WorldWideScience

Sample records for octupole magnetic fields

  1. Specifications of the octupole magnets required for the ATF2 ultra-low ß* lattice

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E.; /SLAC; Modena, M.; /CERN; Tauchi, T.; Terunuma, N.; /KEK, Tsukuba; Tomas, R.; /CERN; White, G.R.; /SLAC

    2014-05-28

    The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction for higher chromaticity lattices as the one of CLIC. To this end the ATF2 ultra-low ß* lattice is designed to vertically focus the beam at the focal point or usually referred to as interaction point (IP), down to 23 nm. However when the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design value. The designed spot size is effectively recovered by inserting a pair of octupole magnets. In this note we address the technical specifications required for these octupole magnets.

  2. Long-term Phanerozoic octupole fields and consequences for paleogeographic reconstructions

    Science.gov (United States)

    van der Voo, R.; Torsvik, T.

    2003-04-01

    The assumption that the ancient geomagnetic field was purely dipolar is fundamental to paleomagnetism. However, one sign that something may be amiss is that observed inclinations at mid-latitudes are often lower than expected. A zonal octupole field in the late Paleozoic, Mesozoic and Early Tertiary was revealed by comparing the observed paleomagnetic paleolatitude distributions for Laurussia (North America, Greenland, and Europe) with those predicted from the mean paleopoles. When only volcanics are analyzed, the pattern remains unchanged, indicating that inclination error in sediments is not the culprit. Estimates of the magnitude of the octupole/dipole field ratio center around 0.1, which could cause errors in conventional paleopoles of about 7.5 degrees; because of the antisymmetry of octupole fields a comparison of paleomagnetic poles from mid-northern and mid-southern hemisphere locations could thus be off by as much as 15 degrees. The well-known misfit between the paleomagnetic results from the Laurentia-European and Gondwana continents in a classical Pangea A configuration could be explained by such errors due to octupole fields. This explanation would negate the need to seek tectonic (Pangea B type) solutions for the misfit. Another misfit based on too-low inclinations is seen in a comparison of Central Asian poles with those for the Eurasian reference path, and here as well do octupole fields provide a possible solution, although sedimentary inclination shallowing is another possibility. When including Pre-Permian poles for Gondwana in a similar test for non-dipole fields, an increase in the percentage octupole contribution is suggested for older times. Undoubtedly, the octupole field contributions have varied in magnitude over shorter time scales as well.

  3. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    CERN Document Server

    Dzuba, V A

    2016-01-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g. transitions between $s$ and $f$ electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing and search for dark matter. They are very sensitive to new physics beyond the Standard Model, such as temporal variation of the fine structure constant, the Lorentz invariance and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates. Due to the hyperfine quenching the electric octupole clock transition in $^{173}$Yb$^+$ is two orders of magnitude stronger than that in currently used $^{171}$Yb$^+$. Some enhancement is found in $^{143}$Nd$^{13+}$, $^{149}$Pm$^{14+}$, $^{147}$Sm$^{14+}$, and $^{147}$Sm$^{15+}$ ions.

  4. Electric Octupole Order in Bilayer Rashba System

    Science.gov (United States)

    Hitomi, Takanori; Yanase, Youichi

    2016-12-01

    The odd-parity multipole is an emergent degree of freedom, leading to spontaneous inversion symmetry breaking. The odd-parity multipole order may occur by forming staggered even-parity multipoles in a unit cell. We focus on a locally noncentrosymmetric bilayer Rashba system, and study an odd-parity electric octupole order caused by the antiferro stacking of local electric quadrupoles. Analyzing the forward scattering model, we show that the electric octupole order is stabilized by a layer-dependent Rashba spin-orbit coupling. The roles of the spin-orbit coupling are clarified on the basis of the analytic formula of multipole susceptibility. The spin texture allowed in the D2d point group symmetry and its magnetic response are revealed. Furthermore, we show that the parity-breaking quantum critical point appears in the magnetic field. The possible realization of the electric octupole order in bilayer high-Tc cuprate superconductors is discussed.

  5. Design of Octupole Channel for Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Chicago U.; Carlson, Kermit [Fermilab; Castellotti, Riccardo [Unlisted, IT; Valishev, Alexander [Fermilab; Wesseln, Steven [Fermilab

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  6. Neutron lifetime measurements and effective spectral cleaning with an ultracold neutron trap using a vertical Halbach octupole permanent magnet array

    CERN Document Server

    Leung, K K H; Ivanov, S; Rosenau, F; Zimmer, O

    2016-01-01

    Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss due to UCN depolarization was suppressed with a minimum 2 mT bias field. Without using the UCN remover, a total storage time constant of $(712 \\pm 19)$ s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of $(824 \\pm 32)$ s and $(835 \\pm 36)$ s were observed. Combining the latter two values, a neutron lifetime of $\\tau_{\\rm n} = (887 \\pm 39)$ s is extracted after primarily correcting for losses at the UCN valve. The time co...

  7. Magnetic octupole order in Ce0.7La0.3B6: A polarized neutron diffraction study

    Science.gov (United States)

    Kuwahara, K.; Iwasa, K.; Kohgi, M.; Aso, N.; Sera, M.; Iga, F.; Matsuura, M.; Hirota, K.

    2009-09-01

    Recently, in phase IV of CexLa1-xB6, weak but distinct superlattice reflections from the order parameter of phase IV have been detected by our unpolarized neutron scattering experiment [K. Kuwahara, K. Iwasa, M. Kohgi, N. Aso, M. Sera, F. Iga, J. Phys. Soc. Japan 76 (2007) 093702]. The scattering vector dependence of the intensity of superlattice reflections is quite unusual; the intensity is stronger for high scattering vectors. This result strongly indicates that the order parameter of phase IV is the magnetic octupole. However, the possibility that the observed superlattice reflections are due to lattice distortions could not be completely ruled out only on the basis of the unpolarized neutron scattering experiment. To confirm that the superlattice reflections are magnetic, therefore, we have performed a single crystal polarized neutron diffraction experiment on Ce0.7La0.3B6. The obtained result has clearly shown that the time reversal symmetry is broken by the order parameter of phase IV. This is further evidence for the magnetic octupole order in CexLa1-xB6.

  8. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  9. The octupoles take pole position

    CERN Multimedia

    2002-01-01

    The first preseries octupole magnet was delivered to CERN in December 2001. Hooked up to a main quadrupole magnet, its function will be to correct imperfections in the beams. The LHC will be fitted with about 5000 corrector magnets, whose task it will be to provide maximum precision in beam collisions.

  10. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  11. Observation of hyperfine mixing in measurements of a magnetic octupole decay in isotopically pure nickel-like 129Xe and 132Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Beiersdorfer, P; Brown, G V

    2006-12-21

    We present measurements of high statistical significance of the rate of the magnetic octupole (M3) decay in nickel-like ions of isotopically pure {sup 129}Xe and {sup 132}Xe. On {sup 132}Xe, an isotope with zero nuclear spin and therefore without hyperfine structure, the lifetime of the metastable level was established as (15.06 {+-} 0.24) ms. On {sup 129}Xe, an additional fast (2.7 {+-} 0.1 ms) decay component was established that represents hyperfine mixing with a level that decays by electric quadrupole (E2) radiation.

  12. Magnetic Field Amplification via Protostellar Disc Dynamos

    CERN Document Server

    Dyda, Sergei; Ustyugova, Galina V; Koldoba, Alexander V; Wasserman, Ira

    2015-01-01

    We model the generation of a magnetic field in a protostellar disc using an \\alpha-dynamo and perform axisymmetric magnetohydrodynamics (MHD) simulations of a T Tauri star. We find that for small values of the dimensionless dynamo parameter $\\alpha_d$ the poloidal field grows exponentially at a rate ${\\sigma} \\propto {\\Omega}_K \\sqrt{\\alpha_d}$ , before saturating to a value $\\propto \\sqrt{\\alpha_d}$ . The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order $10^{-9} M_{\\odot}/\\rm{yr}$ for T Tauri stars. For large values of $\\alpha_d$ magnetic loops are generated over the entire disc. These quickly come to dominate the disc dynamics and cause the disc to break up due to the magnetic pressure.

  13. Octupole shapes in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  14. Microscopic analysis of quadrupole-octupole shape evolution

    Directory of Open Access Journals (Sweden)

    Nomura Kosuke

    2015-01-01

    Full Text Available We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM, that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 – β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  15. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  16. Symmetry enriched U(1) topological orders for dipole-octupole doublets on a pyrochlore lattice

    Science.gov (United States)

    Li, Yao-Dong; Chen, Gang

    2017-01-01

    Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of the newly discovered pyrochlore QSL candidate Ce2Sn2O7 , is a dipole-octupole doublet. The generic model for these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.

  17. Multi-dimensional potential energy surfaces and non-axial octupole correlations in actinide and transfermium nuclei from relativistic mean field models

    CERN Document Server

    Lu, Bing-Nan; Zhao, En-Guang; Zhou, Shan-Gui

    2013-01-01

    We have developed multi-dimensional constrained covariant density functional theories (MDC-CDFT) for finite nuclei in which the shape degrees of freedom \\beta_{\\lambda\\mu} with even \\mu, e.g., \\beta_{20}, \\beta_{22}, \\beta_{30}, \\beta_{32}, \\beta_{40}, etc., can be described simultaneously. The functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. For the pp channel, either the BCS approach or the Bogoliubov transformation is implemented. The MDC-CDFTs with the BCS approach for the pairing (in the following labelled as MDC-RMF models with RMF standing for "relativistic mean field") have been applied to investigate multi-dimensional potential energy surfaces and the non-axial octupole $Y_{32}$-correlations in N=150 isotones. In this contribution we present briefly the formalism of MDC-RMF models and some results from these models. The potential energy surfaces with and without triaxial deformatio...

  18. Lower hybrid heating associated with mode conversion on the Wisconsin octupole

    Energy Technology Data Exchange (ETDEWEB)

    Owens, T.L.

    1979-08-01

    This thesis addresses the following key issues in the lower hybrid frequency range: 1. What are the importent physics aspects of wave propagation and heating in an experimental situation. 2. How effective is plasma heating in the complex magnetic field configuration of the octupole. Experimental work is accomplished by launching 1-10ms pulses of up to 40kW of radio frequency power at 140MHz corresponding to the hot plasma lower hybrid resonance in the octupole. A diploe antenna which is moveable radially and is also rotatable couples wave power to the plasma. Coupling efficiencies greater than 95% are achieved by proper antenna placement near the edge of the plasma radial density profile.

  19. Octupole Deformed Nuclei in the Actinide Region

    CERN Multimedia

    Thorsteinsen, T; Rubio barroso, B; Simpson, J; Gulda, K; Sanchez-vega, M; Cocks, J; Nybo, K; Garcia borge, M; Aas, A; Fogelberg, B; Honsi, J; Smith, G; Naumann, R; Grant, I

    2002-01-01

    The aim of the present study is to investigate the limits of the "island" of octupole deformation in the mass region A=225. It is of particular importance to demonstrate experimentally the sudden disappearance of the stable octupole deformation in the presence of a well developed quadrupole field. \\\\ \\\\In order to establish the upper border line the $\\beta$ -decay chains of $^{227}$Rn $\\rightarrow ^{227}$Fr $\\rightarrow ^{227}$Ra and $^{231}$Fr $\\rightarrow ^{231}$Ra $\\rightarrow ^{231}$Ac were studied at PSB-ISOLDE using advanced fast timing and $\\gamma$-ray spectroscopy techniques. The lifetimes of the excited states have been measured in the picosecond range using the time-delayed $\\beta\\gamma\\gamma$(t) method.

  20. Betatron Tune Spread Generation and Differential Chromaticity Control by Octupole at Tevatron

    CERN Document Server

    Ivanov, Petr M; Annala, Jerry; Lebedev, Valeri

    2005-01-01

    Application of octupoles for Landau damping of the unstable head-tail modes requires careful consideration at their combination into separate families to insure maximum effectiveness and avoid degradation of the dynamic aperture due to the non-linear magnetic fields. Existing octupolar magnets around the machine have been arranged into four functional families with individual power supplies. Two of these families generate betatron tune spreads in the vertical and horizontal planes whereas the other two control the differential chromaticity between the proton and antiproton helices. The calculated effect on tunes and chromaticity is compared with direct measurements. Analytical formulas for betatron tune spectral density functions are presented.

  1. Cosmological Magnetic Fields

    CERN Document Server

    Kunze, Kerstin E

    2013-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  2. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  3. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  4. Octupole Focusing Relativistic Self-Magnetometer Electric Storage Ring "Bottle"

    CERN Document Server

    Talman, Richard

    2015-01-01

    A method proposed for measuring the electric dipole moment (EDM) of a charged fundamental particle such as the proton, is to measure the spin precession caused by a radial electric bend field $E_r$, acting on the EDMs of frozen spin polarized protons circulating in an all-electric storage ring. The dominant systematic error limiting such a measurement comes from spurious spin precession caused by unintentional and unknown average radial magnetic field $B_r$ acting on the (vastly larger) magnetic dipole moments (MDM) of the protons. Along with taking extreme magnetic shielding measures, the best protection against this systematic error is to use the storage ring itself, as a "self-magnetometer"; the exact magnetic field average $\\langle B_r\\rangle$ that produces systematic EDM error, is nulled to exquisite precision by orbit position control. By using octupole rather than quadrupole focusing the restoring force can be vanishingly small for small amplitude vertical betatron-like motion yet strong enough at larg...

  5. Magnetic fields of young solar twins

    Science.gov (United States)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  6. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  7. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  8. Influence of the octupole mode on nuclear high-K isomeric properties

    Science.gov (United States)

    Minkov, Nikolay; Walker, Phil

    2014-05-01

    The influence of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even actinide (U, Pu, Cm, Fm, No), rare-earth (Nd, Sm and Gd), and superheavy (^{270}\\text{Ds}) nuclei is examined within a deformed shell model with pairing interaction. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated over a wide range in the plane of quadrupole and octupole deformations. In most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation. At the same time, the calculations outline three different groups of nuclei: with pronounced, shallow, and missing minima in the 2qp energy surfaces with respect to the octupole deformation. The result indicates regions of nuclei with octupole softness as well as with possible octupole deformation in the high-K isomeric states. These findings show the need for further theoretical analysis as well as of detailed experimental measurements of magnetic moments in heavy deformed nuclei.

  9. Magnetization reversal in ultrashort magnetic field pulses

    CERN Document Server

    Bauer, M; Fassbender, J; Hillebrands, B

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...

  10. Octupole collectivity in the Sm isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, M. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.]|[Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Zamfir, N.V. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.]|[National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Kusnezov, D. [Yale Univ., New Haven, CT (United States). Sloane Physics Lab.; McCutchan, E.A. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.; Zilges, A. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik

    2005-08-27

    Microscopic models suggest the occurrence of strong octupole correlations in nuclei with N{approx}88. To examine the signatures of octupole correlations in this region, the spdf Interacting Boson Approximation (IBA) Model is applied to the Sm isotopes with N = 86 - 92. The effects of including multiple negative parity bosons in the basis are compared to more standard one negative parity boson calculations and are analyzed in terms of signatures for strong octupole correlations. It is found that multiple negative parity bosons are needed to describe properties at medium spin. Bands with strong octupole correlations (multiple negative parity bosons) become yrast at medium spin in {sup 148,150}Sm. This region shares some similarities with the light actinides, where strong octupole correlations were also found at medium spin. (orig.)

  11. Molecules in Magnetic Fields

    Science.gov (United States)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  12. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  13. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  14. Solar Magnetic Fields

    Indian Academy of Sciences (India)

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  15. Solar Magnetic Fields

    CERN Document Server

    Hood, Alan W

    2011-01-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulation...

  16. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  17. Octupole correlations in excited 0{sup +} states of the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Spieker, Mark; Endres, Janis; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Bucurescu, Dorel; Pascu, Sorin; Zamfir, Nicolae-Victor [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Faestermann, Thomas [Physik Department, Technische Universitaet Muenchen, Munich (Germany); Hertenberger, Ralf; Wirth, Hans-Friedrich [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany)

    2014-07-01

    New experimental data has once again shown the importance of the octupole degree of freedom in the actinides. To further study possible admixtures of double-octupole structures to the wave function of positive-parity states, a high-resolution (p,t) experiment on {sup 242}Pu has been recently performed at the Q3D magnetic spectrograph in Munich. Excited 0{sup +} states were populated in {sup 240}Pu up to an excitation energy of 3 MeV. The new data allowed for a stringent test of the predictions of the spdf interacting boson model. In order to find possible double-octupole 0{sup +} candidates in the actinides, the signature of close-lying first and second excited 0{sup +} states has been proposed. It is found that the observation of this signature coincides with an E1 γ-decay of the first excited 0{sup +} state, while this state is strongly populated in the (p,t) reaction.

  18. Possible Octupole Correlation in 90Mo

    Institute of Scientific and Technical Information of China (English)

    LIGuang-sheng; WUXiao-guang; PENGZhao-hua; WENShu-xian; HANGuang-bing; LICheng-bo; LUShao-jun; WUShao-yong; YUANGuang-jun; YANGChun-xiang; ZHULi-hua

    2003-01-01

    The nuclei with octupole deformation have a feature of reflection asymmetry and so there exists a wealth of information about nuclear property. Therefore, study on behavior of high spin states for these nuclei is helpful to know nuclear structure further. Theories predict that octupole deformation with β3≠0 will occurs when the proton number Z and neutron number N are 56, 88, and 132.

  19. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  20. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, G. J. D. [National Solar Observatory, Tucson, AZ 85719 (United States)

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  1. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  2. Magnetic field switchable dry adhesives.

    Science.gov (United States)

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  3. Limits for primordial magnetic fields

    CERN Document Server

    Caprini, Chiara

    2011-01-01

    A possible explanation for the origin of the magnetic fields observed today in matter structures is that they were generated in the primordial universe. After briefly revising the model of a primordial stochastic magnetic field and sketching the main features of its time evolution in the primordial plasma, we illustrate the current upper bounds on the magnetic field amplitude and spectral index from Cosmic Microwave Background observations and gravitational wave production. We conclude that a primordial magnetic field generated by a non-causal process such as inflation with a red spectrum seems to be favoured as a seed for the magnetic fields observed today in structures.

  4. Superhorizon magnetic fields

    CERN Document Server

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  5. SCUPOL Magnetic Field Analysis

    CERN Document Server

    Poidevin, Frederick; Kowal, Grzegorz; Pino, Elisabete de Gouveia Dal; Magalhaes, Antonio-Mario

    2013-01-01

    We present an extensive analysis of the 850 microns polarization maps of the SCUPOL Catalog produced by Matthews et al. (2009), focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from 2D synthetic maps of dust emission polarization produced with 3D MHD numerical simulations scaled to the S106, OMC-2/3, W49 and DR21 molecular clouds polarization maps. For these specific regions the turbulent MHD regimes retrieved from the simulations, as described by the turbulent Alfv\\`en and sonic Mach numbers, are consistent within a factor 1 to 2 with the values of the same turbulent regimes estimated from the analysis of Zeeman measurements data provided by Crutcher (1999). Constraints on the values of the inclination angle of the mean magnetic field with respect to the LOS are also given. The values obtained from th...

  6. Magnetic Fields: Visible and Permanent.

    Science.gov (United States)

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  7. Solar magnetic activity cycles, coronal potential field models and eruption rates

    Science.gov (United States)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  8. Reconnection of Magnetic Fields

    Science.gov (United States)

    Birn, J.; Priest, E. R.

    2007-01-01

    Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

  9. Vestibular stimulation by magnetic fields

    Science.gov (United States)

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  10. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  11. Magnetic response to applied electrostatic field in external magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  12. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  13. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  14. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  15. Magnetic fields in ring galaxies

    CERN Document Server

    Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R

    2016-01-01

    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...

  16. Low Cost Magnetic Field Controller

    CERN Document Server

    Malafronte, Alexandre A

    2005-01-01

    The Physics Institute of the University of São Paulo (IFUSP) is building a continuous wave (cw) racetrack microtron. This machine has several dipole magnets, like the first and second stage recirculators, and a number of smaller ones in the transport line. These magnets must produce very stable magnetic fields to allow the beam to recirculate along very precise orbits and paths. Furthermore, the fields must be reproducible with great accuracy to allow an easier setup of the machine, though the effects of hysteresis tend to jeopardize the reproducibility. If the magnetic field is chosen by setting the current in the coils, temperature effects over the magnet and power supply tend to change the field. This work describes an inexpensive magnetic field controller that allows a direct measure of the magnetic field through an Hall probe. It includes a microcontroller running a feedback algorithm to control the power supply, in order to keep the field stable and reproducible. The controller can also execu...

  17. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  18. Resonant magnetic fields from inflation

    CERN Document Server

    Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R

    2012-01-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  19. Origin of cosmic magnetic fields

    Science.gov (United States)

    Rees, M. J.

    2006-06-01

    The first significant cosmic fields, and the seed field for galactic dynamos probably developed after the formation of the first non-linear structures. The history of star formation and the intergalactic medium is controlled, at least in part, by how and when galaxies and their precursors acquired their fields. The amplification of fields behind shocks, and the diffusivity of the magnetic flux, are crucial to the interpretation of radio sources, gamma ray burst afterglows, and other energetic cosmic phenomena. The build-up of magnetic fields is an important aspect of the overall cosmogonic process.

  20. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  1. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  2. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-02-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  3. Magnetically Controlled Accretion Flows onto Young Stellar Objects

    CERN Document Server

    Adams, Fred C

    2011-01-01

    (abridged) Accretion from disks onto young stars is thought to follow magnetic field lines from the inner disk edge to the stellar surface. The accretion flow thus depends on the geometry of the magnetic field. This paper extends previous work by constructing a collection of orthogonal coordinate systems, including the corresponding differential operators, where one coordinate traces the magnetic field lines. This formalism allows for an (essentially) analytic description of the geometry and the conditions required for the flow to pass through sonic points. Using this approach, we revisit the problem of magnetically controlled accretion flow in a dipole geometry, and then generalize the treatment to consider magnetic fields with multiple components, including dipole, octupole, and split monopole contributions. This approach can be generalized further to consider more complex magnetic field configurations. Observations indicate that accreting young stars have substantial dipole and octupole components, and tha...

  4. Magnetic fields in spiral galaxies

    Science.gov (United States)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  5. Solar magnetic activity cycles, coronal potential field models and eruption rates

    CERN Document Server

    Petrie, G J D

    2013-01-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003-6 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the ...

  6. Magnetic Field Generation in Stars

    CERN Document Server

    Ferrario, Lilia; Zrake, Jonathan

    2015-01-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...

  7. Suppression of quadrupole and octupole modes in red giants observed by Kepler

    CERN Document Server

    Stello, D; Fuller, J; Garcia, R A; Huber, D

    2016-01-01

    The asteroseismology of red giant stars has continued to yield surprises since the onset of high-precision photometry from space-based observations. An exciting new theoretical result shows that the previously observed suppression of dipole oscillation modes in red giants can be used to detect strong magnetic fields in the stellar cores. A fundamental facet of the theory is that nearly all the mode energy leaking into the core is trapped by the magnetic greenhouse effect. This results in clear predictions for how the mode visibility changes as a star evolves up the red giant branch, and how that depends on stellar mass, spherical degree, and mode lifetime. Here, we investigate the validity of these predictions with a focus on the visibility of different spherical degrees. We find that mode suppression weakens for higher degree modes with an average reduction in the quadrupole mode visibility of up to 49% for the least evolved stars in our sample, and no detectable suppression of octupole modes, in agreement w...

  8. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  9. Magnetic Fields in Spiral Galaxies

    CERN Document Server

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...

  10. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  11. Magnetic fields during galaxy mergers

    CERN Document Server

    Rodenbeck, Kai

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength reported by Drzazga et al. (2011) in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, there is a physical enhancement of t...

  12. Zero magnetic field type magnetic field sensor. Reijikaigata jikai sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T.; Ueda, R. (Kyushu Institute of Technology, Fukuoka (Japan))

    1990-11-20

    It is shown in this paper that a new type of sensor with excellent characteristics can be made by demagnetizing the sensor core toward a zero field state and then detecting an unknown field to be detected by the demagnetizing current. The core operates equivalently in a zero magnetic field so that the detection sensitivity is determined by the coil constant including the number of turns of the solenoid for demagnetization required to offset the field to be detected. Therefore the detection sensitivity does not depend on its configuration and magnetization characteristics and does not depend on the temperature. It is thereby considered that these characteristics can largely reduce such problems at present as the aging deterioration of magnetic materials or the quality control accompanied by manufacturing. In addition, the following points have been clarified: (1) The upper limit of the detectable range does not exist in principle. (2) The accuracy of the detection is 0.02% to the full scale 20kA/m. (3) The magnetization property required to the core used as a sensor is that it has a rectangular B-H loop which is as sharp as possible. 14 refs., 13 figs., 2 tabs.

  13. Primordial Magnetic Fields and Causality

    CERN Document Server

    Durrer, R; Durrer, Ruth; Caprini, Chiara

    2003-01-01

    In this letter we discuss the implications of causality on a primordial magnetic field. We show that the residual field on large scales is much stronger suppressed than usually assumed and that a helical component is even suppressed even more than the parity even part. We show that due to this strong suppression, even maximal primordial fields generated at the electroweak phase transition can just marginally seed the fields in galaxies and clusters, but they cannot leave any detectable imprint on the cosmic microwave background.

  14. Magnetic fields around black holes

    Science.gov (United States)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  15. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  16. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed to b...

  17. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  18. Magnetic fields in spiral galaxies

    Science.gov (United States)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  19. Modeling and analysis of magnetic dipoles in weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

  20. Primordial Magnetic Fields that Last?

    CERN Document Server

    Carroll, S M; Carroll, Sean M.; Field, George B.

    1998-01-01

    The magnetic fields we observe in galaxies today may have their origins in the very early universe. While a number of mechanisms have been proposed which lead to an appreciable field amplitude at early times, the subsequent evolution of the field is of crucial importance, especially whether the correlation length of the field can grow as large as the size of a protogalaxy. This talk is a report on work in progress, in which we consider the fate of one specific primordial field scenario, driven by pseudoscalar effects near the electroweak phase transition. We argue that such a scenario has a number of attractive features, although it is still uncertain whether a field of appropriate size can survive until late times.

  1. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  2. Octupole correlations in N =88 154Dy : Octupole vibration versus stable deformation

    Science.gov (United States)

    Zimba, G. L.; Sharpey-Schafer, J. F.; Jones, P.; Bvumbi, S. P.; Masiteng, L. P.; Majola, S. N. T.; Dinoko, T. S.; Lawrie, E. A.; Lawrie, J. J.; Negi, D.; Papka, P.; Roux, D.; Shirinda, O.; Easton, J. E.; Khumalo, N. A.

    2016-11-01

    We report on low-spin states of 154Dy populated via the reaction 155Gd (3He,4 n ) with a beam energy of 37.5 MeV from the Separated Sector Cyclotron at iThemba Laboratory. The AFRODITE γ-ray spectrometer was used to establish new E 1 transitions between bands of opposite parity. The measurements broaden the N =88 systematics on the relationship between the first excited positive-parity pairing isomer band and the lowest-lying negative-parity band as the nuclear quadrupole deformation decreases with increasing proton number. In a region of strong octupole correlations the data suggest that the spectroscopy of N =88 nuclei is driven by stable octupole deformations and not by vibrations.

  3. Diagnosis of solar chromospheric magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hongqi(张洪起)

    2002-01-01

    This paper discusses the measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic fields. Some questions in the study of the chromospheric magnetic field are also presented.

  4. Stress Field of Straight Edge Dislocation in Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-long; HU Hai-yun; FAN Tian-you

    2007-01-01

    To study the changes in mechanical properties of materials within magnetic fields and the motion of dislocations,stress fields of dislocation in magnetic field need to be calculated.The straight edge dislocation is of basic importance in various defects.The stress field of straight edge dislocation in an external static magnetic field is determined by the theory of elasticity and electrodynamics according to the Volterra dislocation model for continuous media.This reduces to the known stress field when the magnet field is zero.The results can be used for further study on the strain energy of dislocations and the interactions between dislocations in magnetic fields.

  5. The HMI Magnetic Field Pipeline

    Science.gov (United States)

    Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

    2009-05-01

    The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

  6. A Vorticity-Magnetic Field Dynamo Instability

    OpenAIRE

    1997-01-01

    We generalize the mean field magnetic dynamo to include local evolution of the mean vorticity in addition to the mean magnetic field. The coupled equations exhibit a general mean field dynamo instability that enables the transfer of turbulent energy to the magnetic field and vorticity on larger scales. The growth of the vorticity and magnetic field both require helical turbulence which can be supplied by an underlying global rotation. The dynamo coefficients are derived including the backreac...

  7. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  8. Magnetic field of a combined plasma trap

    Science.gov (United States)

    Kotenko, V. G.; Moiseenko, V. E.; Ågren, O.

    2012-06-01

    This paper presents numerical simulations performed on the structure of a magnetic field created by the magnetic system of a combined plasma trap. The magnetic system includes the stellarator-type magnetic system and one of the mirror-type. For the stellarator type magnetic system the numeric model contains a magnetic system of an l=2 torsatron with the coils of an additional toroidal magnetic field. The mirror-type magnetic system element is considered as being single current-carrying turn enveloping the region of existence of closed magnetic surfaces of the torsatron. The calculations indicate the existence of a vast area of the values of the additional magnetic field magnitude and magnetic field of the single turn where, in principle, the implementation of the closed magnetic surface configuration is quite feasible.

  9. Field and Thermal Characteristics of Magnetizing Fixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  10. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  11. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  12. Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

    CERN Document Server

    Nomura, K; Robledo, L M

    2015-01-01

    Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean field calculations with the Gogny energy density functional. The link between both frameworks is the ($\\beta_2\\beta_3$) potential energy surface computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including both positive and negative parity states. The resultant spectroscopic properties are compared with the available experimental data and also with the results of the configuration mixing calculations with the Gogny force within the generator coordinate method (GCM). The structure of excited $0^{+}$ states and its connection with double octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy quadrupole and o...

  13. Microscopic description of octupole shape-phase transitions in light actinides and rare-earth nuclei

    CERN Document Server

    Nomura, K; Niksic, T; Lu, Bing-Nan

    2014-01-01

    A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $\\beta_{2}$-$\\beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition be...

  14. Electron scattering from the octupole band in /sup 238/U

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Creswell, C.; Bertozzi, W.; Heisenberg, J.; Hynes, M.V.; Kowalski, S.; Miska, H.; Norum, B.; Rad, F.N.; Sargent, C.P.; Sasanuma, T.; Turchinetz, W.

    1978-03-06

    A simple model for nuclear surface vibrations in permanently deformed nuclei does well in reproducing electron scattering cross sections of rotational levels built on a K/sup ..pi../= 0/sup -/ intrinsic octupole vibration in /sup 238/U.

  15. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  16. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming Fan; Zhenfu Luo; Yuemin Zhao; Qingru Chen; Daniel Tao; Xiuxiang Tao; Zhenqiang Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  17. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  18. Manifestations of Magnetic Field Inhomogeneities

    Indian Academy of Sciences (India)

    Lawrence Rudnick

    2011-12-01

    Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.

  19. Hybrid Shielding for Magnetic Fields

    Science.gov (United States)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  20. Neutron star deformation due to arbitrary-order multipolar magnetic fields

    CERN Document Server

    Mastrano, Alpha; Melatos, Andrew

    2013-01-01

    Certain multi-wavelength observations of neutron stars, such as intermittent radio emissions from rotation-powered pulsars beyond the pair-cascade death line, the pulse profile of the magnetar SGR 1900+14 after its 1998 August 27 giant flare, and X-ray spectral features of PSR J0821-4300 and SGR 0418+5729, suggest that the magnetic fields of non-accreting neutron stars are not purely dipolar and may contain higher-order multipoles. Here, we calculate the ellipticity of a non-barotropic neutron star with (i) a quadrupole poloidal-toroidal field, and (ii) a purely poloidal field containing arbitrary multipoles, deriving the relation between the ellipticity and the multipole amplitudes. We present, as a worked example, a purely poloidal field comprising dipole, quadrupole, and octupole components. We show the correlation between field energy and ellipticity for each multipole, that the l=4 multipole has the lowest energy, and that l=5 has the lowest ellipticity. We show how a mixed multipolar field creates an ob...

  1. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  2. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  3. Octupole response and stability of spherical shape in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Abrosimov, V.I.; Davidovskaya, O.I.; Dellafiore, A. E-mail: della@fi.infn.it; Matera, F

    2003-11-17

    The isoscalar octupole response of a heavy spherical nucleus is analyzed in a semiclassical model based on the linearized Vlasov equation. The octupole strength function is evaluated with different degrees of approximation. The zero-order fixed-surface response displays a remarkable concentration of strength in the 1{Dirac_h}{omega} and 3{Dirac_h}{omega} regions, in excellent agreement with the quantum single-particle response. The collective fixed-surface response reproduces both the high- and low-energy octupole resonances, but not the low-lying 3{sup -} collective states, while the moving-surface response function gives a good qualitative description of all the main features of the octupole response in heavy nuclei. The role of triangular nucleon orbits, that have been related to a possible instability of the spherical shape with respect to octupole-type deformations, is discussed within this model. It is found that, rather than creating instability, the triangular trajectories are the only classical orbits contributing to the damping of low-energy octupole excitations.

  4. Magnetic field reversals and galactic dynamos

    OpenAIRE

    2012-01-01

    We argue that global magnetic field reversals similar to those observed in the Milky Way occur quite frequently in mean-field galactic dynamo models that have relatively strong, random, seed magnetic fields that are localized in discrete regions. The number of reversals decreases to zero with reduction of the seed strength, efficiency of the galactic dynamo and size of the spots of the seed field. A systematic observational search for magnetic field reversals in a representative sample of spi...

  5. Magnetic field penetration of erosion switch plasmas

    Science.gov (United States)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.

    1988-10-01

    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.

  6. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  7. Magnetic Fields from the Electroweak Phase Transition

    CERN Document Server

    Törnkvist, O

    1998-01-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  8. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    CERN Document Server

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  9. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  10. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  11. Exploring Magnetic Fields with a Compass

    Science.gov (United States)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  12. Magnetic field concentrator for probing optical magnetic metamaterials.

    Science.gov (United States)

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  13. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  14. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  15. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  16. From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.

  17. Absence of Magnetic Dipolar Phase Transition and Evolution of Low-Energy Excitations in PrNb2Al20 with Crystal Electric Field Γ3 Ground State: Evidence from 93Nb-NQR Studies

    Science.gov (United States)

    Kubo, Tetsuro; Kotegawa, Hisashi; Tou, Hideki; Higashinaka, Ryuji; Nakama, Akihiro; Aoki, Yuji; Sato, Hideyuki

    2015-07-01

    We report measurements of bulk magnetic susceptibility and 93Nb nuclear quadrupole resonance (NQR) in the Pr-based caged compound PrNb2Al20. By analyzing the magnetic susceptibility and magnetization, the crystal electric field (CEF) level scheme of PrNb2Al20 is determined to be Γ3(0 K)-Γ4(21.32 K)-Γ5(43.98 K)-Γ1(51.16 K) within the framework of the localized 4f electron picture. The 93Nb-NQR spectra exhibit neither spectral broadening nor spectral shift upon cooling down to 75 mK. The 93Nb-NQR spin-lattice relaxation rate 1/T1 at 5 K depends on the frequency and remains almost constant below 5 K. The frequency dependence of 1/T1 is attributed to the magnetic fluctuation due to the hyperfine-enhanced 141Pr nuclear moment inherent in the nonmagnetic Γ3 CEF ground state. The present NQR results provide evidence that no symmetry-breaking magnetic dipole order occurs down to 75 mK. Also, considering an invariant form of the quadrupole and octupole couplings between a 93Nb nucleus and Pr 4f electrons, Pr 4f quadrupoles and an octupole can couple with a 93Nb nuclear quadrupole moment and nuclear spin, respectively. Together with the results of bulk measurements, the present NQR results suggest that the possibility of a static quadrupole or octupole ordering can be excluded down to 100 mK. At low temperatures below 500 mK, however, the nuclear spin-echo decay rate gradually increases and the decay curve changes from Gaussian decay to Lorentzian decay, suggesting the evolution of a low-energy excitation.

  18. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  19. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  20. Magnetic Fields and Star Formation

    CERN Document Server

    Van Loo, S; Falle, S A E G

    2012-01-01

    Research performed in the 1950s and 1960s by Leon Mestel on the roles of magnetic fields in star formation established the framework within which he and other key figures have conducted subsequent investigations on the subject. This short tribute to Leon contains a brief summary of some, but not all, of his ground breaking contributions in the area. It also mentions of some of the relevant problems that have received attention in the last few years. The coverage is not comprehensive, and the authors have drawn on their own results more and touched more briefly on those of others than they would in a normal review. Theirs is a personal contribution to the issue honouring Leon, one of the truly great gentlemen, wits, and most insightful of astrophysicists.

  1. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tetsuya; Watasaki, Masahiro [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Yosuke [Kawasaki Heavy Industries, Ltd. Technical Institute System Technology Development Centre 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Miki, Motohiro; Izumi, Mitsuru, E-mail: ida@hiroshima-cmt.ac.j [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  2. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  3. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...

  4. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  5. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  6. Coulomb crystals in the magnetic field

    CERN Document Server

    Baiko, D A

    2009-01-01

    The body-centered cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields $B \\gtrsim 10^{14}$ G). The effect of the magnetic ...

  7. New knowledge of the Galactic magnetic fields

    CERN Document Server

    Han, J L

    2009-01-01

    The magnetic fields of our Milky Way galaxy are the main agent for cosmic rays to transport. In the last decade, much new knowledge has been gained from measurements of the Galactic magnetic fields. In the Galactic disk, from the RMs of a large number of newly discovered pulsars, the large-scale magnetic fields along the spiral arms have been delineated in a much larger region than ever before, with alternating directions in the arm and interarm regions. The toroidal fields in the Galactic halo were revealed to have opposite directions below and above the Galactic plane, which is an indication of an A0 mode dynamo operating in the halo. The strength of large-scale fields obtained from pulsar RM data has been found to increase exponentially towards the Galactic center. Compared to the steep Kolmogorov spectrum of magnetic energy at small scales, the large-scale magnetic fields show a shallow broken spatial magnetic energy spectrum.

  8. Magnetic field evolution in tidal disruption events

    CERN Document Server

    Bonnerot, Clément; Lodato, Giuseppe; Rossi, Elena M

    2016-01-01

    When a star gets tidally disrupted by a supermassive black hole, its magnetic field is expected to be transmitted to the debris. In this paper, we study this process via smoothed particle magnetohydrodynamical simulations of the disruption and early debris evolution including the stellar magnetic field. As the gas stretches into a stream, we show that the magnetic field evolution is strongly dependent on its orientation with respect to the stretching direction. In particular, an alignment of the field lines with the direction of stretching induces an increase of the magnetic energy. For disruptions happening well within the tidal radius, the star compression causes the magnetic field strength to sharply increase by an order of magnitude at the time of pericentre passage. If the disruption is partial, we find evidence for a dynamo process occurring inside the surviving core due to the formation of vortices. This causes an amplification of the magnetic field strength by a factor of $\\sim 10$. However, this valu...

  9. Behaviour of ferrocholesterics under external magnetic fields

    Science.gov (United States)

    Petrescu, Emil; Motoc, Cornelia

    2001-08-01

    The influence of an external magnetic field on the orientational behaviour of a ferrocholesteric with a positive magnetic anisotropy is investigated. Both the phenomena arising when the field was switched on or switched off are considered. It is found that the field needed for a ferrocholesteric-ferronematic transition BFC↑ is higher when compared to that obtained for the pure cholesteric ( BC↑). A similar result was obtained when estimating the critical field for the homeotropic ferronematic-ferrocholesteric (focal conic) transition, occurring when the magnetic field was decreased or switched off. We found that BFC↓> BC↓. These results are explained when considering that the magnetic moments of the magnetic powder are not oriented parallel to the liquid crystal molecular directors, therefore hindering their orientation under a magnetic field.

  10. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  11. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Science.gov (United States)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  12. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  13. Magnetically modified bioсells in constant magnetic field

    Science.gov (United States)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  14. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  15. Minimizing magnetic fields for precision experiments

    CERN Document Server

    Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  16. Near-zero-field nuclear magnetic resonance

    OpenAIRE

    Ledbetter, Micah; Theis, Thomas; Blanchard, John; Ring, Hattie; Ganssle, Paul; Appelt, Stephan; Bluemich, Bernhard; Pines, Alex; Budker, Dmitry

    2011-01-01

    We investigate nuclear magnetic resonance (NMR) in near-zero-field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J-coupling). This is in stark contrast to the high field case, where heteronuclear J-couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectr...

  17. Numerical Simulation of Level Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.

  18. Magnetic field screening effect in electroweak model

    CERN Document Server

    Bakry, A; Zhang, P M; Zou, L P

    2014-01-01

    It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

  19. Optical fibers with composite magnetic coating for magnetic field sensing

    Energy Technology Data Exchange (ETDEWEB)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N. E-mail: ntalijan@elab.tmf.bg.ac.yu; Trifunovic, D.; Aleksic, R

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo{sub 5} permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  20. Optical fibers with composite magnetic coating for magnetic field sensing

    Science.gov (United States)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N.; Trifunovic, D.; Aleksic, R.

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo5 permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  1. Rydberg EIT in High Magnetic Field

    Science.gov (United States)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  2. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  3. An Intergalactic Magnetic Field from Quasar Outflows

    CERN Document Server

    Furlanetto, S; Furlanetto, Steven; Loeb, Abraham

    2001-01-01

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function magnetic field strength at different redshifts. We find that by a redshift z ~ 3, about 5-80% of the IGM volume is filled by magnetic fields with an energy density > 10% of the mean thermal energy density of a photo-ionized IGM (at ~ 10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the fields observed in these systems without a need for further dynamo amplification.

  4. Efficient magnetic fields for supporting toroidal plasmas

    CERN Document Server

    Landreman, Matt

    2016-01-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...

  5. MDI Synoptic Charts of Magnetic Field: Interpolation of Polar Fields

    Science.gov (United States)

    Liu, Yang; Hoeksema, J. T.; Zhao, X.; Larson, R. M.

    2007-05-01

    In this poster, we compare various methods for interpolation of polar field for the MDI synoptic charts of magnetic field. By examining the coronal and heliospheric magnetic field computed from the synoptic charts based on a Potential Field Source Surface model (PFSS), and by comparing the heliospheric current sheets and footpoints of open fields with the observations, we conclude that the coronal and heliospheric fields calculated from the synoptic charts are sensitive to the polar field interpolation, and a time-dependent interpolation method using the observed polar fields is the best among the seven methods investigated.

  6. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  7. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    Science.gov (United States)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  8. Assembly of magnetic spheres in strong homogeneous magnetic field

    Science.gov (United States)

    Messina, René; Stanković, Igor

    2017-01-01

    The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).

  9. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  10. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  11. Two-axis magnetic field sensor

    Science.gov (United States)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  12. Magnetic fields and rotation of spiral galaxies

    CERN Document Server

    Battaner, E; Florido, E

    1998-01-01

    We present a simplified model in which we suggest that two important galactic problems -the magnetic field configuration at large scales and the flat rotation curve- may be simultaneously explained. A highly convective disc produces a high turbulent magnetic diffusion in the vertical direction, stablishing a merging of extragalactic and galactic magnetic fields. The outer disc may then adquire a magnetic energy gradient very close to the gradient required to explain the rotation curve, without the hypothesis of galactic dark matter. Our model predicts symmetries of the galactic field in noticeable agreement with the large scale structure of our galaxy.

  13. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  14. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  15. Lattice Planar QED in external magnetic field

    CERN Document Server

    Cea, Paolo; Giudice, Pietro; Papa, Alessandro

    2011-01-01

    We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

  16. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  17. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    Y. J. Chen; G.-Y. Zhao; Z.-Q. Shen

    2014-09-01

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  18. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  19. Magnetic fields in Neutron Stars

    CERN Document Server

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  20. Pair annihilation in superstrong magnetic fields

    Science.gov (United States)

    Daugherty, J. K.; Bussard, R. W.

    1980-01-01

    The kinematical and dynamical aspects of the annihilation processes in superstrong magnetic fields are studied. The feasibility and potential significance of detecting from magnetic neutron stars are discussed. The discussion proceeds from the derivation of the fully relativistic differential cross sections and annihilation rates for both one- and two-photon emission from a ground-state gas of electrons and positrons in a static, uniform magnetic field.

  1. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  2. Magnetic Fields in Stars: Origin and Impact

    CERN Document Server

    Langer, N

    2013-01-01

    Various types of magnetic fields occur in stars: small scale fields, large scale fields, and internal toroidal fields. While the latter may be ubiquitous in stars due to differential rotation, small scale fields (spots) may be associated with envelop convection in all low and high mass stars. The stable large scale fields found in only about 10 per cent of intermediate mass and massive stars may be understood as a consequence of dynamical binary interaction, e.g., the merging of two stars in a binary. We relate these ideas to magnetic fields in white dwarfs and neutron stars, and to their role in core-collapse and thermonuclear supernova explosions.

  3. Structure of magnetic fields in intracluster cavities

    CERN Document Server

    Gourgouliatos, Konstantinos Nektarios; Lyutikov, Maxim

    2010-01-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the AGN jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and evaluate the rotation measure for radiation traversing the bubble.

  4. Delayed quarkonium formation in a magnetic field

    CERN Document Server

    Suzuki, Kei

    2016-01-01

    Formation time of heavy quarkonia in a homogeneous magnetic field is analyzed by using a phenomenological ansatz of the vector current correlator. Because the existence of a magnetic field mixes vector quarkonia ($J/\\psi$, $\\psi^\\prime$) and their pseudoscalar partners ($\\eta_c$, $\\eta_c^\\prime$), the properties of the quarkonia can be modified through such a spin mixing. This means that the formation time of quarkonia is also changed by the magnetic field. We show the formation time of vector quarkonia is delayed by an idealized constant magnetic field, where the formation time of the excited state becomes longer than that of the ground state. As a more realistic situation in heavy-ion collisions, effects by a time-dependent magnetic field are also discussed.

  5. Formation of magnetically anisotropic composite films at low magnetic fields

    Science.gov (United States)

    Ghazi Zahedi, Maryam; Ennen, Inga; Marchi, Sophie; Barthel, Markus J.; Hütten, Andreas; Athanassiou, Athanassia; Fragouli, Despina

    2017-04-01

    We present a straightforward two-step technique for the fabrication of poly (methyl methacrylate) composites with embedded aligned magnetic chains. First, ferromagnetic microwires are realized in a poly (methyl methacrylate) solution by assembling iron nanoparticles in a methyl methacrylate solution under heat in an external magnetic field of 160 mT. The simultaneous thermal polymerization of the monomer throughout the wires is responsible for their permanent linkage and stability. Next, the polymer solution containing the randomly dispersed microwires is casted on a solid substrate in the presence of a low magnetic field (20–40 mT) which induces the final alignment of the microwires into long magnetic chains upon evaporation of the solvent. We prove that the presence of the nanoparticles assembled in the form of microwires is a key factor for the formation of the anisotropic films under low magnetic fields. In fact, such low fields are not capable of driving and assembling dispersed magnetic nanoparticles in the same type of polymer solutions. Hence, this innovative approach can be utilized for the synthesis of magnetically anisotropic nanocomposite films at low magnetic fields.

  6. Warm inflation in presence of magnetic fields

    CERN Document Server

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-01-01

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

  7. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and measurement of the spatial variation of magnetic field components along a line near magnets. We describe the experimental tasks, various difficulties students have throughout, and ways this lab makes even their incorrect predictions better. We suggest that developing lab activities of this nature brings a new dimension to the ways students learn and interact with field concepts.

  8. A novel antiproton radial diagnostic based on octupole induced ballistic loss

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time-history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms.

  9. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  10. External-field-free magnetic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  11. Magnetic monopole field exposed by electrons

    CERN Document Server

    Béché, A; Van Tendeloo, G; Verbeeck, J

    2013-01-01

    Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

  12. Polarized radiation diagnostics of stellar magnetic fields

    Science.gov (United States)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the

  13. Interplanetary magnetic field and geomagnetic Dst variations.

    Science.gov (United States)

    Patel, V. L.; Desai, U. D.

    1973-01-01

    The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.

  14. Compact low field magnetic resonance imaging magnet: Design and optimization

    Science.gov (United States)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  15. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    Science.gov (United States)

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  16. Study of octupole correlations in rare earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, M.

    2005-07-01

    Possible signatures of octupole correlations are discussed in this thesis for the rare earth nuclei {sup 148-154}Sm and {sup 152}Gd. Microscopic models suggest the occurence of strong octupole correlations in nuclei with N {approx} 88. The available data on {sup 148-154}Sm isotopes allowed for the examination of signatures of octupole correlations through the study of systematics in this region within the framework of the spdf Interacting Boson Approximation (IBA) model. It was found that properties of low-lying states can be readily understood with a simple hamiltonian consisting of a known positive parity hamiltonian coupled to a negative parity boson, and that multiple negative parity bosons were needed to describe properties at higher spin. Experiments on {sup 152}Gd have been performed at wright nuclear structure laboratory of yale university to extend the investigations on octupole correlations to other N=88 nuclei. An experiment at the moving tape collector allowed for the determination of decay properties of low-spin levels in {sup 152}Gd. To obtain information on medium-spin states, including their branchings, a fusion evaporation experiment was performed at the SASSYER setup. Existing data were verified and knowledge of state properties was extended towards higher spins. (orig.)

  17. Studies of Stable Octupole Deformations in the Radium Region

    CERN Multimedia

    2002-01-01

    The purpose of the present project is to locate and identify states in the atomic nuclei possessing stable pearshaped octupole deformation. Such states, formally related to the structures known in molecular physics, manifest themselves as families of parity doublets in odd nuclei.\\\\ \\\\ The best possibilities for observing stable octupole deformations are offered in the Ra-region. Both theoretical calculations and experimental indications support such expectations. Such indications are the non-observation of two-phonon octupole vibrational states in the ISOLDE studies of the even-even radium nuclei, and the reversed sign of the decoupling factor of the ground state band in |2|2|5Ra observed in the single-neutron transfer reactions. In order to establish the predicted strong E1 and E3-transitions between the parity doublets in odd nuclei with stable octupole deformations it is proposed to study conversion electrons in odd-mass francium radium and radon isotopes following the @b-decay of francium and astatine. \\...

  18. Magnetic fields in Local Group dwarf irregulars

    CERN Document Server

    Chyzy, Krzysztof T; Beck, Rainer; Bomans, Dominik J

    2011-01-01

    We clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and what is the role of dwarf galaxies in the magnetization of the Universe. We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100m Effelsberg telescope at 2.64 and 4.85GHz. Magnetic fields in LG dwarfs are three times weaker than in the normal spirals (6muG) are observed only in dwarfs of extreme characteristics while typical LG dwarfs are not suitable objects for efficient supply of magnetic fields to the intergalactic medium.

  19. Particle Transport in Therapeutic Magnetic Fields

    Science.gov (United States)

    Puri, Ishwar K.; Ganguly, Ranjan

    2014-01-01

    Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

  20. Instability of strong magnetic field and neutrino magnetic dipole moment

    CERN Document Server

    Lee, Hyun Kyu

    2016-01-01

    Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the "standard model...

  1. Computation of magnetic fields in hysteretic media

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A.; Mayergoyz, I.D.; Gomez, R.D.; Burke, E.R. (Univ. of Maryland, College Park, MD (United States))

    1993-11-01

    A newly developed vector Preisach-type model of hysteresis is applied to the computation of static magnetic fields in media with hysteresis. Time stepping technique is used to trace the time evolution of local magnetic fields which form the history of magnetizing process. At each time step, the magnetostatic problem is formulated in terms of an integral equation and an efficient iterative algorithm is employed for solving this problem. The technique has been used to simulate some magnetic recording processes. Sample results of these simulations are given in the paper.

  2. Alignment of magnetic uniaxial particles in a magnetic field: Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Golovnia, O.A., E-mail: golovnya@imp.uran.ru [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Popov, A.G [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Sobolev, A.N. [South Ural State University (National Research University), av. Lenina, 76, 454080 Chelyabinsk (Russian Federation); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)

    2014-09-01

    The numerical investigations of the process of alignment of magnetically uniaxial Nd–Fe–B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient. - Highlights: • We simulate the magnetic alignment of ensemble of Nd–Fe–B spherical uniaxial particles. • Anisotropic particles as a combination of spherical particles are constructed. • Influence of the particle shape anisotropy and friction on the alignment is analyzed. • We compare calculated and experimental data on field dependence of magnetic alignment. • The results render the experimental dependence.

  3. Quark matter under strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Peres Menezes, Debora [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Laercio Lopes, Luiz [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Campus VIII, Centro Federal de Educacao Tecnologica de Minas Gerais, Varginha, MG (Brazil)

    2016-02-15

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  4. Magnetic field induced optical vortex beam rotation

    CERN Document Server

    Shi, Shuai; Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen

    2015-01-01

    Light with orbital angular momentum (OAM) has drawn a great deal of attention for its important applications in the fields of precise optical measurements and high capacity optical communications. Here we adopt a method to study the rotation of a light beam, which is based on magnetic field induced circular birefringence in warm 87Rb atomic vapor. The dependence of the rotation angle to the intensity of the magnetic field makes it appropriate for weak magnetic field measurement. We derive a detail theoretical description that is in well agreement with the experimental observations. The experiment shows here provides a new method for precise measurement of magnetic field intensity and expands the application of OAM-carrying light.

  5. Magnetic field in the primitive solar nebula

    Science.gov (United States)

    Levy, E. H.

    1978-01-01

    Carbonaceous chondrites have apparently been magnetized in their early history in magnetic fields with intensities of 0.1 to 10 G, but the origin of the magnetizing field has remained obscured. It is suggested that the magnetic field recorded in the remanence of carbonaceous chondrites may have been produced by a self-excited hydromagnetic dynamo in the gaseous preplanetary nebula from which the solar system is thought to have formed. Recently computed models for the evolution of the preplanetary nebula, consisting of turbulent and differentially rotating gaseous disks with characteristic radial scales of several AU, are used to demonstrate the feasibility of this hypothesis. The maximum field intensity that might be realized by the dynamo production process is estimated to be as high as 1 to 10 G, taking into account two dynamical mechanisms that limit the strength of the field (the Coriolis force and ambipolar diffusion).

  6. Hyperon Stars in Strong Magnetic Fields

    CERN Document Server

    Gomes, R O; Vasconcellos, C A Z

    2013-01-01

    We investigate the effects of strong magnetic fields on the properties of hyperon stars. The matter is described by a hadronic model with parametric coupling. The matter is considered to be at zero temperature, charge neutral, beta-equilibrated, containing the baryonic octet, electrons and muons. The charged particles have their orbital motions Landau-quantized in the presence of strong magnetic fields (SMF). Two parametrisations of a chemical potential dependent static magnetic field are considered, reaching $1-2 \\times 10^{18}\\,G$ in the center of the star. Finally, the Tolman-Oppenheimer-Volkov (TOV) equations are solved to obtain the mass-radius relation and population of the stars.

  7. Dissipative charged fluid in a magnetic field

    Directory of Open Access Journals (Sweden)

    Navid Abbasi

    2016-05-01

    Full Text Available We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  8. Magnetic fields from second-order interactions

    CERN Document Server

    Osano, Bob

    2014-01-01

    It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-free approach, but could be done in the standard covariant indexed-approach.

  9. Quantum Electrodynamics in a Uniform Magnetic Field

    CERN Document Server

    Suzuki, J

    2005-01-01

    A systematic formalism for quantum electrodynamics in a classical uniform magnetic field is discussed. The first order radiative correction to the ground state energy of an electron is calculated. This then leads to the anomalous magnetic moment of an electron without divergent integrals. Thorough analyses of this problem are given for the weak magnetic field limit. A new expression for the radiative correction to the ground state energy is obtained. This contains only one integral with an additional summation with respect to each Landau level. The importance of this formalism is also addressed in order to deal with quantum electrodynamics in an intense external field.

  10. Magnetic fields from second-order interactions

    OpenAIRE

    Osano, Bob

    2014-01-01

    It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-fre...

  11. Magnetic field evolution of accreting neutron stars

    CERN Document Server

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  12. Magnetic Field Control of Combustion Dynamics

    Science.gov (United States)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  13. Magnetic field considerations in fusion power plant environs

    Energy Technology Data Exchange (ETDEWEB)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions.

  14. Reversals of the Earth's Magnetic Field

    Science.gov (United States)

    Champion, Duene E.

    J.A. Jacobs of Cambridge University has written a concise, authoritative, and up-todate text on reversals of the earth's magnetic field. Chapter 1 is a concise summary of the basic attributes of the geomagnetic field and its behavior in different time frames. It explains spherical harmonic analysis of the field and presents the history of acquisition of the data that best represent the recent field. Lastly, it includes a short summary of the origin and electrodynamics of the magnetic field, outlining the current theoretical basis for its generation.

  15. Dispersion of Magnetic Fields in Molecular Clouds

    CERN Document Server

    Hildebrand, Roger H; Dotson, Jessie L; Houde, Martin; Vaillancourt, John E

    2008-01-01

    We describe a method for determining the dispersion of magnetic field vectors about local mean fields in turbulent molecular clouds. The method is designed to avoid inaccurate estimates of MHD or turbulent dispersion - and hence to avoid inaccurate estimates of field strengths - due to large-scale, non-turbulent field structure when using the well-known method of Chandrasekhar and Fermi. Our method also provides accurate, independent estimates of the turbulent to mean magnetic field strength ratio. We discuss applications to the molecular clouds Orion, M17, and DR21.

  16. Magnetic fields in early protostellar disk formation

    CERN Document Server

    González-Casanova, Diego F; Lazarian, Alexander

    2016-01-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...

  17. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, VI; Sarycheva, L I; Klyukhin, V I; Ball, A; Gaddi, A; Amapane, N; Gerwig, H; Andreev, V; Cure, B; Mulders, M; Loveless, R; Karimaki, V; Popescu, S; Herve, A

    2010-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  18. Intergalactic Magnetic Fields from Quasar Outflows

    CERN Document Server

    Furlanetto, S; Furlanetto, Steven; Loeb, Abraham

    2001-01-01

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-al...

  19. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  20. Compact Electric- And Magnetic-Field Sensor

    Science.gov (United States)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  1. Studies of Solar Vector Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Jingxiu

    2011-01-01

    In this article, we report a few advances in the studies based on the solar vector magnetic field observations which were carried out mainly with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station in the 1990s. (1) We developed necessary methodology and concepts in vector magnetogram analysis (Wang et al. 1996). For the first time, we proposed to use the photospheric free magnetic energy to quantify the major flare productivity of solar active regions (ARs), and it had been proved to be the best parameter in representing the major flare activity. (2) We revealed that there was always a dominant sense of magnetic shear in a given AR (Wang 1994), which was taken as the premise of the helicity calculation in ARs; we made the first quantitative estimation of magnetic helicity evolution in ARs (Wang 1996). (3) We identified the first group of evidence of magnetic reconnection in the lower solar atmosphere with vector magnetic field observations and proposed a two-step reconnection flare model to interpret the observed association of flux cancellation and flares (Wang and Shi 1993). Efforts to quantify the major flare productivity of super active regions with vector magnetic field observations have been also taken.

  2. The magnetic field of zeta Orionis A

    CERN Document Server

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  3. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...

  4. A Holographic Bound on Cosmic Magnetic Fields

    CERN Document Server

    McInnes, Brett

    2015-01-01

    Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description. We show that holography imposes an upper bound on the intensity of magnetic fields (scaled by the squared temperature) in these circumstances, and that the values expected in some models of cosmic magnetism come close to attaining that bound.

  5. Construction of high magnetic field facilities approved

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On 25 January, the National Development and Reform Commission gave the green light to a proposal to construct high magnetic field facilities for experimental use. The suggestion was jointly submitted by the Ministry of Education and CAS.

  6. The Magnetic Field of Helmholtz Coils

    Science.gov (United States)

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  7. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    CHEN PengFei

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  8. Magnetic Fields in Limb Solar Flares

    Science.gov (United States)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  9. Zero modes in finite range magnetic fields

    CERN Document Server

    Adam, C; Nash, C

    2000-01-01

    We find a class of Fermion zero modes of Abelian Dirac operators in three dimensional Euclidean space where the gauge potentials and the related magnetic fields are nonzero only in a finite space region.

  10. Local Magnetic Field Role in Star Formation

    CERN Document Server

    Koch, Patrick M; Ho, Paul T P; Zhang, Qizhou; Girart, Josep M; Chen, Huei-Ru V; Lai, Shih-Ping; Li, Hua-bai; Li, Zhi-Yun; Liu, Hau-Yu B; Padovani, Marco; Qiu, Keping; Rao, Ramprasad; Yen, Hsi-Wei; Frau, Pau; Chen, How-Huan; Ching, Tao-Chung

    2015-01-01

    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.

  11. Compact muon solenoid magnet reaches full field

    CERN Multimedia

    2006-01-01

    Scientist of the U.S. Department of Energy in Fermilab and collaborators of the US/CMS project announced that the world's largest superconducting solenoid magnet has reached full field in tests at CERN. (1 apge)

  12. Revisiting holographic superconductor with Magnetic Fields

    CERN Document Server

    Momeni, Davood

    2014-01-01

    We study the effect of the bulk magnetic field (charge) on scalar condensation using an analytical approach of matching. An AdS-magnetized black hole solution has been used as a probe solution of normal phase of a strongly coupled condensed matter system on boundary. In the zero temperature limit of the black hole and infinite temperature, we show that there exists a critical magnetic field and so, the Meissner's effect presented. We compare this analytical result with our previous variational approach. By studying the different between heat capacities of the normal and superconducting phases near the critical point, we show that this thermodynamic quantity becomes divergent as the Rutgers formula predicted. Mathematical pole of Rutgers formula gives us a maximum for magnetic field which at this value, the system backs to the normal phase. In zero temperature we investigate exact series solutions of the field equations using an appropriate boundary conditions set. We show that conformal dimension is fixed by ...

  13. A Topology for the Penumbral Magnetic Fields

    CERN Document Server

    Almeida, J Sanchez

    2009-01-01

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild...

  14. Split-Field Magnet facility upgraded

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  15. High-Field Superconducting Magnets Supporting PTOLEMY

    Science.gov (United States)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  16. Magnetic Field Amplification in Young Galaxies

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2013-01-01

    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...

  17. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    is a coil wound around a container filled with kerosene. The sensor called “fish” is towed behind the ship by a suitable low noise tow cable and is enclosed in a sealed cover. The length of the tow cable is governed by the nature of the vessel..., the magnetic sensor requires to be orientated in specific direction. In the case of marine magnetic surveys, the measurements are made in a moving sensor towed behind a ship. Since in such a situation it is difficult to keep the sensor in specific...

  18. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris

    2012-01-01

    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  19. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  20. Orbit stability in billiards in magnetic field

    CERN Document Server

    Kovács, Z

    1997-01-01

    We study the stability properties of orbits in dispersing billiards in a homogeneous magnetic field by using a modified formalism based on the Bunimovich-Sinai curvature (horocycle method). We identify simple periodic orbits that can be stabilized by the magnetic field in the four-disk model and the square-lattice Lorentz gas. The stable orbits can play a key role in determining the transport properties of these models.

  1. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  2. Biological systems in high magnetic field

    Science.gov (United States)

    Yamagishi, A.

    1990-12-01

    Diamagnetic orientation of biological systems have been investigated theoretically and experimentally. Fibrinogen, one of blood proteins, were polymerized in static high magnetic fields up to 8 T. Clotted gels composed of oriented fibrin fibers were obtained even in a field as low as 1 T. Red blood cells (RBC) show full orientation with their plane parallel to the applied field of 4 T. It is confirmed experimentally that the magnetic orientation of RBC is caused by diamagnetic anisotropy. Full orientation is also obtained with blood platelet in a field of 3 T.

  3. Magnetic Field Measurement on a Refined Kicker

    CERN Document Server

    Fan, Tai-Ching; Lin, Fu-Yuan

    2005-01-01

    To prepare for the operation of top-up mode and increase the efficiency of injection at storage ring, National Synchrotron Radiation Research Center (NSRRC) has upgraded the kicker magnets and power supply. We have built up a new magnetic field measurement system to test the kicker. This system, including a search coil and a coil loop, can map the field and take the first integral of field automatically. We also simulate the trajectory of electron beam by pulsed wire method of field measurement. We analyze the performance of the kicker system in this paper.

  4. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    Science.gov (United States)

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling.

  5. Magnetic Field Apparatus (MFA) Hardware Test

    Science.gov (United States)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  6. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  7. New electric field in asymmetric magnetic reconnection.

    Science.gov (United States)

    Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

    2013-09-27

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site.

  8. Fast Reconnection of Weak Magnetic Fields

    Science.gov (United States)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  9. Growth of Czochralski silicon under magnetic field

    Institute of Scientific and Technical Information of China (English)

    XU Yuesheng; LIU Caichi; WANG Haiyun; ZHANG Weilian; YANG Qingxin; LI Yangxian; REN Binyan; LIU Fugui

    2004-01-01

    Growth of Czochralski (CZ) silicon crystals under the magnetic field induced by a cusp-shaped permanent magnet of NdFeB has been investigated. It is found that the mass transport in silicon melt was controlled by its diffusion while the magnetic intensity at the edge of a crucible was over 0.15 T. In comparison with the growth of conventional CZ silicon without magnetic field, the resistivity homogeneity of the CZ silicon under the magnetic field was improved. Furthermore, the Marangoni convection which has a significant influence on the control of oxygen concentration was observed on the surface of silicon melt. It is suggested that the crystal growth mechanism in magnetic field was similar to that in micro-gravity if a critical value was reached, named the growth of equivalent micro-gravity. The relationship of the equivalent micro-gravity and the magnetic intensity was derived as g=(v0/veff)g0. Finally, the orders of the equivalent micro-gravity corresponding to two crucibles with characteristic sizes were calculated.

  10. Simulating magnetic fields in the Antennae galaxies

    CERN Document Server

    Kotarba, H; Naab, T; Johansson, P H; Dolag, K; Lesch, H

    2009-01-01

    We present self-consistent high-resolution simulations of NGC4038/4039 (the "Antennae galaxies") including star formation, supernova feedback and magnetic fields performed with the N-body/SPH code Gadget, in which hydrodynamics and magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 1 nG to 1 muG. At the time of the best match with the central region of the Antennae system the magnetic field has been amplified by compression and shear flows to an equilibrium field of approximately 10 muG, independent of the initial seed field. This simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of r...

  11. QCD thermodynamics and magnetization in nonzero magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Ezzelarab, Nada; Shalaby, Asmaa G

    2016-01-01

    In nonzero magnetic field, the magnetic properties and thermodynamics of the quantum-chromodynamic (QCD) matter is studied in the hadron resonance gas and the Polyakov linear-sigma models and compared with recent lattice calculations. Both models are fairly suited to describe the degrees of freedom in the hadronic phase. The partonic ones are only accessible by the second model. It is found that the QCD matter has paramagnetic properties, which monotonically depend on the temperature and are not affected by the hadron-quark phase-transition. Furthermore, raising the magnetic field strength increases the thermodynamic quantities, especially in the hadronic phase but reduces the critical temperature, i.e. inverse magnetic catalysis.

  12. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  13. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  14. The Magnetic Field of Solar Spicules

    CERN Document Server

    Centeno, R; Ramos, A Asensio

    2009-01-01

    Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.

  15. Magnetizing a complex plasma without a magnetic field

    CERN Document Server

    Kählert, H; Bonitz, M; Löwen, H; Greiner, F; Piel, A

    2012-01-01

    We propose and demonstrate a concept that mimics the magnetization of the heavy dust particles in a complex plasma while leaving the properties of the light species practically unaffected. It makes use of the frictional coupling between a complex plasma and the neutral gas, which allows to transfer angular momentum from a rotating gas column to a well-controlled rotation of the dust cloud. This induces a Coriolis force that acts exactly as the Lorentz force in a magnetic field. Experimental normal mode measurements for a small dust cluster with four particles show excellent agreement with theoretical predictions for a magnetized plasma.

  16. Magnetic nanoparticles for applications in oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  17. Primordial magnetic fields from the string network

    Science.gov (United States)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  18. Lightning Magnetic Field Measurements around Langmuir Laboratory

    Science.gov (United States)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

  19. Galactic magnetic fields and hierarchical galaxy formation

    CERN Document Server

    Rodrigues, Luiz Felippe S; Fletcher, Andrew; Baugh, Carlton

    2015-01-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in the cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulence magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxies populations as well as the typical strength of the large-scale magnetic field in galax...

  20. A deep dynamo generating Mercury's magnetic field.

    Science.gov (United States)

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.

  1. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  2. Nonperturbative Physics in a Magnetic Field

    CERN Document Server

    de la Incera, Vivian

    2010-01-01

    Non-Perturbative Quantum Field Theory has played an important role in the study of phenomena where a fermion condensate can appear under certain physical conditions. The familiar phenomenon of electric superconductivity, the color superconductivity of very dense quark matter, and the chiral symmetry breaking of low energy effective chiral theories are all examples of that sort. Often one is interested in the behavior of these systems in the presence of an external magnetic field. In this talk I will outline the effects of an external magnetic field on theories with either fermion-fermion or fermion-antifermion condensates.

  3. Opening the cusp. [using magnetic field topology

    Science.gov (United States)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  4. A holographic bound on cosmic magnetic fields

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2015-03-01

    Full Text Available Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark–gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description in terms of a thermal asymptotically AdS black hole. We show that holography imposes an upper bound on the intensity of magnetic fields (≈3.6×1018gauss at the hadronization temperature in these circumstances; this is above, but not far above, the values expected in some models of cosmic magnetogenesis.

  5. Magnetohydrodynamic experiments on cosmic magnetic fields

    CERN Document Server

    Stefani, Frank; Gerbeth, Gunter

    2008-01-01

    It is widely known that cosmic magnetic fields, including the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamica...

  6. Magnetic fields during high redshift structure formation

    CERN Document Server

    Schleicher, Dominik R G; Schober, Jennifer; Schmidt, Wolfram; Bovino, Stefano; Federrath, Christoph; Niemeyer, Jens; Banerjee, Robi; Klessen, Ralf S

    2012-01-01

    We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with \\sim10^7 M_solar, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of \\sim10^{-5} G can be expected at number densities of \\sim5 cm^{-3}.

  7. Measuring vector magnetic fields in solar prominences

    CERN Document Server

    Suárez, D Orozco; Bueno, J Trujillo

    2012-01-01

    We present spectropolarimetric observations in the He I 1083.0 nm multiplet of a quiescent, hedgerow solar prominence. The data were taken with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope at the Observatorio del Teide (Tenerife; Canary Islands; Spain). The observed He I circular and linear polarization signals are dominated by the Zeeman effect and by atomic level polarization and the Hanle effect, respectively. These observables are sensitive to the strength and orientation of the magnetic field vector at each spatial point of the field of view. We determine the magnetic field vector of the prominence by applying the HAZEL inversion code to the observed Stokes profiles. We briefly discuss the retrieved magnetic field vector configuration.

  8. Inference of magnetic fields in inhomogeneous prominences

    CERN Document Server

    Milic, Ivan; Atanackovic, Olga

    2016-01-01

    Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D...

  9. Octupole strength in the neutron-rich calcium isotopes

    CERN Document Server

    Riley, L A; Agiorgousis, M L; Baugher, T R; Bazin, D; Bowry, M; Cottle, P D; DeVone, F G; Gade, A; Glowacki, M T; Gregory, S D; Haldeman, E B; Kemper, K W; Lunderberg, E; Noji, S; Recchia, F; Sadler, B V; Scott, M; Weisshaar, D; Zegers, R G T

    2016-01-01

    Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $\\gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $\\gamma$-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.

  10. String field theory solution corresponding to constant background magnetic field

    CERN Document Server

    Ishibashi, Nobuyuki; Takahashi, Tomohiko

    2016-01-01

    Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.

  11. Vector magnetic field in solar polar region

    Institute of Scientific and Technical Information of China (English)

    邓元勇; 汪景秀; 艾国祥

    1999-01-01

    By means of ’deep integration’ observations of a videomagnetograph the vector magnetic field was first systematically measured near the solar south polar region on April 12, 1997 when the Sun was in the minimal phase between the 22nd and 23rd solar cycle. It was found that the polar magnetic field deviated from the normal of solar surface by about 42.2°±3.2°, a stronger magnetic element may have smaller inclination, and that within the polar cap above heliolatitude of 50°, the unsigned and net flux densities were 7.8×10-4 T and -3.4×10-4 T, respectively, and consequently, the unsigned and net fluxes were about 5.5×1022 and -2.5×1022 Mx. The net magnetic flux, which belongs to the large-scale global magnetic field of the Sun, roughly approaches the order of the interplanetary magnetic field (IMF) measured at distance of 1 AU.

  12. Magnetic fields of young solar twins

    CERN Document Server

    Rosén, L; Hackman, T; Lehtinen, J

    2016-01-01

    The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and, the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100Myr to 250Myr while there is no significant age dependence of the mean magnetic field str...

  13. Studies of electric dipole moments in the octupole collective regions of heavy Radiums and Bariums

    CERN Multimedia

    Hoff, P; Kaczarowski, R

    2002-01-01

    %IS386 %title\\ \\It is proposed to study the electric dipole moments in the regions of octupole collective Ra-Th and Ba-Ce nuclei by means of Advanced Time-Delayed (ATD) $\\beta\\gamma\\gamma(t)$ method with a primary goal to provide new and critical data on the properties of E1 moments. The proposal focuses on the nuclei of $^{225,226,229}$Ra, $^{229,233}$Th and $^{149,150}$Ba.\\ \\The ATD $\\beta\\gamma\\gamma$(t) method was first tested at ISOLDE as part of the IS322 study of Fr-Ra nuclei at the limits of octupole deformation region. The results have greatly increased the knowledge of electric dipole moments in the region and demonstrated that new and unique research capabilities in this field are now available at ISOLDE. Based on the experience and new systematics, we propose a specialized study with the aim to determine the missing key aspects of the E1 moment systematics. We propose : \\begin{enumerate}[a)] \\item to measure the lifetimes of the 1$_{1}^{-}$ and 3$_{1}^{-}$ states in $^{226}$Ra with $\\sim$15\\% prec...

  14. Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach

    CERN Document Server

    Espinosa, Olivier R; Lepe, S; Méndez, F

    2001-01-01

    The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.

  15. Magnetic fields in Local Group dwarf irregulars

    Science.gov (United States)

    Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.

    2011-05-01

    Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization distances are expected for primordial dwarf galaxies. We also predict that most star-forming local dwarfs might have magnetized their surroundings up to a field strength about 0.1 μG within about a 5 kpc distance. Conclusions: Strong magnetic

  16. Near-zero-field nuclear magnetic resonance

    CERN Document Server

    Ledbetter, Micah; Blanchard, John; Ring, Hattie; Ganssle, Paul; Appelt, Stephan; Bluemich, Bernhard; Pines, Alex; Budker, Dmitry

    2011-01-01

    We investigate nuclear magnetic resonance (NMR) in near-zero-field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J-coupling). This is in stark contrast to the high field case, where heteronuclear J-couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with non-trivial spectra.

  17. Near-zero-field nuclear magnetic resonance.

    Science.gov (United States)

    Ledbetter, M P; Theis, T; Blanchard, J W; Ring, H; Ganssle, P; Appelt, S; Blümich, B; Pines, A; Budker, D

    2011-09-02

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  18. Effects of static magnetic fields on plants.

    Science.gov (United States)

    Kuznetsov, O.

    In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that intracellular magnetophoresis of

  19. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  20. Inference of magnetic fields in inhomogeneous prominences

    Science.gov (United States)

    Milić, I.; Faurobert, M.; Atanacković, O.

    2017-01-01

    Context. Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. Aims: We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. Methods: We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D slab model. Results: We find that differences between input and the inferred magnetic field vector are non-negligible. Namely, we almost universally find that the inferred field is weaker and more horizontal than the input field. Conclusions: Spatial inhomogeneities and radiative transfer have a strong effect on scattering line polarization in the optically thick lines. In real-life situations, ignoring these effects could lead to a serious misinterpretation of spectropolarimetric observations of chromospheric objects such as prominences.

  1. Dissipation function in a magnetic field (Review)

    Science.gov (United States)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  2. Magnetic Field Strengths in Photodissociation Regions

    CERN Document Server

    Balser, Dana S; Jeyakumar, S; Bania, T M; Montet, Benjamin T; Shitanishi, J A

    2015-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four HII regions with the Green Bank Telescope (GBT) to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi (2007) suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic (MHD) waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 micro Gauss in W3 and NGC6334A. Our results for W49 and NGC6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 micro Gauss. HI and OH Zeeman measurements of the line-of-sight magnetic field strength (B_los), taken from the literature, are between a facto...

  3. Magnetic field effect on spoke behaviour

    Science.gov (United States)

    Hnilica, Jaroslav; Slapanska, Marta; Klein, Peter; Vasina, Petr

    2016-09-01

    The investigations of the non-reactive high power impulse magnetron sputtering (HiPIMS) discharge using high-speed camera imaging, optical emission spectroscopy and electrical probes showed that plasma is not homogeneously distributed over the target surface, but it is concentrated in regions of higher local plasma density called spokes rotating above the erosion racetrack. Magnetic field effect on spoke behaviour was studied by high-speed camera imaging in HiPIMS discharge using 3 inch titanium target. An employed camera enabled us to record two successive images in the same pulse with time delay of 3 μs between them, which allowed us to determine the number of spokes, spoke rotation velocity and spoke rotation frequency. The experimental conditions covered pressure range from 0.15 to 5 Pa, discharge current up to 350 A and magnetic fields of 37, 72 and 91 mT. Increase of the magnetic field influenced the number of spokes observed at the same pressure and at the same discharge current. Moreover, the investigation revealed different characteristic spoke shapes depending on the magnetic field strength - both diffusive and triangular shapes were observed for the same target material. The spoke rotation velocity was independent on the magnetic field strength. This research has been financially supported by the Czech Science Foundation in frame of the project 15-00863S.

  4. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  5. Cosmic Magnetic Fields: Observations and Prospects

    CERN Document Server

    Beck, Rainer

    2011-01-01

    Synchrotron emission, its polarization and its Faraday rotation at radio frequencies of 0.2-10 GHz are powerful tools to study the strength and structure of cosmic magnetic fields. The observational results are reviewed for spiral, barred and flocculent galaxies, the Milky Way, halos and relics of galaxy clusters, and for the intergalactic medium. Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of cosmic magnetic fields and will help to understand their origin. At low frequencies, LOFAR (10-250 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies and galaxy clusters. Polarization at higher frequencies (1-10 GHz), as observed with the EVLA, ASKAP, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of nearby galaxies in unprecedented detail. Surveys of Faraday rotation measures of pulsars will map the Milky Way's magnetic field with high precision. All-sky sur...

  6. Magnetic Fields and Massive Star Formation

    CERN Document Server

    Zhang, Qizhou; Girart, Josep M; Hauyu,; Liu,; Tang, Ya-Wen; Koch, Patrick M; Li, Zhi-Yun; Keto, Eric; Ho, Paul T P; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juarez, Carmen

    2014-01-01

    Massive stars ($M > 8$ \\msun) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 $\\mu$m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of $\\lsim$ 0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within $40^\\circ$ of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the ...

  7. Magnetic fields of the outer planets

    Science.gov (United States)

    Connerney, J. E. P.

    1993-01-01

    It is difficult to imagine a group of planetary dynamos more diverse than those visited by the Pioneer and Voyager spacecraft. The magnetic field of Jupiter is large in magnitude and has a dipole axis within 10 deg of its rotation axis, comfortably consistent with the paleomagnetic history of the geodynamo. Saturn's remarkable (zonal harmonic) magnetic field has an axis of symmetry that is indistinguishable from its rotation axis (mush less than 1 deg angular separation); it is also highly antisymmetric with respect to the equator plane. According to one hypothesis, the spin symmetry may arise from the differential rotation of an electrically conducting and stably stratified layer above the dynamo. The magnetic fields of Uranus and Neptune are very much alike, and equally unlike those of the other known magnetized planets. These two planets are characterized by a large dipole tilts (59 deg and 47 deg, respectively) and quadrupole moments (Schmidt-normalized quadrupole/dipole ratio approximately equal 1.0). These properties may be characteristic of dynamo generation in the relatively poorly conducting 'ice' interiors of Uranus and Neptune. Characteristics of these planetary magnetic fields are illustrated using contour maps of the field on the planet's surface and discussed in the context of planetary interiors and dynamo generation.

  8. Cosmological Magnetic Fields from Primordial Helical Seeds

    CERN Document Server

    Sigl, G

    2002-01-01

    Most early Universe scenarios predict negligible magnetic fields on cosmological scales if they are unprocessed during subsequent expansion of the Universe. We present a new numerical treatment of the evolution of primordial fields and apply it to weakly helical seeds as they occur in certain early Universe scenarios. We find that initial helicities not much larger than the baryon to photon number can lead to fields of about 10^{-13} Gauss with coherence scales slightly below a kilo-parsec today.

  9. Whistler modes with wave magnetic fields exceeding the ambient field.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  10. Octupole correlations in the odd-[ital Z] nuclei [sup 148-151]Eu

    Energy Technology Data Exchange (ETDEWEB)

    Jongman, J.R.; Bacelar, J.C.S.; Urban, W.; Noorman, R.F.; van Pol, J.; Steenbergen, T.; de Voigt, M.J.A. (Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)); Nyberg, J.; Sletten, G. (Neils Bohr Institute, Riso, 4000 Roskilde (Denmark)); Dionisio, J.; Vieu, C. (Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, 91405 Orsay (France))

    1994-12-01

    The effects of octupole correlations in the [ital Z]=63 nuclei [sup 148[minus]151]Eu are studied. The persistency of octupole instability through the transitional region of near-spherical ([ital N][le]85) towards prolate nuclei ([ital N][ge]88) is established and discussed. Intrinsic dipole moments, which are experimentally inferred from the measured electric dipole transition rates observed between parity doublets, are used to characterize the strength of the octupole correlations.

  11. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  12. High-field magnetization in transuranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, K. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan) and KYOKUGEN, Osaka University, Osaka 560-8531 (Japan)]. E-mail: sugiyama@phys.sci.osaka-u.ac.jp; Nakashima, H. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Aoki, D. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Ikeda, S. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Y. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Yamamoto, E. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Nakamura, A. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Homma, Y. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Kindo, K. [Institite of Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan); Hagiwara, M. [KYOKUGEN, Osaka University, Osaka 560-8531 (Japan); Onuki, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan)

    2007-03-15

    We measured the high-field magnetization up to 55T and constructed a magnetic phase diagram for a transuranium antiferromagnet NpRhGa{sub 5} with the tetragonal structure. The magnetization at 4.2K for H(parallel) [100] indicates a sharp metamagnetic transition with a step at H{sub c}=26T and saturates above H{sub s}=38T, reaching 0.43{mu}{sub B}/Np. An ordered moment of 0.96{mu}{sub B}/Np at zero field, which was determined from the neutron scattering experiment, is found to be reduced to 0.43{mu}{sub B}/Np at H{sub s}, together with an orientation of the magnetic moment from the (001) plane to the (100) plane.

  13. Sintering of Soft Magnetic Material under Microwave Magnetic Field

    Directory of Open Access Journals (Sweden)

    Sadatsugu Takayama

    2012-01-01

    Full Text Available We have developed a simple process for sintering of soft magnetization materials using microwave sintering. The saturated magnetization (Ms of sintered magnetite was 85.6 emu/g, which was as high as 95% of magnetite before heating (90.4 emu/g. On the other hand, the averaged remanence (Mr and coercivity (Hc of the magnetite after heating were 0.17 emu/g and 1.12 Oe under measuring limit of SQUID, respectively. For the sintering process of soft magnetic materials, magnetic fields of microwave have been performed in nitrogen atmosphere. Therefore, a microwave single-mode system operating at a frequency of 2.45 GHz and with a maximum power level of 1.5 kW was used. We can sinter the good soft magnetic material in microwave magnetic field. The sample shrank to 82% theoretical density (TD from 45%TD of green body. The sintered sample was observed the microstructure by TEM and the crystal size was estimated the approximate average size is 10 nm.

  14. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  15. MAGNETIC FIELDS IN EARLY PROTOSTELLAR DISK FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    González-Casanova, Diego F.; Lazarian, Alexander [Astronomy Department, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706-1582 (United States); Santos-Lima, Reinaldo, E-mail: casanova@astro.wisc.edu [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, São Paulo, SP 05508-090 (Brazil)

    2016-03-10

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian and Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M{sub ⊙} protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  16. Magnetic Field and Force Calculations for ATLAS Asymmetrical Structure

    CERN Document Server

    Nessi, Marzio

    2001-01-01

    Magnetic field distortion in the assymetrical ATLAS structure are calculated. Magnetic forces in the system are estimated. 3D magnetic field simulation by the Opera3D code for symmetrical and asymmetrical systems is used.

  17. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  18. The Superconducting Magnets of the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; /Brookhaven; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  19. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    Science.gov (United States)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  20. Magnetic translation algebra with or without magnetic field

    Science.gov (United States)

    Mudry, Christopher; Chamon, Claudio

    2013-03-01

    The magnetic translation algebra plays an important role in the quantum Hall effect. Murthy and Shankar have shown how to realize this algebra using fermionic bilinears defined on a two-dimensional square lattice. We show that, in any dimension d, it is always possible to close the magnetic translation algebra using fermionic bilinears, be it in the continuum or on the lattice. We also show that these generators are complete in even, but not odd, dimensions, in the sense that any fermionic Hamiltonian in even dimensions that conserves particle number can be represented in terms of the generators of this algebra, whether or not time-reversal symmetry is broken. As an example, we reproduce the f-sum rule of interacting electrons at vanishing magnetic field using this representation. We also show that interactions can significantly change the bare band width of lattice Hamiltonians when represented in terms of the generators of the magnetic translation algebra.

  1. Magnetic resonance signal moment determination using the Earth's magnetic field

    Science.gov (United States)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  2. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  3. Magnetic fields in early-type stars

    CERN Document Server

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  4. Reflection Asymmetric Shell Model for the Description of Octupole Rotational Bands

    Institute of Scientific and Technical Information of China (English)

    GAO Zao-Chun; CHEN Yong-Shou

    2001-01-01

    The reflection asymmetric shell model has been formulated to describe the high spin states of octupole-deformed nuclei. The long-range separable forces of quadrupole, octupole and hexadecapole, as well as monopole and quadrupole pairing, are included in the Hamiltonian. The bases, on which the Hamiltonian is diagonalized, are the eigenstates of angular momentum and parity obtained by projecting the octupole-deformed multi-quasiparticle states onto good angular momentum and good parity. The general features of rotational octupole bands in eveneven nuclei can be reproduced by the model and the calculated result is in good agreement with experiment.

  5. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  6. The Drift of Dust Grains Induced by Transient Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    华建军; 叶茂福; 王龙

    2003-01-01

    Our experiment shows that the dust grains, suspended on the edge of the sheath of a radio-frequency discharge, undergo a contraction when switching a vertical magnetic field on, and an expansion when switching the magnetic field off. We call this kind of magnetic field "transient magnetic field". A primary analysis is proposed for the phenomenon.

  7. Wide Aperture Multipole Magnets of Separator COMBAS

    CERN Document Server

    Artukh, A G; Gridnev, G F; Gruszecki, M; Koscielniak, F; Semchenkova, O V; Sereda, Yu M; Shchepunov, V A; Szmider, J; Teterev, Yu G; Severgin, Yu P; Rozhdestvensky, B V; Myasnikov, Yu A; Shilkin, N F; Lamzin, E A; Nagaenko, M G; Sytchevsky, S E; Vishnevski, I N

    2000-01-01

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Its magneto-optical structure is based on strong focusing principle. The magnetic fields of analysing magnets M_1, M_2, M_7, M_8, contain quadrupole components of alternating sign that provide necessary beam focusing. Besides, all the magnets M_1-M_8, contain sextupole and octupole field components, which minimizes the 2nd and 3rd order aberrations. All this allowed one to increase their apertures, to effectively form a beam of the required sizes, and to decrease the channel length. This implementation of wide aperture magnets with combined functions is unique for the separation technology. Three-components magnetic measurements of all the magnets were performed. The measured data allow reconstructing the 3D-distributions of the fields in all the magnets. 3D-maps are supposed to be used for particle trajectory simulations throughout the entire separator.

  8. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; Gonzalez, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We...... also give new measurements of the eclipsing system ARAur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS...

  9. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George

    2012-01-01

    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  10. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  11. CMB anisotropies from primordial inhomogeneous magnetic fields

    CERN Document Server

    Lewis, A

    2004-01-01

    Primordial inhomogeneous magnetic fields of the right strength can leave a signature on the CMB temperature anisotropy and polarization. Potentially observable contributions to polarization B-modes are generated by vorticity and gravitational waves sourced by the magnetic anisotropic stress. We compute the corresponding CMB transfer functions in detail including the effect of neutrinos. The shear rapidly causes the neutrino anisotropic stress to cancel the stress from the magnetic field, suppressing the production of gravitational waves and vorticity on super-horizon scales after neutrino decoupling. A significant large scale signal from tensor modes can only be produced before neutrino decoupling, and the actual amplitude is somewhat uncertain. Plausible values suggest primordial nearly scale invariant fields of ~ 10^(-10)G today may be observable from their large scale tensor anisotropy. They can be distinguished from primordial gravitational waves by their non-Gaussianity. Vector mode vorticity sources B-m...

  12. Holographic fermions in external magnetic fields

    CERN Document Server

    Gubankova, E; Cubrovic, M; Schalm, K; Schijven, P; Zaanen, J

    2011-01-01

    We study the Fermi level structure of 2+1-dimensional strongly interacting electron systems in external magnetic field using the AdS/CFT correspondence. The gravity dual of a finite density fermion system is a Dirac field in the background of the dyonic AdS-Reissner-Nordstrom black hole. In the probe limit the magnetic system can be reduced to the non-magnetic one, with Landau-quantized momenta and rescaled thermodynamical variables. We find that at strong enough magnetic fields, the Fermi surface vanishes and the quasiparticle is lost either through a crossover to conformal regime or through a phase transition to an unstable Fermi surface. In the latter case, the vanishing Fermi velocity at the critical magnetic field triggers the non-Fermi liquid regime with unstable quasiparticles and a change in transport properties of the system. We associate it with a metal-"strange metal" phase transition. Next we compute compute the DC Hall and longitudinal conductivities using the gravity-dressed fermion propagators....

  13. Magnetic field homogeneity for neutron EDM experiment

    Science.gov (United States)

    Anderson, Melissa

    2016-09-01

    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  14. Manifestations of the Galactic Center Magnetic Field

    CERN Document Server

    Morris, Mark R

    2014-01-01

    Several independent lines of evidence reveal that a relatively strong and highly ordered magnetic field is present throughout the Galaxy's central molecular zone (CMZ). The field within dense clouds of the central molecular zone is predominantly parallel to the Galactic plane, probably as a result of the strong tidal shear in that region. A second magnetic field system is present outside of clouds, manifested primarily by a population of vertical, synchrotron-emitting filamentary features aligned with the field. Whether or not the strong vertical field is uniform throughout the CMZ remains undetermined, but is a key central issue for the overall energetics and the impact of the field on the Galactic center arena. The interactions between the two field systems are considered, as they are likely to drive some of the activity within the CMZ. As a proxy for other gas-rich galaxies in the local group and beyond, the Galactic center region reveals that magnetic fields are likely to be an important diagnostic, if no...

  15. Building Magnetic Fields in White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  16. Evolution of Primordial Magnetic Fields: From Generation Till Today

    CERN Document Server

    Kahniashvili, Tina; Tevzadze, Alexander G

    2015-01-01

    In this presentation we summarize our previous results concerning the evolution of primordial magnetic fields with and without helicity during the expansion of the Universe. We address different magnetogenesis scenarios such as inflation, electroweak and QCD phase transitions magnetogenesis. A high Reynolds number in the early Universe ensures strong coupling between magnetic field and fluid motions. After generation the subsequent dynamics of the magnetic field is governed by decaying hydromagnetic turbulence. We claim that primordial magnetic fields can be considered as a seeds for observed magnetic fields in galaxies and clusters. Magnetic field strength bounds obtained in our analysis are consistent with the upper and lower limits of extragalactic magnetic fields.

  17. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  18. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....

  19. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  20. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  1. Synchronization of magnetic dipole rotation in an ac magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, M; Cebers, A, E-mail: aceb@tesla.sal.lv [University of Latvia, Zellu-8, Riga, LV-1002 (Latvia)

    2011-07-22

    The synchronization of the rotation of magnetic dipoles due to weak dipolar interactions is studied. The set of equations is analyzed by the time averaging technique. It is found that dipoles synchronously oscillate at low applied fields and rotate synchronously at large applied fields. The mean angular velocity of synchronous rotation increases with the field strength and reaches a constant value equal to the angular frequency of the field above the critical value of the field strength. The critical value of the field strength above which the synchronous rotation takes place can be calculated from dimensionless parameters using a model derived from first principles by others. The values thus obtained are in good agreement with the values we obtain from a numerical simulation. Thus, we may conclude that the liquid flow observed in these systems may be caused by synchronized rotations of the dipoles.

  2. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    Science.gov (United States)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  3. Spontaneous magnetic fluctuations in ultrathin magnetic films at zero field

    Science.gov (United States)

    Balk, Andrew; Unguris, John

    2014-03-01

    We use magneto optical Kerr effect (MOKE) microscopy to observe room temperature, zero field magnetic fluctuations in perpendicularly magnetized cobalt films at thicknesses near the in-plane to out-of-plane spin reorientation transition. The magnetic behavior of our films resembles that of collections of superparamagnetic particles, in that globally they exhibit zero net moment, while local areas continually undergo thermal magnetic fluctuations between saturated states of the maze-like domain structure. Unlike superparamagnetic particles, the fluctuations are not constrained by particle boundaries and thus are subject to both exchange and magnetostatic interactions. Due to this we can observe temporal and spatial correlations in the fluctuations. Furthermore, we observe that the fluctuations obey dynamics distinct from field-driven Barkhausen jumps. We also determine scaling exponents of the fluctuations, finding their areas follow a power law distribution (t =1.5), and their temporal noise power spectrum is close to 1/f (a = 1.04). Based on these observations, we discuss these films as possible candidates for exhibiting magnetic self-organized criticality.

  4. Magnetic-field-compensation optical vector magnetometer.

    Science.gov (United States)

    Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio

    2016-02-01

    A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D2 line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed.

  5. Anchoring Magnetic Field in Turbulent Molecular Clouds

    CERN Document Server

    Li, Hua-bai; Goodman, Alyssa; Hildebrand, Roger; Novak, Giles

    2009-01-01

    One of the key problems in star formation research is to determine the role of magnetic fields. Starting from the atomic inter-cloud medium (ICM) which has density nH ~ 1 per cubic cm, gas must accumulate from a volume several hundred pc across in order to form a typical molecular cloud. Star formation usually occurs in cloud cores, which have linear sizes below 1 pc and densities nH2 > 10^5 per cubic cm. With current technologies, it is hard to probe magnetic fields at scales lying between the accumulation length and the size of cloud cores, a range corresponds to many levels of turbulent eddy cascade, and many orders of magnitude of density amplification. For field directions detected from the two extremes, however, we show here that a significant correlation is found. Comparing this result with molecular cloud simulations, only the sub-Alfvenic cases result in field orientations consistent with our observations.

  6. Magnetic Field Twisting by Intergranular Downdrafts

    Science.gov (United States)

    Taroyan, Youra; Williams, Thomas

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  7. Pulsed-field magnetometry for rock magnetism

    Science.gov (United States)

    Kodama, Kazuto

    2015-07-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  8. The nucleon in a periodic magnetic field

    CERN Document Server

    Agadjanov, Andria; Rusetsky, Akaki

    2016-01-01

    The energy shift of a nucleon in a static periodic magnetic field is evaluated at second order in the external field strength in perturbation theory. It is shown that the measurement of this energy shift on the lattice allows one to determine the unknown subtraction function in the forward doubly-virtual Compton scattering amplitude. The limits of applicability of the obtained formula for the energy shift are discussed.

  9. Magnetic field influence on paramecium motility

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M.F.; Rosen, A.D. (State Univ. of New York, Stony Brook (USA))

    1990-01-01

    The influence of a moderately intense static magnetic field on movement patterns of free swimming Paramecium was studied. When exposed to fields of 0.126 T, these ciliated protozoa exhibited significant reduction in velocity as well as a disorganization of movement pattern. It is suggested that these findings may be explained on the basis of alteration in function of ion specific channels within the cell membrane.

  10. Anomaly induced effects in a magnetic field

    OpenAIRE

    Antoniadis, Ignatios; Boyarsky, Alexey; Ruchayskiy, Oleg

    2007-01-01

    We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light p...

  11. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Yuhong Fan

    2009-12-01

    Full Text Available Active regions on the solar surface are generally thought to originate from a strong toroidal magnetic field generated by a deep seated solar dynamo mechanism operating at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. Understanding this process of active region flux emergence is therefore a crucial component for the study of the solar cycle dynamo. This article reviews studies with regard to the formation and rise of active region scale magnetic flux tubes in the solar convection zone and their emergence into the solar atmosphere as active regions.

  12. Heavy meson spectroscopy under strong magnetic field

    CERN Document Server

    Yoshida, Tetsuya

    2016-01-01

    Spectra of the neutral heavy mesons, $\\eta_c(1S,2S)$, $J/psi$, $\\psi(2S)$, $\\eta_b(1S,2S,3S)$, $\\Upsilon(1S,2S,3S)$, $D$, $D^\\ast$, $B$, $B^\\ast$, $B_s$ and $B_s^\\ast$, in a homogeneous magnetic field are analyzed in a potential model of constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic field are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.

  13. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  14. Test particle transport in perturbed magnetic fields in tokamaks

    NARCIS (Netherlands)

    de Rover, M.; Schilham, A.M.R.; Montvai, A.; Cardozo, N. J. L.

    1999-01-01

    Numerical calculations of magnetic field line trajectories in a tokamak are used to investigate the common hypotheses that (i) field lines in a chaotic field make a Gaussian random walk and (ii) that the poloidal component of the magnetic field is uniform in regions with a chaotic magnetic field. Bo

  15. Gravimetric Measurement of Magnetic Field Gradient Spatial Distribution

    CERN Document Server

    Arutunian, S G; Egiazarian, S L; Mailian, M R; Sinenko, I G; Sinjavski, A V; Vasiniuk, I E

    1999-01-01

    Magnetic interaction between a weighing sample and an external magnetic field allows to measure characteristics of magnetic field (a sample with known magnetic characteristics), as well as the magnetic properties of a sample (a known magnetic field). Measurement of materials magnetic permeability is a well known application of this method. In this paper we restrict ourselves to the measurement of magnetic field spatial distribution, which was achieved by scanning of samples from known materials along the vertical axis. Field measurements by Hall detector were done to calibrate obtained data. Such measurements are of great interest in some branches of physics, in particular, in accelerator physics, where the quality of magnetic system parts eventually determine the quality of accelerated bunches. Development of a simple and cheep device for measurement of magnetic field spatial distribution is an urgent problem. The developed system for gravimetric measurement of magnetic field gradients partially solves this ...

  16. On the Physics of Primordial Magnetic Fields

    CERN Document Server

    Battaner, E

    2000-01-01

    There are at present more then 30 theories about the origin of cosmic magnetic fields at galactic and intergalactic scales. Most of them rely on concepts of elementary particle physics, like phase transitions in the early Universe, string theory and processes during the inflationary epoch. Here we present some more astrophysical arguments to provide some guidance through this large number and variety of models. Especially the fact that the evolution of magnetic fields depends on the spatial coherence scale of the fields leds to some interesting conclusions, which may rule out the majority of the theoretical scenarios. In principle one has to distinguish between the large-scale and small-scale magnetic fields. Large scale fields are defined as those as becoming sub-horizon at that redshift at which the mass energy density becomes equal to the photon energy density, which we name as equality. Small scale fields which are sub-horizon even before equality, i.e. with scales lower than (present) few Mpc cannot surv...

  17. Electro-Mechanical Resonant Magnetic Field Sensor

    CERN Document Server

    Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

    2002-01-01

    We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

  18. Primordial magnetic fields from the string network

    CERN Document Server

    Horiguchi, Kouichirou; Sugiyama, Naoshi

    2016-01-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar--, vector-- and tensor--type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as $a^2B(k,z)\\sim4\\times10^{-16}G\\mu/((1+z)/1000)^{4.25}(k/{\\rm Mpc}^{-1})^{3.5}$ Gauss on super-horizon scales, and $a^2B(k,z)\\sim2.4\\times10^{-17}G\\mu/((1+z)/1000)^{3.5}(k/{\\rm Mpc}^{-1})^{2.5}$ Gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, ...

  19. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  20. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    Science.gov (United States)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  1. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  2. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  3. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we sh......: 10.1103/PhysRevD.86.123528...

  4. Magnetic field effects on photosynthetic reactions

    NARCIS (Netherlands)

    Liu, Yan

    2008-01-01

    Although the influence of magnetic fields on the rates and product yields of a host of chemical reactions are well documented and can be understood in the framework of the Radical Pair Mechanism (RPM), it has so far proved impossible to demonstrate convincingly a biological RPM effect. In this work

  5. Manipulation of molecular structures with magnetic fields

    NARCIS (Netherlands)

    Boamfa, M.I.

    2003-01-01

    The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high magne

  6. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  7. Magnetic fields during primordial star formation

    CERN Document Server

    Schleicher, Dominik R G; Banerjee, Robi; Klessen, Ralf S; Federrath, Christoph; Arshakian, Tigran; Beck, Rainer; Spaans, Marco

    2011-01-01

    Recent FERMI observations provide a lower limit of 10^{-15} G for the magnetic field strength in the intergalactic medium (IGM). This is consistent with theoretical expectations based on the Biermann battery effect, which predicts such IGM fields already at redshifts z~10. During gravitational collapse, such magnetic fields can be amplified by compression and by turbulence, giving rise to the small-scale dynamo. On scales below the Jeans length, the eddy turnover timescale is much shorter than the free-fall timescale, so that saturation can be reached during collapse. This scenario has been tested and confirmed with magneto-hydrodynamical simulations following the collapse of a turbulent, weakly magnetized cloud. Based on a spectral analysis, we confirm that turbulence is injected on the Jeans scale. For the power spectrum of the magnetic field, we obtain the Kazantsev slope which is characteristic for the small-scale dynamo. A calculation of the critical length scales for ambipolar diffusion and Ohmic dissip...

  8. Magnetic fields of the W4 superbubble

    CERN Document Server

    Gao, X Y; Reich, P; Han, J L; Kothes, R

    2015-01-01

    Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. New sensitive radio continuum observations were made at 6 cm, 11 cm, and 21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne , we obtain the thermal electron density ne = 1.0/\\sqrt{fne} (\\pm5%) cm^-3 and the strength of the line-of-sight component of the magnetic field B// = -5.0/\\sq...

  9. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  10. Uniform Magnetic Field Between Face-to-Face HTS Bulk Magnets Combining Concave and Convex Magnetic Field Distributions

    Science.gov (United States)

    Oka, T.; Takahashi, Y.; Yaginuma, S.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Nakamura, T.

    The authors have been attempting to obtain the uniform magnetic field distribution in the space between the face-to-face HTS bulk magnets. The magnetic poles containing the HTS bulk magnets are usually characterized as non-uniform magnetic field distribution. Since the distributions show the conical or convex shapes, it is difficult to obtain the uniform magnetic field spaces even when the magnetic poles would be placed face-to-face. The authors have modified the shape of the distribution of one-side magnetic pole by attaching an iron plate on the surface, and formed the concave magnetic field distribution on the pole surface. The steep concave or convex distributions at each pole surface change to be flat with increasing distance from the pole surface. After the experimental result recording the best uniformity of 358 ppm by combining the concave and convex field distributions face-to-face, we attempted to simulate the feasible performance in this configuration. In the numerical simulation, the concave field distribution modified by attaching an imaginary spiral coil on the pole surface was coupled with the original convex field. We succeeded in obtaining the best uniformity of 30 ppm at 1.1 T in 4 x 4 mm2x-y plane at 7 mm distant from the pole surface in the gap of 30 mm. This result suggests that the concave and convex magnetic field distributions compensate the field uniformity with each other with keeping the magnetic field strength in the gap, and also suggests the novel compact NMR/MRI devices in the future.

  11. Primordial magnetic fields from self-ordering scalar fields

    CERN Document Server

    Horiguchi, Kouichirou; Sekiguchi, Toyokazu; Sugiyama, Naoshi

    2015-01-01

    A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by $B\\sim{10^{-9}}{((1+z)/10^3)^{-2.5}}({v}/{m_{\\rm pl}})^2({k}/{\\rm Mpc^{-1}})^{3.5}/{\\sqrt{N}}$ Gauss in the radiation dominated era for $k\\lesssim 1$ Mpc$^{-1}$, with $v$ being the vacuum ...

  12. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  13. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.R. E-mail: anarita@fis.ufg.br; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C. E-mail: pcmor@unb.br

    2004-05-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10{sup 17} particle/cm{sup 3} was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields.

  14. Introduction to power-frequency electric and magnetic fields.

    OpenAIRE

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conduct...

  15. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  16. Warm Magnetic Field Measurements of LARP HQ Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S; Cheng, D; Deitderich, D; Felice, H; Ferracin, P; Hafalia, R; Joseph, J; Lizarazo, J; Martchevskii, M; Nash, C; Sabbi, G L; Vu, C; Schmalzle, J; Ambrosio, G; Bossert, R; Chlachidze, G; DiMarco, J; Kashikhin, V

    2011-03-28

    The US-LHC Accelerator Research Program is developing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb{sub 3}Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b{sub 6} ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.

  17. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    Science.gov (United States)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  18. On Landau damping of dipole modes by non-linear space charge and octupoles

    CERN Document Server

    Möhl, D

    1995-01-01

    The joint effect of space-charge non-linearities and octupole lenses is important for Landau damping of coherent instabilities. The octupole strength required for stabilisation can depend strongly on the sign of the excitation current of the lenses. This note tries to extend results, previously obtained for coasting beams and rigid bunches, to more general head--tail modes.

  19. Acceleration of superparamagnetic particles with magnetic fields

    Science.gov (United States)

    Stange, R.; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations.

  20. Navigation: Bat orientation using Earth's magnetic field

    DEFF Research Database (Denmark)

    Holland, Richard A.; Thorup, Kasper; Vonhof, Maarten J.;

    2006-01-01

    Bats famously orientate at night by echolocation 1 , but this works over only a short range, and little is known about how they navigate over longer distances 2 . Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Ea...... the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark....

  1. Navigation: bat orientation using Earth's magnetic field.

    Science.gov (United States)

    Holland, Richard A; Thorup, Kasper; Vonhof, Maarten J; Cochran, William W; Wikelski, Martin

    2006-12-07

    Bats famously orientate at night by echolocation, but this works over only a short range, and little is known about how they navigate over longer distances. Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark.

  2. The energy budget of stellar magnetic fields

    Science.gov (United States)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Folsom, C. P.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Rosén, L.; Waite, I. A.

    2015-11-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5 M⊙. We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5 M⊙ having power indices of 0.72 ± 0.08 and 1.25 ± 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.

  3. The energy budget of stellar magnetic fields

    CERN Document Server

    See, V; Vidotto, A A; Donati, J -F; Folsom, C P; Saikia, S Boro; Bouvier, J; Fares, R; Gregory, S G; Hussain, G; Jeffers, S V; Marsden, S C; Morin, J; Moutou, C; Nascimento, J D do; Petit, P; Rosen, L; Waite, I A

    2015-01-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5$\\,{\\rm M}_\\odot$. We find that the energy contained in toroidal fields has a power law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5$\\,{\\rm M}_\\odot$ having power indices of 0.72$\\pm$0.08 and 1.25$\\pm$0.06 respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the ste...

  4. Topological insulator in a helicoidal magnetization field

    Science.gov (United States)

    Stagraczyński, S.; Chotorlishvili, L.; Dugaev, V. K.; Jia, C.-L.; Ernst, A.; Komnik, A.; Berakdar, J.

    2016-11-01

    A key feature of topological insulators is the robustness of the electron energy spectrum. At a surface of a topological insulator, the Dirac point is protected by the characteristic symmetry of the system. The breaking of the symmetry opens a gap in the energy spectrum. Therefore, topological insulators are very sensitive to magnetic fields, which can open a gap in the electronic spectrum. Concerning "internal" magnetic effects, for example, the situation with doped magnetic impurities, is not trivial. A single magnetic impurity is not enough to open the band gap, while in the case of a ferromagnetic chain of deposited magnetic impurities the Dirac point is lifted. However, a much more interesting case is when localized magnetic impurities form a chiral spin order. Our first principle density functional theory calculations have shown that this is the case for Fe deposited on the surface of a Bi2Se3 topological insulator. But not only magnetic impurities can form a chiral helicoidal spin texture. An alternative way is to use chiral multiferroics (prototype material is LiCu2O2 ) that induce a proximity effect. The theoretical approach we present here is valid for both cases. We observed that opposite to a ferromagnetically ordered case, a chiral spin order does not destroy the Dirac point. We also observed that the energy gap appears at the edges of the new Brillouin zone. Another interesting result concerns the spin dynamics. We derived an equation for the spin density dynamics with a spin current and relaxation terms. We have shown that the motion of the conductance electron generates a magnetic torque and exerts a certain force on the helicoidal texture.

  5. Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field.

    Science.gov (United States)

    Nakajima, M; Namai, A; Ohkoshi, S; Suemoto, T

    2010-08-16

    We report the first observation of sub-terahertz bulk-magnetization precession, using terahertz time-domain spectroscopy. The magnetization precession in gallium-substituted epsilon-iron oxide nano-ferromagnets under zero magnetic field is induced by the impulsive magnetic field of the THz wave through the gyromagnetic effect. Just at the resonance frequency, the linear to circular polarized wave conversion is realized. This is understood as the free induction decay signal radiated from a rotating magnetic dipole corresponding to the natural resonance. Furthermore, this demonstration reveals that the series of gallium-substituted epsilon-iron oxide nano-ferromagnets is very prospective for magneto-optic devices, which work at room temperature without external magnetic field, in next-generation wireless communication.

  6. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    Science.gov (United States)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  7. Magnetic field gradients and their uses in the study of the earth's magnetic field

    Science.gov (United States)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  8. Magnetic Fields in a Sample of Nearby Spiral Galaxies

    CERN Document Server

    Van Eck, Cameron; Shukurov, Anvar; Fletcher, Andrew

    2014-01-01

    Both observations and modelling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media (ISM) of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and ISM parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit noticeable degree of correlation, suggesting a universal behaviour of the degree of order in galactic magnetic fields. We also compare the p...

  9. Generation of Cosmic Magnetic Fields at Recombination

    CERN Document Server

    Hogan, C J

    2000-01-01

    It is shown that the standard cosmological model predicts ab initio generation of large-scale cosmic magnetic fields at the epoch of recombination of the primeval plasma. Matter velocities dominated by coherent flows on a scale $L\\approx 50h^{-1}(1+z)^{-1}$ Mpc lead to a dipole of radiation flux in the frame of the moving matter. Thomson scattering of the radiation differentially accelerates the electrons and ions, creating large-scale coherent electric currents and magnetic fields. This process is analyzed using magnetohydrodynamic equations which include a modification of Ohm's law describing the effect of Thomson drag on the electrons. The field strength saturates near equipartition with the baryon kinetic energy density at $B\\simeq 5\\times 10^{-5}$G. Magnetic stresses significantly damp baryonic motions at the epoch of last scattering, reducing the predicted background radiation anisotropy at small angles and changing estimates of fitted cosmological parameters. The field at late times retains its large-s...

  10. Validation of the CMS Magnetic Field Map

    CERN Document Server

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Mulders, M; Calvelli, V; Hervé, A; Loveless, R

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4-T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 three-dimensional (3-D) Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The magnetic field description is compared with the measurements and discussed.

  11. Interplanetary magnetic field ensemble at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Matthaeus, W.H.; Goldstein, M.L.; King, J.H.

    1985-04-01

    A method for calculation ensemble averages from magnetic field data is described. A data set comprising approximately 16 months of nearly continuous ISEE-3 magnetic field data is used in this study. Individual subintervals of this data, ranging from 15 hours to 15.6 days comprise the ensemble. The sole condition for including each subinterval in the averages is the degree to which it represents a weakly time-stationary process. Averages obtained by this method are appropriate for a turbulence description of the interplanetary medium. The ensemble average correlation length obtained from all subintervals is found to be 4.9 x 10 to the 11th cm. The average value of the variances of the magnetic field components are in the approximate ratio 8:9:10, where the third component is the local mean field direction. The correlation lengths and variances are found to have a systematic variation with subinterval duration, reflecting the important role of low-frequency fluctuations in the interplanetary medium.

  12. Magnetic Fields in Population III Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  13. Intergalactic magnetic fields in Stephan's Quintet

    CERN Document Server

    Nikiel-Wroczyński, B; Urbanik, M; Beck, R; Bomans, D J

    2013-01-01

    We present results of the VLA radio continuum total power and polarised intensity observations of Stephan's Quintet at 1.43 and 4.86 GHz along with complementary 4.85 and 8.35 GHz Effelsberg observations. Our study shows a large envelope of radio emission encompassing all the member galaxies and hence a large volume of intergalac- tic matter. Infall of the galaxy NGC 7318B produces a ridge of intergalactic, polarised emission, for which the magnetic field strength was estimated as 11.0 \\pm 2.2 {\\mu}G, with an ordered component of 2.6 \\pm 0.8 {\\mu}G. The energy density of the field within the ridge area is of the same order as estimates of the thermal component, implying a significant role of the magnetic field in the dynamics of the intergalactic matter. We also report that the tidal dwarf galaxy candidate SQ-B possesses a strong and highly anisotropic magnetic field with the total strength being equal to 6.5 \\pm 1.9 {\\mu}G and an ordered component reaching 3.5 \\pm 1.2 {\\mu}G, which is comparable to that foun...

  14. A topology for the penumbral magnetic fields

    CERN Document Server

    Almeida, J Sanchez

    2008-01-01

    We describe a scenario for the sunspot magnetic field topology that may account for recent observations of upflows and downflows in penumbrae. According to our conjecture, short narrow magnetic loops fill the penumbral volume. Flows along these field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario also fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild upward and downward velocities observed in p...

  15. Magnetic Fields and Galactic Star Formation Rates

    CERN Document Server

    Van Loo, Sven; Falle, Sam A E G

    2014-01-01

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of molecular clouds within a kiloparsec patch of a disk galaxy. Including an empirically motivated prescription for star formation from dense gas ($n_{\\rm{H}}>10^5\\:{\\rm{cm}^{-3}}$) at an efficiency of 2\\% per local free fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated $B$-field case of $80\\:{\\rm{\\mu}}$G. However, our chosen kpc scale region, extracted from a global galaxy simulation, happens to contain a starbu...

  16. Hanle Effect Diagnostics of the Coronal Magnetic Field - A Test Using Realistic Magnetic Field Configurations

    CERN Document Server

    Raouafi, N -E; Wiegelmann, T

    2008-01-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H {\\sc{i}} Ly$\\alpha$ and $\\beta$ lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H {\\sc{i}} Ly$\\beta$, are useful for such measurements.

  17. Magnetic field generation by intermittent convection

    CERN Document Server

    Chertovskih, R; Chimanski, E V

    2016-01-01

    Magnetic field generation by convective flows in transition to weak turbulence is studied numerically. By fixing the Prandtl number at P=0.3 and varying the Rayleigh number (Ra) as a control parameter in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid, a recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number ($P_m^c$) for dynamo action is determined as a function of Ra. A mechanism for the onset of on-off intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action are identified, and how intermittency affects the dependence of $P_m^c$ on Ra is discussed.

  18. Magnetic Field Structure from Synchrotron Polarization

    CERN Document Server

    Beck, R

    2006-01-01

    Total magnetic fields in spiral galaxies, as observed through their total synchrotron emission, are strongest (up to \\simeq 30\\mu G) in the spiral arms. The degree of radio polarization is low; the field in the arms must be mostly turbulent or tangled. Polarized synchrotron emission shows that the resolved regular fields are generally strongest in the interarm regions (up to \\simeq 15\\mu G), sometimes forming 'magnetic arms' parallel to the optical arms. The field structure is spiral in almost every galaxy, even in flocculent and bright irregular types which lack spiral arms. The observed large-scale patterns of Faraday rotation in several massive spiral galaxies reveal coherent regular fields, as predicted by dynamo models. However, in most galaxies observed so far no simple patterns of Faraday rotation could be found. Either many dynamo modes are superimposed and cannot be resolved by present-day telescopes, or most of the apparently regular field is in fact anisotropic random, with frequent reversals, due ...

  19. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2011-01-01

    to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material......A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...

  20. Application of high magnetic fields in advanced materials processing

    Institute of Scientific and Technical Information of China (English)

    MA Yanwei; XIAO Liye; YAN Luguang

    2006-01-01

    Recently, steady magnetic fields available from cryogen-free superconducting magnets open up new ways to process materials. In this paper,the main results obtained by using a high magnetic field to process several advanced materials are reviewed. These processed objects primarily include superconducting, magnetic, metallic and nanometer-scaled materials. It has been found that a high magnetic field can effectively align grains when fabricating the magnetic and non-magnetic materials and make inclusions migrate in a molten metal. The mechanism is discussed from the theoretical viewpoint of magnetization energy.

  1. Feynman's Proof and Non-Elastic Displacement Fields: Relationship Between Magnetic Field and Defects Field

    Science.gov (United States)

    Nakamura, Nozomu; Yamasaki, Kazuhito

    2016-08-01

    We consider the relationship between the magnetic field and the non-elastic displacement field including defects, from the viewpoints of non-commutativity of the positions and non-commutativity of the derivatives. The former non-commutativity is related to the magnetic field by Feynman's proof (1948), and the latter is related to the defect fields by the continuum theory of defects. We introduce the concept of differential geometry to the non-elastic displacement field and derive an extended relation that includes basic equations, such as Gauss's law for magnetism and the conservation law for dislocation density. The relation derived in this paper also extends the first Bianchi identity in linear approximation to include the effect of magnetism. These findings suggest that Feynman's approach with a non-elastic displacement field is useful for understanding the relationship between magnetism and non-elastic mechanics.

  2. Feynman's Proof and Non-Elastic Displacement Fields: Relationship Between Magnetic Field and Defects Field

    Science.gov (United States)

    Nakamura, Nozomu; Yamasaki, Kazuhito

    2016-12-01

    We consider the relationship between the magnetic field and the non-elastic displacement field including defects, from the viewpoints of non-commutativity of the positions and non-commutativity of the derivatives. The former non-commutativity is related to the magnetic field by Feynman's proof (1948), and the latter is related to the defect fields by the continuum theory of defects. We introduce the concept of differential geometry to the non-elastic displacement field and derive an extended relation that includes basic equations, such as Gauss's law for magnetism and the conservation law for dislocation density. The relation derived in this paper also extends the first Bianchi identity in linear approximation to include the effect of magnetism. These findings suggest that Feynman's approach with a non-elastic displacement field is useful for understanding the relationship between magnetism and non-elastic mechanics.

  3. Torsional oscillations of neutron stars with highly tangled magnetic fields

    CERN Document Server

    Sotani, Hajime

    2015-01-01

    To determine the frequencies of magnetic oscillations in the neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with the tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing the spectra, the critical field strength can play an important role, which is determined in such a way that the shear velocity is equi...

  4. Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software

    Institute of Scientific and Technical Information of China (English)

    Ren Liuyi; Zeng Shanglin; Zhang Yimin

    2015-01-01

    The section shape of an assembled magnetic medium is the most important structural parameter of a high gradient magnetic separator, which directly affects the induction distribution and magnetic field gradient of the magnetic separator. In this study, equilateral triangle, square, hexagonal, octagon, dode-cagon, and round shape sections of the assembled magnetic medium are chosen to study their influence on magnetic field distribution characteristics using the ANSYS analysis. This paper utilizes a single assem-bled magnetic medium to understand the relationship between the geometry of the assembled magnetic medium and its magnetic field distribution characteristics. The results show that high magnetic field, regional field, magnetic field gradient, and magnetic force formed by the different sections of the assem-bled magnetic medium in the same background magnetic field reduce in turn based on the triangle, square, hexagonal, octagon, dodecagon, and round. Based on the magnetic field characteristics analytic results, the magnetic separation tests of the ilmenite are carried out. The results indicate that the section shape of the toothed plate compared with the section shape of cylinder can improve the recovery of ilme-nite up to 45%in the same magnetizing current condition of 2 A, which is consistent with magnetic field characteristics analysis of different assembled magnetic medium section shapes.

  5. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  6. Inflating Kahler moduli and primordial magnetic fields

    Directory of Open Access Journals (Sweden)

    Luis Aparicio

    2017-05-01

    Full Text Available We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  7. Barrier Li Quantum Dots in Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    LIUYi-Min; LIXiao-Zhu; YANWen-Hong; BAOCheng-Guang

    2003-01-01

    The methods for the few-body system are introduced to investigate the states of the barrier Li quantum dots (QDs) in an arbitrary strength of magnetic field. The configuration, which consists of a positive ion located on the z-axis at a distaneed from the two-dimensional QD plane (the x-y plane) and three electrons in the dot plane bound by the positive ion, is called a barrier Li center. The system, which consists of three electrons in the dot plane bound by the ion,is called a barrier Li QD. The dependence of energy of the state of the barrier Li QD on an external magnetic field B and the distance d is obtained. The angular momentum L of the ground states is found to jump not only with the variation orB but also with d.

  8. Magnetic Field in Superlattices Semiconductors of Crystals

    Directory of Open Access Journals (Sweden)

    Luciano Nascimento

    2015-05-01

    Full Text Available In this work we present a study on the super-semiconductor networks, using the Kronig-Penney model for the effective mass approximation, and then the calculations for the application of the magnetic field perpendicular and parallel to the layers of super lattices crystals. The magnetic field applied parallel to the layers, was used to adjust the resonance of a higher energy subband of a well by thermal excitation with a lower energy subband of the adjacent well, increasing energy levels in its tunneling rate. We use the formalism of Schrödinger equation of quantum mechanics. Introducing the calculations in a systematic way in superlattices for each semiconductor quantum well to assess their energy spectrum systematically studied.

  9. Solar magnetic fields and terrestrial climate

    CERN Document Server

    Georgieva, Katya; Kirov, Boian

    2014-01-01

    Solar irradiance is considered one of the main natural factors affecting terrestrial climate, and its variations are included in most numerical models estimating the effects of natural versus anthropogenic factors for climate change. Solar wind causing geomagnetic disturbances is another solar activity agent whose role in climate change is not yet fully estimated but is a subject of intense research. For the purposes of climate modeling, it is essential to evaluate both the past and the future variations of solar irradiance and geomagnetic activity which are ultimately due to the variations of solar magnetic fields. Direct measurements of solar magnetic fields are available for a limited period, but can be reconstructed from geomagnetic activity records. Here we present a reconstruction of total solar irradiance based on geomagnetic data, and a forecast of the future irradiance and geomagnetic activity relevant for the expected climate change.

  10. Magnetic field and convection in Betelgeuse

    CERN Document Server

    Petit, P; Konstantinova-Antova, R; Morgenthaler, A; Perrin, G; Roudier, T; Donati, J -F

    2011-01-01

    We present the outcome of a highly-sensitive search for magnetic fields on the cool supergiant Betelgeuse. A time-series of six circularly-polarized spectra was obtained using the NARVAL spectropolarimeter at T\\'elescope Bernard Lyot (Pic du Midi Observatory), between 2010 March and April. Zeeman signatures were repeatedly detected in cross-correlation profiles, corresponding to a longitudinal component of about 1 G. The time-series unveils a smooth increase of the longitudinal field from 0.5 to 1.5 G, correlated with radial velocity fluctuations. We observe a strong asymmetry of Stokes V signatures, also varying in correlation with the radial velocity. The Stokes V line profiles are red-shifted by about 9 km/s with respect to the Stokes I profiles, suggesting that the observed magnetic elements may be concentrated in the sinking components of the convective flows.

  11. Inflating Kahler Moduli and Primordial Magnetic Fields

    CERN Document Server

    Aparicio, Luis

    2016-01-01

    We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual "strong coupling problem" for primordial magnetogesis manifests itself by cycle sizes approaching the string scale, this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  12. Tachocline Confinement by an Oscillatory Magnetic Field

    CERN Document Server

    Forgács-Dajka, E

    2001-01-01

    Helioseismic measurements indicate that the solar tachocline is very thin, its full thickness not exceeding 4% of the solar radius. The mechanism that inhibits differential rotation to propagate from the convective zone to deeper into the radiative zone is not known, though several propositions have been made. In this paper we demonstrate by numerical models and analytic estimates that the tachocline can be confined to its observed thickness by a poloidal magnetic field B_p of about one kilogauss, penetrating below the convective zone and oscillating with a period of 22 years, if the tachocline region is turbulent with a diffusivity of eta~10^10 cm^2/s (for a turbulent magnetic Prandtl number of unity). We also show that a similar confinement may be produced for other pairs of the parameter values (B_p, eta). The assumption of the dynamo field penetrating into the tachocline is consistent whenever eta>10^9 cm^2/s.

  13. Convective intensification of magnetic fields in the quiet Sun

    CERN Document Server

    Bushby, P J; Proctor, M R E; Weiss, N O

    2008-01-01

    Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field $B_e$, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field $B_p$ that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, ``granular'' motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than $B_e$, and the high magnetic pressur...

  14. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG TAO; HOU JUN-DA; TANG BAO-YIN; P. K. CHU; I. G. BROWN

    2001-01-01

    The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components:a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.

  15. A Magnetic Disturbance Compensation Method Based on Magnetic Dipole Magnetic Field Distributing Theory

    Institute of Scientific and Technical Information of China (English)

    YANG Yun-tao; SHI Zhi-yong; L(U) Jian-gang; GUAN Zhen-zhen

    2009-01-01

    The interference of carrier magnetic field to geomagnetic field has been a difficult problem for a long time, which influences on the deviation of navigation compass and the error of geomagnetic measurement. To increase the geomagnetic measuring accuracy required for the geomagnetic matching localization, the strategy to eliminate the effect of connatural and induced magnetic fields of carrier on the geomagnetic measuring accuracy is investigated. The magnetic-dipoles magnetic field distributing theory is used to deduce the magnetic composition in the position of the sensor installed on the carrier. A geomagnetic measurement model is established by using the measuring data with the ideal sensor. Considering the magnetic disturbance of carrier and the error of sensor, a geomagnetic measuring compensation model is built. This model can be used to compensate the errors of carrier magnetic field and magnetic sensor in any case and its parameters have clear or specific physical meaning. The experimented results show that the model has higher geomagnetic measuring accuracy than that of others.

  16. Transport in a stochastic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Wu, Yanlin [Princeton Univ., NJ (United States). Plasma Physics Lab.; Rax, J.M. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1992-09-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  17. Transport in a stochastic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Wu, Yanlin (Princeton Univ., NJ (United States). Plasma Physics Lab.); Rax, J.M. (Association Euratom-CEA, Centre d' Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee)

    1992-01-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  18. Zero-Field Nuclear Magnetic Resonance

    OpenAIRE

    Weitekamp, D.P.; Bielecki, A.; Zax, D.; Zilm, K.; Pines, A.

    1983-01-01

    In polycrystalline samples, NMR "powder spectra" are broad and much structural information is lost as a result of the orientational disorder. In this Letter Fourier-transform NMR in zero magnetic field is described. With no preferred direction in space, all crystallites contribute equivalently and resolved dipolar splittings can be interpreted directly in terms of internuclear distances. This opens the possiblity of molecular structure determination without the need for single crystals or ori...

  19. Zero-field nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Weitekamp, D.P.; Bielecki, A.; Zax, D.; Zilm, K.; Pines, A.

    1983-05-30

    In polycrystalline samples, NMR ''powder spectra'' are broad and much structural information is lost as a result of the orientational disorder. In this Letter Fourier transform NMR in zero magnetic field is described. With no preferred direction in space, all crystallites contribute equivalently and resolved dipolar splittings can be interpreted directly in terms of internuclear distances. This opens the possibility of molecular structure determination without the need for single crystals or oriented samples.

  20. Cosmological Magnetic Fields from Inflation and Backreaction

    CERN Document Server

    Kanno, Sugumi; Watanabe, Masa-aki

    2009-01-01

    We study the backreaction problem in a mechanism of magnetogenesis from inflation. In usual analysis, it has been assumed that the backreaction due to electromagnetic fields spoils inflation once it becomes important. However, there exists no justification for this assumption. Hence, we analyze magnetogenesis from inflation by taking into account the backreaction. On the contrary to the naive expectation, we show that inflation still continues even after the backreaction begins to work. Nevertheless, it turns out that creation of primordial magnetic fields is significantly suppressed due to the backreaction.

  1. Magnetic field evolution in Bok globules

    CERN Document Server

    Wolf, S; Henning, T; Wolf, Sebastian; Launhardt, Ralf; Henning, Thomas

    2003-01-01

    Using the Submillimeter Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), we obtained submillimeter polarization maps of the Bok globules B335, CB230, and CB244 at 850micron. We find strongly aligned polarization vectors in the case of B335 and CB230, indicating a strong coupling of the magnetic field to the dust grains. Based on the distribution of the orientation and strength of the linear polarization we derive the magnetic field strengths in the envelopes of the globules. In agreement with previous submillimeter polarization measurements of Bok globules we find polarization degrees of several percent decreasing towards the centers of the cores. Furthermore, we compare the magnetic field topology with the spatial structure of the globules, in particular with the orientation of the outflows and the orientation of the nonspherical globule cores. In case of the globules B335 and CB230, the outflows are oriented almost perpendicular to the symmetry axis of the globule cores. The ...

  2. Effect of zero magnetic field on cardiovascular system and microcirculation

    Science.gov (United States)

    Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.

    2016-02-01

    The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling "ARFA" has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.

  3. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  4. The Galactic Magnetic Field and UHECR Optics

    CERN Document Server

    Farrar, Glennys R; Khurana, Deepak; Sutherland, Michael

    2015-01-01

    A good model of the Galactic magnetic field is crucial for estimating the Galactic contribution in dark matter and CMB-cosmology studies, determining the sources of UHECRs, and also modeling the transport of Galactic CRs since the halo field provides an important escape route for by diffusion along its field lines. We briefly review the observational foundations of the Jansson-Farrar 2012 model for the large scale structure of the GMF, underscoring the robust evidence for a N-to-S directed, spiraling halo field. New results on the lensing effect of the GMF on UHECRs are presented, displaying multiple images and dramatic magnification and demagnification that varies with source direction and CR rigidity.

  5. Extracting Spectral Index of Intergalactic Magnetic Field from Radio Polarizations

    CERN Document Server

    Tiwari, Prabhakar

    2015-01-01

    We explain the large scale correlations in radio polarization in terms of the correlations of primordial/source magnetic field. The radio waves are dominantly produced by the synchrotron mechanism and hence their polarization angle is deemed to be correlated with the magnetic field of the radio source. The primordial intergalactic magnetic field seeds the source magnetic field and hence it is possible that during the source evolution the correlations of primordial magnetic field survived. We model the intergalactic magnetic field in all $3D$ space and fit its correlations with JVAS/CLASS radio polarization alignments. We find that the radio polarization alignments are best fitted with the magnetic field spectral index given by $-2.43\\pm 0.02$. We show that primordial magnetic field correlation provides a good explanation of the observed radio polarization alignment.

  6. Probing into Magnetic Field and Initial Period of Neutron Star

    Institute of Scientific and Technical Information of China (English)

    BAI Hua; PENG Qiu-He

    2004-01-01

    Using the hybrid model and the neutrino jet rocket model, we calculate the magnetic fields and the initial periods of 72 pulsars. We probe into the possible connection among magnetic field, initial period, and initial quantum number.

  7. The Amplification in FEL with Inhomogeneous Magnetic Field

    CERN Document Server

    Oganesyan, K B

    2016-01-01

    The gain in a plane wiggler with inhomogeneous magnetic field is calculated.. It is shown, that the account of inhomogenity of the magnetic field leads to appearance of additional peaks in the amplification

  8. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  9. Zero-field-cooled and field-cooled magnetizations and magnetic susceptibility of itinerant ferromagnet SrRuO3

    Institute of Scientific and Technical Information of China (English)

    侯登录; 姜恩永; 白海力

    2002-01-01

    Zero-field-cooled (ZFC) magnetization, field-cooled (FC) magnetization, ac magnetic susceptibility and majorhysteresis loops of itinerant ferromagnet SrRuO3 have been measured at magnetic ordering temperatures ranging from5 to 160 K. An empirical model is proposed to calculate the measured ZFC magnetization. The result indicates that thecalculated ZFC magnetization compares well with the measured one. Based on the generalized Preisach model, boththe ZFC and FC curves are reproduced by numerical simulations. The critical temperature and critical exponents aredetermined by measuring the ac magnetic susceptibility in different bias magnetic fields at temperatures in the vicinityof the point of phase transition.

  10. The scientific case for magnetic field satellites

    Science.gov (United States)

    Backus, George E. (Editor); Benton, Edward R.; Harrison, Christopher G. A.; Heirtzler, James R.

    1987-01-01

    To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described.

  11. Characterization of composite particles responsive to electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaopeng; GUO Hongxia

    2004-01-01

    The multilayer particles with responses to electric and magnetic fields are a prerequisite for particles assembled under external fields. Three routes to produce particles responsive to electric and magnetic fields are presented in this article. The size and morphology, properties as well as the electric-magnetic responses of three kinds of particles are comparatively discussed. This will provide a useful basis for the control of the behavior of the particles in suspensions by external electric and magnetic fields.

  12. Magnetic Field Saturation in the Riga Dynamo Experiment

    CERN Document Server

    Gailitis, A; Platacis, E; Dementev, S; Cifersons, A; Gerbeth, G; Gundrum, T; Stefani, F; Christen, M; Will, G; Gailitis, Agris; Lielausis, Olgerts; Platacis, Ernests; Dement'ev, Sergej; Cifersons, Arnis; Gerbeth, Gunter; Gundrum, Thomas; Stefani, Frank; Christen, Michael; Will, Gotthard

    2001-01-01

    After the dynamo experiment in November 1999 had shown magnetic field self-excitation in a spiraling liquid metal flow, in a second series of experiments emphasis was placed on the magnetic field saturation regime as the next principal step in the dynamo process. The dependence of the strength of the magnetic field on the rotation rate is studied. Various features of the saturated magnetic field are outlined and possible saturation mechanisms are discussed.

  13. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  14. From the Gyration of Electrons to Cosmic Magnetic Fields

    Science.gov (United States)

    Wang, Xia-Wei

    2010-01-01

    Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…

  15. High-temperature superconductors in high-field magnets

    NARCIS (Netherlands)

    Weijers, Hubertus Wilhelmus

    2009-01-01

    The properties of both BSCCO conductors and YBCO coated conductors and coils are studied to assess their applicability in high-field magnets. First, the magnetic field dependence of the critical current density in these HTS conductors is measured at 4.2 K in magnetic field conditions ranging from s

  16. Josephson tunnel junctions in a magnetic field gradient

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelets, V.P.

    2011-01-01

    We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer-like...... be suppressed by an asymmetric magnetic field profile. © 2011 American Institute of Physics....

  17. Molecular structure and motion in zero field magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  18. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  19. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  20. Pressure, Chaotic Magnetic Fields and MHD Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Hudson & N. Nakajima

    2010-05-12

    Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ∇p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.

  1. Misalignment between chromospheric features and magnetic field

    CERN Document Server

    Martínez-Sykora, Juan; Carlsson, Mats; Hansteen, Viggo

    2016-01-01

    Observations of the upper chromosphere shows an enormous amount of intricate fine structure. Much of this comes in the form of linear features which are most often assumed to be well aligned with the direction of the magnetic field in the low plasma beta regime thought to dominate the upper chromosphere. We use advanced radiative MHD simulations including the effects of ion-neutral interactions (using the generalized Ohm's law) in the partially ionized chromosphere to show that the magnetic field is often not well aligned with chromospheric features. This occurs where the ambipolar diffusion is large, i.e., ions and neutral populations decouple as the ion-neutral collision frequency drops allowing the field to slip through the neutral population, currents perpendicular to the field are strong, and thermodynamic timescales are longer than or similar to the those of ambipolar diffusion. We find this often happens in dynamic spicule or fibril-like features at the top of the chromosphere. This has important conse...

  2. Heisenberg necklace model in a magnetic field

    Science.gov (United States)

    Tsvelik, A. M.; Zaliznyak, I. A.

    2016-08-01

    We study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J . We consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I =3 /2 ) present on the same sites. We find that the resulting necklace model has a characteristic energy scale, Λ ˜J1 /3(γI ) 2 /3 , at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. This energy scale is insensitive to a magnetic field B . For μBB >Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, √{2 }+1 .

  3. Spin relaxation of radicals in low and zero magnetic field

    Science.gov (United States)

    Fedin, M. V.; Purtov, P. A.; Bagryanskaya, E. G.

    2003-01-01

    Spin relaxation of radicals in solution in low and zero magnetic field has been studied theoretically. The main relaxation mechanisms in low magnetic field [modulation of anisotropic and isotropic hyperfine interaction, and modulation of spin-rotational interaction] are considered within a Redfield theory. The analytical results for a radical with one magnetic nucleus (I=1/2) and for a radical with two equivalent magnetic nuclei (I=1/2) are obtained and analyzed. It is shown that the probabilities of relaxational transitions in low and zero magnetic fields differ significantly from the probabilities in high magnetic fields. The use of high-field expressions in low and zero magnetic fields is not correct. Taking exact account of spin relaxation is important in calculations of much low-field magnetic resonance data.

  4. Electrostatic Modes of Dusty Plasmas in a Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    王晓钢; 王春华

    2002-01-01

    Electrostatic dusty plasma waves in a uniform magnetic field are studied. Unless the magnetic field is extremely strong, the dust particles can hardly be magnetized, while however,electrons and ions are easily done so. Electrostatic modes in such dusty plasmas can then be investigated by making use of the "moderately magnetized" assumption of magnetized electrons and ions, and unmagnetized dust particles. In a high frequency range, due to the existence of dust component, both frequencies of Langmuir waves (parallel to the magnetic field) and upper hybrid waves (perpendicular to the field)are reduced. In the frequency range of ion waves, besides the effect on dust-ion-acoustic waves propagating parallel to the magnetic field, the frequency of ion cyclotron waves perpendicular to the magnetic field is also enhanced. In a very low dust frequency range, we find an "ion-cyclotrondust-acoustic" mode propagating across the field line with a frequency even slower than dust acoustic waves.

  5. Monitoring the Earth's Dynamic Magnetic Field

    Science.gov (United States)

    Love, Jeffrey J.; Applegate, David; Townshend, John B.

    2008-01-01

    The mission of the U.S. Geological Survey's Geomagnetism Program is to monitor the Earth's magnetic field. Using ground-based observatories, the Program provides continuous records of magnetic field variations covering long timescales; disseminates magnetic data to various governmental, academic, and private institutions; and conducts research into the nature of geomagnetic variations for purposes of scientific understanding and hazard mitigation. The program is an integral part of the U.S. Government's National Space Weather Program (NSWP), which also includes programs in the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF). The NSWP works to provide timely, accurate, and reliable space weather warnings, observations, specifications, and forecasts, and its work is important for the U.S. economy and national security. Please visit the National Geomagnetism Program?s website, http://geomag.usgs.gov, where you can learn more about the Program and the science of geomagnetism. You can find additional related information at the Intermagnet website, http://www.intermagnet.org.

  6. Interaction of magnetic resonators studied by the magnetic field enhancement

    Science.gov (United States)

    Hou, Yumin

    2013-12-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters-shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  7. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  8. Interaction of magnetic resonators studied by the magnetic field enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yumin, E-mail: ymhou@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  9. Propagation of Magnetic Fields from Electrical Domestic Appliances

    Science.gov (United States)

    Orlova, K. N.; Gaidamak, M. A.; Borovikov, I. F.

    2016-08-01

    The article presents a research into propagation of magnetic fields from electrical domestic devices. A safe distance at which magnetic induction does not exceed the background level is determined for each type of devices. It is proved that there are two stages of increasing magnetic induction as the distance from the source increases. At the first stage magnetic induction rises and electromagnetic field is formed. At the second stage exponential decrease of magnetic field induction takes place. Mathematical regularities of propagation of magnetic field from electrical domestic devices are experimentally educed.

  10. Braided magnetic fields: equilibria, relaxation and heating

    CERN Document Server

    Pontin, D I; Russell, A J B; Hornig, G

    2015-01-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling. The key results obtained from recent modelling efforts are summarised, in the context of testable predictions for the laboratory. We discuss the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We discuss the properties of this relaxation, and in particular the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypo...

  11. Magnetic field decay in normal radio pulsars

    CERN Document Server

    Igoshev, A P

    2015-01-01

    We analyse the origin of the magnetic field decay in normal radio pulsars found by us in a recent study. This decay has a typical time scale $\\sim 4 \\times 10^5$~yrs, and operates in the range $\\sim 10^5$~--~few$\\times 10^5$~yrs. We demonstrate that this field evolution may be either due to the Ohmic decay related to the scattering from phonons, or due to the Hall cascade which reaches the Hall attractor. According to our analysis the first possibility seems to be more reliable. So, we attribute the discovered field decay mainly to the Ohmic decay on phonons which is saturated at the age few$\\times 10^5$~yrs, when a NS cools down to the critical temperature below which the phonon scattering does not contribute much to the resistivity of the crust. Some role of the Hall effect and attractor is not excluded, and will be analysed in our further studies.

  12. Anomaly induced effects in a magnetic field

    Science.gov (United States)

    Antoniadis, Ignatios; Boyarsky, Alexey; Ruchayskiy, Oleg

    2008-04-01

    We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q&A, etc.

  13. Anomaly induced effects in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios; Boyarsky, Alexey [Department of Physics, CERN, Theory Division, 1211 Geneva 23 (Switzerland); Ruchayskiy, Oleg [Ecole Polytechnique Federale de Lausanne, Institute of Theoretical Physics, FSB/ITP/LPPC, BSP 720, CH-1015 Lausanne (Switzerland)], E-mail: oleg.ruchayskiy@epfl.ch

    2008-04-11

    We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q and A, etc.

  14. Anomaly induced effects in a magnetic field

    CERN Document Server

    Antoniadis, Ignatios; Ruchayskiy, O

    2008-01-01

    We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q&A, etc.

  15. Effective field theory for magnetic compactifications

    CERN Document Server

    Buchmuller, Wilfried; Dudas, Emilian; Schweizer, Julian

    2016-01-01

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of a symmetry of the six-dimensional theory by the background gauge field, with the Wilson line as Goldstone boson.

  16. Blind Stereoscopy of the Coronal Magnetic Field

    CERN Document Server

    Aschwanden, Markus J; Malanushenko, Anna

    2015-01-01

    We test the feasibility of 3D coronal-loop tracing in stereoscopic EUV image pairs, with the ultimate goal of enabling efficient 3D reconstruction of the coronal magnetic field that drives flares and coronal mass ejections (CMEs). We developed an automated code designed to perform triangulation of coronal loops in pairs (or triplets) of EUV images recorded from different perspectives. The automated (or blind) stereoscopy code includes three major tasks: (i) automated pattern recognition of coronal loops in EUV images, (ii) automated pairing of corresponding loop patterns from two different aspect angles, and (iii) stereoscopic triangulation of 3D loop coordinates. We perform tests with simulated stereoscopic EUV images and quantify the accuracy of all three procedures. In addition we test the performance of the blind stereoscopy code as a function of the spacecraft-separation angle and as a function of the spatial resolution. We also test the sensitivity to magnetic non-potentiality. The automated code develo...

  17. Cosmic Ray transport in turbulent magnetic field

    CERN Document Server

    Yan, Huirong

    2013-01-01

    Cosmic ray (CR) transport and acceleration is determined by the properties of magnetic turbulence. Recent advances in MHD turbulence call for revisions in the paradigm of cosmic ray transport. We use the models of magnetohydrodynamic turbulence that were tested in numerical simulation, in which turbulence is injected at large scale and cascades to to small scales. We shall address the issue of the transport of CRs, both parallel and perpendicular to the magnetic field. We shall demonstrate compressible fast modes are dominant cosmic ray scatterer from both quasilinear and nonlinear theories. We shall also show that the self-generated wave growth by CRs are constrained by preexisting turbulence and discuss the process in detail in the context of shock acceleration at supernova remnants and their implications. In addition, we shall dwell on the nonlinear growth of kinetic gyroresonance instability of cosmic rays induced by large scale compressible turbulence. This gyroresonance of cosmic rays on turbulence is d...

  18. In situ observation of magnetic orientation process of feeble magnetic materials under high magnetic fields

    Directory of Open Access Journals (Sweden)

    Noriyuki Hirota et al

    2008-01-01

    Full Text Available An in situ microscopic observation of the magnetic orientation process of feeble magnetic fibers was carried out under high magnetic fields of up to 10 T using a scanning laser microscope. In the experiment, carbon fibers and needle-like titania fibers with a length of 1 to 20 μm were used. The fibers were observed to gradually orient their axes parallel to the direction of the magnetic field. The orientation behavior of the sample fibers was evaluated on the basis of the measured duration required for a certain angular variation. As predicted from the theoretical consideration, it was confirmed that the duration required for a certain angular variation normalized by the viscosity of the fluid is described as a function of the fiber length. The results obtained here appear useful for the consideration of the magnetic orientation of materials suspended in a static fluid.

  19. Field-line transport in stochastic magnetic fields: Percolation, Levy flights, and non-Gaussian dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.; Veltri, P. (Dipartimento di Fisica, Universita della Calabria, I-87030 Arcavacata di Rende (Italy))

    1995-02-01

    The transport of magnetic field lines is studied numerically in the case where strong three-dimensional magnetic fluctuations are superimposed to a uniform average magnetic field. The magnetic percolation of field lines between magnetic islands is found, as well as a non-Gaussian regime where the field lines exhibit Levy random walks, changing from Levy flights to trapped motion. Anomalous diffusion laws [l angle][Delta][ital x][sub [ital i

  20. Two charges on plane in a magnetic field: II. Moving neutral quantum system across magnetic field

    CERN Document Server

    Escobar-Ruiz, M A

    2014-01-01

    The moving neutral system of two Coulomb charges on a plane subject to a constant magnetic field $B$ perpendicular to the plane is considered. It is shown that the composite system of finite total mass is bound for any center-of-mass momentum $P$ and magnetic field strength; the energy of the ground state is calculated accurately using a variational approach. Their accuracy is cross-checked in Lagrange-mesh method for $B=1$\\,a.u. and in a perturbation theory at small $B$ and $P$. The constructed trial function has a property to be a uniform approximation of the exact eigenfunction. For Hydrogen atom and Positronium a double perturbation theory in $B$ and $P$ is developed and the first corrections are found algebraically. A phenomenon of a sharp change of energy behavior for a certain center-of-mass momentum but a fixed magnetic field is indicated.

  1. Neutron stars and their magnetic fields

    CERN Document Server

    Reisenegger, Andreas

    2008-01-01

    Neutron stars have the strongest magnetic fields known anywhere in the Universe. In this review, I intend to give a pedagogical discussion of some of the related physics. Neutron stars exist because of Pauli's exclusion principle, in two senses: 1) It makes it difficult to squeeze particles too close together, in this way allowing a mechanical equilibrium state in the presence of extremely strong gravity. 2) The occupation of low-energy proton and electron states makes it impossible for low-energy neutrons to beta decay. A corollary of the second statement is that charged particles are necessarily present inside a neutron star, allowing currents to flow. Since these particles are degenerate, they collide very little, and therefore make it possible for the star to support strong, organized magnetic fields over long times. These show themselves in pulsars and are the most likely energy source for the high X-ray and gamma-ray luminosity ``magnetars''. I briefly discuss the possible origin of this field and some ...

  2. SOLIS/VSM Polar Magnetic Field Data

    CERN Document Server

    Bertello, Luca

    2015-01-01

    The Vector Spectromagnetograph (VSM) instrument on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope is designed to obtain high-quality magnetic field observations in both the photosphere and chromosphere by measuring the Zeeman-induced polarization of spectral lines. With 1$^{\\prime \\prime}$ spatial resolution (1.14$^{\\prime \\prime}$ before 2010) and 0.05\\AA\\ spectral resolution, the VSM provides, among other products, chromospheric full-disk magnetograms using the CaII 854.2 nm spectral line and both photospheric full-disk vector and longitudinal magnetograms using the FeI 630.15 nm line. Here we describe the procedure used to compute daily weighted averages of the photospheric radial polar magnetic field at different latitude bands from SOLIS/VSM longitudinal full-disk observations. Time series of these measurements are publicly available from the SOLIS website at http://solis.nso.edu/0/vsm/vsm\\_plrfield.html. Future plans include the calculation of the mean polar field strength fr...

  3. Five-minute oscillations in the solar magnetic field.

    Science.gov (United States)

    Tanenbaum, A. S.; Wilcox, J. M.; Howard, R.

    1971-01-01

    Evidence for the existence of 5 min oscillations in the photospheric and low chromospheric magnetic fields is presented, their properties discussed, and a possible production mechanism suggested. It is pointed out that, because the solar magnetic field is frozen into the oscillating plasma, there are several ways in which the oscillations in the plasma (which are observed as velocity oscillations) could be transferred to the magnetic field. It is shown schematically how vertical waves could cause oscillations in a horizontal magnetic field, and how horizontal waves could cause oscillations in a vertical magnetic field.

  4. A complete topological invariant for braided magnetic fields

    CERN Document Server

    Yeates, A R

    2013-01-01

    A topological flux function is introduced to quantify the topology of magnetic braids: non-zero line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, whose integral over the cross-section yields the relative magnetic helicity. Recognising that the topological flux function is an action in the Hamiltonian formulation of the field line equations, a simple formula for its differential is obtained. We use this to prove that the topological flux function uniquely characterises the field line mapping and hence the magnetic topology. A simple example is presented.

  5. Milestones in the Observations of Cosmic Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Magnetic fields are observed everywhere in the universe. In this review,we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields,namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs,hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities.The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from analysis of rotation measures of extragalactic radio sources and pulsars, which can be used to construct the 3-D magnetic field structure in the Galactic halo and Galactic disk. Radio synchrotron spurs in the Galactic center show a poloidal field, and the polarization mapping of dust emission and Zeeman observation in the central molecular zone reveal a toroidal magnetic field parallel to the Galactic plane. For nearby galaxies, both optical polarization and multifrequency radio polarization data clearly show the large-scale magnetic field following the spiral arms or dust lanes. For more distant objects, radio polarization is the only approach available to show the magnetic fields in the jets or lobes of radio galaxies or quasars. Clusters of galaxies also contain widely distributed magnetic fields, which are reflected by radio halos or the RM distribution of background objects. The intergalactic space could have been magnetized by outflows or galactic superwinds even in

  6. D mesons in a magnetic field

    CERN Document Server

    Gubler, Philipp; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei

    2015-01-01

    We investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral ans\\"atze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension--5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixing effects almost completely saturate the mass shifts obtained in our sum rule analysis.

  7. Isoperimetric Inequalities and Magnetic Fields at CERN

    CERN Document Server

    McInnes, Brett

    2016-01-01

    We discuss the generalization of the classical isoperimetric inequality to asymptotically hyperbolic Riemannian manifolds. It has been discovered that the AdS/CFT correspondence in string theory requires that such an inequality hold in order to be internally consistent. In a particular application, to the systems formed in collisions of heavy ions in particle colliders, we show how to formulate this inequality in terms of measurable physical quantities, the magnetic field and the temperature. Experiments under way at CERN in Geneva can thus be said to be testing an isoperimetric inequality.

  8. Heisenberg Model in a Rotating Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIN Qiong-Gui

    2005-01-01

    We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.

  9. Focus on Materials Analysis and Processing in Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings

  10. Evolution of field line helicity during magnetic reconnection

    CERN Document Server

    Russell, Alexander J B; Hornig, Gunnar; Wilmot-Smith, Antonia L

    2015-01-01

    We investigate the evolution of field line helicity for non-zero magnetic fields that connect two boundaries, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field topology and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a topologically complex magnetic field, the evolution of field line helicity is dominated by a work-like term ...

  11. Reconstruction of Open Solar Magnetic Flux and Interplanetary Magnetic Field in the 20Th Century

    Science.gov (United States)

    Ivanov, V. G.; Miletsky, E. V.

    2004-10-01

    We reconstruct mean magnitudes of the open solar magnetic field since 1915 using α magnetic synoptic charts of the Sun. The obtained series allows estimation of the interplanetary magnetic field. They also confirm the known conclusion about the secular increase of the solar open magnetic flux in the first half of the 20th century.

  12. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid.

    Science.gov (United States)

    Li, Xianli; Ding, Hui

    2012-12-15

    All-fiber magnetic-field sensor based on a device consisting of a microfiber knot resonator and magnetic fluid is proposed for the first time in this Letter. Sensor principles and package technology are introduced in detail. Experimental results show that the resonance wavelength of the proposed sensor regularly varies with changes to the applied magnetic field. When the magnetic field is increased to 600 Oe, the wavelength shift reaches nearly 100 pm. Moreover, the sensor responding to the 50 Hz alternating magnetic field is also experimentally investigated, and a minimal detectable magnetic-field strength of 10 Oe is successfully achieved.

  13. Solar Polarimetry - from Turbulent Magnetic Fields to Sunspots

    Science.gov (United States)

    Kleint, Lucia

    2016-07-01

    Polarimetric measurements are essential to investigate the solar magnetic field. Scattering polarization and the Hanle effect allow us to probe the turbulent magnetic field and the still open questions of its strength and variability. Directed magnetic fields can be detected via the Zeeman effect. To derive their orientation and strength, so-called inversion codes are used, which iteratively modify a model atmosphere and calculate the resulting polarization profiles that are then compared to the observations. While photospheric polarimetry is well-established, chromospheric polarimetry is still in its infancy, especially because it requires a treatment in non-LTE, making it a complex non-linear problem. But some of the most important open questions concern the strength and geometry of the chromospheric magnetic field. In this talk, I will review different polarimetric analysis techniques and recent advances in magnetic field measurements going from the small scales of turbulent magnetic fields to changes of magnetic fields in an active region during flares.

  14. Effects of Strong Magnetic Fields on Photoionised Clouds

    CERN Document Server

    Mackey, Jonathan

    2012-01-01

    Simulations are presented of the photoionisation of three dense gas clouds threaded by magnetic fields, showing the dynamical effects of different initial magnetic field orientations and strengths. For moderate magnetic field strengths the initial radiation-driven implosion phase is not strongly affected by the field geometry, and the photoevaporation flows are also similar. Over longer timescales, the simulation with an initial field parallel to the radiation propagation direction (parallel field) remains basically axisymmetric, whereas in the simulation with a perpendicular initial field the pillar of neutral gas fragments in a direction aligned with the magnetic field. For stronger initial magnetic fields, the dynamics in all gas phases are affected at all evolutionary times. In a simulation with a strong initially perpendicular field, photoevaporated gas forms filaments of dense ionised gas as it flows away from the ionisation front along field lines. These filaments are potentially a useful diagnostic of...

  15. A 77 K MOS magnetic field detector

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R S; Torres, A. [Instituto Nacional de Astrofisica Optica y Electronica, Puebla (Mexico); Garcia, P.J. [Universidad Veracruzana, Veracruz (Mexico); Gutierrez, E.A. [Motorola, Puebla (Mexico)

    2001-12-01

    An integrated MOS (metal-oxide-semiconductor)-compatible magnetic field detector (split-drain MAGFET) for operation at liquid-nitrogen temperature LNT (77 K) is presented. The measured relative magnetic sensibility (S{sub a}) is approximately 14%/T (double the value ever reported) using a non-optimized MAGFET structure (W/L) = (100 mm/125 mm). The cryo-magnetic structure was tested without a built-in preamplifier. It presents a power consumption of the order of mW. [Spanish] A traves de este articulo se presenta un detector de campo magnetico (split-drain MAGFET), basado en el transistor de efecto de campo MOS (metal-oxido-semiconductor), y totalmente compatible con procesos de fabricacion de circuitos integrados CMOS. La operacion optima de este detector es a temperaturas criogenicas. Aqui se presentan los resultados experimentales de la caracterizacion de una estructura no optimizada con dimensiones (W / L) = (100 mm/125 mm) a la temperatura del nitrogeno liquido (77 K). La sensibilidad relativa medida es de cerca del 14 % T, casi el doble del valor maximo antes reportado en la literatura. El dispositivo se midio sin un pre-amplificador integrado, mostrando un consumo de potencia del orden de microwatts.

  16. Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor

    Institute of Scientific and Technical Information of China (English)

    YANG Jiewei; WU Yihui; JIA Hongguang; ZHANG Ping; WANG Shurong

    2007-01-01

    To investigate the impact of size on its performance in designing an axial-magnetized permanent magnet micromotor,the finite element method is adopted to simulate the magnetic field of the dual rotor motor,and the flux density wave form distributed in the airgap is obtained.The influence of the external dimensions,pole numbers and magnet thicknesses of the rotor,and the airgap distances on the flux density,are analyzed and analytical results are given.With the increase of the airgap distance,the flux density under more poles reduces more quickly than under fewer poles.With the increase of the magnet thickness,the flux density is a rising curve,and after the magnet thickness attains a certain point,the flux density is almost a constant.While reducing the diameter of the rotor,the decrease of the flux density slows down as magnet thickness is reduced.To avoid having a seriously distorted waveform,the distance between inner and outer radii of the rotor must be larger than 1.5 millimeter.Results of the magnetic field analysis can guide a microminiaturization of the motor.Moreover,the results are analyzed theoretically and the simulated values are almost consistent with the experimental values.

  17. UHECR propagation in the Galactic Magnetic Field

    CERN Document Server

    Vorobiov, Serguei; Veberič, Darko

    2009-01-01

    Extensive simulations of the ultra-high energy cosmic ray (UHECR) propagation in the Galactic magnetic field (GMF) have been performed, and the results are presented. The use of different available models of the large-scale GMF and/or primary particle assumptions leads to distinctly different deflection patterns of the highest energy cosmic rays (CR). The lensing effects of the Galactic field modify the exposure of an UHECR experiment to the extragalactic sky. To quantify these effects for the Pierre Auger experiment, we performed a correlation analysis of the simulated cosmic ray event samples, backtracked from the Earth to the Galactic border, with the active galactic nuclei (AGN) from the 12th edition of the V\\'eron-Cetty and V\\'eron catalogue. Further forward-tracking studies under plausible UHECR sources scenarios are needed to allow for direct comparison with the observed correlation between the nearby AGN and the highest energy Auger events.

  18. Split Field magnet at the I4 ISR intersection

    CERN Multimedia

    1974-01-01

    The Split-Field Magnet (SFM) at I4 had an unconventional topology, consisting of two dipole magnets of opposite polarity. It formed the heart of the first general facility at the ISR. It had a useful magnetic field volume of 28 m3 and a field in the median plane of 1.14 T. With a gap height of 1.1 m and length of 10.5 m, the magnet weighed about 1000 t. The SFM spectrometer featured the first large-scale application of MWPCs (about 70,000 wires), which filled the main magnet, visible here in 1974, and the two large compensator magnets.

  19. High RF Magnetic Field Near-Field Microwave Microscope

    Science.gov (United States)

    Tai, Tamin; Mircea, Dragos I.; Anlage, Steven M.

    2010-03-01

    Near-field microwave microscopes have been developed to quantitatively image RF and microwave properties of a variety of materials on deep sub-wavelength scales [1]. Microscopes that develop high-RF magnetic fields on short length scales are useful for examining the fundamental electrodynamic properties of superconductors [2]. We are creating a new class of near-field microwave microscopes that develop RF fields on the scale of 1 Tesla on sub-micron length scales. These microscopes will be employed to investigate defects that limit the RF properties of bulk Nb materials used in accelerator cavities, and the nonlinear Meissner effect in novel superconductors. Work funded by the US Department of Energy. [1] S. M. Anlage, V. V. Talanov, A. R. Schwartz, ``Principles of Near-Field Microwave Microscopy,'' in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Volume 1, edited by S. V. Kalinin and A. Gruverman (Springer-Verlag, New York, 2007), pp. 215-253. [2] D. I. Mircea, H. Xu, S. M. Anlage, ``Phase-sensitive Harmonic Measurements of Microwave Nonlinearities in Cuprate Thin Films,'' Phys. Rev. B 80, 144505 (2009).

  20. Stellar magnetic fields - The role of a magnetic field in the peculiar M giant, HD 4174

    Science.gov (United States)

    Stencel, R. E.; Ionson, J. A.

    1979-01-01

    Principles of coronal heating via basic electrodynamic effects, viz., resonant absorption of Alfven surface waves (quiescent) and magnetic tearing instabilities (impulsive), are detailed to argue three principles which may have application to late-type evolved stars. First, if one observes that B-squared/8 pi is much greater than rho times v-squared in a stellar atmosphere, then the observed magnetic field must originate in an interior dynamo. Second, low mass-loss rates could imply the presence of closed magnetic flux loops within the outer atmosphere, which constrain hydrodynamic flows when the magnetic body forces exceed the driving forces. Third, given that such magnetic loops effect an enhancement of the local heating rate, a positive correlation is predicted between the existence of a corona and low mass-loss rates. Application of these principles is made in the case of the peculiar M giant star HD 4174, which is purported to have a kilogauss magnetic field. Several of its spectroscopic peculiarities are shown to be consistent with the above principles, and further observational checks are suggested. Possible application to dMe and RS CVn objects is sketched.

  1. Magnetic reconnection in Saturn's magnetotail: A comprehensive magnetic field survey.

    Science.gov (United States)

    Smith, A. W.; Jackman, C. M.; Thomsen, M. F.; Dougherty, M. K.

    2015-10-01

    Magnetic reconnection is a fundamental process throughout the solar system, significantly shaping and modulating the magnetospheres of the magnetized planets. Within planetary magnetotails reconnection can be responsible for energizing particles and potentially changing the total flux and mass contained within the magnetosphere. The Kronian magnetosphere is thought to be a middle ground between the rotationally dominated Jovian magnetosphere and the solar wind driven terrestrial magnetosphere. However, previous studies have not been able to find a statistical reconnection x-line, as has been possible at both Jupiter and Earth. Additionally the standard picture of magnetotail reconnection at Saturn, developed by Cowley et al. [2004], suggests a potential asymmetry between the dawn and dusk flanks, caused by different reconnection processes dominating. This work centers on the development of an algorithm designed to find reconnection related events in spacecraft magnetometer data, aiming to reduce the bias that manual searches could inherently introduce, thereby ensuring the validity of any statistical analysis. The algorithm primarily identifies the reconnection related events from deflections in the north-south component of the magnetic field, allowing an almost uninterrupted in-situ search (when the spacecraft is situated within the magnetotail). The new catalogue of candidate reconnection events, produced by the algorithm, enables a more complete statistical view of reconnection in the Kronian magnetotail. Well-studied data encompassing the deep magnetotail and dawn flank (particularly from orbits in 2006) were used to train the algorithm and develop reasonable criteria. The algorithm was then applied to data encompassing the dusk flank (including orbits from 2009, for which plasma data have been examined by Thomsen et al. [2014]). This combination enables a robust, and global, comparison of reconnection rates, signatures and properties in the Kronian magnetotail.

  2. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    Science.gov (United States)

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy(3+), Gd(3+) and Y(3+), in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy(3+) and Gd(3+) move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y(3+) move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  3. Reversible electric-field control of magnetization at oxide interfaces

    Science.gov (United States)

    Cuellar, F. A.; Liu, Y. H.; Salafranca, J.; Nemes, N.; Iborra, E.; Sanchez-Santolino, G.; Varela, M.; Hernandez, M. Garcia; Freeland, J. W.; Zhernenkov, M.; Fitzsimmons, M. R.; Okamoto, S.; Pennycook, S. J.; Bibes, M.; Barthélémy, A.; Te Velthuis, S. G. E.; Sefrioui, Z.; Leon, C.; Santamaria, J.

    2014-06-01

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  4. TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  5. Electric field control of Skyrmions in magnetic nanodisks

    Science.gov (United States)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  6. Field-tuned quantum tunneling of the magnetization

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Raedt, H. De

    1998-01-01

    The response of the magnetization to a time-dependent applied magnetic field in single-spin models for uniaxial magnets is studied. We present staircase magnetization curves obtained from the numerically exact solution of the time-dependent Schrodinger equation. Steps are shown to correspond to fiel

  7. Plasma opening switch with extrinsic magnetic field

    CERN Document Server

    Dolgachev, G; Maslennikov, D

    2001-01-01

    Summary form only given, as follows. We have demonstrated in series of experiments that plasma opening switch (POS) switching voltage (UPOS) is defined by energy density (w) deposited in the POS plasma. If we then consider a plasma erosion mainly responsible for the effect of POS switching (the erosion effect could be described by Hall or Child-Langmuir models) the energy density (w) could be measured as a function of a system "macro-parameter" such as the initial charging voltage of the capacity storage system (the Marx pulsed voltage generator) UMarx. The POS voltage in this case could be given by UPOS"aw=aUMarx4/7, where a is a constant. This report demonstrates that for the high-impedance POS which has limited charge density transferred through the POS plasma a"2.5 (MV3/7) with no external magnetic field applied. The use of the extrinsic magnetic field allows to increase a up to 3.6 (MV3/7) and to achieve higher voltages at the opening phase - UPOS=3.6UMarx4/7. To verify this approach set of experimental ...

  8. Modified methods of stellar magnetic field measurements

    CERN Document Server

    Kholtygin, A F

    2013-01-01

    The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes $V$-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator $\\hat{L}$ to the both sides of this relation. As the operator $\\hat{L}$, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter $V$. The efficiency of the method has been studied using the model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0-type star $\\alpha^2\\,$ CVn, young O-type star $\\theta^1$ Ori C and A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths for these stars calculated by our method appeared to be in a good agreement with those determined by other methods.

  9. Magnetic Fields in Quasar Cores, 2

    CERN Document Server

    Taylor, G B

    1999-01-01

    Multi-frequency polarimetry with the Very Long Baseline Array (VLBA) telescope has revealed absolute Faraday Rotation Measures (RMs) in excess of 1000 rad/m/m in the central regions of 7 out of 8 strong quasars studied (e.g., 3C 273, 3C 279, 3C 395). Beyond a projected distance of ~20 pc, however, the jets are found to have |RM| < 100 rad/m/m. Such sharp RM gradients cannot be produced by cluster or galactic-scale magnetic fields, but rather must be the result of magnetic fields organized over the central 1-100 pc. The RMs of the sources studied to date and the polarization properties of BL Lacs, quasars and galaxies are shown to be consistent so far with the predictions of unified schemes. The direct detection of high RMs in these quasar cores can explain the low fractional core polarizations usually observed in quasars at centimeter wavelengths as the result of irregularities in the Faraday screen on scales smaller than the telescope beam. Variability in the RM of the core is reported for 3C 279 between ...

  10. Magnetic reconnection in Saturn's magnetotail: A comprehensive magnetic field survey

    Science.gov (United States)

    Smith, A. W.; Jackman, C. M.; Thomsen, M. F.

    2016-04-01

    Reconnection within planetary magnetotails is responsible for locally energizing particles and changing the magnetic topology. Its role in terms of global magnetospheric dynamics can involve changing the mass and flux content of the magnetosphere. We have identified reconnection related events in spacecraft magnetometer data recorded during Cassini's exploration of Saturn's magnetotail. The events are identified from deflections in the north-south component of the magnetic field, significant above a background level. Data were selected to provide full tail coverage, encompassing the dawn and dusk flanks as well as the deepest midnight orbits. Overall 2094 reconnection related events were identified, with an average rate of 5.0 events per day. The majority of events occur in clusters (within 3 h of other events). We examine changes in this rate in terms of local time and latitude coverage, taking seasonal effects into account. The observed reconnection rate peaks postmidnight with more infrequent but steady loss seen on the dusk flank. We estimate the mass loss from the event catalog and find it to be insufficient to balance the input from the moon Enceladus. Several reasons for this discrepancy are discussed. The reconnection X line location appears to be highly variable, though a statistical separation between events tailward and planetward of the X line is observed at a radial distance of between 20 and 30RS downtail. The small sample size at dawn prevents comprehensive statistical comparison with the dusk flank observations in terms of flux closure.

  11. Effect of superconductor filament magnetization on the field errors

    CERN Document Server

    Wolf, R

    1999-01-01

    One of the main source of field errors in a superconducting magnet is the magnetization M of the superconducting filaments. Screening currents, of persistent nature, are induced by any. field change during operation of the magnet. This chapter describes the models for the calculation of these effects and the parameters to be defined in ROXIE. (3 refs).

  12. Influence of Magnetic Field Amplitude on Quantity and Sizes of Disintegration Fragments of Magnetic Particles Cluster

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The disintegration of a mass of magnetic particles is investigated at pulsing switching on a magnetic field. The influence of field value on quantity, sizes and allocation of fragments of disintegration is explored. The presence of two critical fields, defining the process of disintegration, is revealed. The results can be used at manufacture of packings to magnetic filters.

  13. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J. F., E-mail: zhoujianfeng@njtech.edu.cn; Shao, C. L.; Gu, B. Q. [Nanjing Tech University, School of Mechanical and Power Engineering (China)

    2016-01-15

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient.

  14. Magnetic field evolution in magnetar crusts through three dimensional simulations

    CERN Document Server

    Gourgouliatos, Konstantinos N; Hollerbach, Rainer

    2016-01-01

    Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star's outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modelling of the evolution of the magnetic field in the crust of a neutron star through 3-D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to non-axisymmetric, kilometre-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high energy bursts through local crust yielding, and the localised enhancement of Ohmic heating can power the star's persistent emission. Thus...

  15. What we have learned about the magnetic field of Mars

    Science.gov (United States)

    Dolginov, S. S.

    Sufficient and unambiguous evidences of the intrinsic martian magnetic field are: (1) the independence of the field polarity in Maritan magnetic tail from interplanetary magnetic fields (IMF) polarity inversion, established with the help of Mars-5 data; and (2) the incongruity between the sign of the radial component of the field measured in Martian tail (Mars-2) and that of the draped model with IMF data measured simultaneously (Mars-3) on February 23-24, 1972. Mar's dipole magnetic moment is within the limits (1.5 to 2.2) x 10 to e 22 G cc. The dipole axis is deflected from that of rotation on the angle I 15 deg. The North magnetic pole is located in the South Hemisphere. In the frame of the precession-dinamo model the magnetic fields of the planets Mars and Earth are similar. The Martian magnetic field is the real obstacle for the solar wind near the planet.

  16. Simulations of octupole compensation of head-tail instability at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Meiqin Xiao; Tanaji Sen; Frank Schmidts

    2003-05-28

    The proton lifetime in the Tevatron depends sensitively on chromaticities. Too low chromaticities can make the beam unstable due to the weak head-tail instability. One way to compensate this effect is to introduce octupoles to create a larger amplitude dependent betatron tune spread. However, the use of octupoles will also introduce additional side effects such as second order chromaticity, differential tune shifts and chromaticities on both proton and anti-proton helices. The non-linear effects may also reduce the dynamic aperture. There are 67 octupoles in 4 different circuits in the Tevatron which may be used for this purpose. We report on a simulation study to find the best combinations of polarities and strengths of the octupoles.

  17. Generation of a North/South Magnetic Field Component from Variations in the Photospheric Magnetic Field

    CERN Document Server

    Ulrich, Roger K

    2016-01-01

    We address the problem of calculating the transverse magnetic field in the solar wind outside of the hypothetical sphere called the source surface where the solar wind originates. This calculation must overcome a widely used fundamental assumption about the source surface -- the field is normally required to purely radial at the source surface. Our model rests on the fact that a change in the radial field strength at the source surface is a change in the field line density. Surrounding field lines must move laterally in order to accommodate this field line density change. As the outward wind velocity drags field lines past the source surface this lateral component of motion produces a tilt implying there is a transverse component to the field. An analytic method of calculating the lateral translation speed of the field lines is developed. We apply the technique to an interval of approximately two Carrington rotations at the beginning of 2011 using 2-h averages of data from the Helioseismic Magnetic Imager ins...

  18. Relaxing the Bounds on Primordial Magnetic Seed Fields

    OpenAIRE

    1999-01-01

    We point out that the lower bound on the primordial magnetic field required to seed the galactic dynamo is significantly relaxed in an open universe or in a universe with a positive cosmological constant. It is shown that, for reasonable cosmological parameters, primordial seed fields of strength 10^{-30} Gauss or less at the time of galaxy formation could explain observed galactic magnetic fields. As a consequence, mechanisms of primordial magnetic seed-field generation that have previously ...

  19. Instability in magnetic materials with a dynamical axion field.

    Science.gov (United States)

    Ooguri, Hirosi; Oshikawa, Masaki

    2012-04-20

    It has been pointed out that axion electrodynamics exhibits instability in the presence of a background electric field. We show that the instability leads to a complete screening of an applied electric field above a certain critical value and the excess energy is converted into a magnetic field. We clarify the physical origin of the screening effect and discuss its possible experimental realization in magnetic materials where magnetic fluctuations play the role of the dynamical axion field.

  20. Toroidal and poloidal magnetic fields at Venus. Venus Express observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Woch, J.; Zhang, T. L.; Wei, Y.; Fedorov, A.; Barabash, S.; Lundin, R.

    2013-10-01

    Magnetic field and plasma measurements carried out onboard Venus Express during solar minimum conditions suggest the existence of two kinds of magnetic field configuration in the Venusian ionosphere. We interpret these as the manifestation of two different types of generation mechanisms for the induced magnetosphere. A different magnetic field topology (toroidal and poloidal) arises if the induced currents are driven either by the solar wind motional electric field or by the Faraday electric field—a conducting ionosphere sees the magnetic field carried by solar wind as a time-varying field. At the dayside, both driving agents produce a similar draping pattern of the magnetic field. However, different magnetic field signatures inherent to both induction mechanisms appear at lower altitudes in the terminator region. The conditions at low solar EUV flux when the ionosphere of Venus becomes magnetized seem to be favorable to distinguish between two different types of the induced fields. We present cases of both types of the magnetic field topology. The cases when the effects of the Faraday induction become well noticeable are especially interesting since they provide us with an example of solar wind interaction with a tiny induced dipole field immersed into the ionosphere. Another interesting case when poloidal magnetic fields are evidently displayed is observed when the IMF vector is almost aligned with the solar wind velocity. In general case, both mechanisms of induction probably complement each other.

  1. Understanding the tune, coupling, and chromaticity dependence of the LHC on Landau octupole powering.

    CERN Document Server

    Maclean, E H; Persson, T; Tomas, R; Wenninger, J

    2013-01-01

    During the 2012 LHC run several observations were made of shifts to tune, coupling and chromaticity which were correlated with changes in the powering of Landau octupoles. Understanding the chromaticity dependence is of particular importance given its influence on instabilities. This note briefly summarizes the observations and describes our understanding to-date of the relationship between Q, Q′, |C−| and the Landau octupole powering.

  2. An active antenna for ELF magnetic fields

    Science.gov (United States)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  3. Distortion of magnetic field and magnetic force of a brushless dc motor due to deformed rubber magnet

    Science.gov (United States)

    Lee, C. J.; Jang, G. H.

    2008-04-01

    This paper investigates the distortion of magnetic field of a brushless dc (BLDC) motor due to deformed rubber magnet. Global or local deformation of rubber magnet in the BLDC motor is mathematically modeled by using the Fourier series. Distorted magnetic field is calculated by using the finite element method, and unbalanced magnetic force is calculated by using the Maxwell stress tensor. When the rubber magnet is globally or locally deformed, the unbalanced magnetic force has the frequencies with the first harmonic and the harmonics of slot number ±1. However, the harmonic deformation with multiple of common divisor of pole and slot does not generate unbalanced magnetic force due to the rotational symmetry.

  4. Warm and dense stellar matter under strong magnetic fields

    CERN Document Server

    Rabhi, A; Providência, C

    2011-01-01

    We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino free and neutrino trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean field nuclear model, including the possibility of hyperon formation, is considered. A density dependent magnetic field with the magnitude $10^{15}$ G at the surface and not more than $3\\times 10^{18}$ G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that an hybrid protoneutron star will not evolve to a low mass blackhole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low mass blackhole.

  5. Improving magnet designs with high and low field regions

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays has to deliver high field regions in close proximity to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material used by 42% while increasing the difference in flux density between a high and a low field region by 45%.

  6. Magnetophoresis of diamagnetic microparticles in a weak magnetic field.

    Science.gov (United States)

    Zhu, Gui-Ping; Hejiazan, Majid; Huang, Xiaoyang; Nguyen, Nam-Trung

    2014-12-21

    Magnetic manipulation is a promising technique for lab-on-a-chip platforms. The magnetic approach can avoid problems associated with heat, surface charge, ionic concentration and pH level. The present paper investigates the migration of diamagnetic particles in a ferrofluid core stream that is sandwiched between two diamagnetic streams in a uniform magnetic field. The three-layer flow is expanded in a circular chamber for characterisation based on imaging of magnetic nanoparticles and fluorescent microparticles. A custom-made electromagnet generates a uniform magnetic field across the chamber. In a relatively weak uniform magnetic field, the diamagnetic particles in the ferrofluid move and spread across the chamber. Due to the magnetization gradient formed by the ferrofluid, diamagnetic particles undergo negative magnetophoresis and move towards the diamagnetic streams. The effects of magnetic field strength and the concentration of diamagnetic particles are studied in detail.

  7. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  8. Effect of Guiding Magnetic Field on Weibel Instability

    Institute of Scientific and Technical Information of China (English)

    LI Ji-Wei; PEI Wen-Bing

    2005-01-01

    @@ We derive a linear dispersion relation in the presence of a constant uniform guiding magnetic field parallel to the beam velocity direction, which shows a strong background magnetic field suppresses or even stabilizes the Weibel instability produced by two counter streams in electron-ion plasmas. The simulation results are in good agreement with the analytical ones. Also observed in the simulations are the suppression of electrostatic field, a higher level of saturation of self-generated magnetic field, and the apparent difference in phase space compared with those in the absence of guiding magnetic field.

  9. Induced static magnetic field by a cellular phone

    Science.gov (United States)

    Einat, M.; Yahalom, A.

    2011-08-01

    Recent claims regarding the safety of cellular phones suggest that weak static magnetic fields are induced around the phone, and this field and its gradients may pose a health risk to the user. An experiment was conducted to measure the induced static magnetic field around a cellular phone. 65 μT variations and 18 μT/cm gradients were measured in the magnetic field at 6 cm from the phone. An analytical model is derived to explain the results. The influence that the measured magnetic fields may have on the user is beyond the scope of this research.

  10. Magnetic investigation of zero-field-cooled dextran-coated magnetite-based magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil)]. E-mail: pcmor@unb.br; Santos, J.G. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil); Silveira, L.B. [Universidade de Brasilia, Instituto de Fisica, Fisica Aplicada, C.P. 004455, Campus Universitario, Brasilia-DF 70919 970 (Brazil); Nunes, W.C. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil); Sinnecker, J.P. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil); Novak, M.A. [Universidade Federal doRio de Janeiro, Instituto de Fisica, 21945-970, Rio de Janeiro-RJ (Brazil)

    2005-03-15

    In this study, we investigate the temperature dependence of the zero-field-cooled magnetization of a quasi-monodisperse dextran-coated magnetite-based magnetic fluid. The well-defined maximum in the magnetization versus temperature curve and its downshift with the applied external field is explained by a simple model considering thermally activated dynamics of the nanoparticles magnetic moment and the temperature dependence of the saturation magnetization.

  11. Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC

    Science.gov (United States)

    Velas, K. M.; Milroy, R. D.

    2012-10-01

    A translatable three-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, Bθ, and Bz at 30 radial positions. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Probe measurements are used to calculate the end-shorting torque and the rotating magnetic field (RMF) torque. The torque applied to the plasma is the RMF torque reduced by the shorting torque. An estimate of the plasma resistivity is made based on the steady state balance between the applied torque and the resistive torque. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Data from even- and odd-parity experiments will be presented. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n=0 components of the calculated fields to the 3-axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.

  12. The Effect of Varying Magnetic Field Gradient on Combustion Dynamic

    Science.gov (United States)

    Suzdalenko, Vera; Zake, Maija; Barmina, Inesa; Gedrovics, Martins

    2011-01-01

    The focus of the recent experimental research is to provide control of the combustion dynamics and complex measurements (flame temperature, heat production rate, and composition of polluting emissions) for pelletized wood biomass using a non-uniform magnetic field that produces magnetic force interacting with magnetic moment of paramagnetic oxygen. The experimental results have shown that a gradient magnetic field provides enhanced mixing of the flame compounds by increasing combustion efficiency and enhancing the burnout of volatiles.

  13. Magnetic Field Effects on Quantum-Dot Spin Valves

    Institute of Scientific and Technical Information of China (English)

    GAO Jin-Hua; SUN Qing-Feng; XIE Xin-Cheng

    2009-01-01

    We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss the collinear and noneollinear magnetic field effects, respectively. In the collinear magnetic field case, we find that the Zeeman splitting can induce a negative differential conductance (NDC), which is quite different from the one found in previous studies. It has a critical polarization in the parallel arrangement and will disappear in the antiparallel configuration. In the noncollinear magnetic field case, the current shows two plateaus and their angular dependence is analyzed. Although sometimes the two current plateaus have similar angular dependence, their mechanisms are different. Our formalism is also suitable for calculating the transport in magnetic molecules, in which the spin splitting is induced not by a magnetic field but by the intrinsic magnetization.

  14. The evolution of primordial magnetic fields since their generation

    Science.gov (United States)

    Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.

    2016-10-01

    We study the evolution of primordial magnetic fields in an expanding cosmic plasma. For this purpose we present a comprehensive theoretical model to consider the evolution of MHD turbulence that can be used over a wide range of physical conditions, including cosmological and astrophysical applications. We model different types of decaying cosmic MHD turbulence in the expanding Universe and characterize the large-scale magnetic fields in such a medium. Direct numerical simulations of freely decaying MHD turbulence are performed for different magnetogenesis scenarios: magnetic fields generated during cosmic inflation as well as electroweak and QCD phase transitions in the early Universe. Magnetic fields and fluid motions are strongly coupled due to the high Reynolds number in the early Universe. Hence, we abandon the simple adiabatic dilution model to estimate magnetic field amplitudes in the expanding Universe and include turbulent mixing effects on the large-scale magnetic field evolution. Numerical simulations have been carried out for non-helical and helical magnetic field configurations. The numerical results show the possibility of inverse transfer of energy in magnetically dominated non-helical MHD turbulence. On the other hand, decay properties of helical turbulence depend on whether the turbulent magnetic field is in a weakly or a fully helical state. Our results show that primordial magnetic fields can be considered as a seed for the observed large-scale magnetic fields in galaxies and clusters. Bounds on the magnetic field strength are obtained and are consistent with the upper and lower limits set by observations of extragalactic magnetic fields.

  15. MAGNETIC FIELDS IN A SAMPLE OF NEARBY SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Van Eck, C. L. [Department of Astrophysics, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Brown, J. C. [Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4 (Canada); Shukurov, A.; Fletcher, A., E-mail: c.vaneck@astro.ru.nl, E-mail: jocat@ucalgary.ca, E-mail: anvar.shukurov@ncl.ac.uk, E-mail: andrew.fletcher@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-01-20

    Both observations and modeling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed, but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider the statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and interstellar medium parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate, and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit a noticeable degree of correlation, suggesting a universal behavior of the degree of order in galactic magnetic fields. We also compare the predictions of galactic dynamo theory to observed magnetic field parameters and identify directions in which theory and observations might be usefully developed.

  16. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    Science.gov (United States)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  17. Iridate compound produces extraordinarily high coercive magnetic field

    Science.gov (United States)

    Zapf, Vivien; Topping, Craig; Kim, Jae-Wook; Mun, Eun-Deok; Goddard, Paul; Ghannadzadeh, Saman; Luo, Xuan; Cheong, Sang-Wook; Singleton, John

    2014-03-01

    We present a data on an iridate compound that shows an extraordinarily large magnetic hysteresis loop. The coercive magnetic field exceeds 40 Tesla in single-crystal samples. The hysteresis coexists with a linear background, and the total remanent magnetization is about half a Bohr magneton. We will discuss the emergence of these properties from the interplay of spin-orbit coupling, magnetic exchange and possible frustration. The single crystalline material exhibits a magnetic hysteresis loop for one orientation of the magnetic field and a smooth linear increase in the magnetization with field for the other. Measurements were conducted in 65 T short-pulse magnets and the 60 Tesla shaped-pulse magnet at the National High Magnetic Field Lab in Los Alamos. We do not observe any dependence of the magnetic hysteresis on magnetic field sweep rate. Compounds containing Ir4 + have attracted attention recently due to strong spin-orbit coupling that competes with crystal-electric field and exchange interactions. This competition can result in non-Hund's-rule ground states with unusual properties.

  18. Magnetic field tomography and differential Faraday rotation

    CERN Document Server

    Horellou, Cathy

    2014-01-01

    Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along its propagation path). In order to proceed reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper we examine how variations of the intrinsic angle of polarized emission chi0 with the Faraday depth phi within a source affect the observable quantities. Using simple models for the Faraday dispersion F(phi) and chi0(phi), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimised by combining observations in different wa...

  19. Magnetic field response sensor for conductive media

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2010-01-01

    A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.

  20. Theory of electrolyte crystallization in magnetic field

    DEFF Research Database (Denmark)

    Madsen, Hans Erik Lundager

    2007-01-01

    Crystallization from aqueous solution of a sparingly soluble electrolyte is accelerated by magnetic field if the crystalizing phase is a diamagnetic salt of a weak acid, and crystallization is from neutral or acid solution in ordinary (not heavy) water. Since the effect of Lorentz force...... is negligible, if not absent, the key property is likely to be the spin of protons which, by virtue of their half-integral spin, are fermions. An effect on crystal growth kinetics has been demonstrated, and the apparent effect on nucleation concerns the growth rate of nuclei. We are thus dealing with surface...... phenomena. The basis of the theory is a crystal model of a sparingly soluble salt with NaCl structure, where the ions are divalent, and the anion is a base. It is assumed that almost all the anions in the surface layer are protonized, and that an approaching metal ion pushes the proton away...

  1. Magnetic Field Amplification and Blazar Flares

    CERN Document Server

    Chen, Xuhui; Fossati, Giovanni; Pohl, Martin

    2013-01-01

    Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that gamma-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code, we evaluate several scenarios that may represent such phenomena. This code combines Monte Carlo method that tracks the radiative processes including inverse Compton scattering, and Fokker-Planck equation that follows the cooling and acceleration of particles. It is a comprehensive time dependent code that ful...

  2. Homogeneous Magnetic Field Source For Attenuated Total Reflection

    Directory of Open Access Journals (Sweden)

    Lesňák Michal

    2014-07-01

    Full Text Available The paper is focused on the study of two-dimensional magnetic field distribution used for an analysis of samples containing magnetically active films by means of the Attenuated Total Reflection (ATR method. The design of a proposed electromagnet and the magnetic field model computation are presented together with the results obtained from magnetic field distribution measurement. The ATR method can provide information about a thin film thickness, refractive index, and attenuation in addition to the perfunctory coupling of an optical wave into and off a waveguide [1, 2]. The prism coupling conditions are determined for magnetic structures with induced anisotropy.

  3. Fatigue life of metal treated by magnetic field

    Institute of Scientific and Technical Information of China (English)

    Liu Zhao-Long; Hu Hai-Yun; Fan Tian-You; Xing Xiu-San

    2009-01-01

    This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statis-tical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.

  4. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  5. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  6. Localized magnetic fields in arbitrary directions using patterned nanomagnets

    DEFF Research Database (Denmark)

    McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya

    2010-01-01

    Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 m...

  7. Variation of H 2 bond length with magnetic field

    Science.gov (United States)

    Misra, Anirban; Panda, Anirban

    2008-11-01

    We find a new effect, namely, the variation of the ratio of concentrations of ortho- and para-isomers of hydrogen in thermal equilibrium in a uniform external magnetic field with field strength and temperature, that can be observed experimentally. The observation can determine the variation of bond length with the magnetic field strength.

  8. Fiber optical magnetic field sensor for power generator monitoring

    Science.gov (United States)

    Willsch, Michael; Bosselmann, Thomas; Villnow, Michael

    2014-05-01

    Inside of large electrical engines such as power generators and large drives, extreme electric and magnetic fields can occur which cannot be measured electrically. Novel fiber optical magnetic field sensors are being used to characterize the fields and recognize inner faults of large power generators.

  9. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    Science.gov (United States)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  10. A component compensation method for magnetic interferential field

    Science.gov (United States)

    Zhang, Qi; Wan, Chengbiao; Pan, Mengchun; Liu, Zhongyan; Sun, Xiaoyong

    2017-04-01

    A new component searching with scalar restriction method (CSSRM) is proposed for magnetometer to compensate magnetic interferential field caused by ferromagnetic material of platform and improve measurement performance. In CSSRM, the objection function for parameter estimation is to minimize magnetic field (components and magnitude) difference between its measurement value and reference value. Two scalar compensation method is compared with CSSRM and the simulation results indicate that CSSRM can estimate all interferential parameters and external magnetic field vector with high accuracy. The magnetic field magnitude and components, compensated with CSSRM, coincide with true value very well. Experiment is carried out for a tri-axial fluxgate magnetometer, mounted in a measurement system with inertial sensors together. After compensation, error standard deviation of both magnetic field components and magnitude are reduced from more than thousands nT to less than 20 nT. It suggests that CSSRM provides an effective way to improve performance of magnetic interferential field compensation.

  11. Magnetic fields and chiral asymmetry in the early hot universe

    CERN Document Server

    Sidorenko, Maxim; Shtanov, Yuri

    2016-01-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending...

  12. The origin, evolution and signatures of primordial magnetic fields

    Science.gov (United States)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ˜  10-16 Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  13. On the generation of magnetic field enhanced microwave plasma line

    Science.gov (United States)

    Chen, Longwei; Zhao, Ying; Wu, Kenan; Wang, Qi; Meng, Yuedong; Ren, Zhaoxing

    2016-12-01

    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line.

  14. The origin, evolution and signatures of primordial magnetic fields.

    Science.gov (United States)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  15. Adsorption Capacity of Kaolinite for Copper (II) under Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    DONG Wei

    2004-01-01

    The adsorption of Cu2+ on kaolinite under magnetic field was studied at 25℃.The magnetic effects were investigated by designing the variation of exposure time,magnetic flux density and the method of magnetic exposure.The results from these study show that the magnetic treatment significantly enhance the fraction of adsorption of Cu2+,the adsorption of Cu2+ by kaolinite increases with the increase of pH value from 2 to 6.Both the magnetic exposure time and the magnetic flux density promote the fraction of adsorption Cu2+ on kaolinite.

  16. Improved Reconstruction of Dipole Directions from Spherical Magnetic Field Measurements

    CERN Document Server

    Gerhards, Christian

    2016-01-01

    Reconstructing magnetizations from measurements of the generated magnetic potential is highly non-unique. The matter of uniqueness can be improved, but not entirely resolved, by the assumption that the magnetization is locally supported. Here, we focus on the case that the magnetization is additionally assumed to be induced by an ambient magnetic dipole field, i.e., the task is to reconstruct the dipole direction as well as the susceptibility of the magnetic material. We investigate uniqueness issues and provide a reconstruction procedure from given magnetic potential measurements on a spherical surface.

  17. Using Gravitational Waves to put limits on Primordial Magnetic Fields

    CERN Document Server

    Garrison, David

    2016-01-01

    We describe a technique for using simulated tensor perturbations in order to place upper limits on the intensity of magnetic fields in the early universe. As an example, we apply this technique to the beginning of primordial nucleosynthesis. We determined that any magnetic seed fields that existed before that time were still in the process of being amplified. In the future, we plan to apply this technique to a wider range of initial magnetic fields and cosmological epochs.

  18. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-03-31

    The case of axisymmetric ILC type cavities with titanium helium vessels is investigated. A first order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  19. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    Science.gov (United States)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  20. A sensitive magnetic field sensor using BPSCCO thick film

    Indian Academy of Sciences (India)

    S Vijay Srinivas; Abhijit Ray; T K Dey

    2001-08-01

    A highly sensitive magnetic sensor operating at liquid nitrogen temperature and based on BPSCCO screen-printed thick film, is reported. The sensor resistance for an applied magnetic field of 100 × 10–4T(100 gauss) exhibits an increase by 360% of its value in zero field at 77.4 K. The performance of the sensor in presence of magnetic field, the hysteretic features and the effect of thermal cycling, has been discussed.