WorldWideScience

Sample records for odd-mass xenon isotopes

  1. The asymmetric rotator model applied to odd-mass iridium isotopes

    Piepenbring, R.

    1980-04-01

    The method of inversion of the eigenvalue problem previously developed for nuclei with axial symmetry is extended to asymmetric equilibrium shapes. This new approach of the asymmetric rotator model is applied to the odd-mass iridium isotopes. A satisfactory and coherent description of the observed energy spectra is obtained, especially for the lighter isotopes

  2. Theoretical study of band structure of odd-mass {sup 115,117}I isotopes

    Singh, Dhanvir, E-mail: singh1472phy@gmail.com; Kumar, Amit, E-mail: akbcw2@gmail.com; Sharma, Chetan, E-mail: chetan24101985@gmail.com [Research Scholar, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India); Singh, Suram, E-mail: suramsingh@gmail.com [Assistant Professor, Department of Physics, Govt. Degree College, Kathua-184101 (India); Bharti, Arun, E-mail: arunbharti-2003@yahoo.co.in [Professor, Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)

    2016-05-06

    By using the microscopic approach of Projected Shell Model (PSM), negative-parity band structures of odd mass neutron-rich {sup 115,117}I nuclei have been studied with the deformed single-particle states generated by the standard Nilsson potential. For these isotopes, the band structures have been analyzed in terms of quasi-particles configurations. The phenomenon of back bending in moment of inertia is also studied in the present work.

  3. A description of odd mass Xe and Te isotopes in the Interacting Boson–Fermion Model

    Abu-Musleh, S. [National Center of Research, Gaza, Palestine (Country Unknown); Phys. Dep., Faculty of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); Abu-Zeid, H.M. [Phys. Dep., Faculty of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); Scholten, O. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA, Groningen (Netherlands)

    2014-07-15

    Recent interest in spectroscopic factors for single-neutron transfer in low-spin states of the even–odd Xenon {sup 125,127,129.131}Xe and even–odd Tellurium, {sup 123,125,127,129,131}Te isotopes stimulated us to study these isotopes within the framework of the Interacting Boson–Fermion Model. The fermion that is coupled to the system of bosons is taken to be in the positive parity 3s{sub 1/2}, 2d{sub 3/2}, 2d{sub 5/2}, 1g{sub 7/2} and in the negative 1h{sub 11/2} single-particle orbits, the complete 50–82 major shell. The calculated energies of low-spin energy levels of the odd isotopes are found to agree well with the experimental data. Also, B(E2), B(M1) values and spectroscopic factors for single-neutron transfer are calculated and compared with experimental data.

  4. Microscopic structure of a new type of collective excitation in odd-mass Mo, Ru, I, Cs and La isotopes

    Kuriyama, Atsushi; Okamoto, Ryoji; Marumori, Toshio; Matsuyanagi, Kenichi.

    1975-01-01

    With the aid of microscopic theory of collective excitations in spherical odd-mass nuclei proposed by Kuriyama, Marumori and Matsuyanagi, structures of low-lying collective 5/2 + states in odd-mass I, Cs and La isotopes and of collective 3/2 + states in odd-mass Mo and Ru isotopes are investigated. These collective 5/2 + and 3/2 + states, which are hard to understand within the framework of the conventional quasi-particle-phonon-coupling theory, are identified as a new kind of fermion-type collective excitation mode. The change in microscopic structure of these states depending on the mass number is also investigated in relation with the shell structure. (auth.)

  5. The odd-proton effects on the potential energy surfaces of odd mass Tl, Au, Ir and Re isotopes

    De Wieclawik, W; Larsson, S E; Leander, G; Vieu, C; Dionisio, J S

    1976-01-01

    The total potential energy surfaces of thallium, gold, iridium and rhenium odd mass isotopes are calculated microscopically as functions of the quadrupole deformation, epsilon /sub 2/, when the odd protons occupy definite orbitals. The nuclear shapes and the static equilibrium deformations of these nuclei are deduced from the results of these calculations for the proton orbitals nearest to the Fermi level. The influence of the hexadecapole deformation, epsilon /sub 4/, on these results is investigated too. Finally, a few experimental data available for these odd mass nuclei are correlated to the corresponding theoretical results. (16 refs).

  6. Coulomb Excitation of Odd-Mass and Odd-Odd Cu Isotopes using REX-ISOLDE and Miniball

    Lauer, M; Iwanicki, J S

    2002-01-01

    We propose to study the properties of the odd-mass and the odd-odd neutron-rich Cu nuclei applying the Coulomb excitation technique and using the REX-ISOLDE facility coupled to the Miniball array. The results from the Coulex experiments accomplished at REX-ISOLDE after its upgrade to 3 MeV/u during the last year have shown the power of this method and its importance in order to obtain information on the collective properties of even-even nuclei. Performing an experiment on the odd-mass and on the odd-odd neutron-rich Cu isotopes in the vicinity of N=40 should allow us to determine and interpret the effective proton and neutron charges in the region and to unravel the lowest proton-neutron multiplets in $^{68,70}$Cu. This experiment can take the advantage of the unique opportunity to accelerate isomerically separated beams using the RILIS ion source at ISOLDE.

  7. An experimental study of odd mass promethium isotopes using proton stripping and pickup reactions

    Straume, O.

    1979-11-01

    Odd Pm isotopes have been studied by one proton pick-up and stripping reactions. Spin assignment and spectroscopic factors have been obtained for a number of energy levels. In the stripping reactions, the relative cross-sections have been measured with an unusually high precision by the use of a target of natural neodymium. The spectroscopic strengths have been extracted using standard distorted wave methods. The nuclear structures of these promethium isotopes fall into three categories. The spherical approach seems valid for 143 Pm and 145 Pm and the deformed regime covers 151 Pm and 153 Pm, while 147 Pm and 149 Pm remain as transitional nuclei. (Auth.)

  8. Nuclear-moment studies in the odd-mass In isotopes up to N=82 using the Tilted Foils technique

    We propose to study the magnetic moments of the neutron-rich odd-even In isotopes up to N=82 using the Tilted Foils technique and the recently installed $\\beta$-NMR setup at REX -ISOLDE. With only one proton hole in Z=50 and a neutron number approaching N=82, the indium isotopes should be a very good test ground for the extreme single-particle approximation and could provide essential data for tuning the nuclear interaction in the vicinity of the doubly-magic $^{132}$ Sn. Moments of single-particle states adjacent to closed shells are also crucial to determine the corrections to the M1 operator from core polarization and meson exchange effects. In addition to the 9/2$^{+}$, presumed to be of pure single proton hole configuration, the ½$^{-}$ isomeric states should shed light on a recent hypothesis of low-energy vibration/collectivity in the region. The detailed study of the Tilted Foils technique at higher masses is of crucial importance for its application for further g-factor studies and for the production...

  9. A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework

    Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-10-15

    The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)

  10. High-spin level structure and Ground-state phase transition in the odd-mass 103-109Rh isotopes in the framework of exactly solvable sdg interacting boson-fermion model

    Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.

    2018-03-01

    In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.

  11. Memory Effects Study of Measuring Radioactive Xenon Isotopes With β-γ Coincidence Method

    Jia Huaimao; Wang Shilian; Wang Jun; Li Qi; Zhao Yungang; Fan Yuanqing; Zhang Xinjun

    2010-01-01

    The β-γ coincidence technique is a kind of the key important method to detect radioactive xenon isotopes for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). This paper describes noble gases memory effects of β-γ coincidence detector. Xenon memory effects were measured and its influence on detector's minimum detectable activity (MDA) was evaluated. The methods of reducing xenon memory effects were studied. In conclusion, aluminium coated plastic scintillator and YAP scintillator can remarkably decrease xenon memory effects. (authors)

  12. Fingerprint states of odd mass 115I nuclei in the framework of particle rotor model

    Goswami, R.; Saha Sarkar, M.; Sen, S.

    2008-01-01

    Extensive theoretical as well as experimental investigation of the nuclear structure of odd-mass iodine nuclei have revealed systematic presence of strongly coupled bands in all neutron deficient as well as neutron rich odd-mass iodine isotopes. The present work shows that the positive as well as the negative parity are fairly well reproduced in the framework of particle rotor model

  13. Isotopic composition of primary xenon and the fission of Pu-244

    Levskii, L K

    1983-05-01

    The hypothesis that the origin of xenon on earth is due to the fission of uranium and/or transuranium elements is examined. The isotopic composition of primary xenon on earth is calculated using a model (Levskii, 1980) of the isotopic composition of rare gases which is based on the hypothesis of the heterogeneity of the isotopic composition of the elements of the solar system. The isotopic composition of fission-produced xenon in the atmosphere and solid earth is determined to correspond to the abundance of xenon isotopes as a result of the spontaneous fission of Pu-244 (half-life of 8.2 x 10 to the 7th years). The amount of fission-produced xenon in the atmosphere is shown to amount to about 30 percent (Xe-136). Under certain conditions, the degree of the degassing of the solid earth for xenon is 25 percent, which corresponds to a ratio of Kr-84/Xe-130 45 for the earth as a whole.

  14. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  15. Electric dipole moment searches using the isotope 129-xenon

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  16. p-process xenon isotope anomalies in stardust grains from meteorites

    Ott, U.

    2013-01-01

    Full text: In measurements on 'bulk' samples of meteorites isotopic variations due to the p-process usually have taken a backseat compared to such in s- or r-isotopes, and, in the best case, can be qualitatively attributed to the p-process, with little to no inferences concerning detailed isotopic yields. The situation is different for grains of stardust that survived in primitive meteorites. In fact, isotopically strange xenon was the key feature that led to the first identification of a stardust mineral, nanodiamonds containing xenon with overabundances of up to a factor of ∼2 in both the r-only (≡H-Xe) and p-only (≡L-Xe) isotopes. Relative excesses of the two r-only isotopes ( 134 Xe, 136 Xe) as well as of the two p-only isotopes ( 124 Xe, 126 Xe) are not equal, hence the processes responsible for HL-xenon must differ from the 'average' r- and p-processes as reflected in solar system abundances. However, while considerable effort has been put into explaining H-Xe, there has been little work on the p-side (L-Xe). Relying on scarce nuclear data, Heymann and Dziczkaniec have studied photodisintegration reactions of Xe and Ba seeds in intermediate zones of supernovae and found that the relative production of the p-Xe isotopes depends sensitively on the yield of the (γ, α) reaction on 128 Ba. Another suggestion - applicable to both the r- and p-anomalies in diamond xenon - is that of a 'rapid separation' between stable Xe isotopes and radioactive precursors produced in the 'standard' p- (as well as r-) process. For the p-isotopes to work, this would require the bulk (87%) of 126 Xe to be produced via the 126 Ba precursor, with a half live of ∼100 minutes, in order to explain the high 124 Xe/ 126 Xe. In contrast to diamond xenon, xenon in silicon carbide contains - besides the component from the s-process in their parent AGB stars - 'almost normal' Xe, with indications for 124 Xe/ 126 Xe being few (∼8)% lower than in solar Xe.

  17. When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout

    Cassata, W.S.; Prussin, S.G.; Knight, K.B.; Hutcheon, I.D.; Isselhardt, B.H.; Renne, P.R.

    2014-01-01

    Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms. - Highlights: • Radioactive fallout generated by nuclear explosions contains fissiogenic xenon isotopes. • Xe isotopes provide constraints on timescales of fallout formation and the speciation of fission products in the fireball. • Our data indicate that macroscopic fallout forms rapidly (<3 s). • Chemical fractionation trends suggest that fission products may not have been fully oxidized prior to incorporation

  18. Nuclear quantum shape-phase transitions in odd-mass systems

    Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.

    2018-03-01

    Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.

  19. Experimental study of xenon isotopes production by gas centrifuge

    Zhou Mingsheng; Liang Xiongwen; Zhang Yonggang; Dong Jinping

    2006-01-01

    The gas centrifuge technology is studied for the separation of Xe isotopes. The nature Xe is chosen as processing gas. A four-state cascade is designed to separate 124 Xe to a concentration of being greater than 65% in three separation runs. 124 Xe can be enriched to a concentration 99% in more separation runs using a cascade of more gas centrifuges. (authors)

  20. Intermediate coupling vibrational descriptions of odd mass gold isotopes

    Vieu, C; Paar, V

    1976-01-01

    The theoretical analysis of /sup 193-195/Au levels is semi qualitatively performed in the frame of the intermediate coupling vibrational models of Kisslinger-Sorensen and Alaga. From the comparison between the experimental data and the corresponding predictions of the two models, conclusions are drawn on the influence of the clusters and broken pairs.

  1. Neon and xenon isotopes in MORB: Implications for the earth-atmosphere evolution

    Marty, B.

    1989-01-01

    The isotopic composition of neon and xenon measured in MORB glasses confirm significant deviations from atmospheric values. There are 1. 21 Ne excesses with are attributed to nucleogenic reactions in the mantle; 2. 20 Ne/ 22 Ne ratios higher than the air ratio interpreted as an evidence for the occurrence of solar-type Ne at depth; 3. 129 Xe and 131-136 Xe excesses, attributed to both extinct ( 129 I and 244 Pu) and present ( 238 U) radioactivities. Ne and Xe isotopic signatures in the mantle can hardly be explained in the framework of classical models for the atmospheric evolution (which postulate a mantle origin for atmospheric gases) and appeal for at least two sources of gases. Ne isotopic differences between air and MORB appear too large to be accounted for by any reasonable fractionation process in the mantle. They imply either fractionation of neon during hydrodynamic escape of a primary atmosphere or different degrees of mixing between primordial Ne components, which, in turn imply isolation of the surface reservoir (air) and deep reservoir (mantle) from the accretional period (except for mantle outgassing through volcanism, the contribution of which is 41% at best for 20 Ne). 129 I- 129 Xe, 244 Pu- 238 U- 136 Xe systematics for atmospheric and MORB-type xenon suggest that either atmospheric gases derived from a source whose formation was delayed (≥ 17 Ma) with respect to the mean accretion time of the mantle source and/or atmospheric gases and MORB-type gases derived from chemically distinct sources. These features are consistent with heterogeneous accretion models for the Earth. Volatile degassing was probably contemporaneous to accretional events, following impact degassing, and might have been most efficient during the late stages of Earth formation. (orig.)

  2. Electric quadrupole transitions for some isotopes of Xenon; considering rigidity for γ = 30{sup ∘} collective parameter

    Sobhani, Hadi, E-mail: hadisobhani8637@gmail.com; Hassanabadi, Hassan

    2017-01-15

    In this article, Davydov–Chaban Hamiltonian is investigated in presence of Davidson potential. Using analytical approach, wave function corresponding of considered system has been derived. Then energy spectra and B(E2) transition rate have been calculated numerically in detail as well. The results are compared with experimental data for three isotope of Xenon.

  3. Collective properties of the odd-mass I nuclei: 123,125,127I

    Shroy, R. E.; Gordon, D. M.; Gai, M.; Fossan, D. B.; Gaigalas, A. K.

    1982-09-01

    The high-spin states of 123,125,127I have been investigated via the ASn(6Li, 3n)A+3I reactions to study the collective properties of the odd-mass I isotopes. In-beam measurements of γ-ray excitations, γ-γ coincidences, γ-ray angular distributions, and pulsed beam-γ timing were performed with Ge detectors to determine level energies, decay schemes, γ-ray multipolarities, Jπ assignments, and lifetime information. A similar study of the 117,119,121I isotopes is reported in the following paper. Two collective features have been identified in these odd-mass I nuclei. Systematic ΔJ=1 bands built on low-lying 92+ proton-hole (4p-1h) states were observed. The 92+ bandheads, that involve the excitation of a 1g92 proton across the Z=50 shell, drop to very low energies near the middle of the neutron shell. The properties of the 92+ proton-hole states for all of the odd-mass I isotopes are presented and related to the systematic information for the proton-hole states in the entire Z>50 transition region. Systematic ΔJ=2 bands built on 112- (1h112 quasiproton) states, on 72+ (1g72 quasiproton) states, and on 52+ (2d52 quasiproton) states were also observed. The ΔJ=2 band spacings generally follow the spacings of the Te-core ground-state bands with the exception of the 112- ΔJ=2 bands, for which the spacings decrease significantly relative to those for the Te cores as A decreases. These systematic properties are discussed in terms of several theoretical approaches to the onset of collectivity in transitional nuclei. An isomer at 2660 keV in 123I was observed to have a mean lifetime τ=38+/-3 ns. NUCLEAR REACTIONS 120-124Sn(6Li, 3n)123-127I measured γ-γ coincidences, γ(E, θ, t) deduced level schemes in odd-mass 123-127I, γ multipolarities, Jπ, T12. Enriched targets, Ge(Li) detectors.

  4. Potential impact of releases from a new Molybdenum-99 production facility on regional measurements of airborne xenon isotopes

    Bowyer, Ted W.; Eslinger, Paul W.; Cameron, Ian M.; Friese, Judah I.; Hayes, James C.; Metz, Lori A.; Miley, Harry S.

    2014-03-01

    The monitoring of the radioactive xenon isotopes 131mXe, 133Xe, 133mXe, and 135Xe is important for the detection of nuclear explosions. While backgrounds of the xenon isotopes are short-lived, they are constantly replenished from activities dominated by the fission-based production of 99Mo used for medical procedures. One of the most critical locations on earth for the monitoring of nuclear explosions is the Korean peninsula, where the Democratic Republic of North Korea (DPRK) has announced that it had conducted three nuclear tests between 2009 and 2013. This paper explores the backgrounds that would be caused by the medium to large scale production of 99Mo in the region of the Korean peninsula.

  5. Early and long-term mantle processing rates derived from xenon isotopes

    Mukhopadhyay, S.; Parai, R.; Tucker, J.; Middleton, J. L.; Langmuir, C. H.

    2015-12-01

    Noble gases, particularly xenon (Xe), in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. The combination of extinct and extant radioactive species in the I-Pu-U-Xe systems shed light on the degassing history of the early Earth throughout accretion, as well as the long-term degassing of the Earth's interior in association with plate tectonics. The ubiquitous presence of shallow-level air contamination, however, frequently obscures the mantle Xe signal. In a majority of the samples, shallow air contamination dominates the Xe budget. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Thus, the extent of variability in mantle source Xe composition is not well-constrained. Here, we present new MORB Xe data and explore constraints placed on mantle processing rates by the Xe data. Ten step-crushes were obtained on a depleted popping glass that was sealed in ultrapure N2 after dredge retrieval from between the Kane-Atlantis Fracture Zone of the Mid Atlantic Ridge in May 2012. 9 steps yielded 129Xe/130Xe of 7.50-7.67 and one yielded 7.3. The bulk 129Xe/130Xe of the sample is 7.6, nearly identical to the estimated mantle source value of 7.7 for the sample. Hence, the sample is virtually free of shallow-level air contamination. Because sealing the sample in N2upon dredge retrieval largely eliminated air contamination, for many samples, contamination must be added after sample retrieval from the ocean bottom. Our new high-precision Xe isotopic measurements in upper mantle-derived samples provide improved constraints on the Xe isotopic composition of the mantle source. We developed a forward model of mantle volatile evolution to identify solutions that satisfy our Xe isotopic data. We find that accretion timescales of ~10±5 Myr are consistent with I-Pu-Xe constraints, and the last

  6. The physical and physiological aspects of xenon isotopes in nuclear medical applicants

    Bolmsjoe, M.

    1981-11-01

    A method for trapping radioactive xenon waste from nuclear medical departments has been investigated. Adsorption of xenon acivitaded charcoal was found to be an efficient trapping method. A large gain in capacity was found when the trap was refrigerated, and permitted a large number of patient investigations before break-through of xenon occurred. By heating charcoal traps to 250-350 degrees C, adsorbed xenon gas is freed and is thus made available for re-use. A technique for room-air monitoring of xenon-leakage from patient investigations is described, where the room-air is continously pumped through a small charcoal filter, mounted close to a detector. The low gammaenergy of Xe-133, 81 keV, introduces problems for in vivo measurements due to the small differences in the energies of the primary and Compton-scattered photons. Influence of scatter and of hemispheric cross-talk was studied for cerebral blood-flow measurements. It was shown that substantial artefacts are introduced in the calculation of regional gray matter flow. The applicability of the xenon-washout technique for liver blood-flow measurements in rat was investigated. (author)

  7. Terrestrial xenon isotope constraints on the early history of the earth

    Ozima, M.; Igarashi, G.; Podosek, F.A.

    1985-01-01

    Comparison between 129 I-radiogenic 129 Xe and 244 Pu-fissiogenic 136 Xe components in terrestrial xenon suggests that the Earth's inner region accreted a few tens of millions of years earlier than the outer region from which the atmosphere evolved. The results also indicate that there has been no substantial mixing of the two regions since the Earth's accretion. (author)

  8. Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

    Dilling, J.; Audi, G.; Beck, D.; Bollen, G.; Henry, S.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; Schwarz, S.; Sikler, G.; Szerypo, J.

    2002-01-01

    The masses of Xe isotopes with 124≥A≥114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm∼12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found

  9. The double isotope technique for in vivo determination of the tissue-to-blood partition coefficient for xenon in human subcutaneous adipose tissue--an evaluation

    Jelnes, Rolf; Astrup, A; Bülow, J

    1985-01-01

    the partition coefficient found by the double isotope technique, significantly lower values are obtained than if the in vitro determined coefficient is used. This difference is explained mainly by local dilution when injecting xenon subcutaneously. In short-term studies, utilization of the double isotope...... technique reduces the coefficient of variation on average flow determinations, thus an improvement in accuracy of local blood flow estimation can be obtained compared to the method in which an average partition coefficient is used. For long-term studies a partition coefficient of 7.5 ml g-1 seems valid.......Local subcutaneous 133xenon (133Xe) elimination was registered in the human forefoot in 34 patients. The tissue/blood partition coefficient for Xe was estimated individually by simultaneous registration of 133Xe and [131I]antipyrine ([131I]AP) washout from the same local depot. When measured...

  10. Yields and isomeric ratio of xenon and krypton isotopes from thermal neutron fission of 235U

    Hsu, S.S.; Lin, J.T.; Yang, C.M.; Yu, Y.W.

    1981-01-01

    The experimental cumulative yields of 85 Kr/sup m/, 87 Kr, 88 Kr, 133 Xe/sup g/, 135 Xe/sup m/, and 135 Xe/sup g/ and the independent isomeric yield of 133 Xe/sup m/ in the thermal neutron fission of 235 U have been measured by the gas chromatographic method. The independent yields of 133 Xe/sup g/, 135 Xe/sup m/, and 135 Xe/sup g/ were deduced with the aid of 133 I and 135 I data. The isomeric yield ratios of 133 Xe and 135 Xe have been computed and compared with theoretical values since they have the same high spin state J = 11/2 - and low spin ground state J = 3/2 + . The influence of the shell effect on the fission isomeric yield ratio is discussed. From the measured independent yield of Xe isotopes plus the reported data, the Xe-isotopic distribution curve has been constructed. The curve is compared with the isotopic distribution curves of Xe isotopes formed in 11.5 GeV proton interactions with 238 U and Cs isotopes formed in 24 GeV proton interactions with 238 U. Upon fitting the yield curves we find that only those products with N/Z> or =1.48 fit a curve typical of a binary fission process

  11. Microscopic description of fission in odd-mass uranium and plutonium nuclei with the Gogny energy density functional

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Universidad Politecnica de Madrid, Center for Computational Simulation, Boadilla del Monte (Spain)

    2017-12-15

    The parametrization D1M of the Gogny energy density functional is used to study fission in the odd-mass Uranium and Plutonium isotopes with A = 233,.., 249 within the framework of the Hartree-Fock-Bogoliubov (HFB) Equal Filling Approximation (EFA). Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, barrier heights and fission isomer excitation energies are given. Fission paths, collective masses and zero point rotational and vibrational quantum corrections are used to compute the systematic of the spontaneous fission half-lives t{sub SF}, the masses and charges of the fission fragments as well as their intrinsic shapes. Although there exits a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account fully variationally within the HFB-EFA blocking scheme, lead to larger spontaneous fission half-lives in odd-mass U and Pu nuclei as compared with the corresponding even-even neighbors. It is shown that modifications of a few percent in the strengths of the neutron and proton pairing fields can have a significant impact on the collective masses leading to uncertainties of several orders of magnitude in the predicted t{sub SF} values. Alpha-decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. (orig.)

  12. Dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei

    Kaneko, Kazunari; Takada, Kenjiro; Sakata, Fumihiko; Tazaki, Shigeru.

    1982-01-01

    Study of the dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei has been developed. One of the purposes of this paper is to predict that the new collective excited states may exist system-atically in odd-mass nuclei. Other purpose is to discuss a new collective band structure on the top of a unique-parity one-quasiparticle state. Through the numerical calculations, it has been clarified that the dynamical mutual interplay between the pairing and the quadrupole degrees of freedom played an important role in the odd-mass transitional nuclei to bring about the new type of collective states. The results of calculation were compared with the experimental data. (Kato, T.)

  13. Where is the Scissors Mode Strength in Odd-Mass Nuclei?

    Enders, J.; Huxel, N.; von Neumann-Cosel, P.; Richter, A.

    1997-01-01

    It is demonstrated by a fluctuation analysis based on the assumption of a Wigner distribution for the nuclear level spacings and of a Porter-Thomas distribution for the transition strengths that significant parts of the dipole strength excited in photon scattering experiments in heavy, deformed odd-mass nuclei are hidden in the background of the experimental spectra. With this additional strength, the heretofore claimed severe reduction of the B(M1) scissors mode strength in odd-mass nuclei compared to the one in neighboring even-even nuclei disappears. copyright 1997 The American Physical Society

  14. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

    Dilling, J; Beck, D; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G

    2004-01-01

    The masses of the noble-gas Xe isotopes with 114 $\\leq$ A $\\leq$ 123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the online mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of $m/\\Delta m$ of close to a million was chosen resulting in an accuracy of $\\delta m \\leq 13$ keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

  15. Isotopic composition of terrestrial atmospheric xenon and the chain reactions of fission

    Shukolyukov, Yu.A.; Meshick, A.P.

    1990-01-01

    From the comparison of terrestrial atmospheric Xe with the primordial Xe (solar, AVCC), a strange component with a fine structure at 132 Xe and 131 Xe have been found. It was shown that the isotopic composition of this component can be explained neither by mass fractionation of primordial Xe, nor by an admixture of fission products of known nuclei. An analogous Xe was extracted at a low temperature from substances of the natural nuclear reactor, fine-grain samples from Colorado type deposits, ordinary pitchblendes and samples from the epicenter of a A-bomb explosion. It was proved that the strange Xe is a result of different migration rates of β-radioactive Xe precursors which are fission fragments. It is quite possible that the strange component of atmospheric Xe originated as a result of global neutron-induced fission processes during early stages of geological history of the Earth. (orig.) [de

  16. The atmosphere of Mars - Detection of krypton and xenon

    Owen, T.; Biemann, K.; Biller, J. E.; Lafleur, A. L.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Krypton and xenon have been discovered in the Martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  17. Barium and xenon isotope yields in photopion reactions in cesium-133

    Sakamoto, K.; Hamajima, Y.; Soto, M.

    1989-09-01

    The radiochemical yield measurements are reported of barium isotopes from 133 Cs(γ, π - xn) 133-x Ba for x=0, 2, 4, 5, 6, 7 and 9 for bremsstrahlung maximum end-point energies (E 0 )=30∼1050 MeV and of 133 Xe from 133 Cs(γ, π + ) 133m,g Xe for E 0 =300∼1000 MeV. An emphasis was placed on Ba measurements around pion threshold and on runs for different target thickness to assess the interfering secondary particle-induced reactions. A clear evidence of the secondary reactions was found in a form of a shoulder of the yield curves in a range of E 0 π -, the Q value of 133 Cs(γ, π - xn) reaction, and used for the correction at E 0 π - with aids of the reported measurements of the photoprotons from 12 C and other complex nuclei and the cross sections of ( 133 Cs+p) reactions. The yields corrected for the secondaries, σ q (E 0 ), were unfolded into cross sections per photon of energy k, σ(k). The characteristic features of σ q (E 0 ) and/or σ(k) are then discussed in terms of E 0 - and k-dependence and product mass (A P =133-x), by comparing the present results with those currently obtained in our group. It was found that the present results of σ(k) are grossly reproduced by a cascade-evaporation calculation based on the PICA code by Gabriel and Alsmiller, only if the calculated ones are shifted in photon energy by k=30 MeV higher and the cutoff energy for neutron is chosen to be 1 MeV. (author)

  18. Description of odd-mass nuclei by multi-reference energy density functional methods

    Bally, B.

    2014-01-01

    In this work, we are interested in the treatment of odd-mass atomic nuclei in energy density functional (EDF) models. More precisely, the goal of this thesis is to develop and to apply to odd-mass nuclei, the theoretical extensions of the EDF method that are: first, the projection technique, and secondly the configuration mixing by the generator coordinate method (GCM). These two extensions are part of the so-called multi-reference energy density functional (MR-EDF) formalism and allow one to take into account, within an EDF context, the 'beyond-mean-field' correlations between the nucleons forming the nucleus. Until now, the MR-EDF formalism has been applied, in its fully-fledged version, only to the calculation of even-even nuclei. In this thesis, we want to demonstrate the applicability of such a model also for the description of odd-mass nuclei. In the first part of this thesis, we describe the theoretical formalism of the EDF models, giving particular attention to the treatment of symmetries within our approach. In the second part of the manuscript, we apply our model to the nucleus 25 Mg and investigate different aspects of the method (e.g. numerical accuracy, convergence of the configuration mixing, comparison to known experimental data). The results obtained in this work are encouraging and demonstrate the potential of our approach for theoretical nuclear structure calculations. (author)

  19. Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei

    Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Kuliev, Ali Akbar [Azerbaijan National Academy of Aviation, Baku (Azerbaijan)

    2017-01-15

    A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed {sup 229–233}Th and {sup 233–239}U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even {sup 228–232}Th and {sup 232–238}U nuclei. For {sup 235}U the summed M1 strength in the energy range 1.5–2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.

  20. E2 and M1 Transition Probabilities in Odd Mass Hg Nuclei

    Berg, V; Baecklin, A; Fogelberg, B; Malmskog, S G

    1969-10-15

    L- and M-subshell ratios have been measured for the 39.5 keV transition in {sup 193}Hg and the 37.1 and 16.2 keV transitions in {sup 195}Hg yielding 0.38 {+-} 0.12 , <0.02 and 0.08 {+-} 0.03 per cent E2, respectively. The half-lives of the 39.5 keV level in {sup 193}Hg and the 53.3 and 37.1 keV levels in {sup 195}Hg have been measured by the delayed coincidence method, yielding values of 0.63 {+-} 0.03, 0.72 {+-} 0.03 and <0.05 nsec respectively. A systematic compilation of reduced E2 and M1 transition probabilities in odd mass Pt, Hg and Pb nuclei is given and compared to theoretical predictions.

  1. Effects of ground state correlations on the structure of odd-mass spherical nuclei

    Mishev, S.; Voronov, V. V.

    2008-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the quasiparticle and phonon operators, used to describe them, are built of fermions and as a consequence they are not ideal bosons. The correct treatment of this problem requires calculation of the exact commutators between the quasiparticle and phonon operators and in this way to take into account the Pauli principle corrections. In addition to the correlations due to the quasiparticle interaction in the ground-state influence the single-particle fragmentation as well. In this article, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned above. As an illustration of our approach, calculations of the structure of the low-lying states in the odd-mass nuclei 131-137 Ba have been performed

  2. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    Okano, Masanori; Kuno, Takehiko; Shirouzu, Hidetomo; Yamada, Keiji; Sakai, Toshio; Takahashi, Ichiro; Charlton, William S.; Wells, Cyndi A.; Hemberger, Philip H.

    2006-12-01

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  3. Particle-number conservation in odd mass proton-rich nuclei in the isovector pairing case

    Fellah, M.; Allal, N.H.; Oudih, M.R.

    2015-01-01

    An expression of a wave function which describes odd–even systems in the isovector pairing case is proposed within the BCS approach. It is shown that it correctly generalizes the one used in the pairing between like-particles case. It is then projected on the good proton and neutron numbers using the Sharp-BCS (SBCS) method. The expressions of the expectation values of the particle-number operator and its square, as well as the energy, are deduced in both approaches. The formalism is applied to study the isovector pairing effect and the number projection one on the ground state energy of odd mass N ≈ Z nuclei using the single-particle energies of a deformed Woods–Saxon mean-field. It is shown that both effects on energy do not exceed 2%, however, the absolute deviations may reach several MeV. Moreover, the np pairing effect rapidly diminishes as a function of (N - Z). The deformation effect is also studied. It is shown that the np pairing effect, either before or after the projection, as well as the projection effect, when including or not the isovector pairing, depends upon the deformation. However, it seems that the predicted ground state deformation will remain the same in the four approaches. (author)

  4. Comparison of calculated and experimental values of the yields of xenon isotopes in reactions with high-energy protons

    Shukolyukov, A.Yu.; Katargin, N.V.; Baishev, I.S.

    1989-01-01

    Calculations of the cumulative yields of isotopes of Xe have been carried out on the basis of the semi-empirical formula of Silverberg and Tsao for Ba- and Dy-targets and bombarding proton energies in the range 100-1050 MeV. Results are compared with experimental data for the yields of Xe isotopes, and domains of applicability of the semi-empirical formula are determined

  5. Nuclear structure studies in the xenon and radon region and the discovery of a new radon isotope by Penning-trap mass spectrometry

    Neidherr, Dennis

    2010-01-01

    Nowadays high-precision mass measurements based on Penning traps allow a deep insight into the fundamental properties of nucleonic matter. To this end, the cyclotron frequency of an ion confined in a strong, homogeneous magnetic field B is determined. At the ISOLTRAP mass spectrometer at ISOLDE / CERN the masses of short-lived radioactive nuclei with half-lives down to several ten ms can be measured with an uncertainty in the order of 10$^{-8}$and below. ISOLTRAP consists of an RFQ cooler and buncher to cool and accumulate the ions coming from ISOLDE and a double Penning-trap system to first clean the ion samples and finally perform the mass measurements. Within this thesis the masses of neutron rich xenon and radon isotopes, namely $^{138-146}$Xe and $^{223-229}$Rn were determined, eleven of them for the first time. $^{229}$Rn was even discovered in this experiment and its half-life could be determined to roughly 12$^{+1.2}_{-1.3}$ s. Since the mass reflects all interactions inside the nucleus it is a unique...

  6. Xenon Fractionation and Archean Hydrogen Escape

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  7. Xenon-Xenon collision events in CMS

    Mc Cauley, Thomas

    2017-01-01

    One of the first-ever xenon-xenon collision events recorded by CMS during the LHC’s one-day-only heavy-ion run with xenon nuclei. The large number of tracks emerging from the centre of the detector show the many simultaneous nucleon-nucleon interactions that take place when two xenon nuclei, each with 54 protons and 75 neutrons, collide inside CMS.

  8. Estimation of Plutonium-240 Mass in Waste Tanks Using Ultra-Sensitive Detection of Radioactive Xenon Isotopes from Spontaneous Fission

    Bowyer, Theodore W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gesh, Christopher J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haas, Daniel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johns, Jesse M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lukins, Craig D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meacham, Joseph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Donaldo P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olsen, Khris B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prinke, Amanda M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reid, Bruce D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, Gary J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woods, Vincent T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-24

    This report details efforts to develop a technique which is able to detect and quantify the mass of 240Pu in waste storage tanks and other enclosed spaces. If the isotopic ratios of the plutonium contained in the enclosed space is also known, then this technique is capable of estimating the total mass of the plutonium without physical sample retrieval and radiochemical analysis of hazardous material. Results utilizing this technique are reported for a Hanford Site waste tank (TX-118) and a well-characterized plutonium sample in a laboratory environment.

  9. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  10. Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region

    Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

    1987-01-01

    The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O + states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs

  11. Study of some odd-mass nuclei with 51 neutrons or 51 protons

    Duffait, Roger.

    1976-01-01

    The level schemes of 93 Mo, 113 Sb, 115 Sb and 119 Sb nuclei were studied. The knowledge of the sup(93m+g)Tc decays was improved. The 2,0 min 113 Te isotope was produced and studied for the first time; two 115 Te isomers with neighbouring half-lives were found and ambiguities on the 115 Te nature cleared up. The sup(119m+g)Te decays were studied with the help of isotopically separated sources and the 119 Sb level scheme was revised. The 93 Mo and 119 Sb level lifetimes were studied using Doppler-shift attenuation method (DSAM) using (p,nγ) reactions at the Van de Graaff accelerator of the University of Lyon. On the whole 16 lifetimes were measured. The experimental results were interpreted in the unified model by intermediate coupling between particle states and the even-even vibrational core; attempts to improve the interpretation by using a semi-microscopical model with the delta surface interaction were made and the two calculations were compared [fr

  12. Nuclear structure studies in the xenon and radon region and the discovery of a new radon isotope by Penning trap mass spectrometry

    Neidherr, Dennis

    2010-04-28

    Nowadays high-precision mass measurements based on Penning traps allow a deep insight into the fundamental properties of nucleonic matter. To this end, the cyclotron frequency {nu}{sub c}=qB=(2{pi}m) of an ion confined in a strong, homogeneous magnetic field B is determined. At the ISOLTRAP mass spectrometer at ISOLDE / CERN the masses of short-lived radioactive nuclei with half-lives down to several ten ms can be measured with an uncertainty in the order of 10{sup -8} and below. ISOLTRAP consists of an RFQ cooler and buncher to cool and accumulate the ions coming from ISOLDE and a double Penning trap system to first clean the ion samples and finally perform the mass measurements. Within this thesis the masses of neutron rich xenon and radon isotopes, namely {sup 138-146}Xe and {sup 223-229}Rn were determined, eleven of them for the first time. {sup 229}Rn was even discovered in this experiment and its half-life could be determined to 12{sub -1.3}{sup +1.2} s. Since the mass reflects all interactions inside the nucleus it is a unique fingerprint of the nuclide of interest. One of these interactions, the proton-neutron interaction, leads for example to the onset of deformation. The aim of this thesis is to investigate a possible connection be- tween collective effects in nuclei, like the onset of deformation, and double-differences of binding energies, so called {delta}V{sub pn} values. Especially in the here presented areas these {delta}V{sub pn} values show a very unusual behavior and can not be explained with simple orbital overlapping arguments. One explanation could be the occurrence of octupolar deformation in these regions, which is usually probed with other experimental techniques. However, a quantitative description of the influence of such type of deformation on {delta}V{sub pn} is still not possible with modern theories. (orig.)

  13. Nuclear structure studies in the xenon and radon region and the discovery of a new radon isotope by Penning trap mass spectrometry

    Neidherr, Dennis

    2010-01-01

    Nowadays high-precision mass measurements based on Penning traps allow a deep insight into the fundamental properties of nucleonic matter. To this end, the cyclotron frequency ν c =qB=(2πm) of an ion confined in a strong, homogeneous magnetic field B is determined. At the ISOLTRAP mass spectrometer at ISOLDE / CERN the masses of short-lived radioactive nuclei with half-lives down to several ten ms can be measured with an uncertainty in the order of 10 -8 and below. ISOLTRAP consists of an RFQ cooler and buncher to cool and accumulate the ions coming from ISOLDE and a double Penning trap system to first clean the ion samples and finally perform the mass measurements. Within this thesis the masses of neutron rich xenon and radon isotopes, namely 138-146 Xe and 223-229 Rn were determined, eleven of them for the first time. 229 Rn was even discovered in this experiment and its half-life could be determined to 12 -1.3 +1.2 s. Since the mass reflects all interactions inside the nucleus it is a unique fingerprint of the nuclide of interest. One of these interactions, the proton-neutron interaction, leads for example to the onset of deformation. The aim of this thesis is to investigate a possible connection be- tween collective effects in nuclei, like the onset of deformation, and double-differences of binding energies, so called δV pn values. Especially in the here presented areas these δV pn values show a very unusual behavior and can not be explained with simple orbital overlapping arguments. One explanation could be the occurrence of octupolar deformation in these regions, which is usually probed with other experimental techniques. However, a quantitative description of the influence of such type of deformation on δV pn is still not possible with modern theories. (orig.)

  14. Radon screening for XENON1T

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  15. Absolute El, {delta}K= O Transition Rates in Odd-Mass Pm and Eu-Isotopes

    Malmskog, S G

    1967-06-15

    The half life of the 5/2{sup -} (532) intrinsic state in {sup 151}Pm, {sup 153}Eu and {sup 155}Eu has been determined by the delayed coincidence method. The absolute E1, {delta}K = 0 transition probabilities between the 5/2{sup -} (532) -> 5/2{sup +} (413) intrinsic states have been deduced and compared with theoretical predictions, using the Nilsson model as a starting point. The effect on the predicted transition probabilities obtained by adding pairing correlations and Coriolis coupling have also been studied. It has been found that the experimental transition rates, which are still strongly enhanced, cannot be explained by these contributions alone. It is therefore suggested that collective dipole contributions like those arising through the octupole excitations are of importance.

  16. Transportable Xenon Laboratory (TXL-1) Operations Manual

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  17. Chromatographic separation of radioactive noble gases from xenon

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  18. Study of the odd mass transition nuclei: 185Hg, 187Hg, 189Hg and 183Ir

    Zerrouki, A.

    1979-01-01

    The radioactive decay of 185 Tl, 186 Tl, 187 Tl has been studied on the isotope separator Isocele II working on line with the Orsay synchrocyclotron from Au( 3 He,xn) reactions: the emitted α lines have been measured and the main γ lines belonging to the 187 Tl→ 187 Hg decay have been identified. The 185 Hg, 187 Hg, 189 Hg high spin states have been studied using the following (HI,xn) reactions obtained on the Strasbourg MP Tandem: 168 Er( 24 Mg,xn) 187 Hg, 188 Hg, 166 Er( 24 Mg,xn) 185 Hg, 186 Hg, 157 Gd( 32 S,xn) 184 Hg, 185 Hg, 158 Gd( 32 S,5n) 185 Hg and 175 Lu( 19 F,5n) 189 Hg. The excitation functions are indicated and a high spin level scheme of 189 Hg is proposed: it is compared to the 'quasiparticle + triaxial rotor' model predictions. A level scheme of 183 Ir is proposed from the data collected at Isolde II (CERN) by Dr. SCHUCK: it is analysed within the framework of the same theoretical model used above [fr

  19. E2,M1 Multipole mixing ratios in odd-mass nuclei, 59< or =A< or =149

    Krane, K.S.

    1977-01-01

    A survey is presented of the E2,M1 mxing ratios of gamma-ray transitions in odd-mass nuclei with 59< or =A< or =149. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included, based on averages of results from various studies. The survey includes data available in the literature up to September 1976

  20. Xenon recovery from molybdenum-99 production

    Jubin, R.T.; Paviet, P.D.; Bresee, J.C.

    2016-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) sponsors research and development on the recycle of used commercial nuclear fuel as an option for future nuclear fuel cycles that offers increased use of uranium and thorium resources and a possible reduction in the overall cost of nuclear waste management. The two alternatives, direct disposal of used fuel and fuel recycle, are broadly referred to as open and closed fuel cycles. One requirement of a closed fuel cycle is the safe management of radioactive off-gases, which includes 14 C, radioiodine and the noble gases, including radio-xenon. The longest lived relevant radio-xenon isotope is 127 Xe; with a half-life of just 36.35 days it is feasible to trap and hold the radio-xenon to allow for decay to safe environmental levels. However, the very weak chemical bonds of noble gases, in this case xenon, make them difficult to trap, which led to an extensive DOE-NE study of noble gas adsorption on various molecular sieves as an alternative to costly cryogenics processes. Preliminary results indicate that xenon adsorption at near room temperature on molecular sieves, both synthetic and natural, may have both cost and efficiency advantages over cryogenic processes. These results appear to have direct application in helping achieve the United Nations Security Council goal of reducing xenon emissions from medical isotope producers

  1. Xenon recovery from molybdenum-99 production

    Jubin, R.T. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37931 (United States); Paviet, P.D.; Bresee, J.C. [U.S. Department of Energy,1000 Independence Ave, S.W., Washington DC, 20585-1290 (United States)

    2016-07-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) sponsors research and development on the recycle of used commercial nuclear fuel as an option for future nuclear fuel cycles that offers increased use of uranium and thorium resources and a possible reduction in the overall cost of nuclear waste management. The two alternatives, direct disposal of used fuel and fuel recycle, are broadly referred to as open and closed fuel cycles. One requirement of a closed fuel cycle is the safe management of radioactive off-gases, which includes {sup 14}C, radioiodine and the noble gases, including radio-xenon. The longest lived relevant radio-xenon isotope is {sup 127}Xe; with a half-life of just 36.35 days it is feasible to trap and hold the radio-xenon to allow for decay to safe environmental levels. However, the very weak chemical bonds of noble gases, in this case xenon, make them difficult to trap, which led to an extensive DOE-NE study of noble gas adsorption on various molecular sieves as an alternative to costly cryogenics processes. Preliminary results indicate that xenon adsorption at near room temperature on molecular sieves, both synthetic and natural, may have both cost and efficiency advantages over cryogenic processes. These results appear to have direct application in helping achieve the United Nations Security Council goal of reducing xenon emissions from medical isotope producers.

  2. Investigation of mechanisms of production of argon, krypton and xenon isotopes formed in heavy targets by protons with an energy ranging from 0.15 to 24 GeV

    Sauvageon, Henri

    1981-01-01

    As experimental results of the investigation of interactions between high-energy protons and nucleus generally lead to the distinction between four types of reaction mechanisms (spallation, fission, fragmentation and isotope production), this research thesis reports the study of this mechanisms by using the so-called 'thick target - thick collector' experiment and by studying the production of various isotopes of rare gases (argon, krypton, xenon). These isotopes are produced by using platinum, gold, bismuth and thorium targets bombarded by protons with an energy ranging from 0.15 to 24 GeV. The author presents the experimental methods (target preparation and irradiation, rare gas analysis system), reports the analysis of thick target - thick-collector experiments (vector-based representation, path determination, path-curve energy, corrections of experimental data, excitation energy of the intermediate nucleus), presents the experimental results, and discusses their interpretation (two-stage model of high energy nuclear reactions, isotopes produced by spallation and by fission, isotopes produced by deep spallation, representations of mechanisms of fragmentation and deep spallation)

  3. Review of xenon-133 production and related problems

    Barrachina, M.; Ropero, M.

    1980-01-01

    A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs

  4. Review of xenon-133 production and related problems; Estudio bibliografico de la produccion de xenon-133 y problemas afines

    Barrachina, M; Ropero, M

    1980-07-01

    A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs.

  5. The search for dark matter in xenon: Innovative calibration strategies and novel search channels

    Reichard, Shayne Edward

    The direct detection dark matter experiment XENON1T became operational in early 2016, heralding the era of tonne-scale dark matter detectors. Direct detection experiments typically search for elastic scatters of dark matter particles off target nuclei. XENON1T's larger xenon target provides the advantage of stronger dark matter signals and lower background rates compared to its predecessors, XENON10 and XENON100; but, at the same time, calibration of the detector's response to backgrounds with traditional external sources becomes exceedingly more difficult. A 220Rn source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. I show that the subsequent 212Pb beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. I find no increase in the activity of the troublesome 222Rn background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to 222Rn. Using the delayed coincidence of 220Rn/216Po, I map for the first time the convective motion of particles in the XENON100 detector. Additionally, I make a competitive measurement of the half-life of 212Po, t1/2=293.9+/-(1.0)stat+/-(0.6)ns. In contrast to the elastic scattering of dark matter particles off nuclei, I explore inelastic scattering where the nucleus is excited to a low-lying state of 10-100 keV, with a subsequent prompt de-excitation. I use the inelastic structure factors for the odd-mass xenon isotopes based on state-of-the-art large-scale shell-model calculations with chiral effective field theory WIMP-nucleon currents, finding that the inelastic channel is comparable to or can dominate the elastic channel for momentum transfers around 150 Me

  6. Cosmogenic activation of xenon and copper

    Baudis, Laura; Kish, Alexander; Piastra, Francesco [University of Zuerich, Department of Physics, Zuerich (Switzerland); Schumann, Marc [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-10-15

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470 m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of {sup 7}Be, {sup 101}Rh, {sup 125}Sb, {sup 126}I and {sup 127}Xe in xenon, out of which only {sup 125}Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only existing dedicated activation measurement, while we observe lower rates for the remaining ones. The specific saturation activities for both samples are also compared to predictions obtained with commonly used software packages, where we observe some underpredictions, especially for xenon activation. (orig.)

  7. The potential for large scale uses for fission product xenon

    Rohrmann, C.A.

    1983-01-01

    Of all fission products in spent, low enrichment, uranium, power reactor fuels xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the U.S. radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state of the art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much more voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays and luminescence as well as for medicinal diagnostics and therapeutics fission product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly higher atomic weight, because of the much higher concentrations of the 134 X and 136 Xe isotopes. Therefore, fission product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  8. Liquid xenon detector engineering

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  9. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  10. Separation and purification of xenon

    Schlea, C.S.

    1978-01-01

    Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF 4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure

  11. Requirements for Xenon International

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  12. Requirements for Xenon International

    Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ely, James H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haas, Derek A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harper, Warren W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heimbigner, Tom R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, Charles W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Humble, Paul H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Madison, Jill C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Scott J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Panisko, Mark E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ripplinger, Mike D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stewart, Timothy L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  13. Investigating the nuclear structure of the neutron-rich odd-mass Fe isotopes, in the $\\beta$-decay of their parent - Mn

    AUTHOR|(CDS)2079133; Van Duppen, Piet

    For many years the shell structure of the nucleus, originally proposed by Mayer and Haxel, predicting certain energy gaps at specific proton and/or neutron numbers, has been consistent with the experimental findings at or near the line of stability. These nuclei exhibit a sequence of magic numbers – 2, 8, 20, 28, 50, 82, which is different from the one calculated using only a Harmonic Oscillator potential: 2, 8, 20, 40, 70... The strong spin-orbit term, added to the latter potential by Mayer and Haxel, is a necessary requirement for a successful description of these quantum systems, which lowers the energy orbitals with higher spins directly affecting the l = 4 (1$g_{9/2}$) orbit by reducing the gap at N = 40 and creating the N = 50 one. With the development of more exotic radioactive beams, however, it has been observed that for nuclei away from the stability line the traditional shell gaps have weakened, while new energy gaps have emerged instead. It has been further realized that the residual nucleon- nu...

  14. Gross xenon stability

    Lewins, J.D.; Wilson, P.P.H.

    1997-01-01

    The effect of xenon in thermal reactors on steady operation is generally destabilizing. Illustrating this involves the study of appropriate transfer functions, which may be conveniently displayed in three ways: as Bode, Nyquist, and root-locus diagrams. The three forms allow different aspects to be highlighted. These are illustrated for the effect of xenon with allowance not only for the stabilizing effect of the direct yield in fission but also to show the consequences of neglecting the time dependence due to the thermal capacity of the reactor. With careful interpretation, all these forms give an interpretation of stability that is consistent with direct evaluation and promote the understanding of the onset of gross oscillations in power

  15. Autoionization in xenon

    Knight, R.D.; Wang, L.G.

    1986-01-01

    The authors have studied both even- and odd-parity autoionizing levels in xenon. These levels lie between the Xe/sup +/ /sup 2/P/sub 3/2/ and /sup 2/P/sub 1/2/ ionization limits. Their technique is laser spectroscopy of a thermal metastable atomic beam of xenon. One-photon laser spectroscopy from the 6s'[1/2]/sub 0/ level has been used to study the np'[1/2]/sub 1/ and np'[3/2]/sub 1/ autoionization doublets, n = 7-20. These had previously been observed only for n = 7,8. The authors are using a MQDT analysis of both discrete and autoionizing even-parity J = 1 levels (five channels) to understand the autoionization line profiles. They have also used two-photon laser spectroscopy from the 6s[3/2]/sub 2/ metastable level via various J = 1,2 6p' levels to observe the odd-parity ns'[1/2]/sub 0 1/, nd'[3/2]/sub 1 2/, and nd'[5/2]/sub 2 3/ autoionizing levels to n > 50. This is the first observation of J not equal to 1 odd-parity autoionization in xenon. The most striking feature of these spectra is the complete absence of the very intense, very broad transitions to nd'[3/2]/sub 1/, which dominate the photoabsorption spectrum from the xenon J = 0 ground state. The other nd' levels (J = 2.3) and ns'[1/2]/sub 0/ are all comparable in width to the previously observed ns'[1/2]/sub 1/ levels. The authors present the results of position and width measurements for these levels

  16. ATLAS Event Display: First Xenon-Xenon Run 2017

    ATLAS Collaboration

    2017-01-01

    Event display from the xenon-xenon collision run of 12-13 October 2017. Curved cyan lines show the trajectories of charged particles in the tracking systems. The bottom right plot shows the distribution of energy deposited in the calorimeters, demonstrating the high particle multiplicity of the event. Two muon candidates are reconstructed at high pseudorapidity, as seen in the bottom left plot

  17. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  18. Optical pumping and xenon NMR

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  19. PRAMANA Cluster radioactivity in xenon isotopes

    exotic decay or cluster radioactivity was first predicted by sandulescu et al [1] in. 1980 on the basis of ... separator by 58Ni(58Ni, 2n) reaction and carbon clusters were searched for by means of solid state nuclear ..... Lett. 55, 582 (1985). [22] D N Poenaru, W Greiner, K Depta, M Ivascu, D Mazilu and A Sandulescu, At. Data.

  20. PRAMANA Cluster radioactivity in xenon isotopes

    2017-01-03

    Jan 3, 2017 ... Lowest Т1/2 value for 8Be emission from 108Xe stress the role of doubly magic 100Sn daughter in cluster decay process. The logarithm of half-life time calculated for 4He emission from 110Xe is -0.39 s which is in good agreement with exper- imental value which is -0.40 s. Geiger-Nuttall plots for all clusters ...

  1. Potential for large-scale uses for fission-product Xenon

    Rohrmann, C.A.

    1983-03-01

    Of all fission products in spent, low-enrichment-uranium power-reactor fuels, xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the US, radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state-of-the-art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission-product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much-more-voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays, and luminescence - as well as for medicinal diagnostics and therapeutics - fission-product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly hgiher atomic weight, because of the much higher concentrations of the 134 Xe and 136 Xe isotopes. Therefore, fission-product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  2. Evaluation of activated charcoal for dynamic adsorption of krypton and xenon

    Khan, A.A.; Deshingkar, D.S.; Ramarathinam, K.; Kishore, A.G.

    1975-01-01

    From the standpoint of radiation safety, the release of radioactive krypton and xenon from power reactors should be kept as low as practicable. The decay of shortlived isotopes of krypton and xenon by adsorptive delay on activated charcoal has shown promising results for this purpose. The delay provided by activated charcoal is proportional to the dynamic adsorption coefficients of these gases which are characteristic of the adsorbent. These coefficients were determined for krypton and xenon on indigenous gas-adsorbing activated charcoal at different moisture contents of carrier air stream and activated charcoal, concentrations of krypton around ambient temperatures, to find its suitability for designing adsorber columns. (author)

  3. Study of the anharmonic effects on low-lying states of odd-mass nuclei in 1g sub(9/2)+ shell region

    Nakano, Masahiro

    1980-01-01

    Anharmonic effects on the low-lying states of the odd-mass nuclei in 1g sub(9/2)sup(+) shell region are investigated by introduction of 1, 3, 5 and 7 quasiparticle modes. Special attention is paid to the energy-lowering of anomalous coupling states in N = 41 nuclei and to the spin sequence of so-called ''one-quasiparticle-two-phonon multiplet''. It is shown that one cannot attribute the special-lowering of the energies of the anomalous coupling (j - 2) states to the dynamical effects due to the coupling between the 3-quasiparticle mode and the 5-quasiparticle mode, and is also shown that not only the kinematical effect but also the dynamical effect plays an important role in the energy-lowering of the anomalous coupling (j - 1) states in N = 41 nuclei. The second (j - 2) state is predicted to be the lowest member of one-quasiparticle-two-phonon multiplet by taking account of the kinematical effect for the 5-quasiparticle mode, which corresponds to the experimental fact. (author)

  4. Fermionic symmetries: Extension of the two to one relationship between the spectra of even-even and neighboring odd mass nuclei

    Zamick, L.; Devi, Y.D.

    1999-01-01

    In the single j shell there is a two to one relationship between the spectra of certain even-even and neighboring odd mass nuclei; e.g., the calculated energy levels of J=0 + states in 44 Ti are at twice the energies of corresponding levels in 43 Ti( 43 Sc) with J=j=7/2. Here an approximate extension of the relationship is made by adopting a truncated seniority scheme; i.e., for 46 Ti and 45 Sc we get the relationship if we do not allow the seniority v=4 states to mix with the v=0 and v=2 states. Better than that, we get very close to the two to one relationship if seniority v=4 states are admixed perturbatively. In addition, it is shown that for the J=0 T=3 state in 46 Ti and for the J=j T=5/2 state in 45 Sc (i.e., the states of higher isospin) there are no admixtures in which the neutrons have seniority 4. copyright 1999 The American Physical Society

  5. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  6. A truncated spherical shell model for nuclear collective excitations: Applications to the odd-mass systems, neutron-proton systems, and other topics

    Wu, Hua.

    1989-01-01

    One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but intelligent truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated truncation scheme is introduced in nuclear physics for the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, the author finds that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDUO was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a at Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves chaotically. This information is certainly crucial to understanding quantum chaotic behavior

  7. Search for double beta decay processes of {sup 124}Xe with XENON100 and XENON1T

    Fieguth, Alexander [IKP, Westfaelische-Wilhelms-Universitaet Muenster (Germany)

    2016-07-01

    Driven by the search for dark matter particles the XENON dark matter project recently installed its next stage multi-ton experiment XENON1T at the LNGS, which will probe the spin-indpendent-WIMP-Nucleon cross section down to 2.10{sup -47} cm{sup 2}. Besides its main purpose different particle physics topics can be addressed by the taken data. One example are the double beta decay processes of natural isotope {sup 124}Xe. This isotope is expected to decay via two-neutrino double electron capture (2νECEC) and due to its high Q-value of 2864 keV additionally through 2νβ{sup +}β{sup +}. Since these processes have not been detected so far, there is only a lower limit the respective half-life (e.g. > 4.7.10{sup 21} yr for 2νECEC). A detection of the 2νECEC is possible using XENON1T data by looking for its clear signature of secondary X-rays or Auger electrons and at least new lower half-life limits for all other decay channels can be obtained. While these processes are expected from standard model physics, a detection of a decay without neutrinos (e.g 0νECEC) would hint towards beyond the standard model physics and could derive conclusions on the neutrino mass. Until XENON1T is taking data, the search for all processes can be tested in the recorded data of its predecessor XENON100.

  8. Krypton and xenon in the atmosphere of Venus

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.

    1981-01-01

    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  9. On the spin-dependent sensitivity of XENON100

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2012-11-15

    The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  10. On the spin-dependent sensitivity of XENON100

    Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan

    2012-11-01

    The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  11. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  12. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides

    Barrachina, M.; Villar, M. A.

    1965-01-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs

  13. Xenon adsorption on geological media and implications for radionuclide signatures.

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. RESULTS FROM THE XENON100 EXPERIMENT

    Rino Persiani

    2013-12-01

    Full Text Available The XENON program consists in operating and developing double-phase time projection chambers using liquid xenon as the target material. It aims to directly detect dark matter in the form of WIMPs via their elastic scattering off xenon nuclei. The current phase is XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS, with a 62 kg liquid xenon target. We present the 100.9 live days of data, acquired between January and June 2010, with no evidence of dark matter, as well as the new results of the last scientific run, with about 225 live days. The next phase, XENON1T, will increase the sensitivity by two orders of magnitude.

  15. Xenon preconditioning: molecular mechanisms and biological effects

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  16. Control aid for xenon vibration in reactor

    Kanekawa, Takashi.

    1990-01-01

    In the present invention, the control operation for suppressing xenon vibrations in a reactor is aided for saving forecasting analysis and operator's skills. That is, parameters to be controlled for the suppression of xenon vibrations are power distribution, iodine distribution and xenon distribution. But what can be observed by operaters by the conventional fast overtone method is only the output distribution. In the present invention, the output level of the reactor core is always observed. Then, mathematical processings are conducted for the iodine distribution, the xenon distribution and the power distribution in the reactor core based on the histeresis of the parameters obtained by the measurement using physical constants and reactor design data. The xenon vibration control is aided by displaying the change with time of the distortion in axial direction. Accordingly, operators can always recognize the axial distortion of the power distribution, the iodine distribution and the xenon distribution. (I.S.)

  17. Latest results from XENON100 data

    Scotto Lavina, L.

    2014-01-01

    XENON100 is the current phase of the XENON dark matter program, which aims for the direct detection of WIMPs with liquid xenon time-projection chambers. We present the status of the experiment after 224.6 live days taken in 2011 and 2012 during which the detector successfully improved in terms of more calibration data, higher xenon purity, lower threshold and better background removal. The analysis has yielded no evidence for dark matter interactions. The status of the next generation XENON1T detector will be briefly described. The goal of XENON1T is to increase the fiducial volume by a factor 10 and reduce the background noise by a factor 100

  18. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26056 (United States)

    2016-11-15

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  19. Xenon changes under power-burst conditions

    Diamond, D.J.

    1983-01-01

    Under ordinary operating conditions the xenon concentration in a reactor core can change significantly in times on the order of hours. Core transients of safety significance are much more rapid and hence calculations are done with xenon concentration held constant. However, in certain transients (such as reactivity initiated accidents) there is a very large power surge and the question arises as to whether under these circumstances the xenon concentration could change. This would be particularly important if the xenon were reduced thereby tending to make the accident autocatalytic. The objective of the present study is to quantify this effect to see if it could be important

  20. The XENON1T dark matter experiment

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Chiarini, A.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Corrieri, R.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Disdier, J.-M.; Doets, M.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Front, D.; Fulgione, W.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Giboni, K.-L.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; James, A.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Maier, R.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orlandi, D.; Othegraven, R.; Pakarha, P.; Parlati, S.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; García, D. Ramírez; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M. F. dos; Saldanha, R.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stern, M.; Stein, A.; Tatananni, D.; Tatananni, L.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Vargas, M.; Wack, O.; Walet, R.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-12-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.

  1. The XENON1T dark matter experiment

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Giboni, K.L.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Plante, G.; Rizzo, A.; Stern, M.; Tatananni, D.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Doets, M.; Hogenbirk, E.; Tiseni, A.; Walet, R. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Othegraven, R.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Antunes, B.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, LIBPhys, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Balata, M.; Bruno, G.; Corrieri, R.; Disdier, J.M.; Rosso, A.G.; Molinario, A.; Orlandi, D.; Parlati, S.; Tatananni, L.; Wang, Z. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; James, A.; Kazama, S.; Kessler, G.; Kish, A.; Maier, R.; Mayani, D.; Pakarha, P.; Piastra, F.; Wulf, J. [University of Zurich, Physik Institut, Zurich (Switzerland); Bauermeister, B.; Calven, J.; Conrad, J.; Ferella, A.D.; Moraa, K.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Breskin, A.; Budnik, R.; Duchovni, E.; Front, D.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H.; Wack, O. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Sivers, M. von [Freiburg Univ. (Germany). Physikalisches Inst.; Bern Univ. (Switzerland). Albert Einstein Center for Fundamental Physics; Cervantes, M.; Lang, R.F.; Masson, D.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Chiarini, A.; Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Cussonneau, J.P.; Diglio, S.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [CNRS/IN2P3, Universite de Nantes, SUBATECH, IMT Atlantique, Nantes (France); Fei, J.; Lombardi, F.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Vargas, M.; Weinheimer, C.; Wittweg, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Tunnell, C.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Messina, M. [Columbia University, Physics Department, New York, NY (United States); New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Pienaar, J. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Garcia, D.R. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Reichard, S. [University of Zurich, Physik Institut, Zurich (Switzerland); Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Lavina, L.S. [Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, LPNHE, Paris (France); Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Wei, Y. [University of Zurich, Physik Institut, Zurich (Switzerland); University of California, Department of Physics, San Diego, CA (United States); Collaboration: XENON Collaboration

    2017-12-15

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. (orig.)

  2. The XENON1T dark matter experiment

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Giboni, K.L.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Plante, G.; Rizzo, A.; Stern, M.; Tatananni, D.; Zhang, Y.; Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Doets, M.; Hogenbirk, E.; Tiseni, A.; Walet, R.; Agostini, F.; Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Othegraven, R.; Scheibelhut, M.; Schindler, S.; Amaro, F.D.; Antunes, B.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M.; Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I.; Balata, M.; Bruno, G.; Corrieri, R.; Disdier, J.M.; Rosso, A.G.; Molinario, A.; Orlandi, D.; Parlati, S.; Tatananni, L.; Wang, Z.; Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; James, A.; Kazama, S.; Kessler, G.; Kish, A.; Maier, R.; Mayani, D.; Pakarha, P.; Piastra, F.; Wulf, J.; Bauermeister, B.; Calven, J.; Conrad, J.; Ferella, A.D.; Moraa, K.; Pelssers, B.; Berger, T.; Brown, E.; Piro, M.C.; Breskin, A.; Budnik, R.; Duchovni, E.; Front, D.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N.; Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H.; Wack, O.; Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. von; Chiarini, A.; Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M.; Cussonneau, J.P.; Diglio, S.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D.; Fei, J.; Lombardi, F.; Ni, K.; Ye, J.; Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Vargas, M.; Weinheimer, C.; Wittweg, C.; Fulgione, W.; Grandi, L.; Saldanha, R.; Shockley, E.; Tunnell, C.; Upole, N.; Lindemann, S.; Messina, M.; Naganoma, J.; Shagin, P.; Pienaar, J.; Garcia, D.R.; Reichard, S.; Lavina, L.S.; Stein, A.; Wang, H.; Trinchero, G.; Wei, Y.

    2017-01-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. (orig.)

  3. Search for 136Xe neutrinoless double beta decay with the Enriched Xenon Observatory (EXO)

    Giroux, G.

    2014-01-01

    The EXO collaboration is searching for the neutrinoless double beta decay of 136 Xe. Such observation would determine an absolute mass scale for the neutrinos, establish their Majorana nature, and uncover physics beyond the Standard Model. The EXO-200 detector is a single phase liquid xenon ultra low background TPC (Time Projection Chamber), with an active mass of 110 kg of 80.6% enriched xenon in the isotope 136. The detector is currently operating at the WIPP site and has been collecting data with enriched xenon since May 2011. The data collected give a lower limit for the neutrinoless double beta decay half-life of 136 Xe: T > 1.6*10 25 years at 90% C.L. The same data give a lower limit for the 2 neutrinos double beta decay of 136 Xe: T > 2.23*10 21 years that agrees with experimental values found in the literature

  4. Dark matter search with XENON1T

    Aalbers, J.

    2018-01-01

    Most matter in the universe consists of 'dark matter' unknown to particle physics. Deep underground detectors such as XENON1T attempt to detect rare collisions of dark matter with ordinary atoms. This thesis describes the first dark matter search of XENON1T, how dark matter signals would appear in

  5. Sensitivity of gaseous xenon ionisation chambers (1961)

    Schuhl, C.

    1960-01-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [fr

  6. Gas purity analytics, calibration studies, and background predictions towards the first results of XENON1T

    Hasterok, Constanze

    2017-10-25

    The XENON1T experiment aims at the direct detection of the well motivated dark matter candidate of weakly interacting massive particles (WIMPs) scattering off xenon nuclei. The first science run of 34.2 live days has already achieved the most stringent upper limit on spin-independent WIMP-nucleon cross-sections above masses of 10 GeV with a minimum of 7.7.10{sup -47} cm{sup 2} at a mass of 35 GeV. Crucial for this unprecedented sensitivity are a high xenon gas purity and a good understanding of the background. In this work, a procedure is described that was developed to measure the purity of the experiment's xenon inventory of more than three tons during its initial transfer to the detector gas system. The technique of gas chromatography has been employed to analyze the noble gas for impurities with the focus on oxygen and krypton contaminations. Furthermore, studies on the calibration of the experiment's dominating background induced by natural gamma and beta radiation were performed. Hereby, the novel sources of radioactive isotopes that can be dissolved in the xenon were employed, namely {sup 220}Rn and tritium. The sources were analyzed in terms of a potential impact on the outcome of a dark matter search. As a result of the promising findings for {sup 220}Rn, the source was successfully deployed in the first science run of XENON1T. The first WIMP search of XENON1T is outlined in this thesis, in which a background component from interactions taking place in close proximity to the detector wall is identified, investigated and modeled. A background prediction was derived that was incorporated into the background model of the WIMP search which was found to be in good agreement with the observation.

  7. Xenon lighting adjusted to plant requirements

    Koefferlein, M.; Doehring, T.; Payer, H.D.; Seidlitz, H.K. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Oberschleissheim (Germany)

    1994-12-31

    The high luminous flux and spectral properties of xenon lamps would provide an ideal luminary for plant lighting if not excess IR radiation poses several problems for an application: the required filter systems reduce the irradiance at spectral regions of particular importance for plant development. Most of the economical drawbacks of xenon lamps are related to the difficult handling of that excess IR energy. Furthermore, the temporal variation of the xenon output depending on the oscillations of the applied AC voltage has to be considered for the plant development. However, xenon lamps outperform other lighting systems with respect to spectral stability, immediate response, and maximum luminance. Therefore, despite considerable competition by other lighting techniques, xenon lamps provide a very useful tool for special purposes. In plant lighting however, they seem to play a less important role as other lamp and lighting developments can meet these particular requirements at lower costs.

  8. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides; Estudio de los productos de fision de periodo corto. Separacion de los radionuclidos de fision del yodo y del xenon

    Barrachina, M; Villar, M A

    1965-07-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs.

  9. Surface Coatings as Xenon Diffusion Barriers for Improved Detection of Clandestine Nuclear Explosions

    Bläckberg, Lisa

    2014-01-01

    This thesis investigates surface coatings as xenon diffusion barriers on plastic scintillators. The motivation for the work is improved radioxenon detection systems, used within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). One type of radioxenon detection systems used in this context is the Swedish SAUNA system. This system uses a cylindrical plastic scintillator cell to measure the beta decay from radioxenon isotopes. The detector cell also acts as a container...

  10. Simultaneous detection of xenon and krypton in equine plasma by gas chromatography-tandem mass spectrometry for doping control.

    Kwok, Wai Him; Choi, Timmy L S; So, Pui-Kin; Yao, Zhong-Ping; Wan, Terence S M

    2017-02-01

    Xenon can activate the hypoxia-inducible factors (HIFs). As such, it has been allegedly used in human sports for increasing erythropoiesis. Krypton, another noble gas with reported narcosis effect, can also be expected to be a potential and less expensive erythropoiesis stimulating agent. This has raised concern about the misuse of noble gases as doping agents in equine sports. The aim of the present study is to establish a method for the simultaneous detection of xenon and krypton in equine plasma for the purpose of doping control. Xenon- or krypton-fortified equine plasma samples were prepared according to reported protocols. The target noble gases were simultaneously detected by gas chromatography-triple quadrupole mass spectrometry using headspace injection. Three xenon isotopes at m/z 129, 131, and 132, and four krypton isotopes at m/z 82, 83, 84, and 86 were targeted in selected reaction monitoring mode (with the precursor ions and product ions at identical mass settings), allowing unambiguous identification of the target analytes. Limits of detection for xenon and krypton were about 19 pmol/mL and 98 pmol/mL, respectively. Precision for both analytes was less than 15%. The method has good specificity as background analyte signals were not observed in negative equine plasma samples (n = 73). Loss of analytes under different storage temperatures has also been evaluated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Xenon as an adjunct in computed tomography

    Kendall, B.E.; Radue, E.W.; Zilkha, E.; Loh, L.

    1979-01-01

    Nonradioactive xenon was used for enhancement in computed tomography in a series of 18 patients requiring general anesthesia. The method and results are described. The properties of xenon are radically different from those of intravenous iodides, and the enhancement patterns demonstrate different aspects of both normal and abnormal tissues. In our limited experience, it has been of value in those isodense and low attenuation lesions that have not enhanced after intravenous Conray. (orig.) 891 MG/orig. 892 MB [de

  12. Ventilator-driven xenon ventilation studies

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-01-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration

  13. Xenon-computed tomography of kidney transplants

    Mutze, S.; Reichmuth, B.; Suess, C.; Lippert, J.; Ewert, R.

    1994-01-01

    Xenon-CT is an established method for determining cerebral perfusion, while applications in other organs are rare. We evaluated the diagnostic potential of measuring the regional Renal Blood Flow (rRBF) in 10 patients with transplanted kidneys by xenon-CT. We found significant differences in the rRBF between the renal medulla and the cortex. There were no differences between normal renal transplants and transplants with chronic rejection. (orig.) [de

  14. Weird muonium diffusion in solid xenon

    Storchak, V.G.; Kirillov, B.F.; Pirogov, A.V.

    1992-09-01

    Muon and muonium spin rotation and relaxation parameters were studied in liquid and solid xenon. The small diamagnetic fraction (∼ 10%) observed in condensed xenon is believed to be Xeμ + . The muonium hyperfine frequency was measured for the first time in liquid Xe and was found to be in agreement with the vacuum value. A nonmonotonic temperature dependence of the muonium relaxation rate probably indicates that muonium diffusion in solid Xe is of quantum nature. 16 refs., 3 figs

  15. Decay of mass-separated 3.0min 195gBi to levels in 195Pb and shape coexistence in the neutron-deficient odd-mass Pb isotopes

    Griffin, J.C.; Braga, R.A.; Fink, R.W.; Bingham, C.R.; Coenen, E.; Huyse, M.; Duppen, P. van

    1991-01-01

    The radioactive decay of mass-separated 3.0 m 195g Bi to 195 Pb has been studied with the UNISOR and LISOL facilities. Time-sequenced spectra of γ-rays, X-rays, and conversion electrons have been obtained, together with γγt, γXt, eγt, and eXt coincidence data. From this information, a decay scheme has been constructed consisting of 23 excited states and 34 transitions in 195 Pb. Transitions with E0 multipole admixtures, indicative of shape coexistence, have been found to de-excite positive-parity levels at 1093, 1329, and 1380 keV. The beta-decay energy of the 195 Bi ground state is deduced to be Q EC =4800 +600 -550 keV based on the measurement of γ-ray-gated K/β + ratios. The excitation energy of the i 13/2 isomer in 195 Pb has been determined to be 203±4 keV from the α-decays of 199m,g Po. (orig.)

  16. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  17. Solubility of xenon in liquid sodium

    Veleckis, E.; Cafasso, F.A.; Feder, H.M.

    1976-01-01

    The solubility of xenon in liquid sodium was measured as a function of pressure (2-8 atm) and temperature (350-600 0 C). Henry's law was obeyed with the value of the Henry's law constant, K/sub H/ = N/sub Xe//P, ranging from 1.38 x 10 -10 atm -1 at 350C, to 1.59 x 10 -8 atm -1 at 600 0 C where N/sub Xe/ and P are the atom fraction and the partial pressure of xenon, respectively. The temperature dependence of solubility may be represented by log 10 lambda = (0.663 +- 0.01) - (4500 +- 73) T -1 , where lambda is the Ostwald coefficient (the volume of xenon dissolved per unit volume of sodium at the temperature of the experiment). The heat of solution of xenon in sodium was 20.6 +- 0.7 kcal/mole, where the standard state of xenon is defined as that of 1 mole of an ideal gas, confined to a volume equal to the molar volume of sodium

  18. Properties of excited xenon atoms in a plasma display panel

    Uhm, Han S.; Hong, Byoung H.; Oh, Phil Y.; Choi, Eun H.

    2009-01-01

    The luminance efficiency of a plasma display panel is directly related to the vacuum ultraviolet (VUV) light that is emitted from excited xenon (Xe) atoms and molecules. It is therefore necessary to investigate the properties of excited xenon atoms. This study presents experimental data associated with the behavior of excited xenon atoms in a PDP discharge cell and compares the data with the theoretical results obtained using an analytical model. The properties of excited xenon atoms in the discharge cells of a plasma display panel are investigated by measuring the excited atom density through the use of laser absorption spectroscopy. The density of the excited xenon atoms increases from zero, reaches its peak, and decreases with time in the discharge cells. The profile of the excited xenon atoms is also studied in terms of the xenon mole fraction. The typical density of the excited xenon atoms in the metastable state is on the order of 10 13 atoms per cubic cm.

  19. Spatial xenon oscillation control with expert systems

    Alten, S.; Danofsky, R.A.

    1993-01-01

    Spatial power oscillations were attributed to the xenon transients in a reactor core in 1958 by Randall and St. John. These transients are usually initiated by a local reactivity insertion and lead to divergent axial flux oscillations in the core at constant power. Several heuristic manual control strategies and automatic control methods were developed to damp the xenon oscillations at constant power operations. However, after the load-follow operation of the reactors became a necessity of life, a need for better control strategies arose. Even though various advanced control strategies were applied to solve the xenon oscillation control problem for the load-follow operation, the complexity of the system created difficulties in modeling. The strong nonlinearity of the problem requires highly sophisticated analytical approaches that are quite inept for numerical solutions. On the other hand, the complexity of a system and heuristic nature of the solutions are the basic reasons for using artificial intelligence techniques such as expert systems

  20. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  1. Bonding of xenon to oxygen in magmas at depth

    Leroy, Clémence; Sanloup, Chrystèle; Bureau, Hélène; Schmidt, Burkhard C.; Konôpková, Zuzana; Raepsaet, Caroline

    2018-02-01

    The field of noble gases chemistry has witnessed amazing advances in the last decade with over 100 compounds reported including Xe oxides and Xe-Fe alloys stable at the pressure-temperature conditions of planetary interiors. The chemistry of Xe with planetary materials is nonetheless still mostly ignored, while Xe isotopes are used to trace a variety of key planetary processes from atmosphere formation to underground nuclear tests. It is indeed difficult to incorporate the possibility of Xe reactivity at depth in isotopic geochemical models without a precise knowledge of its chemical environment. The structure of Xe doped hydrous silica-rich melts is investigated by in situ high energy synchrotron X-ray diffraction using resistive heating diamond anvil cells. Obtained pair distribution functions reveal the oxidation of Xe between 0.2 GPa and 4 GPa at high T up to 1000 K. In addition to the usual interatomic distances, a contribution at 2.05 ± 0.05 Å is observed. This contribution is not observed in the undoped melt, and is interpreted as the Xe-O bond, with a coordination number of about 12 consistent with Xe insertion in rings of the melt structure. Xe solubility measurements by electron microprobe and particle induced X-rays emission analysis confirm that Xe and Ar have similar solubility values in wt% in silicate melts. These values are nonetheless an order of magnitude higher than those theoretically calculated for Xe. The formation of Xe-O bonds explains the enhanced solubility of Xe in deep continental crust magmas, revealing a mechanism that could store Xe and fractionate its isotopes. Xenon is indeed atypical among noble gases, the atmosphere being notably depleted in elemental Xe, and very strongly depleted in Xe light isotopes. These observations are known as the 'missing' Xe paradox, and could be solved by the present findings.

  2. The XENON project for dark matter direct detection at LNGS

    Molinario, Andrea

    2017-12-01

    The XENON project at INFN Laboratori Nazionali del Gran Sasso, Italy, aims at dark matter direct detection with liquid xenon dual-phase time projection chambers. Latest results of XENON100 detector exclude various models of leptophilic dark matter. A search for low mass weakly interacting massive particles was also performed, lowering the energy threshold for detection to 0.7 keV for nuclear recoils. The multi-ton XENON1T detector is fully installed and operating. It is expected to reach a sensitivity a factor 100 better than XENON100 with a 2 ton·year exposure.

  3. UTEX modeling of xenon signature sensitivity to geology and explosion cavity characteristics following an underground nuclear explosion

    Lowrey, J. D.; Haas, D.

    2013-12-01

    Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.

  4. The Large Underground Xenon (LUX) experiment

    Akerib, D.S.; Bai, X.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; Byram, D.; Cahn, S.B.; Camp, C.; Carmona-Benitez, M.C.; Carr, D.; Chapman, J.J.; Chiller, A.; Chiller, C.; Clark, K.; Classen, T.; Coffey, T.; Curioni, A.

    2013-01-01

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles (WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross-section per nucleon of 2×10 −46 cm 2 , equivalent to ∼1event/100kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have <1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector

  5. Modeling Pulse Characteristics in Xenon with NEST

    Mock, Jeremy; Barry, Nichole; Kazkaz, Kareem; Szydagis, Matthew; Tripathi, Mani; Uvarov, Sergey; Woods, Michael; Walsh, Nicholas

    2013-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, the effects of the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are ...

  6. Optimization of Xenon Biosensors for Detection of Protein Interactions

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E.

    2005-08-01

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length

  7. HEMODYNAMIC EFFECTS OF XENON ANESTHESIA IN CHILDREN

    M. V. Bykov

    2014-01-01

    Full Text Available The study was aimed at hemodynamic effects of xenon on operative interventions in children. Patients and methods: the study involved 30 5-17-year-old children – 10 (33.3% girls and 20 (66.7% boys with ASA score 1-3 admitted for surgical treatment. The children underwent endotracheal anesthesia with xenon-oxygen mixture (Xe:O2 = 60-65:30% and fentanyl (2.5‑3.5  mcg/kg per hour for the following operations: appendectomy – 10 (33.3% patients, herniotomy – 8 (26.7% patients, Ivanissevich procedure – 6 (20.0% patients, plastic surgery of posttraumatic defects of skin and soft tissues – 4 (13.3% patients, abdominal adhesiotomy – 2 (6.7% patients. Central hemodynamics was studied echocardiographically (Philips HD 11, the Netherlands using the Teichholz technique along the cephalocaudal axis (parasternal access. Results: the anesthesia was notable for hemodynamic stability during the operation: as a result, a statistically significant (p < 0.05 increase in systolic, diastolic and mean arterial pressure by 10, 18 and 17%, respectively, was observed. Conclusion: the analysis demonstrated that xenon anesthesia improves lusitropic myocardial function statistically significantly increasing cardiac output by 12% by way of increasing stroke volume by 30%. 

  8. Facility for the separation of krypton and recuperation of xenon

    Boell-Djoa, S.H.

    1977-01-01

    A facility is described by means of which the fission inert gases krypton 85 and xenon from spent fuel particles can be separated by fractionated freezing-out and subsequent distillation to such an extent that the xenon contains less than 1 ppb krypton 85. Then, in accordance with the stringent regulations, the krypton can be conveyed to definitive storage in special bottles, whereas the xenon can be released for industrial uses. (orig.) [de

  9. Investigations on a highly luminous condensed xenon scintillator

    Lansiart, Alain; Seigneur, Alain; Morucci, J.-P.

    1976-12-01

    The means of creating a maximal amount of light by absorption of gamma radiation in condensed xenon were investigated. One of the methods relies on the light production around wires in liquid xenon when several kilovolts are applied to them. Another method uses the saturating vapor present over solid xenon; the electric field pulls out electrons from the solid and accelerates them in the gas phase where they produce light through inelastic collisions [fr

  10. Xenon-based Penning mixtures for proportional counters

    Ramsey, B.D.; Agrawal, P.C.; National Aeronautics and Space Administration, Huntsville, AL

    1989-01-01

    The choice of quench gas can have a significant effect on the gas gain and energy resolution of gas-filed proportional counters. Details are given on the performance obtained with a variety of quench additives of varying ionization potentials for use in xenon-filled systems. It is confirmed that optimum performance is obtained when the ionization potential is closely matched to the first metastable level of xenon (8.3 eV) as is the case with xenon + trimethylamine and xenon + dimethylamine. For these mixtures the Penning effect is at its strongest. (orig.)

  11. Use of intraperitoneal xenon-133 for imaging of intestinal strangulation in small bowel obstruction. [Rats; Dogs

    Bulkley, G.B.; Gharagozloo, F.; Alderson, P.O.; Horn, S.D.; Zuidema, G.D.

    1981-01-01

    Intraperitoneal xenon-133 dissolved in saline solution was evaluated for the detection of early strangulation in a reproducible model of segmental intestinal obstruction in rats and dogs. There was a highly significant delay inexternally detected isotope washout from animals with strangulated loops compared with normal, sham operated and simple (nonstrangulated) obstruction control groups. Corresponding anterior abdominal gamma camera images showed marked retention of isotope at 1 hour in the strangulation obstruction groups and the sites of this activity corresponsed to the location of the ischemic loops. Blinded readings of these images by nuclear radiologists showed this method to be highly accurate for the detection of strangulation in these animal models. This method should be directly applicable to patients with intestinal obstruction.

  12. Use of intraperitoneal xenon-133 for imaging of intestinal strangulation in small bowel obstruction

    Bulkley, G.B.; Gharagozloo, F.; Alderson, P.O.; Horn, S.D.; Zuidema, G.D.

    1981-01-01

    Intraperitoneal xenon-133 dissolved in saline solution was evaluated for the detection of early strangulation in a reproducible model of segmental intestinal obstruction in rats and dogs. There was a highly significant delay inexternally detected isotope washout from animals with strangulated loops compared with normal, sham operated and simple (nonstrangulated) obstruction control groups. Corresponding anterior abdominal gamma camera images showed marked retention of isotope at 1 hour in the strangulation obstruction groups and the sites of this activity corresponsed to the location of the ischemic loops. Blinded readings of these images by nuclear radiologists showed this method to be highly accurate for the detection of strangulation in these animal models. This method should be directly applicable to patients with intestinal obstruction

  13. Appropriate xenon-inhalation speed in xenon-enhanced CT using the end-tidal gas-sampling method

    Suga, Sadao; Toya, Shigeo; Kawase, Takeshi; Koyama, Hideki; Shiga, Hayao

    1986-01-01

    This report describes some problems when end-tidal xenon gas is substituted for the arterial xenon concentration in xenon-enhanced CT. The authors used a newly developed xenon inhalator with a xenon-gas-concentration analyzer and performed xenon-enhanced CT by means of the ''arterio-venous shunt'' method and the ''end-tidal gas-sampling'' method simultaneously. By the former method, the arterial build-up rate (K) was obtained directly from the CT slices of a blood circuit passing through the phantom. By the latter method, it was calculated from the xenon concentration of end-tidal gas sampled from the mask. The speed of xenon supply was varied between 0.6 - 1.2 L/min. in 11 patients with or without a cerebral lesion. The results revealed that rapid xenon inhalation caused a discrepancy in the arterial K between the ''shunt'' method and the ''end-tidal'' method. This discrepancy may be responsible for the mixing of inhalated gas and expired gas in respiratory dead space, such as the nasal cavity or the mask. The cerebral blood flow was underestimated because of the higher arterial K in the latter method. Too much slow inhalation, however, was timewasting, and it increased the body motion in the subanesthetic state. Therefore, an inhalation speed of the arterial K of as much as 0.2 was ideal to represent the end-tidal xenon concentration for the arterial K in the ''end-tidal gas-sampling'' method. When attention is given to this point, this method may offer a reliable absolute value in xenon-enhanced CT. (author)

  14. Performance test of SAUNA xenon mobile sampling system

    Hu Dan; Yang Bin; Yang Weigeng; Jia Huaimao; Wang Shilian; Li Qi; Zhao Yungang; Fan Yuanqing; Chen Zhanying; Chang Yinzhong; Liu Shujiang; Zhang Xinjun; Wang Jun

    2011-01-01

    In this article, the structure and basic functions of SAUNA noble gas xenon mobile sampling system are introduced. The sampling capability of this system is about 2.2 mL per day, as a result from a 684-h operation. The system can be transported to designated locations conveniently to collect xenon sample for routine or emergency environment monitoring. (authors)

  15. A pulse generator for xenon lamps

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  16. Electron drift in a large scale solid xenon

    Yoo, J.; Jaskierny, W.F.

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon

  17. Krypton and xenon in lunar fines

    Basford, J. R.; Dragon, J. C.; Pepin, R. O.; Coscio, M. R., Jr.; Murthy, V. R.

    1973-01-01

    Data from grain-size separates, stepwise-heated fractions, and bulk analyses of 20 samples of fines and breccias from five lunar sites are used to define three-isotope and ordinate intercept correlations in an attempt to resolve the lunar heavy rare gas system in a statistically valid approach. Tables of concentrations and isotope compositions are given.

  18. Reliability and error analysis on xenon/CT CBF

    Zhang, Z.

    2000-01-01

    This article provides a quantitative error analysis of a simulation model of xenon/CT CBF in order to investigate the behavior and effect of different types of errors such as CT noise, motion artifacts, lower percentage of xenon supply, lower tissue enhancements, etc. A mathematical model is built to simulate these errors. By adjusting the initial parameters of the simulation model, we can scale the Gaussian noise, control the percentage of xenon supply, and change the tissue enhancement with different kVp settings. The motion artifact will be treated separately by geometrically shifting the sequential CT images. The input function is chosen from an end-tidal xenon curve of a practical study. Four kinds of cerebral blood flow, 10, 20, 50, and 80 cc/100 g/min, are examined under different error environments and the corresponding CT images are generated following the currently popular timing protocol. The simulated studies will be fed to a regular xenon/CT CBF system for calculation and evaluation. A quantitative comparison is given to reveal the behavior and effect of individual error resources. Mixed error testing is also provided to inspect the combination effect of errors. The experiment shows that CT noise is still a major error resource. The motion artifact affects the CBF results more geometrically than quantitatively. Lower xenon supply has a lesser effect on the results, but will reduce the signal/noise ratio. The lower xenon enhancement will lower the flow values in all areas of brain. (author)

  19. A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon

    Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien

    2018-05-01

    A small-scale, two-phase (liquid/gas) xenon time projection chamber ( Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal ^83{m} Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μ s. The relative energy resolution, σ /E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

  20. Ionization and scintillation of nuclear recoils in gaseous xenon

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  1. Actinide and Xenon reactivity effects in ATW high flux systems

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  2. Actinide and xenon reactivity effects in ATW high flux systems

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  3. Actinide and Xenon reactivity effects in ATW high flux systems

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  4. Modeling pulse characteristics in Xenon with NEST

    Mock, J; Stolp, D; Szydagis, M; Tripathi, M; Uvarov, S; Woods, M; Walsh, N; Barry, N; Kazkaz, K

    2014-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, the effects of the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, the ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors

  5. Xenon plasma with caesium as additive

    Stojilkovic, S.M.; Novakovic, N.V.; Zivkovic, L.M.

    1986-01-01

    The concentration dependence of xenon plasma with cesium as additive in the temperature range of 2000 K to 20,000 K is analyzed. Plasma is considered as weakly nonideal in complete local thermodynamic equilibrium and the interaction between plasma and vessel walls is not taken into account. The values of some of the parameters for nonideality of plasma with 1% of cesium (γ=0.01010) and 10% of cesium (γ=0.11111) are computed, for an initial pressure in plasma of p 0 =13,000 Pa and initial temperature T 0 =1000 K. The ratio of electric conductivity of plasma computed by Lorentz's formula and electric conductivity computed by Spitzer's formula in the same temperature interval is also analyzed. (author) 5 figs., 2 tabs., 16 refs

  6. Xenon plasma with caesium as additive

    Stojilkovic, S M; Novakovic, N V; Zivkovic, L M

    1986-01-01

    The concentration dependence of xenon plasma with cesium as additive in the temperature range of 2000 K to 20,000 K is analyzed. Plasma is considered as weakly nonideal in complete local thermodynamic equilibrium and the interaction between plasma and vessel walls is not taken into account. The values of some of the parameters for nonideality of plasma with 1% of cesium (..gamma..=0.01010) and 10% of cesium (..gamma..=0.11111) are computed, for an initial pressure in plasma of p/sub 0/=13,000 Pa and initial temperature T/sub 0/=1000 K. The ratio of electric conductivity of plasma computed by Lorentz's formula and electric conductivity computed by Spitzer's formula in the same temperature interval is also analyzed. (author) 5 figs., 2 tabs., 16 refs.

  7. Appropriate xenon-inhalation time in xenon-enhanced CT using the end-tidal gas-sampling method

    Asada, Hideo; Furuhata, Shigeru; Onozuka, Satoshi; Uchida, Koichi; Fujii, Koji; Suga, Sadao; Kawase, Takeshi; Toya, Shigeo; Shiga, Hayao

    1988-12-01

    For the end-tidal gas-sampling method of xenon-enhanced CT (Xe-CT), the respective functional images of K, lambda, and the regional cerebral blood flow (rCBF) were studied and compared using the data at 7-, 10-, 15- and 25-minute inhalations. The most appropriate inhalation time of xenon gas was evaluated in 14 clinical cases. An end-tidal xenon curve which represents the arterial xenon concentration was monitored with a xenon analyzer; the xenon concentration was gradually increased to a level of 50% by using a xenon inhalator with a closed circuit to prevent the overestimation of the xenon concentration sampled from the mask. Serial CT scans were taken over a period of 25 minutes of inhalation. The functional images of K, lambda, and rCBF were calculated for serial CT scans for 7, 10, 15 and 25 minutes using Fick's equation. Those various images and absolute values were then compared. The rCBF value of a 15-minute inhalation was approximately 15% greater than that of 25 minutes, while the values of K, lambda, rCBF from a 15-minute inhalation were significantly correlated to those from 25 minutes. The regression line made it possible to estimate 25-minute inhalation values from those of 15 minutes. In imaging, the rCBF mapping of the 15-minute inhalation was found to be more reliable than that of 25 minutes. This study suggests that the minimal time of xenon inhalation is 15 minutes for the end-tidal gas-sampling method. A longer inhalation may be necessary for the estimation of rCBF in the low-flow area, such as the white matter or the pathological region.

  8. Intraperitoneal xenon for the detection of early intestinal ischemia: effect of ascites, adhesions, and misdirected injections

    Gharagozloo, F.; Bulkley, G.B.; LaFrance, N.; Zuidema, G.D.

    1983-01-01

    Significant delay in the washout of intraperitoneal xenon ( 133 Xe) in rats and dogs with decreased splanchnic blood flow (bowel strangulation, superior mesenteric artery and vein occlusion) has been previously demonstrated as the basis for radionuclide imaging to detect early (prenecrotic) intestinal ischemia. In this study, the effect of ascites, adhesions, and misdirected injections on the validity of this technique is evaluated. Xenon-133 (0.6 mCi) in 3 ml saline was injected into the peritoneal cavity of anesthetized rats and the washout of gamma activity monitored externally for 90 min. Gamma camera images were obtained at 30-min intervals. After 60 min, only 12 +/- 2% of injected activity remained in the controls. Sham option (13 +/- 1%) and simple obstruction (12 +/- 2) had been previously shown not to significantly slow washout, but segmental strangulation had done so dramatically (32 +/- 2%, P less than 0.0001). In these experiments, ascitic fluid (Ringer's lactate) in volumes of 10 ml (13 +/- 1%), 20 ml (13 +/- 1%), and 40 ml (13 +/- 1%), did not significantly slow washout in nonischemic rats. Sixty and eighty milliliters produced very tense ascites and slight but significant delay in washout (14 +/- 1%, 17 +/- 1%, respectively, P less than 0.05). Moderate (11 +/- 1%) and severe (11 +/- 1%) adhesions produced by serosal scarification did not delay washout nor affect imaging. Injections of isotope intentionally misdirected into the abdominal wall (32 +/- 2%), bowel wall (18 +/- 1%), and bowel lumen (19 +/- 2%), each significantly (P less than 0.001) slowed washout. However, such misdirected injections were easily recognizable as such on the 1-min gamma camera images and could thereby be excluded as artifactual. It is concluded that the intraperitoneal xenon technique is not invalidated by mild to moderate ascites nor by moderate to severe adhesions

  9. Intraperitoneal xenon for the detection of early intestinal ischemia: effect of ascites, adhesions, and misdirected injections

    Gharagozloo, F.; Bulkley, G.B.; LaFrance, N.; Zuidema, G.D.

    1983-06-01

    Significant delay in the washout of intraperitoneal xenon (/sup 133/Xe) in rats and dogs with decreased splanchnic blood flow (bowel strangulation, superior mesenteric artery and vein occlusion) has been previously demonstrated as the basis for radionuclide imaging to detect early (prenecrotic) intestinal ischemia. In this study, the effect of ascites, adhesions, and misdirected injections on the validity of this technique is evaluated. Xenon-133 (0.6 mCi) in 3 ml saline was injected into the peritoneal cavity of anesthetized rats and the washout of gamma activity monitored externally for 90 min. Gamma camera images were obtained at 30-min intervals. After 60 min, only 12 +/- 2% of injected activity remained in the controls. Sham option (13 +/- 1%) and simple obstruction (12 +/- 2) had been previously shown not to significantly slow washout, but segmental strangulation had done so dramatically (32 +/- 2%, P less than 0.0001). In these experiments, ascitic fluid (Ringer's lactate) in volumes of 10 ml (13 +/- 1%), 20 ml (13 +/- 1%), and 40 ml (13 +/- 1%), did not significantly slow washout in nonischemic rats. Sixty and eighty milliliters produced very tense ascites and slight but significant delay in washout (14 +/- 1%, 17 +/- 1%, respectively, P less than 0.05). Moderate (11 +/- 1%) and severe (11 +/- 1%) adhesions produced by serosal scarification did not delay washout nor affect imaging. Injections of isotope intentionally misdirected into the abdominal wall (32 +/- 2%), bowel wall (18 +/- 1%), and bowel lumen (19 +/- 2%), each significantly (P less than 0.001) slowed washout. However, such misdirected injections were easily recognizable as such on the 1-min gamma camera images and could thereby be excluded as artifactual. It is concluded that the intraperitoneal xenon technique is not invalidated by mild to moderate ascites nor by moderate to severe adhesions.

  10. Radon depletion in xenon boil-off gas

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  11. Matrix of response functions for xenon gamma-ray detector

    Shustov, A.E.; Vlasik, K.F.; Grachev, V.M.; Dmitrenko, V.V.; Novikov, A.S.; P'ya, S.N.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.

    2014-01-01

    An approach of creation of response matrix using simulation GEANT4 gamma-ray Monte-Carlo method has been described for gamma-ray spectrometer based on high pressure xenon impulse ionization chamber with a shielding grid [ru

  12. XAS characterisation of xenon bubbles in uranium dioxide

    Martin, P. [CEA Cadarache, DEN/DEC/SESC/LLCC, Bat. 130, 13108 St. Paul Lez Durance (France)], E-mail: martinp@drncad.cea.fr; Garcia, P.; Carlot, G.; Sabathier, C.; Valot, C. [CEA Cadarache, DEN/DEC/SESC/LLCC, Bat. 130, 13108 St. Paul Lez Durance (France); Nassif, V. [CEA Grenoble, DSM/DRFMC/SP2M/NRS, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Proux, O. [Laboratoire de Geophysique Interne et Tectonophysique, UMR CNRS/Universite Joseph Fourier, 1381 rue de la Piscine, Domaine Universitaire, 38400 Saint-Martin-D' Heres (France); Hazemann, J.-L. [Institut Neel, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2008-06-15

    X-ray absorption spectroscopy experiments were performed on a set of uranium dioxide samples implanted with 10{sup 17} xenon cm{sup -2} at 800 keV (8 at.% at 140 nm). EXAFS measurements performed at 12 K showed that during implantation the gas forms highly pressurised nanometre size inclusions. Bubble pressures were estimated at 2.8 {+-} 0.3 GPa at low temperature. Following the low energy xenon implantation, samples were annealed between 1073 and 1773 K for several hours. Stability of nanometre size highly pressurized xenon aggregates in UO{sub 2} is demonstrated up to 1073 K as for this temperature almost no modification of the xenon environment was observed. Above this temperature, bubbles will trap migrating vacancies and their inner pressure is seen to decrease substantially.

  13. Distribution of xenon between gaseous and liquid CO2

    Ackley, R.D.; Notz, K.J.

    1976-10-01

    The distribution of xenon at low concentrations between gaseous and liquid CO 2 was measured over essentially the entire liquid range of CO 2 . These measurements involved using a collimated radiation-detection cell to determine the relative quantities of 133 Xe-traced xenon in the separate phases contained in a vertical cylinder under isothermal conditions. The results are expressed in terms of a distribution ratio (mole fraction of xenon in the gaseous phase divided by mole fraction of xenon in the liquid phase) which decreased from 7.53 at -54.8 0 C to 1.10 at 30.5 0 C. These data were used to calculate various other solubility-related quantities

  14. The unbearable lightness of being: CDMS versus XENON

    Frandsen, Mads T; McCabe, Christopher; Sarkar, Subir; Schmidt-Hoberg, Kai

    2013-01-01

    The CDMS-II collaboration has reported 3 events in a Si detector, which are consistent with being nuclear recoils due to scattering of Galactic dark matter particles with a mass of about 8.6 GeV and a cross-section on neutrons of about 2 x 10^-41 cm^2. While a previous result from the XENON10 experiment has supposedly ruled out such particles as dark matter, we find by reanalysing the XENON10 data that this is not the case. Some tension remains however with the upper limit placed by the XENON100 experiment, independently of astrophysical uncertainties concerning the Galactic dark matter distribution. We explore possible ways of ameliorating this tension by altering the properties of dark matter interactions. Nevertheless, even with standard couplings, light dark matter is consistent with both CDMS and XENON10/100.

  15. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  16. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is

  17. A new liquid xenon scintillation detector for positron emission tomography

    Chepel, V.Yu.

    1993-01-01

    A new positron-sensitive detector of annihilation photons filled with liquid xenon is proposed for positron emission tomography. Simultaneous detection of both liquid xenon scintillation and ionization current produces a time resolution of < 1 ns and a position resolution in the tangential direction of the tomograph ring is ∼ 1 mm and in the radial direction is ∼ 5 mm. The advantages of a tomograph with new detectors are discussed. New algorithms of Compton scattering can be used. (author)

  18. Nuclear structure studies of the neutron-rich Rubidium isotopes using Coulomb excitation

    Reiter, P; Blazhev, A A; Voulot, D; Meot, V H; Simpson, G S; Georgiev, G P; Gaudefroy, L; Roig, O

    We propose to study the properties of odd-mass neutron-rich rubidium isotopes by the Coulomb-excitation technique, using the Miniball array coupled to the REX-ISOLDE facility. The results from similar measurements from the recent years (e.g. for the odd-mass and the odd-odd Cu isotopes, IS435) have shown the strong potential in such measurements for gaining information both for single-particle-like and collective states in exotic nuclei. Since there is practically no experimental information for excited states in the odd-mass Rb isotopes beyond $^{93}$Rb, the present study should be able to provide new data in a region of spherical ($^{93}$Rb and $^{95}$Rb) as well as well-deformed nuclei ($^{97}$Rb and $^{99}$Rb). Of particular interest is the rapid shape change that occurs when going from $^{95}$Rb (${\\varepsilon}_{2}$=0.06) to $^{97}$Rb (${\\varepsilon}_{2}$=0.3). These results should be of significant astrophysical interest as well, due to the close proximity of the r-process path.

  19. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    Bricker, T.

    1994-01-01

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon's role in the reduction of polyatomic ions. 155 refs

  20. Study of regional lung ventilation and perfusion by xenon 133

    Lombard, Yves.

    1976-01-01

    The present work consists of a regional lung exploration after injection of xenon 133, dissolved in physiological serum, followed a few minutes later by that of 99m Tc-labelled serumalbumin microspheres. The aim is three fold: first of all to study perfusion and ventilation by xenon 133, next to compare the results obtained after xenon 133 and 99 m Tc-labelled microsphere injection, lastly to establish the value of the technique and its routine application. This examination has not solved all problems of lung exploration by xenon 133. For example we deliberately kept to intraveinous injection of the gas dissolved in physiological serum, leaving aside the breathing test. Xenon 133 scintigraphy in our opinion will not tend to replace 99m Tc-labelled microsphere scintigraphy, which has irreplaceable morphological qualities, but will serve as an excellent complement. The basic advantage of xenon 133 is the regional ventilation estimate it provides allowing any anomaly of the lung parenchyma to be located immediately or conversely the functional value of the healthy lung to be established with a view to a surgical removal of a diseased zone [fr

  1. Exposure mode study to xenon-133 in a reactor building

    Perier, Aurelien

    2014-01-01

    The work described in this thesis focuses on the external and internal dose assessment to xenon-133. During the nuclear reactor operation, fission products and radioactive inert gases, as 133 Xe, are generated and might be responsible for the exposure of workers in case of clad defect. Particle Monte Carlo transport code is adapted in radioprotection to quantify dosimetric quantities. The study of exposure to xenon-133 is conducted by using Monte-Carlo simulations based on GEANT4, an anthropomorphic phantom, a realistic geometry of the reactor building, and compartmental models. The external exposure inside a reactor building is conducted with a realistic and conservative exposure scenario. The effective dose rate and the eye lens equivalent dose rate are determined by Monte-Carlo simulations. Due to the particular emission spectrum of xenon-133, the equivalent dose rate to the lens of eyes is discussed in the light of expected new eye dose limits. The internal exposure occurs while xenon-133 is inhaled. The lungs are firstly exposed by inhalation, and their equivalent dose rate is obtained by Monte-Carlo simulations. A biokinetic model is used to evaluate the internal exposure to xenon-133. This thesis gives us a better understanding to the dosimetric quantities related to external and internal exposure to xenon-133. Moreover the impacts of the dosimetric changes are studied on the current and future dosimetric limits. The dosimetric quantities are lower than the current and future dosimetric limits. (author)

  2. Sensitivity of gaseous xenon ionisation chambers (1961); Sensibilite des chambres d'ionisation a xenon gazeux (1961)

    Schuhl, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [French] Il apparait interessant d'utiliser du xenon comme gaz dans une chambre d'ionisation destinee a mesurer un faisceau d'electrons ou de positons de faible intensite et de grande energie ou pour monitorer un faisceau de gamma. Dans les etudes des electrons de 5 a 50 MeV, le xenon permet de gagner un facteur 4,5 sur l'air pour la sensibilite d'une chambre d'ionisation. (auteur)

  3. Measurement of regional cerebral blood flow by xenon-enhanced computed tomography

    Nakagomi, Tadayoshi; Yoshimasu, Norio; Kim, Shi-in; Takano, Koichi; Segawa, Hiromu.

    1982-01-01

    Serial CT scanning was carried out during and after inhalation of 50% non-radioactive xenon in humans. Our results of this research was as follows; 1) In normal subjects, blood flow in gray matter was 82 +- 11 and that in white matter 24 +- 5 ml/100 gm/min. 2) The blood flow of the brain tumors was close to that of gray matter, whereas blood flow of edematous white matter surrounding the tumor was decreased. 3) The blood flow in cerebral infarctions was always decreased. Effect of STA-MCA bypass was also evaluated. 4) In cerebral arterio-venous malformations, the blood flow in the white matter surrounding nidus was not decreased. This method appeared to have several advantages over conventional isotope method and to provide useful clinical and research informations. (author)

  4. Improvements in or relating to trapping and reuse of radioactive xenon

    Bolmsjoe, M.S.; Persson, B.R.

    1981-01-01

    A method is described suitable for recovering, from a mixture of gases contaning radioactive xenon, a mixture of gases containing an increased concentration of radioactive xenon, which method comprises the steps of passing xenon-containing gas through a bed of activated charcoal to adsorb the xenon therein, thereafter heating the charcoal bed to a temperature within the range of from 200 to 400 0 C, passing a moisture-free sweep gas through the bed when heated to said temperature to desorb xenon therefrom and then collecting the xenon-containing gas thus formed. (author)

  5. Ethane-xenon mixtures under shock conditions

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  6. Optimization of Xenon Difluoride Vapor Delivery

    Sweeney, Joseph; Marganski, Paul; Kaim, Robert; Wodjenski, Mike; Gregg, John; Yedave, Sharad; Sergi, Steve; Bishop, Steve; Eldridge, David; Zou Peng

    2008-01-01

    Xenon difluoride (XeF 2 ) has been shown to provide many process benefits when used as a daily maintenance recipe for ion implant. Regularly flowing XeF 2 into the ion source cleans the deposits generated by ion source operation. As a result, significant increases in productivity have been demonstrated. However, XeF 2 is a toxic oxidizer that must be handled appropriately. Furthermore, it is a low vapor pressure solid under standard conditions (∼4.5 torr at 25 deg. C). These aspects present unique challenges for designing a package for delivering the chemistry to an ion implanter. To address these challenges, ATMI designed a high-performance, re-usable cylinder for dispensing XeF 2 in an efficient and reliable manner. Data are presented showing specific attributes of the cylinder, such as the importance of internal heat transfer media and the cylinder valve size. The impact of mass flow controller (MFC) selection and ion source tube design on the flow rate of XeF 2 are also discussed. Finally, cylinder release rate data are provided.

  7. Breakdown characteristics of xenon HID Lamps

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  8. Isotopic variations in primitive meteorites

    Clayton, R.N.; Chicago Univ., IL; Chicago Univ., IL

    1981-01-01

    The presence of large internal 16 O variability in ordinary chondrites greatly extends the range of meteorite types in which this phenomenon has been observed. These results may lead to identification of major gas and dust reservoirs in the cloud from which the Solar System formed. The demonstration that live 107 Pd was present in the differentiated parent bodies of some iron meteorites supports the million year time scale between a major nucleosynthetic event and Solar System formation, as implied by the presence of live 26 Al in carbonaceous chondrites. However, the variability of radiogenic 26 Mg abundances in these meteorites makes it clear that the data cannot be interpreted simply in terms of time variations. Models of nucleosynthesis for elements from calcium to the iron peak should be aided by the new observations of abundances of titanium isotopes. Progress has been made in establishing the carrier phases of isotopically anomalous xenon and krypton. The apparent location of anomalous xenon and 14 N-rich nitrogen in identical carriers supports the notion that nucleosynthetic anomalies in nitrogen are also present in Allende. (author)

  9. Strange Isotope Ratios in Jupiter

    Manuel, O.; Ragland, D.; Windler, K.; Zirbel, J.; Johannes, L.; Nolte, A.

    1998-05-01

    At the January AAS meeting, Dr. Daniel Goldin ordered the release of isotopic data from the 1995 Galileo probe into Jupiter. This probe took mass readings for mass numbers 2-150, which includes all of the noble gas isotopes. A certain few noble gas isotopes, specifically those at mass/charge = 21, 40, 78, 124, and 126, are difficult to distinguish from background, while interference causes some variation in signals for noble gas isotopes at mass/charge = 20, 22, 36, 38, 40, 80, 82, 83, 84 and 86. Some contamination was caused by incomplete adsorption of low mass hydrocarbons by Carbosieve, the material used in the concentration cells [Space Sci. Rev. 60, 120 (1992)]. Thus, preliminary results are most reliable in the high mass region that includes xenon. The Galileo Probe provided the first direct measurements from a planet with a chemical composition drastically different from Earth. Our preliminary analyses indicate that Jupiter contains Xe-X [Nature 240, 99 (1972)], which differs significantly from Earth's xenon. Xe-X and primordial He are tightly coupled on the microscopic scale of meteorite minerals [Science 195, 208 (1977); Meteoritics 15, 117 (1980)]. The presence today of Xe-X in the He-rich atmosphere of Jupiter suggests that the primordial linkage of Xe-X with He extended across the protosolar nebula, on a planetary scale [Comments Astrophys. 18, 335 (1997)]. Contamination by hydrocarbons and other gases does not necessarily remove light noble gases from further consideration. Currently, isolation of signals of these elements from interference continues and may result in the presentation of many other interesting observations at the conference.

  10. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  11. Output power characteristics of the neutral xenon long laser

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  12. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-01-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%. - Highlights: • Co-expansion setup is suitable for producing binary Xe/Ne clusters. • Appropriate temperature, pressure, and mixing ratios should be strictly controlled. • Low mixing ratio, Xe formed in the core and Xe/Ne interfacing in the outer shell. • High mixing ratio, only pure Xe clusters were detected.

  13. Converging xenon shock waves driven by megagauss magnetic fields

    Shearer, J.W.; Steinberg, D.J.

    1986-07-01

    We attempted to implode a conducting metal linear at high velocity, and our failure to do so led to switching, or rapidly transferring the field from pushing an aluminum conductor to snow-plowing a half-atmosphere of xenon gas. We successfully initiated convergent xenon gas shocks with the use of a magnetohydrodynamic switch and coaxial high-explosive, flux-compression generators. Principal diagnostics used to study the imploding xenon gas were 133 Xe radioactive tracers, continuous x-ray absorption, and neutron output. We compressed the xenon gas about five to sixfold at a velocity of 10 cm/μs at a radius of 4 cm. The snowplow efficiency was good; going from 13- to 4-cm radius, we lost only about 20% of the mass. The temperature of the imploded sheath was determined by mixing deuterium with the xenon and measuring the neutron output. Using reasonable assumptions about the amount, density, and uniformity of the compressed gas, we estimate that we reached temperatures as high as 155 eV. Energy-loss mechanisms that we encountered included wall ablation and Taylor instabilities of the back surface

  14. Muonium formation in xenon and argon up to 60 atmospheres

    Kempton, J.R.; Senba, M.; Arseneau, D.J.; Gonzalez, A.C.; Pan, J.J.; Tempelmann, A.; Garner, D.M.; Fleming, D.G.

    1991-01-01

    Results of muon polarization studies in xenon and argon up to 60 atm are reported. In argon for pressures up to 10 atm, the muon polarization is best explained by an epithermalcharge exchange model. Above this pressure, the decrease in P D and increase in P L are ascribed to charge neutralization and spin exchange reactions, respectively, in the radiolysis track. Measurements with Xe/He mixtures with a xenon pressure of 1 atm indicate that the lost polarization in the pure xenon at this pressure is due to inefficient moderation of the muon. As the pressure in pure xenon is increased above 10 atm, we find that P L remains roughly constant and P D begins to increase. The lost fraction may be due to the formation of a XeMu Van der Waals type complex, while P D is ascribed to XeMu + formation. This suggests that spur processes appear to be less important in xenon that in argon. (orig.)

  15. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  16. Dense xenon nanoplasmas in intense laser fields

    Hilse, P.; Moll, M.; Schlanges, M.; Bornath, Th.

    2010-01-01

    Complete text of publication follows. One reason for the on-going interest in laser-cluster interactions is the efficient absorption of the radiation energy of near-infrared femtosecond laser pulses by clusters. Consequently, in laser-cluster experiments the emission of highly charged ions, very energetic electrons, higher harmonics, fast fragments as well at strong x-rays in the multi-keV range is observed. The cluster response is highly nonlinear. Different theoretical models and simulations indicate that resonant collective absorption plays a central role. The rapid expansion of irradiated clusters is essential as, at a certain time, the cluster reaches the density fulfilling the resonance condition. This can occur during a single pulse. A better control can be achieved by dual-pulse laser excitation with varying time delay between two pulses. A further optimization is possible by pulse shaping which is a modern tool in laser experiments. With pulse shaping, the dynamics of the system determined by heating, ionization and expansion can be specifically affected. For an understanding of the underlying physical processes in the dynamics of laser-cluster interaction, a theoretical description is presented using a genetic algorithm and basing on the relatively simple nanoplasma model. Recently, experiments as well as calculations were performed for silver clusters. Highly charged silver ions could be produced very efficiently with a pulse structure consisting of a smaller pre-pulse followed by a larger main pulse. The focus of the present contribution is on xenon clusters and their different behavior compared to metallic clusters as silver. Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft via SFB 652.

  17. Krypton and xenon in Apollo 14 samples - Fission and neutron capture effects in gas-rich samples

    Drozd, R.; Hohenberg, C.; Morgan, C.

    1975-01-01

    Gas-rich Apollo 14 breccias and trench soil are examined for fission xenon from the decay of the extinct isotopes Pu-244 and I-129, and some samples have been found to have an excess fission component which apparently was incorporated after decay elsewhere and was not produced by in situ decay. Two samples have excess Xe-129 resulting from the decay of I-129. The excess is correlated at low temperatures with excess Xe-128 resulting from neutron capture on I-127. This neutron capture effect is accompanied by related low-temperature excesses of Kr-80 and Kr-82 from neutron capture on the bromine isotopes. Surface correlated concentrations of iodine and bromine are calculated from the neutron capture excesses.

  18. Single Ion Trapping for the Enriched Xenon Observatory

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  19. Occupational exposure to xenon-133 among hospital workers

    Deschamps, M.

    1984-11-01

    During procedures for pulmonary ventilation studies on patients in hospitals, xenon-133 may escape into ambient air. Measurements of air concentrations were required to permit an evaluation of the exposure to which hospital workers are subjected. Two complementary methods of in situ measurements of air concentrations were employed: a commercial air monitor and evacuated blood sampling tubes. Personal dosimeters (TLDs) were exposed simultaneously with the commercial air monitor, and the results were compared. This report presents the results of the measurements of air concentrations during studies on patients. Substantial leakage of xenon-133 was noted, but workers received less than the maximum permissible dose. Personal dosimeters do not permit accurate evaluation of the skin doses resulting from exposure to xenon-133; measurements of air concentrations are required for such evaluation. A number of procedures are recommended to minimize leakage and personnel exposure

  20. Observation and applications of single-electron charge signals in the XENON100 experiment

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are

  1. The high pressure xenon lamp as a source of radiation

    Heerdt, J.A. ter.

    1979-01-01

    An account is given of an investigation into the radiation properties of a commercially available high pressure xenon lamp (type XBO 900 W) in the spectral range 0.3 to 3 μm. The purpose of the study was to find out whether such a lamp can serve as a (secondary) standard of radiation in spectroscopic and radiometric measurements. The main advantades of the xenon lamp over other secondary standards such as the tungsten strip lamp and the anode of a carbon arc lamp are the high temperature of its discharge and the resulting strong radiation over a broad spectral range. (Auth.)

  2. Dual display of flow/lambda results in xenon CT

    Lindstrom, W.W.; Gruenaver, L.M.; Dinewitz, I.J.

    1989-01-01

    Measurement of cortical blood flow has always been limited by the unavoidable inclusion of white matter and sulcal cerebrospinal fluid (CSF) in selected regions of interest. Xenon CT gives clear separation of anatomy, but precise ROI tracing is time consuming. CSF and gray and white matter have differing xenon solubilities (lambda), however, so the authors produce two-dimensional histograms of flow/lambda values within an ROI encompassing the desired anatomy and select lambda subregions for tissue-specific quantitative flow/lambda means and deviations. They report how this display is dynamic, allowing the physician to roam around the anatomy at will, with 1-second statistical updating

  3. Isotopic anomalies and the early history of the solar system

    Begemann, F.

    1981-01-01

    Three elements are discussed in some detail. Inclusions from carbonaceous chondrites contain quite normal minerals where the oxygen is enriched by up to 5% in 16 O. The oxygen is neither in isotopic equilibrium with that of the bulk meteorites nor are the different minerals of a single inclusion isotopically homogenized. The xenon in acid-insoluble residues from carbonaceous chondrites contains at least two distinct anomalous components. One consists essentially of the middle-weight isotopes only; the abundance pattern is as expected for Xe produced in the s-process of nucleosynthesis. The second type is to some extent complementary to this s-xenon; it is characterized by an overabundance of the light and the heavy isotopes by up to 100%. Its origin is controversial. Direct production in a supernova has been suggested as well as a superposition of strongly mass-fractionated xenon, favouring the light isotopes, and fission xenon from the decay of (a) superheavy element (s), which in turn would presumably have to be produced in a supernova as well. Neon being more than 99% pure 22 Ne is most convincingly accounted for by in situ-decay of 2.6a 22 Na which implies a condensation of Na-bearing host phases within 10 years or so of the production of 22 Na. It is not clear at present whether this condensation took place in the expanding envelope of an exploding star or within the solar system, with the onset of the collapse of the pre-solar nebula being triggered by such an explosion. (orig./WL)

  4. Anomalous xenon in zone 13 Okelobondo

    Meshik, A.P.; Kehm, K.; Hohenberg, C.M.

    2000-01-01

    In situ laser extraction techniques were applied for the study of heavy noble gases in a polished section of Zone 13 from the natural nuclear reactor in Okelobondo. Three main mineral phases were identified in this polished section using SEM-EDX. The Xe and Kr isotopic structures were determined by multiple measurements in each of these phases. Twenty-four isotopic analyses of the gases extracted from two different U-rich phases revealed nearly normal fission spectra. All 9 analyses of a U-free phase, consisting mainly of alumophosphates, demonstrated an unusual isotopic composition ( 136 Xe/ 134 Xe/ 132 Xe/ 131 Xe/ 130 Xe 129 Xe/ 128 Xe = 1/1.25/1.73/0.89/0.0045/0.274/0) with concentrations ranging up to 10 -2 cm 3 STP/g. This is the highest Xe concentration ever measured in a natural material. Kr was also anomalous, although to a lesser extent. These results confirm the presence of Chemical Fractionation of Fission Xe (CFF-Xe) in the Okelobondo alumophosphates. CFF-Xe is a decay product of intermediate fission fragments that have migrated out of the U-rich host phases into adjacent U-free minerals. The CFF-Xe spectra in the alumophosphates are also accompanied by 130 Xe excesses, which are attributed to neutron capture on fissiogenic 129 I that apparently migrated out of the nearby U-rich minerals. The 130 Xe/ 129 Xe ratio allows one to estimate the thermal equivalent neutron dose of 1.1 x 10 21 n/cm 2 . The presence of an unknown fission component remarkably similar in composition to CFF-Xe can be inferred from the atmospheric and terrestrial data. This leads one to the hypothesis that the CFF process has operated on a global scale on the Earth

  5. Future xenon system operational parameter optimization

    Lowrey, J.D.; Eslinger, P.W.; Miley, H.S.

    2016-01-01

    Any atmospheric monitoring network will have practical limitations in the density of its sampling stations. The classical approach to network optimization has been to have 12 or 24-h integration of air samples at the highest station density possible to improve minimum detectable concentrations. The authors present here considerations on optimizing sampler integration time to make the best use of any network and maximize the likelihood of collecting quality samples at any given location. In particular, this work makes the case that shorter duration sample integration (i.e. <12 h) enhances critical isotopic information and improves the source location capability of a radionuclide network, or even just one station. (author)

  6. Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring

    Le Petit, G.; Cagniant, A.; Gross, P.; Achim, P.; Douysset, G.; Taffary, T.; Moulin, C.; Morelle, M.

    2013-01-01

    The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131m Xe, 133m Xe, 133 Xe and 135 Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX TM have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample

  7. Mass-independent isotope effects in chemical exchange reaction

    Nishizawa, Kazushige

    2000-01-01

    Isotope effects of some elements in chemical exchange reaction were investigated by use of liquid-liquid extraction, liquid membrane or chromatographic separation. Cyclic polyether was used for every method. All polyethers used in a series of the studies were made clear that they distinguished the isotopes not only by their nuclear masses but also by their nuclear sizes and shapes. Chromium isotopes, for example, were recognized to have enrichment factors being proportional to δ 2 > which is a parameter to show field shift or the nuclear size and shape of the isotope. It follows that the chromium isotopes are separated not by their masses but by their field shift effects. Nuclear spin also played a great role to separate odd mass number isotopes from even mass number isotopes in even atomic number elements. Contribution of the nuclear spin (I=3/2) of 53 Cr to total enrichment factor, ε 53/52 = -0.00028, for 53 Cr to 52 Cr was observed to be, ε spin = -0.0025. (author)

  8. Transition from linear to nonlinear sputtering of solid xenon

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1995-01-01

    Self-sputtering of solid xenon has been studied with molecular dynamics simulations as a model system for the transition from dominantly linear to strongly nonlinear effects. The simulation covered the projectile energy range from 20 to 750 eV. Within a relatively narrow range from 30 to 250 e...

  9. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    Reichard, S.; Lang, R.F.; McCabe, C.; Selvi, M.; Tamborra, I.

    2017-01-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the

  10. Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.

  11. Xenon tissue/blood partition coefficient for pig urinary bladder

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...

  12. Radon removal from gaseous xenon with activated charcoal

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); and others

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity v{sub Rn} of radon and v{sub Xe} of xenon in the trap with v{sub Rn}/v{sub Xe}=(0.96{+-}0.10) Multiplication-Sign 10{sup -3} at -85 Degree-Sign C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  13. Electric field measurements in a xenon discharge using Spark spectroscopy

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  14. Damage of copper by low energy xenon ions

    Babad-Zakhryapin, A.A.; Popenko, V.A.

    1988-01-01

    Changes in the copper crystal structure bombarded by xenon ions with 30-150 eV energy are studied. Foils of MOb copper mark, 10 mm in diameter and 100 μm thickness, are irradiated. The initial specimens are annealed in vacuum during 1 h at 900 K temperature. The specimens are bombarded by xenon ions in a water-cooled holder. A TE-O type accelerator serves as a xenon ion source. The ion energy varies within 30 to 150 eV range. The ion flux density is 8x10 16 ion/(cm 2 xs). It is shown that crystal structure variations at deep depths are observed not only at high (>1 keV), but at low ion energies down to several dozens of electronvolt as well. The crystal structure variation on copper irradiation by xenon ions with 30-150 eV energy is followed by formation of defects like dislocation loops, point defects in the irradiated target bulk

  15. Charge States of Krypton and Xenon in the Solar Wind

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  16. Commissioning of the XENON1T liquid level measurement system

    Geis, Christopher [Institut fuer Physik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2016-07-01

    Two-phase xenon time projection chambers (TPCs) have been operated very successfully in direct detection experiments for dark matter. This kind of detector uses liquid xenon as the sensitive target and is operated in two-phase (liquid/gas) mode, where the liquid level needs to be monitored and controlled with sub-millimeter precision. We present the installation, commissioning and first measurement data of two kinds of level meters operated in the XENON1T TPC: short level meters are three-plated capacitors measuring the level of the liquid-gas interface with a measurement range h∼5 mm and a resolution of ΔC/h∼1 pF/mm. The long level meters are cylindrical double-walled capacitors, measuring the overall filling level of the XENON1T TPC at a measurement range of h=1.4 m and a resolution of ΔC/h∼0.1 pF/mm. Further, we present the design and programming of the readout electronic based on the UTI chip by Smartec, which allows to read all six levelmeters simultaneously.

  17. Removing krypton from xenon by cryogenic distillation to the ppq level

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Santos, J. M. F. dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-05-01

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  18. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Joseph S Six

    Full Text Available Hyperpolarized (hp (129Xe and hp (83Kr for magnetic resonance imaging (MRI are typically obtained through spin-exchange optical pumping (SEOP in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129Xe MRI cumbersome. For hp (83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3/min. For hp (83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1 transition was observed and taken into account for the qualitative description of the SEOP process.

  19. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Six, Joseph S; Hughes-Riley, Theodore; Stupic, Karl F; Pavlovskaya, Galina E; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) (129)Xe and hp (83)Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129)Xe MRI cumbersome. For hp (83)Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129)Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129)Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3)/min. For hp (83)Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3)/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1) transition was observed and taken into account for the qualitative description of the SEOP process.

  20. A comparison of the economics of xenon 127, xenon 133 and krypton 81m for routine ventilation imaging of the lungs

    Nimmo, M.J.; Merrick, M.V.; Millar, A.M.

    1985-01-01

    The authors have compared the cost of providing routine lung ventilation scintigraphy using 127 Xe with other radioactive gases in 100 patients. The physical properties of 127 Xe permit a logical imaging sequence where a ventilation study is only carried out if indicated by perfusion scintigraphy which is performed first. With 133 Xe, all patients must be ventilated prospectively, or a preselection carried out based on radiographic appearances at the time of imaging. This results in a greater number of ventilation studies than with 127 Xe. Despite the greater cost per study of 127 Xe, the overall cost of providing a routine diagnostic service with this gas is no more than that of using 133 Xe in selected patients. The cost of ventilating all patients prospectively with 133 Xe is considerably greater than using 127 Xe only when indicated by abnormal perfusion images. If ventilation imaging is to be available at all times, either isotope of xenon costs very much less than 81 Krsup(m). It is concluded that 127 Xe is the radiopharmaceutical of choice for routine lung ventilation scintigraphy. (author)

  1. Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes

    Trennel, A.J.

    1997-11-01

    The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ( 99 Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department's plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed

  2. Isotopic clusters

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  3. Stable isotopes

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  4. Neutrino Experiment with a Xenon TPC

    \\textbf{Double beta decay without neutrino emission (0$\\upsilon$2$\\beta$)}, is the only process that may indicate wether neutrinos and antineutrinos are different or the same particle. It may happen for a dozen of nuclides. In this case neutrino would be the only known completely neutral fermion. However, the decay is expected to be extremely rare, much rarer that the already very rare (2$\\upsilon$2$\\beta$). In the latter two neutrinos and two electron are emitted, while only two electrons are emitted in the (0$\\upsilon$2$\\beta$) decay. Consequently, the sum of the electron energies have a well defined and known value in the latter case, while in the former has a continuous spectrum. The main experimental parameters are then the background index, BI, which is the number of counts due to background per unit energy interval (keV), unit isotope mass (kg) and unit live time (yr) in the known region of interest and the energy resolution (∆$\\textit{E}$ Full With Half Maximum). Indeed the total background for a gi...

  5. Isotope separation

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  6. Two-photon resonant, stimulated processes in krypton and xenon

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p→s, d→p, and f→d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p→s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs

  7. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.

  8. Ionization yield from electron tracks in liquid xenon

    Voronova, T.Ya.; Kipsanov, M.A.; Kruglov, A.A.; Obodovskij, I.M.; Pokachalov, S.G.; Shilov, V.A.; Khristich, E.B.

    1989-01-01

    Methods for calculating coefficients K β , characterizing ionization yield from electron track in liquid xenon are considered. K β calculation is conducted on the base of experimental data on K parameter characterizing ionization yield from a certain combination of photo-, Compton-and Auger electron tracks. K parameter measurements are conducted in liquid xenon at 170 K temperature within 10-30 keV gamma- and X radiation energy ranges. Calculated dependence of K β and K coefficients on the energy in a wide (5-500 keV) range is presented. K β values obtained can be applied for calculating the energy resolution of a gamma-spectrometer and linearity of its calibration characteristics if the electric field intensity in the spectrometer does not exceed some kV/cm

  9. Modal analysis of temperature feedback in oscillations induced by xenon

    Passos, E.M. dos.

    1976-01-01

    The flux oscillations induced by Xenon distribution in homogeneous thermal reactors are studied treating the space dependence through the modal expansion technique and the stability limits against power oscillations and spatial oscillations are determined. The effect of the feedbacks due to Xenon and temperature coefficient on the linear stability of the free system is investigated employing several number of terms in the transient expansion, considering the various sizes of the reactor. The heat transfer model considered includes one term due to cooling proportional to the temperature. A PWR model reactor is utilized for numerical calculations. It is found that a slightly higher temperature feedback coefficient is necessary for stability against power oscillations when larger number of terms in the transient modal expansion is maintained. (author)

  10. Search for magnetic inelastic dark matter with XENON100

    Aprile, E.; Anthony, M. [Physics Department, Columbia University, New York, NY 10027 (United States); Aalbers, J.; Breur, P.A.; Brown, A. [Nikhef and the University of Amsterdam, Science Park, 1098XG Amsterdam (Netherlands); Agostini, F.; Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 L' Aquila (Italy); Alfonsi, M. [Institut für Physik and Exzellenzcluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz (Germany); Amaro, F.D. [LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L. [Physik-Institut, University of Zurich, 8057 Zurich (Switzerland); Bauermeister, B.; Calvén, J. [Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, Stockholm SE-10691 (Sweden); Berger, T.; Brown, E. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Bruenner, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Budnik, R. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Bütikofer, L., E-mail: lukas.buetikofer@lhep.unibe.ch, E-mail: xenon@lngs.infn.it [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany); and others

    2017-10-01

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c{sup 2} and 122.7 GeV/c{sup 2} are excluded at 3.3 σ and 9.3 σ, respectively.

  11. Depth distribution of martensite in xenon implanted stainless steels

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Hayashi, N.; Sakamoto, I.

    1989-01-01

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  12. Dark matter sensitivity of multi-ton liquid xenon detectors

    Schumann, Marc; Bütikofer, Lukas; Baudis, Laura; Kish, Alexander; Selvi, Marco

    2015-01-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10 −49 cm 2 can be probed for WIMP masses around 40 GeV/c 2 . Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei

  13. Configuration interaction in charge exchange spectra of tin and xenon

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  14. Resonant four-wave mixing processes in xenon

    Yiu, Y.M.; Bonin, K.D.; McIlrath, T.J.

    1982-01-01

    Two-photon resonantly enhanced four-wave mixing processes in xenon involving the intermediate states were utilized to generate coherent VUV radiation at several discrete wavelengths between 125.9 nm and 101.8 nm. Maximum efficiencies of the order of 10-4 were achieved. The use of these processes for producing tunable VUV output with Xe is given and generation of tunable VUV using two-photon resonances in other rare gases is discussed

  15. Quench gases for xenon- (and krypton-)filled proportional counters

    Ramsey, B.D.; Agrawal, P.C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. We present results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases. (orig.)

  16. Application of xenon difluoride for surface modification of polymers

    Barsamyan, G.B.; Belokonov, K.V.; Vargasova, N.A.; Sokolov, V.B.; Chaivanov, B.B.; Zubov, V.P.

    1994-01-01

    Chemical interaction between xenon difluoride (XeF 2 ) and polymeric materials was investigated. It was shown that the reaction occurs on the surface of solid polymer layer and brings to chemical modification of the surface properties of the polymer leaving the bulk properties unchanged. The results of various analysis of the fluorinated samples (IR, FTIR-ATR, ESCA, bulk analysis etc) are presented. The mechanism of reaction is proposed. 12 refs.; 13 figs

  17. Two-dimensional readout in a liquid xenon ionisation chamber

    Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando

    2002-01-01

    A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.

  18. Measurement of xenon reactivity in the reactor of the nuclear ship 'MUTSU'

    Itagaki, Masafumi; Miyoshi, Yoshinori; Gakuhari, Kazuhiko; Okada, Noboru.

    1993-01-01

    This report deals with the measurement of reactivity changes caused by the increase and decrease of xenon concentration in the reactor core of the nuclear ship 'MUTSU' after a change from long-term operation at 70 % to zero power. The change in xenon reactivity was compensated by control-rod movements and the compensated reactivity was measured using a digital reactivity meter. The xenon override peak was recognized five and half hours after the start of power reduction. The equilibrium and peak reactivities of xenon were estimated by reading the initial and peak values of a theoretical curve which was fitted to the measured variation in xenon reactivity. The xenon reactivity results obtained by the present method can be considered to be accurate since no control-rod worth data were used and the measured quantity was the reactivity itself. (author)

  19. Observation of a barium xenon exciplex within a large argon cluster.

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  20. Molecular MRI based on hyper-polarized xenon

    Tassali, Nawal

    2012-01-01

    Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyper-polarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129 Xe MRI-based sensors for the detection of biological events. In this approach, hyper-polarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyper-polarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyper-polarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented. (author) [fr

  1. Build up of Radioactive Krypton and Xenon Analysis System

    Lee, D. K.; Choi, C. S.; Chung, K. H.; Lee, W.; Cho, Y. H.; Lee, C. W.

    2008-03-01

    The objective of this project is to build up an analysis system to measure the activity of the atmospheric radioactive krypton and xenon in Korea. The work scopes of the project include the purchase and the installation of the analysis system to measure the activity of the radioactive krypton and xenon in air, and the establishment of the operation capability of the system through the training of the operator. The system consists of two air sampling systems, and one radioactivity analysis system, which incorporates the enrichment system, the gas chromatography to purify a mixture gas, and the gas proportional counter to count the activity of pure krypton and xenon gas. As planned originally, the establishment of the analysis system has been completed. At present, one air sampler is successfully being operated at a specific site of the South Korea to measure the background radioactivities of Kr-85 and Xe-133 in air. The other air sampler is being reserved at the KAERI in the Daejeon for a emergency like the second nuclear test of the North Korea. During the normal time, the reserved air sampler will be used to collect the air sample for the performance test of the analysis system and the cross analysis for the calibration of the system. The radioactivity analysis system has been installed at the KAERI, and is being used to measure the activity of Kr-85 and Xe-133 in the air sample from a domestic site

  2. Process for recovering xenon from radioactive gaseous wastes

    Kishimoto, Tsuneo.

    1980-01-01

    Purpose: To recover pure xenon economically and efficiently by amply removing radioactive krypton mixed in xenon without changing the rectifying capacity of an xenon rectifying system itself. Method: Xe containing radioactive Kr(Kr-85) is rectified to reduce the concentration of radioactive Kr. Thereafter, non-radioactive Kr or Ar is added to Xe and further the rectification is carried out. The raw material Xe from the Xe adsorption system of, for example, a radioactive gaseous waste disposal system is cooled to about 100 0 C by a heat-exchanger and thereafter supplied to a rectifying tower to carry out normal rectification of Xe thereby to reduce the concentration of Kr contained in Xe at the tower bottom to the rectification limit concentration. Then, non-radioactive Kr is supplied via a precooler to the tower bottom to continue the rectification, thus the Xe fractions at the tower bottom, in which the concentration of radioactive Kr is reduced, being compressed and recovered. (Kamimura, M.)

  3. NMR investigations of surfaces and interfaces using spin-polarized xenon

    Gaede, H.C.; Lawrence Berkeley Lab., CA

    1995-07-01

    129 Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129 Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 10 5 times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13 C signal of CO 2 of xenon occluded in solid CO 2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ∼1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6

  4. Lambda-guided calculation method (LGC method) for xenon/CT CBF

    Sase, Shigeru [Anzai Medical Co., Ltd., Tokyo (Japan); Honda, Mitsuru; Kushida, Tsuyoshi; Seiki, Yoshikatsu; Machida, Keiichi; Shibata, Iekado [Toho Univ., Tokyo (Japan). School of Medicine

    2001-12-01

    A quantitative CBF calculation method for xenon/CT was developed by logically estimating time-course change rate (rate constant) of arterial xenon concentration from that of end-tidal xenon concentration. A single factor ({gamma}) was introduced to correlate the end-tidal rate constant (Ke) with the arterial rate constant (Ka) in a simplified equation. This factor ({gamma}) is thought to reflect the diffusing capacity of the lung for xenon. When an appropriate value is given to {gamma}, it is possible to calculate the arterial rate constant (Calculated Ka) from Ke. To determine {gamma} for each xenon/CT CBF examination, a procedure was established which utilizes the characteristics of white matter lambda; lambda refers to xenon brain-blood partition coefficient. Xenon/CT studies were performed on four healthy volunteers. Hemispheric CBF values (47.0{+-}9.0 ml/100 g/min) with use of Calculated Ka were close to the reported normative values. For a 27-year-old healthy man, the rate constant for the common carotid artery was successfully measured and nearly equal to Calculated Ka. The authors conclude the method proposed in this work, lambda-guided calculation method, could make xenon/CT CBF substantially reliable and quantitative by effective use of end-tidal xenon. (author)

  5. Lambda-guided calculation method (LGC method) for xenon/CT CBF

    Sase, Shigeru; Honda, Mitsuru; Kushida, Tsuyoshi; Seiki, Yoshikatsu; Machida, Keiichi; Shibata, Iekado

    2001-01-01

    A quantitative CBF calculation method for xenon/CT was developed by logically estimating time-course change rate (rate constant) of arterial xenon concentration from that of end-tidal xenon concentration. A single factor (γ) was introduced to correlate the end-tidal rate constant (Ke) with the arterial rate constant (Ka) in a simplified equation. This factor (γ) is thought to reflect the diffusing capacity of the lung for xenon. When an appropriate value is given to γ, it is possible to calculate the arterial rate constant (Calculated Ka) from Ke. To determine γ for each xenon/CT CBF examination, a procedure was established which utilizes the characteristics of white matter lambda; lambda refers to xenon brain-blood partition coefficient. Xenon/CT studies were performed on four healthy volunteers. Hemispheric CBF values (47.0±9.0 ml/100 g/min) with use of Calculated Ka were close to the reported normative values. For a 27-year-old healthy man, the rate constant for the common carotid artery was successfully measured and nearly equal to Calculated Ka. The authors conclude the method proposed in this work, lambda-guided calculation method, could make xenon/CT CBF substantially reliable and quantitative by effective use of end-tidal xenon. (author)

  6. Iodine-129 in thyroids and tellurium isotopes in meteorites by neutron activation analysis

    Ballad, R.V.

    1978-06-01

    A combination of neutron activation and mass spectrometry has been used to determine the concentration of fissiogenic 129 I and the value of the 129 I/ 127 I ratio in thyroids of man, cow, and deer from Missouri. Deer thyroids show an average value of 129 I/ 127 I = 1.8 x 10 -8 and an average concentration of 3 x 10 -3 pCi 129 I per gram of thyroid (wet weight). Thyroids of cows and humans show successively lower values for the 129 I/ 127 I ratio and the 129 I content because their diets dilute fission-produced 129 I in the natural iodine cycle with mineral iodine. The results of analyses on a few thyroids from other geographic areas are also reported. The isotopic compositions of tellurium, krypton, and xenon were determined in acid-resistant residues of the Allende meteorite. Neutron activation and γ-counting were used to determine the relative abundances of six tellurium isotopes, and mass spectrometry was used to determine the isotopic compositions of krypton and xenon in aliquots of the same residues. Nucleogenetic anomalies were observed in the isotopic compositions of these three elements. The presence of isotopically distinct components of tellurium, krypton, and xenon in these residues provides strong support for the suggestion that our solar system formed directly from the debris of a supernova

  7. Characterization of UV-enhanced SiPMs for Imaging in High Pressure Xenon Electroluminescent TPC

    Yahlali, Nadia; Lorca, David; Fernandes, L.M.P.

    2013-06-01

    The possibility of recording charged particle tracks in an electro-luminescent xenon gas TPC is investigated using a SiPM-based tracking system, operated in the demonstrator prototype of the NEXT-100 ββ decay experiment. The tracks of the ββ0ν events from the decay of the 136 Xe isotope have a distinctive topology, which allows their discrimination against single-electron events from the natural radioactivity that populates the region of interest of the neutrinoless decay in the ββ energy spectrum. Combined to the near-intrinsic energy resolution of the gaseous detector, this tracking capability provides a powerful background rejection tool for the search of the neutrinoless ββ decay aimed by the experiment. The NEXT-100 detector concepts and sensitivity and the first results of its demonstrator prototype are presented. The characterization studies relevant for the operation of UV-enhanced SiPMs used for imaging in an electro-luminescent TPC are reviewed. (authors)

  8. The use of intraperitoneal xenon for early diagnosis of acute mesenteric ischemia

    Gharagozloo, F.; Bulkley, G.B.; Zuidema, G.D.; O'Mara, C.S.; Alderson, P.O.

    1984-01-01

    We evaluated the technique of intraperitoneal use of xenon Xe 133, previously described for the diagnosis of early intestinal strangulation obstruction in rats and dogs, for the recognition of acute mesenteric vascular occlusion in these animals. 133 Xe was injected intraperitoneally into five groups of six rats: control, sham operation, superior mesenteric artery (SMA) ligation, superior mesenteric vein ligation, and portal vein ligation. Residual gamma-activity was monitored by external counting and camera imaging. At 30 minutes after injection, the activity was significantly higher in the rats from the three groups with vascular ligation than in the control and sham operation animals (P less than 0.001). gamma-Camera images reflected these findings, with positive images only in the rats that underwent vascular ligation. ''Blinded'' readings of the 30 sets of scans confirmed the diagnostic accuracy of the images. Results were essentially the same in a second series of experiments in eight control dogs and six dogs with balloon occlusion of the SMA. Concentrations of isotope in ischemic intestine ranged from 10(3) to 10(5) times the levels in adjacent normal bowel. These levels and the positive images appeared early, prior to the development of tissue necrosis. The intraperitoneal use of 133 Xe therefore continues to show promise for the recognition of patients with early intestinal ischemia

  9. The use of intraperitoneal xenon for early diagnosis of acute mesenteric ischemia

    Gharagozloo, F.; Bulkley, G.B.; Zuidema, G.D.; O' Mara, C.S.; Alderson, P.O.

    1984-04-01

    We evaluated the technique of intraperitoneal use of xenon Xe 133, previously described for the diagnosis of early intestinal strangulation obstruction in rats and dogs, for the recognition of acute mesenteric vascular occlusion in these animals. /sup 133/Xe was injected intraperitoneally into five groups of six rats: control, sham operation, superior mesenteric artery (SMA) ligation, superior mesenteric vein ligation, and portal vein ligation. Residual gamma-activity was monitored by external counting and camera imaging. At 30 minutes after injection, the activity was significantly higher in the rats from the three groups with vascular ligation than in the control and sham operation animals (P less than 0.001). gamma-Camera images reflected these findings, with positive images only in the rats that underwent vascular ligation. ''Blinded'' readings of the 30 sets of scans confirmed the diagnostic accuracy of the images. Results were essentially the same in a second series of experiments in eight control dogs and six dogs with balloon occlusion of the SMA. Concentrations of isotope in ischemic intestine ranged from 10(3) to 10(5) times the levels in adjacent normal bowel. These levels and the positive images appeared early, prior to the development of tissue necrosis. The intraperitoneal use of /sup 133/Xe therefore continues to show promise for the recognition of patients with early intestinal ischemia.

  10. Further studies of neutron-deficient Sn-isotopes using REX-ISOLDE

    Larsen, A; Syed naeemul, H; Siem, S

    2007-01-01

    Encouraged by the committee to submit the latter part of our latest addendum to experiment IS418 under a new heading this proposal focuses on the second physics case mentioned there. We propose to use Coulomb excitation of odd mass neutron-deficient Sn isotopes to study some dominantly "one quasi-particle" states in these nuclei. Due to spin selection rules these states are difficult to populate following either $\\beta$-decay or in a cascade after a fusion-evaporation reactions, whereas the excitation from the ground-state is of E2 character for some of the most interesting cases.

  11. IBFA description of high-spin positive-parity states in Rh isotopes

    Bucurescu, D.; Cata, G.; Cutoiu, D.; Constantinescu, G.; Ivascu, M.; Zamfir, N.V.

    1985-01-01

    Properties of the odd-mass Rh isotopes are investigated in the framework of the interacting boson-fermion approximation (IBFA) model in which the odd proton moves in the 1gsub(9/2) and 2dsub(5/2) orbitals. Lifetimes of some high-spin positive-parity states in 99 Rh obtained by the recoil-distance method with the 88 Sr( 14 N,3n) reaction are also reported. Calculated excitation energies and electromagnetic properties of the high-spin positive-parity states are compared with experiment and an acceptable agreement is obtained. (orig.)

  12. Medical Isotope Program: O-18, C-13, and Xe-129 Final Report CRADA No. TC-2043-02

    Scheibner, K. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fought, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Spectra Gases, Inc., to develop new and cheaper sources of Oxgyen-18 (O-18), Carbon-13 (C-13), and Xenon-129 (Xe-129), and to develop new applications of these stable medical isotopes in medicine resulting in a substantial increase in stable isotopes that are important to human health sciences.

  13. Isotope enrichment

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  14. The nickel isotopes in a generalized-seniority approach

    Monnoye, O.; Van Isacker, P.; Pittel, S.; Bennett, J.

    2002-01-01

    The nickel isotopes exist over a wide range of neutron numbers, extending from proton-rich to very neutron-rich nuclei. We report here a consistent study of the odd-mass Z = 28 nuclei in the full p∫ + g 9/2 shell using the generalized-seniority shell model. We include up to three unpaired nucleons in the odd sector and up to two in the even sector. We also report related results for the odd-mass 69 Cu and odd-odd 66 Co nuclei. Our calculations make use of a realistic shell-model interaction, whose monopole part has been renormalized to fit the properties of nuclei near closed shells. The calculated results are in good global agreement with experimental data and contain some evidence for the persistence of the N = 40 sub-shell closure around 68 Ni. The results demonstrate the importance of keeping the entire p∫ + g 9/2 space as active, both for neutrons and protons. (authors)

  15. Mitigation of {sup 222}Rn induced background in the XENON1T dark matter experiment

    Bruenner, Stefan A.

    2017-07-05

    {sup 222}Rn is a major source of background in many rare-event experiments such as the XENON1T dark matter search. The noble gas radon is created by radioactive decay inside all detector materials and emanates into the sensitive liquid xenon target disabling any detector shielding. Subsequent beta-decays of radon progenies are the dominant source of background in the XENON1T experiment. In order to mitigate radon induced background the detector's construction materials have been selected according to dedicated {sup 222}Rn emanation measurements. In the first part of this thesis, we summarize the results of the XENON1T radon screening campaign and present the measurement of the integral radon emanation rate of the fully assembled detector. The development of a radon removal system which continuously purifies the liquid xenon target from the emanated radon is the topic of the second part of this thesis. In order to demonstrate the suitability of cryogenic distillation as a technique to separate radon from xenon, we developed an experimental setup to measure the depletion of radon in xenon boil-off gas after a single distillation step. In the last part of the thesis, we demonstrate the operation of a radon removal system for the XENON100 experiment. For this first test employing a running dark matter detector, we integrated a multiple stage, cryogenic distillation column in the XENON100 gas purification loop. From the evolution of the radon concentration in XENON100, we investigate the distillation column's radon removal capability and discuss the design and application of a radon removal system for XENON1T and the upcoming XENONnT experiment.

  16. Stable isotopes

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  17. Isotope separation

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  18. Calculation of xenon-oscillations in the HPLWR

    Reiss, T.; Feher, S.; Czifrus, Sz.

    2009-01-01

    The European version of the Supercritical Water Cooled Reactor (SCWR) is being developed under the name High Performance Light Water Reactor (HPLWR). In the most recent design, a three-pass core is foreseen with a heat-up of the coolant (supercritical pressure water) from 280degC to 500degC. Due to the operating pressure of 25 MPa, there is no phase change in the core but the density drop of the coolant can be as high as one order of magnitude. This results in a system which is sensitive to local temperature, power and density oscillations. This attribute is enhanced by the pseudocritical transformation of supercritical pressure water. Due to the relatively large dimensions of the core, xenon-oscillations are probable. The characteristic time of this process is several hours, thus a coupled quasi-stationary neutronics-thermohydraulics (CQNT) code completed with the xenon poisoning differential equations (XPDE) can predict the extent of xenon-oscillations. A program system is being developed at the Budapest University of Technology which is capable to perform full core CQNT calculations including the XPDE. The program system is designed to calculate one-pass (which was the first core proposal for HPLWRs, today called PWR-SC) and three-pass cores. The CQNT code is made up of an MCNP part (neutronics part) and of a thermohydraulics part developed at our Institute. Since full core MCNP calculations are very time consuming, upon symmetry considerations only one eighth of the core is modelled. On the other hand, this approach of modelling momentarily limits the phenomena which can be studied to axial oscillations. (author)

  19. Heat capacity of xenon adsorbed in nanobundle grooves

    Chishko, K.A.; Sokolova, E.S.

    2016-01-01

    A model of one-dimensional real gas under external transverse force field is applied to interpret the experimentally observed thermodynamical properties of xenon deposited into groves on the surface of carbon nanobundles. This non-ideal gas model with pair interaction is not quite adequate to describe the dense adsorbates (especially at low temperature limit), but it makes possible to take into account easily the particle exchange between 1D adsorbate and 3D atmosphere which becomes an essential factor since intermediate (for xenon - of order 35 K) up to high (approx 100 K) temperatures. In this paper we treat the 1D real gas with only Lennard-Jones pair interaction, but at presence of exact equilibrium conditions on the atom numbers between low-dimensional adsorbate and three-dimensional atmosphere of the experimental cell. The low-temperature branch of the heat capacity has been fitted separately within the elastic atomic chain model to get the best agreement between theory and experiment in as wide as possible region just from zero temperature. The gas approximation is introduced from the temperatures where the chain heat capacity tends definitely to 1D equipartition law. In this case the principal parameters for both models can be chosen in such a way that the heat capacity C(T) of the chain goes continuously into the corresponding curve of the gas approximation. So, it seems to be expected that adequate interpretation for temperature dependences of the atomic adsorbate heat capacity can be obtained through a reasonable combination of 1D gas and phonon approaches. The principal parameters of the gas approximation (such a desorption energy) found from the fitting between theory and experiment for xenon heat capacity are in good agreement with corresponding data known in literature.

  20. Determination of atmospheric concentrations of xenon radioisotopes. Progress report

    Abel, K.H.; Panisko, M.E.; Hensley, W.K.; Bowyer, T.W.; Perkins, R.W.

    1995-07-01

    Determination of radioactive xenon concentrations in the atmosphere over a two year period has been performed as part of a research program to develop real-time measurement capabilities. The initial measurements were made to develop, prove, and validate the authors technical approach, while the longer-term measurements are being undertaken to establish natural background concentrations and variability with time. The results reported were made using noble gas fraction (typically 90% Kr and 10% Xe by weight) gas samples obtained from a commercial air-reduction plant in the northeastern US over a two-year interval beginning in the fall of 1993. The concentrated gas samples were typically obtained during a 6--8 hour interval at the commercial reduction plant and were shipped overnight to their laboratory. Analysis was typically completed approximately 24 hours after sampling. The analytical separation process typically took approximately 6 hours and gamma-ray spectrometric measurements were conducted for intervals ranging from 3 to 16 hours. The technical approach involved removal of potentially interfering radon daughter radionuclides using a molecular sieve at room temperature, followed by cryogenic concentration of noble gases using a chilled (-76 C) activated carbon molecular sieve. During initial measurements both molecular sieve materials were contained in 30 foot x 1/4 inch gas chromatography columns for analytical separations. Krypton was separated from Xenon during the analytical procedure by warming the activated carbon molecular sieve to room temperature after initial noble gas concentration and actively pumping it away. Xenon-133 adsorbed to the activated charcoal molecular sieve was then quantified via its 81 keV gamma-ray using initially a p-type intrinsic germanium detector and later a higher efficiency (64% relative to a 3 inch x 3 inch sodium iodide) n-type intrinsic germanium detector

  1. Effect of capacitor loss on discharging characteristics of xenon flash lamp

    Zhang Chu; Lin Dejiang; Xu Chunmei; Shen Hongbin; Chen Xiaohan

    2012-01-01

    The effect of storage capacitor's loss on the discharging characteristics of the xenon flash lamp was studied, and the xenon flash lamp discharging circuit was analyzed and improved. The capacitor can be equivalent to a series of an ideal capacitor and loss resistance. The improved formula of the xenon lamp discharging characteristics was given when actual capacitance loss is not zero, and the xenon lamp discharging current and discharging power are calculated and analyzed in detail with the increase of the capacitor loss. The results show that the increase of loss will lead to the decrease of xenon lamp discharging current and peak power and the xenon lamp flash time, and influence laser pumping efficiency. The loss will also lead to the capacitor inverse charging in LC discharging circuit; this will influence normal working of the capacitor and decrease the lift of the xenon lamp. The actual energy storage capacitor charging and discharging experiments show that the increase of capacitor loss will lead to the decrease of xenon lamp light-emitting waveform peak, shortening of the flash time and increase of the electrode sputter, thus verity, the reasonableness of theoretical analysis. In addition, the experiments show that environmental factors have very significant impact on the increase of the storage capacitor loss. (authors)

  2. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  3. Dynamic adsorption property of xenon on activated carbon and carbon molecular sieves

    Feng Shujuan; Zhou Guoqing; Jin Yuren; Zhou Chongyang

    2010-01-01

    In order to select well adsorptive xenon adsorbent, the dynamic adsorption property of xenon on activated carbon and carbon molecular sieves (CMS) was studied by measuring the xenon dynamic adsorption coefficient as a function velocity of gas, temperature, carrier gas, pressure and concentration of CO 2 . The results show that the highest value of xenon dynamic adsorption coefficient is on CMS1, and the second highest value is on CMS2; when the xenon concentration is less than 10 -5 mol/L or concentration of CO 2 is less than 5 x 10 -5 mol/L, the xenon dynamic adsorption coefficient nearly keeps constant at the specific experimental flow rate. Then the xenon dynamic adsorption coefficient would vary when it was mixed with different kind of carrier gas and become less at more than 5 x 10 -5 mol/L concentration of CO 2 . And the maximal effect factors are temperature and pressure. Therefore, the feasible measures to improve the xenon capability are to cool the adsorbent and increase adsorption pressure. (authors)

  4. XENON-133 IN CALIFORNIA, NEVADA, AND UTAH FROM THE CHERNOBYL ACCIDENT (JOURNAL VERSION)

    The accident at the Chernobyl nuclear reactor in the USSR introduced numerous radioactive nuclides into the atmosphere, including the noble gas xenon-133. EPA's Environmental Monitoring Systems Laboratory, Las Vegas, NV, detected xenon-133 from the Chernobyl accident in air sampl...

  5. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company

  6. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  7. Mechanism for transient migration of xenon in UO2

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.

    2011-01-01

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO 2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice.

  8. Determination of BEACON Coupling Coefficients using data from Xenon transient

    Bozic, M.; Kurincic, B.

    2007-01-01

    NEK uses BEACO TM code (BEACO TM - Westinghouse Best Estimate Analyzer for Core Operating Nuclear) for core monitoring, analysis and core behaviour prediction. Coupling Coefficients determine relationship between core response and excore instrumentation. Measured power distribution using incore moveable detectors during Xenon transient with sufficient power axial offset change is the most important data for further analysis. Classic methodology and BEACO TM Conservative methodology using established Coupling Coefficients are compared on NPP Krsko case. BEACON TM Conservative methodology with predefined Coupling Coefficients is used as a surveillance tool for verification of relationship between core and excore instrumentation during power operation. (author)

  9. Regional study of ventilation with inhaled xenon 133 in children

    Gaultier, C.; Mensch, B.; Gerbeaux, J.

    1975-01-01

    A regional exploration of pulmonary ventilation in a population of 104 infants and children by a study of distribution and washout of xenon 133 inhaled with rebreathing is carried out. The results are expressed by photographs (gamma-camera) and time-activity curves. The indications for regional exploration were oriented by the existence on the straight X-ray film of a localised ventilation disorder (a hyperlucent area or an opacity). This study permitted physiopathological analysis and guided endobronchial examinations. The functional results obtained, complete and explain other methods of exploration of lung function by spirography, ventilatory mechanics, transthoracic electrical measurements and study of lung perfusion with technetium 99m [fr

  10. Scintillation efficiency of nuclear recoil in liquid xenon

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  11. Study of regional lung function with xenon 133

    Devaux, D.; Wagner, R.; Germain, M.; Chardon, G.

    1975-01-01

    Exploration of regional lung function includes study of the closed circuit perfusion and ventilation respectively by injection and inhalation of xenon 133. The radiation is measured across the chest using 4 fixed scintillation counters, placed opposite the subject's back, 2 per lung field. Theoretical regional values using 15 normal young subjects are determined. Three cases justified the practical interest of this method. The percentage of variation for the parameters studied was about 10%. The method proved very useful for the clinician to whom it provides a numerical assessment of regional ventilation and perfusion [fr

  12. Hyperpolarized Xenon Nuclear Magnetic Resonance (NMR of Building Stone Materials

    Michele Mauri

    2012-09-01

    Full Text Available We have investigated several building stone materials, including minerals and rocks, using continuous flow hyperpolarized xenon (CF-HP NMR spectroscopy to probe the surface composition and porosity. Chemical shift and line width values are consistent with petrographic information. Rare upfield shifts were measured and attributed to the presence of transition metal cations on the surface. The evolution of freshly cleaved rocks exposed to the atmosphere was also characterized. The CF-HP 129Xe NMR technique is non-destructive and it could complement currently used techniques, like porosimetry and microscopy, providing additional information on the chemical nature of the rock surface and its evolution.

  13. The adsorption of argon, krypton and xenon on activated charcoal

    Underhill, D.W.

    1996-01-01

    Charcoal adsorption beds are commonly used to remove radioactive noble gases from contaminated gas streams. The design of such beds requires the adsorption coefficient for the noble gas. Here an extension of the Dubinin-Radushkevich theory of adsorption is developed to correlate the effects of temperature, pressure, concentration, and carrier gas on the adsorption coefficients of krypton, xenon, and argon on activated carbon. This model is validated with previously published adsorption measurements. It accurately predicts the equilibrium adsorption coefficient at any temperature and pressure if the potential energies of adsorption, the micropore volume, and the van der Waals constants of the gases are known. 18 refs., 4 figs

  14. Automatic control logics to eliminate xenon oscillation based on Axial Offsets Trajectory Method

    Shimazu, Yoichiro

    1996-01-01

    We have proposed Axial Offsets (AO) Trajectory Method for xenon oscillation control in pressurized water reactors. The features of this method are described as such that it can clearly give necessary control operations to eliminate xenon oscillations. It is expected that using the features automatic control logics for xenon oscillations can be simple and be realized easily. We investigated automatic control logics. The AO Trajectory Method could realize a very simple logic only for eliminating xenon oscillations. However it was necessary to give another considerations to eliminate the xenon oscillation with a given axial power distribution. The other control logic based on the modern control theory was also studied for comparison of the control performance of the new control logic. As the results, it is presented that the automatic control logics based on the AO Trajectory Method are very simple and effective. (author)

  15. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  16. Isotopic separation

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  17. Isotopic separation

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  18. Xenon oscillation control in large PWR using a characteristic ellipse trajectory drawn by three axial offsets

    Yoichiro, Shimazu

    2007-01-01

    We have proposed a very simple xenon oscillation control procedure based on a characteristic trajectory. The trajectory is drawn by three offsets of power distributions, namely, AOp, AOi and AOx. They are defined as the offset of axial power distribution, the offset of the power distribution under which the current iodine distribution is obtained as the equilibrium and that for xenon distribution, respectively. When these offsets are plotted on X-Y plane for (AOp-AOx, AOi-AOx) the trajectory shows a quite characteristic ellipse (or an elliptic spiral). It shows characteristics such that the center of the ellipse is at the origin, the gradient of the major axis is constant, direction of the trajectory progress is always anti-clock wise, plot goes around the ellipse during a cycle of the xenon oscillation and so on. This characteristic does not change even if the control rods are moved. When the plot is at the origin of the X-Y plane, no xenon oscillation exists. Using the characteristics of the ellipse the xenon oscillation can be eliminated by guiding the plot to the origin with control rod operation. This concept can be applied not only to the axial xenon oscillation but also to the radial xenon oscillation control. Conventionally, the trajectory is drawn based on the xenon dynamics using reactor parameters such as core averaged macroscopic fission cross section, xenon micro absorption cross section, fission yields of iodine and xenon, and so on together with the neutron flux signals. The accuracy is expected to be better. (authors)

  19. Comparisons between shell-model calculations, seniority truncation, and quasiparticle approximations: Application to the odd Ni isotopes and odd N = 82 isotones

    Losano, L.; Dias, H.; Krmpotic, F.; Wildenthal, B.H.

    1988-01-01

    A detailed study of the results of correcting BCS approximation for the effects of particle-number projection and blocking has been carried out. A low-seniority shell-model approximation was used as the frame of reference for investigating the mixing of one- and three-quasiparticle states in odd-mass Ni isotopes and in odd-mass N = 82 isotones. We discuss the results obtained for the energy spectra and electromagnetic decay properties. Effects of seniority-five configurations on the low-lying states have also been studied through the comparison of the low-seniority shell-model results with those which arose from the corresponding full shell-model calculations

  20. Electron momentum spectroscopy of xenon: A detailed analysis

    Cook, J.P.D.; McCarthy, I.E.; Mitroy, J.; Weigold, E.

    1986-01-01

    Accurate measurements of the 1000-eV noncoplanar symmetric (e,2e) reaction on xenon are reported. Cross-section calculations are carried out with the use of both the plane-wave and distorted-wave impulse approximations. The distorted-wave impulse approximation accurately describes both the 5p -1 and 5s -1 angular correlations and their relative cross sections. It also describes accurately the 5p/sub 3/2/ -1 :5p/sub 1/2/ -1 branching ratios if Dirac-Fock target wave functions are used. The branching ratios show the inadequacy of Hartree-Fock wave functions for xenon. The plane-wave impulse-approximation overestimates the 5s -1 cross section relative to the 5p -1 and underestimates the cross section at large angles. The 5s -1 spectroscopic factors are assigned up to a separation energy of 45 eV, and the distorted-wave impulse-approximation calculation verifies that all the 5s -1 strength has been found. The spectroscopic factors for the 5s -1 manifold are obtained at 1000 and 1200 eV at a number of angles and are found to be independent of incident energy and ion recoil momentum. The spectroscopic factor for the lowest 5s -1 transition at 23.4 eV is 0.37 +- 0.01, whereas that for the ground-state 5p -1 transition is greater than or equal to 0.98

  1. First Axion Results from the XENON100 Experiment

    Aprile, E.; Alfonsi, M.; Arisaka, K.; Arneodo, F.; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Cardoso, J.M.R.; Colijn, A.P.; Contreras, H.; Cussonneau, J.P.; Decowski, M.P.; Duchovni, E.; Fattori, S.; Ferella, A.D.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L.W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R.F.; Calloch, M. Le; Lellouch, D.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J.A.M.; Lung, K.; Lyashenko, A.; Macmullin, S.; Marrodan Undagoitia, T.; Masbou, J.; Massoli, F.V.; Mayani Paras, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S.E.A.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Vitells, O.; Wang, H.; Weber, M.; Weinheimer, C.

    2014-09-09

    We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \\times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain $g_{Ae}$, to be lower than $1 \\times 10^{-12}$ (90% CL) for masses between 5 and 10 keV/c$^2$.

  2. Theoretical investigation of the secondary ionization in krypton and xenon

    Saffo, M.E.

    1986-01-01

    A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs

  3. Interdiffusion of krypton and xenon in high-pressure helium

    Campana, R.J.; Jensen, D.D.; Epstein, B.D.; Hudson, R.G.; Baldwin, N.L.

    1980-01-01

    The interdiffusion of gaseous fission products in high-pressure helium is an important factor in the control of radioactivity in gas-cooled fast breeder reactors (GCFRs). As presently conceived, GCFRs use pressure-equalized and vented fuel in which fission gases released from the solid matrix oxide fuel are transported through the fuel rod interstices and internal fission product traps to the fuel assembly vents, where they are swept away to external traps and storage. Since the predominant transport process under steady-state operating conditions is interdiffusion of gaseous fission products in helium, the diffusion properties of krypton-helium and xenon-helium couples have been measured over the range of GCFR temperature and pressure conditions ( -1 ) and expected temperature dependence to the 1.66 power (Tsup(1.66)) at lower pressures and temperatures. Additional work is in progress to measure the behaviour of the krypton-helium and xenon-helium couples in GCFR fuel rod charcoal delay traps. (author)

  4. Experimental studies on ion mobility in xenon-trimethylamine mixtures

    Trindade, A. M. F.; Encarnação, P. M. C. C.; Escada, J.; Cortez, A. F. V.; Neves, P. N. B.; Conde, C. A. N.; Borges, F. I. G. M.; Santos, F. P.

    2017-07-01

    In this paper we present experimental results for ion reduced mobilities (K0) in gaseous trimethylamine, TMA—(CH3)3N, and xenon-TMA mixtures for reduced electric fields E/N between 7.5 and 60 Td and in the pressure range from 0.5 to 10 Torr, at room temperature. Both in the mixtures and in pure TMA only one peak was observed in the time of arrival spectra, which is believed to be due to two TMA ions with similar mass, (CH3)3N+ (59 u) and (CH3)2CH2N+ (58 u), whose mobility is indistinguishable in our experimental system. The possibility of ion cluster formation is also discussed. In pure TMA, for the E/N range investigated, an average value of 0.56 cm2V-1s-1 was obtained for the reduced mobility of TMA ions. For the studied mixtures, it was observed that even a very small amount of gaseous TMA (~0.2%) in xenon leads to the production of the above referred TMA ions or clusters. The reduced mobility value of this ion or ions in Xe-TMA mixtures is higher than the value in pure TMA: around 0.8 cm2V-1s-1 for TMA concentrations from 0.2% to about 10%, decreasing for higher TMA percentages, eventually converging to the reduced mobility value in pure TMA.

  5. Stability of tetraphenyl butadiene thin films in liquid xenon

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  6. Energy loading effects in the scaling of atomic xenon lasers

    Ohwa, M.; Kushner, M.J.

    1990-01-01

    The intrinsic power efficiency of the atomic xenon (5d → 6p) infrared (1.73--3.65 μm) laser is sensitive to the rate of pumping due to electron collision mixing of the laser levels. Long duration pumping at moderate power deposition may therefore result in higher energy efficiencies than pumping at higher powers. In this paper the authors examine the consequences of high energy deposition (100's J/1 atm) during long pumping pulses (100's μs) on the intrinsic power and energy efficiency and optimum power deposition of the atomic xenon laser. The dominant effect of high energy loading, gas heating, causes an increase in the electron density and therefore an increase in the electron collision mixing of the laser levels. The optimum power deposition for a given gas density therefore shifts to lower values with increasing gas temperature. For sufficiently long pumping pulses, nonuniform gas heating results in convection and rarification of highly pumped regions. The optimum power deposition therefore shifts to even lower values as the length of the pumping pulse increases. As a result, laser efficiency depends on the spatial distribution of power deposition as well as its magnitude

  7. Isotope angiocardiography

    Stepinska, J.; Ruzyllo, W.; Konieczny, W.

    1979-01-01

    Method of technetium isotope 99 m pass through the heart recording with the aid of radioisotope scanner connected with seriograph and computer is being presented. Preliminary tests were carried out in 26 patients with coronary disease without or with previous myocardial infarction, cardiomyopathy, ventricular septal defect and in patients with artificial mitral and aortic valves. The obtained scans were evaluated qualitatively and compared with performed later contrast X-rays of the heart. Size of the right ventricle, volume and rate of left atrial evacuation, size and contractability of left ventricle were evaluated. Similarity of direct and isotope angiocardiographs, non-invasional character and repeatability of isotope angiocardiography advocate its usefulness. (author)

  8. TEM study of xenon bubbles evolution in Xe-implanted Cu. Bubbles shape, epitaxial orientation and adsorption phenomenon

    Guillot, J.; Cartraud, M.; Garem, H.; Templier, C.; Desoyer, J.C.

    1987-01-01

    TEM is used to perform a study of xenon clusters changes in Xe-implanted Cu. After implantation, xenon is gathered into f.c.c. crystalline precipitates with a lattice parameter value of 0.580 nm. During annealing at 600 0 C large (110) facetted bubbles appear (2r≅35 nm) which contain fluid xenon. When cooling down to 100 K, xenon solidifies on bubbles facets in form of a thin membrane. The epitaxial orientations between solid xenon and copper are the same as adsorbed Xe on Cu(110) [fr

  9. 气相色谱氩、氪、氙、氡分离度初步研究%Resolutions on Mixture of Argon, Krypton, Xenon and Radon by Gas Chromatography

    刘蜀疆; 陈占营; 常印忠; 王世联; 李奇; 石建芳; 樊元庆; 赵允刚

    2012-01-01

    核爆炸产生多种稀有气体核素,这些核素可作为核泄露监测对象.气相色谱是组分分离的重要手段,在核爆炸监测取样中有重要应用.本文以5A分子筛作为固定相,高纯氮作为流动相,测量了氩、氪、氙、氡在气相色谱中的分离效果.结果表明,在相同色谱条件下,氩、氪分离度小于氪、氙分离度;在柱流量35.6 mL/min、柱温353 K条件下,气相色谱氩、氪,氪、氙,氙、氡分离度均大于2.25.%Radio-isotopes of noble gas, which are produced during nuclear explosion, can escape into atmosphere easily. These isotopes can be measured as good indicators for nuclear explosion. Noble gas monitoring, including sampling, measurement and analysis, became more and more essential. Gas chromatography is an important technology on noble gas separation during gas sampling. In this paper, while 5A molecular sieve was utilized as column stationary state and high-purity nitrogen as column fluid state, resolutions of argon, krypton, xenon and radon were widely investigated under different chromatograph conditions. As a result, the resolution of krypton and argon is less than the resolution of xenon and krypton; when column flow rate is 35. 6 mL/min and oven temperature is 353 K, all of the resolutions of radon and xenon, xenon and krypton, krypton and argon are more than 2. 25.

  10. Leatherback Isotopes

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  11. Isotope Identification

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  12. Isotope laboratories

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  13. Numerical study on xenon positive column discharges of mercury-free lamp

    Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo

    2007-01-01

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells

  14. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A.; Lawrence Berkeley National Lab., CA

    1999-01-01

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of 129 Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved 1 H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the 1 H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective 1 H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon

  15. Dynamic adsorption properties of xenon on activated carbons and their structure characterization

    Liu Suiqing; Liu Jing; Qian Yuan; Zeng Youshi; Du Lin; Pi Li; Liu Wei

    2013-01-01

    Background: In recent years, adsorption of radioactive xenon by activated carbon has been increasingly applied to the treatment of off-gas in nuclear power project. Though pore structure of activated carbon has a great impact on its dynamic adsorption coefficients for xenon, the concerned research is rare. Purpose: It is very necessary to figure out the relationship between the pore structure and the dynamic adsorption coefficients for the purpose of the selection and development of activated carbon. Methods: In this study, the dynamic adsorption coefficients of xenon on four kinds of activated carbons were measured on a dynamic adsorption platform under the condition of 25℃, OMPa (gauge pressure). And these four kinds of activated carbons were characterized by nitrogen adsorption and SEM. Results: The results show that the activated carbon of JH12-16 with the specific surface area of 991.9 m 2 ·g -1 has the largest xenon dynamic adsorption coefficient among these activated carbons. Conclusions: The dynamic adsorption coefficient of xenon on activated carbon doesn't increase with the specific surface area or the pore volume. The mesopore and macropore only play the role of passageway for xenon adsorption. The most suitable pore for xenon adsorption is the pore with the pore size ranged from 0.55 to 0.6 nm. (authors)

  16. Removing krypton from xenon by cryogenic distillation to the ppq level

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [Physik-Institut, University of Zurich, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lin, Q. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-05-15

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter {sup 85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon {sup nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10{sup -15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10{sup 5} with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of {sup nat}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN. (orig.)

  17. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  18. Isotopic chirality

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  19. Isotopic separation

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  20. Isotope enrichment

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  1. An approach to stability analysis of spatial xenon oscillations in WWER-1000 reactors

    Parhizkari, H.; Aghaie, M.; Zolfaghari, A.; Minuchehr, A.

    2015-01-01

    Highlights: • The multipoint methodology is developed for xenon oscillation in the BNPP. • The axial, radial and azimuthal offsets are calculated in the BOC and EOC. • It is shown that the all of oscillation modes are safe in the BOC. • The axial oscillation is not safe in the EOC and needs governor control system. • The multipoint kinetics show good agreement for spatial oscillations. - Abstract: Spatial power oscillations due to spatial distribution of xenon transient are well known as xenon oscillation in large reactors. Xenon-induced spatial power oscillations occur as a result of rapid perturbations to power distribution that cause the xenon and iodine distribution to be out of phase with the perturbed power distribution. This results in a shift in xenon and iodine distributions that causes the power distribution to change in an opposite direction from the initial perturbation. In this paper xenon-induced power oscillation is described by a system of differential equations with non-linearity between xenon and flux distributions; the dynamics of process is described by a discrete distributed parameter model, with the neutron flux, the delayed neutrons, the core temperature and the xenon and iodine concentrations as the “states” of the system. It is shown that it is possible to describe the discrete distributed-parameter as a set of coupled point-reactor models. It is also shown that using this scheme it is possible to analyze the control aspects of a multi-section large core reactor by treating only two adjacent sections of the core. To illustrate the capability and efficiency of the proposed scheme Bushehr Nuclear Power Plant, BNPP, which is a WWER-1000 reactor, is chosen to show the performance of the methodology. The axial, azimuthal and radial power oscillation at the beginning of cycle, BOC, and the end of cycle, EOC, for BNPP are investigated; the results are in good agreement with safety analysis report of the reference plant

  2. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  3. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  4. Optimal control of xenon concentration by observer design under reactor model uncertainty

    Cho, Nam Z.; Yang, Chae Y.; Woo, Hae S.

    1989-01-01

    The state feedback in control theory enjoys many advantages, such as stabilization and improved transient response, which could be beneficially used for control of the xenon oscillation in a power reactor. It is, however, not possible in nuclear reactors to measure the state variables, such as xenon and iodine concentrations. For implementation of the optimal state feedback control law, it is thus necessary to estimate the unmeasurable state variables. This paper uses the Luenberger observer to estimate the xenon and iodine concentrations to be used in a linear quadratic problem with state feedback. To overcome the stiffness problem in reactor kinetics, a singular perturbation method is used

  5. Xenon-Water Interaction in Bacterial Suspensions as Studied by NMR

    Rodin, V.; Ponomarev, Alexander; Gerasimov, Maxim

    2017-01-01

    suspensions of Escherichia coli in the presence of xenon using nuclear magnetic resonance (NMR). The work studied how the spin-lattice relaxation times of water protons in suspension change under xenon conditions. Xenon is able to form clathrate hydrates with water molecules at a temperature above the melting...... point of ice. The work studied NMR relaxation times which reflect the rotation freedom of water molecules in suspension. Lower relaxation times indicate reduced rotational freedom of water. Single exponential behavior of spin-lattice relaxation of protons in the suspensions of microorganisms has been...

  6. Online {sup 222}Rn removal by cryogenic distillation in the XENON100 experiment

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [University of Zurich, Physik-Institut, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-06-15

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant {sup 222}Rn background originating from radon emanation. After inserting an auxiliary {sup 222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the {sup 222}Rn activity concentration inside the XENON100 detector. (orig.)

  7. Global characteristics of an ATON stationary plasma thruster operating with krypton and xenon

    Bugrova, A.I.; Lipatov, A.S.; Solomatina, L.V.; Morozov, A.I.

    2002-01-01

    Paper contains the experimental results of operation of the ATON plasma thruster operating with krypton and xenon. It is shown that consumption of a working gas for consumption of a working gas the krypton base thrust is higher in contrast to xenon base one at lower efficiency. In case of krypton use one obtained the efficiency constituting ∼ 60% at specific pulse reaching 3000 s. Jet divergence in case of krypton use is ∼ ± 22 deg in contrast to ∼ ± 11 deg in case of xenon use [ru

  8. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  9. Research on the measurement of the ultraviolet irradiance in the xenon lamp aging test chamber

    Ji, Muyao; Li, Tiecheng; Lin, Fangsheng; Yin, Dejin; Cheng, Weihai; Huang, Biyong; Lai, Lei; Xia, Ming

    2018-01-01

    This paper briefly introduces the methods of calibrating the irradiance in the Xenon lamp aging test chamber. And the irradiance under ultraviolet region is mainly researched. Three different detectors whose response wave range are respectively UVA (320 400nm), UVB (275 330nm) and UVA+B (280 400nm) are used in the experiment. Through comparing the measuring results with different detectors under the same xenon lamp source, we discuss the difference between UVA, UVB and UVA+B on the basis of the spectrum of the xenon lamp and the response curve of the detectors. We also point out the possible error source, when use these detectors to calibrate the chamber.

  10. Photoionization of xenon below the atomic ionization potential

    Laporte, P.; Saile, V.; Reininger, R.; Asaf, U.; Steinberger, I.T.

    1982-10-01

    Experiments using monochromated synchrotron radiation revealed that for densities of the order of 10 19 atoms/cm 3 and more xenon exhibits a continuous photoresponse excitation spectrum below the atomic ionization potential (12.12 eV). The lower limit of the continuum is at about 11.10 eV, the energy difference between the ground state of the molecular ion Xe 2+ and that of the free atom. This is attributed to the Hornbeck-Molnar process occurring at the line wings as well as at the line centres. Dips appearing in the continuum very near to positions of atomic lines are discussed invoking the quasi-static theory. (orig.)

  11. Background in xenon filled X-ray detectors

    Feroci, M.; Costa, E.; Dwyer, J.; Ford, E.; Kaaret, P.; Rapisarda, M.; Soffitta, P.

    1995-01-01

    Xenon based gas mixtures have been often used in proportional counters for X-ray astronomy in order to achieve a good efficiency in the medium/high X-ray energy range. Proportional counters flown on past missions (i.e. HEAO1 and EXOSAT) filled with Xe-based mixtures have shown a higher residual background (after that all the rejection techniques have been applied) with respect to Ar-based ones, operating in the same energy band and in the same radiation environment. We show, by means of Monte Carlo simulations, analytical computations and laboratory measurements, that such difference can be mostly understood in terms of higher internal background production and lower pulse discrimination efficiency in Xe-based gas filling, with respect to Ar-based ones. (orig.)

  12. Mechanisms of Xenon Effect on Skin and Red Blood Cells

    Ponomarev, Alexander; Rodin, V.; Gurevich, Leonid

    2017-01-01

    The usage of Xenon (Xe) is known in anesthesia and biobanking areas. It is considered preservation effect of Xe is associated either with clathrate formation - solid gaseous structures or dissolution of Xe molecules in liquid phase without physical state modification (so-called hyperbarium) [1......]. This study is addressed to establish differences between hyberbarium or clathrate Xe actions as well as its applications on various bioobjects with anaerobic - red blood cells (RBCs) and aerobic (skin fragments) metabolism. Xe clathrates and hyperbarium storage were simulated under 277 K and 620-725 k...... to control (15.68 ± 1.11, CI95%). Skin fragments were harvested from rat tails and divided on hyberbarium, clathrate and dimetylsulfoxide cryopreserved as control group and stored for 7 days. Assessment was performed by point-score method including epidermal-dermal integrity various assays and engraftment...

  13. Topological signature in the NEXT high pressure xenon TPC

    Ferrario, Paola; NEXT Collaboration

    2017-09-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence to amplify the signal from ionization. One of the main advantages of this technology is the possibility to use the topology of events with energies close to Qββ as an extra tool to reject background. In these proceedings we show with data from prototypes that an extra background rejection factor of 24.3 ± 1.4 (stat.)% can be achieved, while maintaining an efficiency of 66.7 ± 1.% for signal events. The performance expected in NEW, the next stage of the experiment, is to improve to 12.9% ± 0.6% background acceptance for 66.9% ± 0.6% signal efficiency.

  14. Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light

    Haefner, J.; Neff, A.; Arthurs, M.; Batista, E.; Morton, D.; Okunawo, M.; Pushkin, K.; Sander, A. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Stephenson, S. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616 (United States); Wang, Y. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Lorenzon, W., E-mail: lorenzon@umich.edu [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2017-06-01

    Many rare event searches including dark matter direct detection and neutrinoless double beta decay experiments take advantage of the high VUV reflective surfaces made from polytetrafluoroethylene (PTFE) reflector materials to achieve high light collection efficiency in their detectors. As the detectors have grown in size over the past decade, there has also been an increased need for ever thinner detector walls without significant loss in reflectance to reduce dead volumes around active noble liquids, outgassing, and potential backgrounds. We report on the experimental results to measure the dependence of the reflectance on thickness of two PTFE samples at wavelengths near 178 nm. No change in reflectance was observed as the wall thickness of a cylindrically shaped PTFE vessel immersed in liquid xenon was varied between 1 mm to 9.5 mm.

  15. Gamma-ray spectrometer utilizing xenon at high pressure

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-01-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166 degrees C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen

  16. A new approach for treatment of xenon problem

    Mihailescu, Nicolae

    1999-01-01

    It is known that the fission product xenon 135, with a half life of 9.17 hours, has a very large absorption cross section for thermal neutrons. A small fraction of this nuclear species is formed directly in fission, but the major part results from the decay of iodine 135 with a half life of 6.59 hours. In this paper we shall present the 'fundamental' theory of an 'adiabatic' approach which appears to be promising both in cutting down computational time and in giving additional physical insight into the combined spatial-temporal variations. An adiabatic motivation is implicit in early work on reactor kinetics in which the reactor flux is separated into a product of a time dependent function and a function of all the other relevant variables, including the time; if the latter factor is slowly varying in time the approach is 'adiabatic'. (author)

  17. Electron Drift Properties in High Pressure Gaseous Xenon

    Simón, A.; et al.

    2018-04-05

    Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and diffusion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent amplification, a 1:2 scale model of the future NEXT-100 detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December 2016. The drift parameters have been measured using $^{83m}$Kr for a range of reduced drift fields at two different pressure regimes, namely 7.2 bar and 9.1 bar. The results have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal diffusion and transverse diffusion.

  18. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  19. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  20. Contribution of isotopic data in cerebrospinal fluid (CSF) studies

    Askienazy, S.; Ducassou, D.

    The growing interest in isotopic CSF studies is explained by the fact that the mechanism and classification of hydrocephalus cases are based not only on anatomoclinical data but also on physiological information inaccessible by static image methods. This article shows the full importance of dynamic CSF research (ideal tracer: 111 In-DTPA); the possibilities of myeloscintigraphy to study the permeability of the medullary sub-arachnoid spaces (tracers used: sup(99m)Tc-DTPA in the liquid phase or xenon bubble technique in the gas phase); ventricular morphology; existence of meningeal gaps [fr

  1. Gravity assisted recovery of liquid xenon at large mass flow rates

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  2. Electron Impact Excitation Cross Sections of Xenon for Optical Plasma Diagnostic

    Srivastava, Rajesh

    2007-01-01

    In this project the researcher had taken up the calculation of xenon apparent emission-excitation cross sections for emission lines that have diagnostic value in the analysis of Xe-propelled electric thruster plasmas...

  3. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  4. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  5. Recent developments in evaluating xenon induced flux transients in large HTRs

    Lauer, A.

    1974-03-15

    A description is provided of the two-dimensional finite-difference xenon code system ASTERIX (A System for Transient Evaluation of Reactor instabilities Induced by Xenon) that was designed for very exact computations of space dependent xenon transients in HTR's and their control. By its modular structure, the code allows for a most flexible use in calculating load following transients, xenon oscillations in x/y, r/z and r/theta geometries and various control operations with either homogeneous poison or discrete rod representations with flux boundary conditions. The most recent upgrade ASTERIX-T includes a detailed temperature feedback option for azimuthal HTR transient calculations, based on an iterative procedure for the evaluation of the power distribution in each time step with succeeding diffusion, temperature and spectrum calculations for the group constants in every spectral region, thus avoiding earlier more problematic approximations of the temperature dependence of the cross sections.

  6. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  7. An investigation of axial xenon stability in WWER-1000 reactor designs

    Doshi, P.K.; Miller, R.W.

    1993-01-01

    The nuclear power plants of the WWER-1000 design have experienced frequent xenon oscillation control problems. In most PWRs, xenon oscillations are largely a problem in the axial direction. An one dimensional core model representative of the WWER-1000 design was set up to examine the controllability of the current design. An investigation of possible improvements to this design was made. There was no indication that xenon oscillations were an inherent problem in WWER-1000 core design. Simple changes to the control rod system coupled with a sound power distribution control strategy that has been proven to be an effective but simple procedure to follow, eliminate xenon control problems. The changes proposed can be implemented in a very cost effective manner. There are no equipment changes needed, existing control rods can be used. Only software changes are required. (Z.S.) 1 tab., 2 figs., 7 refs

  8. Postconditioning by xenon and hypothermia in the rat heart in vivo

    Schwiebert, Christian; Huhn, Ragnar; Heinen, Andre; Weber, Nina C.; Hollmann, Markus W.; Schlack, Wolfgang; Preckel, Benedikt

    2010-01-01

    Background and objective Hypothermia protects against myocardial reperfusion injury. However, inducing hypothermia takes time, which makes it unsuitable as an emergency treatment. Combining mild hypothermia with low-dose xenon, applied either simultaneously or one after the other, protects the

  9. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  10. Mobility and lifetime of sup 2 sup 0 sup 8 Tl ions in liquid xenon

    Walters, A J

    2003-01-01

    Positively charged sup 2 sup 0 sup 8 Tl ions are transported through liquid xenon using electric fields in the range of 4-10 kV cm sup - sup 1 and for drift distances up to 50 mm. From these measurements we deduce upper limits on the attenuation length for Tl ions in liquid xenon, resulting in a lifetime >5.5 s. In addition to these results, the field independent mobility of Tl bearing species in liquid xenon was measured to be 1.33+-0.04x10 sup - sup 4 cm sup 2 V sup - sup 1 s sup - sup 1. This result, when coupled with those for other species by previous workers, suggests that positive ion mobility in liquid xenon is proportional to the hard-core radius. Applications to Ba ion collection in a double beta decay experiment are also discussed.

  11. Operation and technology development of the radioactive xenon and krypton detection equipment

    Lee, Wanno; Choi, Sangdo; Ji, Youngyong; Lim, Jong Myoung; Cho, Young Hyun; Kang, Han Beul; Lee, Hoon; Kang, Moon Ja; Choi, Kun Sik

    2013-03-01

    Operation and technology development of the radioactive xenon and krypton detection equipment - Advancement, independence of operation technology for BfS-IAR system(the simultaneous analysis of xenon and krypton) installed after North Korea nuclear tests in 2006 and establishment of background base-line for xenon and krypton radioactivity. - Enhanced detection and analysis capabilities for neighborhood nuclear activities through advanced research of noble gas detection technology. Results of the Project · The operation of xenon and krypton analysis system (BfS-IAR) · Operation of fixed adsorption system. · Operation of portable adsorption system · Exercise of emergency response and proficiency test with SAUNA. · Measurement of noble gas background at specific region in Korea. - Radioxenon levels at Dongdu Cheon is approximately 1.6 mBq/m 3 · Development of automation filling system for absorber cooling

  12. Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Azevedo, C. D. R.; González-Díaz, D.; Biagi, S. F.; Oliveira, C. A. B.; Henriques, C. A. O.; Escada, J.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Morata, J. A. Hernando; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; Lopez-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-01-01

    We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.

  13. Material radioassay and selection for the XENON1T dark matter experiment

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, LIBPhys, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Di Giovanni, A.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [University of Zurich, Physik Institut, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Sivers, M. von [Rensselaer Polytechnic Institute, Troy, NY (United States). Dept. of Physics, Applied Physics and Astronomy; Bern Univ. (Switzerland). Albert Einstein Center for Fundamental Physics; Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindemann, S.; Lindner, M.; Marrodan Undagoitia, T.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A.; Laubenstein, M.; Nisi, S. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Scotto Lavina, L. [Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, LPNHE, Paris (France); Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Collaboration: XENON Collaboration

    2017-12-15

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations. (orig.)

  14. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Aprile, E.; Contreras, H.; Goetzke, L.W.; Fernandez, A.J.M.; Messina, M.; Plante, G.; Rizzo, A. [Columbia University, Physics Department, New York, NY (United States); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Alfonsi, M. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Arazi, L.; Budnik, R.; Duchovni, E.; Gross, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Priel, N.; Vitells, O. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Arisaka, K.; Lyashenko, A.; Meng, Y.; Pantic, E.; Teymourian, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Arneodo, F.; Di Giovanni, A. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Auger, M.; Barrow, P.; Baudis, L.; Behrens, A.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F. [University of Zurich, Physik-Institut, Zurich (Switzerland); Balan, C.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos [University of Coimbra, Department of Physics, Coimbra (Portugal); Bauermeister, B.; Fattori, S.; Geis, C.; Grignon, C.; Oberlack, U.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Beltrame, P. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); University of Edinburgh, Edinburgh (United Kingdom); Brown, A.; Lang, R.F.; Macmullin, S.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Brown, E.; Levy, C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Bruenner, S.; Hampel, W.; Kaether, F.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Rauch, L.; Schreiner, J.; Simgen, H.; Weber, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Buetikofer, L.; Coderre, D.; Schumann, M. [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Cussonneau, J.P.; Le Calloch, M.; Masbou, J.; Lavina, L.S.; Thers, D. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Ferella, A.D.; Fulgione, W.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Miguez, B.; Molinario, A.; Trinchero, G. [INFN-Torino and Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P.; Wall, R. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Orrigo, S.E.A. [University of Coimbra, Department of Physics, Coimbra (Portugal); IFIC, CSIC-Universidad de Valencia, Valencia (Spain); Persiani, R. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (FR); Bologna Univ., Department of Physics and Astrophysics, Bologna (IT); INFN, Bologna (IT); Collaboration: XENON Collaboration

    2015-11-15

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment. (orig.)

  15. Isotopes Project

    Dairiki, J.M.; Browne, E.; Firestone, R.B.; Lederer, C.M.; Shirley, V.S.

    1984-01-01

    The Isotopes Project compiles and evaluates nuclear structure and decay data and disseminates these data to the scientific community. From 1940-1978 the Project had as its main objective the production of the Table of Isotopes. Since publication of the seventh (and last) edition in 1978, the group now coordinates its nuclear data evaluation efforts with those of other data centers via national and international nuclear data networks. The group is currently responsible for the evaluation of mass chains A = 167-194. All evaluated data are entered into the International Evaluated Nuclear Structure Data File (ENSDF) and are published in Nuclear Data Sheets. In addition to the evaluation effort, the Isotopes Project is responsible for production of the Radioactivity Handbook

  16. Isotope production

    Lewis, Dewi M.

    1995-07-15

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the Cyclone-30

  17. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  18. Time dependent analysis of Xenon spatial oscillations in small power reactors

    Decco, Claudia Cristina Ghirardello

    1997-01-01

    This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)

  19. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  20. Hyperfine spectra of the radioactive isotopes 81Kr and 85Kr

    Cannon, B.D.

    1993-01-01

    Isotope shifts and hyperfine constants are reported for the radioactive isotopes 81 Kr and 85 Kr and the stable isotope 83 Kr. The previously unreported nuclear moments of 81 Kr were determined to be μ I =-0.909(4) nuclear magneton and Q=+0.630(13) b from the hyperfine constants. This work increases the number of transitions for which 85 Kr hyperfine constants and isotope shifts have been measured from 1 to 4. The hyperfine anomaly for krypton reported in the previous measurement of 85 Kr hyperfine constants [H. Gerhardt et al., Hyperfine Interact. 9, 175 (1981)] is not supported by this work. The isotope shifts and hyperfine constants of 83 Kr measured in this work are in excellent agreement with previous work. Saturation spectroscopy was used to study transitions from krypton's metastable 1s 5 state to the 2p 9 , 2p 7 , and 2p 6 states. In saturation spectra, different line shapes were observed for the even- and odd-mass krypton isotopes. This even- versus odd-line-mass shape difference can be explained using the large cross section that has been reported for collisional transfer of the 1s 5 state excitation between krypton atoms. Two-color two-photon laser-induced fluorescence was used to measure the hyperfine spectra of the 1s 5- 4d 4 ' transition using the 2p 9 state as the intermediate state. This technique proved to be more sensitive than saturation spectroscopy

  1. Spectroscopy of transfermium isotopes at SHIP

    Antalic, Stanislav; Saro, Stefan; Venhart, Martin [Comenius University, Bratislava (Slovakia); Hessberger, Fritz Peter; Ackermann, Dieter; Heinz, Sophia; Kindler, Birgit; Kojouharov, Ivan; Lommel, Bettina; Mann, Rido; Streicher, Branislav [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hofmann, Sigurd [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet, Frankfurt am Main (Germany); Sulignano, Barbara [CEA-Saclay, DAPNIA/SPhN, Gif-sur-Yvette (France)

    2009-07-01

    Recent developments of experimental techniques suited for {alpha}-, {gamma}- and CE spectroscopy now allow to study nuclear structure in the region of trans-fermium nuclei. This opened the door to investigate nuclear structure under extreme conditions of heaviest nuclei (Z>100,A>250). Most interesting examples are studies of K-isomers. Experiments aimed to investigate such phenomena provide important information on the nuclear structure of the heaviest elements and are stringent tests for the quality of nuclear models. In this contribution the results from studies of multi-quasi-particle isomeric states in {sup 253}No and {sup 255}Lr performed at SHIP are presented in detail. Both nuclei are first odd-mass isotopes in the trans-fermium region for which high K-isomers were observed. By decay of the high K-isomer in {sup 253}No a rotational band was populated, which was not seen in previous in-beam studies. Additionally, also the recent results on the single particle level systematics for the N=149, 151 and 153 isotones are presented.

  2. Xenon migration in UO{sub 2} under irradiation studied by SIMS profilometry

    Marchand, B. [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); AREVA, AREVA NP, 10 rue Juliette Récamier, F-69456 Lyon (France); Moncoffre, N. [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Université de Lyon, Université Lyon 1, IUT Lyon 1, 43 bd du 11 novembre 1918, 69 622 Villeurbanne cedex (France); Bérerd, N. [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Université de Lyon, Université Lyon 1, IUT Lyon 1, 43 bd du 11 novembre 1918, 69 622 Villeurbanne cedex (France); Garnier, C. [AREVA, AREVA NP, 10 rue Juliette Récamier, F-69456 Lyon (France); Raimbault, L. [Ecole des Mines de Paris, Centre de Géosciences, 35 rue Saint Honoré, F-77305 Fontainebleau cedex (France); Sainsot, P. [Université de Lyon, Université Lyon 1, LaMCoS, INSA-Lyon, CNRS UMR5259, F-69621 Villeurbanne cedex (France); and others

    2013-09-15

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with {sup 136}Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400–1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO{sub 2} are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy.

  3. Xenon thermal behavior in sintered titanium nitride, foreseen inert matrix for GFR

    Bes, R.

    2010-11-01

    This work concerns the generation IV future nuclear reactors such as gas-cooled fast reactor (GFR) for which refractory materials as titanium nitride (TiN) are needed to surround fuel and act as a fission product diffusion barrier. This study is about Xe thermal behavior in sintered titanium nitride. Microstructure effects on Xe behavior have been studied. In this purpose, several syntheses have been performed using different sintering temperatures and initial powder compositions. Xenon species have been introduced into samples by ionic implantation. Then, samples were annealed in temperature range from 1300 C to 1600 C, these temperatures being the accidental awaited temperature. A transport of xenon towards sample surface has been observed. Transport rate seems to be slow down when increasing sintering temperature. The composition of initial powder and the crystallographic orientation of each considered grain also influence xenon thermal behavior. Xenon release has been correlated with material oxidation during annealing. Xenon bubbles were observed. Their size is proportional with xenon concentration and increases with annealing temperature. Several mechanisms which could explain Xe intragranular mobility in TiN are proposed. In addition with experiments, very low Xe solubility in TiN has been confirmed by ab initio calculations. So, bi-vacancies were found to be the most favoured Xe incorporation sites in this material. (author)

  4. Design and commissioning of ReStoX for XENON1T

    Scheibelhut, Melanie [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The XENON1T experiment, currently under construction at the Gran Sasso underground laboratory LNGS, uses the concept of a xenon dual-phase (liquid/gas) time projection chamber to search for Dark Matter particles. This requires cooling to about 175 K and liquefaction of the noble gas. The ReStoX (Recovery and Storage of Xenon) is a novel device to store and recover up to 7 tons of xenon - either in liquid phase at cryogenic temperatures and 1-2 bar of pressure, or in gaseous form at room temperature at about 70 bar of pressure. The ReStoX system consists of a double insulated stainless steel sphere with liquid nitrogen cooling loops distributed across the inner sphere. A condenser on the inside, also operated with liquid nitrogen, provides a cooling power of 3 kW. ReStoX is designed to provide an effective means for various operating modes: to fill the TPC fast, to recover xenon from the TPC under normal and emergency conditions, to store xenon safely in liquid or gaseous form, or to remain in cold standby nearly empty as a safety device. Here we present the design and first commissioning results.

  5. Control of spatial xenon oscillations in pressurized water reactors via the Kalman filter

    Lin, C.; Lin, Y.J.

    1994-01-01

    A direct control method is developed to control the spatial xenon oscillations in pressurized water reactors. The xenon and iodine concentration difference between the top and bottom halves of the core is estimated by using the extended Kalman filter (EKF), which is a closed-loop estimation method. The measurement equation used in the observer is the axial offset measurement equation, which reflects the xenon unbalanced effect on the axial offset. Meanwhile, some of the coefficients of the observer are estimated on-line to reduce estimation error resulting from model error, i.e., simplified xenon and iodine dynamics. Therefore, the estimation can be guaranteed to be accurate, and the success of the estimation does not greatly depend on the accuracy of the observer model. The predicted one-step ahead xenon concentration, by using the EKF, was used to calculate the possible axial offset variation, and then the control rod motion was calculated to compensate for it. The simulation results show that the proposed method successfully controls the xenon oscillations

  6. Isotopically modified compounds

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  7. Isotope generator

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  8. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China.

  9. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a ...

  10. XENON IN THE PROTOPLANETARY DISK (PPD-Xe)

    Marti, K.; Mathew, K. J., E-mail: kattathu.mathew@srs.gov [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA (United States)

    2015-06-20

    Relationships among solar system Xe components as observed in the solar wind, in planetary atmospheres, and in meteorites are investigated using isotopic correlations. The term PPD-Xe is used for components inferred to have been present in the molecular cloud material that formed the protoplanetary disk (PPD). The evidence of the lack of simple relationships between terrestrial atmospheric Xe and solar or meteoritic components is confirmed. Xe isotopic correlations indicate a heterogeneous PPD composition with variable mixing ratios of the nucleosynthetic component Xe-HL. Solar Xe represents a bulk PPD component, and the isotopic abundances did not change from the time of incorporation into the interior of Mars through times of regolith implantations to the present.

  11. XENON IN THE PROTOPLANETARY DISK (PPD-Xe)

    Marti, K.; Mathew, K. J.

    2015-01-01

    Relationships among solar system Xe components as observed in the solar wind, in planetary atmospheres, and in meteorites are investigated using isotopic correlations. The term PPD-Xe is used for components inferred to have been present in the molecular cloud material that formed the protoplanetary disk (PPD). The evidence of the lack of simple relationships between terrestrial atmospheric Xe and solar or meteoritic components is confirmed. Xe isotopic correlations indicate a heterogeneous PPD composition with variable mixing ratios of the nucleosynthetic component Xe-HL. Solar Xe represents a bulk PPD component, and the isotopic abundances did not change from the time of incorporation into the interior of Mars through times of regolith implantations to the present

  12. Xenon in the Protoplanetary Disk (PPD-Xe)

    Marti, K.; Mathew, K. J.

    2015-06-01

    Relationships among solar system Xe components as observed in the solar wind, in planetary atmospheres, and in meteorites are investigated using isotopic correlations. The term PPD-Xe is used for components inferred to have been present in the molecular cloud material that formed the protoplanetary disk (PPD). The evidence of the lack of simple relationships between terrestrial atmospheric Xe and solar or meteoritic components is confirmed. Xe isotopic correlations indicate a heterogeneous PPD composition with variable mixing ratios of the nucleosynthetic component Xe-HL. Solar Xe represents a bulk PPD component, and the isotopic abundances did not change from the time of incorporation into the interior of Mars through times of regolith implantations to the present.

  13. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    Bogdanov, E A; Kudryavtsev, A A; Arslanbekov, R R; Kolobov, V I

    2004-01-01

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C and M). However, some computational results of the work of C and M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C and M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C and M. Although these differences do not affect profoundly the plasma macro parameters measured in the C and M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage

  14. Compressible Convection Experiment using Xenon Gas in a Centrifuge

    Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.

    2017-12-01

    We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.

  15. Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

    Bajic, S.J.; Compton, R.N.; Tang, X.; L'Huiller, A.; Lambropoulos, P.

    1988-11-01

    Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s[3/2] 1 0 and 5d[3/2] 1 0 states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe + in either the 2 P/sub 1/2/ or 2 P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the [3+1] REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from [3+1] via the 7s[3/2] 1 0 state into Xe + 2 P/sub 3/2/ (core preserving) or Xe + 2 P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs

  16. NEST: a comprehensive model for scintillation yield in liquid xenon

    Szydagis, M; Barry, N; Mock, J; Stolp, D; Sweany, M; Tripathi, M; Uvarov, S; Walsh, N; Woods, M [University of California, Davis, One Shields Ave., Davis, CA 95616 (United States); Kazkaz, K, E-mail: mmszydagis@ucdavis.edu [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

    2011-10-15

    A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).

  17. NEST: a comprehensive model for scintillation yield in liquid xenon

    Szydagis, M; Barry, N; Mock, J; Stolp, D; Sweany, M; Tripathi, M; Uvarov, S; Walsh, N; Woods, M; Kazkaz, K

    2011-01-01

    A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).

  18. Self-organization in cathode boundary layer discharges in xenon

    Takano, Nobuhiko; Schoenbach, Karl H

    2006-01-01

    Self-organization of direct current xenon microdischarges in cathode boundary layer configuration has been studied for pressures in the range 30-140 Torr and for currents in the range 50 μA-1 mA. Side-on and end-on observations of the discharge have provided information on the structure and spatial arrangement of the plasma filaments. The regularly spaced filaments, which appear in the normal glow mode when the current is lowered, have a length which is determined by the cathode fall. It varies, dependent on pressure and current, between 50 and 70 μm. The minimum diameter is approximately 80 μm, as determined from the radiative emission in the visible. The filaments are sources of extensive excimer emission. Measurements of the cathode fall length have allowed us to determine the secondary emission coefficient for the discharge in the normal glow mode and to estimate the cathode fall voltage at the transition from normal glow mode to filamentary mode. It was found that the cathode fall voltage at this transition decreases, indicating the onset of additional electron gain processes at the cathode. The regular arrangement of the filaments, self-organization, is assumed to be due to Coulomb interactions between the positively charged cathode fall channels and positive space charges on the surface of the surrounding dielectric spacer. Calculations based on these assumptions showed good agreement with experimentally observed filament patterns

  19. First Detection of Krypton and Xenon in a White Dwarf

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  20. Noble Liquid (Xenon or Krypton) Totally Active Calorimetry

    2002-01-01

    Main Goals\\\\ \\\\ Determine ionization and scintillation yields in liquid Xenon (LXe) or Krypton.\\\\ \\\\ Determine the electron lifetime and photon mean free path in LXe or LKr. \\\\ \\\\ Determine energy resolution of LXe or LKr via ionization or scintillation.\\\\ \\\\ Determine correlation of fluctuations between ionization and scintillation. Summary of Results \\\\ \\\\ -~measured the electron lifetime in LXe, ($\\tau$~$>$~400 $\\mu$s).\\\\ \\\\ -~measured the energy to create an ionization electron in LXe, W=9.8 eV.\\\\ \\\\ -~measured the energy to create a LXe scintillation photon, W$ _{s} $~=~14.2~eV. \\\\ \\\\ -~measured the anticorrelation of scintillation and ionization yields. \\\\ \\\\ -~measured the energy resolution in LXe via ionization, $ sigma _{E} / $E=0.07\\%/$\\sqrt$E(GeV). \\\\ \\\\ -~measured resolution in LXe via scintillation $ sigma _{E} / $E=0.24\\%/$\\sqrt$E(GeV)+0.26\\%. \\\\ \\\\ -~measured electron drift velocity in LXe:~neat (2.5 mm/$\\mu$s), doped (4.4~mm/$\\mu$s). \\\\ \\\\ -~measured the photon mean free path in LXe vs $ lambd...

  1. An homeopathic cure to pure Xenon large diffusion

    Azevedo, C.D.R.; Freitas, E.D.C.; Gonzalez-Diaz, D.; Monrabal, F.; Monteiro, C.M.B.; dos Santos, J. M. F.; Veloso, J.F.C.A.; Gomez-Cadenas, J. J

    2016-02-03

    The NEXT neutrinoless double beta decay experiment will use a high- pressure gas electroluminescence-based TPC to search for the decay of Xe-136. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. The rejection potential associated to the topology reconstruction is limited by our capacity to prop- erly reconstruct the original path of the electrons in the gas. This reconstruction is limited by different factors that include the geometry of the detector, the density of the sensors in the tracking plane and the separation among them, etc. Ultimately, the resolution is limited by the physics of electron diffusion in the gas. In this paper we present a series of molecular additives that can be used in Xenon gas at very low partial pressure to reduce both longitudinal and transverse diffusion. We will show the results of different Monte-Carlo simulations of electron transport in the gas mixtures from wich we have extracted the value of...

  2. Revised analysis of singly ionized xenon, Xe II

    Hansen, J.E.; Persson, W.

    1987-01-01

    We present a revised analysis of the spectrum of singly ionized xenon, Xe II. This spectrum has been reanalyzed on the basis of the wavelength material published by Drs J. C. Boyce and C. J. Humphreys. The latter has kindly placed the original wavelength list covering the wavelength range 10220-390 A at our disposal. We report 161 energy levels which have been identified on the basis of classifications of 950 lines. We report first f and g levels in Xe II. Also a number of g-factors have been determined for the first time and we give in total 75 g-factors. We have carried out least-squares fits to the even configurations and report the resulting parameter values and eigenvector compositions. A least-squares fit to the 5p 4 6p configuration is also reported. The levels have been named in jK and for many levels also in LS coupling. The former is the better coupling scheme for Xe II. We present an analysis of the 5s photoelectron satellite spectrum of Xe based on our calculated eigenvector compositions and calculations of transition probabilities for ground state transitions as well as lifetimes for the 6p levels. The latter are compared to recent experimental measurements. A list of wavelengths for observed laser transitions showing the present classifications and a discussion of the determination of the ionization potential of Xe II concludes the paper. (orig.)

  3. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  4. Production of fusion radionuclides: Molybdenum-99/ Iodine - 131 and Xenon-133; Produccion de los radionucleidos de fision: Molibdeno-99, Yodo-131 y Xenon-133

    Barrachina, M; Carrillo, D

    1982-07-01

    This report presents a new radiochemical method for industrial production of the radionuclides: molybdenum-99, iodine-131 and xenon-133. The above mentioned method based on the alkaline metathesis reaction of irradiated uranium (IV) fluoride, presents the best characteristics for the proposed objective. The study deals with the analysis of that reaction and the separation and purification processes. (Author) 71 refs.

  5. Medical Isotopes Production Project: Molybdenum-99 and related isotopes: Environmental Impact Statement, Volume I

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related medical isotopes (iodine-131, xenon-133 and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition to the preferred alternative, three other reasonable alternatives and a no action alternative are analyzed in detail. The sites for the three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities, of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity

  6. Isotope hydrology

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  7. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    Fraser, I.S.; McCarron, G.; Hutton, B.; Macey, D.

    1987-01-01

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintained until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates

  8. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    Fraser, I.S.; McCarron, G.; Hutton, B.; Macey, D.

    1987-01-01

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintained until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates.

  9. Galatic and solar cosmic ray - produced rare gas isotopes in lunar fines

    Bhushan, B.N.; Rao, M.N.; Venkatesan, T.R.

    1979-01-01

    Lunar fines 10084, 14163 and 14148 from Apollo 11 and 14 missions as well as 24087 from Soviet Luna 24 mission have been studied for elemental and isotopic composition of He, Ne, Ar, Kr and Xe using milligram amounts by step-wise heating techniques. From these studies, the isotopic composition of solar wind has been determined and it is found to be in good agreement with the results reported by other workers. The experimental procedure adopted for studying these samples is described in brief. The use of a gas glass spectrometer for detecting the subtle galatic and solar cosmic ray xenon is explained. Data on the concentration and isotopic composition of selected isotopes of Xe and Ne in lunar fines is presented. (K.B.)

  10. Quantitative cerebral blood flow calculation method using xenon CT. Introduction of a factor reflecting diffusing capacity of the lung for xenon

    Sase, Shigeru; Honda, Mitsuru; Noguchi, Yoshitaka

    2007-01-01

    In calculating cerebral blood flow (CBF) using the Fick principle, time-course information on arterial tracer concentration is indispensable and exerts considerable influence on the accuracy of CBF. In xenon-enhanced CT (Xe-CT), the time-course change rate for end-tidal xenon concentration (Ke), which can be measured, and that for arterial xenon concentration (Ka) have been assumed to be equal. However, it has been pointed out that there are large differences between Ke and Ka in many cases. We have introduced a single factor (γ) which correlates Ke with Ka in the equation Ka=γ x (1-e -Ke/γ ). This factor, γ, reflects the diffusing capacity of the lung for xenon; larger γ values correspond to larger diffusing capacities and Ka is equal to Ke when γ is infinity. Kety's equation contains two parameters: CBF and xenon solubility coefficient We added a third parameter, γ, to Kety's equation, and developed an efficient method to obtain the γ value for each Xe-CT study. Applying this method to ten normal subjects (35.4±16.3 years, mean±standard deviation (SD)), we obtained γ value of 1.01±0.17 and the average CBF value of 38.8±7.5 mL/100 g/min in basal ganglia. The wash-in period could be shortened to two minutes using this method. Xe-CT with this factor (γ) as a parameter enhances its clinical availability as well as the accuracy of CBF. (author)

  11. Liquid xenon in nuclear medicine: state-of-the-art and the PETALO approach

    Ferrario, P.

    2018-01-01

    Liquid xenon has several attractive features, which make it suitable for applications to nuclear medicine, such as high scintillation yield and fast scintillation decay time, better than currently used crystals. Since the '90s, several attempts have been made to build Positron Emission Tomography scanners based on liquid xenon, which can be divided into two different approaches: on one hand, the detection of the ionization charge in TPCs, and, on the other one, the detection of scintillation light with photomultipliers. PETALO (Positron Emission Tof Apparatus with Liquid xenOn) is a novel concept, which combines liquid xenon scintillating cells and silicon photomultipliers for the readout. A first Monte Carlo investigation has pointed out that this technology would provide an excellent intrinsic time resolution, which makes it possible to measure the Time-Of-Flight with high efficiency. Also, the transparency of liquid xenon to UV and blue wavelengths opens the possibility of exploiting both scintillation and Cherenkov light for a high-sensitivity TOF-PET.

  12. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-01-01

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case

  13. Development of a liquid xenon Compton telescope dedicated to functional medical imaging

    Grignon, C.

    2007-12-01

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  14. A semi-analytical treatment of xenon oscillations

    Zarei, M.; Minuchehr, A.; Ghaderi, R.

    2017-01-01

    Highlights: • A two-group two region kinetic core model is developed employing the eigenvalues separation index. • Poison dynamics are investigated within an adiabatic approach. • The overall nonlinear reactor model is recast into a linear time varying framework incorporating the matrix exponential numerical scheme. • The largest Lyapunov exponent is employed to analytically verify model stability. - Abstract: A novel approach is developed to investigate xenon oscillations within a two-group two-region coupled core reactor model incorporating thermal feedback and poison effects. Group-wise neutronic coupling coefficients between the core regions are calculated applying the associated fundamental and first mode eigenvalue separation values. The resultant nonlinear state space representation of the core behavior is quite suitable for evaluation of reactivity induced power transients such as load following operation. The model however comprises a multi-physics coupling of sub-systems with extremely distant relaxation times whose stiffness treatment inquire costly multistep implicit numerical methods. An adiabatic treatment of the sluggish poison dynamics is therefore proposed as a way out. The approach helps further investigate the nonlinear system within a linear time varying (LTV) framework whereby a semi-analytical framework is established. This scheme incorporates a matrix exponential analytical solution of the perturbed system as a quite efficient tool to study load following operation and control purposes. Poison dynamics are updated within larger intervals which exclude the need for specific numerical schemes of stiff systems. Simulation results of the axial offset conducted on a VVER-1000 reactor at the beginning (BOC) and the end of cycle (EOC) display quite acceptable results compared with available benchmarks. The LTV reactor model is further investigated within a stability analysis of the associated time varying systems at these two stages

  15. Two-group Analysis of Xenon Stability in Slab Geometry by Modal Expansion

    Norinder, O.

    1963-05-01

    Xenon spatial stability is analyzed with the flux represented by two neutron energy groups. General formulas are given for expansions in a system of modes. Detailed formulas are recorded for a slab described by sinusoidal modes. A short description is given of a Mercury Autocode program for numerical calculations in slab geometry. The essential input parameters and results are noted for 80 computed cases. The main body of the calculations were intended to clarify the xenon stability properties of the Marviken reactor, which was found to have a sufficient margin against unstable xenon oscillations. The neutron flux detection and the control rod insertion in the slab were found to have a large influence on the stability in spite of the nonexistence of space-selective control in the systems investigated. Very good agreement was found between stability limits calculated according to Randall and St. John and stability limits calculated by the program

  16. Bonding xenon and krypton on the surface of uranium dioxide single crystal

    Dąbrowski Ludwik

    2014-08-01

    Full Text Available We present density functional theory (DFT calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.

  17. Iodide and xenon enhancement of computed tomography (CT) in multiple sclerosis (MS)

    Radue, E.W.; Kendall, B.E.

    1978-01-01

    The characteristic findings on computed tomography (CT) in multiple sclerosis (MS) are discussed. In a series of 49 cases plain CT was normal in 21 (43%), cerebral atrophy alone was present in 17 (35%) and plaques were visible in 11 (23%). These were most often adjacent to the lateral ventricles (14 plaques) and in the parietal white matter (10 plaques). CT was performed after the intravenous administration of iodide in 16 of these cases. Two patients with low attenuation plaques were scanned with xenon enhancement; the plaques absorbed less xenon than the corresponding contralateral brain substance and additional, previously isodense plaques were revealed. In one case the white matter absorbed much less xenon than normal and its uptake relative to grey matter was reduced. (orig.) [de

  18. Performance of a cryogenic system prototype for the XENON1T detector

    Aprile, E; Budnik, R; Choi, B; Contreras, H A; Giboni, K L; Goetzke, L W; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; Rizzo, A; Shagin, P

    2012-01-01

    We have developed an efficient cryogenic system with heat exchange and associated gas purification system as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 tons of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in series, a heat exchange efficiency better than 96% has been measured.

  19. Spectra of copperlike and zinclike xenon: Xe XXV and Xe XXVI

    Kaufman, V.; Sugar, J.; Rowan, W.L.

    1988-01-01

    The spectra of highly ionized xenon were generated in a tokamak plasma and photographed in the region 60--350 A with a 2.2-m grazing-incidence spectrograph. The 4s 2 --4s4p transitions of Zn-like xenon (Xe XXV) and all the 4l--4(l+1) transitions of Cu-like xenon (Xe XXVI) were measured with estimated uncertainties of +- 0.005 A. These measurements have been combined with previous wavelength measurements of Xe XXVI to determine energy levels. A value for the ionization energy of Xe 25+ of 6 912 400 +- 3000 cm -1 (857.0 +- 0.4 eV) was derived

  20. Status of the 2D Bayesian analysis of XENON100 data

    Schindler, Stefan [JGU, Staudingerweg 7, 55128 Mainz (Germany)

    2015-07-01

    The XENON100 experiment is located in the underground laboratory at LNGS in Italy. Since Dark Matter particles will only interact very rarely with normal matter, an environment with ultra low background, which is shielded from cosmic radiation is needed. The standard analysis of XENON100 data has made use of the profile likelihood method (a most frequent approach) and still provides one of the most sensitive exclusion limits to WIMP Dark Matter. Here we present work towards a Bayesian approach to the analysis of XENON100 data, where we attempt to include the measured primary (S1) and secondary (S2) scintillation signals in a more complete way. The background and signal models in the S1-S2 space have to be defined and a corresponding likelihood function, describing these models, has to be constructed.

  1. Measurement of vascular flow in the brain with the xenon/CT method

    Wist, A.O.; Cothran, A.; Fatouros, P.P.; Kishore, P.R.S.

    1988-01-01

    The authors are proposing a modification of the xenon/CT method that allows measurement of the flow in the different brain vessels. Based on an improved stable xenon/CT method, they developed several additional algorithms to differentiate the vessel flow from tissue flow and from artifacts and noise, which are based on the height, steepness, and other parameters of the detected flow values. The vessel flow maps, together with the tissue flow maps and new composite flow maps of recent patients, demonstrate that the stable xenon/CT technique can be extended to quantify vascular flow in the brain. The diagnostic capability of this method can be further improved by removing the vessel flow from the flow maps

  2. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D. [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study.

  3. The behavior of xenon dynamic adsorption on granular activated carbon packed bed adsorber

    Chongyang Zhou; Shujuan Feng; Guoqing Zhou; Yuren Jin; Junfu Liang; Jingming Xu

    2011-01-01

    In order to retard radioxenon release into the atmosphere from nuclear power station or to sensitively monitor its concentration to ensure environmental and human safety, it is necessary to know the behavior of xenon dynamic adsorption on granular activated carbon pack bed adsorber. The quantities, including the dynamic adsorption coefficient (k d ), the amount of xenon adsorbed (q), the length of mass transfer zone (L MTZ ) and the length of the unused bed (LUB), used to describe the adsorption behavior, were sorted out and calculated. The factors, including xenon concentrations, pressures and temperatures, to affect these quantities were investigated. The results show that: (1) The values of k d and q decrease with increasing temperatures, but increase with increasing pressures, (2) The values of L MTZ and LUB increase with increasing temperatures or pressures, but are independent of concentrations. Knowledge of these quantities is very helpful for packed bed adsorber operation. (author)

  4. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  5. Two-group Analysis of Xenon Stability in Slab Geometry by Modal Expansion

    Norinder, O

    1963-05-15

    Xenon spatial stability is analyzed with the flux represented by two neutron energy groups. General formulas are given for expansions in a system of modes. Detailed formulas are recorded for a slab described by sinusoidal modes. A short description is given of a Mercury Autocode program for numerical calculations in slab geometry. The essential input parameters and results are noted for 80 computed cases. The main body of the calculations were intended to clarify the xenon stability properties of the Marviken reactor, which was found to have a sufficient margin against unstable xenon oscillations. The neutron flux detection and the control rod insertion in the slab were found to have a large influence on the stability in spite of the nonexistence of space-selective control in the systems investigated. Very good agreement was found between stability limits calculated according to Randall and St. John and stability limits calculated by the program.

  6. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D.

    2012-01-01

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study

  7. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin; Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju; Krauss, Bernhard

    2010-01-01

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 ± 6.4 HU vs 26.1 ± 6.5 HU; P 25-75 , (γ = -0.68-0.88, P ≤ 0.002). Volume percentages of xenon ventilation defects (35.0 ± 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 ± 18.6%). However, mismatches between the volume percentages were variable up to 21.4-33.3%. Mean effective dose of xenon CT was 1.9 ± 0.5 mSv. In addition to high-resolution anatomic information, xenon ventilation CT using dual-source and dual-energy technique demonstrates impaired regional ventilation and its heterogeneity accurately in children with BO without additional radiation exposure. (orig.)

  8. Xenon-induced axial power oscillations in the 400 MW PBMR

    Strydom, Gerhard

    2008-01-01

    The redistribution of the spatial xenon concentration in the 400 MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400 MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%-50%-100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400 MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations

  9. Investigation of neutron-rich rare-earth nuclei including the new isotopes 177Tm and 184Lu

    Rykaczewski, K.; Gippert, K.L.; Runte, E.; Schmidt-Ott, W.D.; Tidemand-Petersson, P.; Kurcewicz, W.; Nazarewicz, W.

    1989-01-01

    Decays of neutron-rich isotopes in the rare-earth region were studied by means of on-line mass separation and β-γ spectroscopy using multinucleon-transfer reactions between beams of 136 Xe (9 and 11.7 MeV/u), 186 W (11.7 and 15 MeV/u) and 238 U (11.4 MeV/u) and targets of nat W and Ta. The higher beam energies appear to be advantageous for the production of such isotopes. Two new isotopes were identified: 177 Tm with a half-life T 1/2 = 85±10/15 s, and 184 Lu with T 1/2 ≅ 18 s. A new 47 s-activity found at A = 171 is tentatively assigned to the decay of the new isotope 171 Ho. The properties of the ground and excited states of neutron-rich lanthanide isotopes are interpreted within the shell model using the deformed Woods-Saxon potential. A change of the ground-state configuration for odd-mass neutron-rich lutetium isotopes from π 7/2 + [404] to π 9/2 - [514] is suggested, this change being due to the influence of a large hexadecapole deformation. The role of a possible isometric state in 180 Lu for the nucleosynthesis of 180m Ta is discussed. (orig.)

  10. Charged particle identification with the liquid Xenon calorimeter of the CMD-3 detector

    Ivanov, V.L.; Fedotovich, G.V.; Anisenkov, A.V.; Grebenuk, A.A.; Mikhailov, K.Yu.; Kozyrev, A.A.; Shebalin, V.E.; Ruban, A.A.; Bashtovoy, N.S.

    2017-01-01

    This paper describes a procedure of particle identification with the liquid Xenon calorimeter of the CMD-3 detector currently being developed. The procedure uses the boosted decision tree classification method with specific energy losses of charged particles in the liquid Xenon calorimeter as input variables. The efficiency of the procedure is illustrated by an example of the measurement of the cross section of the process e + e − → K + K − in the center-of-mass energy range from 1.8 to 2.0 GeV.

  11. Near-infrared scintillation of xenon by 63Ni beta decay

    Yoshimizu, Norimasa; Lal, Amit; Pollock, Clifford R.

    2006-07-01

    The near-infrared scintillation of xenon gas by the β decay of 37MBq of Ni63 was studied, in the interest of its use in integrated devices for applications such as optical beacons and wavelength calibration. The emission was imaged and analyzed using Spencer's theory of electron penetration using xenon scattering cross sections derived from Thomas-Fermi theory. The total emission was approximately 2×105photons/s at 20kPa and 1×105photons/s at 100kPa. Spectral data show three dominant peaks at 823, 828, and 882nm as well as the formation of metastable states.

  12. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  13. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  14. Determination of hyperacute kidney rejection in different xenogeneic system by 133xenon washout technique

    Welter, H.; Schmidt, K.R.; Pfeifer, K.J.; Hammer, C.; Chaussy, C.

    1980-01-01

    1. 133 Xenon washout technique is suitable for studying all stages of xenogeneic kidney rejection. 2. Follow-up studies allow differentiation between kidney rejection and kidneys in shock. 3. Changes of intrarenal blood flow distribution correlate with the histologic changes caused by rejection. 4. Total blood flow measurements employing 133 xenon washout yield 10-20% lower values compared with venous outflow measurements. 5. Graft rejection in the xenogeneic cat-dog system can be significantly delayed by ALG pretreatment. 6. The beneficial effect of blood transfusion described in different clinical and experimental studies could not be found after pretreatment of dogs with fox red blood cells. (orig.)

  15. 900-L liquid xenon cryogenic system operation for the MEG experiment

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  16. First 0ν half-life limit from the Gotthard xenon time projection chamber

    Wong, H.T.; Boehm, F.; Fisher, P.

    1991-01-01

    A xenon Time Projection Chamber with an active volume of 207 liters has been built to study 0ν and 2ν double beta decay in 136 Xe. The TPC has been installed in the Gotthard Tunnel Underground Laboratory, and is currently taking data with 5 atm of xenon enriched in 62.5% 136 Xe. The first 166 hours of data are presented. Based on this data set, we deduce a half-life limit of T(0 + → 0 + ) > 6.2 x 10 21 years for the 0ν mode, at a 90% C.L. (author)

  17. Xenon-133 retention in hepatic steatosis - correlation with liver biopsy in 45 patients: concise communication

    Ahmad, M.; Perrillo, R.P.; Sunwoo, Y.C.; Donati, R.M.

    1979-01-01

    This study presents the results of comparison of hepatic fat content with hepatic xenon retention in 45 patients. The degree of hepatic Xe-133 retention was measured during pulmonary ventilation studies. The amount of hepatic steatosis was graded 0 to 4+ on histologic liver sections obtained by needle or surgical biopsy. There was agreement between the amount of hepatic xenon retention determined scintigraphically and the degree of steatosis determined histologically. These results suggest that Xe-133 retention in the liver provides a simple means of evaluating fatty infiltration of the liver. The potential of this technique as a noninvasive means of investigating hepatic fatty infiltration is discussed

  18. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  19. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  20. On electron attachment effect on characteristics of the DBD in chlorine and its mixtures with xenon

    Avtaeva, S. V.

    2017-11-01

    The electron attachment effect on DBD characteristics in chlorine and its mixtures with xenon has been studied. Characteristics of the DBDs in pure chlorine and in xenon-chlorine mixtures with a chlorine fraction of 0.1-5% were modeled using the fluid model. It is shown that the electron attachment limits a magnitude of the DBD current, contributes to formation of multiple current spikes, appearance of a double layer near the dielectric surface and formation of XeCl* excimer molecules, and leads to a redistribution of the power deposited into the discharge: more power is deposited into ions and less power is deposited into electrons.

  1. Method and apparatus for detecting dilute concentrations of radioactive xenon in samples of xenon extracted from the atmosphere

    Warburton, William K.; Hennig, Wolfgang G.

    2018-01-02

    A method and apparatus for measuring the concentrations of radioxenon isotopes in a gaseous sample wherein the sample cell is surrounded by N sub-detectors that are sensitive to both electrons and to photons from radioxenon decays. Signal processing electronics are provided that can detect events within the sub-detectors, measure their energies, determine whether they arise from electrons or photons, and detect coincidences between events within the same or different sub-detectors. The energies of detected two or three event coincidences are recorded as points in associated two or three-dimensional histograms. Counts within regions of interest in the histograms are then used to compute estimates of the radioxenon isotope concentrations. The method achieves lower backgrounds and lower minimum detectable concentrations by using smaller detector crystals, eliminating interference between double and triple coincidence decay branches, and segregating double coincidences within the same sub-detector from those occurring between different sub-detectors.

  2. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel[Dissertation 17527

    Horvath, M. I

    2008-07-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However

  3. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel

    Horvath, M. I.

    2008-01-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However, relevant Xe

  4. Xe isotopic abundances in enstatite meteorites and relations to other planetary reservoirs

    Lee, Jee-Yon; Marti, Kurt; Wacker, John F.

    2009-01-01

    This paper describes the interpretation of xenon that was measured in the Abee meteorite. Reported Xe isotopic abundances in enstatite chondrites (EC's) show some variability, and this makes comparisons to other solar system reservoirs rather difficult. In contrast, we find uniform Xe isotopic abundances in the EC chondrite Abee for a variety of clasts, except for 128 Xe and 129 Xe, the isotopes affected by neutron capture in I and by extinct 129 I. We report averages for the studied clasts which are consistent within error limits with OC-Xe and with the Q-Xe signature. On the other hand, the elemental abundance ratios Ar/Xe are variable between clasts. A strongly reducing environment which is indicated for enstatite meteorites was generally assumed to be consistent with conditions existing in the early inner solar system. Xe isotopic abundances in SNC meteorites from Mars and also those in some terrestrial wells show that distinct isotopic reservoirs coexisted on the same planets. In particular, the Xe isotopic signatures in terrestrial well gases show the presence of a minor distinct component in two of the reported four well gases. These authors suggested that the extra component represents solar Xe, but we show that also a meteoritic xenon reservoir of the Abee-Xe structure is an option. The reported Xe data in Ar-rich (subsolar) EC's show isotopic abundances slightly lighter than those in Abee-Xe, but the relative abundances of Ar, Kr, and Xe indicate only a minor component of elementally unfractionated solar Xe. The elemental ratios suggest rather a different origin for these gases: the loading of solar particles into grain surfaces during exposure at elevated temperatures during accretion of matter in the inner solar system. A model of this type was suggested for the accretion of gases now observed in the atmosphere on Venus. We note that disks of crystalline silicates (including enstatite and olivine) have been observed in T Tauri stars during their early

  5. Natural isotopes

    Vogel, J.C.

    1986-01-01

    14 C dates between 600 and 900 AD were obtained for early Iron Age sites in Natal, and from 1300 to 1450 AD for rock engraving sites in Bushmanland. Palaeoenvironmental data derived from the dating of samples related to sedimentary and geomorphic features in the central and northern Namib Desert enabled the production of a tentative graph for the changes in humidity in the region over the past 40000 years. These results suggest that relatively humid conditions came to an end in the Namib at ±25000 BP (before present). The increased precision of the SIRA mass spectrometer enabled the remeasurement of 13 C and 18 O in the Cango stalagmite. This data confirmed that the environmental temperatures in the Southern Cape remained constant to within ±1 o C during the past 5500 years. Techniques and applications for environmental isotopes in hydrology were developed to determine the origin and movement of ground water. Isotopic fractionation effects in light elements in nature were investigated. The 15 N/ 14 N ratio in bones of animals and humans increases in proportion to the aridity of the environment. This suggests that 15 N in bone from dated archaeological sites could be used to detect changes in past climatic conditions as naturally formed nitrate minerals are higly soluble and are only preserved in special, very dry environments. The sources and sinks of CO 2 on the South African subcontinent were also determined. The 13 C/ 12 C ratios of air CO 2 obtained suggest that the vegetation provides the major proportion of respired CO 2 . 9 refs., 1 fig

  6. Rotational structure of odd-proton {sup 103,105,107,109,111}Tc isotopes

    Kumar, Amit [University of Jammu, Department of Physics and Electronics, Jammu (India); Government of J and K, Department of Higher Education, Jammu (India); Singh, Dhanvir; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Singh, Suram; Bhat, G.H. [Government of J and K, Department of Higher Education, Jammu (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-10-15

    A systematic study of the yrast band structure for the neutron-rich odd-mass {sup 103-111}Tc nuclei is carried out using Projected Shell Model. The rotational band structure has been studied up to a maximum spin of 59/2{sup +}. Excellent agreement with available experimental data for all isotopes is obtained. The energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states are studied in detail. Signature splitting in the yrast rotational band is well described in the perspective of nuclear structure physics. The back-bending phenomenon is also well described for these nuclei in the present work. (orig.)

  7. Relation between clinical and roentgenological scores and measures of lung function in cystic fibrosis, with special reference to pulmonary Xenon133 elimination

    Ericsson, A.; Strandvik, B.; Troell, S.; Freyschuss, U.

    1987-01-01

    Regional lung function (RLF) with Xenon 133 was investigated in 40 patients with cystic fibrosis (CF) aged 5-28 years (mean 13) at 1-5 occasions during a 3-year period. The RLF was determined with a 4-collimator system and evaluated with a score based on the following parameters: (1) time of elimination of injected isotope and (2) of inhaled isotope, (3) regional ventilation, (4) regional perfusion and (5) ventilation-perfusion ratios. The results were related to spirometry, X-ray score (according to a modification of Chrispin and Norman) and clinical score (according to Shwachman and excluding X-ray), which were all assessed in the same day. RLF correlated to clinical (P<0.01) and radiological score (P<0.01) and to residual volume (P<0.001) and the ratio between one second forced expiratory volume to vital capacity (FEV%) (P<0.01), but much higher correlations were found between X-ray score, clinical score and different spirometric variables. We therefore conclude that RLF can be used in patients too young to cooperate in spirometry but that it is of less clinical value in older patients with CF. (author)

  8. Stable isotope studies

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  9. Method for separating isotopes

    Jepson, B.E.

    1975-01-01

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether

  10. Conception and synthesis of new molecular cages for xenon MRI applications

    Delacour, L.

    2011-01-01

    Non-invasive proton magnetic resonance imaging ( 1 H MRI) is a powerful clinical tool for the detection of numerous diseases. Although MRI contrast agents are often used to improve diagnostic specificity, this technique has limited applications in molecular imaging because of its inherently low sensitivity when compared to nuclear medicine or fluorescence imaging. Laser-polarized 129 Xe NMR spectroscopy is a promising tool to circumvent sensitivity limitations. Indeed, optical pumping increases the nuclear spin polarization of xenon by several orders of magnitude (10 4 to 10 5 ), thus small amounts of gas dissolved in biological tissues (blood, lungs...) can be rapidly detected with an excellent signal-to-noise ratio. In addition, the high polarizability of the xenon electron cloud, which induces a very high sensitivity to its environment, makes this nucleus very attractive for molecular imaging. Detection of biomolecules can be achieved by biosensors, which encapsulate xenon atoms in molecular cages that have been functionalized to bind the desired biological target. Cage molecules such as cryptophanes have high affinity for xenon and thus appear as ideal candidates for its encapsulation. During this PhD thesis we worked on the synthesis and the functionalization of new cryptophanes. (author) [fr

  11. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    TROYER, G.L.

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  12. Local regulation of blood flow evaluated simultaneously by 133-xenon washout and laser Doppler flowmetry

    Engelhart, M.; Petersen, L.J.; Kristensen, J.K.

    1988-01-01

    The laser Doppler flowmeter and the 133-Xenon washout techniques of measuring cutaneous blood flow were compared for measuring the vasoconstrictor response of the hand during orthostatic maneuvres. Important discrepancies were detected for the two methods. When the hand was lowered by 40 cm a 40% decrease in blood flow was detected by the 133-Xenon method, while a 60% decrease was seen by the laser Doppler technique. Lowering the hand by 50 cm resulted in no further blood flow decrease when using the 133-Xenon method, but an 80% blood flow decrease was recorded with the laser Doppler method. A marked decrease in blood flow was recorded by the laser Doppler technique in hands that were sympathectomized or a hand that was subjected to a nerve blockade, strategies which should eliminate the orthostatic vasoconstrictor response of superficial cutaneous vessels. The 133-Xenon technique did not detect any blood flow changes in hands without sympathetic tone. We found the laser Doppler flowmetry technique unsatisfactory for measurement of blood flow changes that occur in nutritional vessels as this method measures total skin blood flow including non-capillary vessels

  13. Optimal Control Strategy Search Using a Simplest 3-D PWR Xenon Oscillation Simulator

    Yoichiro, Shimazu

    2004-01-01

    Power spatial oscillations due to the transient xenon spatial distribution are well known as xenon oscillation in large PWRs. When the reactor size becomes larger than the current design, then even radial oscillations can be also divergent. Even if the radial oscillation is convergent, when some control rods malfunction occurs, it is necessary to suppress the oscillation in as short time as possible. In such cases, optimal control strategy is required. Generally speaking the optimality search based on the modern control theory requires a lot of calculation for the evaluation of state variables. In the case of control rod malfunctions the xenon oscillation could be three dimensional. In such case, direct core calculations would be inevitable. From this point of view a very simple model, only four point reactor model, has been developed and verified. In this paper, an example of a procedure and the results for optimal control strategy search are presented. It is shown that we have only one optimal strategy within a half cycle of the oscillation with fixed control strength. It is also shown that a 3-D xenon oscillation introduced by a control rod malfunction can not be controlled by only one control step as can be done for axial oscillations. They might be quite strong limitations to the operators. Thus it is recommended that a strategy generator, which is quick in analyzing and easy to use, might be installed in a monitoring system or operator guiding system. (author)

  14. Production of fusion radionuclides: Molybdenum-99/ Iodine - 131 and Xenon-133

    Barrachina, M.; Carrillo, D.

    1982-01-01

    This report presents a new radiochemical method for industrial production of the radionuclides: molybdenum-99, iodine-131 and xenon-133. The above mentioned method based on the alkaline metathesis reaction of irradiated uranium (IV) fluoride, presents the best characteristics for the proposed objective. The study deals with the analysis of that reaction and the separation and purification processes. (Author) 71 refs

  15. Observation of electron multiplication in liquid xenon with a microstrip plate

    Policarpo, A.P.L.; Geltenbort, P.; Ferreira Marques, R.; Araujo, H.; Fraga, F.; Alves, M.A.; Fonte, P.; Lima, E.P.; Fraga, M.M.; Salete Leite, M.; Silander, K.; Onofre, A.; Pinhao, J.M.

    1995-01-01

    We report here on the observation of electron multiplication in liquid xenon in a microstrip chamber with an amplification factor of the order of 10. The measurements were carried out at a temperature between 208 and 215 K (liquid density of about 2.7 g/cm 3 ). (orig.)

  16. Cerebral blood flow mapping using stable xenon-enhanced CT in sickle cell cerebrovascular disease

    Numaguchi, Y.; Robinson, A.E.; Carey, J.E.

    1990-01-01

    The cerebral blood flow (CBF) of 25 patients with sickle cell cerebrovascular disease (SCCVD) was examined using a xenon-CT flow mapping method. Brain CT and MR findings were correlated with those of the xenon-CT flow studies. CBF defects on xenon-CT correlated reasonably well with the areas of cortical infarctions on the MR images, but in 27% of the cases, flow defects were slightly larger than the areas of infarctions on the MR images. In deep watershed or basal ganglia infarctions, abnormal CBF was noted about the cerebral cortex near infarctions in 72% of the patients, regardless of infarction sizes on the MR images. However, decreased CBF was recognized in 4 of the 9 children whose MR images were virtually normal. Thus, the extent of flow depletion cannot be predicted accurately by MR imaging alone. Xenon-CT flow mapping proved a safe and reliable procedure for evaluation of the CBF of patients with SCCVD. Although this study is preliminary, it may have a potential in selecting patients for hypertransfusion therapy, as a noninvasive test and for following children with SCCVD during their therapy. Careful correlation of results of CBF with those of MR imaging or of CT is important for objective interpretations of flow mapping images. (orig.)

  17. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  18. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  19. A liquid-xenon calorimeter for the detection of electromagnetic showers

    Baranov, A.; Baskakov, V.; Bondarenko, G.; Dolgoshein, B.; Lebedenko, V.N.; Tcherniatin, V.; Gavrilenko, I.; Kozodaeva, O.; Konovalov, S.; Muraviev, S.; Shmeleva, A.; Vassiliev, P.

    1990-01-01

    The energy and spatial resolution of a 40 l liquid-xenon calorimeter was measured. For electrons in the energy region 1-6 GeV the resolutions are σ E /E=3.4/√E (%), σ x =4.6/√E (mm). The details of construction and running of such a device are discussed. (orig.)

  20. Experimental development of a liquid xenon Compton telescope for functional medical imaging

    Oger, Tugdual

    2012-01-01

    3γ imaging is a new nuclear medical imaging technique which has been suggested by Subatech laboratory. This technique involves locating three-dimensional position of the decay of an innovative radioisotope (β + ,γ) emitter, the 44 Sc. The principle consist in the detection of two photons of 511 keV gamma rays from the decay of the positron, provided by a PET ring detector, associated to the detection of the third photon by a Liquid xenon Compton telescope. The energy deposited in the interaction between the photon and xenon and its position are identified by measuring the ionization signal with a Micromegas chamber (Micro-Mesh Gaseous Structure), while the trigger and time measurement of the interaction are provided by the detection of the scintillation signal. The principle of the TPC is thus used to Compton imaging. In order to demonstrate experimentally the feasibility of imaging 3γ, a small prototype, XEMIS (Xenon Medical Imaging System) was developed. This thesis is an important step towards the proof of feasibility. In this work are exposed the characterization of the detector response for a beam of 511 keV gamma rays and the analysis of data derived from it. The measurement of energy and time resolutions will be presented, as well as the purity of the liquid xenon. (author) [fr

  1. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C.; Cei, F.; Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Galli, L.; Gallucci, G.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Papa, A. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Sergiampietri, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  2. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Solomon, E.

    1988-01-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Lλ) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Lλ values to be normal, introducing the risk of systematic errors, because Lλ values differ throughout normal brain and may be altered by disease. Color-coded maps of Lλ and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 ± 7.7, for subcortical gray matter it was 50.3 ± 13.2 and for white matter it was 18.8 ± 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Lλ and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner. (orig.)

  3. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    Kramer, S.D.

    1984-04-01

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented

  4. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    Kuzma, N. N.; Pourfathi, M.; Kara, H.

    2012-01-01

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its...

  5. Flow measurements of the kidney after selective administration of radioactive xenon

    Franken, A.H.

    1983-01-01

    This thesis describes the results of perfusion studies in the kidney through the renal artery in human subjects, after selective administration of the inert radioactive gas Xenon-133. The examinations have been carried out in conjunction with renal angiography. From October 1979 to May 1981, a total of 150 studies have been performed in 86 patients. (Auth.)

  6. Performance analysis of photoresistor and phototransistor for automotive’s halogen and xenon bulbs light output

    Rammohan, A.; Kumar, C. Ramesh

    2017-11-01

    Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.

  7. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  8. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our

  9. XENON100 exclusion limit without considering Leff as a nuisance parameter

    Davis, Jonathan H.; Bœhm, Céline; Oppermann, Niels; Ensslin, Torsten; Lacroix, Thomas

    2012-07-01

    In 2011, the XENON100 experiment has set unprecedented constraints on dark matter-nucleon interactions, excluding dark matter candidates with masses down to 6 GeV if the corresponding cross section is larger than 10-39cm2. The dependence of the exclusion limit in terms of the scintillation efficiency (Leff) has been debated at length. To overcome possible criticisms XENON100 performed an analysis in which Leff was considered as a nuisance parameter and its uncertainties were profiled out by using a Gaussian likelihood in which the mean value corresponds to the best fit Leff value (smoothly extrapolated to 0 below 3 keVnr). Although such a method seems fairly robust, it does not account for more extreme types of extrapolation nor does it enable us to anticipate how much the exclusion limit would vary if new data were to support a flat behavior for Leff below 3 keVnr, for example. Yet, such a question is crucial for light dark matter models which are close to the published XENON100 limit. To answer this issue, we use a maximum likelihood ratio analysis, as done by the XENON100 Collaboration, but do not consider Leff as a nuisance parameter. Instead, Leff is obtained directly from the fits to the data. This enables us to define frequentist confidence intervals by marginalizing over Leff.

  10. Conception and synthesis of the new cryptophane for the applications in xenon NMR molecular imaging

    Gao, Bo

    2016-01-01

    Among all the imaging techniques, magnetic resonance imaging (MRI) offers several advantages owing to its low invasiveness, its harmlessness and its spatial in-depth resolution but suffers from poor sensitivity. To address this issue, different strategies were proposed, including the utilization of hyper-polarizable species such as "1"2"9Xe. Xenon is an inert gas with a polarizable electronic cloud which leads to an extreme sensitivity to its chemical environment. Its capacity of being hyper-polarized makes it possible to obtain a significant gain of sensitivity. Nevertheless, xenon has no specificity to any biological target therefore it needs to be encapsulated and vectorized. Different molecular cages were proposed and we are particularly interested in cryptophane which is one of the best candidates for xenon encapsulation. In this context, the objective of this thesis is to design new cryptophanes which can be used as molecular platforms to construct novel "1"2"9Xe MRI biosensors usable for in vivo imaging. To meet this demand, these cryptophanes should be mono-functionalizable and enough soluble in water. In this thesis, the polyethylene glycol (PEG) group is used to improve the poor solubility of the hydrophobic molecular cage. And there is a systematic discussion of how to break the symmetry of cryptophanes and different strategies were attempted to synthesize mono-functionalized cryptophanes. As a result, several PEGylated mono-functionalized cryptophanes were obtained and their properties for encapsulating xenon were tested [fr

  11. A Liquid Xenon Ionization Chamber in an All-fluoropolymer Vessel

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W. Jr.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Stanford U., Phys. Dept.; Applied Plastics Technology, Bristol; Neuchatel U.; SLAC; Colorado State U.; Laurentian U.; Carleton U.; Alabama U.; Moscow, ITEP

    2007-01-01

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector

  12. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Sakai, F.; Hata, T.; Oravez, W.T.; Timpe, G.M.; Deville, T.; Solomon, E.

    1988-08-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Llambda) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Llambda values to be normal, introducing the risk of systematic errors, because Llambda values differ throughout normal brain and may be altered by disease. Color-coded maps of Llambda and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 +- 7.7, for subcortical gray matter it was 50.3 +- 13.2 and for white matter it was 18.8 +- 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Llambda and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner.

  13. Proton and antiproton interactions in hydrogen, argon and xenon at 200 GeV

    Malecki, P.

    1984-01-01

    The detailed analysis of the production of particles emitted into forward hemisphere in 200 GeV proton and antiproton interactions with hydrogen, argon and xenon targets is presented. Two-particle rapidity correlations and long-range multiplicity correlations are also discussed. (author)

  14. Phase transitions in the argon, krypton and xenon in generalized Van der Waals theory

    Cavalcanti, H.M.

    1977-01-01

    Fluid-solid like phase transitions for three monoatomic substances, argon, krypton and xenon are treated, using the extension of the Van der Waals theory to the crystalline state. The method utilized is based on 'Maxwell construction' of identical areas [pt

  15. ExB Measurements of a 200 W Xenon Hall Thruster (Preprint)

    Ekholm, Jared M; Hargus, Jr, William A

    2007-01-01

    Angularly resolved ion species fractions of Xe+1, Xe+2, and Xe+3 in a low power xenon Hall thruster Busek BHT-200 plume were measured using an ExB probe under a variety of thruster operating conditions and background pressures...

  16. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  17. Medical Isotopes Production Project: Molybdenum-99 and related isotopes - environmental impact statement. Volume II, comment response document

    1996-04-01

    This Environmental Impact Statement (EIS) provides environmental and technical information concerning the U.S. Department of Energy's (DOE) proposal to establish a domestic source to produce molybdenum-99 (Mo-99) and related isotopes (iodine-131, xenon-133, and iodine-125). Mo-99, a radioactive isotope of the element molybdenum, decays to form metastable technetium-99 (Tc-99m), a radioactive isotope used thousands of times daily in medical diagnostic procedures in the U.S. Currently, all Mo-99 used in the U.S. is obtained from a single Canadian source. DOE is pursuing the Medical Isotopes Production Project in order to ensure that a reliable supply of Mo-99 is available to the U.S. medical community as soon as practicable. Under DOE's preferred alternative, the Chemistry and Metallurgy Research Facility at the Los Alamos National Laboratory (LANL) and the Annular Core Research Reactor and Hot Cell Facility at Sandia National Laboratories/New Mexico (SNL/NM) would be used for production of the medical isotopes. In addition, three other reasonable alternatives and a No Action alternative are analyzed in detail, The sites for these three reasonable alternatives are LANL, Oak Ridge National Laboratory (ORNL), and Idaho National Engineering Laboratory (INEL). The analyses in this EIS indicate no significant difference in the potential environmental impacts among the alternatives. Each of the alternatives would use essentially the same technology for the production of the medical isotopes. Minor differences in environmental impacts among alternatives relate to the extent of activity necessary to modify and restart (as necessary) existing reactors and hot cell facilities at each of the sites, the quantities of low-level radioactive waste generated, how such waste would be managed, and the length of time needed for initial and full production capacity. This document contains comments recieved from meetings held regarding the site selection for isotope production

  18. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  19. Dark matter analysis of XENON100 data and cut development utilizing the novel PAX raw data processor

    Wittweg, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany)

    2016-07-01

    The XENON100 experiment located at LNGS is aimed at the direct detection of weakly interacting massive particles (WIMPs). It utilizes an ultra-low background dual-phase xenon TPC which yields two separate scintillation signals that facilitate background discrimination and event selection. Limits on various interaction types have been published by the collaboration (Science 349 (2015) 6250, 851-854). In the analysis dark matter candidate events have to pass cuts with respect to data quality, consistency and physical features of the interaction. The former ones are implemented with regard to the used data processor's capabilities for noise discrimination and peak-finding. The Processor for Analyzing Xenon (PAX), developed for the XENON1T experiment, enhances these capabilities compared to XENON100. A greater robustness against noise and an increased peak-identification efficiency open up new opportunities for physically motivated cuts while rendering old ones obsolete. The poster will focus on the implementation of new cuts into the analysis chain. Both PAX and the xenon analysis will be introduced. A planned full-scale dark matter analysis of PAX-processed XENON100 data will be outlined.

  20. Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations

    Eliasi, H.; Menhaj, M.B.; Davilu, H.

    2011-01-01

    Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.

  1. Method for separating isotopes

    Jepson, B.E.

    1976-01-01

    The invention comprises a method for separating different isotopes of elements from each other by contacting a feed solution containing the different isotopes with a macrocyclic polyether to preferentially form a macrocyclic polyether complex with the lighter of the different isotopes. The macrocyclic polyether complex is then separated from the lighter isotope depleted feed solution. A chemical separation of isotopes is carried out in which a constant refluxing system permits a continuous countercurrent liquid-liquid extraction. (LL)

  2. Method for separating isotopes

    Schlenker, R.F.

    1978-01-01

    A vortex tube for separating isotopes is described. A gas mixture containing the isotopic molecules enters the vortex tube under pressure and is separated into a hot discharge flow stream and a cold discharge flow stream. The hot discharge is enriched in lighter isotopic molecules whereas the cold discharge flow stream is enriched in the heavier isotopic molecules. The vortex tube can be used in a single stage or multistage isotope separation apparatus

  3. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  4. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps

    Liu Shuhai; Neiger, Manfred

    2003-01-01

    Excitation of dielectric barrier discharge xenon excimer lamps by unipolar short square pulses is studied in this paper. Two discharges with different polarity are excited by each voltage pulse (double discharge phenomenon). The primary discharge occurs at the top or at the rising flank of the applied unipolar square pulse, which is directly energized by the external circuit. The secondary discharge with the reversed polarity occurs at the falling flank or shortly after the falling flank end (zero external voltage) depending on the pulse width, which is energized by the energy stored by memory charges deposited by the primary discharge. Fast-speed ICCD imaging shows the primary discharge has a conic discharge appearance with a channel broadening on the anode side. This channel broadening increases with increasing the pulse top level. Only the anode-side surface discharge is observed in the primary discharge. The surface discharge on the cathode side which is present in bipolar sine voltage excitation is not observed. On the contrary, the secondary discharge has only the cathode-side surface discharge. The surface discharge on the anode side is not observed. The secondary discharge is much more diffuse than the primary discharge. Time-resolved emission measurement of double discharges show the secondary discharge emits more VUV xenon excimer radiation but less infrared (IR) xenon atomic emission than the primary discharge. It was found that the IR xenon atomic emission from the secondary discharge can be reduced by shortening the pulse width. The energy efficiency of unipolar-pulsed xenon excimer lamps (the overall energy efficiency of double discharges) is much higher than that obtained under bipolar sine wave excitation. The output VUV spectrum under unipolar pulse excitation is found to be identical to that under sine wave excitation and independent of injected electric power

  5. Design of Solid Form Xenon-124 Target for Producing I-123 Radioisotope Using Computer Simulation Techniques

    Kamali Moghaddam, K.; Sadeghi, M.; Kakavand, T.; Shokri Bonab, S.

    2006-01-01

    Recently in Cyclotron and Nuclear Medicine Department of NRCAM, at Atomic Energy organization of Iran (AEOI), a system for producing 1-123 via Xe-124 gas target technology, has been constructed and installed. One of the major problems in this system is the highly expensive cost of the enriched Xenon-124 gas. Therefore, saving this gas inside the system is very important. Unfortunately, by accidental rupture of the window foil or bad function of O-rings, the whole Xenon gas will escape from the system immediately. In this paper, by using computer codes; ALICE91, SRIM and doing some calculations we are going to demonstrate our latest effort for feasibility study of producing I-123 with the above mentioned reactions, but using Xe-124 solid target instead. According to our suggested design, a conical shaped irradiation vessel made of copper with 1 mm thickness, 1 cm outlet diameter, 5 cm length and 12 deg. angle at summit can be fixed inside a liquid nitrogen housing chamber. The Xenon-124 gas will be sent to the inside of this very cold conical trap and eventually deposited on its surface in solid form. Our calculation shows that during bombardment with 17-28 MeV proton energy, the thickness of solidified Xenon layer will remain around .28 mm. Likewise; thermo-dynamical calculation shows that in order to prevent the evaporation of solidified Xenon, the maximum permissible proton beam current for this system should be less than 1.4 μA. According to these working conditions, the production yield of I-123 can be predicted to be around 150 mCi/μAh. (authors)

  6. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  7. Regional cerebral blood studies by the xenon-133 inhalation method in cases of cerebrovascular diseases

    Shimomura, Takahide

    1982-01-01

    rCBF was measured 428 times in 191 patients and 15 healthy volunteers by the Xenon-133 inhalation technique. The two-compartment analysis and the estimate of initial slope index were performed. There was no difference in blood flow between the two hemispheres in the 15 healthy volunteers, whose mean age was 36.5 +- 13.5 years (F 1 , right: 83.1 +- 11.4; left: 85.1 +- 12.1; 1Sl, right: 51.6 +- 6.3; left: 52.4 +- 6.0). Good correlation with a correlation coefficient of 0.965 was observed between the value obtained by the Xenon-133 inhalation and intracarotid methods in 14 patients with brain diseases. Reproducibilities of the Xenon-133 inhalation technique by serial measurement of rCBF at intervals of 30 - 40 minutes and 3 - 5 days were almost the same, with a variation coefficient of 3.7% and a correlation coefficient of 0.98. Repeated rCBF measurement by the Xenon-133 inhalation was performed during a long follow-up period of up to 1 year after bypass surgery. In 28 adult patients with occlusive cerebrovascular disease, CBF values of most patients stabilized in normal range within 3 months after the operation. In 12 patients with Moyamoya disease, CBF values were distributed over a wide range preoperatively, and increased gradually and tended to stabilize in the relatively subnormal range within 3 months after operation. This clinical experience indicates that the Xenon-133 inhalation method is a useful and safe procedure for the determination of rCBF, especially for repeated studies in cases with bypass surgery during long postoperative follow-up periods and for measurement of rCBF in child cases. (J.P.N.)

  8. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2009-04-14

    Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.

  9. Isotope puzzle in sputtering

    Zheng Liping

    1998-01-01

    Mechanisms affecting multicomponent material sputtering are complex. Isotope sputtering is the simplest in the multicomponent materials sputtering. Although only mass effect plays a dominant role in the isotope sputtering, there is still an isotope puzzle in sputtering by ion bombardment. The major arguments are as follows: (1) At the zero fluence, is the isotope enrichment ejection-angle-independent or ejection-angle-dependent? (2) Is the isotope angular effect the primary or the secondary sputter effect? (3) How to understand the action of momentum asymmetry in collision cascade on the isotope sputtering?

  10. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast

    Thieme, Sven F.; Helck, Andreas D.; Reiser, Maximilian F.; Johnson, Thorsten R.C. [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Moeller, Winfried; Eickelberg, Oliver [Institute for Lung Biology and Disease (iLBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Muenchen, Neuherberg, Munich (Germany); Becker, Sven [Ludwig-Maximilians-Universitaet, Department of Otorhinolaryngology - Head and Neck Surgery, Munich (Germany); Schuschnig, Uwe [Pari Pharma GmbH, Graefelfing (Germany)

    2012-10-15

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. (orig.)

  11. Scintillating liquid xenon calorimeter for precise electron/photon/jet physics at high energy high luminosity hadron colliders

    Chen, M.; Luckey, D.; Pelly, D.; Shotkin, S.; Sumorok, K.; Wadsworth, B.; Yan, X.J.; You, C.; Zhang, X.; Chen, E.G.; Gaudreau, M.P.J.; Montgomery, D.B.; Sullivan, J.D.; Bolozdynya, A.; Chernyshev, V.; Goritchev, P.; Khovansky, V.; Kouchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.A.; Epstein, V.; Zeldovich, S.; Krasnokutsky, R.; Shuvalov, R.; Aprile, E.; Mukherjee, R.; Suzuki, M.; Moulsen, M.; Sugimoto, S.; Okada, K.; Fujino, T.; Matsuda, T.; Miyajima, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Nagasawa, Y.; Ichinose, H.; Ishida, N.; Nakasugi, T.; Ito, T.; Masuda, K.; Shibamura, E.; Wallraff, W.; Vivargent, M.; Mutterer, M.; Chen, H.S.; Tang, H.W.; Tung, K.L.; Ding, H.L.; Takahashi, T.

    1990-01-01

    The authors use αs well as e, π, p, d and heavy ion beams to test prototype scintillating liquid xenon detectors, with large UV photodiodes and fast amplifiers submersed directly in liquid xenon. The data show very large photoelectron yields (10 7 /GeV) and high energy resolution (σ(E)/E 1.6 GeV). The α spectra are stable over long term and can be used to calibrate the detectors. Full size liquid xenon detectors have been constructed, to study cosmic μ's and heavy ions. The authors report the progress on the design and construction of the 5 x 5 and 11 x 11 cell liquid xenon detectors which will be tested in high energy beams to determine the e/π ratio. The authors describe the design and the unique properties of the proposed scintillating LXe calorimeter for the SSC

  12. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-01-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  13. Strength function of xenon 127 and cross section of 127I(νe, e-)127Xe reaction

    Lyutostanskij, Yu.S.; Shul'gina, N.B.

    1989-01-01

    The strenght functions S β (E) and the cross section of the reaction ν e + 127 I → e - + 127 Xe were calculated in the framework of the theory of finite Fermi-systems. The results obtained are used to estimate the possibility of using an iodine-xenon detector in the experiments with solar neutrinos and reactor antineutrinos. The advantages of the iodine-xenon detector over the chlorine-argon one are shown. 13 refs.; 6 figs.; 3 tabs

  14. Time-resolved X-ray absorption spectroscopy for laser-ablated silicon particles in xenon gas

    Makimura, Tetsuya; Sakuramoto, Tamaki; Murakami, Kouichi

    1996-01-01

    We developed a laboratory-scale in situ apparatus for soft X-ray absorption spectroscopy with a time resolution of 10 ns and a space resolution of 100 μm. Utilizing this spectrometer, we have investigated the dynamics of silicon atoms formed by laser ablation in xenon gas. It was found that 4d-electrons in the xenon atoms are excited through collision with electrons in the laser-generated silicon plasma. (author)

  15. [Effects of xenon and krypton-containing breathing mixtures on clinical and biochemical blood indices in animals].

    Kussmaul', A R; Bogacheva, M A; Shkurat, T P; Pavlov, B N

    2007-01-01

    Effects of 24-hr breathing air mixtures containing xenon (XBM) and krypton (KBM) were compared in terms of hormonal status, and blood biochemical indices and morphology in laboratory animals. Some changes observed in blood and hormone indices could be a nonspecific adaptive response. Hence, we should elicit whether these effects are quickly reversible or long. For several indices krypton was a more favorable factor than xenon. However, some of its effects invite to delve into effects of different krypton concentrations on organism.

  16. Production of beta-gamma coincidence spectra of individual radioxenon isotopes for improved analysis of nuclear explosion monitoring data

    Haas, Derek Anderson

    Radioactive xenon gas is a fission product released in the detonation of nuclear devices that can be detected in atmospheric samples far from the detonation site. In order to improve the capabilities of radioxenon detection systems, this work produces beta-gamma coincidence spectra of individual isotopes of radioxenon. Previous methods of radioxenon production consisted of the removal of mixed isotope samples of radioxenon gas released from fission of contained fissile materials such as 235U. In order to produce individual samples of the gas, isotopically enriched stable xenon gas is irradiated with neutrons. The detection of the individual isotopes is also modeled using Monte Carlo simulations to produce spectra. The experiment shows that samples of 131mXe, 133 Xe, and 135Xe with a purity greater than 99% can be produced, and that a sample of 133mXe can be produced with a relatively low amount of 133Xe background. These spectra are compared to models and used as essential library data for the Spectral Deconvolution Analysis Tool (SDAT) to analyze atmospheric samples of radioxenon for evidence of nuclear events.

  17. A prototype detection system for atmospheric monitoring of xenon radioisotopes

    Czyz, Steven A.; Farsoni, Abi T.; Ranjbar, Lily

    2018-03-01

    The design of a radioxenon detection system utilizing a CdZeTe crystal and a plastic scintillator coupled to an array of SiPMs to conduct beta-gamma coincidence detection for atmospheric radioxenon monitoring, as well as the measurement of 135Xe and 133/133mXe, have been detailed previously. This paper presents recent measurements of 133/133mXe and 131mXe and the observation of conversion electrons in their coincidence spectra, as well as a 48-hour background measurement to calculate the Minimum Detectable Concentration (MDC) of radioxenon isotopes in the system. The identification of Regions of Interest (ROIs) in the coincidence spectra yielded from the radioxenon measurements, and the subsequent calculation of the MDCs of the system for 135Xe, 133/133mXe, and 131mXe, are also discussed. Calculated MDCs show that the detection system preforms respectably when compared to other state of the art radioxenon detection systems and achieved an MDC of less than 1 mBq/m3 for 131mXe, 133Xe, and 133mXe, in accordance with limits set by the Comprehensive Nuclear-Test-Ban Treaty (CTBTO). The system also provides the advantage of room temperature operation, compactness, low noise operation and having simple readout electronics.

  18. Isotopically exchangeable phosphorus

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  19. Optical isotope shifts for unstable samarium isotopes

    Eastham, D.A.; Walker, P.M.; Griffith, J.A.R.; Evans, D.E.; Grant, I.S.; England, J.G.; Fawcett, M.J.

    1984-01-01

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144 Sm and 154 Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  20. Buildup of radioxenon isotopes in MOX-assemblies

    Gniffke, Thomas; Kirchner, Gerald [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Radioxenon is the main tracer for detection of nuclear tests conducted underground under the verification regime of the Comprehensive Nuclear Test Ban Treaty (CTBT). Since radioxenon is emitted by civilian sources too, like commercial nuclear reactors, source discrimination is still an important issue. Inventory calculations are necessary to predict which xenon isotopic ratios are built up in a reactor and how they differ from those generated by a nuclear explosion. The screening line actually used by the CTBT Organization for source discrimination is based on calculations for uranium fuel of various enrichments used in pressurized water reactors (PWRs). The usage of different fuel, especially mixed U/Pu oxide (MOX) assemblies with reprocessed plutonium, may alter the radioxenon signature of civilian reactors. In this talk, calculations of the radioxenon buildup in a MOX-assembly used in a commercial PWR are presented. Implications for the CTBT verification regimes are discussed and open questions are addressed.

  1. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  2. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  3. Interaction of cover and target with xenon gas in the IFE-reaction chamber

    Kuteev, Boris V.

    2001-11-01

    Interaction of a direct drive target and a cover, which is shielding the target against gas particle and heat flows in the reaction chamber of the Inertial Confinement Reactor, is considered. The cover is produced from solid gas -deuterium, neon of xenon. It is shown that at the SOMBRERO parameters the xenon cover with 5.6-mm size significantly reduces the heat flows onto the 4-mm target. The gas drag produces the deceleration of the target much larger than that for the cover due to large mass difference between them. The distance between the target and the cover is about 15 mm at the explosion point, which is sufficient for normal irradiation of the target by laser beams. Protection of the target against the wall radiation is necessary during the flight. Along with creation of reflecting layers over the target surface ablating layers from solid hydrogen or neon seem to be a solution. (author)

  4. Some necessary parameters for a critical velocity interaction between the ionospheric plasma and a xenon cloud

    Axnaes, I.

    1979-12-01

    The conditions for an experiment to study the critical ionization velocity effect in the interaction between a Xenon cloud, released from a satellite, and the ionospheric plasma are investigated. The model used is based on the assumption that there exists an effective process that transfers the energy, that is available in the relative motion, to the electrons. Some necessary conditions to obtain significant heating or deceleration of the plasma penetrating the cloud are calculated. The conditions are mainly given by the energy available in the relative motion and the rates of the different binary collision processes involved. As the released gas cloud expands the possibilities for a critical velocity interaction will exist only within a certain range of cloud radii. It is shown that the charge transfer collision cross section between the ionospheric ions and the cloud atoms is an important parameter and that Xenon is a very suitable gas in that respect. (author)

  5. Xenon ventilation-perfusion lung scans. The early diagnosis of inhalation injury

    Schall, G.L.; McDonald, H.D.; Carr, L.B.; Capozzi, A.

    1978-01-01

    The use of xenon Xe-133 ventilation-perfusion lung scans for the early diagnosis of inhalation injury was evaluated in 67 patients with acute thermal burns. Study results were interpreted as normal if there was complete pulmonary clearance of the radioactive gas by 150 seconds. Thirty-two scans were normal, 32 abnormal, and three technically inadequate. There were three true false-positive study results and one false-negative study result. Good correlation was found between the scan results and various historical, physical, and laboratory values currently used to evaluate inhalation injury. The scans appeared to be the most sensitive method for the detection of early involvement, often being abnormal several days before the chest roentgenogram. Xenon lung scanning is a safe, easy, accurate, and sensitive method for the early diagnosis of inhalation injury and has important therapeutic and prognostic implications as well

  6. Head holder using negative pressure bag packed with plastic beads in xenon CT CBF study

    Araki, Yuzo; Sakai, Noboru

    2003-01-01

    Employing analysis of cerebral blood flow (CBF) confidence maps, we investigated the usefulness of a head holder using a negative pressure bag packed with plastic beads in a xenon CT CBF study. A total of 272 consecutive patients for the CBF study were enrolled and classified into 3 groups: 88 patients with a negative pressure bag (M group), 87 patients with an air pillow (A group), and 97 patients with a sponge pillow (S group). The degree of effect of head movements on the CBF measurement in each patient was expressed as a confidence value (mean of the confidence values at one CT slice). The mean of confidence value in the M group (0.461) was statistically lower than that in the A group (0.866) and that in the S group (1.043). These findings showed that the head holder described here was useful for obtaining CBF maps of high quality in a xenon CT CBF study. (author)

  7. Analysis of reactivity worth for xenon poisoning during restart-up of reactor in iodine pit

    Li Xaofeng; Chen Wenzhen; Zhu Qian; Xu Guojun

    2009-01-01

    The reactivity worth of xenon poisoning and the densities of 135 I and 135 Xe were derived when the reactor was restarted up in iodine pit. Through the expressions obtained we can find the physics characteristics of reactor restarted up in iodine pit comprehensively and essentially. The results were analyzed and discussed. The reactor power before shutdown, the start-up power, the position where the reactor starts up in iodine pit, and so on, all have effect on the reactivity worth of xenon poisoning, and the different conditions can lead to totally different physics characteristics. In addition, the time when the reactor starts up in iodine pit is a very important factor for nuclear reactors safety. The conclusions are very important to the maneuverability and operation safety of ship nuclear reactors. (authors)

  8. Effect of Cesium and Xenon Seeding in Negative Hydrogen Ion Sources

    Bacal, M.; Brunteau, A.M.; Deniset, C.; Elizarov, L.I.; Sube, F.; Tontegode, A.Y.; Whealton, J.H.

    1999-01-01

    It is well known that cesium seeding in volume hydrogen negative ion sources leads to a large reduction of the extracted electron current and in some cases to the enhancement of the negative ion current. The cooling of the electrons due to the addition of this heavy impurity was proposed as a possible cause of the mentioned observations. In order to verify this assumption, the authors seeded the hydrogen plasma with xenon, which has an atomic weight almost equal to that of cesium. The plasma properties were studied in the extraction region of the negative ion source Camembert III using a cylindrical electrostatic probe while the negative ion relative density was studied using laser photodetachment. It is shown that the xenon mixing does not enhance the negative ion density and leads to the increase of the electron density, while the cesium seeding reduces the electron density

  9. Measurement of eDsub(L)/μ of electrons in liquid xenon

    Doke, T.; Suzuki, S.; Shibamura, E.; Masuda, K.

    1983-01-01

    A new method for measuring the spread of electron swarm drifting under uniform electric field in liquid xenon is proposed. This is made by observing the width of scintillation pulse produced by drifting electrons in the vicinity of a thin center wire of a proportional scintillation counter, put in the end part of the electron drift space. From the spread of electron swarm and its drift time, the ratio of longitudinal diffusion coefficient to mobility epsilon sub(L) = eDsub(L)/μ for electrons in liquid xenon is directly obtained. epsilon sub(L) of electron swarms under the various electric fields have been measured and compared with epsilon sub(T) = eDsub(T)/μ previously obtained under the same electric fields. (Authors)

  10. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  11. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)

    1997-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  12. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    Bello, J.A.; Fink, M.E.; Hilal, S.K.; Rose, E.A.; Reemtsma, K.

    1987-01-01

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  13. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R [The University of Tennessee, Knoxville (United States)

    1998-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  14. RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps

    Minayeva, Olga; Doughty, Douglas

    2007-10-01

    Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.

  15. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    Gulati, P., E-mail: pgulati1512@gmail.com [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India); Prakash, R.; Pal, U. N.; Kumar, M. [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Vyas, V. [Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India)

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  16. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-01

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  17. Fast electrons from multi-electron dynamics in xenon clusters induced by inner-shell ionization

    Bostedt, Christoph; Thomas, Heiko; Hoener, Matthias; Moeller, Thomas; Saalmann, Ulf; Georgescu, Ionut; Gnodtke, Christian; Rost, Jan-Michael

    2010-01-01

    Fast electrons emitted from xenon clusters in strong femtosecond 90 eV pulses have been measured at the Free-electron Laser in Hamburg (FLASH). Energy absorption occurs mainly through atomic inner-shell photo-ionization. Photo-electrons are trapped in the strong Coulomb potential of the cluster ions and form a non-equilibrium plasma with supra-atomic density. Its equilibration through multiple energy-exchanging collisions within the entire cluster volume produces electrons with energies well beyond the dominant emission line of atomic xenon. Here, in contrast to traditional low-frequency laser plasma heating, the plasma gains energy from electrons delivered through massive single-photon excitation from bound states. Electron emission induced by thermalization of a non-equilibrium plasma is expected to be a general phenomenon occurring for strong atomic x-ray absorption in extended systems.

  18. Demonstration of a transient high gain nickel-like xenon ion x-ray laser

    Lu, Peixiang; Kawachi, Tetsuya; Kishimoto, Maki

    2003-01-01

    We demonstrate a high gain nickel-like xenon ion x-ray laser using a picosecond-laser-irradiated gas puff target. The elongated x-ray laser plasma column was produced by irradiating the gas puff target with line-focused double picosecond laser pulses with a total energy of 18 J in a travelling-wave excitation scheme. Strong lasing at 9.98 nm was observed, and a high gain coefficient of 17.4 cm -1 was measured on the transient collisionally excited 4d-4p, J=0-1 transition for nickel-like xenon ion with target lengths up to 0.45 cm. A weak nickel-like lasing line at a shorter wavelength of 9.64 nm was also observed with a gain coefficient of 5.9 cm -1 . (author)

  19. Destruction of fast H(2S) atoms in collisions with neon, krypton, xenon, and molecular hydrogen

    Roussel, F.; Pradel, P.; Spiess, G.

    1977-01-01

    Measurements are reported for the total quenching of metastable hydrogen atoms by neon, krypton, xenon, and molecular hydrogen, in the energy range 0.052--3 keV. The cross sections are found to be on the order of 5 x 10 -15 cm 2 at the lowest energies, and decrease to approximately 2 x 10 -15 cm 2 at the highest energies. The data at low energy are analyzed using a simple theoretical model

  20. Comparison of the xenon-133 washout method with the microsphere method in dog brain perfusion studies

    Heikkitae, J.; Kettunen, R.; Ahonen, A.

    1982-01-01

    The validity of the Xenon-washout method in estimation of regional cerebral blood flow was tested against a radioactive microsphere method in anaesthetized dogs. The two compartmental model seemed not to be well suited for cerebral perfusion studies by Xe-washout method, although bi-exponential analysis of washout curves gave perfusion values correlating with the microsphere method but depending on calculation method

  1. Two-phase xenon detector with gas amplification and electroluminescent signal detection

    Akimov, D.Yu.; Burenkov, A.A.; Grishkin, Yu.L.; Kovalenko, A.G.; Lebedenko, V.N.; Stekhanov, V.N.

    2008-01-01

    An optical technique for detecting ionization electrons produced during ionization of the liquid phase has been experimentally tested in two-phase (liquid-gas) xenon. The effects of gas and electroluminescent amplifications at the wire anode are simultaneously used for detection. This method allows construction of a supersensitive detector of small ionization signals-down to those corresponding to the detection of single electrons [ru

  2. A liquid-xenon calorimeter for the detection of electromagnetic showers

    Baranov, A.; Baskakov, V.; Bondarenko, G.; Dolgoshein, B.; Lebedenko, V.N.; Tcherniatin, V. (Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)); Gavrilenko, I.; Kozodaeva, O.; Konovalov, S.; Muraviev, S.; Shmeleva, A.; Vassiliev, P. (AN SSSR, Moscow. Fizicheskij Inst. (USSR))

    1990-09-15

    The energy and spatial resolution of a 40 l liquid-xenon calorimeter was measured. For electrons in the energy region 1-6 GeV the resolutions are {sigma}{sub E}/E=3.4/{radical}E (%), {sigma}{sub x}=4.6/{radical}E (mm). The details of construction and running of such a device are discussed. (orig.).

  3. Surface coatings as xenon diffusion barriers on plastic scintillators : Improving Nuclear-Test-Ban Treaty verification

    Bläckberg, Lisa

    2011-01-01

    This thesis investigates the ability of transparent surface coatings to reduce xenon diffusion into plastic scintillators. The motivation for the work is improved radioxenon monitoring equipment, used with in the framework of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. A large part of the equipment used in this context incorporates plastic scintillators which are in direct contact with the radioactive gas to be detected. One problem with such setup is that radioxenon...

  4. Digital imaging with a pressurized Xenon filled MWPC working at a high data rate

    Bellazzini, R.; Brez, A.; Del Guerra, A.; Massai, M.M.; Torquati, M.R.; Franchi, M.; Perri, G.

    1984-01-01

    A multiwire proportional chamber based detection system for medical imaging is presented. The system consists of a pressurized xenon filled MWPC and of a monochromatic fluorescent, X-ray source using a conventional diagnostic tube with various target filter combinations. The main performance of the system are: 10% efficiency, 30% energy resolution 500 micro m spatial resolution, +-5 uniformity. The preliminary results of the application of this system to bone densitometry are presented

  5. 133 xenon muscle clearance as a test parameter in the diagnosis of peripheral diabetic angiopathies

    Kuhlmann, J.E.

    1980-01-01

    In 100 patients with manifest diabetes mellitus the irrigation in both legs at rest and in radioactive hyperemia after ischemic muscle work was measured by means of the 133-xenon muscle clearance. The clearance values measured ranged between 0.8 and 3.5 ml/100 g/60 s at rest and between 3.3 and 40.0 ml/100 gl/60 s during radioactive hyperemia. In 96 pc of the probands the irrigation of the legs was impaired. For the relation between glucose level and irrigation at rest a significant negative correlation was found. The difference between the clearance values for the right and left lower extremity was significant. For the relation between glucose level and reactive hyperemia, too, a significant negative correlation was found. The difference between the clearance values for the right and left lower extremities was significant. The measurement of the irrigation at rest showed no significant correlation between the period of manifestation of the diabetes and the clearance values. By contrast, the irrigation values during reactive hyperemia were shown to be in significantly negative correlation to the duration of the diabetes. No connection was found between the frequency of diabetic gangrene and impaired irrigation at rest. By contrast, there was a relation between decreasing hyperemia values and increased frequency of gangrene. A collection of case histories shows how the measuring results of the xenon clearance fit into the overall clinical picture. A comparison of xenon clearance with other methods of irrigation measurement confirmed obvious advantages of xenon clearance for the detection of diabetic microangiopathies. (orig./MG) [de

  6. Ionization of xenon Rydberg atoms at Si(1 0 0) surfaces

    Dunham, H.R. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstra. 15, D-12489, Berlin (Germany); Lancaster, J.C. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Dunning, F.B. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu

    2007-03-15

    The ionization of xenon Rydberg atoms excited to the lowest states in the n = 17 and n = 20 Stark manifolds at Si(1 0 0) surfaces is investigated. It is shown that, under appropriate conditions, a sizable fraction of the incident atoms can be detected as ions. Although the onset in the ion signal is perturbed by stray fields present at the surface, the data are consistent with ionization rates similar to those measured earlier at metal surfaces.

  7. Digital imaging with a pressurized xenon filled MWPC working at a high data rate

    Bellazzini, R; Brez, A; Del Guerra, A; Massai, M M; Torquati, M R; Franchi, M; Perri, G

    1985-12-15

    A MWPC based detection system for medical imaging is presented. The system consists of a pressurized Xenon filled MWPC and of a monochromatic, fluorescent, X-ray source using a conventional diagnostic tube with various target/filter combinations. The main performance of the system are: 10% efficiency, 30% energy resolution, 500 m spatial resolution, +-5 uniformity. The preliminary results of the application of this system to bone densitometry are presented. (orig.).

  8. Digital imaging with a pressurized xenon filled MWPC working at a high data rate

    Bellazzini, R; Brez, A; Del Guerra, A; Massai, M M; Torquati, M R [Pisa Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Franchi, M; Perri, G [Pisa Univ. (Italy). Ist. di Radiologia

    1984-12-15

    A MWPC based detection system for medical imaging is presented. The system consists of a pressurized Xenon filled MWPC and of a monochromatic, fluorescent, X-ray source using a conventional diagnostic tube with various target/filter combinations. The main performance of the system are: 10% efficiency, 30% energy resolution, 500 ..mu..m spatial resolution, +-5 uniformity. The preliminary results of the application of this system to bone densitometry are presented.

  9. Results from the 1 tonne*year Dark Matter Search with XENON1T

    CERN. Geneva

    2018-01-01

    Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for the mysterious Dark Matter in the Universe. The XENON1T experiment at LNGS is the world’s largest and most sensitive experiment for the direct detection of WIMPs via nuclear recoils. Details of the experiment and of the achieved unprecedented low background conditions will be covered and new results from a record exposure of 1 tonne x year will be presented for the first time.

  10. Measurement of the xi-function of the continuum radiation of xenon plasmas under high pressure

    Stuck, D.

    1975-01-01

    The xi function of xenon was determined for the spectral region between 260 nm and 800 nm in dependence of pressure and temperature. Three arc currents (i 1 = 50 amp and i 2 = 150 amp, 1 atm; i 3 = 60 amp, 10 atm) and two pressures were applied. None of the existing theories gives the correct experimental values for the whole spectral region. (RW/AK) [de

  11. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    Zalach, J.; Franke, St. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  12. Direct Dark Matter Detection through the use of a Xenon Based TPC Detector

    Daniel, Jonathan; Akerib, Daniel; LZ group at SLAC

    2018-01-01

    The vast majority of matter in the universe is unaccounted for. Only 15% of the universe's mass density is visible matter, while the other 85% is Dark Matter (DM). The Weakly Interacting Massive Particle (WIMP) is currently the frontrunner of the DM candidates. The Large Underground Xenon (LUX) and next generation LUX-ZEPLIN (LZ) experiments are designed to directly detect WIMPs. Both experiments are xenon-based Time Projection Chambers (TPC) used to observe possible WIMP interactions. These interactions produce photons and electrons with the photons being collected in a set of two photomultiplier tube (PMT) arrays and the electrons drifted upwards in the detector by a strong electric field to create a secondary production of photons in gaseous xenon. These two populations of photons are classified as S1 and S2 signals, respectively. Using these signals we reconstruct the energy and position of the interaction and in doing so we can eliminate background events that would otherwise “light up” the detector. My participation in the experiment, while at SLAC, was the creation of the grids that produce the large electric field, along with additional lab activities aimed at testing the grids. While at Stan State, I work on background modeling in order to distinguish a possible WIMP signal from ambient backgrounds.

  13. Implementation of an expert system for xenon spatial control in pressurized-water reactors

    Chung, S.K.

    1988-01-01

    Control of the axial xenon oscillations is a knowledge- and experience-intensive activity for reactor operators. To aid reactor operators in the control of axial xenon oscillations, an advisory expert system was developed. A rule-based expert system shell, INSIGHT2+, was used to build the expert system which was interfaced with a microcomputer-based core control model of a pressurized-water reactor, graphic engine, and data base. A core control model described by one-group diffusion theory with moderator temperature and xenon feedbacks was used to develop heuristic control rules and to test the system. Full- and part-length control rods, boron concentration, and coolant inlet temperature were considered as control variables of the core control model. This expert system consists of a search space: the set of possible power level and power shape patterns. The search space was made by combining the following core state variables: the sign of relative power and axial offset (AO) error, sign of the rate of change of power level and AO, and magnitude of relative power and AO error

  14. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-01-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics

  15. Modification of the axial offsets trajectory method to control xenon oscillation during load following operations

    Shimazu, Yoichiro

    1996-01-01

    A new method which can give continuous guidance for controlling axial xenon oscillations in large PWRs has been presented. The method is based on two additional newly defined axial offsets, A Oi and A Ox together with the conventional axial offset of power distribution A Op. A Oi and A Ox are the axial offsets of power distributions which would give the current iodine and xenon distributions under equilibrium conditions, respectively. The information from A Oi, A Ox and A Op are used to display the trajectory of (A Op - A Ox, A Oi - A Ox) in the X-Y plane. The trajectory shows a very characteristic behavior. With the characteristics in mind the xenon oscillation can be controlled quite easily to lead the plot to the origin where three A Os are identical. The method has been proved with the power level constant. However, it is necessary to modify the definition of A Ox so as to apply this method to load following operations. A reasonable way of the modification is described and the results are presented. (author)

  16. Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region

    Shibuya, Kengo; Saito, Haruo

    2018-05-01

    We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.

  17. Strategy generator for optimal xenon oscillation control: Based on a new concept of axial offsets

    Shimazu, Yoichiro; Horimoto, Toshiaki

    1993-01-01

    Recently a new concept for controlling xenon oscillations has been used to optimize the control procedure for stabilizing an oscillation. The concept is based on two additional newly defined axial offsets, AO i and AO x together with the conventional axial offset AO p of axial power distribution. However, as the AOs are evaluated on line, it is impossible to predict the behavior of the AOs in advance. In order to overcome this situation a small auxiliary program has been developed. This program can generate the transients of the three AOs for the free running xenon oscillation. Then the user can input the most favorable conditions to eliminate the xenon oscillation such as total control hours, final AO p or time interval of the control rod movement. And an optimum search for the given final conditions is performed. The program can be used as a tool for a scoping study, the result of which can be obtained in a short time and also very easily

  18. Reactive quenching of two-photon excited xenon atoms by Cl2

    Bruce, M.R.; Layne, W.B.; Meyer, E.; Keto, J.W.

    1987-01-01

    Total binary and tertiary quench rates have been measured for the reaction Xe (5p 5 6p) + Cl 2 at thermal temperatures. Xenon atoms are excited by state-selective, two-photon absorption with a uv laser. The time dependent fluorescence from the excited atom in the IR and from XeCl* (B) product near 308 nm have been measured with subnanosecond time resolution. The decay rates are measured as a function of Cl 2 pressure to 20 Torr and Xe pressure to 400 Torr. The measured reaction rates (k 2 ∼ 10 -9 cm 3 sec -1 ) are consistent with a harpoon model described in a separate paper. We also measure large termolecular reaction rates for collisions with xenon atoms (k 3 ∼ 10 -28 cm 6 sec -1 ). Total product fluorescence has been examined using a gated optical multichannel analyzer. We measure unit branching fractions for high vibrational levels of XeCl* (B) with very little C state fluorescence observed. The measured termolecular rates suggest similar processes will dominate at the high buffer-gas pressures used in XeCl lasers. The effect of these large reactive cross sections for neutral xenon atoms on models of the XeCl laser will be discussed

  19. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-03-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics.

  20. Control of xenon spatial oscillations during load follow of nuclear reactor via robust servo systems

    Ukai, Hiroyuki; Yada, Yukihiro; Iwazumi, Tetsuo; Morita, Yoshifumi.

    1990-01-01

    This paper investigates the control problem of xenon spatial oscillations in the axial direction during load following operations of a nuclear reactor. The system model is described by a one-group diffusion equation with xenon and power feedbacks and iodine-xenon dynamic equations and controlled by full-length and part-length control rods. In order to achieve the control purpose we formulate the control model as the design problem of robust servo systems for distributed parameter reactor systems. Hence the total thermal power and the axial offset are chosen as outputs to be controlled. The control law is designed based upon finite-dimensional systems which are constructed by linearizing around steady states, approximating by the Galerkin approximate method and reducing dimensions via the singular perturbation method. From a computational point of view a simple computational algorithm to obtain an approximate solution of the steady state neutron balance is developed via the perturbation method. Some results of numerical simulations are represented to show effectiveness of the theory developed in this paper. Particularly it is shown that the designed servo systems are robust against model errors with the linearization and the model truncation. (author)

  1. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-01-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  2. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ˜6km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  3. Isotopes in heterogeneous catalysis

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  4. Geochemistry of silicon isotopes

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  5. Applications of stable isotopes

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  6. Isotopic method using xenon-133 for assessing placental blood flow and for detecting light-for-dates babies

    Wolfson, M R [Cape Town Univ. (South Africa). Dept. of Obstetrics and Gynaecology; Blake, K C.H. [Groote Schuur Hospital, Cape Town (South Africa). Dept. of Bio-Engineering and Medical Physics

    1975-01-25

    A method for measuring uteroplacental blood flow is described and applied to mothers with light-for-dates and normally-grown fetuses. The two groups of fetuses showed a significant difference in their clearance rates, the importance of which is discussed in terms of diagnosis and management. (INIS)

  7. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients.

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-07-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.

  8. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients

    Lee, Sang Min; Seo, Joon Beom; Kim, Namkug; Oh, Sang Young; Hwang, Hye Jeon; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-01-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. (orig.)

  9. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients

    Lee, Sang Min [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Yonsei University College of Medicine, Gangnam Severance Hospital, Department of Radiology, Research Istitute of Radiological Science, Seoul (Korea, Republic of); Seo, Joon Beom; Kim, Namkug; Oh, Sang Young [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Hwang, Hye Jeon [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Hallym University Sacred Heart Hospital, Department of Radiology, Hallym University College of Medicine, Anyang-si, Gyeonggi-do (Korea, Republic of); Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok [University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, Seoul (Korea, Republic of); Kim, Tae Hoon [Yonsei University College of Medicine, Gangnam Severance Hospital, Department of Radiology, Research Istitute of Radiological Science, Seoul (Korea, Republic of)

    2017-07-15

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. (orig.)

  10. Study of light detection and sensitivity for a ton-scale liquid xenon dark matter detector

    Wei, Y; Lin, Q; Xiao, X; Ni, K

    2013-01-01

    Ton-scale liquid xenon detectors operated in two-phase mode are proposed and being constructed recently to explore the favored parameter space for the Weakly Interacting Massive Particles (WIMPs) dark matter. To achieve a better light collection efficiency while limiting the number of electronics channels compared to the previous generation detectors, large-size photo-multiplier tubes (PMTs) such as the 3-inch-diameter R11410 from Hamamatsu are suggested to replace the 1-inch-square R8520 PMTs. In a two-phase xenon dark matter detector, two PMT arrays on the top and bottom are usually used. In this study, we compare the performance of two different ton-scale liquid xenon detector configurations with the same number of either R11410 (config.1) or R8520 (config.2) for the top PMT array, while both using R11410 PMTs for the bottom array. The self-shielding of liquid xenon suppresses the background from the PMTs and the dominant background is from the pp solar neutrinos in the central fiducial volume. The light collection efficiency for the primary scintillation light is largely affected by the xenon purity and the reflectivity of the reflectors. In the optimistic situation with a 10 m light absorption length and a 95% reflectivity, the light collection efficiency is 43%(34%) for config.1(config.2). In the conservative situation with a 2.5 m light absorption length and a 85% reflectivity, the value is only 18%(13%) for config.1(config.2). The difference between the two configurations is due to the larger PMT coverage on the top for config.1. The slightly different position resolutions for the two configurations have a negligible effect on the sensitivity. Based on the above considerations, we estimate the sensitivity reach of the two detector configurations. Both configurations can reach a sensitivity of 2 ∼ 3 × 10 −47 cm 2 for spin-independent WIMP-nucleon cross section for 100 GeV/c 2 WIMPs after two live-years of operation. The one with R8520 PMTs for the top

  11. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  12. Band crossing and signature splitting in odd mass fp shell nuclei

    Velazquez, Victor; Hirsch, Jorge G.; Sun, Yang

    2001-01-01

    Structure of two sets of mirror nuclei: 47 V- 47 Cr and 49 Cr- 49 Mn, as well as 49 V and 51 Mn, is studied using the projected shell model. Their yrast spectra are described as an interplay between the angular momentum projected states around the Fermi level which carry different intrinsic K-quantum numbers. The deviations from a regular rotational sequence are attributed to band crossing and signature splitting, which are usually discussed in heavy nuclear systems. Our results agree reasonably with experimental data, and are comparable with those from the full pf shell model calculations

  13. Structure of negative parity yrast bands in odd mass 125−131Ce ...

    gion close to the N = 82 shell gap and have been the subject of many experimen- tal studies as these nuclei exhibit a competition between spherical and deformed ... 127Ce nucleus [5,6] three bands were identified: two based on 5/2+ and ...

  14. 直接进样气相色谱-质谱法分析大气中的氪和氙%Determination of Atmospheric Krypton and Xenon by Gas Chromatography-Mass Spectrometry in Direct Injection Mode

    陈占营; 刘蜀疆; 王建龙; 常印忠

    2016-01-01

    Volume concentration determination for atmospheric krypton and xenon is very important for krypton-85 and radioactive xenon isotopes monitoring. An injection setup integrated adjustable quantity sample injection and quantitative dilution function was designed. The effects of EI source parameters on the sensitivity of MS detector were studied. The optimized values were as following: ionization energy of 70 eV, emission current of 40 mA, cathode voltage of 27 mV, focus voltage of 85 mV and lens compensation of 20 V, respectively. A GC-MS method for the determination of krypton and xenon in atmosphere without of sample pretreatment was developed. The minimal detected concentrations for krypton and xenon were 3. 3×10-8(V/V) and 2. 6×10-9(V/V). Moreover, the krypton and xenon concentrations in the ground level air around our laboratory were measured with the results of 1 . 1 × 10-6 ( V/V ) and 9 . 3 × 10-8 ( V/V ) . The related combined standard uncertainties for krypton and xenon results were 2. 38% and 3. 15%, respectively.%大气中氪和氙体积比浓度的测量对于氪-85和放射性氙同位素监测具有重要意义。本实验设计了一套集成定量稀释功能的可调样量进样装置,对质谱检测器的工作参数进行了实验优化,确定了灯丝电离能量70 eV、灯丝发射电流40 mA、推斥极电压27 mV、离子聚焦电压85 mV和透镜补偿电压20 V等最佳工作条件。建立了空气样品直接进样条件下氪和氙的气质联用分析方法,氪和氙的最低可检测浓度分别为3.3×10-8(V/V)和2.6×10-9(V/V)。同时应用本方法测量了实验室所处开放空间大气中氪和氙的体积比浓度,分别为1.1×10-6(V/V)和9.3×10-8(V/V),相对合成标准不确定度分别为2.38%和3.15%。

  15. Alpha decay of neutron-deficient isotopes with 52isotopes /sup 106/Te (T/sub 1/2/=60 mu s) and /sup 110/Xe

    Schardt, D; Kirchner, R; Klepper, O; Kurcewicz, W; Roeckl, E; Tidemand-Petersson, P

    1981-01-01

    Using /sup 58/Ni(/sup 58/Ni, xpyn) reactions and on-line mass separation, the alpha -decays of very neutron-deficient isotopes of tellurium, iodine, xenon and cesium were studied. The new isotopes /sup 106/Te (T/sub 1/2/=60/sub -10//sup +30/ mu s) and /sup 110/Xe were identified by their alpha -lines of 4160+or-30 keV and 3737+or-30 keV energy, respectively, with the genetic relationship between the two successive alpha -decays being verified experimentally, while for several other alpha -decaying isotopes more precise data were obtained. The observed alpha -decay properties are discussed within the systematics of energy and reduced width. (19 refs).

  16. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-03

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group. © 2011 American Chemical Society

  17. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  18. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  19. High Sensitivity Detection of Xe Isotopes Via Beta-Gamma Coincidence Counting

    Bowyer, Ted W.; McIntyre, Justin I.; Reeder, Paul L.

    1999-01-01

    Measurement of xenon fission product isotopes is a key element in the global network being established to monitor the Comprehensive Nuclear-Test-Ban Treaty. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which includes a beta-gamma counting system for 131mXe, 133mXe, 133Xe, and 135Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. The counting geometry is nearly 100% for beta and conversion electrons. The resolution in the pulse height spectrum from the plastic scintillator is sufficient to observe distinct peaks for specific conversion electrons. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse height spectra of gamma energy versus beta energy are obtained. Each of the four xenon isotopes has a distinctive signature in the two-dimensional energy array. The details of the counting system, examples of two-dimensional beta-gamma data, and operational experience with this counting system will be described

  20. SPALAX new generation: New process design for a more efficient xenon production system for the CTBT noble gas network.

    Topin, Sylvain; Greau, Claire; Deliere, Ludovic; Hovesepian, Alexandre; Taffary, Thomas; Le Petit, Gilbert; Douysset, Guilhem; Moulin, Christophe

    2015-11-01

    The SPALAX (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon) is one of the systems used in the International Monitoring System of the Comprehensive Nuclear Test Ban Treaty (CTBT) to detect radioactive xenon releases following a nuclear explosion. Approximately 10 years after the industrialization of the first system, the CEA has developed the SPALAX New Generation, SPALAX-NG, with the aim of increasing the global sensitivity and reducing the overall size of the system. A major breakthrough has been obtained by improving the sampling stage and the purification/concentration stage. The sampling stage evolution consists of increasing the sampling capacity and improving the gas treatment efficiency across new permeation membranes, leading to an increase in the xenon production capacity by a factor of 2-3. The purification/concentration stage evolution consists of using a new adsorbent Ag@ZSM-5 (or Ag-PZ2-25) with a much larger xenon retention capacity than activated charcoal, enabling a significant reduction in the overall size of this stage. The energy consumption of the system is similar to that of the current SPALAX system. The SPALAX-NG process is able to produce samples of almost 7 cm(3) of xenon every 12 h, making it the most productive xenon process among the IMS systems. Copyright © 2015 Elsevier Ltd. All rights reserved.