WorldWideScience

Sample records for off-nuclear x-ray source

  1. A SEARCH FOR HYPERLUMINOUS X-RAY SOURCES IN THE XMM-NEWTON SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, I.; Webb, N. A.; Godet, O.; Barret, D. [CNRS, IRAP, 9 av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Bachetti, M., E-mail: ivan.zolotukhin@irap.omp.eu [INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy)

    2016-02-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 10{sup 41} < L{sub X} < 10{sup 44} erg s{sup −1}, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243–49 HLX–1 and M82 X–1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada–France–Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.

  2. Nuclear and x-ray spectroscopy with radioactive sources

    International Nuclear Information System (INIS)

    Fink, R.W.

    1977-01-01

    Research in nuclear chemistry for 1977 is reviewed. The greatest part of the effort was directed to nuclear spectroscopy (systematics, models, experimental studies), but some work was also done involving fast neutrons and x rays from radioactive sources. Isotopes of Tl, Hg, Au, and Eu were studied in particular. Personnel and publications lists are also included. 5 figures, 1 table

  3. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  4. Three Bright X-ray Sources in NGC 1313

    Science.gov (United States)

    Colbert, E.; Petre, R.; Schlegel, E.

    1992-12-01

    Three bright X-ray sources were detected in a recent (April/May 1991) ROSAT PSPC observation of the nearby (D ~ 4.5 Mpc) face--on barred spiral galaxy NGC 1313. Two of the sources were at positions coincident with X-ray sources detected by Fabbiano & Trinchieri (ApJ 315, 1987) in a previous (Jan 1980) Einstein IPC observation. The position of the brightest Einstein source is near the center of NGC 1313, and the second Einstein source is ~ 7' south of the ``nuclear'' source, in the outskirts of the spiral arms. A third bright X-ray source was detected in the ROSAT observation ~ 7' southwest of the ``nuclear'' source. We present X-ray spectra and X-ray images for the three bright sources found in the ROSAT observation of NGC 1313, and compare with previous Einstein results. Spectral analysis of these sources require them to have very large soft X-ray luminosities ( ~ 10(40) erg s(-1) ) when compared with typical X-ray sources in our Galaxy. Feasible explanations for the X-ray emission are presented. The third X-ray source is positively identified with the recently discovered (Ryder et. al., ApJ 1992) peculiar type-II supernova 1978K.

  5. Mutual control of X-rays and nuclear transitions

    Energy Technology Data Exchange (ETDEWEB)

    Gunst, Jonas Friedrich

    2015-12-14

    In the course of this Thesis the mutual control between X-rays and nuclear transitions is investigated theoretically. In the first Part, we study the nuclear photoexcitation with the highly brilliant and coherent X-ray free-electron lasers (XFELs). Apart from amplifying the direct resonant interaction with nuclear transitions, the super-intense XFEL can produce new states of matter like cold, high-density plasmas where secondary nuclear excitation channels may come into play, e.g., nuclear excitation by electron capture (NEEC). Our results predict that in the case of {sup 57}Fe targets secondary NEEC can be safely neglected, whereas it is surprisingly the dominating contribution (in comparison to the direct photoexcitation) for the XFEL-induced {sup 93m}Mo isomer triggering. Based on these case studies, we elaborate a general set of criteria to identify the prevailing excitation channel for a certain nuclear isotope. These criteria may be most relevant for future nuclear resonance experiments at XFEL facilities. On the opposite frontier, the interplay between single X-ray photons and nuclear transitions offer potential storage and processing applications for information science in their most compact form. In the second Part of this Thesis, we show that nuclear forward scattering off {sup 57}Fe targets can be employed to process polarization-encoded single X-rays via timed magnetic field rotations. Apart from the realization of logical gates with X-rays, the polarization encoding is used to design an X-ray quantum eraser scheme where the interference between scattering paths can be switched off and on in a controlled manner. Such setups may advance time-energy complementarity tests to so far unexplored parameter regimes, e.g., to the domain of X-ray quanta.

  6. Nuclear and x-ray spectroscopy with radioactive sources. Fifteenth annual progress report

    International Nuclear Information System (INIS)

    Rink, R.W.; Wood, J.L.

    1979-01-01

    Research during the year is summarized briefly for the following areas: nuclear spectroscopy (including nuclear systematics and models and experimental studies of heavy-nucleus decays), x rays from radioactive sources (including L-subshell x-ray fluorescence and Coster-Kronig yields and the measurement of tailing corrections in low-energy coincidence intensity determinations), and miscellaneous topics concerning computer codes and equipment. One may assume publication of completed work in the usual channels. Lists of personnel, publications, etc., are included. 7 figures

  7. Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Im, Myungshin [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2017-08-01

    The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observations obtained using Gemini Multi-Object Spectrographs on the Gemini-North telescope. In addition to confirming that the ionized gas in the vicinity of the ULX is kinematically associated with NGC 5252, the new observations reveal ordered motions consistent with rotation around the ULX. The close coincidence of the excitation source of the line-emitting gas with the position of the ULX further suggests that ULX itself is directly responsible for the ionization of the gas. The spatially resolved measurements of [N ii] λ 6584/H α surrounding the ULX indicate a low gas-phase metallicity, consistent with those of other known low-mass active galaxies but not that of its more massive host galaxy. These findings strengthen the proposition that the ULX is not a background source but rather that it is the nucleus of a small, low-mass galaxy accreted by NGC 5252.

  8. Compton backscattered collmated X-ray source

    Science.gov (United States)

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  9. Compton backscattered collimated x-ray source

    Science.gov (United States)

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  10. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    Science.gov (United States)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.

  11. Study of characteristic X-ray source and its applications

    International Nuclear Information System (INIS)

    Li Fuquan

    1994-11-01

    The law of characteristic X-rays emitted by target element under the radiation of isotope source in a range of low energy is discussed. Both the way of improving the rate of γ-X conversion and the method to eliminate the influence of scatter rays are introduced. The influence of the variation of isotopes source, targets and the relative position of source-target to the output of X-rays is also discussed and then the conditions of improving signal-to-noise radio is presented. The X-ray source based on these results can produce different energy X-rays, and so can be broadly used on nuclear instruments and other fields as a low energy source. The thickness gauge, as one of the applications, has succeeded in thickness measuring of the different materials in large range, and it presents a new application field for characteristic X-ray source. (11 figs., 10 tabs.)

  12. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  13. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  14. A water-cooled x-ray monochromator for using off-axis undulator beam

    International Nuclear Information System (INIS)

    Khounsary, A.; Maser, J.

    2000-01-01

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided

  15. A hard X-ray study of the ultraluminous X-ray source NGC 5204 X-1 with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mukherjee, E. S.; Walton, D. J.; Bachetti, M.

    2015-01-01

    We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband cover...

  16. WORKSHOP: Accreting X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-09-15

    Earlier this year a workshop on 'High Energy/Ultra High Energy Behaviour of Accreting X-Ray Sources' was held in Vulcano, a small island near Sicily, jointly organized by the Italian Istituto Nazionale di Fisica Nucleare and Consiglio Nazionale delle Ricerche. About 60 astrophysicists and particle physicists attended the meeting which covered the study of galactic cosmic sources emitting in the wide energy range from the optical region to some 10{sup 15} eV.

  17. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  18. Stellar X-ray sources

    International Nuclear Information System (INIS)

    Katz, J.I.; Washington Univ., St. Louis, MO

    1988-01-01

    I Review some of the salient accomplishments of X-rap studies of compact objects. Progress in this field has closely followed the improvement of observational methods, particularly in angular resolution and duration of exposure. Luminous compact X-ray sources are accreting neutron stars or black holes. Accreting neutron stars may have characteristic temporal signatures, but the only way to establish that an X-ray source is a black hole is to measure its mass. A rough phenomenological theory is succesful, but the transport of angular momentum in accretion flows is not onderstood. A number of interesting complications have been observed, including precessing accretion discs, X-ray bursts, and the acceleration of jets in SS433. Many puzzles remain unsolved, including the excitation of disc precession, the nature of the enigmatic A- and gamma-ray source Cyg X-3, the mechanism by which slowly spinning accreting neutron stars lose angular momentum, and the superabundance of X-ray sources in globular clusters. 41 refs.; 5 figs

  19. X pinch a point x-ray source

    International Nuclear Information System (INIS)

    Garg, A.B.; Rout, R.K.; Shyam, A.; Srinivasan, M.

    1993-01-01

    X ray emission from an X pinch, a point x-ray source has been studied using a pin-hole camera by a 30 kV, 7.2 μ F capacitor bank. The wires of different material like W, Mo, Cu, S.S.(stainless steel) and Ti were used. Molybdenum pinch gives the most intense x-rays and stainless steel gives the minimum intensity x-rays for same bank energy (∼ 3.2 kJ). Point x-ray source of size (≤ 0.5 mm) was observed using pin hole camera. The size of the source is limited by the size of the pin hole camera. The peak current in the load is approximately 150 kA. The point x-ray source could be useful in many fields like micro lithography, medicine and to study the basic physics of high Z plasmas. (author). 4 refs., 3 figs

  20. X-Band Linac Beam-Line for Medical Compton Scattering X-Ray Source

    CERN Document Server

    Dobashi, Katsuhiro; Ebina, Futaro; Fukasawa, Atsushi; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Ogino, Haruyuki; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji; Yamamoto, Tomohiko

    2005-01-01

    Compton scattering hard X-ray source for 10~80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U. Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard ( 10-80

  1. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  2. Transient soft X-ray sources

    International Nuclear Information System (INIS)

    Hayakawa, S.; Murakami, T.; Nagase, F.; Tanaka, Y.; Yamashita, K.

    1976-01-01

    A rocket observation of cosmic soft X-rays suggests the existence of transient, recurrent soft X-ray sources which are found variable during the flight time of the rocket. Some of the soft X-ray sources thus far reported are considered to be of this time. These sources are listed and their positions are shown. (Auth.)

  3. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  4. Nuclear Malaysia Plasma Focus Device as a X-ray Source For Radiography Applications

    International Nuclear Information System (INIS)

    Rokiah Mohd Sabri; Abdul Halim Baijan; Siti Aiasah Hashim; Mohd Rizal Mohd Chulan; Wah, L.K.; Mukhlis Mokhtar; Azaman Ahmad; Rosli Che Ros

    2013-01-01

    A 3.375 kJ plasma focus is designed to operate at 13.5 kV for the purpose of studying x-ray source for radiography in Argon discharge. X-rays is detected by using x-ray film from the mammography radiographic plate. The feasibility of the plasma focus as a high intensity flash x-ray source for good contrast in radiography image is presented. (author)

  5. X-ray sources

    International Nuclear Information System (INIS)

    Masswig, I.

    1986-01-01

    The tkb market survey comparatively evaluates the X-ray sources and replacement tubes for stationary equipment currently available on the German market. It lists the equipment parameters of 235 commercially available X-ray sources and their replacement tubes and gives the criteria for purchase decisions. The survey has been completed with December 1985, and offers good information concerning medical and technical aspects as well as those of safety and maintenance. (orig.) [de

  6. A radio monitoring survey of ultra-luminous X-ray sources

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  7. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  8. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  9. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  10. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  11. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  12. Development of multi-pixel x-ray source using oxide-coated cathodes.

    Science.gov (United States)

    Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi

    2017-07-07

    Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.

  13. VizieR Online Data Catalog: Intermediate-luminosity X-ray objects catalog (Colbert+, 2002)

    Science.gov (United States)

    Colbert, E. J. M.; Ptak, A. F.

    2002-11-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039erg/s) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000km/s from the Third Reference Catalog of Bright Galaxies. (2 data files).

  14. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  15. The galactic X-ray sources

    International Nuclear Information System (INIS)

    Gursky, H.; Schreier, E.

    1975-01-01

    The current observational evidence on galactic X-ray sources is presented both from an astrophysical and astronomical point of view. The distributional properties of the sources, where they appear in the Galaxy, and certain average characteristics are discussed. In this way, certain properties of the X-ray sources can be deduced which are not apparent in the study of single objects. The properties of individual X-ray sources are then described. The hope is that more can be learnt about neutron stars and black holes, their physical properties, their origin and evolution, and their influence on other galactic phenomena. Thus attention is paid to those elements of data which appear to have the most bearing on these questions. (Auth.)

  16. Compact X-ray sources: X-rays from self-reflection

    Science.gov (United States)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  17. Optical and x-ray alignment approaches for off-plane reflection gratings

    Science.gov (United States)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  18. A preliminary study of synchrotron light sources for x-ray lithography

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Bigham, C.B.; Ebrahim, N.A.; Sawicki, J.A.; Taylor, T.

    1989-02-01

    A preliminary study of synchrotron light sources has been made, primarily oriented toward x-ray lithography. X-ray lithography is being pursued vigorously in several countries, with a goal of manufacturing high-density computer chips (0.25 μm feature sizes), and may attain commercial success in the next decade. Many other applications of soft x-rays appear worthy of investigation as well. The study group visited synchrotron radiation facilities and had discussions with members of the synchrotron radiation community, particularly Canadians. It concluded that accelerator technology for a conventional synchrotron light source appropriate for x-ray lithography is well established and is consistent with skills and experience at Chalk River Nuclear Laboratories. Compact superconducting systems are being developed also. Their technical requirements overlap with capabilities at Chalk River. (32 refs)

  19. Development of a compact x-ray source via laser compton scattering at KEK-LUCX

    International Nuclear Information System (INIS)

    Sakaue, Kazuyuki; Washio, Masakazu; Aryshev, Alexander; Araki, Sakae; Urakawa, Junji; Terunuma, Nobuhiro; Fukuda, Masafumi; Miyoshi, Toshinobu; Takeda, Ayaki

    2013-01-01

    The compact X-ray source based on Laser-Compton scattering (LCS) has been developed at LUCX (Laser Undulator Compact X-ray source) facility in KEK. The multi-bunch high quality electron beam produced by a standing wave 3.6 cell RF Gun and accelerated by the followed S-band normal conducting 12 cells standing wave 'Booster' linear accelerator is scattered off the laser beam stored in the optical cavity. The 4-mirror planar optical cavity with finesse 335 is used. The MCP (Micro-Channer Plate) detector as well as SOI (Silicon-On-Insulator) pixel sensor was used for scattered X-ray detection. The SOI pixel sensor has been used for LCS X-ray detection for the first time and has demonstrated high spatial resolution and high SN ratio X-ray detection that in turn lead to clearest X-ray images achieved by LCS X-ray. We have also achieved generation of 6.38x10 6 ph./sec., which is more than 30 times larger LCS X-ray flux in comparison with our previous results. The complete details of LUCX LCS X-ray source, specifications of both electron and laser beams, and the results of LCS X-ray generation experiments are reported in this paper. (author)

  20. The application of x-ray spectrometry to isotopic-source activation analysis of dysprosium and holmium

    International Nuclear Information System (INIS)

    Pillay, A.E.; Mboweni, R.C.M.

    1990-01-01

    A novel aspect of activation analysis is described for the determination of dysprosium and holmium at low concentrations. The method involves the measurement of K x-rays from radionuclides produced by thermal neutron activation using a 1 mg 252 Cf source. The basis for elemental selection depends largely on the demand for analysis and on the existence of favourable nuclear properties for the production of a practicable x-ray yield. A full appraisal of the analytical potential of the method is presented with particular emphasis on its application to geological matrices. The sensitivity was optimised by employing a detector that was particularly effective at photon energies below 150 keV. Analytical conditions are demonstrated for the elements of interest over a wide range of concentrations in small powdered samples. The investigation formed the basis of a feasibility study to establish if the application could be developed for the routine off-line determination of dysprosium and holmium using an isotopic-neutron source. (author)

  1. X-ray verification of an optically-aligned off-plane grating module

    Science.gov (United States)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  2. X-ray cinematography on the nuclear fuel and cladding motion diagnostics

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Uruwashi, Shinichi.

    1979-01-01

    X-ray cinematography has been used for monitoring fuel motion in the out-of-pile fuel pin joule melting experiments for nuclear, liquid metal cooled fast breeder reactor, safety studies related to fuel pin failure, initial fuel motion and thermal fuel-coolant interaction (FCI) of the hypothetical core distractive accident. In order to visually observe the nuclear fuel motion, the X-ray cinematography system consists of an X-ray source located about 5 cm from the test section and an image intensifier located at a corresponding position on the opposite side of the test section. The image from the image intensifier has been recorded both with a high speed camera and video recorder. (author)

  3. X-ray bursters and the X-ray sources of the galactic bulge

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Joss, P.C.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In this article we shall discuss the observed X-ray, optical, infrared and radio properties of the galactic bulge sources, with an emphasis on those that produce type I X-ray bursts. There is persuasive evidence that these burst sources and many other galactic bulge sources are neutron stars in low-mass, close-binary stellar systems. (orig./WL)

  4. Radio Observations of Ultra-Luminous X-Ray Sources and their Implication for Models

    Science.gov (United States)

    Koerding, E. G.; Colbert, E. J. M.; Falcke, H.

    2004-05-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These intriguing sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg/sec. Assuming isotropic emission the Eddington Limit suggests that they harbor intermediate mass black holes. Due to the problems of this explanation also other possibilities are currently discussed, among them are anisotropic emission, super-Eddington accretion flows or relativistically beamed emission from microquasars. Detections of compact radio cores at the positions of ULXs would be a direct hint to jet-emission. However, as the ULX phenomenom is connected to star formation we have to assume that they are strongly accreting objects. Thus, similar to their nearest Galactic cousins, the very high state X-ray binaries (see e.g., GRS 1915), ULXs may show radio flares. A well-defined sample of the 9 nearest ULXs has been monitored eight times during 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is 0.15 mJy (4 σ ) for flares and 68 μ Jy for continuous emission. In M82 some ULXs seem to be connected to radio supernova remnants. Besides that no flare or continuous emission has been detected. As the timescales of radio flares in ULXs are highly uncertain, it could well be that we have undersampled the lightcurve. However, upper bounds for the probability to detect a flare can be given. The upper limits for the continuous emission are compared with the emission found in NGC 5408 X-1 and with quasars and microquasars. We show that these limits are well in agreement with the microblazar model using the Radio/X-ray correlation of XRBs and AGN. Thus, it could well be that ULXs are microblazers which may be radio loud.

  5. Secondary-source energy-dispersive x-ray spectrometer

    International Nuclear Information System (INIS)

    Larsen, R.P.; Tisue, G.T.

    1975-01-01

    A secondary-source energy-dispersive x-ray spectrometer has been built and tested. In this instrument the primary source of x rays is a tungsten-target tube powered by a high-voltage (75 kV), a high-power (3.7 kW) generator from a wavelength spectrometer (G.E. XRD-6). The primary polychromatic x rays irradiate an elemental foil, the secondary source. Its characteristic essentially monochromatic x rays are used to irradiate the sample. Fluorescent x rays from the sample are detected and resolved by a lithium-drifted silicon detector, multichannel-analyzer system. The design of the instrument provides a convenient means for changing the secondary, and hence, the energy of the excitation radiation

  6. Development of glancing-incidence and glancing-take-off X-ray fluorescence apparatus for surface and thin-film analyses

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Wagatsuma, Kazuaki; Yamada, Takashi; Utaka, Tadashi

    1997-01-01

    We have studied X-ray fluorescence analysis under glancing incidence and glancing take-off conditions. Recently, we have developed a third apparatus for detecting glancing-incidence and take-off X-ray fluorescence, which makes it possible to measure the incident-angle dependence, the take-off-angle dependence. X-ray reflectivity, and X-ray diffraction. Primarily, we have measured the take-off angular dependence of X-ray fluorescence using this apparatus. Glancing take-off X-ray fluorescence has some advantages in comparison with glancing-incidence X-ray fluorescence. The surface density and the absolute angles were determined by analysing the take-off angle dependence of the fluorescent X-rays emitted from identical atoms with the aid of the reciprocity theorem. (Author)

  7. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    Heise, J.

    1982-01-01

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  8. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  9. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  10. Overview of high intensity x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Lee, J.R.; Ramirez, J.J.; Sanford, T.W.L.; Agee, F.J.; Frazier, G.B.; Miller, A.R.

    1987-01-01

    The requirements for intense x-ray and gamma-ray sources to simulate the radiation effects from nuclear weapons has led to the development of several types of terawatt-pulsed power systems. One example of a major gamma-ray source is Aurora, a 10-MV, 1.6-MA, 120-ns four-module, electron-beam generator. Recent requirements to improve the dose rate has led to the Aurora upgrade program and to the development of the 20-MV, 800-kA, 40-ns Hermes-III electron-beam accelerator. The Aurora program includes improvements to the pulsed power system and research on techniques to improve the pulse shape of the electron beam. Hermes III will feature twenty 1-MV, 800-kA induction accelerator cavities supplying energy to a magnetically insulated transmission line adder. Hermes III will become operational in 1988. Intense x-ray sources consist of pulsed power systems that operate with 1-MV to 2-MV output voltages and up to 25-TW output powers. These high powers are achieved with either low impedance electron-beam generators or multimodular pulsed power systems. The low-impedance generators have high voltage Marx generators that store the energy and then sequentially transfer this energy to pulse-forming transmission lines with lower and lower impedance until the high currents are reached. In the multimode machines, each module produces 0.7-TW to 4-TW output pulses, and all of the modules are connected together to supply energy to a single diode

  11. DIFFERENT TYPES OF ULTRALUMINOUS X-RAY SOURCES IN NGC 4631

    International Nuclear Information System (INIS)

    Soria, Roberto; Ghosh, Kajal K.

    2009-01-01

    We have re-examined the most luminous X-ray sources in the starburst galaxy NGC 4631, using XMM-Newton, Chandra, and ROSAT data. The most interesting source is a highly variable supersoft ultraluminous X-ray source (ULX). We suggest that its bolometric luminosity ∼ a few 10 39 erg s -1 in the high/supersoft state: this is an order of magnitude lower than estimated in previous studies, thus reducing the need for extreme or exotic scenarios. Moreover, we find that this source was in a noncanonical low/soft (kT ∼ 0.1-0.3 keV) state during the Chandra observation. By comparing the high and low state, we argue that the spectral properties may not be consistent with the expected behavior of an accreting intermediate-mass black hole. We suggest that recurrent super-Eddington outbursts with photospheric expansion from a massive white dwarf (M wd ∼> 1.3 M sun ), powered by nonsteady nuclear burning, may be a viable possibility, in alternative to the previously proposed scenario of a super-Eddington outflow from an accreting stellar-mass black hole. The long-term average accretion rate required for nuclear burning to power such white-dwarf outbursts in this source and perhaps in other supersoft ULXs is ∼(5-10) x 10 -6 M sun yr -1 : this is comparable to the thermal-timescale mass transfer rate invoked to explain the most luminous hard-spectrum ULXs (powered by black hole accretion). The other four most luminous X-ray sources in NGC 4631 (three of which can be classified as ULXs) appear to be typical accreting black holes, in four different spectral states: high/soft, convex-spectrum, power-law with soft excess, and simple power-law. None of them require masses ∼>50 M sun .

  12. X-Pinch And Its Applications In X-ray Radiograph

    International Nuclear Information System (INIS)

    Zou Xiaobing; Wang Xinxin; Liu Rui; Zhao Tong; Zeng Naigong; Zhao Yongchao; Du Yanqiang

    2009-01-01

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 μm to 5 μm and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, and for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.

  13. Optical observations of binary X-ray sources

    International Nuclear Information System (INIS)

    Boynton, P.E.

    1975-01-01

    The contribution to the recent progress in astronomy made by optical observations is pointed out. The optical properties of X-ray sources help to establish the physical nature of these objects. The current observational evidence on the binary X-ray sources HZ Her/Her X-1 and HDE 226868/Cyg X-1 is reported. (P.J.S.)

  14. Study of X-rays and nuclear gamma -rays in muonic thallium

    CERN Document Server

    Backe, H; Jahnke, U; Kankeleit, E; Pearce, R M; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Energies and intensities of muonic X-rays, nuclear gamma -rays and mu -capture gamma -rays were measured in natural muonic thallium with Ge (Li) detectors. The absolute intensities of higher mu X-rays were reproduced by a cascade calculation starting with a statistical population at n=20 including K-, L- and M-conversion. The electron screening effect was deduced from energies of higher mu X-rays. Eight prompt nuclear gamma -rays were found. This excitation explains the anomalous intensity ratios of the 2p-1s and 3d-2p fine structure components. From the nuclear gamma -rays of the first excited states were deduced: the magnetic h.f. splittings, muonic isomer shifts E2/M1 mixing ratios and the half-life in the presence of the muon in /sup 205/Tl. Evidence for a magnetic nuclear polarization was found. An isotope shift of Delta E=10.35+or-0.25 keV was measured for the 1s/sub 1/2/ state which is compared with data from optical spectroscopy. From an analysis of the time distribution of delayed gamma -rays from mu...

  15. X-ray Spectral Survey of WGACAT Quasars, II: Optical and Radio Properties of Quasars with Low Energy X-ray Cut-offs

    OpenAIRE

    Elvis, Martin; Fiore, Fabrizio; Giommi, Paolo; Padovani, Paolo

    1997-01-01

    We have selected quasars with X-ray colors suggestive of a low energy cut-off, from the ROSAT PSPC pointed archive. We examine the radio and optical properties of these 13 quasars. Five out of the seven quasars with good optical spectra show associated optical absorption lines, with two having high delta-v candidate systems. Two other cut-off quasars show reddening associated with the quasar. We conclude that absorption is highly likely to be the cause of the X-ray cut-offs, and that the abso...

  16. X-ray microfocusing with off-axis ellipsoidal mirror

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kohmura, Yoshiki; Ishikawa, Tetsuya [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-07-27

    High-precision ellipsoidal mirrors for two-dimensionally focusing X-rays to nanometer sizes have not been realized because of technical problems in their fabrication processes. The objective of the present study is to develop fabrication techniques for ellipsoidal focusing mirrors in the hard-X-ray region. We design an off-axis ellipsoidal mirror for use under total reflection conditions up to the X-ray energy of 8 keV. We fabricate an ellipsoidal mirror with a surface roughness of 0.3 nm RMS (root-mean-square) and a surface figure error height of 3.0 nm RMS by utilizing a surface profiler and surface finishing method developed by us. The focusing properties of the mirror are evaluated at the BL29XUL beamline in SPring-8. A focusing beam size of 270 nm × 360 nm FWHM (full width at half maximum) at an X-ray energy of 7 keV is observed with the use of the knife-edge scanning method. We expect to apply the developed fabrication techniques to construct ellipsoidal nanofocusing mirrors.

  17. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  18. Improvements in Off-Center Focusing in an X-ray Streak Camera

    International Nuclear Information System (INIS)

    McDonald, J W; Weber, F; Holder, J P; Bell, P M

    2003-01-01

    Due to the planar construction of present x-ray streak tubes significant off-center defocusing is observed in both static and dynamic images taken with one-dimensional resolution slits. Based on the streak tube geometry curved photocathodes with radii of curvature ranging from 3.5 to 18 inches have been fabricated. We report initial off-center focusing performance data on the evaluation of these ''improved'' photocathodes in an X-ray streak camera and an update on the theoretical simulations to predict the optimum cathode curvature

  19. A new high quality X-ray source for Cultural Heritage

    International Nuclear Information System (INIS)

    Walter, Ph.; Variola, A.; Zomer, F.; Jaquet, M.

    2009-01-01

    Compton based photon sources have generated much interest since the rapid advance in laser and accelerator technologies has allowed envisaging their utilisation for ultra-compact radiation sources. These should provide X-ray short pulses with a relatively high average flux. Moreover, the univocal dependence between the scattered photon energy and its angle gives the possibility of obtaining a quasi-monochromatic beam with a simple diaphragm system. For the most ambitious projects the expected performance takes into account a rate of 10 12 - 10 13 photons/s, with an angular divergence of few mrad, an X-ray energy cut-off of few tens of keV and a bandwidth ΔE/E ∼ 1-10 %. Even if the integrated rate cannot compete with synchrotron radiation sources, the cost and the compactness of these Compton based machines make them attractive for a wide spectrum of applications. We explore here the interest of these systems for Cultural Heritage preservation. (authors)

  20. A new high quality X-ray source for Cultural Heritage

    Science.gov (United States)

    Walter, Philippe; Variola, Alessandro; Zomer, Fabian; Jaquet, Marie; Loulergue, Alexandre

    2009-09-01

    Compton based photon sources have generated much interest since the rapid advance in laser and accelerator technologies has allowed envisaging their utilisation for ultra-compact radiation sources. These should provide X-ray short pulses with a relatively high average flux. Moreover, the univocal dependence between the scattered photon energy and its angle gives the possibility of obtaining a quasi-monochromatic beam with a simple diaphragm system. For the most ambitious projects the expected performance takes into account a rate of 10-10 photons/s, with an angular divergence of few mrad, an X-ray energy cut-off of few tens of keV and a bandwidth ΔE/E˜1-10%. Even if the integrated rate cannot compete with synchrotron radiation sources, the cost and the compactness of these Compton based machines make them attractive for a wide spectrum of applications. We explore here the interest of these systems for Cultural Heritage preservation. To cite this article: P. Walter et al., C. R. Physique 10 (2009).

  1. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Qiu, Yanli; Liu, Jifeng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Bregman, Joel N., E-mail: songw@bao.ac.cn, E-mail: jfliu@bao.ac.cn [University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-20

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.

  2. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  3. Diagnostic X-ray sources-present and future

    Science.gov (United States)

    Behling, Rolf; Grüner, Florian

    2018-01-01

    This paper compares very different physical principles of X-ray production to spur ideation. Since more than 120 years, bremsstrahlung from X-ray tubes has been the workhorse of medical diagnostics. Generated by X-ray segments comprised of X-ray tubes and high-voltage generators in the various medical systems, X-ray photons in the spectral range between about 16 keV and 150 keV deliver information about anatomy and function of human patients and in pre-clinical animal studies. Despite of strides to employ the wave nature of X-rays as phase sensitive means, commercial diagnostic X-ray systems available until the time of writing still rely exclusively on measuring the attenuation and scattering of X-rays by matter. Significant activities in research aim at building highly brilliant short pulse X-ray sources, based on e.g. synchrotron radiation, free electron lasers and/or laser wake-field acceleration of electrons followed by wiggling with magnetic structures or Thomson scattering in bunches of light. While both approaches, non-brilliant and brilliant sources, have different scope of application, we speculate that a combination may expand the efficacy in medical application. At this point, however, severe technical and commercial difficulties hinder closing this gap. This article may inspire further development and spark innovation in this important field.

  4. Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source

    International Nuclear Information System (INIS)

    Kuwabara, Hiroaki; Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Mizutani, Haruo

    2011-01-01

    We have developed a hard-X-ray phase-imaging microscopy method using a low-brilliance X-ray source. The microscope consists of a sample, a Fresnel zone plate, a transmission grating, and a source grating creating an array of mutually incoherent X-ray sources. The microscope generates an image exhibiting twin features of the sample with opposite signs separated by a distance, which is processed to generate a phase image. The method is quantitative even for non-weak-phase objects that are difficult to be quantitatively examined by the widely used Zernike phase-contrast microscopy, and it has potentially broad applications in the material and biological science fields. (author)

  5. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  6. 21 CFR 872.1810 - Intraoral source x-ray system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a... structures. The x-ray source (a tube) is located inside the mouth. This generic type of device may include... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section...

  7. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  8. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  9. Multiwavelength study of Chandra X-ray sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2011-01-01

    We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.

  10. Feasibility study on X-ray source with pinhole imaging method

    International Nuclear Information System (INIS)

    Qiu Rui; Li Junli

    2007-01-01

    In order to verify the feasibility of study on X-ray source with pinhole imaging method, and optimize the design of X-ray pinhole imaging system, an X-ray pinhole imaging equipment was set up. The change of image due to the change of the position and intensity of X-ray source was estimated with mathematical method and validated with experiment. The results show that the change of the spot position and gray of the spot is linearly related with the change of the position and intensity of X-ray source, so it is feasible to study X-ray source with pinhole imaging method in this application. The results provide some references for the design of X-ray pinhole imaging system. (authors)

  11. A JEM-X catalog of X-ray sources

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt; Chenevez, Jerome; Lund, Niels

    2007-01-01

    The JEM-X catalog of X-ray sources presented here is based on detections in individual science windows with a sensitivity limit of about 10 mCrab (5-15 keV). It contains 127 sources and only those that can be identified from the existing reference catalog. The input data are taken from the, up...

  12. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  13. Simple, compact, high brightness source for x-ray lithography and x-ray radiography

    International Nuclear Information System (INIS)

    Hawryluk, A.M.

    1986-01-01

    A simple, compact, high brightness x-ray source has recently been built. This source utilizes a commercially available, cylindrical geometry electron beam evaporator, which has been modified to enhance the thermal cooling to the anode. Cooling is accomplished by using standard, low-conductivity laboratory water, with an inlet pressure of less than 50 psi, and a flow rate of approx.0.3 gal/min. The anode is an inverted cone geometry for efficient cooling. The x-ray source has a measured sub-millimeter spot size (FWHM). The anode has been operated at 1 KW e-beam power (10 KV, 100 ma). Higher operating levels will be investigated. A variety of different x-ray lines can be obtained by the simple interchange of anodes of different materials. Typical anodes are made from easily machined metals, or materials which are vacuum deposited onto a copper anode. Typically, a few microns of material is sufficient to stop 10 KV electrons without significantly decreasing the thermal conductivity through the anode. The small size and high brightness of this source make it useful for step and repeat exposures over several square centimeter areas, especially in a research laboratory environment. For an aluminum anode, the estimated Al-K x-ray flux at 10 cms from the source is 70 μW/cm 2

  14. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  15. Multiple station beamline at an undulator x-ray source

    DEFF Research Database (Denmark)

    Als-Nielsen, J.; Freund, A.K.; Grübel, G.

    1994-01-01

    The undulator X-ray source is an ideal source for many applications: the beam is brilliant, highly collimated in all directions, quasi-monochromatic, pulsed and linearly polarized. Such a precious source can feed several independently operated instruments by utilizing a downstream series of X......-ray transparent monochromator crystals. Diamond in particular is an attractive monochromator as it is rather X-ray transparent and can be fabricated to a high degree of crystal perfection. Moreover, it has a very high heat conductivity and a rather small thermal expansion so the beam X-ray heat load problem...

  16. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    Science.gov (United States)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  17. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    International Nuclear Information System (INIS)

    Puehlhofer, Gerd

    2009-01-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula.Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population.Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  18. A portable x-ray source and method for radiography

    International Nuclear Information System (INIS)

    Golovanivsky, K.S.

    1996-01-01

    A portable x-ray source that produces a sufficient x-ray flux to produce high quality x-ray images on x-ray films. The source includes a vacuum chamber filled with a heavy atomic weight gas at low pressure and an x-ray emitter. The chamber is in a magnetic field and an oscillating electric field and generates electron cyclotron resonance (ECR) plasma having a ring of energetic electrons inside the chamber. The electrons bombard the x-ray emitter which in turn produces x-ray. A pair of magnetic members generate an axisymmetric magnetic mirror trap inside the chamber. The chamber may be nested within a microwave resonant cavity and between the magnets or the chamber and the microwave cavity may be a single composite structure. (author)

  19. X-ray sources by Z-pinch for inertial confinement fusion

    International Nuclear Information System (INIS)

    Akiyama, Hidenori; Katsuki, Sunao; Lisitsyn, Igor

    1999-01-01

    Inertial confinement nuclear fusion driven by X-ray from Z-pinch plasmas has been developed. Recently, extremely high X-ray power (290 TW) and energy (1.8 MJ) were produced in fast Z-pinch implosions on the Z accelerator (Sandia National Laboratories). Wire arrays are used to produce the initial plasma. The X-ray from Z-pinch plasmas produced by pulsed power has great potential as a driver of inertial confinement nuclear fusion. (author)

  20. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.; Bland, S. N.

    2015-01-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium

  1. X-ray photoelectron microscope with a compact x-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Okamoto, Y.; Hara, T.; Takahashi, Z.; Nishimura, Y.; Sakata, A.; Watanabe, K.; Azuma, H.

    2004-01-01

    Full text: A laboratory-sized microscopic system of x-ray photoelectrons has been developing using a compact x-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where x-ray beam is micro-focused via a Schwartzschild optics. A compact laser-plasma x-ray source has been developed with a YAG laser system, a line-focus lens system, a tape-target driving system and a debris prevention system, that was operated at repetition rate of 10 Hz or 50 Hz. X-rays were delivered along line plasma whose length was 0.6 to 11 mm with higher intensity than that from a point-focused source. Because the transition line of Al V (13.1 nm) was prominent in the soft x-ray spectrum when the Al tape target irradiated at the lower power density of 10 11 W/cm 2 , the 13.1 nm x-ray was used as an excitation source. The Schwartzschild optics was set on the beamline at a distance about 1 m from the source, which was coated with Mo/Si multilayers for 13.1 nm x-ray. The designed demagnification is 224 that was confirmed in the previous experiment. Therefore, an x-ray micro spot of sub-micron size can be formed on a sample surface when the source size is less than about 0.2 mm. Samples were set on a two-axis high-precision piezo stage mounted to a four-axis manipulator. The electron energy analyzer was a spherical capacitor analyzer with mean diameter of 279.4 mm. The electron detector was a microchannel plate (MCP) with a phosphor screen and the optical image of electrons on the exit plane of the analyzer was taken and recorded by using an ultra low dark noise CCD camera, that was suited for detection of vast photoelectrons excited by x-ray pulse of ns-order duration. We performed spatial resolution test measurements by using a GaAs wafer coated with photo-resist that formed a stripe pattern. The spatial resolution less than 3 micron has been obtained from the variation of As 3d electron intensity along the position of the GaAs sample

  2. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    Science.gov (United States)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  3. In-flight PSF calibration of the NuSTAR hard X-ray optics

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Westergaard, Niels J.

    2014-01-01

    We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source...... observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We...... describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is less than or similar to 3 for extraction apertures of R greater than or similar to 60" with no significant energy dependence. We also show that the PSF...

  4. Classification of X-ray sources in the direction of M31

    Science.gov (United States)

    Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.

    2012-01-01

    M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.

  5. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and 99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  6. Medical X-ray sources now and for the future

    Science.gov (United States)

    Behling, Rolf

    2017-11-01

    This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.

  7. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES: THE SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng, E-mail: jfliu@bao.ac.cn, E-mail: songw@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D {sub 25} isophotes of 1110 galaxies, and 7504 sources are located between the D {sub 25} and 2 D {sub 25} isophotes of 910 galaxies. Contamination analysis with the log N –log S relation indicates that 51.3% of objects within 2 D {sub 25} isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 10{sup 37}, 10{sup 38}, and 10{sup 39} erg s{sup −1}, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov–Smirnov (K–S) criterion ( P {sub K–S} < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (∼2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to

  8. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  9. Characteristics of hard X-ray double sources in impulsive solar flares

    Science.gov (United States)

    Sakao, T.; Kosugi, T.; Masuda, S.; Yaji, K.; Inda-Koide, M.; Makishima, K.

    1996-01-01

    Imaging observations of solar flare hard X-ray sources with the Hard X-ray Telescope (HXT) aboard the Yohkoh satellite have revealed that hard X-ray emissions (greater than 30 ke V) originate most frequently from double sources. The double sources are located on both sides of the magnetic neutral line, suggesting that the bulk of hard X-rays is emitted from footpoints of flaring magnetic loops. We also found that hard X-rays from the double sources are emitted simultaneously within a fraction of second and that the weaker source tends to be located in the stronger magnetic field region, showing a softer spectrum. Physcial implications on the observed characteristics of the hard X-ray double sources are discussed.

  10. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  11. Development of X-ray photoelectron microscope with a compact X-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Takahashi, Z.; Nishimura, Y.; Watanabe, K.; Okamoto, Y.; Sakata, A.; Azuma, H.; Hara, T.

    2005-01-01

    A laboratory-sized X-ray photoelectron microscope was constructed using a compact X-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where X-ray beam is micro-focused via Schwarzschild optics. A compact laser-plasma X-ray source has been developed with a YAG laser, a line-focus lens assembly, an Al tape-target driver and a debris prevention system. The 13.1 nm X-ray was delivered along line plasma whose length was 0.6 or 11 mm with higher intensity than that from a point-focused source. The Schwarzschild optics having the designed demagnification of 224, which was coated with Mo/Si multilayers for 13.1 nm X-ray, was set on the beamline 1 m distant from the source. The electron energy analyser was a spherical capacitor analyser with the photoelectron image detection system that was suited for detection of vast photoelectrons excited by an X-ray pulse of ns-order duration. The spatial resolution less than 5 μm has been confirmed from the variation of As 3d electron intensity along the position of the GaAs sample coated with a photo-resist test pattern

  12. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    DEFF Research Database (Denmark)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.

    2016-01-01

    persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr. A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra...

  13. Monitoring variable X-ray sources in nearby galaxies

    Science.gov (United States)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  14. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  15. X-ray Optics for BES Light Source Facilities

    International Nuclear Information System (INIS)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-01-01

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today's X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today's resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting

  16. Advanced imaging technology using carbon nanotube x ray source

    International Nuclear Information System (INIS)

    Choi, Hae Young; Seol, Seung Kown; Kim, Jaehoon; Yoo, Seung Hoon; Kim, Jong Uk

    2008-01-01

    Recently, X ray imaging technology is a useful and leading medical diagnostic tool for healthcare professionals to diagnose disease in human body. CNTs(i.e. carbon nanotubes)are used in many applications like FED, Micro wave amplifier, X ray source, etc. because of its suitable electrical, chemical and physical properties. Specially, CNTs are well used electron emitters for x ray source. Conventionally, thermionic type of tungsten filament x ray tube is widely employed in the field of bio medical and industrial application fields. However, intrinsic problems such as, poor emission efficiency and low imaging resolution cause the limitation of use of the x ray tube. To fulfill the current market requirement specifically for medical diagnostic field, we have developed rather a portable and compact CNT based x ray source in which high imaging resolution is provided. Electron sources used in X ray tubes should be well focused to the anode target for generation of high quality x ray. In this study, Pierce type x ray generation module was tested based its simulation results using by OPERA 3D code. Pierce type module is composed of cone type electrical lens with its number of them and inner angles of them that shows different results with these parameters. And some preliminary images obtained using the CNT x ray source were obtained. The represented images are the finger bone and teeth in human body. It is clear that the trabeculation shape is observed in finger bone. To obtain the finger bone image, tube currents of 250A at 42kV tube voltage was applied. The human tooth image, however, is somewhat unclear because the supplied voltage to the tube was limited to max. 50kV in the system developed. It should be noted that normally 60∼70kV of tube voltage is supplied in dental imaging. Considering these it should be emphasized that if the tube voltage is over 60kV then clearer image is possible. In this paper, we are discussed comparing between these experiment results and

  17. GaAs low-energy X-ray radioluminescence nuclear battery

    Science.gov (United States)

    Zhang, Zheng-Rong; Liu, Yun-Peng; Tang, Xiao-Bin; Xu, Zhi-Heng; Yuan, Zi-Cheng; Liu, Kai; Chen, Wang

    2018-01-01

    The output properties of X-ray radioluminescence (RL) nuclear batteries with different phosphor layers were investigated by using low-energy X-ray. Results indicated that the values of electrical parameters increased as the X-ray energy increased, and the output power of nuclear battery with ZnS:Cu phosphor layer was greater than those of batteries with ZnS:Ag, (Zn,Cd)S:Cu or Y2O3:Eu phosphor layers under the same excitation conditions. To analyze the RL effects of the phosphor layers under X-ray excitation, we measured the RL spectra of the different phosphor layers. Their fluorescence emissions were absorbed by the GaAs device. In addition, considering luminescence utilization in batteries, we introduced an aluminum (Al) film between the X-ray emitter and phosphor layer. Al film is a high performance reflective material and can increase the fluorescence reaching the GaAs photovoltaic device. This approach significantly improved the output power of the battery.

  18. 2XMM ultraluminous X-ray source candidates in nearby galaxies

    Science.gov (United States)

    Walton, D. J.; Roberts, T. P.; Mateos, S.; Heard, V.

    2011-09-01

    Ultraluminous X-ray sources (ULXs) are some of the most enigmatic X-ray bright sources known to date. It is generally accepted that they cannot host black holes as large as those associated with active galaxies, but they appear to be significantly more luminous than their better understood Galactic X-ray binary (XRB) cousins, while displaying an intriguing combination of differences and similarities with them. Through studying large, representative samples of these sources we may hope to enhance our understanding of them. To this end, we derive a large catalogue of 650 X-ray detections of 470 ULX candidates, located in 238 nearby galaxies, by cross-correlating the 2XMM Serendipitous Survey with the Third Reference Catalogue of Bright Galaxies. The presented dedicated catalogue offers a significant improvement over those previously published in terms of both the number and the contribution of background contaminants, e.g. distant quasars, which we estimate to be at most 24 per cent, but more likely ˜17 per cent. To undertake population studies, we define a 'complete' sub-sample of sources compiled from observations of galaxies with sensitivity limits below 1039 erg s-1. The luminosity function of this sample is consistent with a simple power law of form N(>LX) ∝ L-0.96 ± 0.11X. Although we do not find any statistical requirement for a cut-off luminosity of Lc˜ 1040 erg s-1, as has been reported previously, we are not able to rule out its presence. Also, we find that the number of ULXs per unit galaxy mass, Su, decreases with increasing galaxy mass for ULXs associated with spiral galaxies, and is well modelled with a power law of form Su ∝ M-0.64 ± 0.07. This is in broad agreement with previous results, and is likely to be a consequence of the decrease in specific star formation and increase in metallicity with increasing spiral galaxy mass. Su is consistent with being constant with galaxy mass for sources associated with elliptical galaxies, implying this

  19. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    Science.gov (United States)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  20. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  1. 21 CFR 872.1800 - Extraoral source x-ray system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a... dental radiographic examination and diagnosis of diseases of the teeth, jaw, and oral structures. The x... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section...

  2. A Catalog of Candidate Intermediate-Luminosity X-Ray Objects

    Science.gov (United States)

    Colbert, E. J. M.; Ptak, A. F.

    2002-11-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039.0 ergs s-1) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000 km s-1 from the Third Reference Catalog of Bright Galaxies. We have defined the cutoff LX for IXOs so that it is well above the Eddington luminosity of a 1.4 Msolar black hole (1038.3 ergs s-1), so as not to confuse IXOs with ``normal'' black hole X-ray binaries. This catalog is intended to provide a baseline for follow-up work with Chandra and XMM-Newton, and with space- and ground-based survey work at wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs have a larger number of IXOs per galaxy than nonelliptical galaxies with IXOs and note that they are not likely to be merely high-mass X-ray binaries with beamed X-ray emission, as may be the case for IXOs in starburst galaxies. Approximately half of the IXOs with multiple observations show X-ray variability, and many (19) of the IXOs have faint optical counterparts in DSS optical B-band images. Follow-up observations of these objects should be helpful in identifying their nature.

  3. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  4. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  5. Compound refractive lenses for novel X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Piestrup, M.A. E-mail: melpie@adelphitech.com; Beguiristain, H.R.; Gary, C.K.; Cremer, J.T.; Pantell, R.H.; Tatchyn, R

    2001-01-01

    We have measured the intensity profile of X-rays focused by a linear array of closely spaced spherical lenses fabricated using Mylar (C{sub 5}H{sub 4}O{sub 2}). We have experimentally demonstrated that we can achieve two-dimensional focusing for photon energies between 7 and 9 keV with imaging distances of less than 1 m. For example, using 8-keV X-rays we have achieved full-width-at-half-maximum (FWHM) linewidths down to 27.5 {mu}m at a distance of only 62 cm from the lens. The effective aperture of the lens was measured to be about 390 {mu}m with 38% transmission at 9 keV. A synchrotron source having source-size dimensions of 0.44x1.7 mm{sup 2} was utilized for the experimental work. Such lenses are seen as useful for focusing and increasing the intensity of novel X-ray sources that are directional and have small source size ({sigma}<1 mm)

  6. kHz femtosecond laser-plasma hard X-ray and fast ion source

    International Nuclear Information System (INIS)

    Thoss, A.; Korn, G.; Stiel, H.; Voigt, U.; Elsaesser, T.; Richardson, M.C.; Siders, C.W.; Faubel, M.

    2002-01-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and K α emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, K α and K β lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ∼500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  7. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  8. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Energy Technology Data Exchange (ETDEWEB)

    Girardeau-Montaut, J.-P. E-mail: jean-pierre.girardeau@univ-lyonl.fr; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-21

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of {approx}11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of {approx}0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed.

  9. Galactic distribution of X-ray burst sources

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Hoffman, J.A.; Doty, J.; Clark, G.W.; Swank, J.H.; Becker, R.H.; Pravdo, S.H.; Serlemitsos, P.J.

    1977-01-01

    It is stated that 18 X-ray burst sources have been observed to date, applying the following definition for these bursts - rise times of less than a few seconds, durations of seconds to minutes, and recurrence in some regular pattern. If single burst events that meet the criteria of rise time and duration, but not recurrence are included, an additional seven sources can be added. A sky map is shown indicating their positions. The sources are spread along the galactic equator and cluster near low galactic longitudes, and their distribution is different from that of the observed globular clusters. Observations based on the SAS-3 X-ray observatory studies and the Goddard X-ray Spectroscopy Experiment on OSO-9 are described. The distribution of the sources is examined and the effect of uneven sky exposure on the observed distribution is evaluated. It has been suggested that the bursts are perhaps produced by remnants of disrupted globular clusters and specifically supermassive black holes. This would imply the existence of a new class of unknown objects, and at present is merely an ad hoc method of relating the burst sources to globular clusters. (U.K.)

  10. X-Ray Emission from Compact Sources

    Energy Technology Data Exchange (ETDEWEB)

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  11. X-ray source array

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A circular array of cold cathode diode X-ray sources, for radiation imaging applications, such as computed tomography includes electrically conductive cathode plates each of which cooperates with at least two anodes to form at least two diode sources. In one arrangement, two annular cathodes are separated by radially extending, rod-like anodes. Field enhancement blades may be provided on the cathodes. In an alternative arrangement, the cathode plates extend radially and each pair is separated by an anode plate also extending radially. (author)

  12. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    International Nuclear Information System (INIS)

    Nicoul, Matthieu

    2010-01-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0±0.3) ps, and the ratio of the Grueneisen parameters was found to be γ e / γ i = (0.5±0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A 1g mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase and its development for excitations close to the

  13. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  14. Simulation of a dense plasma focus x-ray source

    International Nuclear Information System (INIS)

    Stark, R.A.

    1994-01-01

    The authors are performing simulations of the magnetohydrodynamics of a Dense Plasma Focus (DPF) x-ray source located at Science Research Laboratory (SRL), Alameda, CA, in order to optimize its performance. The SRL DPF, which was developed as a compact source for x-ray lithography, operates at 20 Hz, giving x-ray power (9--14 Angstroms) of 500 W using neon gas. The simulations are performed with the two dimensional MHD code MACH2, developed by Mission Research Corporation, with a steady state corona model as the equation of state. The results of studies of the sensitivity of x-ray output to charging voltage and current, and to initial gas density will be presented. These studies should indicate ways to optimize x-ray production efficiency. Simulations of various inner electrode configurations will also be presented

  15. Parameters estimation for X-ray sources: positions

    International Nuclear Information System (INIS)

    Avni, Y.

    1977-01-01

    It is shown that the sizes of the positional error boxes for x-ray sources can be determined by using an estimation method which we have previously formulated generally and applied in spectral analyses. It is explained how this method can be used by scanning x-ray telescopes, by rotating modulation collimators, and by HEAO-A (author)

  16. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Cyburt, R. H.; Keek, L.; Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Amthor, A. M. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Heger, A.; Meisel, Z.; Smith, K. [Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States); Johnson, E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  17. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  18. Hard X-ray balloon observations of compact galactic and extragalactic X-ray sources

    International Nuclear Information System (INIS)

    Staubert, R.; Kendziorra, E.; Pietsch, W.; Proctor, R.J.; Reppin, C.; Steinle, H.; Truemper, J.; Voges, W.

    1981-01-01

    A balloon program in hard X-ray astronomy (20-200 keV) is jointly pursued by the Astronomisches Institut der Universitaet Tuebingen (AIT) and the Max Planck-Institut fuer Extraterrestrische Physik in Garching (MPE). Since 1973 nine succussful balloon flights have been performed from Texas and Australia. Here results on Centaurus A and on several galactic binary X-ray sources are summarized. In particular the high energy photon spectrum of Hercules X-1 and the evidence for the cyclotron line feature which was discovered by us in 1976 is reviewed. (orig.)

  19. Nuclear Physical Uncertainties in Modeling X-Ray Bursts

    Science.gov (United States)

    Regis, Eric; Amthor, A. Matthew

    2017-09-01

    Type I x-ray bursts occur when a neutron star accretes material from the surface of another star in a compact binary star system. For certain accretion rates and material compositions, much of the nuclear material is burned in short, explosive bursts. Using a one-dimensional stellar model, Kepler, and a comprehensive nuclear reaction rate library, ReacLib, we have simulated chains of type I x-ray bursts. Unfortunately, there are large remaining uncertainties in the nuclear reaction rates involved, since many of the isotopes reacting are unstable and have not yet been studied experimentally. Some individual reactions, when varied within their estimated uncertainty, alter the light curves dramatically. This limits our ability to understand the structure of the neutron star. Previous studies have looked at the effects of individual reaction rate uncertainties. We have applied a Monte Carlo method ``-simultaneously varying a set of reaction rates'' -in order to probe the expected uncertainty in x-ray burst behaviour due to the total uncertainty in all nuclear reaction rates. Furthermore, we aim to discover any nonlinear effects due to the coupling between different reaction rates. Early results show clear non-linear effects. This research was made possible by NSF-DUE Grant 1317446, BUScholars Program.

  20. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    International Nuclear Information System (INIS)

    Canova, Federico; Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  1. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  2. Observation of extragalactic X-ray sources

    International Nuclear Information System (INIS)

    Bui-Van, Andre.

    1973-01-01

    A narrow angular resolution detection apparatus using a high performance collimator has proved particularly well suited for the programs of observation of X ray sources. The experimental set-up and its performance are described. One chapter deals with the particular problems involved in the observation of X ray sources with the aid of sounding balloons. The absorption of extraterrestrial photons by the earth atmosphere is taken into account in the procesing of the observation data using two methods of calculation: digital and with simulation techniques. The results of three balloon flights are then presented with the interpretation of the observations carried out using both thermal and non thermal emission models. This analysis leads to some possible characteristics of structure of the Perseus galaxy cluster [fr

  3. Very Luminous X-ray Point Sources in Starburst Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.

    Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.

  4. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  5. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    International Nuclear Information System (INIS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-01-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a 0 ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10 −12 ) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements

  6. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  7. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    International Nuclear Information System (INIS)

    Sisniega, A.; Vaquero, J. J.; Desco, M.

    2014-01-01

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  8. Linear polarization observations of some X-ray sources

    International Nuclear Information System (INIS)

    Shakhovskoy, N.M.; Efimov, Yu.S.

    1975-01-01

    Multicolour linear polarization of optical radiation of the X-ray sources Sco X-1, Cyg X-2, Cyg X-1 and Her X-1 was measured at the Crimean Astrophysical Observatory in 1970-1973. These observations indicate that polarization of Sco X-1 in the ultraviolet, blue and red spectral regions appears to be variable. No statistically significant variations of polarization were found for the other three sources observed. (Auth.)

  9. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  10. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  11. Total-reflection x-ray fluorescence with a brillant undulator x-ray source

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.; Numako, C.; Suzuki, M.; Inoue, K.; Yagi, N.

    2000-01-01

    Total-reflection x-ray fluorescence (TXRF) is a highly sensitive technique for analyzing trace elements, because of the very low background from the sample support. Use of third-generation synchrotron x-ray source could further enhance the detection power. However, while such high sensitivity permits the detection of signals from trace elements of interest, it also means that one can observe weak parasitic x-rays as well. If the sample surface becomes even slightly contaminated, owing to air particulates near the beamline, x-ray fluorescence lines of iron, zinc, copper, nickel, chromium, and titanium can be observed even for a blank sample. Another critical problem is the low-energy-side tail of the scattering x-rays, which ultimately restricts the detection capability of the technique using a TXRF spectrometer based on a Si(Li) detector. The present paper describes our experiments with brilliant undulator x-ray beams at BL39XU and BL40XU, at the SPring-8, Harima, Japan. The emphasis is on the development of instruments to analyze a droplet of 0.1 μl containing trace elements of ppb level. Although the beamline is not a clean room, we have employed equipment for preparing a clean sample and also for avoiding contamination during transferring the sample into the spectrometer. We will report on the successful detection of the peak from 0.8 ppb selenium in a droplet (absolute amount 80 fg). We will also present the results of recent experiments obtained from a Johansson spectrometer rather than a Si(Li) detector. (author)

  12. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    Science.gov (United States)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  13. Assembling x-ray sources by carbon nanotubes

    Science.gov (United States)

    Sessa, V.; Lucci, M.; Toschi, F.; Orlanducci, S.; Tamburri, E.; Terranova, M. L.; Ciorba, A.; Rossi, M.; Hampai, D.; Cappuccio, G.

    2007-05-01

    By the use of a chemical vapour deposition technique a series of metal wires (W, Ta, Steel ) with differently shaped tips have been coated by arrays of single wall carbon nanotubes (SWNT). The field emission properties of the SWNT deposits have been measured by a home made apparatus working in medium vacuum (10 -6- 10 -7 mbar) and the SWNT-coated wires have been used to fabricate tiny electron sources for X-ray tubes. To check the efficiency of the nanotube coated wires for X-ray generation has, a prototype X-ray tube has been designed and fabricated. The X-ray tube works at pressures about 10 -6 mbar. The target ( Al film) is disposed on a hole in the stainless steel sheath: this configuration makes unnecessary the usual Be window and moreover allows us to use low accelerating potentials (< 6 kV).

  14. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  15. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  16. Development of Compton gamma-ray sources at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Anderson, S. G.; Ebbers, C. A.; Gibson, D. J.; Hartemann, F. V.; Marsh, R. A.; Messerly, M. J.; Prantil, M. A.; Wu, S.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East avenue, Livermore, CA 94550 (United States)

    2012-12-21

    Compact Compton scattering gamma-ray sources offer the potential of studying nuclear photonics with new tools. The optimization of such sources depends on the final application, but generally requires maximizing the spectral density (photons/eV) of the gamma-ray beam while simultaneously reducing the overall bandwidth on target to minimize noise. We have developed an advanced design for one such system, comprising the RF drive, photoinjector, accelerator, and electron-generating and electron-scattering laser systems. This system uses a 120 Hz, 250 pC, 2 ps, 0.35 mm mrad electron beam with 250 MeV maximum energy in an X-band accelerator scattering off a 150 mJ, 10 ps, 532 nm laser to generate 5 Multiplication-Sign 10{sup 10} photons/eV/s/Sr at 0.5 MeV with an overall bandwidth of less than 1%. The source will be able to produce photons up to energies of 2.5 MeV. We also discuss Compton scattering gamma-ray source predictions given by numerical codes.

  17. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  18. Tire inspection system with shielded x-ray source

    International Nuclear Information System (INIS)

    Heisner, D.N.; Palermo, A. Jr.; Loyer, P.K.

    1976-01-01

    An automated tire inspection system is described which employs a penetrative radiation, such as x-radiation, to inspect the integrity of portions of tires fed sequentially along a feed path through a centering station and into a shielded enclosure where an inspection station is defined. Features of the system include a continuously operating x-ray source movable between inspection and retracted positions, and an x-ray shield for covering the source when it is retracted to permit the doors of the shielded enclosure to be opened without danger from escaping radiation. 19 Claims, 38 Drawing Figures

  19. The Highest Resolution X-ray View of the Nuclear Region of NGC 4151

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-09-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra HRC observation. The HRC image resolves the emission on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the narrow line region seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution technique both reveal X-ray enhancements that closely match the substructures seen in the HST [OIII] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density dependence ∝ r^{-2} as expected in the disk wind scenario. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  20. Characterisation and application of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Graetz, M.

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm 2 onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained

  1. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  2. An ultrasoft X-ray source in Coma Berenices

    International Nuclear Information System (INIS)

    Margon, B.; Malina, R.; Bowyer, S.; Cruddace, R.; Lampton, M.

    1976-01-01

    We have observed an intense soft X-ray source with an extraordinary spectrum in Coma Berenices, 4 0 northeast of and unassociated with the Coma cluster of galaxies. Two spectra, obtained at different times in a sounding rocket flight, indicate that the source temperature in thermal models is less than 10 6 K; a power-law model requires photon power-law indices steeper than n=-3. The intensity in the 44--165 A band is of the order of 5x10 -10 ergs cm -2 s -1 , but no flux is present at energies 0.3--2.1 keV to a limit of 1x10 -10 ergs cm -2 s -1 . The lack of bright stars or a supernova remnant in the error box implies that this may be a new class of soft X-ray sources

  3. Rotating anode X-ray source

    International Nuclear Information System (INIS)

    Wittry, D.B.

    1979-01-01

    A rotating anode x-ray source is described which consists of a rotary anode disc including a target ring and a chamber within the anode disc. Liquid is evaporated into the chamber from the target ring to cool the target and a method is provided of removing the latent heat of the vapor. (U.K.)

  4. Sixth symposium on x- and gamma ray sources and applications. Abstracts

    International Nuclear Information System (INIS)

    1985-01-01

    Abstracts are provided for technical presentations in the areas of: gamma and x-ray sources, kinds of detectors, characterization of detectors and detector systems, models and data analysis, gamma spectroscopy, instrumentation, x-ray fluorescence, tomography, x-ray absorption, and pion induced x-ray emission

  5. Environments of High Luminosity X-Ray Sources in the Antennae Galaxies

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. P.; Barry, D. J.; Houck, J. R.; Ptak, A.; Colbert, E.

    2003-12-01

    We use deep J (1.25 μ m) and Ks (2.15 μ m) images of the Antennae (NGC 4038/9) obtained with the Wide-field InfraRed Camera on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2001), to establish an X-ray/IR astrometric frame tie with ˜ 0.5 ″ RMS residuals over a ˜ 5 ‧ field. We find 13 ``strong" IR counterparts 99.9% confidence), and that the X-ray/IR matches are concentrated in the spiral arms and ``bridge" regions of the Antennae. This implies that these X-ray sources lie in the most ``super" of the Antennae's Super Star Clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing" IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (older?) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, though small number statistics hamper this analysis. Finally, we find a Ks = 16.2 mag counterpart to the Ultra-Luminous X-ray (ULX) source X-37 within <0.5 ″ , eliminating the need for the ``runaway binary" hypothesis proposed by previous authors for this object. We discuss some of the implications of this detection for models of ULX emission. This work is funded by an NSF CAREER grant.

  6. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  7. Development and characterization of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10 17 W/cm -2 . Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs

  8. Development and characterization of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, C.

    1996-11-01

    A laser-produced plasma was generated by focusing 100 fs laser pulses, with an energy of 150 mJ, onto metal targets. The laser intensity was expected to reach 10{sup 17} W/cm{sup -2}. Radiation was emitted from the created plasma, with photon energies up to the MeV region. The laser-based X-ray source was optimized, with the purpose of making it a realistic source of hard X-rays (>10 keV). Dedicated equipment was developed for efficient generation and utilization of the hard X-rays. The X-ray source was characterized with respect to its spatial extent and the X-ray yield. Measurements were made of the spectral distribution, by the use of single-photon-counting detectors in different geometries, crystal spectrometers and dose measurements in combination with absorption filters. Ablation of the target material in the laser produced plasma was investigated. Imaging applications have been demonstrated, including ultrafast (picosecond) X-ray imaging, magnification imaging of up to x80, differential imaging in the spectral domain, and imaging of various biological and technical objects. The biological response of ultra-intense X-ray pulses was assessed in cell-culture exposures. The results indicate that the biological response from ultra-intense X-ray exposures is similar to the response with conventional X-ray tubes. 82 refs., 14 figs.

  9. Development of a sub-MeV X-ray source via Compton backscattering

    International Nuclear Information System (INIS)

    Kawase, K.; Kando, M.; Hayakawa, T.; Daito, I.; Kondo, S.; Homma, T.; Kameshima, T.; Kotaki, H.; Chen, L.-M.; Fukuda, Y.; Faenov, A.; Shizuma, T.; Shimomura, T.; Yoshida, H.; Hajima, R.; Fujiwara, M.; Bulanov, S.V.; Kimura, T.; Tajima, T.

    2011-01-01

    At the Kansai Photon Science Institute of the Japan Atomic Energy Agency, we have developed a Compton backscattered X-ray source in the energy region of a few hundred keV. The X-ray source consists of a 150-MeV electron beam, with a pulse duration of 10 ps (rms), accelerated by a Microtron accelerator and an Nd:YAG laser, with a pulse duration of 10 ns (FWHM). In the first trial experiment, the X-ray flux is estimated to be (2.2±1.0)x10 2 photons/pulse. For the actual application of an X-ray source, it is important to increase the generated X-ray flux as much as possible. Thus, for the purpose of increasing the X-ray flux, we have developed the pulse compression system for the Nd:YAG laser via stimulated Brillouin scattering (SBS). The SBS pulse compression has the great advantages of a high conversion efficiency and a simple structure. In this article, we review the present status of the Compton backscattered X-ray source and describe the SBS pulse compression system.

  10. Debris-free soft x-ray source with gas-puff target

    Science.gov (United States)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  11. Sources of the X-rays Based on Compton Scattering

    International Nuclear Information System (INIS)

    Androsov, V.; Bulyak, E.; Gladkikh, P.; Karnaukhov, I.; Mytsykov, A.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2007-01-01

    The principles of the intense X-rays generation by laser beam scattering on a relativistic electron beam are described and description of facilities assigned to produce the X-rays based on Compton scattering is presented. The possibilities of various types of such facilities are estimated and discussed. The source of the X-rays based on a storage ring with low beam energy is described in details and advantages of the sources of such type are discussed.The results of calculation and numerical simulation carried out for laser electron storage ring NESTOR that is under development in NSC KIPT show wide prospects of the accelerator facility of such type

  12. Automatic classification of time-variable X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  13. Automatic classification of time-variable X-ray sources

    International Nuclear Information System (INIS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-01-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  14. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    International Nuclear Information System (INIS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-01-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  15. Liquid-metal-jet anode electron-impact x-ray source

    International Nuclear Information System (INIS)

    Hemberg, O.; Otendal, M.; Hertz, H.M.

    2003-01-01

    We demonstrate an anode concept, based on a liquid-metal jet, for improved brightness in compact electron-impact x-ray sources. The source is demonstrated in a proof-of-principle experiment where a 50 keV, ∼100 W electron beam is focused on a 75 μm liquid-solder jet. The generated x-ray flux and brightness is quantitatively measured in the 7-50 keV spectral region and found to agree with theory. Compared to rotating-anode sources, whose brightness is limited by intrinsic thermal properties, the liquid-jet anode could potentially be scaled to achieve a brightness >100x higher than current state-of-the-art sources. Applications such as mammography, angiography, and diffraction would benefit from such a compact high-brightness source

  16. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  17. Toward a fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Monction, D. E.

    1999-01-01

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.

  18. Dense plasma focus x-ray source for sub-micron lithography

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.; Mangano, J.; Greene, P.; Qi, Niansheng

    1993-01-01

    A discharge driven, dense plasma focus in neon is under development at SRL for use as a point x-ray source for sub-micron lithography. This source is presently capable of delivering ∼ 13j/pulse of neon K-shell x-rays (8--14 angstrom) into 4π steradians with 2 kj of electrical energy stored in the capacitor bank charged to 9 kV at a pulse repetition rate of 2 Hz. The discharge is produced by a ≤4 kj, ≤12 kV, capacitor bank circuit, which has a fixed inductance of 12 nH and drives ≤450 kA currents into the DPF load, with ∼1.1 μs rise-times. X-rays are produced when a dense pinch of neon is formed along the axis of the DPF electrodes. A new rail-gap switched capacitor bank and DPF have been built, designed for continuous operation at 2 Hz and burst mode operation at 20 Hz. This paper will present measurements of the x-ray output at a repetition rate of 2 Hz using the new capacitor bank. It will also describe measurements of the spot size (0.3--0.8 mm) and the spectrum (8--14 angstrom) of the DPF source. The dependence of these parameters on the DPF head geometry, bank energy and operating pressure will be discussed. The x-ray output has been measured using filtered pin diodes, x-ray diodes, and absolutely calibrated x-ray crystal spectra. Results from the source operating at 2 Hz will be presented. A novel concept of a windowless beamline has also been developed. The results of preliminary experiments to test the concept will be discussed. At a pulse repetition rate of 20 Hz, this source should produce 200--400 W of x-ray power in the 8-14 angstrom wavelength band, with an input power of 40--60 kW

  19. Matching microlensing events with X-ray sources

    Science.gov (United States)

    Sartore, N.; Treves, A.

    2012-03-01

    Aims: The detection of old neutron stars and stellar mass black holes in isolation is one of the most sought after goals of compact object astrophysics. Microlensing surveys may help in achieving this aim because the lensing mechanism is independent of the emission properties of the lens. Several black hole candidates have indeed been detected by means of microlensing observations have been reported in the literature. The identification of counterparts, especially in the X-rays, would be a strong argument in favor of the compact nature of these lenses. Methods: We perform a cross-correlation between the catalogs of microlensing events produced by the OGLE, MACHO, and MOA teams, and those of X-rays sources from the data acquired by the XMM-Newton and Chandra satellites. On the basis of our previous work, we select only microlensing events with durations longer than one hundred days, which should contain a large fraction of lenses as compact objects. Our matching criterion takes into account the positional coincidence on the sky. Results: We find a single match between a microlensing event, OGLE-2004-BLG-081 (tE ~ 103 days), and the X-ray source 2XMM J180540.5-273427. The angular separation is ~0.5 arcsec, i.e. well within the 90% error box of the X-ray source. The hardness ratios reported in the 2XMM catalog imply that it has a hard spectrum with a peak between 2 keV and 4.5 keV or it has a softer but highly absorbed spectrum. Moreover, the microlensing event is not fully constrained, and other authors propose a possible association of the source star with either a flaring cataclysmic variable or a RS Canum Venaticorum-like star. Conclusions: The very small angular separation (within uncertainties) is a strong indicator that 2XMM J180540.5-273427 is the X-ray counterpart of the OGLE event. However, the uncertainties in the nature of both the lensed system and the lens itself challenge the interpretation of 2XMM J180540.5-273427 as the first confirmed isolated black

  20. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  1. Crystal diffraction lens telescope for focusing nuclear gamma rays

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.; Graber, T.; Faiz, M.

    1996-08-01

    A crystal diffraction lens was constructed at Argonne National Laboratory for use as a telescope to focus nuclear gamma rays. It consisted of 600 single crystals of germanium arranged in 8 concentric rings. The mounted angle of each crystal was adjusted to intercept and diffract the incoming gamma rays with an accuracy of a few arc sec. The performance of the lens was tested in two ways. In one case, the gamma rays were focused on a single medium size germanium detector. In the second case, the gamma rays were focused on the central germanium detector of a 3 x 3 matrix of small germanium detectors. The efficiency, image concentration and image quality, and shape were measured. The tests performed with the 3 x 3 matrix detector system were particularly interesting. The wanted radiation was concentrated in the central detector. The 8 other detectors were used to detect the Compton scattered radiation, and their energy was summed with coincident events in the central detector. This resulted in a detector with the efficiency of a large detector (all 9 elements) and the background of a small detector (only the central element). The use of the 3 x 3 detector matrix makes it possible to tell if the source is off axis and, if so, to tell in which direction. The crystal lens acts very much like a simple convex lens for visible light. Thus if the source is off to the left then the image will focus off to the right illuminating the detector on the right side: telling one in which direction to point the telescope. Possible applications of this type of crystal lens to balloon and satellite experiments will be discussed

  2. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  3. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    Science.gov (United States)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  4. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  5. X-Pinch soft x-ray source for microlithography

    International Nuclear Information System (INIS)

    Glidden, S.C.; Hammer, D.A.; Kalantar, D.H.; Qi, N.

    1993-01-01

    The x-pinch soft x-ray source is described for application in submicron resolution lithography. Experiments have been performed to characterize the radiation emitted from magnesium wire x-pinch plasmas using an 80 ns, ≤500 kA pulse. Yields of 14.2 J averaged over three independent calibrated diagnostics at 445 kA have been measured in magnesium K-shell radiation (predominantly 8.4 angstrom to 9.4 angstrom or 1.5 keV to 1.3 keV) from a submillimeter source, with as little as 5-10% of the yield below the 6.74 angstrom silicon absorption edge. A new ≤700 kA, 100 ns pulser being used for x-pinch physics experiments is described. The design of a 40 pulse per second pulsed power system and wire loading mechanism for exposing a resist in 1 second at a distance 40 cm is presented

  6. Production of hollow atoms by high brightness x-ray sources and its applications

    International Nuclear Information System (INIS)

    Moribayashi, Kengo

    2004-01-01

    We study x-ray emissions from the (multi-)inner-shell states and hollow atoms of Si ions excited by high intensity x-ray sources. It is found that the x-ray number from multi-inner-shell excited states (1s 2 2s 2 2p k 3s 2 3p 2 , k=1-4) and hollow atoms (1s 2 2s 2 3p 2 ) is affected greatly by the high intensity short-pulse x-rays and little by weak intensity post-long pulse x-rays. The ratio of the x-ray intensities from hollow atoms to those from the multi-inner-shell excited states becomes almost independent of the pulses and dependent on the intensities of x-ray sources. This ratio may be used for the measurement of intensities of high intensity short pulse x-ray sources. (author)

  7. The cut-off point of dual energy X-ray and laser of calcaneus osteoporosis diagnosis in postmenopausal women

    International Nuclear Information System (INIS)

    Salimzadeh, A.; Forough, B.; Olia, B.; Alishiri, G. H.; Ghasemzadeh, A.

    2005-01-01

    Dual X-Ray Absorptiometry is a method which can extensively be used for bone mineral densitometry . Another more recent method is dual energy X-ray and laser, which associate with dual X ray absorptiometry, assisted by laser measure heel thickness. In this study the cut off points for dual energy X-ray and laser of calcaneus in the diagnosis of osteoporosis in different bone regions in postmenopausal women had been determined. Materials and Methods: In 268 postmenopausal women, BMD of the spinal and femoral regions was measured by DM, and the value for the calcaneous was measured by dual energy X-ray and laser. The agreement of the two methods in the diagnosis of osteoporosis and optimal cut-off point for dual energy X-ray and laser in defining osteoporosis was obtained. What obtained was the agreement of the two methods in the diagnosis of osteoporosis, as well as the optimal cut-off point for dual energy X-ray and laser in defining osteoporosis. Results: Dual X-Ray Absorptiometry showed osteoporosis in 40.7% of cases with 35.2% in L2-L4, 16.2% in the femoral neck, and 11.7% for the femoral total region. The dual energy X-ray and laser found osteoporosis, considering -2.5 SD as a threshold, in 26.1% of cases. Agreement of the two methods in the diagnosis of osteoporosis (Kappa score) was 0.443 for the lumbar region, 0.464 for the neck, and, 0.421 for total femur regions (all P values were significant). Using Receiver Operating Characteristic curves, it was found that a T-score of -2.1, -2.6 and -2.4 as the optimal cut-off point of dual energy X-ray and laser in the diagnosis of osteoporosis in the lumbar spine, the neck and total region of femur, respectively. Conclusion: The results of this study showed a moderate agreement between the two methods in the diagnosis of osteoporosis. It seems that the dual energy X-ray and laser cannot be used as a substitute for the DM method, but it can be used as a screening method to find (to diagnose) osteoporosis

  8. Optical Counterparts for Low-Luminosity X-ray Sources in Omega Centauri

    Science.gov (United States)

    Cool, Adrienne

    2002-07-01

    We propose to use narrow-band HAlpha imaging with ACS to search for the optical counterparts of low-luminosity X-ray sources {Lx 2 x 10^30 - 5 x 10^32 erg/s} in the globular cluster Omega Centauri. With 9 WFC fields, we will cover the inner two core radii of the cluster, and encompass about 90 of the faint sources we have identified with Chandra. Approximately 30-50 of these sources should be cluster members, the remainder being mostly background galaxies plus a smaller number of foreground stars. This large population of low-Lx cluster X-ray sources is second only to the more than 100 faint sources recently discovered in 47 Tuc with Chandra {Grindlay et al. 2001a}, which have been identified as a mixture of cataclysmic variables, quiescent low-mass X-ray binaries, millisecond pulsars, and coronally active main-sequence binaries. Our Cycle 6 WFPC2 program successfully identified 2 of the 3 then-known faint X-ray sources in the core of Omega Cen using H-alpha imaging. We now propose to expand the areal coverage by a factor of about 18 to encompass the much larger number of sources that have since been discovered with Chandra. The extreme crowding in the central regions of Omega Cen requires the resolution of HST to obtain optical IDs. These identifications are key to making meaningful comparisons between the populations of faint X-ray sources in different clusters, in an effort to understand their origins and role in cluster dynamics.

  9. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  10. Laboratory characterization of Woelter x-ray optics

    International Nuclear Information System (INIS)

    Remington, B.A.; Morales, R.I.

    1994-04-01

    We have conducted an extensive series of characterization measurements of a Woe1ter incidence x-ray microscope. The measurements were carried out on 5% sectors of the Woe1ter x-ray optic in a laboratory utilizing a high brightness, ''point'' x-ray source and fall into two categories. (1) Absolute reflectance measurements as a function of x-ray energy were made with Si(Li) detectors to acquire continuum spectra prior to and after reflecting off the Woe1ter optic. (2) Spatial resolution measurements were made using back-illuminated pinholes or grids imaged onto film or an x-ray CCD camera. The depth of field was mapped out by varying the distance between the Woe1ter optic and the backlit grid

  11. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    March 30th, 1997 during a quiescent phase of the source. .... The field of view ... tagged with a 25µsec resolution and transmitted to ground on a 40 Kbit PCM/FM ... only composite model fits for the soft and hard X ray band are used and the ...

  12. Astronomy and astrophysics of galactic X-ray binaries: from the nature of the X-ray sources to the physics of accretion processes

    International Nuclear Information System (INIS)

    Rodriguez, Jerome

    2010-01-01

    In this HDR (Accreditation to supervise research) report, the author proposes an overview of his research works in the field of accretion of X-ray binaries. After a presentation of X-ray binaries, neutron stars and black holes, micro-quasars, and of the main issues regarding X-ray binaries, the author presents and comments his activities in X-ray astronomy and gamma-ray astronomy (the INTEGRAL observatory, the discovery of new sources of X and gamma radiation, studies of new sources at different wavelengths). The second part addresses the understanding of source accretion: phenomenological studies in astronomy, relationships between accretion and ejection. The third part presents and comments several studies of the physics of phenomena related to matter accretion and ejection. (author) [fr

  13. Broadband X-ray spectra of the ultraluminous x-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DEFF Research Database (Denmark)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.

    2014-01-01

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the...

  14. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    Science.gov (United States)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  15. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  16. Characteristics of X-ray fluorescence of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seunghoon; Kwak, Sung-Woo; Shin, Jung-Ki; Park, Uk-Rayng; Jung, Heejun [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    LED is a technique of determination of uranium concentration as a continuous X-ray energy beams transmit a uranium liquid sample for safeguards. Compared to K-edge densitometer, due to relatively lower energy (L-edge energy is 17.17 keV) of Uranium L series energy than K-series energy, L-edge densitometer does not require high purity germanium detector with liquid nitride cooling. Therefore, the Ledge densitometer is appropriate for portable equipment for on-site nuclear material inspection and safeguards at facility sites. XRF combined with LED is a technique of finding of nuclear materials from reflected characteristic X-ray photons. In this study, characteristics of XRF of nuclear materials are simulated Monte Carlo method (Geant4) for feasibility of the system for determination of concentration of nuclear species. The analysis method of uranium concentration or minor actinides is applied using combination of linear extrapolation from jump of L-edge of sample and ratio between uranium and minor actinide from XRF measurement. In this study, The XRF ch aracteristics was simulated from Monte Carlo method. The peaks were obtained from nuclear material mixture. The estimated nuclear material concentration is low due to the volume effect of the sample. The correction factor or minimization of the effect is required.

  17. Nuclear quadrupole deformations and anisotropic angular correlations between K x rays and gamma rays

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1983-01-01

    Anisotropic angular correlation between gamma rays and the K x rays following the K conversion from nuclei with large static deformations has been studied. A complete theoretical expression for 181 Ta, the second known case of this phenomenon, is presented. This case involves several mixed nuclear transitions which result in 62% of the x rays arising from magnetic dipole internal-conversion processes and 38% arising from electric-quadrupole internal-conversion processes

  18. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  19. X-ray irradiation of yeast cells

    Science.gov (United States)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  20. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009-1231 (United States); Ness, Jan-Uwe [XMM-Newton Science Operations Centre, ESAC, Apartado 78, 28691 Villanueva de la Canada, Madrid (Spain); Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Walter, Frederick M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Andrew Helton, L. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N211-3, Moffett Field, CA 94035 (United States); Woodward, Charles E. [Minnesota Institute of Astrophysics, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Bode, Mike [Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD (United Kingdom); Starrfield, Sumner [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Drake, Jeremy J., E-mail: Greg.Schwarz@aas.org [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 3, Cambridge, MA 02138 (United States)

    2011-12-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  1. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    International Nuclear Information System (INIS)

    Schwarz, Greg J.; Ness, Jan-Uwe; Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P.; Walter, Frederick M.; Andrew Helton, L.; Woodward, Charles E.; Bode, Mike; Starrfield, Sumner; Drake, Jeremy J.

    2011-01-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 Å) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t 2 or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  2. A CENSUS OF THE SUPERSOFT X-RAY SOURCES IN M31

    International Nuclear Information System (INIS)

    Orio, Marina; Nelson, Thomas; Bianchini, Antonio; Di Mille, Francesco; Harbeck, Daniel

    2010-01-01

    We examined X-ray, ultraviolet, and optical archival data of 89 supersoft X-ray sources (SSS) in M31. We studied the timescales of X-ray variability and searched UV and optical counterparts. Almost a third of the SSS are known classical or recurrent novae, and at least half of the others exhibit the same temporal behavior as post-outburst novae. Non-stellar objects among SSS seem to be rare: less than 10% of the classified SSS turned out to be supernova remnants, and only one source has been identified with an active galactic nucleus in the background. Not more than 20% of the SSS that are not coincident with observed novae are persistent or recurrent X-ray sources. A few of these long-lasting sources show characteristics in common with other SSS identified as white dwarf (WD) close binaries in the Magellanic Clouds and in the Galaxy, including variability on timescales of minutes, possibly indicating the spin period of a WD. Such objects are likely to be low-mass X-ray binaries with a massive WD. A third of the non-nova SSS are in regions of recent star formation, often at the position of an O or B star, and we suggest that they may be high-mass X-ray binaries. If these sources host a massive hydrogen-burning WD, as it seems likely, they may become Type Ia supernovae (SNe Ia), constituting the star formation dependent component of the SNe Ia rate.

  3. Hard X-ray Sources for the Mexican Synchrotron Project

    International Nuclear Information System (INIS)

    Reyes-Herrera, Juan

    2016-01-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392). (paper)

  4. Hard X-ray Sources for the Mexican Synchrotron Project

    Science.gov (United States)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  5. Uncovering extreme AGN variability in serendipitous X-ray source surveys

    Science.gov (United States)

    Moran, Edward C.; Garcia Soto, Aylin; LaMassa, Stephanie; Urry, Meg

    2018-01-01

    Constraints on the duty cycle and duration of accretion episodes in active galactic nuclei (AGNs) are vital for establishing how most AGNs are fueled, which is essential for a complete picture of black hole/galaxy co-evolution. Perhaps the best handle we have on these activity parameters is provided by AGNs that have displayed dramatic changes in their bolometric luminosities and, in some cases, spectroscopic classifications. Given that X-ray emission is directly linked to black-hole accretion, X-ray surveys should provide a straightforward means of identifying AGNs that have undergone dramatic changes in their accretion states. However, it appears that such events are very rare, so wide-area surveys separated in time by many years are needed to maximize discovery rates. We have cross-correlated the Einstein IPC Two-Sigma Catalog with the ROSAT All-Sky Survey Faint Source Catalog to identify a sample of soft X-ray sources that varied by factors ranging from 7 to more than 100 over a ten year timescale. When possible, we have constructed long-term X-ray light curves for the sources by combining the Einstein and RASS fluxes with those obtained from serendipitous pointed observations by ROSAT, Chandra,XMM, and Swift. Optical follow-up observations indicate that many of the extremely variable sources in our sample are indeed radio-quiet AGNs. Interestingly, the majority of objects that dimmed between ~1980 and ~1990 are still (or are again) broad-line AGNs rather than“changing-look” candidates that have more subtle AGN signatures in their spectra — despite the fact that none of the sources examined thus far has returned to its highest observed luminosity. Future X-ray observations will provide the opportunity to characterize the X-ray behavior of these anonymous, extreme AGNs over a four decade span.

  6. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  7. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    Science.gov (United States)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  8. Soft x-ray source by laser produced Xe plasma

    International Nuclear Information System (INIS)

    Amano, Sho; Masuda, Kazuya; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-01-01

    The laser plasma soft X-ray source in the wavelength rage of 5-17 nm was developed, which consisted of the rotating drum system supplying cryogenic Xe target and the high repetition rate pulse Nd:YAG slab laser. We found the maximum conversion efficiency of 30% and it demonstrated the soft X-ray generation with the high repetition rate pulse of 320 pps and the high average power of 20 W. The soft X-ray cylindrical mirror was developed and successfully focused the soft X-ray with an energy intensity of 1.3 mJ/cm 2 . We also succeeded in the plasma debris mitigation with Ar gas. This will allow a long lifetime of the mirror and a focusing power intensity of 400 mW/cm 2 with 320 pps. The high power soft X-ray is useful for various applications. (author)

  9. Plasma x-ray radiation source.

    Science.gov (United States)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  10. X-ray spectroscopy with normal and exotic atoms

    International Nuclear Information System (INIS)

    Qureshi, I.E.

    1995-01-01

    X-ray spectroscopy is a powerful analytical tool for elemental analysis and also for the study of nuclear properties. In recent years these has been extensive utilization of x-ray spectral analysis for the purpose of plasma diagnostics. These studies are vital for the development of controlled nuclear fusion technology. The formation of special atoms containing particles heavier than electrons is another area in which x-ray spectra give detailed knowledge of the sizes and shapes of atomic nuclei, masses and magnetic momenta of bound particles and the nature of interaction between bound particle and the nucleus. All these aspects make x-ray spectra of uniquely rich source of information on material and nuclear properties. The present article provides some glimpses of how this information is extracted. The choice of topics is biased towards nuclear physics. The presentation is not attempted to the exhaustive and is aimed at conveying the essential physical ideas without going into technical details. (author) 6 figs

  11. Comparison of X-ray source concepts for radiographic purposes at OMEGA

    International Nuclear Information System (INIS)

    Jacquet, L.; Primout, M.; Villette, B.; Girard, F.; Oudot, G.

    2013-01-01

    As multi-keV X-ray sources, seven targets including thick and thin foils, metal-lined halfraums and a foil combined with a plastic cylinder, have been shot on Omega in September 2011. Titanium was used as X-ray emitting material for all the sources. Using experimental data and FCI 2 simulation results, we have, for each source type, characterized the emission lobes and determined the spatial directions of maximum multi-keV energy. These results demonstrate the benefit of using a laser drive with a prepulse for both thick and thin foils. The favorable effect of a confinement cylinder for the X-ray emitted from front side by a thin foil has also been experimentally found but is not yet confirmed by the simulations. The temporal waveforms of the X-ray power obtained from the different sources as well as the emission spots at the times of maximum emission are also compared. (authors)

  12. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  13. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    International Nuclear Information System (INIS)

    Michael Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  14. Chemical Characterization of Nuclear Materials: Development a New Combined X-Ray Fluorescence and Raman Spectrometer

    International Nuclear Information System (INIS)

    Szaloki, I.; Gerenyi, A.

    2015-01-01

    New mobile analytical device based on combination of X-ray fluorescence and Raman spectrometer has been developed for prompt and quantitative characterization of chemical component from Al to U in nuclear waste or undeclared materials. The excitation source of the X-ray fluorescence spectrometer is an air-cooled X-ray tube with Ag transmission anode. For collection of secondary X-ray photons and data processing, a compact Amptek X-ray detector system is applied with silicon drift X-ray detector. The XRF system operates in confocal mode with focal volume around 1-4 mm 3 . Varying the geometrical position and orientation of the sample optional part of its surface can be analyzed. The Raman unit includes thermoelectrically cooled laser source having 500 mW power at wavelength 785 nm. In order to obtain spectral information from sample surface a reflection-type probe is connected by optical fibres to the Raman spectrometer. A mini focusing optics is set up to the sensor-fibre that provides the system to operate as confocal optical device in reflection mode. The XRF spectrometer with X-ray detector, Raman probe and X-ray tube are mechanically fixed and hermetically connected to an aluminium chamber, which can be optionally filled with helium. The chamber is mounted on a vertical stage that provides moving it to the sample surface. A new model and computer code have been developed for XRF quantitative analysis which describes the mathematical relationship between the concentration of sample elements and their characteristic X-ray intensities. For verification of the calculations standard reference alloy samples were measured. The results was in good agreement with certified concentrations in range of 0.001-100 w%. According to these numerical results this new method is successfully applicable for quick and non-destructive quantitative analysis of waste materials without using standard samples. (author)

  15. Multi-keV X-ray area source intensity at SGII laser facility

    Science.gov (United States)

    Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei

    2018-05-01

    Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.

  16. The ultraviolet to X-ray continua of BL Lac objects

    International Nuclear Information System (INIS)

    George, I.M.; Warwick, R.S.; McHardy, I.M.

    1988-01-01

    The results from EXOSAT observations of three X-ray bright BL Lacertae objects, Mrk 501, 1218 + 304 and Mrk 180 are presented. All three sources have soft power-law X-ray spectra with low-energy cut-offs consistent with absorption in the line-of-sight gas column density through our own galaxy. The three objects also exhibit significant spectral variability in the X-ray band on time-scales ranging from a few days to a year. In each case, X-ray flux and spectral index appear to be correlated, in the sense that the X-ray spectrum hardens as the source brightens. The intrinsic ultraviolet to X-ray spectrum of these and several other X-ray bright BL Lac objects can be modelled as a power-law continuum of energy index ∼1.0 below about 0.1 keV, above which the spectral slope steepens. (author)

  17. The Ultraluminous X-Ray Source X-37 Is a Background Quasar in the Antennae Galaxies

    Science.gov (United States)

    Clark, D. M.; Christopher, M. H.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2005-10-01

    In this Letter we report that a bright, X-ray source in the Antennae galaxies (NGC 4038/9), previously identified as an ultraluminous X-ray source (ULX), is in fact a background quasar. We identify an isolated infrared and optical counterpart within 0.3" +/- 0.5" of the X-ray source X-37. After acquiring an optical spectrum of its counterpart, we use the narrow [O III] and broad Hα emission lines to identify X-37 as a quasar at a redshift of z=0.26. Through a U, V, and Ks photometric analysis, we demonstrate that most of the observable light along this line of sight is from the quasar. We discuss the implications of this discovery and the importance of acquiring spectra for optical and IR counterparts to ULXs.

  18. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  19. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  20. X-Ray-Driven Gamma Emission

    International Nuclear Information System (INIS)

    Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.

    2001-01-01

    X-ray-driven gamma emission describes processes that may release nuclear energy in a 'clean' way, as bursts of incoherent or coherent gamma rays without the production of radioactive by-products. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 it has been established that photons could trigger gamma emission from a long-lived metastable nuclear excited state of one nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these experimental results have come new proposals for the creation of collective and avalanche-like incoherent gamma-ray bursts and even for the ultimate light source, a gamma-ray laser. Obviously, many applications would benefit from controlled bursts of gamma radiation, whether coherent or not. This paper reviews the experimental results and concepts for the production of gamma rays, driven by externally produced X-rays

  1. Characterization of a novel x-ray source: The MIRRORCLE-6X system

    International Nuclear Information System (INIS)

    Gambaccini, M.; Marziani, M.; Taibi, A.; Cardarelli, P.; Di Domenico, G.; Mastella, E.

    2012-01-01

    MIRRORCLE is a tabletop synchrotron light source being investigated within an EC funded project named LABSYNC. To evaluate the potential of this novel x-ray source for medical imaging applications, a set of measurements was performed at the MIRRORCLE factory in Japan. In particular, the aim of this work was to characterize the proposed compact x-ray source by determining different parameters, such as the intensity of the broad spectra produced with thin wire targets, the size of the focal spot and its distribution. The average electron-beam impact current on wire targets was calculated by several methods and it was demonstrated to be in the range 0.5-1.0μA. By comparing these values with data available for conventional x-ray tubes, the current needed to achieve the same fluence as in a standard diagnostic examination was estimated to be about 0.1-0.5 mA. Finally, results from the measurements of the electron-beam impact cross-section on the target suggested that the diameter of the electron beam circulating in the storage ring is about 6 mm.

  2. Apparatus with a cooled X-ray source and a high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    Apparatus, especially for a dental application, with an X-ray source and a high voltage generator, whereby the X-ray source and a high voltage generator are contained in a housing, which is filled with a coolant medium, characterised by the housing being divided into two chambers, whereby the X-ray source is in the first chamber and the high voltage generator is in the second chamber and between the chambers a dividing wall is placed for the screening of the X-ray irradiation from the first chamber from the second, whereby at least one of the walls of the second chamber is elastic to accommodate the expansion of the coolant medium.

  3. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    Science.gov (United States)

    Blanovsky, Anatoly

    2004-12-01

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  4. Hard X-ray mirrors for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brejnholt, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hill, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Decker, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alameda, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soufli, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pivovaroff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-07

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a new type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally

  5. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    Science.gov (United States)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  6. Classification of X-ray sources in the XMM-Newton serendipitous source catalog: Objects of special interest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Webb, Natalie A.; Barret, Didier, E-mail: dlin@ua.edu [CNRS, IRAP, 9 Avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France)

    2014-01-01

    We analyze 18 sources that showed interesting properties of periodicity, very soft spectra, and/or large long-term variability in X-rays in our project of classification of sources from the 2XMMi-DR3 catalog, but were poorly studied in the literature, in order to investigate their nature. Two hard sources show X-ray periodicities of ∼1.62 hr (2XMM J165334.4–414423) and ∼2.1 hr (2XMM J133135.2–315541) and are probably magnetic cataclysmic variables. One source, 2XMM J123103.2+110648, is an active galactic nucleus (AGN) candidate showing very soft X-ray spectra (kT ∼ 0.1 keV) and exhibiting an intermittent ∼3.8 hr quasi-periodic oscillation. There are six other very soft sources (with kT < 0.2 keV), which might be in other galaxies with luminosities between ∼10{sup 38}-10{sup 42} erg s{sup –1}. They probably represent a diverse group that might include objects such as ultrasoft AGNs and cool thermal disk emission from accreting intermediate-mass black holes. Six highly variable sources with harder spectra are probably in nearby galaxies with luminosities above 10{sup 37} erg s{sup –1} and thus are great candidates for extragalactic X-ray binaries. One of them (2XMMi J004211.2+410429, in M31) is probably a new-born persistent source, having been X-ray bright and hard in 0.3-10 keV for at least four years since it was discovered entering an outburst in 2007. Three highly variable hard sources appear at low galactic latitudes and have maximum luminosities below ∼10{sup 34} erg s{sup –1} if they are in our Galaxy. Thus, they are great candidates for cataclysmic variables or very faint X-ray transients harboring a black hole or neutron star. Our interpretations of these sources can be tested with future long-term X-ray monitoring and multi-wavelength observations.

  7. Combined Photoneutron And X Ray Interrogation Of Containers For Nuclear Materials

    Science.gov (United States)

    Gozani, Tsahi; Shaw, Timothy; King, Michael J.; Stevenson, John; Elsalim, Mashal; Brown, Craig; Condron, Cathie

    2011-06-01

    Effective cargo inspection systems for nuclear material detection require good penetration by the interrogating radiation, generation of a sufficient number of fissions, and strong and penetrating detection signatures. Inspection systems need also to be sensitive over a wide range of cargo types and densities encountered in daily commerce. Thus they need to be effective with highly hydrogenous cargo, where neutron attenuation is a major limitation, as well as with dense metallic cargo, where x-ray penetration is low. A system that interrogates cargo with both neutrons and x-rays can, in principle, achieve high performance over the widest range of cargos. Moreover, utilizing strong prompt-neutron (˜3 per fission) and delayed-gamma ray (˜7 per fission) signatures further strengthens the detection sensitivity across all cargo types. The complementary nature of x-rays and neutrons, used as both probing radiation and detection signatures, alleviates the need to employ exceedingly strong sources, which would otherwise be required to achieve adequate performance across all cargo types, if only one type of radiation probe were employed. A system based on the above principles, employing a commercially-available 9 MV linac was developed and designed. Neutrons are produced simultaneously with x-rays by the photonuclear interaction of the x-ray beam with a suitable converter. A total neutron yield on the order of 1011 n/s is achieved with an average electron beam current of 100 μA. If fissionable material is present, fissions are produced both by the high-energy x-ray beam and by the photoneutrons. Photofission and neutron fission dominate in hydrogenous and metallic cargos, respectively. Neutron-capture gamma rays provide information on the cargo composition. The prompt neutrons resulting from fission are detected by two independent detector systems: by very efficient Differential Die Away Analysis (DDAA) detectors, and by direct detection of neutrons with energies higher

  8. Development of a Novel Tunable X-Ray Source for the RPI-LINAC

    International Nuclear Information System (INIS)

    Danon, Y.; Block, R.C.

    2004-01-01

    This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source

  9. Development of a Novel Tunable X-Ray Source for the RPI-LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Y. Danon; R.C. Block

    2004-11-30

    This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source.

  10. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  11. Compact alpha-excited sources of low energy x-rays

    International Nuclear Information System (INIS)

    Amlauer, K.; Tuohy, I.

    1976-01-01

    A discussion is given of the use of alpha emitting isotopes, such as 210 Po and 244 Cm, for the production of low energy x-rays (less than 5.9 keV). The design of currently available sources is described, and x-ray fluxes observed from various target materials are presented. Commercial applications of the alpha excitation technique are briefly discussed

  12. Nuclear fusion induced by x rays in a crystal

    Science.gov (United States)

    Belyaev, V. B.; Miller, M. B.; Otto, J.; Rakityansky, S. A.

    2016-03-01

    The nuclei that constitute a crystalline lattice oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (x rays or synchrotron radiation). Exposing the solid compound LiD (lithium deuteride) to x rays for the duration of 111 h, we detect 88 events of nuclear fusion d +6Li→8Be* . Our theoretical estimate agrees with what we observed. One possible application of the phenomenon we found is in measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

  13. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    Science.gov (United States)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  14. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    Science.gov (United States)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  15. Nuclear fusion induced by X-rays in a crystal

    OpenAIRE

    Belyaev, V. B.; Miller, M. B.; Otto, J.; Rakityansky, S. A.

    2016-01-01

    The nuclei that constitute a crystalline lattice, oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (X-rays or the synchrotron radiation). Exposing to the X-rays the solid compound LiD (lithium-deuteride) for the duration of 111 hours, we have detected 88 events of the nuclear fus...

  16. OSO-7 observations of high galactic latitude x-ray sources

    International Nuclear Information System (INIS)

    Markert, T.H.; Canizares, C.R.; Clark, G.W.; Li, F.K.; Northridge, P.L.; Sprott, G.F.; Wargo, G.F.

    1976-01-01

    Six hundred days of observations by the MIT X-ray detectors aboard OSO-7 have been analyzed. All-sky maps of X-ray intensity have been constructed from these data. A sample map is displayed. Seven sources with galactic latitude vertical-barb/subi//subi/vertical-bar>10degree, discovered during the mapping process, are reported, and upper limits are set on other high-latitude sources. The OSO-7 results are compared with those of Uhuru and an implication of this comparison, that many of the high-latitude sources may be variable, is discussed

  17. Compact X-ray Light Source Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  18. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  19. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  20. Ultra-luminous X-ray sources and intermediate-mass black holes

    International Nuclear Information System (INIS)

    Cseh, David

    2012-01-01

    More than ten years ago, the discovery of Ultra-luminous X-ray sources (ULXs) has opened up an entirely new field in astrophysics. Many ideas were developed to explain the nature of these sources, like their emission mechanism, mass, and origin, without any strong conclusions. Their discovery boosted the fields of X-ray binaries, accretion physics, stellar evolution, cosmology, black hole formation and growth, due to the concept of intermediate-mass black holes (IMBHs). Since their discovery is related to the domain of X-ray astrophysics, there have been very few studies made in other wavelengths. This thesis focuses on the multiwavelength nature of Ultra-luminous X-ray sources and intermediate-mass black holes from various aspects, which help to overcome some difficulties we face today. First, I investigated the accretion signatures of a putative intermediate-mass black hole in a particular globular cluster. To this purpose, I characterized the nature of the innermost X-ray sources in the cluster. Then I calculated an upper limit on the mass of the black hole by studying possible accretion efficiencies and rates based on the dedicated X-ray and radio observations. The accreting properties of the source was described with standard spherical accretion and in the context of inefficient accretion. Secondly, I attempted to dynamically measure the mass of the black hole in a particular ULX via optical spectroscopy. I discovered that a certain emission line has a broad component that markedly shifts in wavelength. I investigated the possibility whether this line originates in the accretion disk, and thus might trace the orbital motion of the binary system. I also characterized the parameters of the binary system, such as the mass function, possible orbital separation, the size of the line-emitting region, and an upper limit on the mass of the black hole. Then I studied the environment of a number of ULXs that are associated with large-scale optical and radio nebulae. I

  1. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  2. Characterization of the development of miniature X-ray tubes Moxtek

    International Nuclear Information System (INIS)

    Daniska, M.; Necas, V.

    2008-01-01

    This thesis addresses the sources of X-rays, the principle of their function and basic skills associated with their operation. It emphasis on the development of X-ray sources in the company Magnum Series Moxtek, because one of them became part of the instrumentation laboratory of the Department of Nuclear Physics and Technology. (authors)

  3. THE CHANDRA SURVEY OF EXTRAGALACTIC SOURCES IN THE 3CR CATALOG: X-RAY EMISSION FROM NUCLEI, JETS, AND HOTSPOTS IN THE CHANDRA ARCHIVAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Harris, D. E.; Paggi, A.; Wilkes, B. J.; Kuraszkiewicz, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Liuzzo, E.; Orienti, M.; Paladino, R. [Istituto di Radioastronomia, INAF, via Gobetti 101, I-40129, Bologna (Italy); Tremblay, G. R. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Baum, S. A.; O’Dea, C. P. [University of Manitoba, Dept of Physics and Astronomy, Winnipeg, MB R3T 2N2 (Canada)

    2015-09-15

    As part of our program to build a complete radio and X-ray database of all Third Cambridge catalog extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have already been published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the Very Large Array archive. For about 1/3 of the sources in the selected sample, a comparison between the Chandra and radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium for 15 galaxy clusters.

  4. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    Science.gov (United States)

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.

  5. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    Science.gov (United States)

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  6. Stationary scanning x-ray source based on carbon nanotube field emitters

    International Nuclear Information System (INIS)

    Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y.Z.; Lu, J.P.; Zhou, O.

    2005-01-01

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup

  7. Providing Bright-Hard X-ray Beams from a Lower Energy Light Source

    Science.gov (United States)

    Robin, David

    2002-04-01

    At the Advanced Light Source (ALS) there had been an increasing demand for more high brightness harder X-ray sources in the 7 to 40 KeV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than the 1.3 Tesla bends, making them excellent sources of harder x-rays for protein crystallography and other harder x-ray applications. At the same time the Superbends do not compromise the performance of the facility in the UV and Soft X-ray regions of the spectrum. The Superbends will eventually feed 12 new x-ray beam lines greatly enhancing the facility's capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since the ring was commissioned in 1993. In this paper we present, a history of the project, details of the magnet, installation, commissioning, and resulting performance of the ALS with Superbends.

  8. Calibration of the Nustar High-Energy Focusing X-Ray Telescope

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Markwardt, Craig B.

    2015-01-01

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles...... and energies, compared to the assumed spectrum, are typically better than +/- 2% up to 40 keV and 5%-10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power...

  9. TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    International Nuclear Information System (INIS)

    Behling, R.

    2016-01-01

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  10. TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    International Nuclear Information System (INIS)

    2016-01-01

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  11. TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Behling, R. [Philips Medical Systems DMC GmbH (United States)

    2016-06-15

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  12. TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  13. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    Science.gov (United States)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  14. Performance of the IBM synchrotron X-ray source for lithography

    International Nuclear Information System (INIS)

    Archie, C.

    1993-01-01

    The compact superconducting synchrotron X-ray source at the IBM Advanced Lithography Facility in East Fishkill, New York has been in service to customers since the start of 1992. It availability during scheduled time is greater than 90%, with recent months frequently surpassing 95%. Data on the long-term behavior of the X-ray source properties and subsystem performance are now available. The full system continues to meet all specifications and even to surpass them in key areas. Measured electron beam properties such as beam size, short- and long-term positional stability, and beam life are presented. Lifetimes greater than 20 hours for typical stored beams have significantly simplified operations and increased availability compared to projections. This paper also describes some unique features of this X-ray source and goes beyond a discussion of downtime to describe the efforts behind the scenes to maintain and operate it

  15. Laser interaction with matter as a source of U.V. and soft X-ray radiation: application to X-ray cinematography

    International Nuclear Information System (INIS)

    Tonon, G.F.; Colombant, Denis; Delmare, Claude; Rabeau, Maxime

    A new detecting device is described. It allows one to get the frequency, the time and space resolution of pictures of U.V. and soft X ray emission of a laser created plasma in a single shot: X ray pictures of such a plasma are presented. After these preliminary results, it is possible to set up readily an X ray framing camera. A laser created plasma is an X ray source of special interest: the emitted power can be 10% of the laser intensity and the emitted spectrum is centered around 1A wavelength [fr

  16. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  17. Nanomaterial-based x-ray sources

    Science.gov (United States)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  18. A quasi-monochromatic X-rays source for art painting pigments investigation

    Energy Technology Data Exchange (ETDEWEB)

    Albertin, F.; Franconieri, A.; Gambaccini, M.; Petrucci, F.; Chiozzi, S. [University of Ferrara, Department of Physics and INFN, Ferrara (Italy); Moro, D. [University of Padova, Department of Physics, Padova (Italy); LNL - INFN, Legnaro, Padova (Italy)

    2009-08-15

    Monochromatic X-ray sources can be used for several applications, like in medicine or in studying our cultural heritage. We are investigating imaging systems based on a tuneable energy band X-ray source, to obtain an element mapping of painting layers using the K-edge technique. The narrow energy band beams are obtained with conventional X-ray source via Bragg diffraction on a mosaic crystal; such an analysis has been performed at different diffraction angles, tuning the energy to investigate spectra of interest from the artistic point of view, like zinc and copper. In this paper the characteristics of the system in terms of fluence rate are reported, and first results of this technique on canvas samples and painting are presented. (orig.)

  19. Microfocus X-ray sources for 3D microtomography

    International Nuclear Information System (INIS)

    Flynn, M.J.; Hames, S.M.; Reimann, D.A.; Wilderman, S.J.

    1994-01-01

    An analytic model for the performance of cone beam microtomography is described. The maximum power of a microfocus X-ray source is assumed to be approximately proportional to the focal spot size. Radiation flux penetrating the specimen is predicted by a semi-empirical relation which is valid for X-ray energies less than 20 keV. Good signal to noise ratio is predicted for bone specimens of 0.1 to 10 mm when scanned at the optimal energy. A flux of about 1x10 10 photons/mm 2 /s is identified for 0.2 mm specimens. Cone beam volumetric microtomography is found to compare favorably with synchrotron based methods. ((orig.))

  20. Chandra Discovers X-ray Source at the Center of Our Galaxy

    Science.gov (United States)

    2000-01-01

    Culminating 25 years of searching by astronomers, researchers at Massachusetts Institute of Technology say that a faint X-ray source, newly detected by NASA's Chandra X-ray Observatory, may be the long-sought X-ray emission from a known supermassive black hole at the center of our galaxy. Frederick K. Baganoff and colleagues from Pennsylvania State University, University Park, and the University of California, Los Angeles, will present their findings today in Atlanta at the 195th national meeting of the American Astronomical Society. Baganoff, lead scientist for the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer (ACIS) team's "Sagittarius A* and the Galactic Center" project and postdoctoral research associate at MIT, said that the precise positional coincidence between the new X-ray source and the radio position of a long-known source called Sagittarius A* "encourages us to believe that the two are the same." Sagittarius A* is a point-like, variable radio source at the center of our galaxy. It looks like a faint quasar and is believed to be powered by gaseous matter falling into a supermassive black hole with 2.6 million times the mass of our Sun. Chandra's remarkable detection of this X-ray source has placed astronomers within a couple of years of a coveted prize: measuring the spectrum of energy produced by Sagittarius A* to determine in detail how the supermassive black hole that powers it works. "The race to be the first to detect X-rays from Sagittarius A* is one of the hottest and longest-running in all of X-ray astronomy," Baganoff said. "Theorists are eager to hear the results of our observation so they can test their ideas." But now that an X-ray source close to Sagittarius A* has been found, it has taken researchers by surprise by being much fainter than expected. "There must be something unusual about the environment around this black hole that affects how it is fed and how the gravitational energy released from the infalling matter is

  1. Inductive-energy power flow for X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Ware, K D; Filios, P G; Gullickson, R L; Hebert, M P; Rowley, J E; Schneider, R F; Summa, W J [Defense Nuclear Agency, Alexandria, VA (United States); Vitkovski, I M [Logicon RDA, Arlington, VA (United States)

    1997-12-31

    The Defense Nuclear Agency (DNA) has been developing inductive energy storage (IES) technology for generating intense x-rays from electron beam-target interactions and from plasma radiating sources (PRS). Because of the complex interaction between the commutation of the current from the plasma and the stable dissipation of the energy in the load, DNA has supported several variations of power flow technology. Major variations include: (1) current interruption using a plasma opening switch (POS); (2) continuous current commutation through current-plasma motion against neutral, ionized, or magnetized medium [i.e., dense plasma focus-like (DPF) and plasma flow switch (PFS) technologies]; and, in addition, possible benefits of (3) directly driven complex PRS loads are being investigated. DNA programs include experimental and theoretical modeling and analysis with investigations (1) on Hawk and a Decade module in conjunction with the development of the bremsstrahlung sources (BRS), and (2) on Hawk, ACE-4 and Shiva-Star, as well as cooperative research on GIT-4 and GIT-8, in conjunction with PRS. (author). 1 tab., 12 figs., 17 refs.

  2. Inductive-energy power flow for X-ray sources

    International Nuclear Information System (INIS)

    Ware, K.D.; Filios, P.G.; Gullickson, R.L.; Hebert, M.P.; Rowley, J.E.; Schneider, R.F.; Summa, W.J.; Vitkovski, I.M.

    1996-01-01

    The Defense Nuclear Agency (DNA) has been developing inductive energy storage (IES) technology for generating intense x-rays from electron beam-target interactions and from plasma radiating sources (PRS). Because of the complex interaction between the commutation of the current from the plasma and the stable dissipation of the energy in the load, DNA has supported several variations of power flow technology. Major variations include: (1) current interruption using a plasma opening switch (POS); (2) continuous current commutation through current-plasma motion against neutral, ionized, or magnetized medium [i.e., dense plasma focus-like (DPF) and plasma flow switch (PFS) technologies]; and, in addition, possible benefits of (3) directly driven complex PRS loads are being investigated. DNA programs include experimental and theoretical modeling and analysis with investigations (1) on Hawk and a Decade module in conjunction with the development of the bremsstrahlung sources (BRS), and (2) on Hawk, ACE-4 and Shiva-Star, as well as cooperative research on GIT-4 and GIT-8, in conjunction with PRS. (author). 1 tab., 12 figs., 17 refs

  3. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  4. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil; Liu, Zunping; Lang, Keenan; Huang, Xianrong; Wieczorek, Michael; Kasman, Elina; Hammonds, John; Macrander, Albert; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity and spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.

  5. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  6. Position sensitive x-ray detector

    International Nuclear Information System (INIS)

    Macchione, E.L.A.

    1990-01-01

    A multi ware position sensitive gas counter for X-ray detection was developed in our laboratory, making use of commercial delay-lines for position sensing. Six delay-line chips (50 ns delay each, 40 Mhz cut-off frequency) cover a total sensitive length of 150 mm leading to a delay-risetime ratio that allows for a high-resolution position detection. Tests using the 5,9 keV X-ray line from a 55 Fe source and integral linearity better than 0,1% and a maximal differential linearity of ±4,0% were obtained operating the detector with an Ar-C H 4 (90%-10%) gas mixture at 700 torr. Similar tests were performed, using the 8,04 keV line from a Cu x-ray tube. A total resolution of 330 μm, and the same integral and differential linearities were obtained. (author)

  7. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  8. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    International Nuclear Information System (INIS)

    Brenner, C M; Rusby, D R; Armstrong, C; Wilson, L A; Clarke, R; Haddock, D; McClymont, A; Notley, M; Oliver, P; Allott, R; Hernandez-Gomez, C; Neely, D; Mirfayzi, S R; Alejo, A; Ahmed, H; Kar, S; Butler, N M H; Higginson, A; McKenna, P; Murphy, C

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification. (paper)

  9. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  10. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  11. A nanotube-based field emission x-ray source for microcomputed tomography

    International Nuclear Information System (INIS)

    Zhang, J.; Cheng, Y.; Lee, Y.Z.; Gao, B.; Qiu, Q.; Lin, W.L.; Lalush, D.; Lu, J.P.; Zhou, O.

    2005-01-01

    Microcomputed tomography (micro-CT) is a noninvasive imaging tool commonly used to probe the internal structures of small animals for biomedical research and for the inspection of microelectronics. Here we report the development of a micro-CT scanner with a carbon nanotube- (CNT-) based microfocus x-ray source. The performance of the CNT x-ray source and the imaging capability of the micro-CT scanner were characterized

  12. Compact X-ray source based on Compton backscattering

    CERN Document Server

    Bulyak, E V; Zelinsky, A; Karnaukhov, I; Kononenko, S; Lapshin, V G; Mytsykov, A; Telegin, Yu P; Khodyachikh, A; Shcherbakov, A; Molodkin, V; Nemoshkalenko, V; Shpak, A

    2002-01-01

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of approx 35 mu m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity approx 2.6x10 sup 1 sup 4 s sup - sup 1 and spectral brightness approx 10 sup 1 sup 2 phot/0.1%bw/s/mm sup 2 /mrad sup 2 in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  13. Compact X-ray source based on Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Gladkikh, P.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Karnaukhov, I.; Kononenko, S.; Lapshin, V.; Mytsykov, A.; Telegin, Yu.; Khodyachikh, A.; Shcherbakov, A.; Molodkin, V.; Nemoshkalenko, V.; Shpak, A

    2002-07-21

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of {approx}35 {mu}m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity {approx}2.6x10{sup 14} s{sup -1} and spectral brightness {approx}10{sup 12} phot/0.1%bw/s/mm{sup 2}/mrad{sup 2} in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  14. X-ray time and spectral variability as probes of ultraluminous x-ray sources

    Science.gov (United States)

    Pasham, Dheeraj Ranga Reddy

    A long-standing debate in the field of ultraluminous X-ray sources (ULXs: luminosities > 3x1039 ergs s-1) is whether these objects are powered by stellar-mass black holes (mass range of 3-25 solar masses) undergoing hyper-accretion/emission or if they host the long-sought after class of intermediate-mass black holes (mass range of a few 100-1000 solar masses) accreting material at sub-Eddington rates. We present X-ray time and energy spectral variability studies of ULXs in order to understand their physical environments and accurately weigh their compact objects. A sample of ULXs exhibit quasi-periodic oscillations (QPOs) with centroid frequencies in the range of 10-200 mHz. The nature of the power density spectra (PDS) of these sources is qualitatively similar to stellar-mass black holes when they exhibit the so-called type-C low-frequency QPOs (frequency range of 0.2-15 Hz). However, the crucial difference is that the characteristic frequencies within the PDS of ULXs, viz., the break frequencies and the centroid frequencies of the QPOs, are scaled down by a factor of approximately 10-100 compared to stellar-mass black holes. It has thus been argued that the ULX mHz QPOs are the type-C low-frequency QPO analogs of stellar-mass black holes and that the observed difference in the frequencies (a fewx0.01 Hz compared with a few Hz) is due to the presence of intermediate-mass black holes ( MULX = (QPOstellar-mass black hole }/QPOULX)xM stellar-mass black hole, where M and QPO are the mass and the QPO frequency, respectively) within these ULXs. We analyzed all the archival XMM-Newton X-ray data of ULXs NGC 5408 X-1 and M82 X-1 in order to test the hypothesis that the ULX mHz QPOs are the type-C analogs by searching for a correlation between the mHz QPO frequency and the energy spectral power-law index as type-C QPOs show such a dependence. From our multi-epoch timing and spectral analysis of ULXs NGC 5408 X-1 and M82 X-1, we found that the mHz QPOs of these sources vary

  15. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  16. Ultrafast X-Ray Spectroscopy of Conical Intersections

    Science.gov (United States)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  17. VizieR Online Data Catalog: ChaMP X-ray point source catalog (Kim+, 2007)

    Science.gov (United States)

    Kim, M.; Kim, D.-W.; Wilkes, B. J.; Green, P. J.; Kim, E.; Anderson, C. S.; Barkhouse, W. A.; Evans, N. R.; Ivezic, Z.; Karovska, M.; Kashyap, V. L.; Lee, M. G.; Maksym, P.; Mossman, A. E.; Silverman, J. D.; Tananbaum, H. D.

    2009-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6800 X-ray sources detected in 149 Chandra observations covering ~10deg2. The full ChaMP catalog sample is 7 times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124ks, corresponding to a deepest X-ray flux limit of f0.5-8.0=9x10-16ergs/cm2/s. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in eight different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability, and positional uncertainty. (10 data files).

  18. Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history

    Science.gov (United States)

    Arca-Sedda, Manuel; Kocsis, Bence; Brandt, Timothy D.

    2018-06-01

    The Milky Way centre exhibits an intense flux in the gamma and X-ray bands, whose origin is partly ascribed to the possible presence of a large population of millisecond pulsars (MSPs) and cataclysmic variables (CVs), respectively. However, the number of sources required to generate such an excess is much larger than what is expected from in situ star formation and evolution, opening a series of questions about the formation history of the Galactic nucleus. In this paper we make use of direct N-body simulations to investigate whether these sources could have been brought to the Galactic centre by a population of star clusters that underwent orbital decay and formed the Galactic nuclear star cluster (NSC). Our results suggest that the gamma ray emission is compatible with a population of MSPs that were mass segregated in their parent clusters, while the X-ray emission is consistent with a population of CVs born via dynamical interactions in dense star clusters. Combining observations with our modelling, we explore how the observed γ ray flux can be related to different NSC formation scenarios. Finally, we show that the high-energy emission coming from the galactic central regions can be used to detect black holes heavier than 105M⊙ in nearby dwarf galaxies.

  19. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    International Nuclear Information System (INIS)

    Bussard, R.W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column. 13 references

  20. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  1. Observations of Ultra-Luminous X-ray Sources, and Implications

    Science.gov (United States)

    Colbert, E. J. M.

    2004-05-01

    I will review observations of Ultra-Luminous X-ray Sources (ULXs; Lx > 1E39 erg/s), in particular those observations that have helped reveal the nature of these curious objects. Some recent observations suggest that ULXs are a heterogenous class. Although ULX phenomenology is not fully understood, I will present some examples from the (possibly overlapping) sub-classes. Since ULXs are the most luminous objects in starburst galaxies, they, and ``normal'' luminous black-hole high-mass X-ray binaries are intimately tied to the global galaxian X-ray-star-formation connection. Further work is needed to understand how ULXs form, and how they are associated with the putative population of intermediate-mass black holes.

  2. A Study on Mono-energetic Beam Source Using Characteristic X-ray for Substance Identification System

    International Nuclear Information System (INIS)

    Lee, Hwan Soo

    2009-02-01

    A new mono-energetic beam source was developed by using characteristic X-ray for improving performance of the substance identification system. Most of inspection systems use X-ray tubes for their source modules. However, the broad energy spectrum of X-ray tube causes an increase of uncertainty. In this study, it was found that mono-energetic beam sources can be generated by using X-ray tube and the designed target filter assembly. In order to investigate the monoenergetic beam source, the sensitivity study was conducted with a series of different X-ray tube potentials, radiator and filter materials using Monte Carlo simulation. The developed beam sources have a mono-energy peak at 69 keV, 78 keV and 99 keV, and they are named as characteristic X-ray beam BEAM69, BEAM78 and BEAM99, respectively. The characteristic X-ray beam intensity was over thirty three times more than that of hardening beam used previous work at Hanyang University. And BEAM69 and BEAM99 were applied to the substance identification system as a source. The relative error between results of characteristic X-ray beams and 69 keV and 99 keV photons was about 2% on the average for five unknown materials. In comparison with experiment results by using hardening beam, characteristic X-ray beam achieves better accuracy which is about 6.46 % on the average. Hence, it is expected that the developed characteristic X-ray beam source helps lower uncertainty of the inspection system, and the inspection time will be reduced considerably due to its high beam intensity

  3. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ∼100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented

  4. A compact soft X-ray microscope using an electrode-less Z-pinch source

    Science.gov (United States)

    Horne, S. F.; Silterra, J.; Holber, W.

    2009-09-01

    Soft X-rays (medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. (Supported by NIH grants 5R44RR022488-03 and 5R44RR023753-03)

  5. X-ray microscopy resource center at the Advanced Light Source

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Koike, M.; Beguiristain, R.; Maser, J.; Attwood, D.

    1992-07-01

    An x-ray microscopy resource center for biological x-ray imaging vvill be built at the Advanced Light Source (ALS) in Berkeley. The unique high brightness of the ALS allows short exposure times and high image quality. Two microscopes, an x-ray microscope (XM) and a scanning x-ray microscope (SXM) are planned. These microscopes serve complementary needs. The XM gives images in parallel at comparable short exposure times, and the SXM is optimized for low radiation doses applied to the sample. The microscopes extend visible light microscopy towards significantly higher resolution and permit images of objects in an aqueous medium. High resolution is accomplished by the use of Fresnel zone plates. Design considerations to serve the needs of biological x-ray microscopy are given. Also the preliminary design of the microscopes is presented. Multiple wavelength and multiple view images will provide elemental contrast and some degree of 3D information

  6. An extremely luminous and variable ultraluminous x-ray source in the outskirts of circinus observed with NuSTAR

    DEFF Research Database (Denmark)

    Walton, D. J.; Fuerst, F.; Harrison, F.

    2013-01-01

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-N...

  7. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  8. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  9. Projection-type X-ray microscope based on a spherical compound refractive X-ray lens

    OpenAIRE

    Dudchik, Yu. I.; Gary, C. K.; Park, H.; Pantell, R. H.; Piestrup, M. A.

    2007-01-01

    New projection- type X-ray microscope with a compound refractive lens as the optical element is presented. The microscope consists of an X-ray source that is 1-2 mm in diameter, compound X-ray lens and X-ray camera that are placed in-line to satisfy the lens formula. The lens forms an image of the X-ray source at camera sensitive plate. An object is placed between the X-ray source and the lens as close as possible to the source, and the camera shows a shadow image of the object. Spatial resol...

  10. X-ray system with coupled source drive and detector drive

    International Nuclear Information System (INIS)

    1976-01-01

    An electronic coupling replacing the (more expensive) mechanical coupling which controls the speed of two sets of two electric motors, one driving an X-ray source and the other an X-ray detector, is described. Source and detector are kept rotating in parallel planes with a fairly constant velocity ratio. The drives are controlled by an electronic system comprising a comparator circuit comparing the position-indicative signals, a process control circuit and an inverter switch. The control system regulates the speed of the electric motors. The signal processing is described

  11. The X-ray properties of normal galaxies

    Science.gov (United States)

    Fabbiano, G.

    1986-01-01

    X-ray observations with the Einstein satellite have shown that normal galaxies of all morphological types are spatially extended sources of X-ray emission with luminosities in the range of L(x) of about 10 to the 39th to 10 to the 41st erg/s. Although this is only a small fraction of the total energy output of a normal galaxy, X-ray observations are uniquely suited to study phenomena that are otherwise elusive. In X-rays one can study directly the end products of stellar evolution (SNRs and compact remnants). X-ray observations have led to the discovery of gaseous outflows linked to starburst nuclear activity in spiral galaxies and to the detection of a hot interstellar medium in early-type galaxies. Through X-ray observations it is possible to set constraints on structural galaxy parameters, such as the mass of elliptical galaxies, and perhaps get new insight on the origin of cosmic rays and the properties of the magnetic fields of spiral galaxies.

  12. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  13. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  14. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    Energy Technology Data Exchange (ETDEWEB)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun [GE Global Research, Niskayuna, New York 12309 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Lounsberry, Brian [Healthcare Science Technology, GE Healthcare, West Milwaukee, Wisconsin 53219 (United States)

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent

  15. From laser-plasma accelerators to femtosecond X-ray sources: study, development and applications

    International Nuclear Information System (INIS)

    Corde, S.

    2012-01-01

    During the relativistic interaction between a short and intense laser pulse and an underdense plasma, electrons can be injected and accelerated up to hundreds of MeV in an accelerating structure formed in the wake of the pulse: this is the so-called laser-plasma accelerator. One of the major perspectives for laser-plasma accelerators resides in the realization of compact sources of femtosecond x-ray beams. In this thesis, two x-ray sources was studied and developed. The betatron radiation, intrinsic to laser-plasma accelerators, comes from the transverse oscillations of electrons during their acceleration. Its characterization by photon counting revealed an x-ray beam containing 10"9 photons, with energies extending above 10 keV. We also developed an all-optical Compton source producing photons with energies up to hundreds of keV, based on the collision between a photon beam and an electron beam. The potential of these x-ray sources was highlighted by the realization of single shot phase contrast imaging of a biological sample. Then, we showed that the betatron x-ray radiation can be a powerful tool to study the physics of laser-plasma acceleration. We demonstrated the possibility to map the x-ray emission region, which gives a unique insight into the interaction, permitting us for example to locate the region where electrons are injected. The x-ray angular and spectral properties allow us to gain information on the transverse dynamics of electrons during their acceleration. (author)

  16. The epoch of cosmic heating by early sources of X-rays

    Science.gov (United States)

    Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana

    2018-05-01

    Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.

  17. A free-electron laser fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources

  18. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    Science.gov (United States)

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  19. Estimating photometric redshifts for X-ray sources in the X-ATLAS field using machine-learning techniques

    Science.gov (United States)

    Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.

    2017-12-01

    We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS photometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage of outliers, η = 10-14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9. The table of the photometric redshifts is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39

  20. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-01-01

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages

  1. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  2. A discussion of the eccentric binary hypothesis for transient X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.; Goldman, I.

    1979-01-01

    The eccentric binary hypothesis for transient x-ray sources in the framework of the gradual acceleration stellar wind model proposed by Barlow and Cohen is examined. It is found that a consideration of the ratio of maximum to minimum luminosities and of the ratio of the durations of the high and low states, for a typical transient x-ray source, yields a rather high eccentricity, despite the gradual acceleration of the wind. When typical physical parameters for the binary members are taken into account, we find that a consistent description is possible only for very eccentric orbits (e>=0.9), thus the model is inadequate as a general explanation of the x-ray transient phenomenon. The recurrent transient x-ray source 4U 1630-47, which was considered in ihe past to be a realization of the eccentric binary model is studied and it is demonstrated that it cannot be described consistently within the framework of the model, unless the optical primary is very peculiar. (author)

  3. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  4. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  5. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  6. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, G. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, S. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Gibson, D. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barty, C. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  7. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source

    Science.gov (United States)

    Li, Yaran; Xie, Qing; Chen, Zhiqiang; Xin, Qiuqi; Wang, Xin; Mu, Baozhong; Wang, Zhanshan; Liu, Shenye; Ding, Yongkun

    2018-01-01

    Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ˜95 μm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ˜6.0%.

  8. Laboratory source based full-field x-ray microscopy at 9 keV

    Energy Technology Data Exchange (ETDEWEB)

    Fella, C.; Balles, A.; Wiest, W. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Zabler, S.; Hanke, R. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Fraunhofer Development Center X-Ray Technology (EZRT), Flugplatzstrasse 75, 90768 Fürth (Germany)

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  9. Multiband Diagnostics of Unidentified 1FGL Sources with Suzaku and Swift X-Ray Observations

    Science.gov (United States)

    Takeuchi, Y.; Kataoka, J.; Maeda, K.; Takahashi, Y.; Nakamori, T.; Tahara, M.

    2013-10-01

    We have analyzed all the archival X-ray data of 134 unidentified (unID) gamma-ray sources listed in the first Fermi/LAT (1FGL) catalog and subsequently followed up by the Swift/XRT. We constructed the spectral energy distributions (SEDs) from radio to gamma-rays for each X-ray source detected, and tried to pick up unique objects that display anomalous spectral signatures. In these analyses, we target all the 1FGL unID sources, using updated data from the second Fermi/LAT (2FGL) catalog on the Large Area Telescope (LAT) position and spectra. We found several potentially interesting objects, particularly three sources, 1FGL J0022.2-1850, 1FGL J0038.0+1236, and 1FGL J0157.0-5259, which were then more deeply observed with Suzaku as a part of an AO-7 program in 2012. We successfully detected an X-ray counterpart for each source whose X-ray spectra were well fitted by a single power-law function. The positional coincidence with a bright radio counterpart (currently identified as an active galactic nucleus, AGN) in the 2FGL error circles suggests these sources are definitely the X-ray emission from the same AGN, but their SEDs show a wide variety of behavior. In particular, the SED of 1FGL J0038.0+1236 is not easily explained by conventional emission models of blazars. The source 1FGL J0022.2-1850 may be in a transition state between a low-frequency peaked and a high-frequency peaked BL Lac object, and 1FGL J0157.0-5259 could be a rare kind of extreme blazar. We discuss the possible nature of these three sources observed with Suzaku, together with the X-ray identification results and SEDs of all 134 sources observed with the Swift/XRT.

  10. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, T.; Lopes de Oliveira, R. [Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão, SE (Brazil); Borges, B. W., E-mail: tribeiro@ufs.br, E-mail: rlopes@ufs.br, E-mail: bernardo@astro.ufsc.br [Universidade Federal de Santa Catarina, Campus Araranguá, 88905-120 Araranguá, SC (Brazil)

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  11. How to Model Super-Soft X-ray Sources?

    Science.gov (United States)

    Rauch, Thomas

    2012-07-01

    During outbursts, the surface temperatures of white dwarfs in cataclysmic variables exceed by far half a million Kelvin. In this phase, they may become the brightest super-soft sources (SSS) in the sky. Time-series of high-resolution, high S/N X-ray spectra taken during rise, maximum, and decline of their X-ray luminosity provide insights into the processes following such outbursts as well as in the surface composition of the white dwarf. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) is a powerful tool for their calculation. We present the application of TMAP models to SSS spectra and discuss their validity.

  12. Characteristics of a multi-keV monochromatic point x-ray source

    Indian Academy of Sciences (India)

    Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation.

  13. Development of full-field x-ray phase-tomographic microscope based on laboratory x-ray source

    Science.gov (United States)

    Takano, H.; Wu, Y.; Momose, A.

    2017-09-01

    An X-ray phase tomographic microscope that can quantitatively measure the refractive index of a sample in three dimensions with a high spatial resolution was developed by installing a Lau interferometer consisting of an absorption grating and a π/2 phase grating into the optics of an X-ray microscope. The optics comprises a Cu rotating anode X-ray source, capillary condenser optics, and a Fresnel zone plate for the objective. The microscope has two optical modes: a large-field-of-view mode (field of view: 65 μm x 65 μm) and a high-resolution mode (spatial resolution: 50 nm). Optimizing the parameters of the interferometer yields a self-image of the phase grating with 60% visibility. Through the normal fringe-scanning measurement, a twin phase image, which has an overlap of two phase image of opposite contrast with a shear distance much larger than system resolution, is generated. Although artifacts remain to some extent currently when a phase image is calculated from the twin phase image, this system can obtain high-spatial-resolution images resolving 50-nm structures. Phase tomography with this system has also been demonstrated using a phase object.

  14. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    Science.gov (United States)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  15. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a

  16. The Origin of the Extra-nuclear X-ray Emission in the Seyfert Galaxy NGC 2992

    Science.gov (United States)

    Colbert, E. J. M.; Strickland, D. K.; Veilleux, S.; Weaver, K. A.

    2004-12-01

    We present an analysis of a Chandra ACIS observation of the edge-on Seyfert galaxy NGC 2992. We find extended X-ray emission with Lx(total) in excess of 10**40 erg/s. The brightest nebula is positioned a few 100 pc from the X-ray core, and is spatially coincident with optical line and radio emission. This emission nebula may be energized by the AGN, as opposed to a nuclear starburst. The expected kpc-scale X-ray emission due to a starburst-driven wind is larger than a few 10**39 erg/s, and we present large-scale X-ray emission that may be associated with such an outflow. The extra-nuclear emission has a very soft spectrum. Chandra and XMM spectra of the total nuclear region show a very prominent ``soft excess'' below 2-3 keV. We shall discuss the spectral properties of this soft excess, and will compare with the results from the spatial analysis, and with AGN and starburst models for extranuclear X-ray nebulae.

  17. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  18. Design, development and integration of a large scale multiple source X-ray computed tomography system

    International Nuclear Information System (INIS)

    Malcolm, Andrew A.; Liu, Tong; Ng, Ivan Kee Beng; Teng, Wei Yuen; Yap, Tsi Tung; Wan, Siew Ping; Kong, Chun Jeng

    2013-01-01

    X-ray Computed Tomography (CT) allows visualisation of the physical structures in the interior of an object without physically opening or cutting it. This technology supports a wide range of applications in the non-destructive testing, failure analysis or performance evaluation of industrial products and components. Of the numerous factors that influence the performance characteristics of an X-ray CT system the energy level in the X-ray spectrum to be used is one of the most significant. The ability of the X-ray beam to penetrate a given thickness of a specific material is directly related to the maximum available energy level in the beam. Higher energy levels allow penetration of thicker components made of more dense materials. In response to local industry demand and in support of on-going research activity in the area of 3D X-ray imaging for industrial inspection the Singapore Institute of Manufacturing Technology (SIMTech) engaged in the design, development and integration of large scale multiple source X-ray computed tomography system based on X-ray sources operating at higher energies than previously available in the Institute. The system consists of a large area direct digital X-ray detector (410 x 410 mm), a multiple-axis manipulator system, a 225 kV open tube microfocus X-ray source and a 450 kV closed tube millifocus X-ray source. The 225 kV X-ray source can be operated in either transmission or reflection mode. The body of the 6-axis manipulator system is fabricated from heavy-duty steel onto which high precision linear and rotary motors have been mounted in order to achieve high accuracy, stability and repeatability. A source-detector distance of up to 2.5 m can be achieved. The system is controlled by a proprietary X-ray CT operating system developed by SIMTech. The system currently can accommodate samples up to 0.5 x 0.5 x 0.5 m in size with weight up to 50 kg. These specifications will be increased to 1.0 x 1.0 x 1.0 m and 100 kg in future

  19. Development of a fluorescent x-ray source for medical imaging

    Science.gov (United States)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  20. Comparative analysis among X-ray mammographic findings, nuclear and histologic grading, and TNM staging of breast carcinoma

    International Nuclear Information System (INIS)

    Park, Jin Sook; Sung, Ki Joon; Cho, Mee Yon; Hong, In Soo; Kim, Myung Soon; Oh, Ki Keun

    1996-01-01

    The purpose of this study was to evaluate the prognosis of breast carcinoma by comparison with X-ray mammographic findings, nuclear and histologic grade, and TNM staging. We retrospectively reviewed 114 cases (113 patients) of breast carcinoma, analysing X-ray mammographic findings of all cases with regard to mass, calcification, and spiculation. In 80 cases of scirrhous invasive ductal breast carcinoma. Black's nuclear and Bloom-Richardson's histologic grade were also evaluated. Mammographic findings and nuclear and histologic grade were compared with TNM staging which might suggest the prognosis of breast carcinoma. X-ray mammographic findings (mass, calcification and spiculation) did not significantly correlate with T staging, but the clinical staging of the spiculation was advanced. These X-ray findings did not significantly correlate with the nuclear grading and the histologic grading. Nuclear grade did not correlate with T and M staging, but correlated significantly with N staging and clinical stage(p < 0.05). Histologic grade did not significantly correlate with TNM staging. The clinical staging of spiculation was advanced and nuclear grade correlated significantly with N stage and clinical staging. X-ray mammographic findings did not directly correlate with nuclear and histologic grading, but combined studies of the evaluation of mammographic findings and nuclear and histologic grade were useful for prognosing breast carcinoma

  1. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    Science.gov (United States)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  2. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H. [Allied Health Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015 (Japan); Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kanagawa Industrial Technology Center (KITC) Shimoimazumi 705-1, Ebina-shi, Kanagawa 243-0435 (Japan); Japan Radioisotope Association (JRIA) Komagome 2-28-45, Bunkyo-ku, Tokyo 113-8941 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Graduate School of Medical Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan)

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  3. Source apportionment of aerosol particles using polycapillary slightly focusing X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tianxi [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: stxbeijing@163.com; Liu Zhiguo [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: liuzgbeijing@163.com; Zhu Guanghua; Liu Hui [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Xu Qing [Institute of High Energy Physics, Chinese Academy of Science, Beijing 100039 (China); Li Yude; Wang Guangpu; Luo Ping; Pan Qiuli; Ding Xunliang [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2009-06-11

    A micro-X-ray fluorescence (Micro-XRF) spectrometer based on a polycapillary slightly focusing X-ray lens (PSFXRL) and laboratory X-ray source was designed to carry out the source apportionment of aerosol particles. In the distribution curve of the X-ray intensity in the focal spot of PSFXRL, there was a plateau with a diameter of about 65 {mu}m. The uniformity of this plateau was about 3%. This was helpful in measuring the XRF spectrum of a single aerosol particle in which the element distributions are not uniform. The minimum detection limit (MDL) of this Micro-XRF spectrometer was 15 ppm for the Fe-K{sub {alpha}}. The origins of the aerosol particles at the exit of a subway station and a construction site were apportioned. This Micro-XRF spectrometer has potential applications in analysis of single aerosol particles.

  4. New hard X-ray sources at 380 declination

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F.

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters. (orig.)

  5. Mass transfer in stellar X-ray sources

    International Nuclear Information System (INIS)

    Verbunt, F.

    1982-01-01

    This thesis deals with mass transfer in the binary stars that emit X-rays. Optical observations on two sources are presented: 2A0311-227 and Cen X-4. The transferred matter will often enter a gaseous disk around the compact star, and spiral inwards slowly through this disk. The conditions for the formation of such a disk are investigated and the equations governing its structure are presented. Different models are discussed and it is concluded that different models lead to very similar results for those regions of the disk where gas pressure is more important than radiative pressure, and that these results agree fairly well with observations. No consistent model has been constructed as yet for the region where radiative pressure is dominant. Theoretically one predicts that the optical light emitted by a disk around a neutron star is mainly caused by X-ray photons from the immediate surroundings of the neutron star that hit the outer disk surface, are absorbed, thermalised, and re-emitted in the optical and ultraviolet regions of the spectrum. This expectation is verified by comparison with the collected observational data of low-mass X-ray binaries. Finally the author investigates which mechanism is responsible for the mass transfer in systems where the mass-losing star is less massive than the sun. (Auth.)

  6. Microfocussing of synchrotron X-rays using X-ray refractive lens developed at Indus-2 deep X-ray lithography beamline

    International Nuclear Information System (INIS)

    Dhamgaye, V.P.; Tiwari, M.K.; Lodha, G.S.; Sawhney, K.J.S.

    2014-01-01

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance sources are compared. (author)

  7. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    International Nuclear Information System (INIS)

    Haugh, M; Schneider, M B

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  8. Novel X-ray telescopes for wide-field X-ray monitoring

    International Nuclear Information System (INIS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.

    2005-01-01

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  9. Quasimonochromatic x-ray source using photoabsorption-edge transition radiation

    International Nuclear Information System (INIS)

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Harris, J.L.; Maruyama, X.K.; Bergstrom, J.C.; Caplan, H.S.; Silzer, R.M.; Skopik, D.M.

    1991-01-01

    By designing transition radiators to emit x rays at the foil material's K-, L-, or M-shell photoabsorption edge, the x-ray spectrum is narrowed. The source is quasimonochromatic, directional, and intense and uses an electron beam whose energy is considerably lower than that needed for synchrotron sources. Depending upon the selection of foil material, the radiation can be produced wherever there is a photoabsorption edge. In this paper we report the results of the measurement of the x-ray spectrum from a transition radiator composed of 10 foils of 2-μm titanium and exposed to low-current, 90.2-MeV electrons. The measured band of emission was from 3.2 to 5 keV. In addition, a measurment was performed of the total power from a transition radiator composed of 18 foils of 2.0-μm copper exposed to a high-average-current electron beam of 40 μA and at energies of 135, 172, and 200 MeV. The maximum measured power was 4.0 mW. The calculated band of emission was from 4 to 9 keV

  10. Measurement of spherical compound refractive X-ray lens at ANKA synchrotron radiation source

    International Nuclear Information System (INIS)

    Dudchik, Yu.I.; Simon, R.; Baumbach, T.

    2007-01-01

    Parameters of compound refractive X-ray lens were measured at ANKA synchrotron radiation source. The lens consists of 224 spherical concave epoxy microlenses formed inside glass capillary. The curvature radius of individual microlens is equal to 100 microns. Measured were: X-ray focal spot, lens focal length and gain in intensity. The energy of X-ray beam was equal to 12 keV and 14 keV. It is shown that when X-ray lens is used, the gain in intensity of the X-ray beam in some cases may exceed value of 100. Tested lens is suitable to focus X-rays into, at least, 2-microns in size spot. (authors)

  11. Special issue on compact x-ray sources

    Science.gov (United States)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  12. Hard X-ray sources from miniature plasma focus devices

    International Nuclear Information System (INIS)

    Raspa, V.; Silva, P.; Moreno, J.; Zambra, M.; Soto, L.

    2004-01-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, ∼ 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, ∼ 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  13. Hard X-ray sources from miniature plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Silva, P.; Moreno, J.; Zambra, M.; Soto, L. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    2004-07-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, {approx} 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, {approx} 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  14. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    International Nuclear Information System (INIS)

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light

  15. Demonstration of Laser Plasma X-Ray Source with X-Ray Collimator Final Report CRADA No. TC-1564-99

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Forber, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and JMAR Research, Inc. (JRI), was to demonstrate that LLNL x-ray collimators can effectively increase the wafer throughput of JRI's laser based x-ray lithography systems. The technical objectives were expected to be achieved by completion of the following tasks, which are separated into two task lists by funding source. The organization (LLNL or JMAR) having primary responsibility is given parenthetically for each task.

  16. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.R. [Research Centre for Radwaste Disposal, School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Centre for Radiochemistry Research, Chemistry Building, The University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Morris, K. [Research Centre for Radwaste Disposal, School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Mosselmans, J.F.W. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Thompson, O.R. [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Banford, A.W. [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Law, K. [Centre for Radiochemistry Research, Chemistry Building, The University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Pattrick, R.A.D., E-mail: richard.pattrick@manchester.ac.uk [Research Centre for Radwaste Disposal, School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-11-05

    Highlights: • A sample from a spent fuel pond wall has been analysed via X-ray spectroscopy. • Autoradiography shows a patchy distribution of radioactivity on the core face. • μXAS across a ‘hot spot’ showed Sr associates with the TiO{sub 2} pigment in the paint. • Original concrete coatings prove effective at limiting radionuclide migration. • Sorption studies show Sr immobilisation by the concrete and Cs by aggregate clasts. - Abstract: Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly {sup 137}Cs and {sup 90}Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO{sub 2} particles in the paint layers, suggesting an association between TiO{sub 2} and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK’s nuclear decommissioning efforts.

  17. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    Science.gov (United States)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  18. X-Ray Emission from the Nuclear Region of Arp 220

    Science.gov (United States)

    Paggi, Alessandro; Fabbiano, Giuseppina; Risaliti, Guido; Wang, Junfeng; Karovska, Margarita; Elvis, Martin; Maksym, W. Peter; McDowell, Jonathan; Gallagher, Jay

    2017-05-01

    We present an imaging and spectral analysis of the nuclear region of the ultraluminous infrared galaxy merger of Arp 220, using deep Chandra-ACIS observations summing up to ˜ 300 {{ks}}. Narrowband imaging with subpixel resolution of the innermost nuclear region reveals two distinct Fe-K emitting sources, coincident with the infrared and radio nuclear clusters. These sources are separated by 1‧ (˜380 pc). The X-ray emission is extended and elongated in the eastern (E) nucleus, like the disk emission observed in millimeter radio images, suggesting a starburst dominance in this region. We estimate an Fe-K equivalent width of ≳ 1 {keV} for both sources and observe 2-10 keV luminosities of ˜ 2× {10}40 {{erg}} {{{s}}}-1 (western, W) and ˜ 3× {10}40 {{erg}} {{{s}}}-1 (E). In the 6-7 keV band the emission from these regions is dominated by the 6.7 keV Fe xxv line, suggesting a contribution from collisionally ionized gas. The thermal energy content of this gas is consistent with the kinetic energy injection in the interstellar medium by SNe II. However, nuclear winds from a hidden active galactic nucleus (AGN) (\\upsilon ˜ 2000 {{km}} {{{s}}}-1) cannot be excluded. The 3σ upper limits on the neutral Fe-Kα flux of the nuclear regions correspond to the intrinsic AGN 2-10 keV luminosities of < 1× {10}42 {{erg}} {{{s}}}-1 (W) and < 0.4× {10}42 {{erg}} {{{s}}}-1 (E). For typical AGN spectral energy distributions the bolometric luminosities are < 3× {10}43 {{erg}} {{{s}}}-1 (W) and < 8× {10}43 {{erg}} {{{s}}}-1 (E), and black hole masses of < 1× {10}5 {M}⊙ (W) and < 5× {10}5 {M}⊙ (E) are evaluated for Eddington limited AGNs with a standard 10% efficiency.

  19. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  20. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  1. Development and characterization of a tunable ultrafast X-ray source via inverse-Compton-scattering

    International Nuclear Information System (INIS)

    Jochmann, Axel

    2014-01-01

    Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pump-probe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results

  2. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    Science.gov (United States)

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-05

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Spectral state transitions of the Ultraluminous X-ray Source IC 342 X-1

    Science.gov (United States)

    Marlowe, H.; Kaaret, P.; Lang, C.; Feng, H.; Grisé, F.; Miller, N.; Cseh, D.; Corbel, S.; Mushotzky, R. F.

    2014-10-01

    We observed the Ultraluminous X-ray Source (ULX) IC 342 X-1 simultaneously in X-ray and radio with Chandra and the JVLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra data reveal a spectrum that is much softer than observed previously and is well modelled by a thermal accretion disc spectrum. No significant radio emission above the rms noise level was observed within the region of the ULX, consistent with the interpretation as a thermal state though other states cannot be entirely ruled out with the current data. We estimate the mass of the black hole using the modelled inner disc temperature to be 30 M_{⊙} ≲ M√{cosi}≲ 200 M_{⊙} based on a Shakura-Sunyaev disc model. Through a study of the hardness and high-energy curvature of available X-ray observations, we find that the accretion state of X-1 is not determined by luminosity alone.

  4. Ultraluminous supersoft X-ray sources

    Science.gov (United States)

    Liu, Jifeng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2017-06-01

    While ultraluminous supersoft X-ray sources (ULSs) bear features for intermediate mass black holes or very massive white dwarfs possibly close to Chandrasekhar mass limit, our recent discovery of processing relativistic baryonic jets from a prototype ULS in M81 demonstrate that they are not IMBHs or WDs, but black holes accreting at super-Eddington rates. This discovery strengthens the recent ideas that ULXs are stellar black holes with supercritical accretion, and provides a vivid manifestation of what happens when a black hole devours too much, that is, it will generate thick disk winds and fire out sub-relativistic baryonic jets along the funnel as predicted by recent numerical simulations.

  5. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    International Nuclear Information System (INIS)

    Schulze, D.; Anderson, S.; Mattigod, S.

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography

  6. Optical observations of binary X-ray sources

    International Nuclear Information System (INIS)

    Charles, P.

    1982-01-01

    Here I shall consider only those systems where the compact object is a neutron star (or in a few cases perhaps a black hole). Since van Paradijs (1982) has recently produced an excellent and comprehensive review of optical observations of compact galactic X-ray sources I shall summarise the basic properties of the optical counterparts and discuss a few representative systems in some detail. (orig./WL)

  7. A spherical model for the transient x-ray source A0620-00

    International Nuclear Information System (INIS)

    Dilworth, C.; Maraschi, L.; Perola, G.C.

    1977-01-01

    The continuum spectrum of the transient X-ray source A0620-00, from infrared to X-ray frequencies, is interpreted as emission from a uniform spherical cloud of hot gas in which the free-free spectrum is modified by Thomson scattering. On this basis, the radius and the density of the cloud, and the distance of the source, are derived. The change of the spectrum with the time indicates a decrease of both radius and density with decreasing luminosity. Considering the production of X-rays to be due to impulsive accretion in a low-mass binary system, these results open the question as to whether the accreting object is a white dwarf rather than a neutron star. (author)

  8. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  9. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  10. NuSTAR Observations of the Compton-Thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    DEFF Research Database (Denmark)

    Annuar, A.; Gandhi, P.; Alexander, D. M.

    2015-01-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband s...

  11. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    Science.gov (United States)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  12. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    International Nuclear Information System (INIS)

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-01-01

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L X ≥ 10 40 erg s –1 ). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ∼10 M ☉ or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the ∼>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow

  13. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K. [Lawrence Livermore National Laboratory, P.O. Box 808 L170, Livermore, California 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  14. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  15. X-ray micro-Tomography at the Advanced Light Source

    Science.gov (United States)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  16. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  17. X-ray cardiovascular examination apparatus

    International Nuclear Information System (INIS)

    1977-01-01

    An X-ray source is mounted in an enclosure for angulating longitudinally about a horizontal axis. An X-ray-permeable, patient-supporting table is mounted on the top of the enclosure for executing lateral and longitudinal movements. An X-ray image-receiving device such as an X-ray image intensifier is mounted above the table on a vertically movable arm which is on a longitudinally movable carriage. Electric control means are provided for angulating the X-ray source and image intensifier synchronously as the image intensifier system is shifted longitudinally or vertically such that the central ray from the X-ray source is kept intensifier

  18. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  19. THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.; Furst, Felix; Grefenstette, Brian W.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, Matteo; Barret, Didier; Webb, Natalie A. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Fabian, Andrew C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn C. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Ptak, Andrew F.; Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  20. High-voltage transistor converter for pulsed x-ray sources

    International Nuclear Information System (INIS)

    Krasil'nikov, S.B.; Kristalinskii, A.L.; Lozovoi, L.N.; Markov, S.N.; Sindalovskii, E.I.

    1986-01-01

    A 24-V/12-kV converter for MIRA-2D and NORA pulsed x-ray sources is described. When the low-voltage supply varies within 20-26 V, the frequency stability of the x-ray pulses is higher by a factor of 3 ≅ 3 than when the PRIMA converter is used. For 14-24 V, the average output power of the converter is independent of the load impedance and increases linearly with an increase in supply voltage. The efficiency of the converter reaches 60%. The converter operates in the temperature range of -40 to +60 0 C

  1. Studies on the effect of the axial magnetic field on the x-ray bremsstrahlung in a 2.45 GHz permanent magnet microwave ion source

    International Nuclear Information System (INIS)

    Kumar, Narender; Rodrigues, G.; Lakshmy, P. S.; Mathur, Y.; Ahuja, R.; Kanjilal, D.; Baskaran, R.

    2014-01-01

    A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the “off-resonance” mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied

  2. Studies on the effect of the axial magnetic field on the x-ray bremsstrahlung in a 2.45 GHz permanent magnet microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narender; Rodrigues, G., E-mail: gerosro@gmail.com; Lakshmy, P. S.; Mathur, Y.; Ahuja, R.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the “off-resonance” mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied.

  3. Studies on the effect of the axial magnetic field on the x-ray bremsstrahlung in a 2.45 GHz permanent magnet microwave ion source.

    Science.gov (United States)

    Kumar, Narender; Rodrigues, G; Lakshmy, P S; Baskaran, R; Mathur, Y; Ahuja, R; Kanjilal, D

    2014-02-01

    A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the "off-resonance" mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied.

  4. Sources of linear polarized x-rays

    International Nuclear Information System (INIS)

    Aiginger, H.; Wobrauschek, P.

    1989-01-01

    Linear polarized X-rays are used in X-ray fluorescence analysis to decrease the background caused by scattered photons. Various experiments, calculations and constructions have demonstrated the possibility to produce polarized radiation in an analytical laboratory with an X-ray tube and polarizer-analyzer facilities as auxiliary equipment. The results obtained with Bragg-polarizers of flat and curved focussing geometry and of Barkla-polarizers are presented. The advantages and disadvantages of the method are discussed and compared with the respective quality of synchrotron radiation. Polarization by scattering reduces the intensity of the primary radiation. Recently much effort is devoted to the construction of integrated high power X-ray tube polarizer-analyzer arrangements. The detailed design, geometry and performance of such a facility is described. (author)

  5. An update on carbon nanotube-enabled X-ray sources for biomedical imaging.

    Science.gov (United States)

    Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2018-01-01

    A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the

  6. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  7. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Fuerst, F.; Madsen, K. K.; Rana, V.; Stern, D. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Bachetti, M.; Barret, D.; Webb, N. [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C.; Parker, M. L. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Ptak, A.; Zhang, W. W., E-mail: dwalton@srl.caltech.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) × 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  8. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  9. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  10. Cold cathode diode X-ray source

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A cold cathode diode X-ray source for radiation imaging, especially computed tomography, comprises a rod-like anode and a generally cylindrical cathode, concentric with the anode. The spacing between anode and cathode is so chosen that the diode has an impedance in excess of 100 ohms. The anode may be of tungsten, or of carbon with a tungsten and carbon coating. An array of such diodes may be used with a closely packed array of detectors to produce images of rapidly moving body organs, such as the beating heart. (author)

  11. ANALYSIS OF A STATE CHANGING SUPERSOFT X-RAY SOURCE IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Patel, B. [Department of Physics and Astronomy Rutgers, State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Di Stefano, R.; Primini, F. A.; Liu, J.; Scoles, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Nelson, T. [Department of Physics, 1000 Hilltop Circle, University of Maryland at Baltimore, Baltimore, MD 21250 (United States)

    2013-07-01

    We report on observations of a luminous supersoft X-ray source (SSS) in M31, r1-25, that has exhibited spectral changes to harder X-ray states. We document these spectral changes. In addition, we show that they have important implications for modeling the source. Quasisoft states in a source that has been observed as an SSS represent a newly discovered phenomenon. We show how such state changers could prove to be examples of unusual black hole or neutron star accretors. Future observations of this and other state changers can provide the information needed to determine the nature(s) of these intriguing new sources.

  12. The superconducting x-ray lithography source program at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G. P.; Heese, R. N.; Vignola, G.; Murphy, J. B.; Godel, J. B.; Hsieh, H.; Galayda, J.; Seifert, A.; Knotek, M. L.

    1989-07-01

    A compact electron storage ring with superconducting dipole magnets, is being developed at the National Synchrotron Light Source at Brookhaven. The parameters of the source have been optimized for its future use as an x-ray source for lithography. This first ring is a prototype which will be used to study the operating characteristics of machines of this type with particular attention being paid to low-energy injection and long beam lifetime.

  13. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  14. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  15. Soft x-ray microradiography and lithograph using a laser produced plasma source

    International Nuclear Information System (INIS)

    Cheng, P.C.

    1992-01-01

    Considering the hardware characteristics of the laser-induced plasma X-ray source and the limitations of the conventional cone-beam reconstruction algorithm, a general cone-beam reconstruction algorithm has been developed at our laboratory, in which the motion locus of the X-ray source is an arbitrary curve corresponding to at least a 2π continuous horizontal angular displacement in the coordinate system of the specimen. The preliminary simulation shows that the general cone-beam reconstruction algorithm consistently results in visually satisfactory images

  16. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, G., E-mail: gploise@sandia.gov; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Norris, E. [Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2016-11-15

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  17. X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories.

    Science.gov (United States)

    Loisel, G; Lake, P; Gard, P; Dunham, G; Nielsen-Weber, L; Wu, M; Norris, E

    2016-11-01

    At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers.

  18. Microfocussing of synchrotron X-rays using X-ray refractive lens

    Indian Academy of Sciences (India)

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance ...

  19. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  20. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    International Nuclear Information System (INIS)

    Donath, Tilman; Bunk, Oliver; Groot, Waldemar; Bednarzik, Martin; Gruenzweig, Christian; David, Christian; Pfeiffer, Franz; Hempel, Eckhard; Popescu, Stefan; Hoheisel, Martin

    2009-01-01

    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing.

  1. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  2. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  3. NLTE Model Atmospheres for Super-Soft X-ray Sources

    Science.gov (United States)

    Rauch, Thomas; Werner, Klaus

    2009-09-01

    Spectral analysis by means of fully line-blanketed Non-LTE model atmospheres has arrived at a high level of sophistication. The Tübingen NLTE Model Atmosphere Package (TMAP) is used to calculate plane-parallel NLTE model atmospheres which are in radiative and hydrostatic equilibrium. Although TMAP is not especially designed for the calculation of burst spectra of novae, spectral energy distributions (SEDs) calculated from TMAP models are well suited e.g. for abundance determinations of Super Soft X-ray Sources like nova V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.

  4. Development of an X-Ray Catheter Final Report CRADA No. TC-1265-96

    Energy Technology Data Exchange (ETDEWEB)

    Trebes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schlossberg, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Toe goal of this CRADA project was to develop a catheter-based x-ray source to provide treatment of restenosis in arteries with a radiation source which can be precisely controlled and turned on and off at will.

  5. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    Science.gov (United States)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  6. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  7. X-ray radiometric separation of low-grade tin ores

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, N.I.; Neverov, A.D.; Konovalov, V.M.; Mironov, I.I.; Zakharov, S.N.

    1984-10-01

    The investigations on evaluation of X-ray radiometric separation of off-grade tin ores of one of the deposits are carried out. The experiments have been performed at loboratory and pilot-commerical plants. /sup 241/Am has been used as a radiation source. In the course of facility commercial the ore has been separated by means of a device comprising a separator and gate separatin device. The results of X-ray radiometric separation have shown its high productive efficiency. Concentrates with higher tin content at high extraction from ores are obtained.

  8. X-ray radiometric separation of low-grade tin ores

    International Nuclear Information System (INIS)

    Kotler, N.I.; Neverov, A.D.; Konovalov, V.M.; Mironov, I.I.; Zakharov, S.N.

    1984-01-01

    The investigations on evaluation of X-ray radiometric separation of off-grade tin ores of one of the deposits are carried out. The experiments have been performed at loboratory and pilot-commerical plants. 241 Am has been used as a radiation source. In the course of facility commercial the ore has been separated by means of a device comprising a separator and gate separatin device. The results of X-ray radiometric separation have shown its high productive efficiency. Concentrates with higher tin content at high extraction from ores are obtained

  9. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Science.gov (United States)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  10. Enormous mass of the elliptical galaxy M87: A model for the extended X-ray source

    International Nuclear Information System (INIS)

    Mathews, W.G.

    1978-01-01

    An analysis of the X-ray data from the Virgo cluster indicates that the mass of the giant elliptical galaxy M87 exceeds 10 13 M/sub sun/ or greater. This large mass is required in order to confine the extended thermal X-ray source to its observed projected size - provided that the gas which radiates X-rays is essentially isothermal (T=3 x 10 7 K) and in hydrostatic equilibrium. Isothermality follows from the efficiency of heat conduction and the suggested origin of the gas. If these assumptions are correct, the bulk of the mass in M87 must be distributed in a low-density, low luminosity component quite unlike the distribution of luminous matter. The mass of this component could account for the ''missing mass'' in the Virgo cluster. Observations of polarized radio emission from the core source in M87 provide further indirect support for the existence of a massive, low-luminosity halo. The hot gas (Tapprox. =3 x 10 7 K), trapped in the potential well of the dark halo, and the magnetic field associated with the M87 radio halo account for the Faraday depolarization and rotation measure observed in the radio core source (jet and nucleus).The gas at Tapprox. =3 x 10 7 K which surrounds M87 cools at its center in less than a Hubble time, and produces the H II region which is observed there. Observations of the Balmer decrement could be useful in verifying the origin of the nuclear H II gas. This gas, which falls as clouds into the nucleus at a rate of approx.10 M/sub sun/ yr -1 , may be responsible for maintaining the nonthermal activity there. The total mass of hot gas in M87 is, very approximately, 5 x 10 12 M/sub sun/. A likely source for the hot gas surrounding M87 would be the interaction of galactic winds among the cluster members, followed by infall into the potential well of M87

  11. Exotic sources of x-rays for iodine K-edge angiography

    International Nuclear Information System (INIS)

    Carr, R.

    1993-08-01

    Digital Subtractive Angiography (DSA) has been performed to image human coronary arteries using wiggler radiation from electron storage rings. The significant medical promise of this procedure motivates the development of smaller and less costly x-ray sources. Several exotic sources are candidates for consideration, using effects such as Cherenkov, channeling, coherent bremsstrahlung, laser backscattering, microundulator, parametric, Smith-Purcell, and transition radiation. In this work we present an analysis of these effects as possible sources of intense x-rays at the iodine K-edge at 33.169 key. The criteria we use are energy, efficiency, flux, optical properties, and technical realizability. For each of the techniques, we find that they suffer either from low flux, a low energy cutoff, target materials heating, too high electron beam energy requirement, optical mismatch to angiography, or a combination of these. We conclude that the foreseeable state-of-the-art favors a compact storage ring design

  12. NSLS [National Synchrotron Light Source] X-19A beamline performance for x-ray absorption measurements

    International Nuclear Information System (INIS)

    Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M.

    1989-01-01

    Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs

  13. TOWARD IDENTIFYING THE UNASSOCIATED GAMMA-RAY SOURCE 1FGL J1311.7-3429 WITH X-RAY AND OPTICAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; Takahashi, Y.; Maeda, K. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Yatsu, Y.; Kawai, N. [Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro, Tokyo 152-8551 (Japan); Urata, Y.; Tsai, A. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Cheung, C. C. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Totani, T.; Makiya, R. [Department of Astronomy, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Hanayama, H.; Miyaji, T., E-mail: kataoka.jun@waseda.jp [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa, 907-0024 (Japan)

    2012-10-01

    We present deep optical and X-ray follow-up observations of the bright unassociated Fermi-LAT gamma-ray source 1FGL J1311.7-3429. The source was already known as an unidentified EGRET source (3EG J1314-3431, EGR J1314-3417), hence its nature has remained uncertain for the past two decades. For the putative counterpart, we detected a quasi-sinusoidal optical modulation of {Delta}m {approx} 2 mag with a period of {approx_equal}1.5 hr in the Rc, r', and g' bands. Moreover, we found that the amplitude of the modulation and peak intensity changed by {approx}>1 mag and {approx}0.5 mag, respectively, over our total six nights of observations from 2012 March to May. Combined with Swift UVOT data, the optical-UV spectrum is consistent with a blackbody temperature, kT {approx_equal} 1 eV and the emission volume radius R{sub bb} {approx_equal} 1.5 Multiplication-Sign 10{sup 4} d{sub kpc} km (d{sub kpc} is the distance to the source in units of 1 kpc). In contrast, deep Suzaku observations conducted in 2009 and 2011 revealed strong X-ray flares with a light curve characterized with a power spectrum density of P(f) {proportional_to} f {sup -2.0{+-}0.4}, but the folded X-ray light curves suggest an orbital modulation also in X-rays. Together with the non-detection of a radio counterpart, and significant curved spectrum and non-detection of variability in gamma-rays, the source may be the second 'radio-quiet' gamma-ray emitting millisecond pulsar candidate after 1FGL J2339.7-0531, although the origin of flaring X-ray and optical variability remains an open question.

  14. Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source

    International Nuclear Information System (INIS)

    Andreev, V. V.; Nikitin, G.V.; Savanovich, V.Yu.; Umnov, A.M.; Elizarov, L.I.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-01-01

    The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission

  15. The spherical pinch as a soft x-ray source for microlithography and other industrial applications

    International Nuclear Information System (INIS)

    Aithal, S.; Lamari, M.; Panarella, E.

    1992-01-01

    In the course of the past several years, an R and D program has been carried out at ALFT in order to exploit the Spherical Pinch concept of plasma heating to create a hot plasma of radiation emission characteristics of interest for industrial X-ray microlithography. The program has been successful and a prototype machine has now been built. The plasma is generated by inductively discharging 30 kJ of electrical energy from a condenser bank in a spherically shaped coil. Since the energy transfer efficiency is ∼ 25%, in excess of 7 kJ of energy is deposited into the plasma. The strong implosion thus generated, on compressing a preformed central plasma, creates a source of soft X-rays having the following characteristics: X-ray energy, 1--3, keV; X-ray energy per pulse, ∼ 50, J; Source size, ∼ 1, mm; X-ray flux at--20 cm from source, ∼10, mJ/cm 2 /shot; position reproducibility, 0.1, Hz. These characteristics are very close to what is required by the semiconductor industries for microlithography. For this reason, a commercial unit is now being designed and manufactured and will be available for marketing by the end of 1992. This source of soft X-rays has recently found another industrial application, paper radiography for quality evaluation and control in the paper industry. The possibility of imaging by means of soft X-rays the microstructure of paper on production line enables the operator to adjust the paper manufacturing configuration through variations of the relative speed of the jet compared to that of the wire. A compact X-ray source for paper radiography is now being designed and manufactured, and a prototype machine will be ready by the beginning of 1993. The Spherical Pinch plasma source is a good radiation emitter also in the UV and the deep UV range of the spectrum

  16. Nuclear Enhanced X-ray Maximum Entropy Method Used to Analyze Local Distortions in Simple Structures

    DEFF Research Database (Denmark)

    Christensen, Sebastian; Bindzus, Niels; Christensen, Mogens

    We introduce a novel method for reconstructing pseudo nuclear density distributions (NDDs): Nuclear Enhanced X-ray Maximum Entropy Method (NEXMEM). NEXMEM offers an alternative route to experimental NDDs, exploiting the superior quality of synchrotron X-ray data compared to neutron data. The method...... proposed to result from anharmonic phonon scattering or from local fluctuating dipoles on the Pb site.[1,2] No macroscopic symmetry change are associated with these effects, rendering them invisible to conventional crystallographic techniques. For this reason PbX was until recently believed to adopt...

  17. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    International Nuclear Information System (INIS)

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 μm that leads to a transversal coherence length of 20 μm at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy

  18. Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source

    International Nuclear Information System (INIS)

    Ng, I.; Fouras, A.; Paganin, D. M.

    2012-01-01

    Phase contrast particle image velocimetry (PIV) using a laboratory x-ray microfocus source is investigated using a numerical model. Phase contrast images of 75 μm air bubbles, embedded within water exhibiting steady-state vortical flow, are generated under the paraxial approximation using a tungsten x-ray spectrum at 30 kVp. Propagation-based x-ray phase-contrast speckle images at a range of source-object and object-detector distances are generated, and used as input into a simulated PIV measurement. The effects of source-size-induced penumbral blurring, together with the finite dynamic range of the detector, are accounted for in the simulation. The PIV measurement procedure involves using the cross-correlation between temporally sequential speckle images to estimate the transverse displacement field for the fluid. The global error in the PIV reconstruction, for the set of simulations that was performed, suggests that geometric magnification is the key parameter for designing a laboratory-based x-ray phase-contrast PIV system. For the modeled system, x-ray phase-contrast PIV data measurement can be optimized to obtain low error ( 15 μm) of the detector, high geometric magnification (>2.5) is desired, while for large source size system (FWHM > 30 μm), low magnification (<1.5) would be suggested instead. The methods developed in this paper can be applied to optimizing phase-contrast velocimetry using a variety of laboratory x-ray sources.

  19. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  20. Development and application of sub-nanosecond pulse-repeatable hard X-ray source

    International Nuclear Information System (INIS)

    Quan Lin; Fan Yajun; Tu Jing

    2013-01-01

    A multipurpose X-ray source was developed to meet the needs of multitask application such as radiation detection, radiation imaging and so on. The multipurpose X-ray source has characteristic of adjustable width and energy, pulse-repetition operation, ultra-short pulse and fine stability. Its rising time is close to 98.6 ps, the operation voltage reaches 425 kV, and the peak fluence rate exceeds 2.07 × 10 18 cm -2 · s -1 at 10 cm, which provides an ideal radiation environment for relevant application. (authors)

  1. Development of cancer medical treatment/diagnostic equipment using the source of X-rays in space coherence

    International Nuclear Information System (INIS)

    Sato, Isamu; Shintomi, Kazutaka; Hayakawa, Ken

    2009-01-01

    In Nihon University, the research and development of Parametric X-rays radiation (PXR) by the 100 MeV electron linac are advanced. It was proved by basic experiment that PXR was a source of coherent X-rays. Coherent X-rays have the characteristic that a refraction action is guided with an irradiation matter. According to this action, the contrast image pick-up of an irradiation matter is attained, and X-rays becomes possible to focus a point itself. Research of cancer medical treatment and diagnosis are advanced using the new source of X-ray. Miniaturization of the source is important for the spread of cancer medical new treatment and diagnoses. Recently, the tabletop type 100 MeV class cryogenic linac with energy recovery is under development. In symposium, we report progress of these research and development. (author)

  2. Neon dense plasma focus point x-ray source for ≤ 0.25 μm lithography

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.; Berg, K.; Conlon, D.; Mangano, J.

    1994-01-01

    A discharge driven, dense plasma focus (DPF) in neon has been developed at SRL as a point x-ray source for sub-micron lithography. This source is presently capable of delivering ∼25 J/pulse of neon K-shell x-rays (8--14 angstrom) into 4 π steradians with a ∼1.4% wall plug efficiency at a 20 Hz repetition rate. The discharge is produced by a capacitor bank circuit (8 kV, 1.8 kJ) which has a fixed inductance of 11 nH and drives ∼ 320 kA currents into the DPF load, with ∼1 μs rise-times. X-rays are produced when a dense pinch of neon is formed along the axis of the DPF electrodes. The dense neon pinch has been found to be a cigar shaped object, ∼0.3 mm in diameter at the waist and ∼8 mm long on a singe shot. This source wanders slightly from shot to shot in an overall envelope which is ∼0.5--0.75 mm in diameter and ∼8 mm long. The spectrum of x-rays emitted by the pinch has been extensively studied. It has been found that 60% of the total x-ray output is radiated in the H-like and He-like lines centered at 12.9 angstrom and 40% of the output is radiated in the H-like and He-like continuum, centered at 9.8 angstrom. More than 4 x 10 5 discharges using a cooled DPF head have been fired producing x-rays. The variation in the measured x-ray output, over several hundreds of thousands of shots, corresponds to a variation in the dose delivered to a resist 40 cm from the source, of less than 1%. Data showing the measurement of the x-ray output, dose delivered to a resist, spectra of the source output, novel beam line concepts and potential lithographic applications will be presented

  3. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    Science.gov (United States)

    Walton, D. J.; Fürst, F.; Harrison, F. A.; Stern, D.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A. C.; Middleton, M. J.; Ptak, A.; Tao, L.

    2018-02-01

    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM-Newton, NuSTAR and Chandra observatories. The broad-band XMM-Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∼0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B ≲ 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual 'off' states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.

  4. Point X-ray sources in the SNR G 315.4-2.30 (MSH 14-63, RCW 86)

    Science.gov (United States)

    Gvaramadze, V. V.; Vikhlinin, A. A.

    2003-04-01

    We report the results of a search for a point X-ray source (stellar remnant) in the southwest protrusion of the supernova remnant G 315.4-2.30 (MSH 14-63, RCW 86) using the archival data of the Chandra X-ray Observatory. The search was motivated by a hypothesis that G 315.4-2.30 is the result of an off-centered cavity supernova explosion of a moving massive star, which ended its evolution just near the edge of the main-sequence wind-driven bubble. This hypothesis implies that the southwest protrusion in G 315.4-2.30 is the remainder of a pre-existing bow shock-like structure created by the interaction of the supernova progenitor's wind with the interstellar medium and that the actual location of the supernova blast center is near the center of this hemispherical structure. We have discovered two point X-ray sources in the ``proper" place. One of the sources has an optical counterpart with the photographic magnitude 13.38+/-0.40, while the spectrum of the source can be fitted with an optically thin plasma model. We interpret this source as a foreground active star of late spectral type. The second source has no optical counterpart to a limiting magnitude ~ 21. The spectrum of this source can be fitted almost equally well with several simple models (power law: photon index =1.87; two-temperature blackbody: kT1 =0.11 keV, R1 =2.34 km and kT2 =0.71 keV, R2 =0.06 km; blackbody plus power law: kT =0.07 keV, photon index =2.3). We interpret this source as a candidate stellar remnant (neutron star), while the photon index and non-thermal luminosity of the source (almost the same as those of the Vela pulsar and the recently discovered pulsar PSR J 0205+6449 in the supernova remnant 3C 58) suggest that it can be a young ``ordinary" pulsar.

  5. Radio and x-ray observations of compact sources in or near supernova remnants

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.

    1982-01-01

    We present VLA multifrequency radio observations of six compact radio sources from the list of nine objects proposed by Ryle et al. [Nature 276, 571 (1978)] as a new class of radio star, possibly the stellar remnants of supernovae. We also present the results of a search for x-ray emission from four of these objects with the Einstein observatory. The radio observations provide information on spectra, polarization, time variability, angular structure, and positions for these sources. The bearing of these new data on the nature of the sources is discussed. One particularly interesting result is that the polarization and angular-size measurements are combined in an astrophysical argument to conclude that one of the sources (2013+370) is extragalactic. No x-ray emission was detected from any of the four objects observed, but an extended x-ray source was found coincident with the supernova remnant G 33.6+0.1 near 1849+005. Our measurements provide no compelling arguments to consider any of the six objects studied as radio stars

  6. XMM-Newton 13H deep field - I. X-ray sources

    Science.gov (United States)

    Loaring, N. S.; Dwelly, T.; Page, M. J.; Mason, K.; McHardy, I.; Gunn, K.; Moss, D.; Seymour, N.; Newsam, A. M.; Takata, T.; Sekguchi, K.; Sasseen, T.; Cordova, F.

    2005-10-01

    We present the results of a deep X-ray survey conducted with XMM-Newton, centred on the UK ROSAT13H deep field area. This region covers 0.18 deg2, and is the first of the two areas covered with XMM-Newton as part of an extensive multiwavelength survey designed to study the nature and evolution of the faint X-ray source population. We have produced detailed Monte Carlo simulations to obtain a quantitative characterization of the source detection procedure and to assess the reliability of the resultant sourcelist. We use the simulations to establish a likelihood threshold, above which we expect less than seven (3 per cent) of our sources to be spurious. We present the final catalogue of 225 sources. Within the central 9 arcmin, 68 per cent of source positions are accurate to 2 arcsec, making optical follow-up relatively straightforward. We construct the N(>S) relation in four energy bands: 0.2-0.5, 0.5-2, 2-5 and 5-10 keV. In all but our highest energy band we find that the source counts can be represented by a double power law with a bright-end slope consistent with the Euclidean case and a break around 10-14yergcm-2s-1. Below this flux, the counts exhibit a flattening. Our source counts reach densities of 700, 1300, 900 and 300 deg-2 at fluxes of 4.1 × 10-16,4.5 × 10-16,1.1 × 10-15 and 5.3 × 10-15ergcm-2s-1 in the 0.2-0.5, 0.5-2, 2-5 and 5-10 keV energy bands, respectively. We have compared our source counts with those in the two Chandra deep fields and Lockman hole, and found our source counts to be amongst the highest of these fields in all energy bands. We resolve >51 per cent (>50 per cent) of the X-ray background emission in the 1-2 keV (2-5 keV) energy bands.

  7. Proposal to DOE Basic Energy Sciences Ultrafast X-ray science facility at the Advanced Light Source

    CERN Document Server

    Schönlein, R W; Alivisatos, A P; Belkacem, A; Berrah, N; Bozek, J; Bressler, C; Cavalleri, A; Chang, Z; Chergui, M; Falcone, R W; Glover, T E; Heimann, P A; Hepburn, J; Larsson, J; Lee, R W; McCusker, J; Padmore, H A; Pattison, P; Pratt, S T; Robin, D W; Schlüter, Ross D; Shank, C V; Wark, J; Zholents, A A; Zolotorev, M S

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  8. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  9. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    International Nuclear Information System (INIS)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron

  10. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  11. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  12. Real world issues for the new soft x-ray synchrotron sources

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs

  13. Analysis of monochromatic and quasi-monochromatic X-ray sources in imaging and therapy

    Science.gov (United States)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Orban, Christopher; Pradhan, Anil

    2017-04-01

    We studied biomedical imaging and therapeutic applications of recently developed quasi-monochromatic and monochromatic X-ray sources. Using the Monte Carlo code GEANT4, we found that the quasi-monochromatic 65 keV Gaussian X-ray spectrum created by inverse Compton scattering with relatavistic electron beams were capable of producing better image contrast with less radiation compared to conventional 120 kV broadband CT scans. We also explored possible experimental detection of theoretically predicted K α resonance fluorescence in high-Z elements using the European Synchrotron Research Facility with a tungsten (Z = 74) target. In addition, we studied a newly developed quasi-monochromatic source generated by converting broadband X-rays to monochromatic K α and β X-rays with a zirconium target (Z = 40). We will further study how these K α and K β dominated spectra can be implemented in conjunction with nanoparticles for targeted therapy. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  14. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  15. A new hybrid target concept for multi-keV X-ray sources

    International Nuclear Information System (INIS)

    Primout, M.; Babonneau, D.; Jacquet, L.; Villette, B.; Girard, F.; Brebion, D.; Stemmler, P.; Fournier, K.B.; Marrs, R.; May, M.J.; Heeter, R.F.; Wallace, R.J.; Nishimura, H.; Fujioka, S.; Tanabe, M.; Nagai, H.

    2013-01-01

    A novel concept for using hybrid targets to create multi-keV X-ray sources was tested on the GEKKO XII facility of the Osaka University and on the OMEGA facility of the University of Rochester. The sources were made via laser irradiation of a titanium foil placed at the end of a plastic cylinder, filled with a very low-density (2 and 5 mg/cm 3 ) silicon-dioxide aerogel that was designed to control the longitudinal expansion of the titanium plasma. Preliminary calculations were used to determine optimal conditions for the aerogel density, cylinder diameter and length that maximize multi-keV X-ray emission. The X-ray emission power was measured on OMEGA using absolutely calibrated broad-band, diode-based CEA diagnostics, in addition to high resolution crystal spectrometers. On GEKKO XII, the heat wave propagation velocity in the aerogel was also measured with an X-ray framing camera. The advantage of using the thermal wave generated in the aerogel to heat a solid material to increase the conversion efficiency has not been fully demonstrated in these experiments. However, it was shown that a 5 mg/cm 3 aerogel placed in front of a titanium foil can improve the x-ray conversion efficiency with respect to the case of 2 mg/cm 3 for some target diameter and length. (authors)

  16. Experimental Comparison of 2-3MV X-Ray Sources for Flash Radiography

    International Nuclear Information System (INIS)

    MENGE, PETER RICHARD; JOHNSON, DAVID LEE; MAENCHEN, JOHN E.; OLSON, CRAIG L.; ROVANG, DEAN C.; DROEMER, D.; HUNT, E.; OLIVER, BRYAN VELTEN; ROSE, DAVID VINCENT; WELCH, DALE ROBERT

    2002-01-01

    High-brightness flash x-ray sources are needed for penetrating dynamic radiography for a variety of applications. Various bremsstrahlung source experiments have been conducted on the TriMeV accelerator (3MV, 60 Ω 20 ns) to determine the best diode and focusing configuration in the 2-3 MV range. Three classes of candidate diodes were examined: gas cell focusing, magnetically immersed, and rod pinch. The best result for the gas cell diode was 6 rad at 1 meter from the source with a 5 mm diameter x-ray spot. Using a 0.5 mm diameter cathode immersed in a 17 T solenoidal magnetic field, the best shot produced 4.1 rad with a 2.9 mm spot. The rod pinch diode demonstrated very reproducible radiographic spots between 0.75 and 0.8 mm in diameter, producing 1.2 rad. This represents a factor of eight improvement in the TriMeV flash radiographic capability above the original gas cell diode to a figure of merit (dose/spot diameter) > 1.8 rad/mm. These results clearly show the rod pinch diode to be the choice x-ray source for flash radiography at 2-3 M V

  17. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.; Tendulkar, S. P. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Burgay, M.; Possenti, A. [INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Esposito, P.; Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Israel, G. [INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Kerr, M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Sarkissian, J. [CSIRO Astronomy and Space Science, Parkes Observatory, P.O. Box 276, Parkes, NSW 2870 (Australia); Scholz, P., E-mail: archibald@astro.utoronto.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada)

    2017-11-10

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observations of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.

  18. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  19. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  1. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X-ray

  2. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    International Nuclear Information System (INIS)

    Singer, Andrej

    2013-06-01

    Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X-ray

  3. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  4. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  5. Spectral and spatial characteristics of x-ray film/screen combinations up to x-ray energy of 3 MeV

    International Nuclear Information System (INIS)

    Ginzburg, A.; Carmel, Y.; Segal, Y.; Notea, A.

    1986-01-01

    The present study is directed towards quantifying some of the parameters which define the quality of the image obtained on x-ray sensitive films and its usual accompanying intensifying screens. Both industrial (Agfa-Geveart D2,D4,D7) and medical (Kodak XAR-5) films with a variety of screens such as metallic (lead) and fluorescent (calcium tungstate, rare earth) were compared. A variety of sources were employed (radioactive, linear accelerators, flash) in order to cover the average x-ray energy spectrum from 100KeV to 3000KeV. This energy spectrum is of interest for non destructive testing, terminal ballistics and for medical purposes. The results indicate that the sensitivity of industrial x-ray films decreases with energy in the range of 100KeV to 1MeV, levels off and increases again with increasing energy. A 2.75MeV Na 24 radioactive source was used to achieve accurate calibration at the high end of the spectrum. Also, the noise level of x-ray industrial films versus film density was found to peak at a density of D=1.4. The line spread function (LSF) - or resolution - of both industrial and medical film/screen combinations were derived from the optical density of a step wedge response on the film. The noise level of medical films is twice as high compared to industrial films and their LSF is 4 to 8 times larger at x-ray energies of 3MeV. Using Pb screens in contact with common industrial x-ray films yields amplification of 2 (compared to a bare film)

  6. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  7. Multiband counterparts of two eclipsing ultraluminous X-ray sources in M 51

    Science.gov (United States)

    Urquhart, R.; Soria, R.; Johnston, H. M.; Pakull, M. W.; Motch, C.; Schwope, A.; Miller-Jones, J. C. A.; Anderson, G. E.

    2018-04-01

    We present the discovery and interpretation of ionized nebulae around two ultraluminous X-ray sources in M 51; both sources share the rare property of showing X-ray eclipses by their companion stars and are therefore prime targets for follow-up studies. Using archival Hubble Space Telescope images, we found an elongated, 100-pc-long emission-line structure associated with one X-ray source (CXOM51 J132940.0+471237; ULX-1 for simplicity), and a more circular, ionized nebula at the location of the second source (CXOM51 J132939.5+471244; ULX-2 for simplicity). We observed both nebulae with the Large Binocular Telescope's Multi-Object Double Spectrograph. From our analysis of the optical spectra, we argue that the gas in the ULX-1 bubble is shock-ionized, consistent with the effect of a jet with a kinetic power of ≈2 × 1039 erg s-1. Additional X-ray photoionization may also be present, to explain the strength of high-ionization lines such as He II λ4686 and [Ne V] λ3426. On the other hand, the emission lines from the ULX-2 bubble are typical for photoionization by normal O stars suggesting that the nebula is actually an H II region not physically related to the ULX but is simply a chance alignment. From archival Very Large Array data, we also detect spatially extended, steep-spectrum radio emission at the location of the ULX-1 bubble (consistent with its jet origin), but no radio counterpart for ULX-2 (consistent with the lack of shock-ionized gas around that source).

  8. Source of X-ray radiation based on back compton scattering

    CERN Document Server

    Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  9. Source of X-ray radiation based on back compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu

    2000-06-21

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  10. Source of X-ray radiation based on back compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam

  11. Effects of X-ray tube parameters on thickness measure precision in X-ray profile gauge

    International Nuclear Information System (INIS)

    Miao Jichen; Wu Zhifang; Xing Guilai

    2011-01-01

    Instantaneous profile gauge technology has been widely used in metallurgy industry because it can on-line get the profile of steel strip. It has characters of high measure precision and wide measure range, but the X-ray tube parameters only can be set few different values during measurement. The relations of thickness measure precision and X-ray tube current, X-ray tube voltage were analyzed. The results show that the X-ray tube current affects the thickness measure precision and the X-ray tube voltage determines the thickness measure range. The method of estimating the X-ray current by thickness measure precision was provided in the end. This method is the base of X-ray source selection and X-ray source parameter's setting in the instantaneous profile gauge. (authors)

  12. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    Science.gov (United States)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  13. A Compact 5 MeV S-Band Electron Linac Based X-Ray Source for Industrial Radiography

    CERN Document Server

    Auditore, Lucrezia; De Pasquale, Domenico; Emanuele, Umberto; Italiano, Antonio; Trifirò, Antonio; Trimarchi, Marina

    2005-01-01

    A compact and reliable X-ray source, based on a 5 MeV, 1 kW, S-band electron linac, has been set up at the Dipartimento di Fisica, Universit\\'a di Messina. This source, coupled with a GOS scintillator screen and a CCD camera, represents an innovative transportable system for industrial radiography and X-ray tomography. Optimization of the parameters influencing the e-gamma conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 code. The converter choice is the result of the study of the e-gamma conversion performances for different materials and materials thicknesses. Also the converter position with respect to the linac exit window was studied. The chosen converter consists in a Ta-Cu target inserted close to the linac window. The Cu layer acts as a filter both on the electrons from the source and on the low energy X-rays. The X-ray beam angular profile was studied by means of GafChromic films with and without collimation. In the final source project, a collimation system pr...

  14. Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)

    Science.gov (United States)

    Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.

  15. X-ray heating and the optical light curve of HZ Herculis

    International Nuclear Information System (INIS)

    Perrenod, S.C.; Shields, G.A.

    1975-01-01

    We discuss theoretically the optical light curve of HZ Her, the binary companion of the pulsed X-ray source Her X-1. Using model stellar atmospheres, we construct light curves that are in agreement with UBV photometry of HZ Her except for the sharpness of the minimum. Unlike previous authors, we find that heating of the photosphere of HZ Her by the observed X-ray flux is sufficient to explain the amplitude of the light variations in each color, if the X-ray emission persists at HZ Her throughout the 35-day ON-OFF CYCLE. We rule out a corona surrounding HZ Her as the source of the extra light near minimum, and we also rule out a model wherein the extra light is caused by a stellar wind that electron-scatters optical light emitted by the photosphere of the hot side of the star

  16. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  17. CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.; Miyasaka, Hiromasa; Forster, Karl; Fuerst, Felix; Rana, Vikram; Walton, Dominic J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Markwardt, Craig B. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); An, Hongjun [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Kitaguchi, Takao [RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bhalerao, Varun [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boggs, Steve; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektronvej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, NY 10027 (United States); Perri, Matteo; Puccetti, Simonetta [ASI Science Data Center, via Galileo Galilei, I-00044, Frascati (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2015-09-15

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ∼10% for all instruments with respect to NuSTAR.

  18. The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?

    Science.gov (United States)

    Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.

    2018-04-01

    Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.

  19. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  20. Low-dose phase contrast tomography with conventional x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C. K., E-mail: charlotte.hagen.10@ucl.ac.uk; Endrizzi, M.; Diemoz, P. C.; Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Munro, P. R. T. [Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia and Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2014-07-15

    Purpose: The edge illumination (EI) x-ray phase contrast imaging (XPCi) method has been recently further developed to perform tomographic and, thus, volumetric imaging. In this paper, the first tomographic EI XPCi images acquired with a conventional x-ray source at dose levels below that used for preclinical small animal imaging are presented. Methods: Two test objects, a biological sample and a custom-built phantom, were imaged with a laboratory-based EI XPCi setup in tomography mode. Tomographic maps that show the phase shift and attenuating properties of the object were reconstructed, and analyzed in terms of signal-to-noise ratio and quantitative accuracy. Dose measurements using thermoluminescence devices were performed. Results: The obtained images demonstrate that phase based imaging methods can provide superior results compared to attenuation based modalities for weakly attenuating samples also in 3D. Moreover, and, most importantly, they demonstrate the feasibility of low-dose imaging. In addition, the experimental results can be considered quantitative within the constraints imposed by polychromaticity. Conclusions: The results, together with the method's dose efficiency and compatibility with conventional x-ray sources, indicate that tomographic EI XPCi can become an important tool for the routine imaging of biomedical samples.

  1. LONG-TERM X-RAY VARIABILITY STUDY OF IC342 FROM XMM-NEWTON OBSERVATIONS

    International Nuclear Information System (INIS)

    Mak, Daisy S. Y.; Pun, Chun S. J.; Kong, Albert K. H.

    2011-01-01

    We presented the results of an analysis of four XMM-Newton observations of the starburst galaxy IC342 taken over a four-year span from 2001 to 2005, with an emphasis on investigating the long-term flux and spectral variability of the X-ray point sources. We detected a total of 61 X-ray sources within 35' x 30' of the galaxy down to a luminosity of (1-2) x 10 37 erg s -1 depending on the local background. We found that 39 of the 61 detected sources showed long-term variability, in which 26 of them were classified as X-ray transients. We also found 19 sources exhibiting variations in hardness ratios or undergoing spectral transitions among observations, and were identified as spectral variables. In particular, eight of the identified X-ray transients showed spectral variability in addition to flux variability. The diverse patterns of variability observed are indicative of a population of X-ray binaries. We used X-ray colors, flux and spectral variability, and in some cases the optical or radio counterparts to classify the detected X-ray sources into several stellar populations. We identified a total of 11 foreground stars, 1 supersoft source (SSS), 3 quasisoft sources (QSSs), and 2 supernova remnants (SNRs). The identified SSS/QSSs are located near or on the spiral arms, associated with young stellar populations; the 2 SNRs are very close to the starburst nucleus where current star formation activities are dominated. We also discovered a spectral change in the nuclear source of IC342 for the first time by a series of X-ray spectrum analysis.

  2. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  3. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.

    2006-01-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-(micro)m-diameter pinholes in a 50-(micro)m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented

  4. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  5. NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643

    International Nuclear Information System (INIS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Moro, A. Del; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Brightman, M.; Harrison, F. A.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Christensen, F. E.; Hailey, C. J.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.

    2015-01-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N H ≳ 5 × 10 24 cm −2 . The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L 2–10,int = (0.8–1.7) × 10 42 erg s −1 , consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1

  6. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...

  7. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  8. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  9. NUSTAR and Xmm-Newton Observations of the Extreme Ultraluminous X-Ray Source NGC 5907 UlX1: A Vanishing Act

    DEFF Research Database (Denmark)

    Walton, D. J.; Harrison, F. A.; Bachetti, M.

    2015-01-01

    We present results obtained from two broadband X-ray observations of the extreme ultraluminous X-ray source (ULX) NGC 5907 ULX1, known to have a peak X-ray luminosity of ~5 × 1040 erg s–1. These XMM-Newton and NuSTAR observations, separated by only ~4 days, revealed an extreme level of short-term...

  10. Center for X-Ray Optics, 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers

  11. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  12. Lifting the veil on the X-ray universe

    Science.gov (United States)

    1999-11-01

    Universe. The mission will study X-rays that originate from "vampire stars" that feed upon their companions, where intense gravitational fields swirl matter from one sphere to the other in strange and terrifying ballets. XMM's high-speed cameras will examine celestial sources whose X-rays pulse rhythmically and mysteriously, and those that flash briefly, pinpointing perhaps gigantic explosions that result from colliding black holes in far off galaxies. XMM will delve into enigmatic black holes, cosmic dustbins that consign matter and light to oblivion, where tired X-rays have lost energy and time itself is slowing down. The golden X-ray eyes of ESA's observatory will try to make sense of a 'bigger picture', ascertaining how galaxies aggregate millions of stars, how these galaxies themselves form clusters and groups scattered across cosmic space. XMM will also attempt to understand the nature of the invisible dark matter that fills interstellar space. A high-flying mission The XMM spacecraft, the largest science satellite ever built in Europe, is due to be launched in December 1999 by an Ariane-5 from the European Spaceport in Kourou. After being released by the launcher, XMM will be placed in a highly eccentric 48-hour orbit, rising to a distance of 114 000 km from the Earth, then returning to within 7 000 km of our planet. This orbit has been chosen for several reasons. It offers an optimal contact between ground tracking stations and the satellite; it will allow the satellite to pass rapidly through the Earth's radiation belts which could harm its delicate science instruments; and above all it will offer astronomers the longest possible observation periods. Note to editors: No X-rays from space can penetrate the Earth's atmosphere so all X-ray astronomy is carried out with instruments on rockets, stratospheric balloons or satellites. X-rays from the Sun were first detected during sounding rocket flights in the 1950s. By 1970, more than forty X-rays sources had been

  13. History of x-ray transients as seen by Vela, 1969-1979

    International Nuclear Information System (INIS)

    Terrell, J.; Priedhorsky, W.C.; Belian, R.D.; Conner, J.P.; Evans, W.D.

    1984-01-01

    Vela spacecraft 5A and 5B, launched into orbit in May 1969, were among the first to be capable of x-ray astronomy. The x-ray counters aboard Vela 5B operated for an unprecedented length of time, observing the entire x-ray sky for 10 years, until June 1979. These spacecraft, monitoring for nuclear tests in space with various detectors, were put into very high orbits at 118,000 km radius. Collimated NaI detectors, sensitive to 3-12 keV x-rays, scanned the sky at 90 0 to the earth-spacecraft axis over a 6.1 0 FWHM (full width at half-maximum) square field of view. Any given source, when in view, was scanned every 64 s as the spacecraft rotated, with 1-second count accumulations in two energy channels. The entire sky was observed every 56 hours, half of the orbital period. During the 10-year lifetime of the x-ray detectors, the Vela spacecraft provided data on many new types of sources. Cen X-4, an exceedingly bright x-ray transient, was observed in the summer of 1969, shortly after launch, and did not return to the x-ray sky until May 1979, when it was again observed by Vela 5B. This source also produced the first of many x-ray bursts detected by Vela, the bright, hard, precursor observed on 7 July 1969. The Vela gamma-ray detectors revealed the new phenomenon of gamma-ray bursts. It has recently been found that at least two gamma-ray bursts were also detected by the x-ray counters. 11 references

  14. The SPARX Project R&D Activity towards X-rays FEL Sources

    CERN Document Server

    Alesini, David; Bertolucci, Sergio; Biagini, M E; Boni, R; Boscolo, Manuela; Castellano, Michele; Clozza, A; Di Pirro, G; Drago, A; Esposito, A; Ferrario, Massimo; Filippetto, D; Fusco, V; Gallo, A; Ghigo, A; Guiducci, Susanna; Incurvati, M; Ligi, C; Marcellini, F; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Pellegrino, L; Preger, Miro; Raimondi, Pantaleo; Ricci, R; Sanelli, C; Serio, Mario; Sgamma, F; Spataro, Bruno; Stecchi, A; Stella, A; Tazzioli, Franco; Vaccarezza, Cristina; Vescovi, Mario; Vicario, C

    2004-01-01

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF acceleratin...

  15. Positron Source from Betatron X-rays Emitted in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-04-21

    In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

  16. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source

    International Nuclear Information System (INIS)

    Kaehle, Stephan

    2009-01-01

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10 16 W/cm 2 dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K α radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K α production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K α radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density [de

  17. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 angstrom) x-rays of 10-ps pulse duration, with a flux of ∼ 10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table-top'' LSS of monochromatic gamma radiation may become feasible

  18. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0 2 laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photon/sec level, after the ongoing ATF C0 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table- top'' LSS of monochromatic gamma radiation may become feasible

  19. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  20. Subgroup report on hard x-ray microprobes

    International Nuclear Information System (INIS)

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-01-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called open-quotes jelly rollclose quotes or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes

  1. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  2. Spitzer Observations of the X-ray Sources of NGC 4485/90

    Science.gov (United States)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  3. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  4. Infrared, radio, and x-ray observations of Cygnus X-3

    International Nuclear Information System (INIS)

    Becklin, E.E.; Hawkins, F.J.; Mason, K.O.; Matthews, K.; Neugebauer, G.; Packman, D.; Sanford, P.W.; Schupler, B.; Stark, A.; Wynn-Williams, C.G.

    1974-01-01

    The x-ray source Cygnus X-3 has been interpreted as being a binary system on the basis of extensive x-ray observations of periodic variability. At radio wavelengths, the source displays erratic outbursts. Cyg x-3 has not been detected visually but at infrared wavelengths periodic variations in phase with the x-ray variations have been reported. Infrared, x-ray and radio observations of Cyg X-3 made during 1973 through 1973 October are presented. (U.S.)

  5. Laser plasmas as x-ray sources for lithographic imaging of submicron structures

    International Nuclear Information System (INIS)

    Bijkerk, F.; van Dorssen, G.E.; van der Wiel, M.J.

    1988-01-01

    Laser radiation can be used efficiently to generate x-rays for lithographic imaging of submicron patterns, e.g., for VLSI device fabrication. Due to their short wavelength and high average power, excimer lasers show much potential for this application. Results are presented of scaling studies for high repetition rate excimer laser application, using the frequency doubled output of a low repetition rate Nd:YAG/Glass laser. Spectral and spatial characteristics of x-ray emission of the laser plasma are shown. The power density in the laser focus was 3 x 10 12 W/cm 2 . With this source Si x-ray masks with submicron Au absorber profiles are imaged into high sensitivity x-ray photoresist. For the exposures 80 laser shots sufficed to yield high quality submicron structures. Extrapolation of the results to a high power excimer laser reduces the exposure time of the photoresists to several seconds, enabling a wafer throughput at an industrial level

  6. New hard X-ray sources at 38/sup 0/ declination

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; La Padula, C.; Polcaro, V.F. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. di Astrofisica Spaziale)

    1981-01-01

    We report the detection of three new hard X-rays sources emitting in the range 15-150 KeV. Their observation was carried out by means of a balloon borne payload, consisting of two large area high spectral resolution Multiwire Spectroscopic Proportional Counters.

  7. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  8. Center for X-ray Optics, 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source

  9. Si(Li) X-ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Li Zhiyong; Hong Xiuse

    1990-08-01

    The fabrication technology of the 10∼80 mm 2 Si(Li) X-ray detectors are described and some problems concerning technology and measurement are discussed. The specifications of the detectors are shown as well. The Si(Li) X-ray detector is a kind of low energy X-ray detectors. Owing to very high energy resolution, fine linearity and high detection efficiency in the range of low energy X-rays, it is widely used in the fields of nuclear physics, medicine, geology and environmental protection, etc,. It is also a kernel component for the scanning electron microscope and X-ray fluorescence analysis systems

  10. Basic study on gamma- and X-ray imaging technology using miniature radiation source

    International Nuclear Information System (INIS)

    Saito, Naoki; Koroki, Kenro; Kurosawa, Kenji

    2000-01-01

    In order to visualize a concealed unlawful matter, visualization using X-ray perspective image is effective, which is actualized. However, it is insufficient by conventional X-ray perspective image to visualize matters and substances of light elements such as narcotics, plastic bombs, and so forth, especially those in a metal container. Then, this study aims at basic research on visualization of perspective image on a weapon such as pistol and so on or a light element substance in a metal container such as car by using gamma-ray with various wave-lengths from a small radiation source. In 1998 fiscal year, a photographing system consisting of an X-ray 2 and a cooled CCD camera was constructed to carry out some simple photographing experiments. By judging through this experimental results only, 57 Co can be said to be more suitable to gamma-ray source for the perspective image photographing than 137 Cs is, which will be a future subject because of supposed dependence of specimen amount, shielding panel thickness or detector. (G.K.)

  11. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  12. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  13. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  14. Effects of electron scattering on the oscillations of an X-ray source

    International Nuclear Information System (INIS)

    Kylafis, N.D.; Klimis, G.S.

    1987-01-01

    The time variability observed at infinity due to a variable point source at the center of a spherical cloud of radius R and optical depth to electron scattering tau is analytically determined. The emissin pattern of the source and its time variability are assumed to be of the following three forms: (1) isotropic emission with intensity varying sinusoidally in time with angular frequency Omega(L), (2) emission in the form of a delta-function beam rotating with angular frequency Omega(R) about a fixed axis and with intensity constant in time, and (3) emission in the form of a delta-function beam rotating with angular frequency Omega(R) about a fixed axis and with intensity varying sinusoidally in time with angular frequency Omega(L). More complicated source emissions and variabilities are studied by superposing the above forms. The results of our calculations reveal the conditions under which quasi-periodic oscillations can be observed from X-ray sources, while periodic oscillations are completely smeared out. Furthermore, these results can be used to study the X-ray oscillations of such sources as Her X-1, Cyg X-3, and the Vela pulsar, which are believed to be embedded in scattering clouds. 35 references

  15. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  16. Discovery and development of x-ray diffraction

    Science.gov (United States)

    Jeong, Yeuncheol; Yin, Ming; Datta, Timir

    2013-03-01

    In 1912 Max Laue at University of Munich reasoned x-rays to be short wavelength electromagnetic waves and figured interference would occur when scattered off crystals. Arnold Sommerfeld, W. Wien, Ewald and others, raised objections to Laue's idea, but soon Walter Friedrich succeeded in recording x-ray interference patterns off copper sulfate crystals. But the Laue-Ewald's 3-dimensional formula predicted excess spots. Fewer spots were observed. William Lawrence Bragg then 22 year old studying at Cambridge University heard the Munich results from father William Henry Brag, physics professor at Univ of Leeds. Lawrence figured the spots are 2-d interference of x-ray wavelets reflecting off successive atomic planes and derived a simple eponymous equation, the Bragg equation d*sin(theta) = n*lamda. 1913 onward the Braggs dominated the crystallography. Max Laue was awarded the physics Nobel in 1914 and the Braggs shared the same in 1915. Starting with Rontgen's first ever prize in 1901, the importance of x-ray techniques is evident from the four out of a total 16 physics Nobels between 1901-1917. We will outline the historical back ground and importance of x-ray diffraction giving rise to techniques that even in 2013, remain work horses in laboratories all over the globe.

  17. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-07-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scattering. The self-seeding scheme with the wake monochromator is extremely compact, and takes almost no cost and time to be implemented. The upgrade proposed in this paper could take place during the commissioning stage of the European XFEL, opening a vast new range of applications from the very beginning of operations.We present feasibility study and examplifications for the SASE2 line of the European XFEL. (orig.)

  18. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  19. X-Ray Emission from an Asymmetric Blast Wave and a Massive White Dwarf in the Gamma Ray Emitting Nova V407 CYG

    Science.gov (United States)

    Nelson, Thomas; Donato, Davide; Mukai, Koji; Sokoloski, Jennifer; Chomiuk, Laura

    2012-01-01

    Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turn off time of this emission component, in addition to the observed breaks in the optical and UV lightcurves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV-ray evolution, and propose that the gamma ray turn-off is due to the stalling of the forward shock as the ejecta reach the red giant surface.

  20. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  1. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    International Nuclear Information System (INIS)

    Pintore, F.; Mereghetti, S.; Zampieri, L.; Stella, L.; Israel, G. L.; Wolter, A.

    2017-01-01

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M ⊙ black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  2. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pintore, F.; Mereghetti, S. [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Zampieri, L. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Stella, L.; Israel, G. L. [INAF—Osservatorio astronomico di Roma, Via Frascati 44, I-00078, Monteporzio Catone (Italy); Wolter, A. [INAF, Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy)

    2017-02-10

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M {sub ⊙} black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  3. THE OFF-CENTERED SEYFERT-LIKE COMPACT EMISSION IN THE NUCLEAR REGION OF NGC 3621

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, R. B.; Steiner, J. E.; Silva, Patricia da, E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP CEP 05508-090 (Brazil)

    2016-02-01

    We analyze an optical data cube of the nuclear region of NGC 3621, taken with the integral field unit of the Gemini Multi-object Spectrograph. We found that the previously detected central line emission in this galaxy actually comes from a blob, located at a projected distance of 2.″14 ± 0.″08 (70.1 ± 2.6 pc) from the stellar nucleus. Only diffuse emission was detected in the rest of the field of view, with a deficit of emission at the position of the stellar nucleus. Diagnostic diagram analysis reveals that the off-centered emitting blob has a Seyfert 2 spectrum. We propose that the line-emitting blob may be a “fossil” emission-line region or a light “echo” from an active galactic nucleus (AGN), which was significantly brighter in the past. Our estimates indicate that the bolometric luminosity of the AGN must have decreased by a factor of ∼13–500 during the past ∼230 yr. A second scenario to explain the morphology of the line-emitting areas in the nuclear region of NGC 3621 involves no decrease of the AGN bolometric luminosity and establishes that the AGN is highly obscured toward the observer but not toward the line-emitting blob. The third scenario proposed here assumes that the off-centered line-emitting blob is a recoiling supermassive black hole, after the coalescence of two black holes. Finally, an additional hypothesis is that the central X-ray source is not an AGN, but an X-ray binary. This idea is consistent with all the scenarios we proposed.

  4. Hard X-ray synchrotron light source for industrial and materials research applications

    International Nuclear Information System (INIS)

    Lehr, H.; Ehrfeld, W.; Moser, H.O.; Schmidt, M.; Herminghaus, H.

    1992-01-01

    The requirements for industrial production or for an industry-related analytical environment is demonstrated for the case of the proposed hard X-ray synchrotron light source. The source is intended to provide radiation mainly for deep X-ray lithography as part of the LIGA-process in microfabrication, and for analytical and diagnostic purposes in materials research and microtechnology. It offers up to 48 bending magnet beamlines with a characteristic wavelength of 2 A. An electron energy of 2.5 GeV and normal conducting magnets will be used. A FODO lattice with a beam emittance of 3x10 -7 m rad and four dispersion-free straight sections to accommodate insertion devices, injection elements and RF structures has been designed. (R.P.) 5 refs.; 4 figs.; 1 tab

  5. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2004-01-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kα doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images

  6. X-rays Provide a New Way to Investigate Exploding Stars

    Science.gov (United States)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is

  7. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  8. Technological Challenges to X-Ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  9. X-ray and gamma radiography devices

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    When we are using this technique, we also must familiar with the device and instrument that used such as gamma projector, crawler, x-ray tubes and others. So this chapter discussed detailed on device used for radiography work. For the x-ray and gamma, their characteristics are same but the source to produce is a big different. X-ray produced from the machine meanwhile, gamma produce from the source such as Co-60 and IR-192. Both are electromagnetic waves. So, the reader can have some knowledge on what is x-ray tube, discrete x-ray and characteristic x-ray, how the machine works and how to control a machine, what is source for gamma emitter, how to handle the projector and lastly difference between x-ray and gamma. Of course this cannot be with the theory only, so detailed must be learned practically.

  10. DABAM: an open-source database of X-ray mirrors metrology

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, Manuel, E-mail: srio@esrf.eu [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Bianchi, Davide [AC2T Research GmbH, Viktro-Kaplan-Strasse 2-C, 2700 Wiener Neustadt (Austria); Cocco, Daniele [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Glass, Mark [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Idir, Mourad [NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Metz, Jim [InSync Inc., 2511C Broadbent Parkway, Albuquerque, NM 87107 (United States); Raimondi, Lorenzo; Rebuffi, Luca [Elettra-Sincrotrone Trieste SCpA, Basovizza (TS) (Italy); Reininger, Ruben; Shi, Xianbo [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Siewert, Frank [BESSY II, Helmholtz Zentrum Berlin, Institute for Nanometre Optics and Technology, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Spielmann-Jaeggi, Sibylle [Swiss Light Source at Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Takacs, Peter [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tomasset, Muriel [Synchrotron Soleil (France); Tonnessen, Tom [InSync Inc., 2511C Broadbent Parkway, Albuquerque, NM 87107 (United States); Vivo, Amparo [ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Yashchuk, Valeriy [Advanced Light Source, Lawrence Berkeley National Laboratory, MS 15-R0317, 1 Cyclotron Road, Berkeley, CA 94720-8199 (United States)

    2016-04-20

    DABAM, an open-source database of X-ray mirrors metrology to be used with ray-tracing and wave-propagation codes for simulating the effect of the surface errors on the performance of a synchrotron radiation beamline. An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  11. Source assemblage types for cratonic diamonds from X-ray synchrotron diffraction

    Science.gov (United States)

    Nestola, F.; Alvaro, M.; Casati, M. N.; Wilhelm, H.; Kleppe, A. K.; Jephcoat, A. P.; Domeneghetti, M. C.; Harris, J. W.

    2016-11-01

    Three single crystals of clinopyroxene trapped within three different gem-quality diamonds from the Udachnaya kimberlite (Siberia, Russia) were analysed in situ by single-crystal synchrotron X-ray diffraction in order to obtain information on their chemical composition and infer source assemblage type. A non-destructive approach was used with high-energy (≈ 60 keV; λ ≈ 0.206 Å) at I15, the extreme-conditions beamline at Diamond Light Source. A dedicated protocol was used to center the mineral inclusions located deep inside the diamonds in the X-ray beam. Our results reveal that two of the inclusions can be associated with peridotitic paragenesis whereas the third is eclogitic. This study also demonstrates that this non-destructive experimental approach is extremely efficient in evaluating the origin of minerals trapped in their diamond hosts.

  12. Impact of ultraluminous X-ray sources on photoabsorption in the first galaxies

    Science.gov (United States)

    Sazonov, S.; Khabibullin, I.

    2018-05-01

    In the local Universe, integrated X-ray emission from high-mass X-ray binaries (HMXBs) is dominated by the brightest ultraluminous X-ray sources (ULXs) with luminosity ≳1040 erg s-1. Such rare objects probably also dominated the production of X-rays in the early Universe. We demonstrate that a ULX with LX ˜ 1040-1041 erg s-1 (isotropic-equivalent luminosity in the 0.1-10 keV energy band) shining for ˜105 yr (the expected duration of a supercritically accreting phase in HMXBs) can significantly ionize the ISM in its host dwarf galaxy of total mass M ˜ 107-108 M⊙ and thereby reduce its opacity to soft X-rays. As a result, the fraction of the soft X-ray (below 1 keV) radiation from the ULX escaping into the intergalactic medium (IGM) can increase from ˜20-50 per cent to ˜30-80 per cent over its lifetime. This implies that HMXBs can induce a stronger heating of the IGM at z ≳ 10 compared to estimates neglecting the ULX feedback on the ISM. However, larger galaxies with M ≳ 3 × 108 M⊙ could not be significantly ionized even by the brightest ULXs in the early Universe. Since such galaxies probably started to dominate the global star formation rate at z ≲ 10, the overall escape fraction of soft X-rays from the HMXB population probably remained low, ≲30 per cent, at these epochs.

  13. Pu abundances, concentrations, and isotopics by x- and gamma-ray spectrometry assay techniques

    International Nuclear Information System (INIS)

    Camp, D.C.; Gunnink, R.; Ruhter, W.D.; Prindle, A.L.; Gomes, R.J.

    1986-01-01

    Two x- and gamma-ray systems were recently installed at-line in gloveboxes and will measure Pu solution concentrations from 5 to 105 g/L. These NDA technique, developed and refined over the past decade, are now used domestically and internationally for nuclear material process monitoring and accountability needs. In off- and at-line installations, they can measure solution concentrations to 0.2%. The K-XRFA systems use a transmission source to correct for solution density. The gamma-ray systems use peaks from 59- to 208-keV to determine solution concentrations and relative isotopics. A Pu check source monitors system stability. These two NDA techniques can be combined to form a new, NDA measurement methodology. With the instrument located outside of a glovebox, both relative Pu isotopics and absolute Pu abundances of a sample located inside a glovebox can be measured. The new technique works with either single or dual source excitation; the former for a detector 6 to 20 cm away with no geometric corrections needed; the latter requires geometric corrections or source movement if the sample cannot be measured at the calibration distance. 4 refs., 7 figs., 2 tabs

  14. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  15. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  16. X-ray clusters of galaxies

    International Nuclear Information System (INIS)

    McKee, J.D.

    1980-01-01

    This work is in three chapters, of which the first is an introduction to clusters of galaxies. The second chapter describes the HEAO A-2 Survey of Abell Clusters. The 225 clusters of galaxies listed in Abell's (1958) catalog which are of distance class four or less, were surveyed for 2 to 10 keV x-ray emission. Thirty-two identifications of x-ray sources with the clusters were made, fluxes and error boxes were determined for these sources; twelve of the identifications are new. The x-ray luminosity function has been derived and analytical fits have been made, the best fit is f(L) = 26.9 x 10 -8 exp( - L 44 /1.7) per Mpc per 10 44 erg s -1 per 2 to 10 keV band pass. The relationship between x-ray luminosity, Bautz-Morgan type, Rood-Sastry type, and richness has also been examined. The contribution of clusters to the x-ray background has been calculated from the luminosity function and has been found to be 3.5%, and with 90% certainty, less than 8% in the 2 to 10 keV band pass, assuming that clusters were not brighter in the past than they are at present. If they were bright enough in the past to account for the x-ray background, the evolution must have scaled more rapidly than (1 + z) 7 if clusters formed at z = 3, or (1 + z) 5 if clusters formed at z = 10. Chapter Three examines x-ray emission from poor clusters of galaxies. Burns and Owens' (1979) sample of 25 4C radio sources which coincide with Zwicky clusters of galaxies has been searched for x-ray emission in the HEAO A-2 data base. X-ray emission was detected from five sources at the 3sigma level, two exceeded 5 sigma. The search for x-ray emission was prompted by the knowledge of the existence of distorted radio sources in the clusters. The distortion implies the presence of a relatively dense intracluster medium which is expected to produce thermal bremsstrahlung x-ray emission

  17. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  18. Preferred orientation determination using line source x-ray diffraction

    International Nuclear Information System (INIS)

    Kimmel, G.; Shmarjahu, D.

    1977-10-01

    A texture goniometer has been attached to a diffractometer connected to a line-focus x-ray source. Reasonable results are obtained for the texture of rolled sheets and the test procedure is given. To illustrate the test procedure, the determination of preferred orientation in cold-rolled copper is described, as compared with random powder of sintered copper. Improvements of the measurements are proposed

  19. X-ray fluorescence in Member States: Cuba. Activities in Centre for Technological Applications and Nuclear Development (CEADEN)[X-ray Fluorescence in the IAEA and its Member States

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Alvarez, Roman [Centre for Technological Applications and Nuclear Development, CEADEN, Havana (Cuba)

    2007-08-15

    The CEADEN Laboratory of Analytical Chemistry has a two-fold mission: providing analytical services to the industry, health care and environmental control institutions, and carrying out research projects aimed to introduce the use of nuclear and related analytical techniques in different type of investigations. The laboratory works on a self-sustained financial basis and has held accreditation by the Cuban QA/QC authority according to the ISO regulations since 1992. In 2004 the Laboratory upgraded its Quality Management System to fulfil the requirements of the ISO 17025 standard. XRF constitutes one of the more used analytical techniques, and the analytical work is carried out following validated analytical instructions. The laboratory applies three different XRF spectrometers, allowing the applications of XRF technique to the study of samples of diverse nature: A spectrometer based on {sup 241}Am and {sup 109}Cd annular radioisotope excitation sources is employed for the analysis of metal alloys and raw materials, thus allowing determination of minor and major constituents in a prompt way. A TXRF spectrometer using a cut-off reflector to modify the excitation spectrum is applied to the analysis of metals in liquid samples and for the identification of pigments in minute samples of paintings. A third spectrometer is based on the principle of polarized excitation using X-ray tube and secondary targets (EDPXRF). By choosing suitable secondary targets the excitation energy can be selected as close as possible to the absorption edge of the elements of interest, thus improving the efficiency of X-ray production. Whilst the flux intensity of the characteristic radiation of the secondary target element is only two orders of magnitude lower than that of the direct X-ray tube anode emission, the intensity of the Bremstrahlung radiation reaching the sample decreases by a factor of about thousand. The latter allows to reduce the detected continuum background and to improve

  20. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    International Nuclear Information System (INIS)

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-01-01

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V ∼ 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age ∼ sun . The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II λ4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be ∼> 10 M sun , even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, ∼> 25 M sun , with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  1. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)

    2016-08-15

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  2. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    International Nuclear Information System (INIS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-01-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm. - Highlights: • We investigated a small plasma focus as pulsed x-ray source for radiography applications. • The image quality was studied by several parameters such as image contrast, LSF and MTF. • The x-ray source focal spot was obtained to be ∼0.6 mm using the penumbra imaging method. • The x-ray dose measurement showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. • The profiles of LSF and MTF showed that the cut-off frequency is about 1.5 cycles/mm

  3. MIT modular x-ray source systems for the study of plasma diagnostics

    Science.gov (United States)

    Coleman, J. W.; Wenzel, K. W.; Petrasso, R. D.; Lo, D. H.; Li, C. K.; Lierzer, J. R.; Wei, T.

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an e-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded e-gun of the RACEHORSE system gives a 0.5-1.0-cm pulsable spot on target. The nongridded e-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design details and some RACEHORSE results are presented.

  4. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  5. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    International Nuclear Information System (INIS)

    Mihucz, Victor G.; Moricz, Agnes M.; Kroepfl, Krisztina; Szikora, Szilvia; Tatar, Eniko; Parra, Lue Meru Marco; Zaray, Gyula

    2006-01-01

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods

  6. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); Moricz, Agnes M. [L. Eoetvoes University, Department of Chemical Technology and Environmental Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Kroepfl, Krisztina [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Szikora, Szilvia [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Parra, Lue Meru Marco [Universidad Centro-occidental Lisandro Alvarado, Decanato de Agronomia, Departamento de Quimica y Suelos Unidad de Analisis Instrumental, Apartado Postal 4076, Cabudare 3023 (Venezuela); Zaray, Gyula [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary) and Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary) and L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary)]. E-mail: zaray@ludens.elte.hu

    2006-11-15

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods.

  7. Determining the nature of faint X-ray sources from the ASCA Galactic center survey

    Science.gov (United States)

    Lutovinov, A. A.; Revnivtsev, M. G.; Karasev, D. I.; Shimansky, V. V.; Burenin, R. A.; Bikmaev, I. F.; Vorob'ev, V. S.; Tsygankov, S. S.; Pavlinsky, M. N.

    2015-05-01

    We present the results of the the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AX J173548-3207, AX J173628-3141, AX J1739.5-2910, AX J1740.4-2856, AX J1740.5-2937, and AX J1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AX J173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AX J1739.5-2910, AX J1740.5-2937, AX J1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AX J1740.4-2856) is an M dwarf, and another one (AX J173548-3207) most likely a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band (0.5-10 keV) have been estimated; analysis of deep INTEGRAL Galactic center observations has not revealed a statistically significant flux at energies >20 keV from any of them.

  8. Collective effective dose in Europe from x-ray and nuclear medicine procedures

    International Nuclear Information System (INIS)

    Bly, R.; Jaervinen, H.; Jahnen, A.; Olerud, H.; Vassileva, J.; Vogiatzi, S.

    2015-01-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547 500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605 000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30 700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31 100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput. (authors)

  9. Development of contamination-free x-ray optics for next-generation light sources

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Haruhiko, E-mail: hohashi@spring8.or.jp; Senba, Yasunori; Yumoto, Hirokatsu; Koyama, Takahisa; Miura, Takanori; Kishimoto, Hikaru [JASRI / SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 JAPAN (Japan)

    2016-07-27

    We studied typical forms of contamination on X-ray mirrors that cause degradation of beam quality, investigated techniques to remove the contaminants, and propose methods to eliminate the sources of the contamination. The total amount of carbon-containing substances on various materials in the vicinity of a mirror was measured by thermal desorption-gas chromatography/mass spectrometry and thermal desorption spectroscopy. It was found that cleanliness and ultra-high vacuum techniques are required to produce the contamination-free surfaces that are essential for the propagation of high-quality X-ray beams. The reduction of carbonaceous residue adsorbed on the surfaces, and absorbed into the bulk, of the materials in the vicinity of the mirrors is a key step toward achieving contamination-free X-ray optics.

  10. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Lund, Niels; Budtz-Jørgensen, Carl; Westergaard, Niels Jørgen Stenfeldt

    1999-01-01

    and identification of gamma ray sources as well as in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture X-ray telescope consisting of two identical detectors. Each detector has a sensitive area of 500 cm(2), and views the sky (6.6 deg FOV, FWHM) through...

  11. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    Science.gov (United States)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  12. Roadmap of ultrafast x-ray atomic and molecular physics

    Science.gov (United States)

    Young, Linda; Ueda, Kiyoshi; Gühr, Markus; Bucksbaum, Philip H.; Simon, Marc; Mukamel, Shaul; Rohringer, Nina; Prince, Kevin C.; Masciovecchio, Claudio; Meyer, Michael; Rudenko, Artem; Rolles, Daniel; Bostedt, Christoph; Fuchs, Matthias; Reis, David A.; Santra, Robin; Kapteyn, Henry; Murnane, Margaret; Ibrahim, Heide; Légaré, François; Vrakking, Marc; Isinger, Marcus; Kroon, David; Gisselbrecht, Mathieu; L'Huillier, Anne; Wörner, Hans Jakob; Leone, Stephen R.

    2018-02-01

    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ˜1 Ångstrom, and HHG provides unprecedented time resolution (˜50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ˜280 eV (44 Ångstroms) and the bond length in methane of ˜1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since

  13. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  14. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    Science.gov (United States)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  15. Speckle-based at-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Zhou, Tunhe; Kashyap, Yogesh; Sawhney, Kawal

    2017-08-01

    To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ metrology at the optics' operating wavelength (`at-wavelength' metrology) to optimize the performance of X-ray optics and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative examples of the applications of the speckle-based technique will also be given - including optimization of X-ray mirrors and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron beamlines.

  16. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  17. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  18. Dependence of X-Ray Burst Models on Nuclear Masses

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, H.; Ong, W.-J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2017-08-01

    X-ray burst model predictions of light curves and the final composition of the nuclear ashes are affected by uncertain nuclear masses. However, not all of these masses are determined experimentally with sufficient accuracy. Here we identify the remaining nuclear mass uncertainties in X-ray burst models using a one-zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated—a typical mixed H/He burst with a limited rapid proton capture process (rp-process) and an extreme mixed H/He burst with an extended rp-process. When allowing for a 3 σ variation, only three remaining nuclear mass uncertainties affect the light-curve predictions of a typical H/He burst ({sup 27}P, {sup 61}Ga, and {sup 65}As), and only three additional masses affect the composition strongly ({sup 80}Zr, {sup 81}Zr, and {sup 82}Nb). A larger number of mass uncertainties remain to be addressed for the extreme H/He burst, with the most important being {sup 58}Zn, {sup 61}Ga, {sup 62}Ge, {sup 65}As, {sup 66}Se, {sup 78}Y, {sup 79}Y, {sup 79}Zr, {sup 80}Zr, {sup 81}Zr, {sup 82}Zr, {sup 82}Nb, {sup 83}Nb, {sup 86}Tc, {sup 91}Rh, {sup 95}Ag, {sup 98}Cd, {sup 99}In, {sup 100}In, and {sup 101}In. The smallest mass uncertainty that still impacts composition significantly when varied by 3 σ is {sup 85}Mo with 16 keV uncertainty. For one of the identified masses, {sup 27}P, we use the isobaric mass multiplet equation to improve the mass uncertainty, obtaining an atomic mass excess of −716(7) keV. The results provide a roadmap for future experiments at advanced rare isotope beam facilities, where all the identified nuclides are expected to be within reach for precision mass measurements.

  19. Rossi X-Ray Timing Explorer Observations of the First Transient Z Source XTE J1701-462: Shedding New Light on Mass Accretion in Luminous Neutron Star X-Ray Binaries

    Science.gov (United States)

    Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil

    2007-02-01

    We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.

  20. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.