    Caffeine-containing energy drinks have emerged as a public health concern due to their association with caffeine toxicity and alcohol use. Despite the fact that previous research has linked caffeine use in the form of coffee drinking to smoking, there is little research examining the association between energy drinks and smoking. The present study examines demographic and behavioral factors associated with energy drink use among a sample of rural Ohio Appalachian smokers. It was hypothesized that male gender, young age (21-30 years.) and alcohol use would be associated with energy drink use. A sample of adult smokers (n = 298) from Ohio Appalachian counties were interviewed regarding demographic and behavioral factors. Logistic regression analysis was used to assess the association between these factors and energy drink use. Seventy percent of Ohio Appalachian smokers studied had ever used an energy drink and 40 % had used an energy drink in the past month. Young age, male gender, and single marital status were associated with higher odds of ever having used an energy drink. Young age, and binge drinking were associated with higher odds of past 30-day use while abstinence from drinking was associated with lower odds of past 30-day use. Ohio Appalachian adult smokers had higher rates of energy drink use compared to previous estimates of ever or past month use found in other studies. The combined use of caffeine, nicotine, and alcohol warrants attention due to potential for health risk.

  8. Machine Trades. Ohio's Competency Analysis Profile.

    Science.gov (United States)

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Ohio Competency Analysis Profile (OCAP), derived from a modified Developing a Curriculum (DACUM) process, is a current comprehensive and verified employer competency program list for machine trades. Each unit (with or without subunits) contains competencies and competency builders that identify the occupational, academic, and employability…

  9. 77 FR 8185 - Ohio Regulatory Program

    Science.gov (United States)

    2012-02-14

    ... process this update as a formal program amendment. On July 27, 2010, OSM sent a letter to Ohio... the permittee and other interested parties, and provide an opportunity for an informal conference... surety, bank, savings and loan association, trust company, or other financial institution that holds...

  10. Venture Capital Initiative: Ohio's School Improvement Effort.

    Science.gov (United States)

    Yoo, Soonhwa; Loadman, William E.

    In 1994 the Ohio State Legislature established Venture Capital to support school restructuring. The Venture Capital school initiative is a concept borrowed from the business community in which the corporate entity provides risk capital to parts of the organization to stimulate creative ideas and to provide opportunities for local entities to try…

  11. 78 FR 2708 - Ohio Disaster # OH-00039

    Science.gov (United States)

    2013-01-14

    ... ADMINISTRATION Ohio Disaster OH-00039 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This...: 10/03/2013. ADDRESSES: Submit completed loan applications to: U.S. Small Business Administration... CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409 3rd Street...

  12. Classroom Assessment Practices of Ohio Teachers.

    Science.gov (United States)

    Mertler, Craig A.

    A descriptive study was conducted to examine the current assessment practices of teachers in Ohio. The specific aim of the study was to gain an understanding of the extent to which teachers use traditional versus alternative forms of assessment techniques in their classrooms. Participants were 625 teachers from kindergarten through grade 12. The…

  13. 77 FR 46346 - Ohio Regulatory Program

    Science.gov (United States)

    2012-08-03

    ... state to assume primacy for the regulation of surface coal mining and reclamation operations on non... things, ``* * * a State law which provides for the regulation of surface coal mining and reclamation... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 935 Ohio Regulatory Program AGENCY...

  14. Agent Turnovers in Ohio State University Extension.

    Science.gov (United States)

    Rousan, Laith M.; Henderson, Janet L.

    1996-01-01

    Responses from 61 of 67 Ohio State University extension agents who left between 1990-94 showed they were primarily female (66%), white (90%), and untenured (98%). They were most likely to leave due to other priorities, insufficient pay, family obligations, too many work responsibilities, or the opportunity to make more money elsewhere. (SK)

  15. Calling for Goddesses in Winesburg Ohio

    Institute of Scientific and Technical Information of China (English)

    付燕

    2013-01-01

    Winesburg Ohio, by Sherwood Anderson, depicts a group of people living in a transitional period where the human soci⁃ety was undergoing a sudden change from an agrarian society into a modern industrial one. This article will interpret Anderson’s call from the aspect of“Goddess Revival”.

  16. An analysis of Ohio's forest resources

    Science.gov (United States)

    Donald F. Dennis; Donald F. Dennis

    1983-01-01

    A comprehensive analysis of the current status and trends of the forest resources of Ohio. Topics include forest area, timber volume, biomass, timber products, and growth and removals. Forest area, volume, and growth and removals are projected through 2009. Discusses water, soil, minerals, fish, wildlife, and recreation as they relate to forest resources. Also...

  17. Improving Ohio's Education Management Information System (EMIS).

    Science.gov (United States)

    Ohio State Legislative Office of Education Oversight, Columbus.

    Due to legislative mandate, the Ohio Department of Education (ODE) was required to develop a system (the Education Management Information System) that would increase the amount of information available to state-level policy makers and the public. Some recommendations for improving the function of EMIS are offered in this report. The text provides…

  18. Ohio Business Management. Technical Competency Profile (TCP).

    Science.gov (United States)

    Ray, Gayl M.; Wilson, Nick; Mangini, Rick

    This document describes the essential competencies from secondary through post-secondary associate degree programs for a career in business management. Ohio College Tech Prep Program standards are described, and a key to profile codes is provided. Sample occupations in this career area, such as management trainee, product manager, and advertising…

  19. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  20. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  1. Closure report for N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

  2. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada For Fiscal Year 2012 (October 2011–September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2013-01-17

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): · CAU 90, Area 2 Bitcutter Containment · CAU 91, Area 3 U-3fi Injection Well · CAU 92, Area 6 Decon Pond Facility · CAU 110, Area 3 WMD U-3ax/bl Crater · CAU 111, Area 5 WMD Retired Mixed Waste Pits · CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2012 (October 2011–September 2012).

  3. Primary fascial closure with laparoscopic ventral hernia repair: systematic review.

    Science.gov (United States)

    Nguyen, Duyen H; Nguyen, Mylan T; Askenasy, Erik P; Kao, Lillian S; Liang, Mike K

    2014-12-01

    Laparoscopic ventral hernia repair (LVHR) has grown in popularity. Typically, this procedure is performed with a mesh bridge technique that results in high rates of seroma, eventration (bulging), and patient dissatisfaction. In an effort to avoid these complications, there is growing interest in the role of laparoscopic primary fascial closure with intraperitoneal mesh placement. This systematic review evaluated the outcomes of closure of the central defect during LVHR. A literature search of PubMed, Cochrane databases, and Embase was conducted using PRISMA guidelines. MINORS was used to assess the methodologic quality. Primary outcome was hernia recurrence. Secondary outcomes were surgical-site infection, seroma formation, bulging, and patient-centered items (satisfaction, chronic pain, functional status). Eleven studies were identified, eight of which were case series (level 4 data). Three comparative studies examined the difference between closure and nonclosure of the fascial defect during laparoscopic ventral incisional hernia repairs (level 3 and 4 data). These studies suggested that primary fascial closure (n = 138) compared to nonclosure (n = 255) resulted in lower recurrence rates (0-5.7 vs. 4.8-16.7 %) and seroma formation rates (5.6-11.4 vs. 4.3-27.8 %). Follow-up periods for both groups were similar (1-108 months). Only one study evaluated patient function and clinical bulging. It showed better outcomes with primary fascial closure. Closure of the central defect during LVHR resulted in less recurrence, bulging, and seroma than nonclosure. Patients with closure were more satisfied with the results and had better functional status. The quality of the data was poor, however. A randomized controlled trial to evaluate the role of closure of the central defect during LVHR is warranted.

  4. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  5. Partially Testing a Process Model for Understanding Victim Responses to an Anticipated Worksite Closure

    Science.gov (United States)

    Blau, Gary

    2007-01-01

    This study partially tested a recent process model for understanding victim responses to worksite/function closure (W/FC) proposed by Blau [Blau, G. (2006). A process model for understanding victim responses to worksite/function closure. "Human Resource Management Review," 16, 12-28], in a pharmaceutical manufacturing site. Central to the model…

  6. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    R. B. Jackson

    2003-08-01

    This Post-Closure Inspection Annual Report provides documentation of the semiannual inspections conducted at the following Corrective Action Units (CAU)s: CAU 400: Bomblet Pit and Five Points Landfill; CAU 404: Roller Coaster Lagoons and Trench; CAU 407: Roller Coaster RadSafe Area; CAU 424: Area 3 Landfill Complexes; CAU 426: Cactus Spring Waste Trenches; CAU 427: Septic Waste Systems 2, 6; and CAU 453: Area 9 UXO Landfill, all located at the Tonopah Test Range, Nevada. Post-closure inspections are not required at CAU 400 but are conducted to monitor vegetation and fencing at the site. Site inspections were conducted in May and November 2002. All site inspections were made after Nevada Division of Environmental Protection (NDEP) approval of the appropriate Closure Report (CR), excluding CAU 400 which did not require a CR, and were conducted in accordance with the Post-Closure Inspection Plans in the NDEP-approved CRs. Post-closure inspections conducted during 2002 identified several areas requiring maintenance/repairs. Maintenance work and proposed additional monitoring are included in the appropriate section for each CAU. This report includes copies of the Post-Closure Inspection Plans, Post-Closure Inspection Checklists, copies of the field notes, photographs, and the Post-Closure Vegetative Monitoring Report. The Post-Closure Inspection Plan for each CAU is located in Attachment A. Post-Closure Inspection Checklists are in Attachment B. Copies of the field notes from each inspection are included in Attachment C. Attachment D consists of the photographic logs and photographs of the sites. The post-closure vegetative monitoring report for calendar year 2002 is included in Attachment E.

  7. A comparison of β-adrenoceptors and muscarinic cholinergic receptors in tissues of brown bullhead catfish (Ameiurus nebulosus) from the black river and old woman creek, Ohio

    Science.gov (United States)

    Steevens, Jeffery A.; Baumann, Paul C.; Jones, Susan B.

    1996-01-01

    β-Adrenoceptors (βARs) and muscarinic cholinergic receptors were measured in brain, gill, and heart tissues of brown bullhead catfish exposed to polycyclic aromatic hydrocarbons in the Black River, Ohio, USA, and were compared to values from Old Woman Creek, Ohio, a reference site. A decreased number of βARs were found in the gill from Black River fish, possibly indicating a compensatory response subsequent to chemical stress.

  8. Closure and Sealing Design Calculation

    Energy Technology Data Exchange (ETDEWEB)

    T. Lahnalampi; J. Case

    2005-08-26

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure

  9. A closure relation to molecular theory of solvation for macromolecules

    Science.gov (United States)

    Kobryn, Alexander E.; Gusarov, Sergey; Kovalenko, Andriy

    2016-10-01

    We propose a closure to the integral equations of molecular theory of solvation, particularly suitable for polar and charged macromolecules in electrolyte solution. This includes such systems as oligomeric polyelectrolytes at a finite concentration in aqueous and various non-aqueous solutions, as well as drug-like compounds in solution. The new closure by Kobryn, Gusarov, and Kovalenko (KGK closure) imposes the mean spherical approximation (MSA) almost everywhere in the solvation shell but levels out the density distribution function to zero (with the continuity at joint boundaries) inside the repulsive core and in the spatial regions of strong density depletion emerging due to molecular associative interactions. Similarly to MSA, the KGK closure reduces the problem to a linear equation for the direct correlation function which is predefined analytically on most of the solvation shells and has to be determined numerically on a relatively small (three-dimensional) domain of strong depletion, typically within the repulsive core. The KGK closure leads to the solvation free energy in the form of the Gaussian fluctuation (GF) functional. We first test the performance of the KGK closure coupled to the reference interaction site model (RISM) integral equations on the examples of Lennard-Jones liquids, polar and nonpolar molecular solvents, including water, and aqueous solutions of simple ions. The solvation structure, solvation chemical potential, and compressibility obtained from RISM with the KGK closure favorably compare to the results of the hypernetted chain (HNC) and Kovalenko-Hirata (KH) closures, including their combination with the GF solvation free energy. We then use the KGK closure coupled to RISM to obtain the solvation structure and thermodynamics of oligomeric polyelectrolytes and drug-like compounds at a finite concentration in electrolyte solution, for which no convergence is obtained with other closures. For comparison, we calculate their solvation

  10. Portsmouth annual environmental report for 2003, Piketon, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2004-11-30

    The Portsmouth & Gaseous Diffusion Plant (PORTS) is located on a 5.8-square-mile site in a rural area of Pike County, Ohio. U.S. Department of Energy (DOE) activities at PORTS include environmental restoration, waste 'management, and long-term'stewardship of nonleased facilities: Production facilities for the separation of uranium isotopes are leased to the United States Enrichment Corporation (USEC), but most activities associated with the uranium enrichment process ceased in 2001. USEC activities are not covered by this document, with the exception of some environmental compliance information provided in Chap. 2 and radiological and non-radiological environmental monitoring program information discussed in Chaps. 4 and 5.

  11. Rash with DERMABOND PRINEO Skin Closure System Use in Bilateral Reduction Mammoplasty: A Case Series

    Directory of Open Access Journals (Sweden)

    R. W. Knackstedt

    2015-01-01

    Full Text Available Background. Bilateral reduction mammoplasty is a common plastic surgery procedure that can be complicated by unfavorable scar formation along incision sites. Surgical adhesives can be utilized as an alternative or as an adjunct to conventional suture closures to help achieve good wound tension and provide an adequate barrier with excellent cosmesis. The recently introduced DERMABOND PRINEO Skin Closure System Skin Closure System combines the skin adhesive 2-octyl cyanoacrylate with a self-adhering polyester-based mesh. Proposed benefits of wound closure with DERMABOND PRINEO Skin Closure System, used with or without sutures, include its watertight seal, easy removal, microbial barrier, even distribution of tension, and reduction in wound closure time. Although allergic reactions to 2-octyl cyanoacrylate have been reported, few allergic reactions to DERMABOND PRINEO Skin Closure System have been noted in the literature. This case series describes three patients who experienced an allergic reaction to DERMABOND PRINEO Skin Closure System after undergoing elective bilateral reduction mammoplasties at our institution to further explore this topic. Methods. Retrospective chart review of bilateral reduction mammoplasty patients who received DERMABOND PRINEO Skin Closure System dressing at our institution was performed. Results. Three patients were identified as having a rash in reaction to DERMABOND PRINEO Skin Closure System after bilateral reduction mammoplasty. All three patients required systemic steroid treatment to resolve the rash. One patient was identified as having a prior adhesive reaction. Conclusions. DERMABOND PRINEO Skin Closure System has demonstrated its efficacy in optimizing scar healing and appearance. However, as we demonstrate these three allergic reactions to DERMABOND PRINEO Skin Closure System, caution must be utilized in its usage, namely, in patients with a prior adhesive allergy and in sites where moisture or friction may

  12. Energy balance closure for the LITFASS-2003 experiment

    NARCIS (Netherlands)

    Foken, T.; Mauder, M.; Liebethal, C.; Wimmer, F.; Beyrich, F.; Leps, J.P.; Raasch, S.; Debruin, H.A.R.; Meijninger, W.M.L.; Bange, J.

    2010-01-01

    In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by

  13. Underground storage tank 511-D1U1 closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  14. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  15. Proceedings of the tenth annual DOE low-level waste management conference: Session 6: Closure and decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eight papers on various aspects of low-level radioactive waste management. Topics include: site closure; ground cover; alternate cap designs; performance monitoring of waste trenches; closure options for a mixed waste site; and guidance for environmental monitoring. Individual papers were processed separately for the data base. (TEM)

  16. Site Environmental Report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

  17. Survey for the presence of Phytophthora cinnamomi on reclaimed mined lands in Ohio chosen for restoration of the American chestnut

    Science.gov (United States)

    Shiv Hiremath; Kirsten Lehtoma; Jenise M. Bauman

    2013-01-01

    We have been planting blight resistant American chestnut seedlings on reclaimed coal mined areas in Southeastern Ohio, which was once within the natural range of the American chestnut. Towards the goal of restoring the American chestnut, we are testing suitable sites that can aid survival, growth and establishment of planted seedlings pre-inoculated with...

  18. Impact of Ohio Administrative License Suspension*

    OpenAIRE

    Voas, Robert B.; Tippetts, A. Scott; Taylor, Eileen P.

    1998-01-01

    This report covers an analysis of the driving records of Ohio’s 45,788 drivers who were convicted of driving under the influence (DUI) between July 1, 1990, and August 30, 1995, to determine the specific deterrent impact of the Ohio administrative license suspension (ALS**) law on DUI recidivism. Our data support the conclusion that, under the ALS law, license suspensions were earlier and more certain. Consequently, the number of drunk-driving convictions, moving offenses, and crashes of firs...

  19. Recent studies of Pennsylvanian flora, Ohio, USA

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, W.H.; Cross, A.T.; Taggart, R.E. [Michigan State University, East Lansing, MI (USA). Department of Geological Sciences

    1999-07-01

    A list of 50 genera and more than 100 species are listed in a compilation of the Pennsylvanian flora of Ohio. Coal balls are reported in three localities in the Conemaugh Group and two in the Allegheny Group. More than 55 megafossil taxa, that represent over 25 natural species, have been described anatomically from the Ames and Duquesne coal balls in the Conemaugh Group. The collections that provided the basic information for the compilation are indicated. (Summary form only)

  20. Climatological aspects of drought in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.C. (Ohio State Univ., Columbus (United States))

    1993-06-01

    Precipitation and Palmer hydrological drought index (PHDI) data have been used to identify past occurrences of Ohio drought, to illustrate the temporal variability occurring statewide within dry periods, and to compare some of the key dry spells to those of 1987-88 and 1991-92. Periods of hydrologic drought and low precipitation generally persist for 2 to 5 years and tend to cluster in time, such as occurred from 1930-1966. It is not uncommon for precipitation to return to normal or near normal conditions while short-term drought persists in terms of streamflow, ground water supply, and runoff, as measured by the PHDI. The period April 1930 to March 1931 is the driest on record in Ohio although longer periods of low precipitation have occurred from 1893-1896, 1952-1955, and 1963-1965. The temporal clusters of droughts are separated by prolonged wet periods, including those extending roughly from 1875-1893, 1905-1924, and 1966-1987. Correlations between Ohio monthly precipitation and mean air temperature suggest that drought is linked to unusually high summer temperatures through mechanisms such as increased evapotranspiration, leading to increased fluxes of sensible heat from dry soil surfaces. In winter, warm conditions tend to favor higher precipitation, soil recharge, and runoff. Variations in mean temperature and atmospheric circulation may also be linked to other observed climatic features such as long-term trends in soil-water recharge season (October-March) precipitation.

  1. Single-shell tank closure work plan. Revision A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  2. Cleanups In My Community (CIMC) - RCRA and Base Realignment and Closure (BRAC) Federal Facilities, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Resource Conservation and Recovery Act (RCRA) Base Realignment and Closure (BRAC) sites as part of the CIMC web service. The...

  3. AX Tank farm closure settlement estimates and soil testing

    Energy Technology Data Exchange (ETDEWEB)

    BECKER, D.L.

    1999-03-25

    This study provides a conservative three-dimensional settlement study of the AX Tank Farm closure with fill materials and a surface barrier. The finite element settlement model constructed included the interaction of four tanks and the surface barrier with the site soil and bedrock. Also addressed are current soil testing techniques suitable for the site soil with recommendations applicable to the AX Tank Farm and the planned cone penetration testing.

  4. Positive Catch & Economic Benefits of Periodic Octopus Fishery Closures: Do Effective, Narrowly Targeted Actions 'Catalyze' Broader Management?

    Science.gov (United States)

    Oliver, Thomas A; Oleson, Kirsten L L; Ratsimbazafy, Hajanaina; Raberinary, Daniel; Benbow, Sophie; Harris, Alasdair

    2015-01-01

    Eight years of octopus fishery records from southwest Madagascar reveal significant positive impacts from 36 periodic closures on: (a) fishery catches and (b) village fishery income, such that (c) economic benefits from increased landings outweigh costs of foregone catch. Closures covered ~20% of a village's fished area and lasted 2-7 months. Octopus landings and catch per unit effort (CPUE) significantly increased in the 30 days following a closure's reopening, relative to the 30 days before a closure (landings: +718%, pfishing at that site (27/36 show positive net earnings; mean +$305/closure; mean +57.7% monthly). Benefits accrued faster than local fishers' time preferences during 17-27 of the 36 closures. High reported rates of illegal fishing during closures correlated with poor economic performance. We discuss the implications of our findings for broader co-management arrangements, particularly for catalyzing more comprehensive management.

  5. 77 FR 76034 - Public Water System Supervision Program Approval for the State of Ohio

    Science.gov (United States)

    2012-12-26

    ... AGENCY Public Water System Supervision Program Approval for the State of Ohio AGENCY: Environmental... has tentatively approved revisions to the State of Ohio's public water system supervision program... public water system supervision program, thereby giving Ohio EPA primary enforcement responsibility...

  6. Infering and Calibrating Triadic Closure in a Dynamic Network

    Science.gov (United States)

    Mantzaris, Alexander V.; Higham, Desmond J.

    In the social sciences, the hypothesis of triadic closure contends that new links in a social contact network arise preferentially between those who currently share neighbours. Here, in a proof-of-principle study, we show how to calibrate a recently proposed evolving network model to time-dependent connectivity data. The probabilistic edge birth rate in the model contains a triadic closure term, so we are also able to assess statistically the evidence for this effect. The approach is shown to work on data generated synthetically from the model. We then apply this methodology to some real, large-scale data that records the build up of connections in a business-related social networking site, and find evidence for triadic closure.

  7. Transcatheter Closure of Patent Ductus Arteriosus: The Penang Hospital's Experience.

    Science.gov (United States)

    Amir Hamzah, A R; Tiow, C A; Koh, G T; Sharifah, A M

    2011-03-01

    Transcatheter closure of small and moderate sizes of Patent Ductus Arteriosus (PDA) is a standard and well accepted form of treatment. The aim of this study is to describe the experience of transcatheter closure of PDA in Penang Hospital. All patients who underwent transcatheter closure of PDA at our institution between 20th January 2006 and 27th June 2008 were retrospectively identified and studied. There were a total of 66 patients who had undergone transcatheter closure of PDA during this period which comprised of 24 male and 42 female. The PDA was closed by Amplatzer Duct Occluder (ADO) in 31 patients, Gianturco coil in 29 patients and other types of devices in 6 patients. There were 4 patients (6%) who had developed acute complication during the procedure (3 of them developed coil embolization and 1 had bleeding from puncture site). The PDA was successfully close in 95.5% of the study population without any residual PDA shunting. All the patients were alive but 5 of them (4.5%) have some abnormalities (2 has mild left pulmonary stenosis, 3 has small residual). Comparison between ADO and Gianturco coil revealed no significant difference in the outcome. Transcatheter closure of PDA has proven to be safe and effective with good midterm outcome. There was no significant difference between Amplatzer Ductal Occluder and Gianturco coil in term of the outcome.

  8. Design, production and initial state of the closure

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The production reports are included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the closure and plugs in underground openings other than deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides some input to the operational safety report, SR-Operation, on how the closure and plugs shall be handled and installed. The report presents the design premises and reference designs of the closure and plugs and verifies their conformity to the design premises. It also briefly deals with the production of the closure and plugs. Finally, the initial state of the closure and plugs and their conformity to the reference designs and design premises are presented

  9. [Laparotomy closure in advanced peritonitis].

    Science.gov (United States)

    Bensman, V M; Savchenko, Yu P; Shcherba, S N; Golikov, I V; Triandafilov, K V; Chaykin, V V; Pyatakov, S N; Saakyan, A S; Saakyan, E A

    to improve the results of advanced peritonitis management. 743 patients with advanced peritonitis were studied. Patients were divided into 2 groups depending on treatment strategy. Programmed relaparotomy combined with removable draining musculoaponeurotic seams during laparotomy closure decreased mortality from 47.8±2.7% to 24.1±2.3% (pperitonitis management. Laparotomy closure with only cutaneous seams is indicated in case of persistent abdominal hypertension. Large eventration always requires abdominal wall repair. APACHE-III scale scores have significant prognostic value in patients with advanced peritonitis.

  10. Closure phase and lucky imaging.

    Science.gov (United States)

    Rhodes, William T

    2009-01-01

    Since its introduction by Jennison in 1958, the closure-phase method for removing the effects of electrical path-length errors in radio astronomy and of atmospheric turbulence in optical astronomy has been based on the non-redundant-spacing triple interferometer. It is shown that through application of lucky imaging concepts it is possible to relax this condition, making closure-phase methods possible with redundantly spaced interferometer configurations and thereby widening their range of application. In particular, a quadruple-interferometer can, under lucky imaging conditions, be treated as though it were a triple interferometer. The slit-annulus aperture is investigated as a special case.

  11. Homogeneous orbit closures and applications

    CERN Document Server

    Lindenstrauss, Elon

    2011-01-01

    We give new classes of examples of orbits of the diagonal group in the space of unit volume lattices in R^d for d > 2 with nice (homogeneous) orbit closures, as well as examples of orbits with explicitly computable but irregular orbit closures. We give Diophantine applications to the former, for instance we show that if x is the cubic root of 2 then for any y,z in R liminf |n|=0 (as |n| goes to infinity), where denotes the distance of a real number c to the integers.

  12. Detailed design report for an operational phase panel-closure system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-11

    Under contract to Westinghouse Electric Corporation (Westinghouse), Waste Isolation Division (WID), IT Corporation has prepared a detailed design of a panel-closure system for the Waste Isolation Pilot Plant (WIPP). Preparation of this detailed design of an operational-phase closure system is required to support a Resource Conservation and Recovery Act (RCRA) Part B permit application and a non-migration variance petition. This report describes the detailed design for a panel-closure system specific to the WIPP site. The recommended panel-closure system will adequately isolate the waste-emplacement panels for at least 35 years. This report provides detailed design and material engineering specifications for the construction, emplacement, and interface-grouting associated with a panel-closure system at the WIPP repository, which would ensure that an effective panel-closure system is in place for at least 35 years. The panel-closure system provides assurance that the limit for the migration of volatile organic compounds (VOC) will be met at the point of compliance, the WIPP site boundary. This assurance is obtained through the inherent flexibility of the panel-closure system.

  13. ACB Service Final Closure

    CERN Multimedia

    IT Department

    2004-01-01

    As previously announced in CERN weekly Bulletin 18/2004 of 26th April 2004, and following a discussion at the Desktop Forum on 28th October, the Automatic Call Back (ACB) service will be definitely closed on Friday 10th December 2004. If the ACB phone number is dialed after that date over plain telephone or ISDN, the call will remain unanswered. Therefore, the remaining ACB users are encouraged to switch as soon as possible to ISPs (Internet Service Providers) which provide equivalent or better service. Some suggestions on how to make alternative arrangements have been made available on the Remote Access web site: http://www.cern.ch/ras IT Department

  14. ACB Service Final Closure

    CERN Multimedia

    IT Department

    2004-01-01

    As previously announced in CERN weekly Bulletin 18/2004 of 26 April 2004, and following a discussion at the Desktop Forum on 28 October, the Automatic Call Back (ACB) service will be definitely closed on Friday 10 December 2004. If the ACB phone number is dialed after that date over plain telephone or ISDN, the call will remain unanswered. Therefore, the remaining ACB users are encouraged to switch as soon as possible to ISPs (Internet Service Providers) which provide equivalent or better service. Some suggestions on how to make alternative arrangements have been made available on the Remote Access web site. IT Department

  15. Outlier Ohio: A Case Study of Ohio Public Libraries and an Analysis of Their Collective Success

    Science.gov (United States)

    Klentzin, Jacqueline Courtney

    2011-01-01

    This study examined the collective success and "Best in the Nation" status of Ohio public libraries as indicated in by various statistical rankings, like the HAPLR and "Library Journal" Star Libraries, as well as anecdotal reports in the trade literature. The study was qualitative in nature and utilized a single-subject case…

  16. Outlier Ohio: A Case Study of Ohio Public Libraries and an Analysis of Their Collective Success

    Science.gov (United States)

    Klentzin, Jacqueline Courtney

    2011-01-01

    This study examined the collective success and "Best in the Nation" status of Ohio public libraries as indicated in by various statistical rankings, like the HAPLR and "Library Journal" Star Libraries, as well as anecdotal reports in the trade literature. The study was qualitative in nature and utilized a single-subject case…

  17. Telephone switchboard closure | 19 December

    CERN Multimedia

    2014-01-01

    Exceptionally, the telephone switchboard will close at 4 p.m. on Friday, 19 December, instead of the usual time of 6 p.m., to allow time for closing all systems properly before the annual closure. Therefore, switchboard operator assistance to transfer calls from/to external lines will stop. All other phone services will run as usual.

  18. Abdominal wound closure: current perspectives

    Directory of Open Access Journals (Sweden)

    Williams ZF

    2015-12-01

    Full Text Available Zachary F Williams, William W Hope Department of Surgery, South East Area Health Education Center, New Hanover Regional Medical Center, Wilmington, NC, USA Abstract: This review examines both early and late wound complications following laparotomy closure, with particular emphasis on technical aspects that reduce hernia formation. Abdominal fascial closure is an area of considerable variation within the field of general surgery. The formation of hernias following abdominal wall incisions continues to be a challenging problem. Ventral hernia repairs are among the most common surgeries performed by general surgeons, and despite many technical advances in the field, incisional hernia rates remain high. Much attention and research has been directed to the surgical management of hernias. Less focus has been placed on prevention of hernia formation despite its obvious importance. This review examines the effects of factors such as the type of incision, suture type and size, closure method, patient risk factors, and the use of prophylactic mesh. Keywords: incisional, abdominal, hernia, prevention, wound closure techniques 

  19. Vacuum assisted closure in coloproctology

    NARCIS (Netherlands)

    Bemelman, W.A.

    2009-01-01

    Vacuum-assisted closure has earned its indications in coloproctology. It has been described with variable results in the treatment of large perineal defects after abdominoperineal excision, in the treatment of stoma dehiscence and perirectal abscesses. The most promising indication for

  20. Golden Peaks and Perilous Cliffs: Rethinking Ohio's Teacher Pension System

    Science.gov (United States)

    Costrell, Robert M.; Podgursky, Michael

    2007-01-01

    In response to a journalist inquiry regarding research on funding of Ohio's teacher retirement system and its effect on school district finances, this analysis by the Thomas B. Fordham Institute points to serious questions and profound concerns about the health of Ohio's teacher pension system, and that similar time bombs may be ticking in other…

  1. A New Spirit of '76: Right to Read in Ohio.

    Science.gov (United States)

    Kunkle, Virginia Lloyd; Gabler, Cecil W.

    This pamphlet discusses how Ohio is attempting to meet the challenge to eradicate functional illiteracy within the time span of the 1970's. Included in the contents are: planning guidelines, the organizational structure, the overall objectives of the Ohio program, report of the first year of the program, second year developments and…

  2. Music Education in the Curriculum of Ohio Charter Schools

    Science.gov (United States)

    Hedgecoth, David M.

    2017-01-01

    The purpose of the current investigation is to examine the extent to which music education is present in the curriculum of Ohio charter schools. These community schools, as they are identified within the state, enroll over 120,000 students across Ohio. While the mission and focus of these schools are easily found in promotional literature and…

  3. An Exploratory Analysis of the Equity of Ohio School Funding

    Science.gov (United States)

    Sweetland, Scott R.

    2014-01-01

    This research briefly summarizes a series of Ohio Supreme Court litigation known as "DeRolph v. State" and then measures the equality of expenditures among Ohio school districts. "DeRolph v. State" was a high-profile school finance adequacy case. Nevertheless, the high court continuously expressed concern for the financial…

  4. The Ohio Schools Pest Management Survey: A Final Report.

    Science.gov (United States)

    2001

    In 2001, the Environmental Studies Senior Capstone Seminar class at Denison University helped the state of Ohio work to prevent harmful pesticide use in schools. In cooperation with Ohio State University's Integrated Pest Management (IPM) in Schools Program, Denison conducted a statewide survey of school districts to determine current pest…

  5. An Assessment of Ohio's Education Management Information System.

    Science.gov (United States)

    Ohio State Legislative Office of Education Oversight, Columbus.

    The Legislative Office of Education Oversight (LOEO) assessed the planning and implementation of Ohios Education Management Information System (EMIS). The EMIS was mandated in 1989 as a provision of one of the most comprehensive educational reform bills ever passed in Ohio. The EMIS was developed based on an existing computer network, the Ohio…

  6. 33 CFR 110.83a - Cedar Point, Sandusky, Ohio.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cedar Point, Sandusky, Ohio. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.83a Cedar Point, Sandusky, Ohio. The water area enclosed by the break wall beginning at latitude 41°28′13″ N., longitude 82°40′39″ W.;...

  7. Ohio River Environmental Assessment: Cultural Resources Reconnaissance Report, West Virginia.

    Science.gov (United States)

    1977-08-01

    showed up in Maryland with Chartier . By 1725 there was only one group of Shawnee left in Alabama; the rest had moved into the headwaters of the Ohio. By...the American Philosophical Society, Vol. 54. Part 5 Philadelphia. Cunningham, Roger M. 1973. Paleo-Hunters Along the Ohio River. Archaeology of Eastern

  8. Limnology of selected lakes in Ohio, 1975

    Science.gov (United States)

    Tobin, Robert L.; Youger, John D.

    1977-01-01

    Water-quality reconnaissance by the U.S. Geological Survey and Ohio Environmental Protection Agency, to evaluate the status of Ohio's lakes and reservoirs was begun in 1975 with studies of 17 lakes. Spring and summer data collections for each lake included: profile measurements of temperature, dissolved oxygen, pH, and specific conductance; field and laboratory analyses of physical, biological, chemical organic characteristics; (nutrient), and concentrations of major and minor chemical constituents from composites of the water column; and physical and chemical data from major inflows.Light penetration (secchi disk) ranged from 9.4 feet (2.9 meters) in Lake Hope to 0.4 feet (0.1 meter) in Acton Lake. Seasonal thermal stratification or stability is shown for 10 lakes deeper than 15 feet (4.6 meters). Unstable or modified temperature profiles were observed in shallow lakes (depths less than 15 feet) or lakes controlled through subsurface release valves.Dissolved oxygen saturation ranged from 229 percent (20.8 milligrams per liter) in the epilimnion of Paint Creek Lake to zero in the bottom waters of all thermally stabilized lakes. Marked chemical and physical differences and nutrient uptake and recycling developed within different thermal strata. Anaerobic zones were frequently characterized by hydrogen sulfide and ammonia.Calcium was the dominant or codominant cation, and bicarbonate and(or) sulfate were the major anions in all lakes sampled. Only Hope and Vesuvius Lakes had soft water (hardness less than 61 milligrams per liter as CaCO3 ), and both lakes were further characterized by low pH (less than 7.0). Specific conductance ranged from 510 micromhos (Deer Creek and Salt Fork Lakes) to 128 micromhos (Lake Hope). Pesticide residues were detected in Acton Lake, and concentrations of one or more trace metals were at or above Ohio Environmental Protection Agency recommended limits in 11 lakes.Fecal coliform colony counts were below 400 colonies per 100 milliliters in

  9. Upper Pennsylvanian coals and associated rocks - depositional environments, sedimentation, paleontology and paleobotany, upper Ohio River valley

    Energy Technology Data Exchange (ETDEWEB)

    Cross, A.T.

    1988-03-01

    A number of geologically interesting sites in the upper Ohio River valley will be visited during the North-Central Section of the Geological Society of America's meeting in Akron, OH in April 1988. Sixteen scheduled sites (and three substitutes) have been chosen. They represent the following features: field examples of various types of stratigraphic problems; sedimentologic characteristics of diverse environments; controlling structural or physiographic anomalies of pre-coal-forming peat accumulation surfaces; typical or unusual faunas and floras of terrestrial, brackish or marine origin; and various economic coals demonstrating geologic problems related to their origin, constitution and extraction.

  10. 40 CFR 265.112 - Closure plan; amendment of plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Closure plan; amendment of plan. 265... DISPOSAL FACILITIES Closure and Post-Closure § 265.112 Closure plan; amendment of plan. (a) Written plan... have a written closure plan. Until final closure is completed and certified in accordance with §...

  11. Modern Value Orientations and Attitudes of Southern Ohio's Rural Youths Toward Abortion and Ohio's Law Concerning Abortion.

    Science.gov (United States)

    Singh, Ram N.; Wiseman, Patricia

    The hypothesis that value orientation is a more important determinant of fertility behavior than social class was examined in this study. Data were obtained from 4 rural high schools in Lawrence County, Ohio. The sample consisted of 500 Protestant, white single students. Dependent variables were youth attitudes toward abortion and Ohio's abortion…

  12. Survey of Libraries in Northwest Ohio and Related Workshops. Volume 3, Holdings of Ohio Titles by Subject Heading.

    Science.gov (United States)

    Rees, Louise F.

    A cooperative effort by public libraries in the five northwest counties of Ohio has resulted in this union list of materials about Ohio, arranged by subject. The 99 subject terms cover information about the state in such areas as science, agriculture, literature, biography, history, geography, education, economics, politics, government,…

  13. COMPARATIVE STUDY OF LAPAROSCOPIC CLOSURE OPEN PEPTIC PERFORATION CLOSURE

    Directory of Open Access Journals (Sweden)

    Vivek

    2015-10-01

    Full Text Available Laparoscopic closure of perforated duodenal ulcer was first performed in the year 1990 . Due to its advantage of better view of the peritoneal cavity an opportunity for thorough lavage and avoidance of upper abdominal incision, with its related complication, especially in high – ri sk patients, this procedure has gained popularity all over the world. Approximately 10 - 20% of patients suffering from peptic ulcer develop perforation of stomach or duodenum in which, chemical peritonitis develop initially from gastric secretion and duoden al secretion the condition is life threatening. Early diagnosis and treatment is extremely important. Mortality will increase up if perforation exists more than 24 to 48 hours. Usually surgical intervention of simple closure with omental patch of the perforation is required. this study aims at evaluating efficacy , safety and outcome of laparoscopic surgery for perforated duodenal ulcer patients admitted during period Jan 2009 to Dec 2012 at tertiary hospital in north Karnataka A total of 61cases diagnosed as peritonitis secondary to duodenal ulcer perforation were involved in the study 30underwent open perforation closure and 31 cases underwent lap closure. Peptic ulcers are focal defects in the gastric or duodenal mucosa which extend into the sub mucosa or deeper. they may be acute or chronic and ultimately are caused by on imbalance between the action of peptic acid and mucosal defenses peptic ulcer remains a common outpatient diagnosis, but the number of elective operations for peptic ul cer disease have decreased dramatically over the past 30 decades due to the advent of H2 blockers However the incidence of emergency surgeries, and death rate associated with peptic ulcer are same

  14. Gastrotomy closure using bioabsorbable plugs in a canine model.

    Science.gov (United States)

    Cios, Theodore J; Reavis, Kevin M; Renton, David R; Hazey, Jeffrey W; Mikami, Dean J; Narula, Vimal K; Allemang, Matthew T; Davis, S Scott; Melvin, W Scott

    2008-04-01

    The repair of gastric perforation commonly involves simple suture closure using an open or laparoscopic approach. An endolumenal approach using prosthetic materials may be beneficial. The role of bioprosthetics in this instance has not been thoroughly investigated, thus the authors evaluated the feasibility of gastric perforation repair using a bioabsorbable device and quantified gross and histological changes at the injury site. Twelve canines were anesthetized and underwent open gastrotomy. A 1-cm-diameter perforation was created in the anterior wall of the stomach and plugged with a bioabsorbable device. Intralumenal pH was recorded. Canines were sacrificed at one, four, six, eight, and 12 weeks. The stomach was explanted followed by gross and histological examination. The injury site was examined. The relative ability of the device to seal the perforation was recorded, as were postoperative changes. Tissue samples were analyzed for gross and microscopic tissue growth and compared to normal gastric tissue in the same animal as an internal control. A scoring system of -2 to +2 was used to measure injury site healing (-2= leak, -1= no leak and minimal ingrowth, 0= physiologic healing, +1= mild hypertrophic tissue, +2= severe hypertrophic tissue). In all canines, the bioprosthesis successfully sealed the perforation without leak under ex vivo insufflation. At one week, the device maintained its integrity but there was no tissue ingrowth. Histological healing score was -1. At 4-12 weeks, gross examination revealed a healed injury site in all animals. The lumenal portion of the plug was completely absorbed. The gross and histological healing score ranged from -1 to +1. The application of a bioabsorbable device results in durable closure of gastric perforation with physiologic healing of the injury site. This method of gastrotomy closure may aid in the evolution of advanced endoscopic approaches to perforation closure of hollow viscera.

  15. Reaching rural Ohio with intellectual disability psychiatry.

    Science.gov (United States)

    Gentile, Julie P; Cowan, Allison E; Harper, Beth; Mast, Ryan; Merrill, Brian

    2017-01-01

    Individuals with intellectual disability experience higher rates of mental illness when compared with the general population, and there is a lack of medical and mental health professionals in rural and under-served areas. With the increase in discharge of individuals from institutional settings back to their home communities into the least restrictive environments, there are more patients with complex needs being added to the schedules of physicians in the outpatient delivery care system. Patients with disabilities may not travel well or tolerate changes in routine so may not have access to psychiatry. Utilization of telepsychiatry is well suited to this specialized patient population because it allows a highly traumatized group to meet with a psychiatrist and other mental health professionals from a location of their choice. Ohio's Telepsychiatry Project for Intellectual Disability was initiated in 2012 to serve outlying communities with a lack of infrastructure and resources, to provide specialized mental health services to individuals with co-occurring mental illness and intellectual disability. After five years, over 900 patients with intellectual disability from 64 of Ohio's 88 counties receive specialized mental health treatment through this statewide grant-funded project.

  16. 2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Luke, S.N.

    1994-07-14

    This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation.

  17. Generalized Convective Quasi-Equilibrium Closure

    Science.gov (United States)

    Yano, Jun-Ichi; Plant, Robert

    2016-04-01

    Arakawa and Schubert proposed convective quasi-equilibrium as a basic principle for closing their spectrum mass-flux convection parameterization. In deriving this principle, they show that the cloud work function is a key variable that controls the growth of convection. Thus, this closure hypothesis imposes a steadiness of the cloud work function tendency. This presentation shows how this principle can be generalized so that it can also encompasses both the CAPE and the moisture-convergence closures. Note that the majority of the current mass-flux convection parameterization invokes a CAPE closure, whereas the moisture-convergence closure was extremely popular historically. This generalization, in turn, includes both closures as special cases of convective quasi-equilibrium. This generalization further suggests wide range of alternative possibilities for convective closure. In general, a vertical integral of any function depending on both large-scale and convective-scale variables can be adopted as an alternative closure variables, leading to an analogous formulation as Arakawa and Schubert's convective quasi-equilibrium formulation. Among those, probably the most fascinating possibility is to take a vertical integral of the convective-scale moisture for the closure. Use of a convective-scale variable for closure has a particular appeal by not suffering from a loss of predictability of any large-scale variables. That is a main problem with any of the current convective closures, not only for the moisture-convergence based closure as often asserted.

  18. 75 FR 27783 - Decision To Evaluate a Petition To Designate a Class of Employees From the Mound Site in...

    Science.gov (United States)

    2010-05-18

    ... revision as warranted by the evaluation, is as follows: Facility: Mound site. Location: Miamisburg, Ohio... Doc No: 2010-11875] DEPARTMENT OF HEALTH AND HUMAN SERVICES Decision To Evaluate a Petition To... decision to evaluate a petition to designate a class of employees from the Mound site in Miamisburg, Ohio...

  19. Air quality impacts of a scheduled 36-h closure of a major highway

    Science.gov (United States)

    Quiros, David C.; Zhang, Qunfang; Choi, Wonsik; He, Meilu; Paulson, Suzanne E.; Winer, Arthur M.; Wang, Rui; Zhu, Yifang

    2013-03-01

    Elevated concentrations of ultrafine particles (UFPs, traffic flow was reduced by ˜90% relative to non-closure Saturday observations. Downwind of I-405, fixed-site measurements showed the following reductions: 83% of particle number concentration (PNC), 36% of PM2.5, and 62% of black carbon. Fixed-site measurements showed daily average UFP size distributions were bimodal for non-closure conditions (nucleation modes ˜20 nm, accumulation modes ˜60 nm), but only showed an accumulation mode ˜50 nm during closure. Spatial measurements from the MMP confirmed no nucleation mode was detected at any location 0-300 m downwind during closure. In 2011, non-closure particle emission factors were 5.0, 2.7, and 3.4 × 1013 particles vehicle-1 km-1 for Friday through Sunday respectively. After accounting for instrumental and traffic flow differences, weekday PNC in 2011 was 60% lower than 2001 at the same study location. During the closure event, regional freeway traffic was reduced compared to four selected control Saturdays. Eight stationary monitoring stations throughout the South Coast Air Basin showed PM2.5 was reduced between 18 and 36% relative to the same control days. The outcome of this natural experiment during the I-405 closure confirms that substantial traffic reduction can improve local and regional air quality in sprawled urban regions such as Los Angeles, CA.

  20. Watertight dural closure! An in vitro study to explore the myth

    Directory of Open Access Journals (Sweden)

    Sudipkumar Sengupta

    2013-01-01

    Full Text Available Aim: The watertight closure of the dura mater is fundamental to intracranial supratentorial procedures in neurosurgery. Controversies exist claiming the superiority of one closure technique over another. But is ′Water-tight′ dural closure really achievable ? An in vitro study system was developed to test the pressures at which dural incisions, closed with sutures, leaked. Materials and Methods: Bovine dura was secured to the lower end of an open ended calibrated plastic cylinder. Multiple interrupted stitches were applied over a two 2 cm length of the dura without any incision. Similarly a 2 cm incision was made and closed with interrupted and continuous stitches. Cylinder was filled with colored saline gradually. Height of the water column at which sutured dura leaked was recorded. The tests were conducted with the dura both in lax and tense conditions. Inlay closure technique was also tested on the same model using a dural substitute. Results: Even without an incision, needle puncture sites over a dura, leak, at a very low hydrostatic pressure (30 < mm of H2O, though a continuous interlocking suture performs slightly better than an interrupted suture technique. If the needle puncture sites are closed with glue, both the suture techniques can achieve a watertight closure against a hydrostatic pressure of 240 mm of H2O. Conclusion : In the experimental model described, ′Water-tight′ dural closure appears to be impossible with suture closure of a dural defect.

  1. Closure Plan for Active Low Level Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during

  2. Closure constraints for hyperbolic tetrahedra

    CERN Document Server

    Charles, Christoph

    2015-01-01

    We investigate the generalization of loop gravity's twisted geometries to a q-deformed gauge group. In the standard undeformed case, loop gravity is a formulation of general relativity as a diffeomorphism-invariant SU(2) gauge theory. Its classical states are graphs provided with algebraic data. In particular closure constraints at every node of the graph ensure their interpretation as twisted geometries. Dual to each node, one has a polyhedron embedded in flat space R^3. One then glues them allowing for both curvature and torsion. It was recently conjectured that q-deforming the gauge group SU(2) would allow to account for a non-vanishing cosmological constant Lambda, and in particular that deforming the loop gravity phase space with real parameter q>0 would lead to a generalization of twisted geometries to a hyperbolic curvature. Following this insight, we look for generalization of the closure constraints to the hyperbolic case. In particular, we introduce two new closure constraints for hyperbolic tetrahe...

  3. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    Energy Technology Data Exchange (ETDEWEB)

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  4. MANTA, a novel plug-based vascular closure device for large bore arteriotomies: technical report.

    Science.gov (United States)

    van Gils, Lennart; Daemen, Joost; Walters, Greg; Sorzano, Todd; Grintz, Todd; Nardone, Sam; Lenzen, Mattie; De Jaegere, Peter P T; Roubin, Gary; Van Mieghem, Nicolas M

    2016-09-18

    Catheter-based interventions have become a less invasive alternative to conventional surgical techniques for a wide array of cardiovascular diseases but often create large arteriotomies. A completely percutaneous technique is attractive as it may reduce the overall complication rate and procedure time. Currently, large bore arteriotomy closure relies on suture-based techniques. Access-site complications are not uncommon and often seem related to closure device failure. The MANTA VCD is a novel collagen-based closure device that specifically targets arteriotomies between 10 and 22 Fr. This technical report discusses the MANTA design concept, practical instructions for use and preliminary clinical experience.

  5. Moment closure in a Moran model with recombination

    CERN Document Server

    Baake, Ellen

    2011-01-01

    We extend the Moran model with single-crossover recombination to include general recombination and mutation. We show that, in the case without resampling, the expectations of products of marginal processes defined via partitions of sites form a closed hierarchy, which is exhaustively described by a finite system of differential equations. One thus has the exceptional situation of moment closure in a nonlinear system. Surprisingly, this property is lost when resampling (i.e., genetic drift) is included.

  6. End-of-year closure 2011/2012

    CERN Multimedia

    Human Resouces Department

    2011-01-01

    (Application of Articles R II 4.38 and R II 4.39 of the Staff Regulations) Annual closure of the site of the Organization during the Christmas holidays and days of special leave granted by the Director-General : The Laboratory will be closed from Thursday 22 December 2011 to Wednesday 4 January 2012 inclusive (without deduction of annual leave). The first working day in the New Year will be Thursday 5 January 2012. Tel. 73903

  7. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  8. Savannah River Laboratory Seepage Basins: Waste site assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Looney, B.B.; Nichols, R.L.

    1989-09-05

    This Waste Site Assessment for the SRL Seepage Basins is the second in a series of documents being prepared to support development of an appropriate closure plan for these basins. The closure of these basins will be designed to provide protection to human health and the environment and to meet the provisions of the Consent Decree. A Technical Data Summary for these basins has already been submitted as part of the Consent Decree. This Site Assessment Report includes a waste site characterization, and a discussion of closure options for the basins. A closure option is recommended in this report, but details of the recommended closure are not provided in this report since they will be provided in a subsequent closure plan. The closure plan is the third document required under the Consent Decree. 18 refs., 16 figs., 10 tabs.

  9. Honey bee success predicted by landscape composition in Ohio, USA

    Directory of Open Access Journals (Sweden)

    DB Sponsler

    2015-03-01

    Full Text Available Foraging honey bees (Apis mellifera L. can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  10. Economic evaluation of closure CAP barrier materials Volume I and Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

    1993-09-01

    This study prepared by the Site Geotechnical Services (SGS) and Environmental Restoration (ER) departments of the WSRC evaluates a generic closure cover system for a hazardous waste site, using 10 different surface areas, ranging from 0.1 acre to 80 acres, and 12 barrier materials. This study presents a revision to the previous study (Rev. 0) published in June 1993, under the same title. The objective of this study was to revise the previous study by incorporating four additional site sizes into the evaluation process and identifying the most cost-effective barrier material for a given closure cover system at the SRS.

  11. Scope of Collections Statement Ohio River Islands National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Scope of Collections Statement serves to define the holdings, present and future, of museum property that contributes directly to the mission of Ohio River...

  12. Hunting Management Plan Ohio River Islands National Wildlife Refuge 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of the Ohio River Islands National Wildlife Refuge clearly state that appropriate public uses, including hunting, should be encouraged and that...

  13. Ohio's First Electrolysis-Based Hydrogen Fueling Station

    Science.gov (United States)

    Demattia, Brianne

    2014-01-01

    Presentation to the earth day coalition describing efforts with NASA GRC and Cleveland RTA on Ohio's hydrogen fueling station and bus demonstration. Project background and goals, challenges and successes, and current status.

  14. Ohio River Islands National Wildlife Refuge: Final Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) has been prepared for Ohio River Islands National Wildlife Refuge. The CCP is a management tool to be used by the Refuge...

  15. Age and Growth of Ohio River Sport Fish

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this study was to determine age and growth of selected Ohio River sport fish populations and to communicate results and recommendations to enhance...

  16. Middle Miocene closure of the Central American Seaway

    Science.gov (United States)

    Montes, C.; Cardona, A.

    2014-12-01

    The final closure of the Panama Isthmus and permanent separation of Caribbean and Pacific waters is thought to have modified their salinity, faunistic assemblages, and ultimately, ocean circulation patterns and global climate. The Great American Biotic Interchange (GABI) is thought to have been the result of Plio-Pleistocene closure of the Isthmus that allowed land animals to massively cross the Isthmus. Similarly, the separation of Caribbean and Pacific waters by a rising Isthmus is thougth to be a prime example of vicariance. The role of Isthmus closure on global changes, however, remains controversial due in part to the difficulty of establishing a precise chronology of seaway closure. While timing of glaciation is well established, new data on the chronology of Isthmus emergence suggests that the process of closure is more complex, long, and old than previously thought. We sampled fluvial and shallow marine strata in northwesternmost South America to recover zircon grains for provenance analyses in the immediate vicinity of the docking site. Because the ages of magmatic provinces in northwestern South America and the Panama Isthmus are mutually exclusive, detrital zircon analyses provides a tool to evaluate land connections. We found that an uniquely Panamanian, 40-45 Ma (early Lutetian) detrital zircon fingerprint is abundant in middle Miocene strata, but absent in underlying lower Miocene and Oligocene strata of the northern Andes. This fingerprint represents the beginning of fluvial detrital exchange between the Panama arc and South America, and therefore marks the time of docking and the end of deep-water, and probably shallow-water connections by middle Miocene times.

  17. Closure constraints for hyperbolic tetrahedra

    Science.gov (United States)

    Charles, Christoph; Livine, Etera R.

    2015-07-01

    We investigate the generalization of loop gravity's twisted geometries to a q-deformed gauge group. In the standard undeformed case, loop gravity is a formulation of general relativity as a diffeomorphism-invariant SU(2) gauge theory. Its classical states are graphs provided with algebraic data. In particular, closure constraints at every node of the graph ensure their interpretation as twisted geometries. Dual to each node, one has a polyhedron embedded in flat space {{{R}}3}. One then glues them, allowing for both curvature and torsion. It was recently conjectured that q-deforming the gauge group SU(2) would allow us to account for a non-vanishing cosmological constant Λ \

  18. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  19. 100-D Ponds closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.

  20. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  1. Achieving Direct Closure of the Anterolateral Thigh Flap Donor Site—An Algorithmic Approach

    Directory of Open Access Journals (Sweden)

    Jaime Eduardo Pachón Suárez, MD

    2014-10-01

    Conclusions: Direct primary closure of the ALT donor site can be facilitated by the use of our simple algorithm. Certain strategies need to be adopted at the design stage; however, the techniques used are simple and reliable, produce superior cosmetic results at the donor site, save time, and spare the patient the morbidity associated with the harvest of a skin graft.

  2. Factors influencing smokeless tobacco use in rural Ohio Appalachia.

    Science.gov (United States)

    Nemeth, Julianna M; Liu, Sherry T; Klein, Elizabeth G; Ferketich, Amy K; Kwan, Mei-Po; Wewers, Mary Ellen

    2012-12-01

    The burden of smokeless tobacco (ST) use disproportionally impacts males in rural Ohio Appalachia. The purpose of this study was to describe the cultural factors contributing to this disparity and to articulate the way in which culture, through interpersonal factors (i.e. social norms and social networks) and community factors (i.e. marketing and availability), impacts ST initiation and use of ST among boys and men in Ohio Appalachia. Fifteen focus groups and 23 individual qualitative interviews were conducted with adult (n = 63) and adolescent (n = 53) residents in Ohio Appalachian counties to ascertain factors associated with ST use and the impact of ST marketing. Transcriptions were independently coded according to questions and themes. ST use appears to be a rite of passage in the development of masculine identity in Ohio Appalachian culture. Interpersonal factors had the greatest influence on initiation and continued use of ST. Ohio Appalachian boys either emulated current ST users or were actively encouraged to use ST through male family and peer networks. Users perceived their acceptance into the male social network as predicated on ST use. Community factors, including ST advertisement and access to ST, reinforced and normalized underlying cultural values. In addition to policy aimed at reducing tobacco marketing and access, interventions designed to reduce ST use in Ohio Appalachia should incorporate efforts to (1) shift the perception of cultural norms regarding ST use and (2) address male social networks as vehicles in ST initiation.

  3. 40 CFR 264.112 - Closure plan; amendment of plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Closure plan; amendment of plan. 264... Closure and Post-Closure § 264.112 Closure plan; amendment of plan. (a) Written plan. (1) The owner or operator of a hazardous waste management facility must have a written closure plan. In addition,...

  4. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    Energy Technology Data Exchange (ETDEWEB)

    M.K. Shukla; R. Lal

    2004-07-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, bulk and core soil samples were collected from all 13 experimental sites for 0-15 cm, 15-30 cm, and 30-50 cm depths. In addition, 54 experimental plots (4 x 4 m) were established at three separate locations on reclaimed minesites to assess the influence of compost application on SOC during project period 2. This report presents the results from two sites reclaimed during 1978. The first site is under grass and the other under forest cover. The soil bulk density ({rho}{sub b}), SOC, total nitrogen (TN) concentrations and stocks were determined for these two sites on a 20 x 20 m grid. The preliminary analysis showed that the {rho}{sub b} ranged from 0.88 Mg m{sup -3} to 1.16 Mg m{sup -3} for 0-15 cm, 0.91 Mg m{sup -3} to 1.32 Mg m{sup -3} for 15-30 cm, and 1.37 Mg m{sup -3} to 1.93 Mg m{sup -3} for 30-50 cm depths in Cumberland tree site, and it's statistical variability was low. The variability in {rho}{sub b} was also low in Wilds grass site and ranged from 0.82 Mg m{sup -3} to 1.18 Mg m{sup -3} for 0-15 cm, 1.04 Mg m{sup -3} to 1.37 Mg m{sup -3} for 15-30 cm, and 1.18 Mg m{sup -3} to 1.83 Mg m{sup -3} for 30-50 cm depths. The {rho}{sub b} showed strong spatial dependence for 0-15 cm depth only in the Cumberland tree site. The SOC concentrations and stocks were highly variable with CV > 0.36 from all depths in both Wilds grass site and Cumberland tree site. The SOC stocks showed strong spatial dependence for 0-15 cm and 15-30 cm depths and moderate to strong for 20-50 cm depth in the Cumberland tree site. In contrast

  5. Structural determinants of hospital closure.

    Science.gov (United States)

    Longo, D R; Chase, G A

    1984-05-01

    In a retrospective case-control study, structural characteristics of hospitals that closed during the years 1976-1980 were contrasted with three comparison groups: hospitals that were acquired in a merger; hospitals that joined a multihospital system; and hospitals that remained autonomously opened, to investigate these characteristics as predictors of closure. Characteristics investigated included environmental, structural, and process variables. The independent variables were measured 5 years prior to outcome. Findings indicate that closed hospitals resemble hospitals acquired in a merger ("failure"), and likewise autonomous hospitals resemble hospitals that join a multihospital system ("success"). The most important predictors of hospital failure were the physician-to-population ratio, the East North Central and West North Central census regions, the level of diversification, low occupancy rate, location in a standard metropolitan statistical area, the chief executive officer's lack of affiliation in the American College of Hospital Administrators, profit status, bed size of less than 50, and presence in a state with a rate-setting agency. Surprisingly, this study shows the bed-to-population ratio to be unrelated to closure. In addition, the findings strongly support the open-system perspective, which, unlike the closed-system perspective, is concerned with the vulnerability of the organization to the uncontrollable and often unpredictable influences of the environment.

  6. Fire and Thinning in an Ohio Oak Forest: Grid-Based Analyses of Fire Behavior, Environmental Conditions, and Tree Regeneration Across a Topographic Moisture Gradient

    Science.gov (United States)

    Louis Iverson; Anantha Prasad; Todd Hutchinson; Joanne Rebbeck; Daniel A. Yaussy

    2004-01-01

    Prescribed fire alone and in combination with thinning were accomplished in late 2000 to spring 2001 at Zaleski State Forest in southern Ohio. Sites were monitored before and after the treatments were applied. Light was assessed via hemispherical photographs taken in July 2000 and 2001. Oak and hickory seedlings and saplings were sampled during those same time periods...

  7. Experimental validation of a mine-wide continuous closure monitoring system as a decision making tool for gold mines

    CSIR Research Space (South Africa)

    Malan, DF

    2003-03-01

    Full Text Available communication is probably the best method to link closure meters to a data logger located elsewhere in the stope. Further problems were experienced with the communication system to surface. The RMT system required a copper link to surface..., copper of leaky feeder. Following the problems experienced with the RMT system, SIMRAC requested Miningtek to use the remaining funds to collect data from one site only using stand-alone closure meters. The site chosen was the 109/51 area...

  8. Closure of oroantral fistula with rotational palatal flap technique

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2007-03-01

    Full Text Available Oroantral fistula is one of the common complications following dentoalveolar surgeries in the maxilla. Closure of oroantral fistula should be done as early as possible to eliminate the risk of infection of the antrum. Palatal flap is one of the commonly used methods in the closure of oroantral fistula. A case is reported of a male patient who had two oroantral communication after having his two dental implants removed. Buccal flap was used to close the defects, but one of them remained open and resulted in oroantral fistula. Second correction was performed to close the defect using buccal fat pad, but the fistula still persisted. Finally, palatal rotational flap was used to close up the fistula. The result was good, as the defect was successfully closed and the donor site healed uneventfully.

  9. 40 CFR 264.178 - Closure.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of Containers § 264.178 Closure. At closure, all hazardous waste and hazardous waste residues must be removed...

  10. 40 CFR 264.351 - Closure.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.351 Closure. At closure the owner or operator must remove all hazardous waste and hazardous waste...

  11. 50 CFR 665.666 - Closures.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Closures. 665.666 Section 665.666 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... § 665.666 Closures. (a) If the Regional Administrator determines that the harvest quota for any...

  12. Key financial ratios can foretell hospital closures.

    Science.gov (United States)

    Lynn, M L; Wertheim, P

    1993-11-01

    An analysis of various financial ratios sampled from open and closed hospitals shows that certain leverage, liquidity, capital efficiency, and resource availability ratios can predict hospital closure up to two years in advance of the closure with an accuracy of nearly 75 percent.

  13. Spontaneous closure of traumatic tympanic membrane perforations

    DEFF Research Database (Denmark)

    Jellinge, Marlene Ersgaard; Kristensen, S.; Larsen, K

    2015-01-01

    BACKGROUND: The treatment of traumatic tympanic membrane perforations varies in different investigations, ranging from observation to early surgical repair. The present study aimed to focus on the closure rate and the closure time in a group of patients treated with a watchful waiting policy. MET...

  14. Acute angle closure glaucoma following ileostomy surgery

    Directory of Open Access Journals (Sweden)

    Mariana Meirelles Lopes

    2015-02-01

    Full Text Available Angle-closure glaucoma can be induced by drugs that may cause pupillary dilatation. We report a case of a patient that developed bilateral angle closure glaucoma after an ileostomy surgery because of systemic atropine injection. This case report highlights the importance of a fast ophthalmologic evaluation in diseases with ocular involvement in order to make accurate diagnoses and appropriate treatments.

  15. Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration

    Directory of Open Access Journals (Sweden)

    Rajjoub LZ

    2014-07-01

    Full Text Available Lamise Z Rajjoub, Nisha Chadha, David A Belyea Department of Ophthalmology, The George Washington University, Washington, DC, USA Abstract: This is a case report describing recurrent intermittent acute angle closure episodes in the setting of topiramate use in a female suffering from migraines. Despite laser peripheral iridotomy placement for the pupillary block component, and the discontinuation of topiramate, the acute angle closure did not resolve in the left eye with chronic angle closure and the patient required urgent trabeculectomy. The right eye responded to laser peripheral iridotomy immediately and further improved after the cessation of topiramate. While secondary angle closure glaucoma due to topiramate use has been widely reported, its effects in patients with underlying primary angle closure glaucoma have not been discussed. Our report highlights the importance of recognizing the often multifactorial etiology of angle closure glaucoma to help guide clinical management. Keywords: angle closure glaucoma, plateau iris, topiramate, secondary glaucoma, drug-induced glaucoma

  16. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  17. The Depressed Image of Winesburg, Ohio

    Institute of Scientific and Technical Information of China (English)

    XU Wan-lin

    2015-01-01

    Winesburg Ohio is a famous short story in American literary history, through the study of this short story collection, the main and primary aim is to discuss social background of that certain time. People ’s social life in this story was in Midwest America, which represented the whole country at that period of time. For Winesburg as a microcosm:The so called grotesque fig⁃ures of Winesburg were forced to meet and handle issues and events, which people universally undergo. Winesburg then became Any Town, USA and the flaws and struggles represented by these characters were same as be met by the ordinary people with the common human experience. Sherwood Anderson’s motivation to write them was to show the typical human community to us. With analysis of three famous figures below to illustrate how depressed they were, and to indicate Anderson ’s great contribution to the American literature. Also what were readers’reactions to this masterpiece.

  18. Working at the Ohio Aerospace Institute

    Science.gov (United States)

    Szabo, Hortenzia

    2004-01-01

    The Ohio Aerospace Institute is a wonderful place to work. I enjoy coming to work everyday knowing that I will be surrounded by smiling faces. My mentor, Mary Auzenne, is the Program Manager of the LERCIP College Internship Program, however, I spend most of my time working with Akua Soadwa, the Assistant Program Manager. She is in charge of planning, coordinating, and managing every event that is involved with the college internship program such as the socials, picnic, banquet, workshops, and research symposium. My job is to make her job easier. I help out with the planning, coordinating, and managing of these events. When I first got on board Akua was in the process of planning the second social for the interns. The social is a way for the interns to interact with one another as well as to find out more about where the other interns are working at NASA. We ordered the food, went shopping, and set up the Guerin House for the party. I made sign-in sheets, which helped us get a rough count of the attendees. The next event was the Technical Presentation Workshop and the Professional Development Workshop. These workshops are designed to enhance skills of the interns. We were there to sign people in and direct them to the room where the presentation was to take place. I also took pictures of the workshop and provided copies for the presenters, as well as our files.

  19. An initial investigation of multidimensional flow and transverse mixing characteristics of the Ohio River near Cincinnati, Ohio

    Science.gov (United States)

    Holtschlag, David J.

    2009-01-01

    Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the

  20. Closure of Microcosm for refurbishment

    CERN Multimedia

    2014-01-01

    Since 1994, the Microcosm exhibition has given the opportunity to visitors of all ages and backgrounds to have a first glimpse into the secrets of physics.   To ensure that Microcosm can continue fulfilling its educational aims at the same level of quality for many years to come, it is closing for renovation work on 8 December 2014 and is expected to reopen during Summer 2015. During the closure, the “Fun with Physics” workshop will not take place, but the Universe of Particles exhibition in the Globe and the Passport to the Big Bang circuit will remain accessible to the public, free of charge and with no need to book in advance.  Guided tours of CERN are also available (advance booking required via this page).

  1. Closure for milliliter scale bioreactor

    Science.gov (United States)

    Klein, David L.; Laidlaw, Robert D.; Andronaco, Gregory; Boyer, Stephen G.

    2010-12-14

    A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.

  2. Abdominal wall closure after a stomal reversal procedure.

    Science.gov (United States)

    López-Cano, Manuel; Pereira, José Antonio; Villanueva, Borja; Vallribera, Francesc; Espin, Eloy; Armengol Carrasco, Manuel; Arbós Vía, María Antonia; Feliu, Xavier; Morales-Conde, Salvador

    2014-01-01

    The closure of a temporary stoma involves 2 different surgical procedures: the stoma reversal procedure and the abdominal wall reconstruction of the stoma site. The management of the abdominal wall has different areas that should be analyzed such us how to avoid surgical site infection (SSI), the technique to be used in case of a concomitant hernia at the stoma site or to prevent an incisional hernia in the future, how to deal with the incision when the stoma reversal procedure is performed by laparoscopy and how to close the skin at the stoma site. The aim of this paper is to analyze these aspects in relation to abdominal wall reconstruction during a stoma reversal procedure.

  3. 76 FR 72405 - San Fernando Valley Area 2 Superfund Site; Notice of Proposed Prospective Purchaser Agreement Re...

    Science.gov (United States)

    2011-11-23

    ... Site; Notice of Proposed Prospective Purchaser Agreement Re: 4057 and 4059 Goodwin Avenue, Los Angeles...) concerning 4057 and 4059 Goodwin Avenue, Los Angeles, California (Property). The Agreement is entered into..., Glendale/Goodwin Realty I, LLC, an Ohio limited liability company, The Kroger Co., an Ohio corporation,...

  4. 76 FR 62451 - Avon Products, Inc., Including On-Site Leased Workers From Spherion/Source Right, Springdale...

    Science.gov (United States)

    2011-10-07

    .../Source Right, Springdale, Ohio; Amended Certification Regarding Eligibility To Apply for Worker... company reports that workers leased from Spherion/Source Right were employed on-site at the Springdale... leased workers from Spherion/Source Right, Springdale, Ohio, who became totally or partially separated...

  5. Don’t call it a closure!

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    During the Laboratory’s annual closure, some members of the personnel joined their families, others seized the chance to travel the world. The Restaurants were closed, the corridors were dark and the heating was turned off in most of the buildings. However, a lot of people spent the Christmas break working on site and the Bulletin would like to dedicate this first article of the new year to them all!   In the CERN Control Centre (CCC), each shift had two people in position to guarantee regular 24/7 service and to intervene in case of need. Gildas Langlois and Rodolphe Maillet, CCC operators from the Beams Department, spent Christmas Eve there and celebrated it with a cake. “I volunteered to work during the holidays in order to allow colleagues to stay with their families,” says Maillet. On New Year’s Eve, it was Julien Pache and Jean-Michel Nonglaton’s turn to spend the night at work. They had a nice dinner with a CCC-made fondue and some desse...

  6. Friction or Closure: Heritage as Loss

    Directory of Open Access Journals (Sweden)

    Mikela Lundahl

    2014-12-01

    Full Text Available Heritage is a discourse that aims at closure. It fixates the narrative of the past through the celebration of specific material (or sometimes immaterial non- objects. It organizes temporality and construct events and freezes time. How does this unfold in the case of the UNESCO World Heritage site of Stone Town, Zanzibar? It is a place of beauty and violence, of trade, slavery and tourism, and the World Heritage narrative does not accommodate all its significant historical facts and lived memories. In this article I will discuss some of these conflicting or competing historical facts. The anthropologist Anna Tsing has developed the concept-metaphor friction as a way to discuss the energy created when various actors narrate 'the same' event(s in different ways, and see the other participants' accounts as fantasies or even fabrications. I will use my position as researcher and my relations to different sources: informants, authorities and texts, and discuss how different accounts relate to and partly construct each other; and how I, in my own process as an analyst and listener, negotiate these conflicting stories, what I identify as valid and non valid accounts. The case in this article is Stone Town in Zanzibar and the development and dissolution going on under the shadow of the UNESCO World Heritage flag; a growing tourism; a global and local increase in islamisation; and the political tension within the Tanzanian union. My main focus is narratives of the identity of Zanzibar since heritagization constructs identity.

  7. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    Science.gov (United States)

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  8. Geospatial tools effectively estimate nonexceedance probabilities of daily streamflow at ungauged and intermittently gauged locations in Ohio

    Science.gov (United States)

    Farmer, William H.; Koltun, Greg

    2017-01-01

    Study regionThe state of Ohio in the United States, a humid, continental climate.Study focusThe estimation of nonexceedance probabilities of daily streamflows as an alternative means of establishing the relative magnitudes of streamflows associated with hydrologic and water-quality observations.New hydrological insights for the regionSeveral methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index) and geospatial tools (kriging and topological kriging). These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.

  9. Superfund Record of Decision (EPA Region 5): Fields Brook sediment operable unit, Ashtabula, Ohio, September 1986. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-30

    Fields Brook is located in the City of Ashtabula, Ohio and drains a 5.6-square mile watershed (defined as the 'site'). The 3.5 mile main channel of Fields Brook flows through an industrial area that is one of the largest and most diversified concentrations of chemical plants in Ohio. Industrial sources have contaminated the sediment in Fields Brook with a variety of organic and heavy metal pollutants, including TCE, PCE, chlorobenzene, vinyl chloride, arsenic, zinc, mercury and chromium. Base-neutral compounds including hexachloroethane, toluenediamine and toluene diisocyanate also were detected in Fields Brook sediments. Sediments taken from the Ashtabula River in the vicinity of Fields Brook are contaminated with PCBs. The U.S. EPA believes that the amount of contamination entering the brook at this time has been substantially reduced due to the recent development of pollution control laws and discharge-permitting requirements.

  10. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Ohio. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Ohio.

  11. Ohio River Islands National Wildlife Refuge: Examination of Contaminants Using Mussels and Paddlefish and Indicators

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Ohio River Islands National Wildlife Refuge is located along almost 400 miles of the Ohio River from river mile 35 to 397 with headquarters stationed at...

  12. EPA Awards Great Lakes Restoration Initiative Shoreline Cities Grants to Northern Ohio

    Science.gov (United States)

    EUCLID, OHIO -- The U.S. Environmental Protection Agency today announced Great Lakes Restoration Initiative Shoreline Cities grants totaling more than $500,000 to three cities in northern Ohio to fund green infrastructure projects that will improve water q

  13. Subsidence crack closure: rate, magnitude and sequence

    Energy Technology Data Exchange (ETDEWEB)

    De Graff, J.V.; Romesburg, H.C.

    1981-06-01

    Tension cracks are a major surface disturbance resulting from subsidence and differential settlement above underground coal mines. Recent engineering studies of subsidence indicate that cracks may close where tensile stresses causing the cracks are reduced or relaxed. This stress reduction occurs as mining in the area is completed. Crack closure was confirmed by a study in the Wasatch Plateau coal field of central Utah. Cracks occurred in both exposed bedrock and regolith in an area with maximum subsidence of 3 m. Mean closure rate was 0.3 cm per week with individual crack closure rates between 0.2 cm and 1.0 cm per week. The mean crack closure magnitude was 80% with closure magnitudes varying between 31% and 100%. Actual magnitude values ranged from 0.6 cm to 6.5 cm with a mean value of 3.8 cm. Statistical analysis compared width change status among cracks over time. It was found that: 1) a 41% probability existed that a crack would exhibit decreasing width per weekly measurement, 2) closure state sequences seem random over time, and 3) real differences in closure state sequence existed among different cracks. (6 refs.) (In English)

  14. Analytic closures for M1 neutrino transport

    Science.gov (United States)

    Murchikova, E. M.; Abdikamalov, E.; Urbatsch, T.

    2017-08-01

    Carefully accounting for neutrino transport is an essential component of many astrophysical studies. Solving the full transport equation is too expensive for most realistic applications, especially those involving multiple spatial dimensions. For such cases, resorting to approximations is often the only viable option for obtaining solutions. One such approximation, which recently became popular, is the M1 method. It utilizes the system of the lowest two moments of the transport equation and closes the system with an ad hoc closure relation. The accuracy of the M1 solution depends on the quality of the closure. Several closures have been proposed in the literature and have been used in various studies. We carry out an extensive study of these closures by comparing the results of M1 calculations with precise Monte Carlo calculations of the radiation field around spherically symmetric protoneutron star models. We find that no closure performs consistently better or worse than others in all cases. The level of accuracy that a given closure yields depends on the matter configuration, neutrino type and neutrino energy. Given this limitation, the maximum entropy closure by Minerbo on average yields relatively accurate results in the broadest set of cases considered in this work.

  15. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  16. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  17. Partial Closure Report for the Area 514 Treatment and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Abri, M

    2005-05-02

    The purpose of this partial closure report is to inform the Department of Toxic Substances Control (DTSC) of the status of final closure of the Area 514 Treatment and Storage Facility (Area 514) and fulfill the DTSC requirements to proceed with the implementation of the interim action. Area 514 is located at the Livermore main site of Lawrence Livermore National Laboratory (LLNL). LLNL is owned by the U.S. Department of Energy (DOE) and operated jointly by DOE and the University of California. LLNL received its permit to operate hazardous waste facilities from DTSC in 1997. The hazardous waste treatment and storage operations of Area 514 were transferred to a newly constructed complex, the Decontamination and Waste Treatment Facility (DWTF), in 2003. Once the DWTF was operational, the final closure of Area 514 began in accordance with the DTSC-approved closure plan in June 2004. Abri Environmental Engineering, Inc., was retained by LLNL to observe the A514 closure process and prepare this partial closure report and certification. Prior to closure, the configuration of the Area 514 Treatment and Storage Facility consisted of Building 514, the Area 514-1 Container Storage and Treatment unit, the Area 514-2 Container Storage Unit (CSU), the Area 514-3 CSU, Building 513, the Wastewater Treatment Tank Farm unit, and the associated Area 514 yard area. The fenced area of Area 514 included approximately 27,350 ft2 on the LLNL Livermore site. To date, except for the 514-3 CSU, all of the other Area 514 structures have been demolished; and sampling and analysis have taken place. The non-hazardous wastes have been disposed of. At the time of writing this report, the hazardous, mixed, and low-level radioactive wastes are in the process of profiling for final disposition. Once the disposition of all wastes has been finalized, the implementation of the approved closure plan will be completed. As a part of the closure process, LLNL is required to submit a closure report and a

  18. Educational Architecture in Ohio: From One-Room Schools and Carnegie Libraries to Community Education Villages.

    Science.gov (United States)

    McCormick, Virginia E.

    This book examines the evolution of Ohio's educational institutions from one-room schoolhouses to modern educational campuses, reflecting Ohio's population growth and its shared culture and traditions. Ohio's heritage, pioneer settlers, immigrant diversity, and strategic location for westward migration are discussed. A unique perspective for…

  19. OSU Extension, Ohio Aging Network Join Forces: Creating Resources for Successful Aging

    Science.gov (United States)

    Goard, Linnette Mizer

    2010-01-01

    Ohio State University Extension and Ohio's Aging Network professionals have worked together for more than a decade to address issues of importance to Ohio's older adult population. The team's mission is to provide education, training, and resources to empower older Ohioans to achieve an optimal level of well-being. The Senior Series team initially…

  20. 78 FR 6035 - Approval and Promulgation of Air Quality Implementation Plans; Ohio and Indiana; Cincinnati...

    Science.gov (United States)

    2013-01-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio and Indiana; Cincinnati-Hamilton, OH; Ohio and Indiana 1997 8-Hour Ozone Maintenance Plan Revisions to Approved Motor..., 2010 and 77 FR 11394, February 27, 2012). The Ohio, Kentucky, Indiana Regional Council of...

  1. Cancer Screening Practices among Amish and Non-Amish Adults Living in Ohio Appalachia

    Science.gov (United States)

    Katz, Mira L.; Ferketich, Amy K.; Paskett, Electra D.; Harley, Amy; Reiter, Paul L.; Lemeshow, Stanley; Westman, Judith A.; Clinton, Steven K.; Bloomfield, Clara D.

    2011-01-01

    Purpose: The Amish, a unique community living in Ohio Appalachia, have lower cancer incidence rates than non-Amish living in Ohio Appalachia. The purpose of this study was to examine cancer screening rates among Amish compared to non-Amish adults living in Ohio Appalachia and a national sample of adults of the same race and ethnicity in an effort…

  2. Building Essential Skills for the Ohio Building and Construction Industry. Final Report.

    Science.gov (United States)

    Pritz, Sandra G.; And Others

    The Center on Education and Training for Employment (CETE) at the Ohio State University worked in partnership with the Ohio State Building and Construction Trades Council (OSB&CT) to develop and deliver customized workplace literacy services for local union members in six major Ohio cities (Columbus, Cleveland, Cincinnati, Toledo, Dayton, and…

  3. Cancer Screening Practices among Amish and Non-Amish Adults Living in Ohio Appalachia

    Science.gov (United States)

    Katz, Mira L.; Ferketich, Amy K.; Paskett, Electra D.; Harley, Amy; Reiter, Paul L.; Lemeshow, Stanley; Westman, Judith A.; Clinton, Steven K.; Bloomfield, Clara D.

    2011-01-01

    Purpose: The Amish, a unique community living in Ohio Appalachia, have lower cancer incidence rates than non-Amish living in Ohio Appalachia. The purpose of this study was to examine cancer screening rates among Amish compared to non-Amish adults living in Ohio Appalachia and a national sample of adults of the same race and ethnicity in an effort…

  4. Educational Architecture in Ohio: From One-Room Schools and Carnegie Libraries to Community Education Villages.

    Science.gov (United States)

    McCormick, Virginia E.

    This book examines the evolution of Ohio's educational institutions from one-room schoolhouses to modern educational campuses, reflecting Ohio's population growth and its shared culture and traditions. Ohio's heritage, pioneer settlers, immigrant diversity, and strategic location for westward migration are discussed. A unique perspective for…

  5. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  6. Preliminary archaeological survey of proposed gas well locations in Green Township (Scioto County) and Elizabeth Township (Lawrence County) Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.B.; Peebles, C.S.; Zielinski, R.E.

    1978-10-24

    The present archaeological survey and cultural resource assessment were conducted for the United States Department of Energy, Morgantown Energy Technology Center in areas to be disturbed by gas well drilling and holding pond construction. The project area is the Pine Creek drainage system, which is a tributary of the Ohio River in Scioto and Lawrence Counties, Ohio. The literature search indicated that prehistoric archaeological sites do occur and have been documented in the Pine Creek drainage system. Presently, no archaeological sites have been reported in locations of direct impact. The literature search also indicated that historic features from the early iron industry period, ca. 1840 to 1870, are likely to occur throughout the project area. Field reconnaissance identified three prehistoric archaeological sites and one historic site in and adjacent to the proposed locations of disturbance. Two sites were determined to be of significant research value and may be nominated to the National Register of Historic Places. Consequently, recommendations were made to minimize the adverse effects of the proposed drilling project on these archaeological sites.

  7. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  8. Bankfull characteristics of Ohio streams and their relation to peak streamflows

    Science.gov (United States)

    Sherwood, James M.; Huitger, Carrie A.

    2005-01-01

    Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and

  9. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    Energy Technology Data Exchange (ETDEWEB)

    M.K. Shukla; R. Lal

    2004-10-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, water infiltration tests were performed on the soil surface in the experimental sites. Soil samples were analyzed for the soil carbon and nitrogen contents, texture, water stable aggregation, and mean weight and geometric mean diameter of aggregates. This report presents the results from two sites reclaimed during 1978 and managed under grass (Wilds) and forest (Cumberland) cover, respectively. The trees were planted in 1982 in the Cumberland site. The analyses of data on soil bulk density ({rho}{sub b}), SOC and total nitrogen (TN) concentrations and stocks were presented in the third quarter report. This report presents the data on infiltration rates, volume of transport and storage pores, available water capacity (AWC) of soil, particle size distribution, and soil inorganic carbon (SIC) and coal carbon contents. The SIC content ranged from 0.04 to 1.68% in Cumberland tree site and 0.01 to 0.65% in the Wilds. The coal content assumed to be the carbon content after oven drying the sample at 350 C varied between 0.04 and 3.18% for Cumberland and 0.06 and 3.49% for Wilds. The sand, silt and clay contents showed moderate to low variability (CV < 0.16) for 0-15 and 15-30 cm depths. The volume of transmission (VTP) and storage pores (VSP) also showed moderate to high variability (CV ranged from 0.22 to 0.39 for Wilds and 0.17 to 0.36 for Cumberland). The CV for SIC was high (0.7) in Cumberland whereas that for coal content was high (0.4) in the Wilds. The steady state infiltration rates (i{sub c}) also showed high variability

  10. Two-year performance by evapotranspiration covers for municipal solid waste landfills in northwest Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Barnswell, Kristopher D., E-mail: kristopher.barnswell2@rockets.utoledo.edu [Department of Environmental Sciences, University of Toledo, Lake Erie Center, 6200 Bayshore Rd., Oregon, OH 43616 (United States); Dwyer, Daryl F., E-mail: daryl.dwyer@utoledo.edu [Department of Environmental Sciences, University of Toledo, 2801 W. Bancroft, Mail Stop 604, Toledo, OH 43606 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer All ET covers produced rates of percolation less than 32 cm yr{sup -1}, the maximum allowable rate by the Ohio EPA. Black-Right-Pointing-Pointer Dredged sediment provided sufficient water storage and promoted growth by native plant species. Black-Right-Pointing-Pointer Native plant mixtures attained acceptable rates of evapotranspiration throughout the growing season. - Abstract: Evapotranspiration (ET) covers have gained interest as an alternative to conventional covers for the closure of municipal solid waste (MSW) landfills because they are less costly to construct and are expected to have a longer service life. Whereas ET covers have gained acceptance in arid and semi-arid regions (defined by a precipitation (P) to potential evapotranspiration (PET) ratio less than 0.75) by meeting performance standards (e.g. rate of percolation), it remains unclear whether they are suitable for humid regions (P:PET greater than 0.75). The goal of this project is to extend their application to northwest Ohio (P:PET equals 1.29) by designing covers that produce a rate of percolation less than 32 cm yr{sup -1}, the maximum acceptable rate by the Ohio Environmental Protection Agency (OEPA). Test ET covers were constructed in drainage lysimeters (1.52 m diameter, 1.52 m depth) using dredged sediment amended with organic material and consisted of immature (I, plants seeded onto soil) or mature (M, plants transferred from a restored tall-grass prairie) plant mixtures. The water balance for the ET covers was monitored from June 2009 to June 2011, which included measured precipitation and percolation, and estimated soil water storage and evapotranspiration. Precipitation was applied at a rate of 94 cm yr{sup -1} in the first year and at rate of 69 cm yr{sup -1} in the second year. During the first year, covers with the M plant mixture produced noticeably less percolation (4 cm) than covers with the I plant mixture (17 cm). However, during the

  11. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-05-28

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2009 and includes inspection and repair activities completed at the following seven CAUs: · CAU 400: Bomblet Pit and Five Points Landfill (TTR) · CAU 407: Roller Coaster RadSafe Area (TTR) · CAU 424: Area 3 Landfill Complexes (TTR) · CAU 426: Cactus Spring Waste Trenches (TTR) · CAU 453: Area 9 UXO Landfill (TTR) · CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) · CAU 487: Thunderwell Site (TTR) The annual post-closure inspections were conducted May 5–6, 2009. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2009, and the vegetation monitoring report is included in Attachment F. Maintenance was performed at CAU 453. Animal burrows observed during the annual inspection were backfilled, and a depression was restored to grade on June 25, 2009. Post-closure site inspections should continue as scheduled. Vegetation survey inspections have been conducted annually at CAUs 400, 404, 407, and 426. Discontinuation of vegetation surveys is recommended at the CAU 400 Bomblet Pit and CAU 426, which have been successfully revegetated. Discontinuation of vegetation surveys is also recommended at CAU 404, which has been changed to an administrative closure with no inspections required. Vegetation

  12. Systematization of a set of closure techniques.

    Science.gov (United States)

    Hausken, Kjell; Moxnes, John F

    2011-11-01

    Approximations in population dynamics are gaining popularity since stochastic models in large populations are time consuming even on a computer. Stochastic modeling causes an infinite set of ordinary differential equations for the moments. Closure models are useful since they recast this infinite set into a finite set of ordinary differential equations. This paper systematizes a set of closure approximations. We develop a system, which we call a power p closure of n moments, where 0≤p≤n. Keeling's (2000a,b) approximation with third order moments is shown to be an instantiation of this system which we call a power 3 closure of 3 moments. We present an epidemiological example and evaluate the system for third and fourth moments compared with Monte Carlo simulations.

  13. Entropy production and collisionless fluid closure

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y; Zarzoso, D; Garbet, X; Ghendrih, Ph; Grandgirard, V [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Dif-Pradalier, G, E-mail: yanick.sarazin@cea.f [Center for Astrophysics and Space Science, U.C.S.D., La Jolla, CA 92093 (United States)

    2009-11-15

    A novel method is proposed to construct collisionless fluid closures accounting for some kinetic properties. The idea consists in optimizing the agreement between the fluid and kinetic quasi-linear entropy production rates, so as to constrain the closure coefficients. This procedure is applied to the slab branch of the ion temperature gradient driven instability. Focusing on the kinetic regime characterized by slow waves, the closure proposed by Hammett and Perkins (Hammett and Perkins 1990 Phys. Rev. Lett. 64 3019) naturally emerges from the systematic identification of the kinetic and fluid entropy production rates. This closure is revealed to be extremely powerful well beyond the kinetic regime. Besides, it reconciles the fluid and kinetic linear stability diagrams in the two-dimensional space of the density and temperature gradient lengths. Such a method is systematic and generic. As such, it is applicable to other models and classes of instabilities.

  14. Entropy production and collisionless fluid closure

    Science.gov (United States)

    Sarazin, Y.; Dif-Pradalier, G.; Zarzoso, D.; Garbet, X.; Ghendrih, Ph; Grandgirard, V.

    2009-11-01

    A novel method is proposed to construct collisionless fluid closures accounting for some kinetic properties. The idea consists in optimizing the agreement between the fluid and kinetic quasi-linear entropy production rates, so as to constrain the closure coefficients. This procedure is applied to the slab branch of the ion temperature gradient driven instability. Focusing on the kinetic regime characterized by slow waves, the closure proposed by Hammett and Perkins (Hammett and Perkins 1990 Phys. Rev. Lett. 64 3019) naturally emerges from the systematic identification of the kinetic and fluid entropy production rates. This closure is revealed to be extremely powerful well beyond the kinetic regime. Besides, it reconciles the fluid and kinetic linear stability diagrams in the two-dimensional space of the density and temperature gradient lengths. Such a method is systematic and generic. As such, it is applicable to other models and classes of instabilities.

  15. Testing turbulent closure models with convection simulations

    CERN Document Server

    Snellman, J E; Mantere, M J; Rheinhardt, M; Dintrans, B

    2012-01-01

    Aims: To compare simple analytical closure models of turbulent Boussinesq convection for stellar applications with direct three-dimensional simulations both in homogeneous and inhomogeneous (bounded) setups. Methods: We use simple analytical closure models to compute the fluxes of angular momentum and heat as a function of rotation rate measured by the Taylor number. We also investigate cases with varying angles between the angular velocity and gravity vectors, corresponding to locating the computational domain at different latitudes ranging from the pole to the equator of the star. We perform three-dimensional numerical simulations in the same parameter regimes for comparison. The free parameters appearing in the closure models are calibrated by two fit methods using simulation data. Unique determination of the closure parameters is possible only in the non-rotating case and when the system is placed at the pole. In the other cases the fit procedures yield somewhat differing results. The quality of the closu...

  16. Reliability assessment of underground shaft closure

    Energy Technology Data Exchange (ETDEWEB)

    Fossum, A.F. [RE/SPEC, Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties.

  17. Cyanoacrylate for Intraoral Wound Closure: A Possibility?

    Directory of Open Access Journals (Sweden)

    Parimala Sagar

    2015-01-01

    Full Text Available Wound closure is a part of any surgical procedure and the objective of laceration repair or incision closure is to approximate the edges of a wound so that natural healing process may occur. Over the years new biomaterials have been discovered as an alternate to conventional suture materials. Cyanoacrylate bioadhesives are one among them. They carry the advantages of rapid application, patient comfort, resistance to infection, hemostatic properties, and no suture removal anxiety. Hence this study was undertaken to study the effect of long chain cyanoacrylate as an adhesive for intraoral wound closure and also to explore its hemostatic and antibacterial effects. Isoamyl-2-cyanoacrylate (AMCRYLATE was used as the adhesive in the study. In conclusion isoamyl cyanoacrylate can be used for intraoral wound closure, as an alternative to sutures for gluing the mucoperiosteum to bone, for example, after impaction removal, periapical surgeries, and cleft repair. Its hemostatic and antibacterial activity has to be further evaluated.

  18. Effect of wastewater treatment facility closure on endocrine disrupting chemicals in a Coastal Plain stream

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Clark, Jimmy M.

    2016-01-01

    Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed. 

  19. Preliminary experience using transthoracic echocardiography guiding percutaneous closure of ruptured right sinus of Valsalva aneurysm

    Institute of Scientific and Technical Information of China (English)

    LI Yue; WANG Guang-yi; WANG Zhi-feng; GUO Liang

    2011-01-01

    Background In the 21st century, minimally invasive treatment is one of the main developmental directions of medical sciences. It is well known that the echocardiography plays an important role during interventional treatments of some structural heart diseases. Because the ruptured right sinus of the Valsalva aneurysm (RRSVA) is a rare disease, there were few reports about percutaneous catheter closure of RRSVA. This study aimed to sum up our experience with transthoracic echocardiography (TTE) during percutaneous catheter closure of RRSVA.Methods Five RRSVA cases were treated with percutaneous catheter closure. The whole procedure was guided and monitored by TTE and fluoroscopy. The maximum diameter of the RRSVA was measured by TTE before and after the catheter passed through the rupture site. A duct occluder 2 mm larger than the maximum diameter was chosen. The closure effects were evaluated with TTE and fluoroscopy immediately after the occluding device was deployed. All patients were followed up by TTE for 8 to 30 months.Results Before the catheter passed through the rupture site the maximum diameter of the RRSVA measured with TTE and aortography were (7.9 ±2.1) mm and (7.8 ± 1.8) mm. After the catheter passed through the rupture site the maximum diameter measured with TTE was (11.2 ± 3.2) mm, which was significantly larger than before the procedure (P <0.05). The percutaneous catheter closure was successful in four cases and failed in one. Compared to the aortography the TTE was better at distinguishing residual shunts from aortic valve regurgitation immediately after the occluding device was deployed. There were no complications during 8 to 30 months of follow-up.Conclusion Transthoracic echocardiography can play an important role during percutaneous catheter closure of RRSVA,especially for estimating the size of the RRSVA after the catheter passes through the rupture site, and differentiating residual shunt from aortic valve regurgitation immediately

  20. [Percutaneous closure of patent ductus arteriosus: results and costs compared to surgical closure].

    Science.gov (United States)

    Vieu, T; Beaurain, S; Angel, C; Leriche, H; Petit, J; Conso, J F; Planché, C; Losay, J

    1995-10-01

    The comparison of the clinical results and costs of the two methods of closure of patient ductus arteriosus was undertaken in two comparable groups of 40 patients treated in the same period in the same hospital. After transcatheter closure there was a 9% residual shunt rate at 3 years, the 2 patients with a residual continuous murmur being operated secondarily. The only complication was severe haemolysis which regressed after transcatheter ablation of the prosthesis. After surgical closure, there were no residual shunt. Some postoperative complications were observed in 20% of cases, usually benign (ventilatory problems, dysphonia or urinary infection), but occasionally more serious (peroperative lesion of the pulmonary artery). Morbidity, inherent to the technique of closure, was very different and much less in catheter closure. The average cost (daily cost x average length of hospital stay) was much less with transcatheter closure 38,558 francs versus 11,240 francs. On the other hand, the direct cost of transcatheter closure was greater than that of surgery: 32,798 francs versus 20,903 francs, the difference being related to the actual price of the prosthesis. The authors conclude that the 3 year results of transcatheter closure of patent ductus arterious make this technique a reasonable therapeutic alternative to surgery. From the safety point of view, the two techniques are comparable bu patient confort is greater with transcatheter closure for an increase in cost of the initial procedure which should decrease in relation to the types and prices of the prosthesis used.