WorldWideScience

Sample records for oceanic spreading developed

  1. Age, spreading rates, and spreading asymmetry of the world's ocean crust

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...

  2. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    Science.gov (United States)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  3. Birth of an oceanic spreading center at a magma-poor rift system.

    Science.gov (United States)

    Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto

    2017-11-08

    Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.

  4. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    Science.gov (United States)

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.

  5. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean

    Science.gov (United States)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine

    2010-05-01

    The rate of magma and crustal production at mid-ocean ridges is thought to decrease with decreasing spreading rate. At ultraslow spreading rates below 10-20 mm/y full rate, heat loss by conduction greatly reduces melt production with less melt produced at increasingly greater depths. Gakkel Ridge, the actively spreading mid-ocean ridge in the Arctic Ocean, opens at rates of 14 mm/y in the west decreasing to less than 6 mm/y at its eastern termination and demonstrates that magma production is not only a function of spreading rate. Whereas amagmatic spreading takes place at rates of about 12-10 mm/y, focussed melt production occurs at even lower spreading rates in long-lived discrete volcanic centres. One such centre is the 85°E volcanic complex at eastern Gakkel ridge where in 1999 a teleseismically recorded earthquake swarm consisting of more than 250 earthquakes over 9 months signalled the onset of an active spreading episode. The earthquake swarm is believed to be associated with volcanic activity although no concurrent lava effusion was found. We analysed the teleseismic earthquake swarm together with visual observation and microseismic data recorded at this site in 2001 and 2007 and noted the following characteristics which may be indicative for volcanic spreading events at the still poorly explored ultraslow spreading ridges: - unusual duration: The 1999 earthquake swarm lasted over 9 months rather than a few weeks as observed on faster spreading ridges. In addition, in 2001 seismoacoustic sounds which we interpret as gas discharge in Strombolian eruptions and a giant event plume maintained over more than one year indicate waxing and waning volcanic activity since 1999. - unusual strength: The earthquake swarm was detected at teleseismic distances of more than 1000 km and included 11 events with a magnitude >5. No other confirmed mid-ocean ridge eruption released a comparable seismic moment. Rather than focussing in a narrow area or showing pronounced

  6. Slow spreading ridges of the Indian Ocean: An overview of marine geophysical investigations

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Mudholkar, A.V.; Samudrala, K.

    Sparse and non-availability of high resolution geophysical data hindered the delineation of accurate morphology, structural configuration, tectonism and spreading history of Carlsberg Ridge (CR) and Central Indian Ridges (CIR) in the Indian Ocean...

  7. Late Cretaceous and Cenozoic seafloor and oceanic basement roughness: Spreading rate, crustal age and sediment thickness correlations

    Science.gov (United States)

    Bird, Robert T.; Pockalny, Robert A.

    1994-05-01

    Single-channel seismic data from the South Australian Basin and Argentine Basin, and bathymetry data from the flanks of the Mid-Atlantic Ridge, East Pacific Rise and Southwest Indian Ridge are analysed to determine the root-mean-square (RMS) roughness of the seafloor and oceanic basement created at seafloor spreading rates ranging from 3 to 80 km/Ma (half-rate). For these data, crustal ages range from near zero to 85 Ma and sediment thicknesses range from near zero to over 2 km. Our results are consistent with a negative correlation of basement roughness and spreading rate where roughness decreases dramatically through the slow-spreading regime (oceanic basement roughness and spreading rate appears to have existed since the late Cretaceous for slow and intermediate spreading rates, suggesting that the fundamental processes creating abyssal hill topography may have remained the same for this time period. Basement roughness does not appear to decrease (smooth) with increasing crustal age, and therefore off-ridge degradation of abyssal hill topography by mass wasting is not detected by our data. Seismic data reveal that sediment thickness increases with increasing crustal age in the South Australian Basin and Argentine Basin, but not monotonically and with significant regional variation. We show that minor accumulations of sediment can affect roughness significantly. Average sediment accumulations of less that 50 m (for our 100 km long sample seismic profiles and half-spreading rates ocean ridges.

  8. Formation of fast-spreading lower oceanic crust as revealed by a new Mg-REE coupled geospeedometer

    Science.gov (United States)

    Sun, Chenguang; Lissenberg, C. Johan

    2018-04-01

    A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998-1353 °C with cooling rates of 0.003-10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.

  9. Ocean, Spreading Centre

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.

    over the global midoceanic ridges have found some explicit relationships between spreading rate, seismic structure, and ridge-axis morphology. Bibliography Detrick, R. S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., and Brocher, T., 1987...

  10. Revisiting Seafloor-Spreading in the Red Sea: Basement Nature, Transforms and Ocean-Continent Boundary

    Science.gov (United States)

    Tapponnier, P.; Dyment, J.; Zinger, M. A.; Franken, D.; Afifi, A. M.; Wyllie, A.; Ali, H. G.; Hanbal, I.

    2013-12-01

    A new marine geophysical survey on the Saudi Arabian side of the Red Sea confirms early inferences that ~ 2/3 of the eastern Red Sea is floored by oceanic crust. Most seismic profiles south of 24°N show a strongly reflective, landward-deepening volcanic basement up to ~ 100 km east of the axial ridge, beneath thick evaporitic deposits. This position of the Ocean-Continent Boundary (OCB) is consistent with gravity measurements. The low amplitudes and long wavelengths of magnetic anomalies older than Chrons 1-3 can be accounted for by low-pass filtering due to thick sediments. Seafloor-spreading throughout the Red Sea started around 15 Ma, as in the western Gulf of Aden. Its onset was coeval with the activation of the Aqaba/Levant transform and short-cutting of the Gulf of Suez. The main difference between the southern and northern Red Sea lies not in the nature of the crust but in the direction and modulus of the plate motion rate. The ~ 30° counterclockwise strike change and halving of the spreading rate (~ 16 to ~ 8 mm/yr) between the Hermil (17°N) and Suez triple junctions results in a shift from slow (≈ North Atlantic) to highly oblique, ultra-slow (≈ Southwest Indian) ridge type. The obliquity of spreading in the central and northern basins is taken up by transform discontinuities that stop ~ 40 km short of the coastline, at the OCB. Three large transform fault systems (Jeddah, Zabargad, El Akhawein) nucleated as continental transfer faults reactivating NNE-trending Proterozoic shear zones. The former two systems divide the Red Sea into three main basins. Between ~15 and ~5 Ma, for about 10 million years, thick evaporites were deposited directly on top of oceanic crust in deep water, as the depositional environment, modulated by climate, became restricted by the Suez and Afar/Bab-el-Mandeb volcano-tectonic 'flood-gates.' The presence of these thick deposits (up to ~ 8 km) suffices to account for the difference between the Red Sea and the Gulf of Aden

  11. 40Ar/39Ar dating of oceanic plagiogranite: Constraints on the initiation of seafloor spreading in the South China Sea

    Science.gov (United States)

    Zhong, Li-Feng; Cai, Guan-Qiang; Koppers, Anthony A. P.; Xu, Yi-Gang; Xu, He-Hua; Gao, Hong-Fang; Xia, Bin

    2018-03-01

    The Cenozoic opening of the South China Sea was one of the most significant tectonic events in SE Asia, coinciding with complex regional rifting, subduction, terrane collision, and large-scale continental strike-slip faulting. The timing of the initiation of seafloor spreading in the South China Sea remains controversial due to a scarcity of incontrovertible age data. This work provides the first report of an oceanic plagiogranite from the Penglai Seamount, located on the 17°N fossil spreading center of the East Sub-basin of the South China Sea, near the Manila Trench. Pyroxene and whole-rock 40Ar/39Ar dating yields ages of 32.3 ± 0.5 Ma and 28.9 ± 1.9 Ma, respectively. The plagiogranite show trace element and isotopic composition similar to those of mid-oceanic ridge basalts (MORB), with 87Sr/86Sr(t) = 0.70394; εNd(t) = 8.21; 206Pb/204Pb = 17.9930, 207Pb/204Pb = 15.4839, 208Pb/204Pb = 37.8852; εHf(t) = 20.95; and γOs(t) = 15.89. It suggested that the rock formed due to differential cooling between adjacent layers of oceanic crust and asthenospheric shearing at the oceanic spreading ridge, resulting in the development of detachment faults. This triggered the subsequent ingress of seawater along the faults, which transformed into a hydrothermal fluid under the influence of shear and geothermal heating, altering the parent gabbro, and leading to the generation of the daughter plagiogranite by anatexis during the early Oligocene. This new geochronology also demonstrates that the initial opening of the South China Sea occurred before 32 Ma, thereby constraining the Cenozoic tectonic evolution of Southeast Asia.

  12. Evolution of spreading rate and H2 production by serpentinization at mid-ocean ridges from 200 Ma to Present

    Science.gov (United States)

    Andreani, M.; García del Real, P.; Daniel, I.; Wright, N.; Coltice, N.

    2017-12-01

    Mid-oceanic ridge (MOR) spreading rate spatially varies today from 20 to 200 mm/yr and geological records attest of important temporal variations, at least during the past 200 My. The spreading rate has a direct impact on the mechanisms accomodating extension (magmatic vs tectonic), hence on the nature of the rocks forming the oceanic lithosphere. The latter is composed of variable amount of magmatic and mantle rocks, that dominate at fast and (ultra-) slow spreading ridges, respectively. Serpentinization of mantle rocks contributes to global fluxes and notably to those of hydrogen and carbon by providing a pathways for dihydrogen (H2) production, carbone storage by mineralization, and carbon reduction to CH4 and possibly complex organic compounds. Quantification of the global chemical impact of serpentinization through geological time requires a coupling of geochemical parameters with plate-tectonic reconstructions. Here we quantify serpentinization extent and concurrent H2 production at MOR from the Jurassic (200 Ma) to present day (0 Ma). We coupled mean values of relevant petro-chemical parameters such as the proportion of mantle rocks, initial iron in olivine, iron redox state in serpentinites, % of serpentinization to high-resolution models of plate motion within the GPlates infrastructure to estimate the lengths in 1 Myr intervals for the global MOR plate boundary (spreading and transform components), and spreading ridges as a function of their rate. The model sensitivity to selected parameters has been tested. The results show that fragmentation of Pangea resulted in elevated H2 rates (>1012 to 1013 mol/yr) starting at 160 Ma compared to Late Mesozoic (<160 Ma) rates (<1011-1012 mol/yr). From 160 Ma to present, the coupled opening of the Atlantic and Indian oceans as well as the variation in spreading rates maintained H2 generation in the 1012 mol/yr level, but with significant excursions mainly related to the length of ultra-slow spreading segments. For

  13. A holistic model for the role of the axial melt lens at fast-spreading mid-ocean ridges

    Science.gov (United States)

    MacLeod, C. J.; Loocke, M. P.; Lissenberg, J. C. J.

    2016-12-01

    Axial melt lenses (AML) are melt or crystal mush1 bodies located at the dyke-gabbro transition beneath intermediate- and fast-spreading mid-ocean ridges (MORs)2,3. Although it is generally thought that AMLs play a major role in the storage and differentiation of mid-ocean ridge basalts (MORB)1, the melt compositions within the AML and its role in the accretion of the lower crust are heavily debated4-6. Here we present the first comprehensive study of the AML horizon at a fast-spreading MOR (Hess Deep, equatorial Pacific Ocean). We show that plagioclase and pyroxene within the AML are much too evolved to be in equilibrium with MORB, with mean An (54.85) and Mg# (65.01) consistent with derivation from basaltic andesite to andesite melts (Mg# 43-26). We propose that, in between decadal eruptions, the AML is predominantly crystal mush and is fed by small volumes of evolved interstitial melts. Short-lived, focused injection of primitive melt leads to mixing of primitive melts with the extant highly fractionated melt, and triggers eruptions. This model reconciles the paradoxical compositional mismatch between the volcanic and plutonic records with the geophysical characteristics of the AML, the short residence times of Pacific MORB phenocrysts, and the incompatible trace element over-enrichments in MORB. 1Marjanović, M. et al., 2015. Distribution of melt along the East Pacific Rise from 9°30' to 10°N from an amplitude variation with angle of incidence (AVA) technique. Geophys. J. Int. 203. 2Detrick, R. S. et al., 1987. Multi-channel seismic imaging of a crustal magma chamber along the EPR. Nature 326. 3Sinton, J. M. & Detrick, R. S., 1992. Mid-ocean ridge magma chambers. J. Geophys. Res. 97. 4Coogan, L. A., Thompson, G. & MacLeod, C. J., 2002. A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos 63. 5Pan, Y. & Batiza, R., 2002. Mid-ocean ridge magma

  14. Stagnation and Storage of Strongly Depleted Melts in Slow-Ultraslow Spreading Oceans: Evidence from the Ligurian Tethys

    Science.gov (United States)

    Piccardo, Giovanni; Guarnieri, Luisa; Padovano, Matteo

    2013-04-01

    Our studies of Alpine-Apennine ophiolite massifs (i.e., Lanzo, Voltri, Ligurides, Corsica) show that the Jurassic Ligurian Tethys oceanic basin was a slow-ultraslow spreading basin, characterized by the exposures on the seafloor of mantle peridotites with extreme compositional variability. The large majority of these peridotites are made of depleted spinel harzburgites and plagioclase peridotites. The former are interpreted as reactive peridotites formed by the reactive percolation of under-saturated, strongly trace element depleted asthenospheric melts migrated by porous flow through the mantle lithosphere. The latter are considered as refertilized peridotites formed by peridotite impregnation by percolated silica-saturated, strongly trace element depleted melts. Strongly depleted melts were produced as low-degrees, single melt increments by near fractional melting of the passively upwelling asthenosphere during the rifting stage of the basin. They escaped single melt increment aggregation, migrated isolated through the mantle lithosphere by reactive porous or channeled flow before oceanic opening, and were transformed into silica-saturated derivative liquids that underwent entrapment and stagnation in the shallow mantle lithosphere forming plagioclase-enriched peridotites. Widespread small bodies of strongly depleted gabbro-norites testify for the local coalescence of these derivative liquids. These melts never reached the surface (i.e., the hidden magmatism), since lavas with their composition have never been found in the basin. Subsequently, aggregated MORB melts upwelled within replacive dunite channels (as evidenced by composition of magmatic clinopyroxenes in dunites), intruded at shallow levels as olivine gabbro bodies and extruded as basaltic lavas, to form the crustal rocks of the oceanic lithosphere (i.e., the oceanic magmatism). Km-scale bodies of MORB olivine gabbros were intruded into the plagioclase-enriched peridotites, which were formed in the

  15. Average spreading and beam quality evolution of Gaussian array beams propagating through oceanic turbulence

    International Nuclear Information System (INIS)

    Zhi, Dong; Chen, Yizhu; Tao, Rumao; Ma, Yanxing; Zhou, Pu; Si, Lei

    2015-01-01

    The propagation properties of a radial Gaussian beam array through oceanic turbulence are studied analytically. The analytical expressions for the average intensity and the beam quality (power-in-the-bucket (PIB) and M 2 -factor) of a radial beam array in a turbulent ocean are derived based on an account of statistical optics methods, the extended Huygens-Fresnel principle, and the second order moments of the Wigner distribution function. The influences of w, ε, and χ T on the average intensity are investigated. The array divergence increases and the laser beam spreads as the salinity-induced dominant, ε decreased, and χ T increased. Further, the analytical expression of PIB and the M 2 -factor in the target plane is obtained. The changes of PIB and the M 2 -factor with three oceanic turbulence parameters indicate that the stronger turbulence with a larger w, smaller ε, and larger χ T results in the value of PIB decreasing, the value of the M 2 -factor increasing, and the beam quality degrading. (letter)

  16. Watermass structure in the western Indian Ocean - Part 2. The spreading and transformation of the Persian Gulf water

    Digital Repository Service at National Institute of Oceanography (India)

    Premchand, K.; Sastry, J.S.; Murty, C.S.

    The spreading and the transformation of the Persian Gulf Watermass (PGW) in the Arabian Sea and the Indian Ocean have been presented. The core layer of this watermass is found in the depth range of 250-300 m over most of the Arabian Sea with a...

  17. Development of Pistachio (Pistacia vera L.) spread.

    Science.gov (United States)

    Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling

    2013-03-01

    Pistachio nut (Pistacia vera L.) is one of the most delicious and nutritious nuts in the world. Pistachio spreads were developed using pistachio paste as the main component, icing sugar, soy protein isolate (SPI), and red palm oil (RPO), at different ratios. The highest mean scores of all the sensory attributes were depicted by spreads that were made without addition of SPI. It was found that the work of shear was 0 to 11.0 kg s for an acceptable spread. Sensory spreadability, overall texture, spreadability, and overall acceptability were negatively correlated (R > 0.83) with the work of shear of spreads. The findings indicated that the presence of RPO had a direct effect on the viscoelastic behavior of the pistachio spreads. The a values, which are related to the green color of the pistachio product ranged from 1.7 to 3.9 for spread without addition of RPO, and 4.0 to 5.3 in the presence of RPO. The development of pistachio spread would potentially increase the food uses of pistachio and introduce consumers with a healthier snack food. © 2013 Institute of Food Technologists®

  18. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  19. Tectonic microplates in a wax model of sea-floor spreading

    International Nuclear Information System (INIS)

    Katz, Richard F; Ragnarsson, Rolf; Bodenschatz, Eberhard

    2005-01-01

    Rotating, growing microplates are observed in a wax analogue model of sea-floor spreading. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. Based on the wax observations, a theory for the nucleation of overlapping spreading centres, the precursors of tectonic microplates, is developed

  20. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    Science.gov (United States)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the

  1. Pito Deep reveals spatial/temporal variability of accretionary processes in the lower oceanic crust at fast-spread MOR

    Science.gov (United States)

    John, B. E.; Cheadle, M. J.; Gee, J. S.; Coogan, L. A.; Gillis, K. M.

    2017-12-01

    During January and February 2017, the 42-day RV Atlantis PMaG cruise mapped and sampled in-situ fast spread lower crust for 35 km along a flow line at Pito Deep Rift (northeastern Easter microplate). There, ridge-perpendicular escarpments bound Pito Deep and expose up to 3 km sections of crust parallel to the paleo-spreading direction, providing a unique opportunity to test models for the architecture of fast spread lower ocean crust (the plutonic section). Shipboard operations included a >57,000 km2 multi-beam survey; ten Sentry dives over 70 km2 (nominal m-scale resolution) to facilitate acquisition of detailed magnetic and bathymetric data, and optimize Jason II dive siting for rock sampling and geologic mapping; nine Jason II dives in 4 areas, recovering >400 samples of gabbroic lower crust, of which 80% are approximately oriented. Combined Sentry mapping and Jason II sampling and imaging of one area, provides the most detailed documentation of in situ gabbroic crust (>3 km2 of seafloor, over 1000+m vertical section) ever completed. Significantly, the area exposes distinct lateral variation in rock type: in the west 100m of Fe-Ti oxide rich gabbroic rocks overly gabbro and olivine gabbro; however, to the east, exposures of primitive, layered troctolitic rocks extend to within 100m below the dike-gabbro transition. Equivalent troctolitic rocks are found 13 km to the southeast parallel to a flow line, implying shallow primitive rocks are a characteristic feature of EPR lower crust at this location. The high-level position of troctolitic rocks is best explained by construction in a shallow, near steady-state melt lens at a ridge segment center, with some form of gabbro glacier flow active during formation of at least the uppermost lower ocean crust (Perk et al., 2007). Lateral variation in rock type (adjacent oxide gabbro, gabbro, olivine-rich gabbro and troctolite) over short distances taken with complexity in magmatic fabric orientation (mineral and grain size

  2. Ocean heat content variability and change in an ensemble of ocean reanalyses

    Science.gov (United States)

    Palmer, M. D.; Roberts, C. D.; Balmaseda, M.; Chang, Y.-S.; Chepurin, G.; Ferry, N.; Fujii, Y.; Good, S. A.; Guinehut, S.; Haines, K.; Hernandez, F.; Köhl, A.; Lee, T.; Martin, M. J.; Masina, S.; Masuda, S.; Peterson, K. A.; Storto, A.; Toyoda, T.; Valdivieso, M.; Vernieres, G.; Wang, O.; Xue, Y.

    2017-08-01

    Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0-300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993-2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997-2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997-2009. Annual time series of global and hemispheric OHC change for 0-700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization `shock' over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (±1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady

  3. Modes and implications of mantle and lower-crust denudation at slow-spreading mid-ocean ridges

    Science.gov (United States)

    Schroeder, Timothy John

    Slow-spreading mid-ocean ridges (Cann, 1993, Cannat, 1993). Extension at mid-ocean ridges is most commonly manifested by slip on high angle (˜60°) normal faults that dip into, and define the rift valley walls (Smith and Cann, 1993). Less commonly, extension occurs by long periods of slip along low-angle normal faults that penetrate to structurally deep levels of oceanic lithosphere and denude gabbro and/or pendotite to the seafloor in domal massifs termed "oceanic core complexes" (Dick et al., 1981; Dick et al., 1991; Tucholke et al., 1998; Mutter and Karson, 1992; Cann et al., 1997; MacLeod et al., 2002). This dissertation addresses processes and implications of tectonic extension at two oceanic core complexes. Atlantis Massif (30°N, Mid-Atlantic Ridge) is formed dominantly of serpentinized peridotite with lesser gabbro, and Atlantis Bank (57°E, Southwest Indian Ridge) is dominated by gabbro. Localization of brittle strain at Atlantis Massif occurred by reaction-softening processes associated with metasomatic alteration of peridotite and serpentmite to amphibole-, chlorite- and talc-bearing assemblages. Ductile strain at Atlantis Massif and Atlantis Bank is localized into intervals of highly-fractionated, oxide-rich gabbro. Two-oxide geothermometry of gabbro indicates that it was not penetratively deformed below ˜500°C. Denuded peridotite at Atlantis Massif is host to hydrothermal circulation driven in part by exothermic serpentinization reactions. Serpentinization decreases the seismic velocity of peridotite and leads to acquisition of a magnetic signature. Venting of highly-alkaline, methane- and hydrogen-rich serpentinization-derived fluids leads to lithification of seafloor carbonate ooze by precipitation of carbonate cement in a zone of mixing with "normal" seawater. This process may be the primary depositional mechanism of ophicalcite deposits and likely occurs wherever peridotite is exposed near the Earth's surface and is fractured to permit water

  4. Paleocene on-spreading-axis hotspot volcanism along the Ninetyeast Ridge: An interaction between the Kerguelen hotspot and the Wharton spreading center

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Gopala Rao, D.; SubbaRaju, L.V.; Chaubey, A.K.; Shcherbakov, V.S.; Pilipenko, A.I.; Murthy, I.V.R.

    with magnetic lineations and abondoned spreading centers of the eastern Indian Ocean and seismic structure and radiometric dates of the Ninetyeast Ridge. Furthermore, it is supported by the occurrence of oceanic andesites at Deep Sea Drilling Project (DSDP) Site...

  5. 3D Gravimetric Modeling of the Spreading System North and Southeast of the Rodriguez Triple Junction (Indian Ocean)

    Science.gov (United States)

    Heyde, I.; Girolami, C.; Barckhausen, U.; Freitag, R.

    2017-12-01

    Hydrothermal vent fields along mid-ocean ridges can be metal-rich and thus of great importance for the industries in the future. By order of the German Federal Ministry of Economics and in coordination with the International Seabed Authority (ISA), BGR explores potential areas of the active spreading system in the Indian Ocean. A main goal is the identification of inactive seafloor massive sulfides (SMS) with the aid of modern exploration techniques. Important contributions could be expected from bathymetric, magnetic, and gravity datasets, which can be acquired simultaneously time from the sea surface within relatively short ship time. The area of interest is located between 21°S and 28°S and includes the southern Central Indian Ridge (CIR) and the northern Southeast Indian Ridge (SEIR). In this study we analyzed the marine gravity and bathymetric data acquired during six research cruises. The profiles running perpendicular to the ridge axis have a mean length of 60 km. Magnetic studies reveal that the parts of the ridges covered are geologically very young with the oldest crust dating back to about 1 Ma. To extend the area outside the ridges, the shipboard data were complemented with data derived from satellite radar altimeter measurements. We analyzed the gravity anomalies along sections which cross particular geologic features (uplifted areas, accommodation zones, hydrothermal fields, and areas with hints for extensional processes e.g. oceanic core complexes) to establish a correlation between the gravity anomalies and the surface geology. Subsequently, for both ridge segments 3D density models were developed. We started with simple horizontally layered models, which, however, do not explain the measured anomalies satisfyingly. The density values of the crust and the upper mantle in the ridge areas had to be reduced. Finally, the models show the lateral heterogeneity and the variations in the thickness of the oceanic crust. There are areas characterized by

  6. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program

    Science.gov (United States)

    Behrmann, J.H.; Lewis, S.D.; Cande, S.C.

    1994-01-01

    An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction

  7. Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres

    Science.gov (United States)

    Koski, R.A.

    1983-01-01

    Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (stacked sequences of pillow basalt and sheet flows, the sea-floor underlying numerous deposits in Guaymas Basin consists of diatomaceous ooze and terrigenous clastic sediment that is intruded by diabase

  8. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  9. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    Science.gov (United States)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective

  10. Sovereign bonds in developing countries: Drivers of issuance and spreads

    Directory of Open Access Journals (Sweden)

    Andrea F. Presbitero

    2016-06-01

    Full Text Available In the last decade there has been a new wave of sovereign bond issuances in Africa. What determines the ability of developing countries to issue bonds in international capital and what explains the spreads on these bonds? This paper examines these questions using a dataset that includes 105 developing countries during the period 1995–2014. We find that a country is more likely to issue a bond when, in comparison with non-issuing peers, it is larger in economic size, has higher per capita GDP, a lower public debt, and a more effective government. Spreads on sovereign bonds are lower for countries with strong external and fiscal positions, as well as robust economic growth and government effectiveness. We also find that primary spreads for the average Sub-Saharan African issuer are higher than in other regions. With regard to global factors, our results confirm the existing evidence that issuances are more likely during periods of global liquidity and high commodity prices, especially for Sub-Saharan African countries, and spreads are higher in periods of higher market volatility.

  11. A Practical Point Spread Model for Ocean Waters

    National Research Council Canada - National Science Library

    Hou, Weilin; Gray, Deric; Weidemann, Alan D; Arnone, Robert A

    2008-01-01

    .... These inherent optical properties (IOP), although measured frequently due to their important applications in ocean optics, especially in remote sensing, cannot be applied to underwater imaging issues directly, since they inherently reflect the chance of the single scattering.

  12. Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading

    Science.gov (United States)

    Prouhet, T.; Cook, J.

    2006-12-01

    Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.

  13. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  14. Development and validation of a physics-based urban fire spread model

    OpenAIRE

    HIMOTO, Keisuke; TANAKA, Takeyoshi

    2008-01-01

    A computational model for fire spread in a densely built urban area is developed. The model is distinct from existing models in that it explicitly describes fire spread phenomena with physics-based knowledge achieved in the field of fire safety engineering. In the model, urban fire is interpreted as an ensemble of multiple building fires; that is, the fire spread is simulated by predicting behaviors of individual building fires under the thermal influence of neighboring building fires. Adopte...

  15. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

  16. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    Science.gov (United States)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  17. Tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    International Nuclear Information System (INIS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus

  18. Revised South China Sea spreading history based on macrostructure analysis of IODP Expedition 349 core samples and geophysical data

    Science.gov (United States)

    Sun, Z.; Ding, W.; Zhao, X.; Qiu, N.; Lin, J.; Li, C.

    2017-12-01

    In Internaltional Ocean Discovery Program (IODP) Expedition 349, four sites were drilled and cored successfully in the South China Sea (SCS). Three of them are close to the central spreading ridge (Sites U1431, U1433 and U1434), and one (Site U1435) is located on an outer rise,,providingsignificant information on the spreading history of the SCS.In order to constrain the spreading historymore accurately with the core results, we analyzed the identifiable macrostructures (over 300 fractures, veins and slickensides)from all the consolidated samples of these four drill sites. Then we made a retrograde reconstruction of the SCS spreading history with the constraints of the estimated fractures and veins, post-spreading volcanism,seismic interpretation, as well as free-air gravity and magnetic anomaly and topography analysis. Our study indicates that the spreading of the SCS experienced at least one ridge jump event and two events of ridge orientation and spreading direction adjustment, which mademagnetic anomaly orientation, ridge positionand facture zone directionskeep changing in the South China Sea. During the last spreading stage, the spreading direction was north-southward but lasted for a very short time period. The oceanic crust is wider in the eastern SCS and tapers out toward west.Due to the subductionof SCS beneath the Philippine Sea plate, the seafloor began to develop new fractures:the NWW-to EW-trending R' shear faults and the NE-trending P faultsbecame dominant faults and controlled the eruption of post-drift volcanism.

  19. Geochemical implications of gabbro from the slow-spreading Northern Central Indian Ocean Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, Dwijesh; Misra, S.; Banerjee, R.; Weis, D.

    ., 1989) and the dynamics of crystallization of plutonic rocks (Bloomer et al., 1989; Meyer et al., 1989). The recovery of gabbroic rocks is mostly restricted to major transform faults or fracture zones transecting mid-ocean ridges, e.g., Mid... gabbro of Indian Ocean Ridge System (Fig 1) is ODP leg 118 from SWIR (Dick et al., 2002; Coogan et al, 2001). Gabbro from Leg 179 (ODP Hole 735B from Atlantis II fracture zone, Dick et al., 2000) and Leg 179 (Hole 1105A) near Leg 118 have also been...

  20. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  1. Global equivalent magnetization of the oceanic lithosphere

    Science.gov (United States)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  2. Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctic

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Ramprasad, T.; Desa, M.

    evolution of the Indian Ocean and the pa- laeoposition of the continents surrounding this ocean basin. However, the early evolution of the northeastern Indian Ocean remained poorly con- strained due to inadequate geophysical data and lack of age information... (supposed to be a con- jugate of the Bay of Bengal). Some of the earlier workers [21,23,24,33,34] expressed that the sea- £oor spreading in the south Atlantic and between India and Antarctica appears to have been de- Fig. 1. Reconstruction of India...

  3. Initial spread of {sup 137}Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf. A study using a high-resolution, global-coastal nested ocean model

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Z. [Sun Yat-Sen Univ., Guangzhou (China). School of Marine Sciences; Univ. of Massachusetts-Dartmouth, New Bedford, MA (United States). School for Marine Science and Technology; Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, Guangzhou (China); Chen, C.; Lin, H. [Univ. of Massachusetts-Dartmouth, New Bedford, MA (United States). School for Marine Science and Technology; Shanghai Ocean Univ. (China). International Center for Marine Studies; Beardsley, R. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Physical Oceanography; Ji, R. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Biology; Shanghai Ocean Univ. (China). International Center for Marine Studies; Sasaki, J. [The Univ. of Tokyo, Kashiwa (Japan). Dept. of Socio-Cultural Environmental Studies; Lin, J. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Geology and Geophysics

    2013-07-01

    The 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tohoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide {sup 137}Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of {sup 137}Cs over the eastern shelf of Japan. The {sup 137}Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March-31 August 2011. The results clearly show that for the same {sup 137}Cs discharge, the model-predicted spreading of {sup 137}Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∝2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of {sup 137}Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∝5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the {sup 137}Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of {sup 137}Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of {sup 137}Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of {sup 137}Cs in the ocean.

  4. Collapsed Thunderstorm, Southwest Pacific Ocean

    Science.gov (United States)

    1992-01-01

    This collapsed thunderstorm was observed over the open ocean (9.0N, 120.0E) between the Philippine island of Mindoro and Borneo, Malaysia. The cleared area in the center is the result of the clouds being driven from there by the sudden rush of katabatic air spreading downward and outward from the dying thunderstorm. Around the edges of the downdrafted air, new though smaller storms are developing. The two small coral atolls are the Tubbataha Reefs.

  5. Ocean Observatories and the Integrated Ocean Observing System, IOOS: Developing the Synergy

    Science.gov (United States)

    Altalo, M. G.

    2006-05-01

    The National Office for Integrated and Sustained Ocean Observations is responsible for the planning, coordination and development of the U.S. Integrated Ocean Observing System, IOOS, which is both the U.S. contribution to GOOS as well as the ocean component of GEOSS. The IOOS is comprised of global observations as well as regional coastal observations coordinated so as to provide environmental information to optimize societal management decisions including disaster resilience, public health, marine transport, national security, climate and weather impact, and natural resource and ecosystem management. Data comes from distributed sensor systems comprising Federal and state monitoring efforts as well as regional enhancements, which are managed through data management and communications (DMAC) protocols. At present, 11 regional associations oversee the development of the observing System components in their region and are the primary interface with the user community. The ocean observatories are key elements of this National architecture and provide the infrastructure necessary to test new technologies, platforms, methods, models, and practices which, when validated, can transition into the operational components of the IOOS. This allows the IOOS to remain "state of the art" through incorporation of research at all phases. Both the observatories as well as the IOOS will contribute to the enhanced understanding of the ocean and coastal system so as to transform science results into societal solutions.

  6. Red Sea Outflow Experiment (REDSOX): Descent and initial spreading of Red Sea Water in the northwestern Indian Ocean

    Science.gov (United States)

    Bower, A.; Johns, W.; Peters, H.; Fratantoni, D.

    2003-04-01

    Two comprehensive surveys were carried out during 2001 to investigate the dense overflow and initial spreading of Red Sea Water (RSW) in the Gulf of Aden. The cruises were timed to coincide with the climatological maximum (February) and minimum (August) periods of outflow transport. The surveys included high-resolution CTD/lowered ADCP/shipboard ADCP observations in the descending plume and in the western gulf, and trajectories from 50 acoustically-tracked RAFOS floats released at the center of the equilibrated RSW (650 m). The measurements reveal a complicated descending plume structure in the western gulf with three main pathways for the high salinity RSW. Different mixing intensities along these pathways lead to variable penetration depths of the Red Sea plume between 450-900 m in the Gulf of Aden. The observations also revealed the hydrographic and velocity structure of large, energetic, deep-reaching mesoscale eddies in the gulf that fundamentally impact the spreading rates and pathways of RSW. Both cyclones and anticyclones were observed, with horizontal scales up to 250 km and azimuthal speeds as high as 0.5 m/s. The eddies appear to reach nearly to the sea floor and entrain RSW from the western gulf at mid-depth. Post-cruise analysis of SeaWiffs imagery suggests that some of these eddies form in the Indian Ocean and propagate into the gulf.

  7. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic: a synthesis

    International Nuclear Information System (INIS)

    Nelson, C.S.; Cooke, P.J.

    2001-01-01

    The New Zealand sector of the Southern Ocean (NZSSO) has opened about the Indian-Pacific spreading ridge throughout the Cenozoic. Today the NZSSO is characterised by broad zonal belts of antarctic (cold), subantarctic (cool), and subtropical (warm) surface-water masses separated by prominent oceanic fronts: the Subtropical Front (STF) c. 43 degrees S, Subantarctic Front (SAF) c. 50 degrees S, and Antarctic Polar Front (AAPF) c. 60 degrees S. Despite a meagre database, the broad pattern of Cenozoic evolution of these fronts is reviewed from the results of Deep Sea Drilling Project-based studies of sediment facies, microfossil assemblages and diversity, and stable isotope records, as well as from evidence in onland New Zealand Cenozoic sequences. Results are depicted schematically on seven paleogeographic maps covering the NZSSO at 10 m.y. intervals through the Cenozoic. During the Paleocene and most of the Eocene (65-35 Ma), the entire NZSSO was under the influence of warm to cool subtropical waters, with no detectable oceanic fronts. In the latest Eocene (c. 35 Ma), a proto-STF is shown separating subantarctic and subtropical waters offshore from Antarctica, near 65 degrees S paleolatitude. During the earliest Oligocene, this front was displaced northwards by development of an AAPF following major global cooling and biotic turnover associated with ice sheet expansion to sea level on East Antarctica. Early Oligocene full opening (c. 31 Ma) of the Tasmanian gateway initiated vigorous proto-circum-Antarctic flow of cold/cool waters, possibly through a West Antarctic seaway linking the southern Pacific and Atlantic Oceans, including detached northwards 'jetting' onto the New Zealand plateau where condensation and unconformity development was widespread in cool-water carbonate facies. Since this time, a broad tripartite division of antarctic, subantarctic, and subtropical waters has existed in the NZSSO, including possible development of a proto-SAF within the

  8. Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Du, H.; Garcia-Serrano, J.; Guemas, V.; Soufflet, Y. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Doblas-Reyes, F.J. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Wouters, B. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-10-15

    A coupled global atmosphere-ocean model is employed to investigate the impact of initial perturbation methods on the behaviour of five-member ensemble decadal re-forecasts. Three initial-condition perturbation strategies, atmosphere only, ocean only and atmosphere-ocean, have been used and the impact on selected variables have been investigated. The impact has been assessed in terms of climate drift, forecast quality and spread. The simulated global means of near-surface air temperature (T2M), sea surface temperature (SST) and sea ice area (SIA) for both Arctic and Antarctic show reasonably good quality, in spite of the non-negligible drift of the model. The skill in terms of correlation is not significantly affected by the particular perturbation method employed. The ensemble spread generated for T2M, SST and land surface precipitation (PCP) saturates quickly with any of the perturbation methods. However, for SIA, Atlantic meridional overturning circulation (AMOC) and ocean heat content (OHC), the spread increases substantially during the forecast time when ocean perturbations are applied. Ocean perturbations are particularly important for Antarctic SIA and OHC for the middle and deep layers of the ocean. The results will be helpful in the design of ensemble prediction experiments. (orig.)

  9. Simultaneous spreading and evaporation: recent developments.

    Science.gov (United States)

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  10. Initial spread of "1"3"7Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf. A study using a high-resolution, global-coastal nested ocean model

    International Nuclear Information System (INIS)

    Lai, Z.; Chen, C.; Lin, H.; Shanghai Ocean Univ.; Beardsley, R.; Ji, R.; Shanghai Ocean Univ.; Sasaki, J.; Lin, J.

    2013-01-01

    The 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tohoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide "1"3"7Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of "1"3"7Cs over the eastern shelf of Japan. The "1"3"7Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March-31 August 2011. The results clearly show that for the same "1"3"7Cs discharge, the model-predicted spreading of "1"3"7Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∝2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of "1"3"7Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∝5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the "1"3"7Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of "1"3"7Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of "1"3"7Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of "1"3"7Cs in the ocean.

  11. Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm

    Science.gov (United States)

    Anokhin, Vladimir; Kholmianskii, Mikhail

    2014-05-01

    Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm Vladimir M. Anokhin, Mikhail A. Kholmianskii Configuration of the seismofocal zones (SFZ), visible in a real position of the focuses of earthquakes, has a significant step component (jagged) expressed by the presence of several sub-horizontal "seismoplanes", which concentrates focuses of earthquakes (depths 10, 35 km and other). Orientation of seismolines inside of SFZ tends to 4 main directions: 0-5 dgr, 120-145 dgr, 40-55 dgr, 85-90 dgr. These facts suggest significantly block, a terraced structure of the body of Benioff zone. The borders of blocks have orientation according directions regmatic net of the Earth. In accordance with this, SFZ can be presented as the most active segments of the border of the crossing: «continent-ocean», having the following properties: - block (terraced) structure; - in some sites - dive under the continental crust (in present time); - prevailing compression (in present time), perhaps, as the period of the oscillatory cycle; Infinite "subduction" in SFZ is unlikely. One of the areas where there is proof of concept of far "spreading" is the southernmost tip of the mid-oceanic Gakkel ridge in the Laptev sea (Arctic ocean). Here active "spreading" ridge normal approaches to the boundary of the continental crust - the shelf of the Laptev sea. On the shelf there are a number of subparallel NW grabens. NE fault zone Charlie, controlling the continental slope is established stepped fault without shift component. This means that the amount of extending of the offshore grabens does not significantly differ from the scale of spreading in the Gakkel ridge. However, the total spreads grabens (50-100 km) 6-10 times less than the width of the oceanic crust (600 km) in the surrounding area. Conclusion: the oceanic crust in the Laptev sea was formed mainly not due to "spreading". It is very likely that here was sinking and the processing of continental crust in the ocean

  12. Technical Progress and Development Directions of Oceanic Spatial Information Datum

    Directory of Open Access Journals (Sweden)

    BAO Jingyang

    2017-10-01

    Full Text Available This paper briefly analyzes the basic development and technical situation of oceanic spatial information datum, reviews the main processes of oceanic vertical datum and correlative oceanic tidal study, such as improvement and perfect methods of determining tidal station vertical datum, realizing form of vertical datum controlled by tidal station, effect on maintaining vertical datum by long-term tidal station, oceanic tidal model establishing, and also construction and transformation of tidal datum, and then forecasts the key development directions of oceanic spatial information datum on high-accuracy marine position service, vertical datum and the transferring model refinement and spatial datum application.

  13. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    Science.gov (United States)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  14. Dispersal from deep ocean sources: physical and related scientific processes

    International Nuclear Information System (INIS)

    Robinson, A.R.; Kupferman, S.L.

    1985-02-01

    This report presents the results of the workshop ''Dispersal from Deep Ocean Sources: Physical and Related Scientific Processes,'' together with subsequent developments and syntheses of the material discussed there. The project was undertaken to develop usable predictive descriptions of dispersal from deep oceanic sources. Relatively simple theoretical models embodying modern ocean physics were applied, and observational and experimental data bases were exploited. All known physical processes relevant to the dispersal of passive, conservative tracers were discussed, and contact points for inclusion of nonconservative processes (biological and chemical) were identified. Numerical estimates of the amplitude, space, and time scales of dispersion were made for various mechanisms that control the evolution of the dispersal as the material spreads from a bottom point source to small-, meso-, and world-ocean scales. Recommendations for additional work are given. The volume is presented as a handbook of dispersion processes. It is intended to be updated as new results become available

  15. Aquantis Ocean Current Turbine Development Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  16. SI-Ocean Strategic technology agenda for the ocean energy sector: From development to market

    OpenAIRE

    MAGAGNA DAVIDE; TZIMAS Evangelos; HANMER Clare; BADCOCK-BROE Abbie; MACGILLIVRAY Andy; JEFFREY Henry; RAVENTOS Alex

    2014-01-01

    This paper focuses on the development of the ocean energy sector, identifying the necessary steps that are required in order to facilitate the development and deployment of ocean energy technologies towards the formation of a viable and successful industry. Europe, in particular the Atlantic Arc region, has a vast wave and tidal energy resource, which could supply a significant part of the European electricity demand and play an important role in the future European energy mix. The ...

  17. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  18. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle

    Science.gov (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission

    2009-04-01

    non-riser and riser drilling, geophysical site surveys and the development of new technology including the construction of a +4000 m riser. Initial expeditions would use existing drilling capabilities to sample shallow and deep targets in increasingly hostile conditions in ocean crust formed at both fast and slow spreading rates, allowing us to deliver major short-term science returns while we develop the equipment, technology and experience to tackle a full crustal penetration. The first, short-term milestone is to return in IODP Hole 1256D, into intact crust formed during a period of superfast spreading (> 200 mm/yr) on the East Pacific rise 15 million years ago, and drill as deeply as possible with non-riser technology. The first gabbroic rocks below the sheeted dikes were encountered at the end of IODP expedition 312 at 1407 meters below seafloor. They mark the interface between the axial melt lens and the base of the hydrothermal system. Future deepening to a minimum of a few hundred meters should recover cumulate gabbros that will further constraint accretion mechanisms of the lower, igneous crust.

  19. Accretion mode of oceanic ridges governed by axial mechanical strength

    Science.gov (United States)

    Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.

    2018-04-01

    Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

  20. Preparation and storage stability of meat spread developed from spent hens

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2015-05-01

    Full Text Available Aim: The present study was carried out to develop a meat spread as a healthier alternative to already existing meat products utilizing undervalued spent hen meat to add a new dimension to meat products. Materials and Methods: Carcasses were processed within 30 min of slaughter and conditioned at 4±1°C for about 24 h and then braised along with other ingredients to get the final product. The products were evaluated for proximate composition, peroxide values, pH, microbiological, and sensory qualities as per standard procedures. Results: The mean percent values for moisture, crude protein, ether extract, and total ash content of developed product were 58.75±0.32, 9.12±0.44, 11.19±0.16, and 2.35±0.17, respectively. No significant difference was observed for mean coliform and the yeast and mold counts with the progression of storage period, but samples differed significantly for mean pH, thiobarbituric acid and total viable plate count during storage of meat spread. A progressive decline in mean sensory scores was recorded along with the increase in storage time. Conclusion: The meat spread was found to be a good alternative to process the underutilized spent hens for its efficient utilization for product development.

  1. The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading

    Science.gov (United States)

    Amundsen, Ingrid Marie Hasle; Blinova, Maria; Hjelstuen, Berit Oline; Mjelde, Rolf; Haflidason, Haflidi

    2011-12-01

    The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5-1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950-1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.

  2. Magma Supply of Southwest Indian Ocean: Implication from Crustal Thickness Anomalies

    Science.gov (United States)

    Chiheng, L.; Jianghai, L.; Huatian, Z.; Qingkai, F.

    2017-12-01

    The Southwest Indian Ridge (SWIR) is one of the world's slowest spreading ridges with a full spreading rate of 14mm a-1, belonging to ultraslow spreading ridge, which are a novel class of spreading centers symbolized by non-uniform magma supply and crustal accretion. Therefore, the crustal thickness of Southwest Indian Ocean is a way to explore the magmatic and tectonic process of SWIR and the hotspots around it. Our paper uses Residual Mantle Bouguer Anomaly processed with the latest global public data to invert the relative crustal thickness and correct it according to seismic achievements. Gravity-derived crustal thickness model reveals a huge range of crustal thickness in Southwest Indian Ocean from 0.04km to 24km, 7.5km of average crustal thickness, and 3.5km of standard deviation. In addition, statistics data of crustal thickness reveal the frequency has a bimodal mixed skewed distribution, which indicates the crustal accretion by ridge and ridge-plume interaction. Base on the crustal thickness model, we divide three types of crustal thickness in Southwest Indian Ocean. About 20.31% of oceanic crust is 9.8km thick as thick crust. Furthermore, Prominent thin crust anomalies are associated with the trend of most transform faults, but thick crust anomalies presents to northeast of Andrew Bain transform fault. Cold and depleted mantle are also the key factors to form the thin crust. The thick crust anomalies are constrained by hotspots, which provide abundant heat to the mantle beneath mid-ocean ridge or ocean basin. Finally, we roughly delineate the range of ridge-plume interaction and transform fault effect.

  3. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  4. Epidemic spreading on random surfer networks with infected avoidance strategy

    Science.gov (United States)

    Feng, Yun; Ding, Li; Huang, Yun-Han; Guan, Zhi-Hong

    2016-12-01

    In this paper, we study epidemic spreading on random surfer networks with infected avoidance (IA) strategy. In particular, we consider that susceptible individuals’ moving direction angles are affected by the current location information received from infected individuals through a directed information network. The model is mainly analyzed by discrete-time numerical simulations. The results indicate that the IA strategy can restrain epidemic spreading effectively. However, when long-distance jumps of individuals exist, the IA strategy’s effectiveness on restraining epidemic spreading is heavily reduced. Finally, it is found that the influence of the noises from information transferring process on epidemic spreading is indistinctive. Project supported in part by the National Natural Science Foundation of China (Grant Nos. 61403284, 61272114, 61673303, and 61672112) and the Marine Renewable Energy Special Fund Project of the State Oceanic Administration of China (Grant No. GHME2013JS01).

  5. Process contributions to the intermodel spread in amplified Arctic warming

    Science.gov (United States)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature

  6. Optimizing Hybrid Spreading in Metapopulations.

    OpenAIRE

    Zhang, C.; Zhou, S.; Miller, J. C.; Cox, I. J.; Chain, B. M.

    2015-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...

  7. Optimizing Hybrid Spreading in Metapopulations

    OpenAIRE

    Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.

    2014-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...

  8. Model simulations of the drift and spread of the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Venkatesh, S.

    1990-01-01

    In this paper the drift and spread of the Exxon-Valdez oil spill that occurred on March 24, 1989 are simulated using a modified version of the Canadian Atmospheric Environment Service oil spill behavior model. The model simulations show that the movement of the oil out of Prince William Sound and beyond is sensitive to the wind/ocean currents taken into account is three to four times that with either wind or ocean currents only. While 12-day drift of the spill containing the higher concentrations of oil parcels is in very good agreement with observations, model simulations show the presence of oil further to the south, albeit in lower concentrations. The lateral spread of the oil is also very well simulated by the model

  9. Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents

    Science.gov (United States)

    Yamaji, Akifumi; Li, Xin

    2016-08-01

    Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.

  10. Oceanic-type accretion may begin before complete continental break-up

    Science.gov (United States)

    Geoffroy, L.; Zalan, P. V.; Viana, A. R.

    2011-12-01

    Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.

  11. Ocean basin volume constraints on global sea level since the Jurassic

    Science.gov (United States)

    Seton, M.; Müller, R. D.

    2011-12-01

    Changes in the volume of the ocean basins, predominately via changes in the age-area distribution of oceanic lithosphere, have been suggested as the main driver for long-term eustatic sea-level change. As ocean lithosphere cools and thickens, ocean depth increases. The balance between the abundance of hot and buoyant crust along mid ocean ridges relative to abyssal plains is the primary driving force of long-term sea level changes. The emplacement of volcanic plateaus and chains as well as sedimentation contribute to raising eustatic sea level. Quantifying the average ocean basin depth through time primarily relies on the present day preserved seafloor spreading record, an analysis of the spatio-temporal record of plate boundary processes recorded on the continental margins adjacent to ocean basins as well as a consideration of the rules of plate tectonics, to reconstruct the history of seafloor spreading in the oceanic basins through time. This approach has been successfully applied to predict the magnitude and pattern of eustatic sea-level change since the Cretaceous (Müller et. al. 2008) but uncertainties in reconstructing mid ocean ridges and flanks increase back through time, given that we mainly depend on information preserved in preserved ocean crust. We have reconstructed the age-area distribution of oceanic lithosphere and the plate boundary configurations back to the Jurassic (200 Ma) in order to assess long-term sea-level change from amalgamation to dispersal of Pangaea. We follow the methodology presented in Müller et. al. (2008) but incorporate a new absolute plate motion model derived from Steinberger and Torsvik (2008) prior to 100 Ma, a merged Wessel et. al. (2006) and Wessel and Kroenke (2008) fixed Pacific hotspot reference frame, and a revised model for the formation of Panthalassa and the Cretaceous Pacific. Importantly, we incorporate a model for the break-up of the Ontong Java-Manihiki-Hikurangi plateaus between 120-86 Ma. We extend a

  12. Spreading of Antarctic Bottom Water in the Atlantic Ocean

    OpenAIRE

    Morozov, E.; Tarakanov, R. Y.; Zenk, Walter

    2012-01-01

    This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Bra...

  13. Optimizing hybrid spreading in metapopulations.

    Science.gov (United States)

    Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M

    2015-04-29

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics.

  14. /sup 226/Ra in the western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.

    1987-09-01

    /sup 226/Ra profiles have been measured in the western Indian Ocean as part of the 1977-78 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10/sup 0/S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar Basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.

  15. Magnetization of lower oceanic crust and upper mantle

    Science.gov (United States)

    Kikawa, E.

    2004-05-01

    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary

  16. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source

    CSIR Research Space (South Africa)

    Saito, MA

    2013-09-01

    Full Text Available Low levels of the micronutrient iron limit primary production and nitrogen fixation in large areas of the global ocean. The location and magnitude of oceanic iron sources remain uncertain, however, owing to a scarcity of data, particularly...

  17. [Environmental drivers of emergence and spreading of Vibrio epidemics in South America].

    Science.gov (United States)

    Gavilán, Ronnie G; Martínez-Urtaza, Jaime

    2011-03-01

    Vibrio cholerae and V. parahaemolyticus are the two Vibrio species with a major impact on human health. Diseases caused by both pathogens are acquiring increasing relevance due to their expansion at global scale. In this paper, we resume the ecological aspects associated with the arrival and spreading of infections caused by V. parahaemolyticus and V. cholerae in Peru from a South American perspective. Moreover, we discuss the similarities in the emergence in Peru of cholera cases in 1991 and V. parahaemolyticus infections in 1997. These constituted exceptional experiments to evaluate the relationships between the Vibrio epidemics and changes in the environment. The epidemic radiations of V. cholerae and V. parahaemolyticus constitute to clear examples supporting the oceanic dispersion of pathogenic vibrios and have enabled the identification of El Niño events as a potential mechanism for the spreading of diseases through the ocean.

  18. Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay

    Science.gov (United States)

    Ramp, S. R.; Davis, R. E.; Leonard, N. E.; Shulman, I.; Chao, Y.; Robinson, A. R.; Marsden, J.; Lermusiaux, P. F. J.; Fratantoni, D. M.; Paduan, J. D.; Chavez, F. P.; Bahr, F. L.; Liang, S.; Leslie, W.; Li, Z.

    2009-02-01

    The Autonomous Ocean Sampling Network Phase Two (AOSN-II) experiment was conducted in and offshore from the Monterey Bay on the central California coast during July 23-September 6, 2003. The objective of the experiment was to learn how to apply new tools, technologies, and analysis techniques to adaptively sample the coastal ocean in a manner demonstrably superior to traditional methodologies, and to use the information gathered to improve predictive skill for quantities of interest to end-users. The scientific goal was to study the upwelling/relaxation cycle near an open coastal bay in an eastern boundary current region, particularly as it developed and spread from a coastal headland. The suite of observational tools used included a low-flying aircraft, a fleet of underwater gliders, including several under adaptive autonomous control, and propeller-driven AUVs in addition to moorings, ships, and other more traditional hardware. The data were delivered in real time and assimilated into the Harvard Ocean Prediction System (HOPS), the Navy Coastal Ocean Model (NCOM), and the Jet Propulsion Laboratory implementation of the Regional Ocean Modeling System (JPL/ROMS). Two upwelling events and one relaxation event were sampled during the experiment. The upwelling in both cases began when a pool of cold water less than 13 °C appeared near Cape Año Nuevo and subsequently spread offshore and southward across the bay as the equatorward wind stress continued. The primary difference between the events was that the first event spread offshore and southward, while the second event spread only southward and not offshore. The difference is attributed to the position and strength of meanders and eddies of the California Current System offshore, which blocked or steered the cold upwelled water. The space and time scales of the mesoscale variability were much shorter than have been previously observed in deep-water eddies offshore. Additional process studies are needed to elucidate

  19. Characterizing the chaotic nature of ocean ventilation

    Science.gov (United States)

    MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew

    2017-09-01

    Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.

  20. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.

    Science.gov (United States)

    Radočaj, Olga; Dimić, Etelka; Vujasinović, Vesna

    2012-09-01

    A stable, oil-based spread rich in the omega-3 (ω-3) and omega-6 (ω-6) fatty acids was developed using a hull-less pumpkin seed (Cucurbita pepo L.) oil press-cake, a by-product of the pumpkin oil pressing process, along with cold-pressed hemp oil. Response surface methodology (RSM) was applied to investigate the effects of two factors, as the formulation's compositional variables: a commercial stabilizer (X(1) ) and cold-pressed hemp oil (X(2) ) added to the pumpkin seed oil press-cake in the spread formulations. A central composite, 2-factorial experimental design on 5 levels was used to optimize the spreads where model responses were ω-3 fatty acids content, spreadability (hardness), oil separation, and sensory evaluation. The selected responses were significantly affected by both variables (P spreads resembled commercial peanut butter, both in appearance, texture and spreadability; were a source of ω-3 fatty acids and with no visual oil separation after 1 mo of storage. An optimum spread was produced using 1.25% (w/w) of stabilizer and 80% of hemp oil (w/w, of the total added oil) which had 0.97 g of ω-3 fatty acids per serving size; penetration depth of 68.4 mm; oil separation of 9.2% after 3 mo of storage; and a sensory score of 17.5. A use of by-products generated from different food processing technologies, where the edible waste is successfully incorporated as a value-added ingredient, has become a very important area of research to support global sustainability efforts. This study contributes to the knowledge of a product design process for oil-based spread development, where oil press-cake, a by-product of the oil pressing process of the naked pumpkin seeds, was used and where results have demonstrated that a new product can be successfully developed and potentially manufactured as a functional food. © 2012 Institute of Food Technologists®

  1. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  2. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    Science.gov (United States)

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ocean Circulation and Mixing Relevant to the Global System

    National Research Council Canada - National Science Library

    Gordon, Arnold

    1999-01-01

    .... Arlindo's goal is to resolve the circulation and water mass stratification within the Indonesian Seas in order to formulate a thorough description of the source, spreading patterns, inter-ocean...

  4. A comparison of chemical compositions of reported altered oceanic crusts and global MORB data set: implication for isotopic heterogeneity of recycled materials

    Science.gov (United States)

    Shimoda, G.; Kogiso, T.

    2017-12-01

    Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic

  5. DEVELOPMENT OF USER-FRIENDLY SIMULATION SYSTEM OF EARTHQUAKE INDUCED URBAN SPREADING FIRE

    Science.gov (United States)

    Tsujihara, Osamu; Gawa, Hidemi; Hayashi, Hirofumi

    In the simulation of earthquake induced urban spreading fire, the produce of the analytical model of the target area is required as well as the analysis of spreading fire and the presentati on of the results. In order to promote the use of the simulation, it is important that the simulation system is non-intrusive and the analysis results can be demonstrated by the realistic presentation. In this study, the simulation system is developed based on the Petri-net algorithm, in which the easy operation can be realized in the modeling of the target area of the simulation through the presentation of analytical results by realistic 3-D animation.

  6. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, D.; Misra, S.; Banerjee, R.

    ). The mixing trend definitely excludes EM1 [dehydrated and recrystallized oceanic basalt formed during subduction plus 5-10% marine pelagic sediment, Weaver, 1991], EM2 [dehydrated and recrystallized oceanic basalt formed during subduction plus 5... are plotted on or close to the mixing line between the average depleted mantle and the Indian Ocean Pelagic sediments, and this mixing line excludes the EM1, EM2 and HIMU (Fig. 12, c, e). The CR, NCIR and SCIR MORBs are closer to the average depleted...

  7. The morphostructure of the atlantic ocean floor its development in the meso-cenozoic

    CERN Document Server

    Litvin, V M

    1984-01-01

    The study of the topography and structure of the ocean floor is one of the most important stages in ascertaining the geological structure and history of development of the Earth's oceanic crust. This, in its turn, provides a means for purposeful, scientifically-substantiated prospecting, exploration and development of the mineral resources of the ocean. The Atlantic Ocean has been geologically and geophysically studied to a great extent and many years of investigating its floor have revealed the laws governing the structure of the major forms of its submarine relief (e. g. , the continental shelf, the continental slope, the transition zones, the ocean bed, and the Mid-Oceanic Ridge). The basic features of the Earth's oceanic crust structure, anomalous geophysical fields, and the thickness and structure of its sedimentary cover have also been studied. Based on the investigations of the Atlantic Ocean floor and its surrounding continents, the presently prevalent concept of new global tectonics has appeared. A g...

  8. PLANNING QUALITY ASSURANCE PROCESSES IN A LARGE SCALE GEOGRAPHICALLY SPREAD HYBRID SOFTWARE DEVELOPMENT PROJECT

    Directory of Open Access Journals (Sweden)

    Святослав Аркадійович МУРАВЕЦЬКИЙ

    2016-02-01

    Full Text Available There have been discussed key points of operational activates in a large scale geographically spread software development projects. A look taken at required QA processes structure in such project. There have been given up to date methods of integration quality assurance processes into software development processes. There have been reviewed existing groups of software development methodologies. Such as sequential, agile and based on RPINCE2. There have been given a condensed overview of quality assurance processes in each group. There have been given a review of common challenges that sequential and agile models are having in case of large geographically spread hybrid software development project. Recommendations were given in order to tackle those challenges.  The conclusions about the best methodology choice and appliance to the particular project have been made.

  9. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    Science.gov (United States)

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  10. Basalt Petrogenesis Beneath Slow - and Ultraslow-Spreading Arctic Mid-Ocean Ridges

    Science.gov (United States)

    2009-02-01

    seafloor spreading in the Norway Basin-Iceland plume interaction. J Geophys Res- Sol Ea 111, -. Claude-Ivanaj, C., Bourdon, B., and Allegre, C. J., 1998...Geophys Res- Sol Ea 104, 13035-13048. Lundstrom, C. C., Shaw, H. F., Ryerson, F. J., Phinney, D. L., Gill, J. B., and Williams, Q., 1994...Trace element concentrations were measured by secondary ion mass spectrometry (SIMS) with the Cameca 3f ion microprobe at Woods Hole Oceano - graphic

  11. EX1103L1: Exploration and Mapping, Galapagos Spreading Center: Mapping, CTD and Tow-yo

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project will be a transit from San Diego, CA to the Galapagos Spreading Center, where multibeam mapping, CTD casts, and CTD tow-yo operations will be performed....

  12. Anomalous Structure of Oceanic Lithosphere in the North Atlantic and Arctic Oceans: A Preliminary Analysis Based on Bathymetry, Gravity and Crustal Structure

    Science.gov (United States)

    Barantsrva, O.

    2014-12-01

    We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results

  13. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    Science.gov (United States)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  14. Structure and tectonic evolution of the northeastern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Krishna, K.S.; Ramprasad, T.; Desa, M.; Subrahmanyam, V.; Sarma, K.V.L.N.S.

    of Pangaea and eastern Gondwanaland, and the subsequent dispersion of the continents. Inference of the mid-ocean ridge system, plateaus, banks, volcanic islands/seamounts, aseismic ridges, trenches, fracture zones, extinct spreading ridges and the hotspot...

  15. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    Science.gov (United States)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The

  16. Development and Characterization of Carob Flour Based Functional Spread for Increasing Use as Nutritious Snack for Children

    Directory of Open Access Journals (Sweden)

    Sema Aydın

    2017-01-01

    Full Text Available Carob flour enriched functional spread was developed and textural, sensory, colour, and some nutritional properties of the product were investigated. Spread samples were prepared with major ingredients for optimisation and minor ingredients for improving texture and aroma. Major ingredients were carob flour and hydrogenated palm oil (HPO and minor ingredients were commercial skim milk powder, soya flour, lecithin, and hazelnut puree. The ratio of major ingredients was optimised using sensory scores and instrumental texture values to produce a carob spread that most closely resembles commercial chocolate spread (control, in both spreadability and overall acceptability. The amounts of minor ingredients (milk powder, 10%; soybean flour, 5%; lecithin, 1%; hazelnut puree, 4% were kept in constant ratio (20%. Addition of hydrogenated palm oil (HPO decreased the hardness and hardness work done (HWD values in contrast to carob flour. Higher rates of carob flour were linked to lower lightness, greenness, and yellowness values. Spread was optimised at 38 g carob flour/100 g spread and 42 g hydrogenated palm oil/100 g spread level and the formulation tended to receive the highest sensory scores compared to other spreads and presented closer instrumental spreadability values to control samples. This indicates a strong market potential for optimised carob spreads.

  17. Ocean OSSEs: recent developments and future challenges

    Science.gov (United States)

    Kourafalou, V. H.

    2012-12-01

    Atmospheric OSSEs have had a much longer history of applications than OSSEs (and OSEs) in oceanography. Long standing challenges include the presence of coastlines and steep bathymetric changes, which require the superposition of a wide variety of space and time scales, leading to difficulties on ocean observation and prediction. For instance, remote sensing is critical for providing a quasi-synoptic oceanographic view, but the coverage is limited at the ocean surface. Conversely, in situ measurements are capable to monitor the entire water column, but at a single location and usually for a specific, short time. Despite these challenges, substantial progress has been made in recent years and international initiatives have provided successful OSSE/OSE examples and formed appropriate forums that helped define the future roadmap. These will be discussed, together with various challenges that require a community effort. Examples include: integrated (remote and in situ) observing system requirements for monitoring large scale and climatic changes, vs. short term variability that is particularly important on the regional and coastal spatial scales; satisfying the needs of both global and regional/coastal nature runs, from development to rigorous evaluation and under a clear definition of metrics; data assimilation in the presence of tides; estimation of real-time river discharges for Earth system modeling. An overview of oceanographic efforts that complement the standard OSSE methodology will also be given. These include ocean array design methods, such as representer-based analysis and adaptive sampling. Exciting new opportunities for both global and regional ocean OSSE/OSE studies have recently become possible with targeted periods of comprehensive data sets, such as the existing Gulf of Mexico observations from multiple sources in the aftermath of the DeepWater Horizon incident and the upcoming airborne AirSWOT, in preparation for the SWOT (Surface Water and Ocean

  18. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    Science.gov (United States)

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in

  19. Mid-ocean ridge serpentinite in the Puerto Rico Trench: Accretion, alteration, and subduction of Cretaceous seafloor in the Atlantic Ocean

    Science.gov (United States)

    Klein, F.; Marschall, H.; Bowring, S. A.; Horning, G.

    2016-12-01

    Serpentinite is believed to be one of the main carriers of water and fluid mobile elements into subduction zones, but direct evidence for serpentinite subduction has been elusive. The Antilles island arc is one of only two subduction zones worldwide that recycles slow-spreading oceanic lithosphere where descending serpentinite is both exposed by faulting and directly accessible on the seafloor. Here we examined serpentinized peridotites dredged from the North Wall of the Puerto Rico Trench (NWPRT) to assess their formation and alteration history and discuss geological ramifications resulting from their emplacement and subduction. Lithospheric accretion and serpentinization occurred, as indicated by U-Pb geochronology of hydrothermally altered zircon, at the Cretaceous Mid-Atlantic Ridge (CMAR). In addition to lizardite-rich serpentinites with pseudomorphic textures after olivine and pyroxene typical for static serpentinization at slow spreading mid-ocean ridges, recovered samples include non-pseudomorphic antigorite-rich serpentinites that are otherwise typically associated with peridotite at convergent plate boundaries. Antigorite-serpentinites have considerably lower Fe(III)/Fetot and lower magnetic susceptibilities than lizardite-serpentinites with comparable Fetot contents. Rare earth element (REE) contents of lizardite-serpentinites decrease linearly with increasing Fe(III)/Fetot of whole rock samples, suggesting that oxidation during seafloor weathering of serpentinite releases REEs to seawater. Serpentinized peridotites recorded multifaceted igneous and high- to low-temperature hydrothermal processes that involved extensive chemical, physical, and mineralogical modifications of their peridotite precursors with strong implications for our understanding of the accretion, alteration, and subduction of slow-spreading oceanic lithosphere.

  20. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    Science.gov (United States)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  1. Structure of young oceanic crust at 13°N on the East Pacific Rise from expanding spread profiles

    Science.gov (United States)

    Harding, A. J.; Orcutt, J. A.; Kappus, M. E.; Vera, E. E.; Mutter, J. C.; Buhl, P.; Detrick, R. S.; Brocher, T. M.

    1989-09-01

    We present the results of the analysis of expanding spread profiles (ESPs) collected on and near the axis of the East Pacific Rise at 13°N. These profiles were collected at 0, 1.1, 2.1, 3.6, and 9.5 km from the rise axis, and all but the most distant profile show a distinct low-velocity zone (LVZ) located within layer 3 of the oceanic crust. At the ridge crest, the top of the magma chamber is at the base of layer 2, while 3.6 km off axis, the roof of the LVZ is 1.1 km below the top of layer 3. The profile farthest from the ridge could possibly have a residual LVZ confined to the lower 1.5 km of the crust. The total width of the LVZ, as determined from the ESP data, is at least 6 km, and possibly much greater. This wide LVZ apparently contradicts multichannel seismic data which show cross-axis reflections from the magma chamber with a width of <5 km. We suggest that a resolution of this apparent contradiction lies in a model of the rise axis with a small and transient central magma chamber of high partial melt fraction surrounded by a much larger and permanent region of hot rock with only isolated pockets of partial melt. The ESP data are sensitive to this larger region, while the reflection data accurately map the presence or absence of the central magma chamber with its high impedance contrast. We identify the presence of a layer at the top of the oceanic crust with initial P wave velocities between 2.35 and 2.6 km/s, while the S wave velocity is estimated as being ≤0.8 km/s. The layer thickness lies between 100 and 200 m. These velocities are consistent with previous estimates for the Pacific and recent results for the Atlantic. The thickness of this layer is consistent with that of layer 2A determined from geophysical measurements at Deep Sea Drilling Project hole 504B.

  2. The effect of network topologies on the spreading of technological developments

    International Nuclear Information System (INIS)

    Kocsis, Gergely; Kun, Ferenc

    2008-01-01

    We study an agent-based model, as a special type of opinion dynamics, of the spreading of innovations in socio-economic systems varying the topology of agents' social contacts. The agents are organized on a square lattice where the connections are rewired with a certain probability. We show that the degree polydispersity and long range connections of agents can facilitate, but can also hinder the spreading of new technologies, depending on the amount of advantages provided by the innovation. We determine the critical fraction of innovative agents required to initiate spreading and to obtain a significant technological progress. As the fraction of innovative agents approaches the critical value, the spreading process slows down analogously to the critical slowing down observed at continuous phase transitions. The characteristic timescale at the critical point proved to have the same scaling as the average shortest path of the underlying social network. The model captures some relevant features of the spreading of innovations in telecommunication technologies

  3. SPREADING OF ANTARCTIC BOTTOM WATER IN THE ATLANTIC OCEAN

    Directory of Open Access Journals (Sweden)

    Eugene Morozov

    2012-01-01

    Full Text Available This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Brazil Basin splits. Part of the water flows through the Romanche and Chain fracture zones. The other part flows to the North American Basin. Part of the latter flow propagates through the Vema Fracture Zone into the Northeast Atlantic. The properties of bottom water in the Kane Gap and Discovery Gap are also analyzed.

  4. Ocean heat content variability in an ensemble of twentieth century ocean reanalyses

    Science.gov (United States)

    de Boisséson, Eric; Balmaseda, Magdalena Alonso; Mayer, Michael

    2017-08-01

    This paper presents a ten-member ensemble of twentieth century Ocean ReAnalyses called ORA-20C. ORA-20C assimilates temperature and salinity profiles and is forced by the ECMWF twentieth century atmospheric reanalysis (ERA-20C) over the 1900-2010 period. This study attempts to identify robust signals of ocean heat content change in ORA-20C and detect contamination by model errors, initial condition uncertainty, surface fluxes and observing system changes. It is shown that ORA-20C trends and variability in the first part of the century result from the surface fluxes and model drift towards a warmer mean state and weak meridional overturning circulation. The impact of the observing system in correcting the mean state causes the deceleration of the warming trend and alters the long-term climate signal. The ensemble spread reflects the long-lasting memory of the initial conditions and the convergence of the system to a solution compatible with surface fluxes, the ocean model and observational constraints. Observations constrain the ocean heat uptake trend in the last decades of the twentieth century, which is similar to trend estimations from the post-satellite era. An ocean heat budget analysis attributes ORA-20C heat content changes to surface fluxes in the first part of the century. The heat flux variability reflects spurious signals stemming from ERA-20C surface fields, which in return result from changes in the atmospheric observing system. The influence of the temperature assimilation increments on the heat budget is growing with time. Increments control the most recent ocean heat uptake signals, highlighting imbalances in forced reanalysis systems in the ocean as well as in the atmosphere.

  5. Detailed seismic velocity structure of the ultra-slow spread crust at the Mid-Cayman Spreading Center from travel-time tomography and synthetic seismograms

    Science.gov (United States)

    Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.

    2017-12-01

    The Mid-Cayman Spreading Center (MCSC), an ultraslow-spreading center in the Caribbean Sea, has formed highly variable oceanic crust. Seafloor dredges have recovered extrusive basalts in the axial deeps as well as gabbro on bathymetric highs and exhumed mantle peridotite along the only 110 km MCSC. Wide-angle refraction data were collected with active-source ocean bottom seismometers in April, 2015, along lines parallel and across the MCSC. Travel-time tomography produces relatively smooth 2-D tomographic models of compressional wave velocity. These velocity models reveal large along- and across-axis variations in seismic velocity, indicating possible changes in crustal thickness, composition, faulting, and magmatism. It is difficult, however, to differentiate between competing interpretations of seismic velocity using these tomographic models alone. For example, in some areas the seismic velocities may be explained by either thin igneous crust or exhumed, serpentinized mantle. Distinguishing between these two interpretations is important as we explore the relationships between magmatism, faulting, and hydrothermal venting at ultraslow-spreading centers. We therefore improved our constraints on the shallow seismic velocity structure of the MCSC by modeling the amplitude of seismic refractions in the wide-angle data set. Synthetic seismograms were calculated with a finite-difference method for a range of models with different vertical velocity gradients. Small-scale features in the velocity models, such as steep velocity gradients and Moho boundaries, were explored systematically to best fit the real data. With this approach, we have improved our understanding of the compressional velocity structure of the MCSC along with the geological interpretations that are consistent with three seismic refraction profiles. Line P01 shows a variation in the thinness of lower seismic velocities along the axis, indicating two segment centers, while across-axis lines P02 and P03

  6. Information spreading dynamics in hypernetworks

    Science.gov (United States)

    Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong

    2018-04-01

    Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.

  7. East Greenland Ridge in the North Atlantic Ocean

    DEFF Research Database (Denmark)

    Andreasen, Arne Døssing; Dahl-Jensen, T.; Thybo, Hans

    2008-01-01

    The combined Greenland-Senja Fracture Zones (GSFZ) represent a first-order plate tectonic feature in the North Atlantic Ocean. The GSFZ defines an abrupt change in the character of magnetic anomalies with well-defined seafloor spreading anomalies in the Greenland and Norwegian basins to the south...... but ambiguous and weak magnetic anomalies in the Boreas Basin to the north. Substantial uncertainty exists concerning the plate tectonic evolution of the latter area, including the role of the East Greenland Ridge, which is situated along the Greenland Fracture Zone. In 2002, a combined ocean-bottom seismometer...

  8. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

    Science.gov (United States)

    Delcamp, A.; Troll, V. R.; van Wyk de Vries, B.; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M.

    2012-07-01

    Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North-East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth

  9. The Subduction of an Exhumed and Serpentinized Magma-Poor Basement Beneath the Northern Lesser Antilles Reveals the Early Tectonic Fabric at Slow-Spreading Mid-Oceanic Ridges

    Science.gov (United States)

    Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.

    2017-12-01

    Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.

  10. A New Paradigm for New Oceans

    Science.gov (United States)

    Foulger, G. R.; Doré, A. G.; Franke, D.; Geoffroy, L.; Gernigon, L.; Hole, M.; Hoskuldsson, A.; Julian, B. R.; Kusznir, N.; Martinez, F.; Natland, J. H.; Peace, A.; Petersen, K. D.; Schiffer, C.; Stephenson, R.; Stoker, M. S.

    2017-12-01

    The original simple theory of plate tectonics had to be refined to accommodate second-order geological features such as back-arc basins and continental deformation zones. We propose an additional refinement that is required by complexities that form and persist in new oceans when inhomogeneous continental lithosphere/tectosphere disintegrates. Such complexities include continual plate-boundary reorganizations and migrations, distributed continental material in the ocean, propagating and dying ridges, and sagging, flexing and tilting in the oceans and at continent-ocean boundary zones. Reorganizations of stress and motion persist, resulting in variable orientations over short distances, tectonic reactivations, complex plate boundary configurations including multiple triple junctions, and the formation and abandonment of oceanic microplates. Resulting local compressions and extensions are manifest as bathymetric anomalies, vertical motions, and distributed volcanism at various times and places as the new ocean grows. Examples of regions that exhibit some or all of these features include the North Atlantic, the Rio Grande Rise/Walvis Ridge region of the South Atlantic, and the Seychelles-Mauritius region in the Indian Ocean. We suggest that these complexities arise as a result of the formation of new spreading plate boundaries by rifts propagating through continental lithosphere/tectosphere that is anisotropic as a result of inherited structure/composition and/or a sub-lithospheric mantle destabilized by lithospheric-controlled processes. Such scenarios result in complicated disintegration of continents and local persistent dynamic instability in the new ocean.

  11. Rb-Sr mantle isochrons from oceanic regions

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, C; Hart, S R; Hofmann, A; James, D E [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-09-01

    Existing data for /sup 87/Sr//sup 86/Sr and Rb/Sr ratios of basalts from oceanic islands and mid-ocean spreading ridges show significant positive correlations on a Rb-Sr isochron diagram (when data are averaged by island group). Furthermore, tholeiites and alkali basalts occupy distinct non-overlapping fields on this plot. The tholeiite correlation is interpreted as a mantle isochron, and the agreement of this age (1.6+-0.2 b.y.) with that reported for Pb-Pb isochrons from oceanic basalts lends strong support to the use of such isochrons for tracing mantle evolution. Oceanic basalts are apparently sampling a mantle in which chemical heterogeneities have persisted for at least 1.5-2.0 b.y. The data support a kinematic model for the mantle in which a relatively uniform and non-radiogenic asthenosphere is penetrated by, and mixed with, blobs or plumes derived from an isolated (1.5-2 b.y.) and chemically heterogeneous mesosphere.

  12. Isotopes as tracers of the oceanic circulation: Results from the World Ocean Circulation Experiment

    International Nuclear Information System (INIS)

    Schlosser, P.; Jenkins, W.J.; Key, R.; Lupton, J.

    2002-01-01

    During the past decades, natural and anthropogenic isotopes such as tritium ( 3 H), radiocarbon ( 14 C), 3 He, or the stable isotopes of water have been used in studies of the dynamics of natural systems. Early applications of tracers to studies of the ocean were directed at determination of circulation patterns and mean residence times of specific water masses, as well as estimates of mixing coefficients. These exploratory studies suggested that tracers can add significantly to our understanding of the oceanic circulation. In order to fully exploit this potential, the first global tracer study, the GEochemical Ocean SECtions Study (GEOSECS), was launched. From the GEOSECS results it was immediately apparent that very close coordination of tracer programs with physical oceanography studies is required for full utilization of tracer data. During the 1980s plans for the World OCean Experiment (WOCE) were developed. As part of its Hydrographic Program (WHP), especially during the one-time survey, a set of tracers were measured on a global scale with unprecedented spatial resolution (both lateral and vertical). The original plan included a larger number of tracers (CFCs, 3 H/ 3 He, 14 C, 39 Ar, stable isotopes of water, helium isotopes, 228 Ra, 90 Sr, 137 Cs, 85 Kr) than could actually be measured systematically (CFCs, 3 H/ 3 He, 14 C, H 2 18 O/H 2 16 O, helium isotopes). Nevertheless, the resulting data set, which presently is under evaluation, exceeds those obtained from pre-WOCE tracer studies by a wide margin. In this contribution, we describe the existing WOCE data set and demonstrate the type of results that can be expected from its interpretation on the basis of a few selected examples. These examples include: (1) the application of tritium and 3 He to studies of the ventilation of the upper waters in the Pacific Ocean, (2) the spreading of intermediate water in the Pacific and Indian oceans as derived from the distribution of 3 He, and (3) the evaluation of

  13. Macrobenthic abundance in the vicinity of spreading ridge environment in Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.

    Macrofaunal communities of the Central Indian Ocean were evaluated for their composition, distribution, abundance and biomass. The fauna comprised of 24 major groups belonging to 15 phyla. The density of macrofauna varied from 30 to 1430 ind.m–2...

  14. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  15. A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project

    Science.gov (United States)

    Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.

    2017-12-01

    In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene

  16. Did the Chicxulub meteorite impact trigger eruptions at mid-ocean ridges globally?

    Science.gov (United States)

    Byrnes, J. S.; Karlstrom, L.

    2017-12-01

    Are there causal links between the eruption of large igneous provinces, meteorite impacts, and mass extinctions? Recent dating suggests that state shifts in Deccan Traps eruptions, including erupted volumes, feeder dike orientations, and magma chemistry, occurred shortly after the Chicxulub impact. A proposed explanation for this observation is an increase in upper mantle permeability following the Chicxulub impact that accelerated the pace of Deccan volcanism [Richards et al., 2015]. If such triggering occurred, at global distances not associated with the impact antipode, it is reasonable to hypothesize that other reservoirs of stored melt may have been perturbed as well. We present evidence that mid-ocean ridge activity increased globally following the impact. Anomalously concentrated free-air gravity and sea-floor topographic roughness suggest volumes of excess oceanic ridge magmatism in the range of 2 x 105 to 106 km3 within 1 Myrs of the Chicxulub impact. This signal is only clearly observed for half-spreading rates above 35 mm/yr, possibly because crust formed at slower spreading rates is too complex to preserve the signal. Because similar anomalies are observed separately in the Indian and Pacific Oceans, and because the timing of the signal does not clearly align with changes in spreading rates, we do not favor plume activity as an explanation. Widespread mobilization of existing mantle melt by post-impact seismic radiation, and subsequent emplacement of melt as crustal intrusions and eruptions, can explain the volume and distribution of anomalous crust without invoking impact-induced melt production. Although the mechanism for increasing permeability is not clear at either Deccan or mid-ocean ridges, these results support the hypothesis that the causes and consequences of the Deccan Traps, Chicxulub impact, and K-Pg mass extinction should not be considered in isolation. We conclude by discussing several enigmatic observations from K-Pg time that heightened

  17. An assessment of research and development leadership in ocean energy technologies

    International Nuclear Information System (INIS)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing

  18. Mobility and immobility of mid-ocean ridges and their implications to ...

    African Journals Online (AJOL)

    absolute migration) have been correlated with major observable features, such as, spreading asymmetry and asymmetry in the abundance of seamounts. The mobility of mid-ocean ridges is also thought to be an important factor that influences ...

  19. Studying the Indian Ocean Ridge System: Agenda for the new century

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Iyer, S.D.; Banerjee, R.; Drolia, R.K.

    Studies on the Indian Ocean Ridge System, though sporadic, was aimed to map the complete IORS petrologically and tectonically. Three areas are placed for immediate investigation; one in the slow spreading Carlsberg Ridge area, the second, along...

  20. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges

    Science.gov (United States)

    Langmuir, Charles H.; Klein, Emily M.; Plank, Terry

    ridges, and still more enriched basalts can erupt sporadically along the entire length of the EPR. This leads to very different histograms of distribution for the data sets as a whole, and a very different distribution of chemistry along strike for the two ridges. Despite these differences, the mean Ce/Sm ratios from the two ridges are identical. Existing methods for calculating the major element compositions of mantle melts [Klein and Langmuir, 1987; McKenzie and Bickle, 1988; Niu and Batiza, 1991] are critically examined. New quantitative methods for mantle melting and high pressure fractionation are developed to evaluate the chemical consequences of melting and fractionation processes and mantle heterogeneity. The new methods rely on new equations for partition coefficients for the major elements between mantle minerals and melts. The melting calculations can be used to investigate the chemical compositions produced by small extents of melting or high pressures of melting that cannot yet be determined experimentally. Application of the new models to the observations described above leads to two major conclusions: (1) The global correlations for normal ridges are caused by variations in mantle temperature, as suggested by Klein and Langmuir [1987] and not by mantle heterogeneity. (2) Local variations are caused by melting processes, but are not yet quantitatively accounted for. On slower spreading ridges, local variations are controlled by the melting regime in the mantle. On the EPR, local variations are predominantly controlled by ubiquitous, small scale heterogeneites. Volatile content may be an important and as yet undetermined factor in affecting the observed variations in major elements. We propose a hypothesis, similar to one proposed by Allegre et al [1984] for isotopic data, to explain the differences between the Atlantic and Pacific local trends, and the trace element systematics of the two ocean basins, as consequences of spreading rate and a different

  1. Relocation of earthquakes at southwestern Indian Ocean Ridge and its tectonic significance

    Science.gov (United States)

    Luo, W.; Zhao, M.; Haridhi, H.; Lee, C. S.; Qiu, X.; Zhang, J.

    2015-12-01

    The southwest Indian Ridge (SWIR) is a typical ultra-slow spreading ridge (Dick et al., 2003) and further plate boundary where the earthquakes often occurred. Due to the lack of the seismic stations in SWIR, positioning of earthquakes and micro-earthquakes is not accurate. The Ocean Bottom Seismometers (OBS) seismic experiment was carried out for the first time in the SWIR 49 ° 39 'E from Jan. to March, 2010 (Zhao et al., 2013). These deployed OBS also recorded the earthquakes' waveforms during the experiment. Two earthquakes occurred respectively in Feb. 7 and Feb. 9, 2010 with the same magnitude of 4.4 mb. These two earthquakes were relocated using the software HYPOSAT based on the spectrum analysis and band-pass (3-5 Hz) filtering and picking up the travel-times of Pn and Sn. Results of hypocentral determinations show that there location error is decreased significantly by joined OBS's recording data. This study do not only provide the experiences for the next step deploying long-term wide-band OBSs, but also deepen understanding of the structure of SWIR and clarify the nature of plate tectonic motivation. This research was granted by the Natural Science Foundation of China (41176053, 91028002, 91428204). Keywords: southwest Indian Ridge (SWIR), relocation of earthquakes, Ocean Bottom Seismometers (OBS), HYPOSAT References:[1] Dick, H. J. B., Lin J., Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412. [2] Zhao M. H., et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39' E). Geochemistry Geophysics Geosystems, 14(10): 4544-4563.

  2. Effect of thicker oceanic crust in the Archaean on the growth of continental crust through time

    International Nuclear Information System (INIS)

    Wilks, M.E.

    1988-01-01

    Present crustal evolution models fail to account for the generation of the large volume of continental crust in the required time intervals. All Archaean plate tectonic models, whether invoking faster spreading rates, similar to today's spreading rates, or longer ridge lengths, essentially propose that continental crust has grown by island arc accretion due to the subduction of oceanic crust. The petrological differences that characterize the Archaean from later terrains result from the subduction of hotter oceanic crust into a hotter mantle. If the oceanic crust was appreciably thicker in the Archaean, as geothermal models would indicate, this thicker crust is surely going to have an effect on tectonic processes. A more valid approach is to compare the possible styles of convergence of thick oceanic crust with modern convergence zones. The best modern analog occurs where thick continental crust is colliding with thick continental crust. Oceanic crustal collision on the scale of the present-day Himalayan continental collision zone may have been a frequent occurrence in the Archaean, resulting in extensive partial melting of the hydrous underthrust oceanic crust to produce voluminous tonalite melts, leaving a depleted stabilized basic residuum. Present-day island arc accretion may not have been the dominant mechanism for the growth of the early Archaean crust

  3. Seafloor spreading anomalies and crustal ages of the Clarion-Clipperton Zone

    OpenAIRE

    Udo Barckhausen; Meike Bagge; Douglas S. Wilson

    2013-01-01

    The Clarion-Clipperton Zone (CCZ) of the central Pacific is one of the few regions in the world’s oceans that are still lacking full coverage of reliable identifications of seafloor spreading anomalies. This is mainly due to the geometry of the magnetic lineations’ strike direction sub-parallel to the Earth’s magnetic field vector near the equator resulting in low amplitude magnetic anomalies, and the remoteness of the region which has hindered systematic surveying in the past. Following rece...

  4. Assessment of space sensors for ocean pollution monitoring

    Science.gov (United States)

    Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.

    1980-01-01

    Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.

  5. Paleomagnetism continents and oceans

    CERN Document Server

    McElhinny, Michael W; Dmowska, Renata; Holton, James R; Rossby, H Thomas

    1999-01-01

    Paleomagnetism is the study of the fossil magnetism in rocks. It has been paramount in determining that the continents have drifted over the surface of the Earth throughout geological time. The fossil magnetism preserved in the ocean floor has demonstrated how continental drift takes place through the process of sea-floor spreading. The methods and techniques used in paleomagnetic studies of continental rocks and of the ocean floor are described and then applied to determining horizontal movements of the Earth''s crust over geological time. An up-to-date review of global paleomagnetic data enables 1000 millionyears of Earth history to be summarized in terms of the drift of the major crustal blocks over the surface of the Earth. The first edition of McElhinny''s book was heralded as a "classic and definitive text." It thoroughly discussed the theory of geomagnetism, the geologicreversals of the Earth''s magnetic field, and the shifting of magnetic poles. In the 25 years since the highly successful first editio...

  6. Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2009-09-01

    Full Text Available Marine snow (small amorphous aggregates with colloidal properties is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions.We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies.We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria.

  7. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

    Science.gov (United States)

    Hui, Chang; Zheng, Xiao-Tong

    2018-01-01

    The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.

  8. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...

  9. The Effects of Ridge Axis Width on Mantle Melting at Mid-Ocean Ridges

    Science.gov (United States)

    Montesi, L.; Magni, V.; Gaina, C.

    2017-12-01

    Mantle upwelling in response to plate divergence produces melt at mid-ocean ridges. Melt starts when the solidus is crossed and stops when conductive cooling overcomes heat advection associated with the upwelling. Most mid-ocean ridge models assume that divergence takes place only in a narrow zone that defines the ridge axis, resulting in a single upwelling. However, more complex patterns of divergence are occasionally observed. The rift axis can be 20 km wide at ultraslow spreading center. Overlapping spreading center contain two parallel axes. Rifting in backarc basins is sometimes organized as a series of parallel spreading centers. Distributing plate divergence over several rifts reduces the intensity of upwelling and limits melting. Can this have a significant effect on the expected crustal thickness and on the mode of melt delivery at the seafloor? We address this question by modeling mantle flow and melting underneath two spreading centers separated by a rigid block. We adopt a non-linear rheology that includes dislocation creep, diffusion creep and yielding and include hydrothermal cooling by enhancing thermal conductivity where yielding takes place. The crustal thickness decreases if the rifts are separated by 30 km or more but only if the half spreading rate is between 1 and 2 cm/yr. At melting depth, a single upwelling remains the norm until the separation of the rifts exceeds a critical value ranging from 15 km in the fastest ridges to more than 50 km at ultraslow spreading centers. The stability of the central upwelling is due to hydrothermal cooling, which prevents hot mantle from reaching the surface at each spreading center. When hydrothermal cooling is suppressed, or the spreading centers are sufficiently separated, the rigid block becomes extremely cold and separates two distinct, highly asymmetric upwellings that may focus melt beyond the spreading center. In that case, melt delivery might drive further and further the divergence centers, whereas

  10. Credit Spreads Across the Business Cycle

    DEFF Research Database (Denmark)

    Nielsen, Mads Stenbo

    This paper studies how corporate bond spreads vary with the business cycle. I show that both level and slope of empirical credit spread curves are correlated with the state of the economy, and I link this to variation in idiosyncratic jump risk. I develop a structural credit risk model...... that accounts for both business cycle and jump risk, and show by estimation that the model captures the counter-cyclical level and pro-cyclical slope of empirical credit spread curves. In addition, I provide a new procedure for estimation of idiosyncratic jump risk, which is consistent with observed shocks...

  11. The development and application of a sub-channel code in ocean environment

    International Nuclear Information System (INIS)

    Wu, Pan; Shan, Jianqiang; Xiang, Xiong; Zhang, Bo; Gou, Junli; Zhang, Bin

    2016-01-01

    Highlights: • A sub-channel code named ATHAS/OE is developed for nuclear reactors in ocean environment. • ATHAS/OE is verified by another modified sub-channel code based on COBRA-IV. • ATHAS/OE is used to analyze thermal hydraulic of a typical SMR in heaving and rolling motion. • Calculation results show that ocean condition affect the thermal hydraulic of a reactor significantly. - Abstract: An upgraded version of ATHAS sub-channel code ATHAS/OE is developed for the investigation of the thermal hydraulic behavior of nuclear reactor core in ocean environment with consideration of heaving and rolling motion effect. The code is verified by another modified sub-channel code based on COBRA-IV and used to analyze the thermal hydraulic characteristics of a typical SMR under heaving and rolling motion condition. The calculation results show that the heaving and rolling motion affect the thermal hydraulic behavior of a reactor significantly.

  12. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.

    Science.gov (United States)

    Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan

    2017-11-01

    The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.

  13. Ocean tides

    Science.gov (United States)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  14. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  15. The Relation Between Plate Spreading Rate, Crustal Thickness and Axial Relief at Mid-Ocean Ridges

    Science.gov (United States)

    Liu, Z.; Buck, W. R.

    2017-12-01

    Variations in axial valley relief and in faulting at plate spreading centers are clearly related to magma supply and axial lithospheric structure. Previous models that consider the interaction of magmatic dikes with lithospheric stretching do not successfully reproduce both of these trends. We present the first model that reproduces these trends by making simple assumptions about the partitioning of magma between dikes, gabbros and extrusives. A key concept is that dikes open not only in the brittle axial lithosphere but also into the underlying ductile crust, where they cool to form gabbro. The amount of gabbro so intruded depends on magma pressure that is related to axial relief. The deeper the valley the less magma goes into gabbros and the more magma is available for dikes to accommodate plate separation. We define the fraction of plate separation rate accommodated by dikes as M. If Mreasonable. Finally, we describe themo-mechanical models that allow us to relate plate spreading rate and crustal thickness and to axial valley depth.

  16. Stability and dynamic rheological characterization of spread developed based on pistachio oil.

    Science.gov (United States)

    Mousazadeh, Morad; Mousavi, Seyed Mohammad; Emam-Djomeh, Zahra; HadiNezhad, Mehri; Rahmati, Naghmeh

    2013-05-01

    This study investigated the influence of formulation variables (pistachio oil (PO, 7.5 and 15%, w/w), Cocoa butter (CB, 7.5 and 15%, w/w), xanthan gum (XG, 0 and 0.3%, w/w), and distillated monoglyceride (DMG, 0.5 and 1%, w/w)) on the rheological properties and emulsion stability of spreads. Power law and Herschel-Bulkley models were used for modeling shear-thinning behavior of samples. The power law model was found to describe the flow behavior of spreads better than Herschel-Bulkley model. All the rheological properties were increased by adding XG to the spreads whereas increasing PO content caused to decrease them. The DMG had positive effect on apparent viscosity and elastic behavior but had negative effect on viscose behavior. Apparent viscosity was increased by adding CB while rheological modules were not significantly (p DMG improved stability of emulsion. The best spread formulation with optimum rheological properties was 15% PO, 7.5% CB, 0.3% XG and 1% DMG. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Crystal mosaic spread determination by slow neutron scattering

    International Nuclear Information System (INIS)

    Adib, M.; Naguib, K.; Abdel Kawy, A.; Ashry, A.; Abbas, Y.; Wahba, M.; Maayouf, M.A.

    1988-01-01

    A method has been established for determination of the crystal mosaic spread. The method is based on recording all neutron-reflected, under bragg condition, from a certain crystal plane. A computer code was developed especially in order to fit the measured wavelength's distribution of the reflected neutrons with the calculated one, assuming that the crystal mosaic spread has a Gaussian shape. The code accounts for the parameters of the time of flight spectrometer used during the present measurements, as well as divergence of the incident neutron beam. The developed method has been applied for determination of the mosaic spread of both zinc and pyrolytic graphite (P.G.) crystals. The mosaic spread values deduced from the present measurements, are 10'+-6' and 3.60 0 +-0.16 0 respectively for Zn and P.G. crystals

  18. Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature?

    Energy Technology Data Exchange (ETDEWEB)

    Corre, L.; Terray, L.; Weaver, A. [Cerfacs-CNRS, Toulouse (France); Balmaseda, M. [E.C.M.W.F, Reading (United Kingdom); Ribes, A. [CNRM-GAME, Meteo France-CNRS, Toulouse (France)

    2012-03-15

    A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14 C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14 C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045 C per decade) over the period 1965-2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans. (orig.)

  19. Developing an Automated Method for Detection of Operationally Relevant Ocean Fronts and Eddies

    Science.gov (United States)

    Rogers-Cotrone, J. D.; Cadden, D. D. H.; Rivera, P.; Wynn, L. L.

    2016-02-01

    Since the early 90's, the U.S. Navy has utilized an observation-based process for identification of frontal systems and eddies. These Ocean Feature Assessments (OFA) rely on trained analysts to identify and position ocean features using satellite-observed sea surface temperatures. Meanwhile, as enhancements and expansion of the navy's Hybrid Coastal Ocean Model (HYCOM) and Regional Navy Coastal Ocean Model (RNCOM) domains have proceeded, the Naval Oceanographic Office (NAVO) has provided Tactical Oceanographic Feature Assessments (TOFA) that are based on data-validated model output but also rely on analyst identification of significant features. A recently completed project has migrated OFA production to the ArcGIS-based Acoustic Reach-back Cell Ocean Analysis Suite (ARCOAS), enabling use of additional observational datasets and significantly decreasing production time; however, it has highlighted inconsistencies inherent to this analyst-based identification process. Current efforts are focused on development of an automated method for detecting operationally significant fronts and eddies that integrates model output and observational data on a global scale. Previous attempts to employ techniques from the scientific community have been unable to meet the production tempo at NAVO. Thus, a system that incorporates existing techniques (Marr-Hildreth, Okubo-Weiss, etc.) with internally-developed feature identification methods (from model-derived physical and acoustic properties) is required. Ongoing expansions to the ARCOAS toolset have shown promising early results.

  20. Recent Transport History of Fukushima Radioactivity in the Northeast Pacific Ocean.

    Science.gov (United States)

    Smith, John N; Rossi, Vincent; Buesseler, Ken O; Cullen, Jay T; Cornett, Jack; Nelson, Richard; Macdonald, Alison M; Robert, Marie; Kellogg, Jonathan

    2017-09-19

    The large inventory of radioactivity released during the March, 2011 Fukushima Dai-ichi nuclear reactor accident in Japan spread rapidly across the North Pacific Ocean and was first observed at the westernmost station on Line P, an oceanographic sampling line extending 1500 km westward of British Columbia (BC), Canada in June 2012. Here, time series measurements of 134 Cs and 137 Cs in seawater on Line P and on the CLIVAR-P16N 152°W line reveal the recent transport history of the Fukushima radioactivity tracer plume through the northeast Pacific Ocean. During 2013 and 2014 the Fukushima plume spread onto the Canadian continental shelf and by 2015 and early 2016 it reached 137 Cs values of 6-8 Bq/m 3 in surface water along Line P. Ocean circulation model simulations that are consistent with the time series measurements of Fukushima 137 Cs indicate that the 2015-2016 results represent maximum tracer levels on Line P and that they will begin to decline in 2017-2018. The current elevated Fukushima 137 Cs levels in seawater in the eastern North Pacific are equivalent to fallout background levels of 137 Cs that prevailed during the 1970s and do not represent a radiological threat to human health or the environment.

  1. EX1103: Exploration and Mapping, Galapagos Spreading Center: Mapping, CTD, Tow-Yo, and ROV on NOAA Ship Okeanos Explorer (EM302)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This cruise will be composed of two separate legs. The first leg will be a transit from San Diego, CA to the Galapagos Spreading Center, where multibeam mapping, CTD...

  2. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    DEFF Research Database (Denmark)

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads...

  3. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences

    Science.gov (United States)

    Baker, Edward T.; German, Christopher R.; Elderfield, Henry

    Seafloor hydrothermal circulation is the principal agent of energy and mass exchange between the ocean and the earth's crust. Discharging fluids cool hot rock, construct mineral deposits, nurture biological communities, alter deep-sea mixing and circulation patterns, and profoundly influence ocean chemistry and biology. Although the active discharge orifices themselves cover only a minuscule percentage of the ridge-axis seafloor, the investigation and quantification of their effects is enhanced as a consequence of the mixing process that forms hydrothermal plumes. Hydrothermal fluids discharged from vents are rapidly diluted with ambient seawater by factors of 104-105 [Lupton et al., 1985]. During dilution, the mixture rises tens to hundreds of meters to a level of neutral buoyancy, eventually spreading laterally as a distinct hydrographic and chemical layer with a spatial scale of tens to thousands of kilometers [e.g., Lupton and Craig, 1981; Baker and Massoth, 1987; Speer and Rona, 1989].

  4. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  5. Seismic refraction data constrain along-axis structure of the Mid-Cayman spreading center

    Science.gov (United States)

    Van Avendonk, H. J.; Hayman, N. W.; Harding, J.; Grevemeyer, I.; Peirce, C.; Dannowski, A.; Papenberg, C. A.

    2015-12-01

    The Mid-Cayman Spreading Center (MCSC) is an ultraslow (15 mm/yr) spreading ridge between the Caribbean and North American plates. From north to south the MCSC is just ~140 km long, as it is bounded to the north by the Oriente transform fault, and to the south by the Swan Islands and Walton fault systems. The neovolcanic zone is characterized by an axial valley with depths to 6000 m, and a few off-axis bathymetric highs that can be as shallow as 2000 m. The role of tectonic and magmatic processes in the creation of this bathymetric relief is not yet understood. In the 2015 CaySEIS experiment, a collaboration between German, US and UK scientists, we gathered ocean-bottom seismic refraction data along five lines across and parallel to the MCSC to determine its crustal structure. We here present the tomographic analysis of marine seismic refractions recorded along the spreading axis. The presence of thin crust here shows that the bathymetric relief of the MCSC is at least in part isostatically compensated. Much of the older ultraslow spread crust on the flanks of the MCSC may not have accreted along the deep axial valley, but it may instead have formed by exhumation of gabbros along extensional faults in the adjacent seafloor.

  6. Interactions Between Mantle Plumes and Mid-Ocean Ridges: Constraints from Geophysics, Geochemistry, and Geodynamical Modeling

    National Research Council Canada - National Science Library

    Georgen, Jennifer

    2001-01-01

    This thesis studies interactions between mid-ocean ridges and mantle plumes. Chapter 1 investigates the effects of the Marion and Bouvet hotspots on the ultra-slow spreading, highly-segmented Southwest Indian Ridge (SWIR...

  7. FACTORS INFLUENCING YIELD SPREADS OF THE MALAYSIAN BONDS

    Directory of Open Access Journals (Sweden)

    Norliza Ahmad

    2009-01-01

    Full Text Available Malaysian bond market is developing rapidly but not much is understood in terms of macroeconomic factors that could influence the yield spread of the Ringgit Malaysian denominated bonds. Based on a multifactor model, this paper examines the impact of four macroeconomic factors namely: Kuala Lumpur Composite Index (KLCI, Industry Production Index (IPI, Consumer Price Index (CPI and interest rates (IR on bond yield spread of the Malaysian Government Securities (MGS and Corporate Bonds (CBs for a period from January 2001 to December 2008. The findings support the expected hypotheses that CPI and IR are the major drivers that influence the changes in MGS yield spreads. However IPI and KLCI have weak and no influence on MGS yield spreads respectively Whilst IR, CPI and IPI have significant influence on the yield spreads of CB1, CB2 and CB3, KLCI has significant influence only on the CB1 yield spread but not on CB2 and CB3 yield spreads.

  8. Petrology of seamounts in the Central Indian Ocean Basin: Evidence for near-axis origin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Batiza, R.; Iyer, S.D.

    Previous studies on the distribution and morphology of ancient seamount chains (>50 Ma) in the Central Indian Ocean basin (CIOB) indicated their generation from the fast spreading Southeast Indian Ridge. The petrology of some of these seamounts...

  9. Asymmetrically interacting spreading dynamics on complex layered networks.

    Science.gov (United States)

    Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon

    2014-05-29

    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.

  10. 3-D Simulation of Tectonic Evolution in Mariana with a Coupled Model of Plate Subduction and Back-Arc Spreading

    Science.gov (United States)

    Hashima, A.; Matsu'Ura, M.

    2006-12-01

    We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate

  11. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    Energy Technology Data Exchange (ETDEWEB)

    LiVecchi, Albert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  12. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans

    DEFF Research Database (Denmark)

    Zhang, Li; Bahl, Martin Iain; Roager, Henrik Munch

    2017-01-01

    Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human......, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain......, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread...

  13. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N

    Science.gov (United States)

    Anderson, Melissa O.; Chadwick, William W.; Hannington, Mark D.; Merle, Susan G.; Resing, Joseph A.; Baker, Edward T.; Butterfield, David A.; Walker, Sharon L.; Augustin, Nico

    2017-06-01

    The relationships between tectonic processes, magmatism, and hydrothermal venting along ˜600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types.

  14. The strontium isotopic composition of seawater, and seawater-oceanic crust interaction

    International Nuclear Information System (INIS)

    Spooner, E.T.C.

    1976-01-01

    The 87 Sr/ 86 Sr ratio of seawater strontium (0.7091) is less than the 87 Sr/ 86 Sr ratio of dissolved strontium delivered to the oceans by continental run-off (approximately 0.716). Isotope exchange with strontium isotopically lighter oceanic crust during hydrothermal convection within spreading oceanic ridges can explain this observation. In quantitative terms, the current 87 Sr/ 86 Sr ratio of seawater (0.7091) may be maintained by balancing the continental run-off flux of strontium (0.59 x 10 12 g/yr) against a hydrothermal recirculation flux of 3.6 x 10 12 g/yr, during which the 87 Sr/ 86 Sr ratio of seawater drops by 0.0011. A concomitant mean increase in the 87 Sr/ 86 Sr ratio of the upper 4.5 km of oceanic crust of 0.0010 (0.7029-0.7039) should be produced. This required 87 Sr enrichment has been observed in hydrothermally metamorphosed ophiolitic rocks from the Troodos Massif, Cyprus. The post-Upper Cretaceous increase in the strontium isotopic composition of seawater (approximately 0.7075-0.7091) covaries smoothly with inferred increase in land area. This suggests that during this period the main factor which has caused variability in the 87 Sr/ 86 Sr ratio of seawater strontium could have been variation in the magnitude of the continental run-off flux caused by variation in land area. Variations in land area may themselves have been partly a consequence of variations in global mean sea-floor spreading rate. (Auth.)

  15. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  16. Oceanic hydraulic structures for developing a shelf. Issledovaniye morskikh gidrotekhnicheskikh sooruzheniy dlya osvoyenia sel'fa

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, G.B.

    1980-01-01

    The anthology is devoted to practical problems of oceanic hydraulic engineering which arise during design and construction of specialized oceanic hydraulic structures to be erected and used in the shelf zones of seas and oceans. Most of the articles deal with studying the external effect of rough waters, impacts from ships and ice floes on floating and stationary hydraulic structures for developing a shelf. A great deal of attention is also given to the hydrodynamic and anchoring of floating hydraulic structures. The information reflects the current status of the problems of designing and building production facilities for developing a continental shelf.

  17. Crystallization Temperatures of Lower Crustal Gabbros from the Oman Ophiolite and the Persistence of the 'Mush Zone' at Intermediate/Fast Spreading Ridges

    Science.gov (United States)

    VanTongeren, J. A.

    2017-12-01

    Oceanic crust is formed when mantle-derived magmas are emplaced at the ridge axis, a zone of intense rifting and extension. Magmas begin to cool and crystallize on-axis, forming what is termed the "Mush Zone", a region of partially molten rocks. Several attempts have been made to understand the nature of the Mush Zone at fast spreading mid-ocean ridges, specifically how much partial melt exists and how far off-axis the Mush Zone extends. Geophysical estimates of P-wave velocity perturbations at the East Pacific Rise show a region of low velocity approximately 1.5-2.5 km off-axis, which can be interpreted to be the result of higher temperature [e.g. Dunn et al., 2000, JGR] or the existence of partial melt. New petrological and geochemical data and methods allow for the calculation of the lateral extent of the Mush Zone in the lower oceanic crust on exposed sections collected from the Oman ophiolite, a paleo-fast/intermediate spreading center. I will present new data quantifying the crystallization temperatures of gabbros from the Wadi Khafifah section of lower oceanic gabbros from the Oman ophiolite. Crystallization temperatures are calculated with the newly developed plagioclase-pyroxene REE thermometer of Sun and Liang [2017, Contrib. Min. Pet.]. There does not appear to be any systematic change in the crystallization temperature of lower crustal gabbros with depth in the crust. In order to quantify the duration of crystallization and the lateral extent of the Mush Zone of the lower crust, crystallization temperatures are paired with estimates of the solidus temperature and cooling rate determined from the same sample, previously constrained by the Ca diffusion in olivine geothermometer/ geospeedometer [e.g. VanTongeren et al., 2008 EPSL]. There is no systematic variation in the closure temperature of Ca in olivine, or the cooling rate to the 800°C isotherm. These results show that gabbros throughout the lower crust of the Oman ophiolite remain in a partially

  18. The Indonesian Throughflow (ITF) and its impacts on the Indian Ocean during the global warming slowdown period

    Science.gov (United States)

    Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.

    2016-12-01

    The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).

  19. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys

    Digital Repository Service at National Institute of Oceanography (India)

    Gibbons, A.D.; Zahirovic, S.; Müller, R.D.; Whittaker, J.M.; Yatheesh, V.

    , the Shyok and Khardung volcanics (Thakur, 1990) and the overlying Saltoro flysch, which contains upper Cretaceous to Eocene fossils (Bhutani et al., 2009). Strike-slip motion along the Karakoram Fault transported the Shyok Volcanics southward and adjacent..., possibly developing after subduction of a NeoTethyan spreading centre, following India’s rapid northward motion in the mid Cretaceous (Rolland et al., 2002). A weak zone of transitional crust between oceanic and continental lithosphere may have initiated...

  20. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes

    Science.gov (United States)

    Ding, Weiwei; Sun, Zhen; Dadd, Kelsie; Fang, Yinxia; Li, Jiabiao

    2018-04-01

    Internal structures in mature oceanic crust can elucidate understanding of the processes and mechanism of crustal accretion. In this study, we present two multi-channel seismic (MCS) transects across the northern flank of the South China Sea basin to reveal the internal structures related to Cenozoic tectono-magmatic processes during seafloor spreading. Bright reflectors within the oceanic crust, including the Moho, upper crustal reflectors, and lower crustal reflectors, are clearly imaged in these two transects. The Moho reflection displays varied character in continuity, shape and amplitude from the continental slope area to the abyssal basin, and becomes absent in the central part of the basin where abundant seamounts and seamount chains formed after the cessation of seafloor spreading. Dipping reflectors are distinct in most parts of the MCS data but generally confined to the lower crust above the Moho reflection. These lower crustal reflectors merge downward into the Moho without offsetting it, probably arising from shear zones between the crust and mantle characterized by interstitial melt, although we cannot exclude other possibilities such as brittle faulting or magmatic layering in the local area. A notable feature of these lower crustal reflector events is their opposite inclinations. We suggest the two groups of conjugate lower crustal reflector events observed between magnetic anomalies C11 and C8 were associated with two unusual accretionary processes arising from plate reorganizations with southward ridge jumps.

  1. Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes.

    Science.gov (United States)

    Toulza, Eve; Tagliabue, Alessandro; Blain, Stéphane; Piganeau, Gwenael

    2012-01-01

    Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.

  2. Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks

    Science.gov (United States)

    Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong

    2018-02-01

    Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.

  3. EX1103: Exploration and Mapping, Galapagos Spreading Center: Mapping, CTD, Tow-Yo, and ROV on NOAA Ship Okeanos Explorer between 20110608 and 20110728

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This cruise will be composed of two separate legs. The first leg will be a transit from San Diego, CA to the Galapagos Spreading Center, where multibeam mapping, CTD...

  4. The Global Ocean Observing System (GOOS): New developments

    International Nuclear Information System (INIS)

    Summerhayes, C.P.

    1999-01-01

    GOOS will provide information about the present and future states of seas and oceans and their living resources, and on the role of the oceans in climate change. Among other things, it will include monitoring the extent to which the sea is polluted, and applying models enabling the behaviour of polluted environments to be forecast given a variety of forcing conditions including anthropogenic and natural changes. Implementation has begun through integration of previously separate existing observing systems into a GOOS Initial Observing System, and through the development of Pilot Projects, most notably in the coastal seas of Europe and North-east Asia. Although the present emphasis is on the measurement of physical properties, plans are underway for increasing the observation of chemical and biological parameters. The main biological thrust at present comes through the Global Coral Reef Monitoring Network (GCRMN). Consideration needs to be given to incorporation into the GOOS Initial Observing System of present national, international and global chemical and biological monitoring systems, and the development and implementation of new chemical and biological monitoring subsystems, especially in coastal seas for monitoring the health of those environments. GOOS will offer marine scientists and other users a scheme of continuing measurements on a scale larger in time and space than can be accomplished by individuals for their own applications, and a vastly improved store of basic marine environmental data for a multitude of purposes. For GOOS news see the GOOS Homepage at http://ioc.unesco.org/GOOS/. (author)

  5. Spread effects - methodology

    International Nuclear Information System (INIS)

    2004-01-01

    Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)

  6. A model study of the first ventilated regime of the Arctic Ocean during the early Miocene

    Directory of Open Access Journals (Sweden)

    Bijoy Thompson

    2012-07-01

    Full Text Available The tectonic opening of Fram Strait during the Neogene was a significant geological event that transferred the Arctic Ocean from a poorly ventilated enclosed basin, with weak exchange with the North Atlantic, to a fully ventilated “ocean stage”. Previous tectonic and physical oceanographic analyses suggest that the early Miocene Fram Strait was likely several times narrower and less than half as deep as the present-day 400 km wide and 2550 m deep strait. Here we use an ocean general circulation model with a passive age tracer included to further address the effect of the Fram Strait opening on the early Miocene Arctic Ocean circulation. The model tracer age exhibits strong spatial gradient between the two major Arctic Ocean deep basins: the Eurasian and Amerasian basins. There is a two-layer stratification and the exchange flow through Fram Strait shows a bi-layer structure with a low salinity outflow from the Arctic confined to a relatively thin upper layer and a saline inflow from the North Atlantic below. Our study suggests that although Fram Strait was significantly narrower and shallower during early Miocene, and the ventilation mechanism quite different in our model, the estimated ventilation rates are comparable to the chemical tracer estimates in the present-day Arctic Ocean. Since we achieved ventilation of the Arctic Ocean with a prescribed Fram Strait width of 100 km and sill depth of 1000 m, ventilation may have preceded the timing of a full ocean depth connection between the Arctic Ocean and North Atlantic established through seafloor spreading and the development of the Lena Trough.

  7. The effects of post-accretion sedimentation on the magnetization of oceanic crust

    Science.gov (United States)

    Dyment, J.; Granot, R.

    2016-12-01

    The presence of marine magnetic anomalies related to seafloor spreading is often considered a key evidence to locate the continent-ocean boundary (COB) at passive margins. Conversely, thermal demagnetization is also advocated to explain the poor shape of such oceanic anomalies under thick sedimentary cover. To investigate the effects of post-accretion sedimentation on marine magnetic anomalies, we focus our study on two conjugate regions of the southern South Atlantic Ocean (Anomalies M4 to M0) that, although formed at the same time and along the same spreading segments, reveal contrasting characters. The anomalies exhibit strong amplitudes (>400 nT) and a well-marked shape off South Africa, where the sediments are less than 3 km-thick, but become weaker ( 200 nT) and much smoother off northern Argentina, where the sedimentary cover is thicker than 5 km. We interpret this observation as reflecting thermal demagnetization of the extrusive layer and its low Curie temperature titanomagnetite. We perform a series of thermo-magnetic models (Dyment and Arkani-Hamed, Geophys. J. Int., 1995, modified to include the sedimentary cover) to simulate the acquisition and loss of remanent magnetization in the oceanic lithosphere. We assume that most of the sediments accumulated shortly after crustal accretion. We investigate a range of possible thermal demagnetization temperatures for the extrusive layer and find that 200°C to 280ºC best explains the observations, in reasonable agreement with Curie temperatures of titanomagnetite, suggesting that most of the extrusive layer may be demagnetized under sediments thicker than 5 km. Thermal demagnetization should therefore be considered while interpreting marine magnetic anomalies for the age and nature of the crust (i.e., continental versus oceanic) in regions with thick sedimentary cover.

  8. Uranium-lead isotopic ages of the Samail ophiolite, Oman, with applicatons to Tethyan ocean ridge tectonics

    International Nuclear Information System (INIS)

    Tilton, G.R.; Hopson, C.A.; Wright, J.E.

    1981-01-01

    Plagiogranites are a minor but widespread component of the Samail ophiolite plutonic member. They crystallized from the most fractionated melts generated by magmatic crystallization and differentiation of a steady state magma chamber beneath the Tethyan spreading ocean ridge, and their ages are thought to mark the time of ocean crust formation. Isotopic U--Pb ages of zircons from 13 plagiogranites collected along a 270-km segment of the Samail ophiolite subparallel to the regional trend of the sheeted dike complex (the former spreading ridge axis direction) define a narrow time interval of 93.5--97.9 m.y., with a pronounced clustering about 95 m.y. The zircon ages of the plagiogranites agree remarkably well with the early Cenomanian to early Turonian biostratigraphic ages of sediments that are intercalated within the ophiolite pillow lavas and that lie just above them (Tippit et al., 1981). The agreement of radiometric and biostratigraphic ages provides strong support for the conclusion that the plagiogranite U--Pb ages closely date the time span of ocean crust formation. No step changes in age patterns are observed along the ridge axis (sheeted dike) direction, suggesting that there are no major internal offsets of the ophiolite by transform or other faults along most of the traverse. One possible exception occurs at the southeastern end of the sampled interval (Ibra area), where a 3 m.y. discontinuity might be caused by an unmapped fault. Assuming that the regional trend of the sheeted dikes (N10 0 --25 0 W) marks the direction of the former spreading ridge axis, the present array of sample localities spans a distance of 130 to 195 km normal to that axis (i.e., in the spreading direction). The data as a whole do not define a clear-cut age trend normal to the spreading axis, but by eliminating samples that may be aberrant due to faulting, the data array suggests a pattern of increasing ages from east to west

  9. Masirah – the other Oman ophiolite: A better analogue for mid-ocean ridge processes?

    Directory of Open Access Journals (Sweden)

    Hugh Rollinson

    2017-11-01

    Full Text Available Oman has two ophiolites – the better known late Cretaceous northern Oman (or Semail ophiolite and the lesser known and smaller, Jurassic Masirah ophiolite located on the eastern coast of the country adjacent to the Indian Ocean. A number of geological, geochronological and geochemical lines of evidence strongly suggest that the northern Oman ophiolite did not form at a mid-ocean ridge but rather in a supra-subduction zone setting by fast spreading during subduction initiation. In contrast the Masirah ophiolite is structurally part of a series of ophiolite nappes which are rooted in the Indian Ocean floor. There are significant geochemical differences between the Masirah and northern Oman ophiolites and none of the supra-subduction features typical of the northern Oman ophiolite are found at Masirah. Geochemically Masirah is MORB, although in detail it contains both enriched and depleted MORB reflecting a complex source for the lavas and dykes. The enrichment of this source predates the formation of the ophiolite. The condensed crustal section on Masirah (ca. 2 km contains a very thin gabbro sequence and is thought to reflect its genesis from a cool mantle source associated with the early stages of sea-floor spreading during the early separation of eastern and western Gondwana. These data suggest that the Masirah ophiolite is a suitable analogue for an ophiolite created at a mid-ocean ridge, whereas the northern Oman ophiolite is not. The stratigraphic history of the Masirah ophiolite shows that it remained a part of the oceanic crust for ca. 80 Ma. The chemical variability and enrichment of the Masirah lavas is similar to that found elsewhere in Indian Ocean basalts and may simply reflect a similar provenance rather than a feature fundamental to the formation of the ophiolite.

  10. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  11. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  12. Spread of endemic disease and global change in an educational project: proposition of relationships developed in a twin partnership

    Directory of Open Access Journals (Sweden)

    Michela Viale

    2012-07-01

    Full Text Available The sudden event of the spread of dengue fever (or break-bone fever that appeared for the first time in Cape Verde in 2009 revealed that inappropriate management of waste can be considered a major cause of the spread of this disease. Dengue fever is a tropical infectious disease that is caused by the dengue virus. Its vector, the mosquito Aedes aegypti, found an optimal environment for its life cycle in the context of Cape Verde, with the persistence of water in abandoned waste objects. The connection between the topics of Earth sciences and the spread of this disease is not obvious, but it was explored and illustrated in a school partnership. Activities with pupils and students provided an opportunity to investigate how some global phenomena, like climate change (with an increase in local rainfall and higher temperatures, are related to local events, such as the spread of dengue fever. Preventive strategies are conditioned by the geomorphology of the territory and by the complex relationships that connect the geosphere and the biosphere. For this reason, it is important to be aware of the risk of breaking these delicate balances, and hence activating unexpected consequences. The roles played by both partners linked knowledge about the natural dynamics of our planet with the development of appropriate behavior, thus contributing to the formation of responsible citizenship, to preserve and protect the environment. The partnership encouraged students to develop sustainable management strategies against dengue fever, and consequently against waste, actively involving them at school, at home, and in their community. In this study, we present a case study of the role of a school partnership in a complex problem, such as the spread of dengue fever and environmental pollution.

  13. 75 FR 54497 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2010-09-08

    .... SUMMARY: The EPA is designating the Guam Deep Ocean Disposal Site (G- DODS) as a permanent ocean dredged... administration of ocean disposal permits; (2) development and maintenance of a site monitoring program; (3... include: (1) Regulating quantities and types of material to be disposed, including the time, rates, and...

  14. Developing an Ontology for Ocean Biogeochemistry Data

    Science.gov (United States)

    Chandler, C. L.; Allison, M. D.; Groman, R. C.; West, P.; Zednik, S.; Maffei, A. R.

    2010-12-01

    Semantic Web technologies offer great promise for enabling new and better scientific research. However, significant challenges must be met before the promise of the Semantic Web can be realized for a discipline as diverse as oceanography. Evolving expectations for open access to research data combined with the complexity of global ecosystem science research themes present a significant challenge, and one that is best met through an informatics approach. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is funded by the National Science Foundation Division of Ocean Sciences to work with ocean biogeochemistry researchers to improve access to data resulting from their respective programs. In an effort to improve data access, BCO-DMO staff members are collaborating with researchers from the Tetherless World Constellation (Rensselaer Polytechnic Institute) to develop an ontology that formally describes the concepts and relationships in the data managed by the BCO-DMO. The project required transforming a legacy system of human-readable, flat files of metadata to well-ordered controlled vocabularies to a fully developed ontology. To improve semantic interoperability, terms from the BCO-DMO controlled vocabularies are being mapped to controlled vocabulary terms adopted by other oceanographic data management organizations. While the entire process has proven to be difficult, time-consuming and labor-intensive, the work has been rewarding and is a necessary prerequisite for the eventual incorporation of Semantic Web tools. From the beginning of the project, development of the ontology has been guided by a use case based approach. The use cases were derived from data access related requests received from members of the research community served by the BCO-DMO. The resultant ontology satisfies the requirements of the use cases and reflects the information stored in the metadata database. The BCO-DMO metadata database currently contains information that

  15. Combinatorics of spreads and parallelisms

    CERN Document Server

    Johnson, Norman

    2010-01-01

    Partitions of Vector Spaces Quasi-Subgeometry Partitions Finite Focal-SpreadsGeneralizing André SpreadsThe Going Up Construction for Focal-SpreadsSubgeometry Partitions Subgeometry and Quasi-Subgeometry Partitions Subgeometries from Focal-SpreadsExtended André SubgeometriesKantor's Flag-Transitive DesignsMaximal Additive Partial SpreadsSubplane Covered Nets and Baer Groups Partial Desarguesian t-Parallelisms Direct Products of Affine PlanesJha-Johnson SL(2,

  16. Modeling study on nuclide transport in ocean - an ocean compartment method

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Suh, Kyung Suk; Han, Kyoung Won

    1991-01-01

    An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and interaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean method. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves. (Author)

  17. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  18. Drop spreading and penetration into pre-wetted powders

    KAUST Repository

    Marston, Jeremy

    2013-05-01

    We present results from an experimental study of the impact of liquid drops onto powder beds which are pre-wetted with the impacting liquid. Using high-speed video imaging, we study both the dynamics of the initial spreading regime and drainage times once the drop has reached its maximum spread on the surface. During the initial spreading stage, we compare our experimental data to a previously developed model which incorporates imbibition into the spreading dynamics and observe reasonable agreement. We find that the maximum spread is a strong function of the moisture content in the powder bed and that the total time from impact to complete drainage is always shorter than that for dry powder. Our results indicate that there is an optimum moisture content (or saturation) which leads to the fastest penetration. We use simple scaling arguments which also identify an optimum moisture content for fastest penetration, which agrees very well with the experimental result. © 2013 Elsevier B.V.

  19. Initial opening of the Eurasian Basin, Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Kai Berglar

    2016-10-01

    Full Text Available Analysis of the transition from the NE Yermak Plateau into the oceanic Eurasian Basin sheds light on the Paleocene formation of this Arctic basin. Newly acquired multichannel seismic data with a 3600 m long streamer shot during ice-free conditions enables the interpretation of crustal structures. Evidence is provided that no major compressional deformation affected the NE Yermak Plateau. The seismic data reveal that the margin is around 80 km wide and consists of rotated fault blocks, major listric normal faults, and half-grabens filled with syn-rift sediments. Taking into account published magnetic and gravimetric data, this setting is interpreted as a rifted continental margin, implying that the NE Yermak Plateau is of continental origin. The transition from the Yermak Plateau to the oceanic Eurasian Basin might be located at a prominent basement high, probably formed by exhumed mantle. In contrast to the Yermak Plateau margin, the North Barents Sea continental margin shows a steep continental slope with a relatively abrupt transition to the oceanic domain. Based on one composite seismic line, it is speculated that the initial opening direction of the Eurasian Basin in the Arctic Ocean was highly oblique to the present day seafloor spreading direction.

  20. Proceedings of international workshop on utilization of nuclear power in oceans (N'ocean 2000)

    International Nuclear Information System (INIS)

    Yamaji, A.; Nariyama, N.; Sawada, K.

    2000-03-01

    Human beings and the ocean have maintained close relations for a long time. The ocean produced the life at very old time and human beings have been benefited by ocean, particularly in Japan that is surrounded by the ocean. In the utilization of nuclear power in ocean, Japan has been very active from the beginning of the development of nuclear power. The nuclear powered ship MUTSU has been developed and completed the experimental voyage. Besides the nuclear powered ship, we are using the ocean for the transportation of radioactive materials. This International Workshop aimed at offering further information about nuclear utilization in oceans such as icebreakers, deep-sea submarines, high speed carriers, floating plant, desalination and heating plants, radioactive materials transport ships, and so on. The discussions on the economical, environmental and scientific effects are included. The 36 of the present papers are indexed individually. (J.P.N.)

  1. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events

    Science.gov (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.

    2008-12-01

    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  2. Microbial Community Structure of Deep-sea Hydrothermal Vents on the Ultraslow Spreading Southwest Indian Ridge

    Directory of Open Access Journals (Sweden)

    Jian Ding

    2017-06-01

    Full Text Available Southwest Indian Ridge (SWIR is a typical oceanic ultraslow spreading ridge with intensive hydrothermal activities. The microbial communities in hydrothermal fields including primary producers to support the entire ecosystem by utilizing geochemical energy generated from rock-seawater interactions. Here we have examined the microbial community structures on four hydrothermal vents from SWIR, representing distinct characteristics in terms of temperature, pH and metal compositions, by using Illumina sequencing of the 16S small subunit ribosomal RNA (rRNA genes, to correlate bacterial and archaeal populations with the nature of the vents influenced by ultraslow spreading features. Epsilon-, Gamma-, Alpha-, and Deltaproteobacteria and members of the phylum Bacteroidetes and Planctomycetes, as well as Thaumarchaeota, Woesearchaeota, and Euryarchaeota were dominant in all the samples. Both bacterial and archaeal community structures showed distinguished patterns compared to those in the fast-spreading East Pacific Ridge or the slow-spreading Mid-Atlantic Ridge as previously reported. Furthermore, within SWIR, the microbial communities are highly correlated with the local temperatures. For example, the sulfur-oxidizing bacteria were dominant within bacteria from low-temperature vents, but were not represented as the dominating group recovered from high temperature (over 300°C venting chimneys in SWIR. Meanwhile, Thaumarchaeota, the ammonium oxidizing archaea, only showed high relative abundance of amplicons in the vents with high-temperature in SWIR. These findings provide insights on the microbial community in ultraslow spreading hydrothermal fields, and therefore assist us in the understanding of geochemical cycling therein.

  3. COMBINED EFFECTS OF OCEAN ACIDIFICATION, OCEAN WARMING AND OIL SPILL ON ASPECTS OF DEVELOPMENT OF MARINE INVERTEBRATES

    OpenAIRE

    Arnberg, maj

    2016-01-01

    Full version unavailable due to 3rd party copyright restrictions. For decades, humans have impacted marine ecosystems in a variety of ways including contamination by pollution, fishing, and physical destruction of habitats. Global change has, and will, lead to alterations in in a number of abiotic factors of our ocean in particular reduced oxygen saturation, salinity changes, elevated temperature (ocean warming or OW) and elevated carbon dioxide (ocean acidification or OA). Now and in the...

  4. Dynamical Model about Rumor Spreading with Medium

    Directory of Open Access Journals (Sweden)

    Xiaxia Zhao

    2013-01-01

    Full Text Available Rumor is a kind of social remark, that is untrue, and not be confirmed, and spreads on a large scale in a short time. Usually, it can induce a cloud of pressure, anxiety, and panic. Traditionally, it is propagated by word of mouth. Nowadays, with the emergence of the internet, rumors can be spread by instant messengers, emails, or publishing. With this new pattern of spreading, an ISRW dynamical model considering the medium as a subclass is established. Beside the dynamical analysis of the model, we mainly explore the mechanism of spreading of individuals-to-individuals and medium-to-individual. By numerical simulation, we find that if we want to control the rumor spreading, it will not only need to control the rate of change of the spreader subclass, but also need to control the change of the information about rumor in medium which has larger influence. Moreover, to control the effusion of rumor is more important than deleting existing information about rumor. On the one hand, government should enhance the management of internet. On the other hand, relevant legal institutions for punishing the rumor creator and spreader on internet who can be tracked should be established. Using this way, involved authorities can propose efficient measures to control the rumor spreading to keep the stabilization of society and development of economy.

  5. Inter and Intra Basin Scale Transport of {sup 137}Cs in the Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, M. [Geochemical Research Department, Meteorological Research Institute, Tsukuba (Japan); Fukasawa, M.; Kawano, T. [Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka (Japan); Hamajima, Y. [Low-Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi (Japan); Hirose, K. [Faculty of Science and Technology, Sophia University, Chiyoda-ku (Japan); Nakano, H. [Oceanographic Research Department, Meteorological Research Institute, Tsukuba (Japan); Povinec, P. P. [Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Sanchez-Cabeza, J. A. [Institut de Ciencia i Tecnologia Ambientals, and Departament de Fisica, Universitat Autonoma de Barcelona, Bellaterra (Spain); Tsumune, D. [Environmental Research Laboratory, Central Research Institute of Electric Power Industry, Abiko (Japan)

    2013-07-15

    The anthropogenic radionuclides, such as ''1''3''7Cs, ''9''0Sr, and some of the transuranic nuclides, are important tracers of transport and biogeochemical processes in the ocean. {sup 137}Cs, a major fission product present in a dissolved form in seawater, is a good tracer of oceanic circulation on a time scale of several decades. In the Pacific Ocean, 7 cruises were conducted and the 3-D distribution of {sup 137}Cs concentration in the 2000's was observed. Two types of ocean general circulation models were also used to conduct hindcasts of the {sup 137}Cs concentration. Both results allowed the drawing of a detailed picture of the {sup 137}Cs 3-D structure. The deposition of {sup 137}Cs mainly occurred in the northern subtropical gyre of the North Pacific Ocean and was later transported into the ocean interior, and a core structure of {sup 137}Cs was found along the Central Mode Water. After crossing the Equator, {sup 137}Cs spreads to the South Pacific through the Ekman transports at the surface. (author)

  6. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the arctic mid-ocean spreading ridge

    Directory of Open Access Journals (Sweden)

    Steffen Leth eJørgensen

    2013-10-01

    Full Text Available In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~ 50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001. Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000, indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

  7. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    Directory of Open Access Journals (Sweden)

    P. Sakov

    2012-08-01

    Full Text Available We present a detailed description of TOPAZ4, the latest version of TOPAZ – a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003–2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation in the North Atlantic and the sea-ice variability in the Arctic. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates – a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in-situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  8. Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses

    Science.gov (United States)

    Storto, Andrea; Masina, Simona; Balmaseda, Magdalena; Guinehut, Stéphanie; Xue, Yan; Szekely, Tanguy; Fukumori, Ichiro; Forget, Gael; Chang, You-Soon; Good, Simon A.; Köhl, Armin; Vernieres, Guillaume; Ferry, Nicolas; Peterson, K. Andrew; Behringer, David; Ishii, Masayoshi; Masuda, Shuhei; Fujii, Yosuke; Toyoda, Takahiro; Yin, Yonghong; Valdivieso, Maria; Barnier, Bernard; Boyer, Tim; Lee, Tony; Gourrion, Jérome; Wang, Ou; Heimback, Patrick; Rosati, Anthony; Kovach, Robin; Hernandez, Fabrice; Martin, Matthew J.; Kamachi, Masafumi; Kuragano, Tsurane; Mogensen, Kristian; Alves, Oscar; Haines, Keith; Wang, Xiaochun

    2017-08-01

    Quantifying the effect of the seawater density changes on sea level variability is of crucial importance for climate change studies, as the sea level cumulative rise can be regarded as both an important climate change indicator and a possible danger for human activities in coastal areas. In this work, as part of the Ocean Reanalysis Intercomparison Project, the global and regional steric sea level changes are estimated and compared from an ensemble of 16 ocean reanalyses and 4 objective analyses. These estimates are initially compared with a satellite-derived (altimetry minus gravimetry) dataset for a short period (2003-2010). The ensemble mean exhibits a significant high correlation at both global and regional scale, and the ensemble of ocean reanalyses outperforms that of objective analyses, in particular in the Southern Ocean. The reanalysis ensemble mean thus represents a valuable tool for further analyses, although large uncertainties remain for the inter-annual trends. Within the extended intercomparison period that spans the altimetry era (1993-2010), we find that the ensemble of reanalyses and objective analyses are in good agreement, and both detect a trend of the global steric sea level of 1.0 and 1.1 ± 0.05 mm/year, respectively. However, the spread among the products of the halosteric component trend exceeds the mean trend itself, questioning the reliability of its estimate. This is related to the scarcity of salinity observations before the Argo era. Furthermore, the impact of deep ocean layers is non-negligible on the steric sea level variability (22 and 12 % for the layers below 700 and 1500 m of depth, respectively), although the small deep ocean trends are not significant with respect to the products spread.

  9. Coastal Ocean Ecosystem Dynamics Imager Pointing Line-of-Sight Solution Development and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A stable pointing line of sight solution is developed and tested in support of the Coastal Ocean Ecosystem Dynamics Imager for the GEOstationary Coastal and Air...

  10. Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems

    Science.gov (United States)

    Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.

    2016-02-01

    For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.

  11. Oceanographer transform fault structure compared to that of surrounding oceanic crust: Results from seismic refraction data analysis

    Science.gov (United States)

    Ambos, E. L.; Hussong, D. M.

    1986-02-01

    A high quality seismic refraction data set was collected near the intersection of the tranform portion of the Oceanographer Fracture Zone (OFZ) with the adjacent northern limb of the Mid-Atlantic Ridge spreading center (MAR). One seismic line was shot down the axis of the transform valley. Another was shot parallel to the spreading center, crossing from normal oceanic crust into the transform valley, and out again. This latter line was recorded by four Ocean Bottom Seismometers (OBSs) spaced along its length, providing complete reversed coverage over the crucial transform valley zone. Findings indicate that whereas the crust of the transform valley is only slightly thinner (4.5 km) compared to normal oceanic crust (5-8 km), the structure is different. Velocities in the range of 6.9 to 7.7. km/sec, which are characteristics of seismic layer 3B, are absent, although a substantial thickness (approximately 3 km) of 6.1-6.8 km/sec material does appear to be present. The upper crust, some 2 km in thickness, is characterized by a high velocity gradient (1.5 sec -1) in which veloxity increases from 2.7 km/sec at the seafloor to 5.8 km/sec at the base of the section. A centrally-located deep of the transform valley has thinner crust (1-2 km), whereas the crust gradually thickens past the transform valley-spreading center intersection. Analysis of the seismic line crossing sub-perpendicular to the transform valley demonstrates abrupt thinning of the upper crustal section, and thickening of the lower crust outside of the trasform valley. In addition, high-velocity material seems to occur under the valley flanks, particularly the southern flanking ridge. This ridge, which is on the side of the transform opposite to the intersection of spreading ridge and transform, may be an expression of uplifted, partially serpentinized upper mantle rocks.

  12. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.

  13. Ripple-Spreading Network Model Optimization by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Hu

    2013-01-01

    Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

  14. Developing a global ocean observing system that prioritises ecosystem variables from a political and societal point of view

    Science.gov (United States)

    Miloslavich, P.; Bax, N. J.; Simmons, S. E.; Appeltans, W.; Garcia, M.

    2016-02-01

    The Biology and Ecosystems Panel of GOOS aims to develop and coordinate efforts to implement a sustained and targeted global ocean observation system. This system will be driven by societal needs (including the Sustainable Development Goals), and identify Essential Ocean Variables (EOVs) to inform priority scientific and societal questions that will facilitate critical policy development and management decision-making on ocean and coastal resource sustainability and health. Mature EOVs need to have global relevance and the capacity for global measurement. Our goal is to implement at least one (set of) mature EOVs by 2019, and identify a further three (sets of) pilot EOVs with a clear pathway to maturity. Our initial work includes (1) identifying drivers and pressures of societal and scientific needs, and (2) identifying internationally agreed goals that need sustained global observations of ocean biological & ecosystem variables for a healthy ocean. We reviewed 24 major conventions/international organizations (including the CBD and 16 UN related) to identify the societal needs these organizations address through their goals, and to produce a set of overlapping objectives. Main drivers identified in these conventions were: knowledge (science/data access), development (sustainable economic growth), conservation (biodiversity & ecosystems), sustainable use (biodiversity & resources), environmental quality (health), capacity building (technology transfer), food security, threat prevention and impact mitigation (to different pressures) and improved management (integrated ecosystem approach). The main pressures identified were climate change, ocean acidification, extreme weather events, overfishing/ overexploitation, pollution/ eutrophication, mining, solid wastes. Our next step will be to develop consensus with the observing community about the EOVs that will meet these needs and support the expansion of these identified EOVs into successful global observing systems.

  15. Spreading of technological developments in socio-economic systems

    International Nuclear Information System (INIS)

    Kun, F.; Pal, K.F.

    2005-01-01

    Complete text of publication follows. Recently, it has been recognized that various aspects of the time evolution of modern socio-economic systems show strong analogies to complex systems extensively studied by physical sciences. During the last decade the application of methods and models of statistical physics provided a novel insight into social and economical problems and led to the emergence of new branches of physical research. In the framework of the present project we proposed a simple cellular automata model of the spreading of new technological developments in socio-economic systems. In our model the socio-economic system is defined in a general sense: the elements/members of the system are called agents, which may be firms or simply individuals. Depending on the meaning of agents, the system under consideration can be a macro-economic system where firms compete with each other, or it can be a society where individuals purchase products of di rent technological level. Technological development occurs such that agents adopt more advanced technologies of their social environment in order to minimize their costs. Technological development due to innovation can be captured in the model as a random external driving. As a first step, we analyzed the basic setup of the model where agents have random technological levels uniformly distributed between 0 and 1 and interact solely with their near- est neighbors in a square lattice without considering external driving. Computer simulations revealed that even under these simplifying assumptions a rather complex behavior of the system emerges: when the most advanced technologies do not provide enough improvement (enough cost reduction) in the system, the agents tend to form clusters of di rent technological levels where even low level technologies may survive for a long time. At intermediate values of the advantage provided by the new technologies, the global technological level of the society improves, however, it

  16. The VULCANO spreading programme

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M. [CEA (Atomic Energy Commission), DRN/DER - Bat. 212, CEA Cadarache, 13108 St. Paul Lez Durance (France)

    1999-07-01

    Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)

  17. The VULCANO spreading programme

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M.

    1999-01-01

    Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)

  18. Ocean Data Interoperability Platform (ODIP): developing a common framework for marine data management on a global scale

    Science.gov (United States)

    Schaap, Dick M. A.; Glaves, Helen

    2016-04-01

    Europe, the USA, and Australia are making significant progress in facilitating the discovery, access and long term stewardship of ocean and marine data through the development, implementation, population and operation of national, regional or international distributed ocean and marine observing and data management infrastructures such as SeaDataNet, EMODnet, IOOS, R2R, and IMOS. All of these developments are resulting in the development of standards and services implemented and used by their regional communities. The Ocean Data Interoperability Platform (ODIP) project is supported by the EU FP7 Research Infrastructures programme, National Science Foundation (USA) and Australian government and has been initiated 1st October 2012. Recently the project has been continued as ODIP II for another 3 years with EU HORIZON 2020 funding. ODIP includes all the major organisations engaged in ocean data management in EU, US, and Australia. ODIP is also supported by the IOC-IODE, closely linking this activity with its Ocean Data Portal (ODP) and Ocean Data Standards Best Practices (ODSBP) projects. The ODIP platform aims to ease interoperability between the regional marine data management infrastructures. Therefore it facilitates an organised dialogue between the key infrastructure representatives by means of publishing best practice, organising a series of international workshops and fostering the development of common standards and interoperability solutions. These are evaluated and tested by means of prototype projects. The presentation will give further background on the ODIP projects and the latest information on the progress of three prototype projects addressing: 1. establishing interoperability between the regional EU, USA and Australia data discovery and access services (SeaDataNet CDI, US NODC, and IMOS MCP) and contributing to the global GEOSS and IODE-ODP portals; 2. establishing interoperability between cruise summary reporting systems in Europe, the USA and

  19. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  20. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care

    DEFF Research Database (Denmark)

    Dreier, Jens P; Fabricius, Martin; Ayata, Cenk

    2017-01-01

    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly r...

  1. 77 FR 15052 - National Ocean Council-National Ocean Policy Draft Implementation Plan

    Science.gov (United States)

    2012-03-14

    ... charge for Federal agencies to implement the National Ocean Policy, the National Ocean Council developed... dollars a year to the national economy, and are essential to public health and national security. Next...

  2. NeXOS, developing and evaluating a new generation of insitu ocean observation systems.

    Science.gov (United States)

    Delory, Eric; del Rio, Joaquin; Golmen, Lars; Roar Hareide, Nils; Pearlman, Jay; Rolin, Jean-Francois; Waldmann, Christoph; Zielinski, Oliver

    2017-04-01

    Ocean biological, chemical or physical processes occur over widely varying scales in space and time: from micro- to kilometer scales, from less than seconds to centuries. While space systems supply important data and information, insitu data is necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observation on these scales is inherently challenging and remains generally difficult and costly in time and resources. This paper address the innovations and significant developments for a new generation of insitu sensors in FP7 European Union project "Next generation, Cost- effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management" or "NeXOS" for short. Optical and acoustics sensors are the focus of NeXOS but NeXOS moves beyond just sensors as systems that simultaneously address multiple objectives and applications are becoming increasingly important. Thus NeXOS takes a perspective of both sensors and sensor systems with significant advantages over existing observing capabilities via the implementation of innovations such as multiplatform integration, greater reliability through better antifouling management and greater sensor and data interoperability through use of OGC standards. This presentation will address the sensor system development and field-testing of the new NeXOS sensor systems. This is being done on multiple platforms including profiling floats, gliders, ships, buoys and subsea stations. The implementation of a data system based on SWE and PUCK furthers interoperability across measurements and platforms. This presentation will review the sensor system capabilities, the status of field tests and recommendations for long-term ocean monitoring.

  3. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  4. Dynamics of cell area and force during spreading.

    Science.gov (United States)

    Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf

    2014-12-16

    Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  6. Exploring the plutonic crust at a fast-spreading ridge:new drilling at Hess Deep

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Kathryn M. [Univ. of Victoria, BC (Canada). School of Earth and Ocean Sciences; Snow, Jonathan E. [Univ. of Houston, Houston, TX (United States). Earth & Atmospheric Sciences; Klaus, Adam [Texas A & M Univ., College Station, TX (United States). Integrated Ocean Drilling Program (IODP). United States Implementing Organization.; Guerin, Gilles [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States). Borehole Research Group; Abe, Natsue [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka (Japan). Inst. for Research on Earth Evolution (IFREE); Akizawa, Norikatsu [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Ceuleneer, Georges [Univ. Paul Sabatier, Toulouse (France). Observatoire Midi-Pyrenees (UMS 831), CNRS; Cheadle, Michael J. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Adriao, Alden de Brito [Federal Univ. of Rio Grande do Sul, Porto Alegre (Brazil). Geology Inst. (IGEO); Faak, Kathrin [Ruhr Univ., Bochum (Germany). Geological Inst.; Falloon, Trevor J. [Univ. of Tasmania, Hobart, TAS (Australia). Inst. for Marine and Antarctic Studies; Friedman, Sarah A. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Godard, Marguerite M. [Univ. Montpellier II (France). Geosciences Montpellier-UMR 5243; Harigane, Yumiko [National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Marine Geology Dept.; Horst, Andrew J. [Syracuse Univ., NY (United States). Dept. of Earth Science; Hoshide, Takashi [Tohoku Univ., Sendai (Japan). Graduate School of Science; Ildefonse, Benoit [Univ. Montpellier II (France). Lab. de Tectonophysique; Jean, Marlon M. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology and Environmental Geosciences; John, Barbara E. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Koepke, Juergen H. [Univ. of Hannover (Germany). Inst. of Mineralogy; Machi, Sumiaki [Kanazawa Univ. (Japan). Dept. of Earth Sciences; Maeda, Jinichiro [Hokkaido Univ., Sapporo (Japan). Dept. of Natural History Sciences; Marks, Naomi E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry and Material Sciences Dept.; McCaig, Andrew M. [Univ. of Leeds (United Kingdom). School of Earth and Environment; Meyer, Romain [Univ. of Bergen (Norway). Dept. of Earth Science and Centre for Geobiology; Morris, Antony [Univ. of Plymouth (United Kingdom). School of Earth, Ocean & Environmental Sciences; Nozaka, Toshio [Okayama Univ. (Japan). Dept. of Earth Sciences; Python, Marie [Hokkaido Univ., Sapporo (Japan). Dept. of Earth and Planetary Sciences; Saha, Abhishek [Indian Inst. of Science (IISC), Bangalore (India). Centre for Earth Sciences; Wintsch, Robert P. [Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences

    2013-02-28

    Integrated Ocean Drilling Program (IODP) Hess Deep Expedition 345 was designed to sample lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) in order to test models of magmatic accretion and the intensity of hydrothermal cooling at depth. The Hess Deep Rift was selected to exploit tectonic exposures of young EPR plutonic crust, building upon results from ODP Leg 147 as well as more recent submersible, remotely operated vehicle, and near-bottom surveys. The primary goal was to acquire the observations required to test end-member crustal accretion models that were in large part based on relationships from ophiolites, in combination with mid-ocean ridge geophysical studies. This goal was achieved with the recovery of primitive layered olivine gabbros and troctolites with many unexpected mineralogical and textural relationships, such as the abundance of orthopyroxene and the preservation of delicate skeletal olivine textures.

  7. Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge

    Science.gov (United States)

    Craig, Timothy J.; Parnell-Turner, Ross

    2017-12-01

    Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated

  8. Ocean acidification postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  9. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean

    Science.gov (United States)

    You, Yuzhu

    1997-05-01

    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow

  10. The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust

    Science.gov (United States)

    Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard

    2017-04-01

    The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that

  11. Prediction of the fate of radioactive material in the South Pacific Ocean using a global high-resolution ocean model

    International Nuclear Information System (INIS)

    Hazell, Douglas R.; England, Matthew H.

    2003-01-01

    We investigate the release of radioactive contaminants from Moruroa Atoll in a global high-resolution off-line model. The spread of tracer is studied in a series of simulations with varying release depths and time-scales, and into ocean velocity fields corresponding to long-term annual mean, seasonal, and interannually varying scenarios. In the instantaneous surface release scenarios we find that the incorporation of a seasonal cycle greatly influences tracer advection, with maximum concentrations still found within the French Polynesia region after 10 years. In contrast, the maximum trace is located in the southeast Pacific when long-term annual mean fields are used. This emphasizes the importance of the seasonal cycle in models of pollution dispersion on large scales. We further find that during an El Nino/Southern Oscillation (ENSO) event reduced currents in the region of Moruroa Atoll result in increased concentrations of radioactive material in French Polynesia, as direct flushing from the source is reduced. In terms of the sensitivity to tracer release time-rates, we find that a gradual input results in maximum concentrations in the near vicinity of French Polynesia. This contrasts the instantaneous-release scenarios, which see maximum concentrations and tracer spread across much of the South Pacific Ocean. For example, in as little as seven years radioactive contamination can reach the east coast of Australia diluted by only a factor of 1000 of the initial concentration. A comparison of results is made with previous studies. Overall, we find much higher concentrations of radionuclides in the South Pacific than has previously been predicted using coarser-resolution models

  12. Effects of ocean initial perturbation on developing phase of ENSO in a coupled seasonal prediction model

    Science.gov (United States)

    Lee, Hyun-Chul; Kumar, Arun; Wang, Wanqiu

    2018-03-01

    Coupled prediction systems for seasonal and inter-annual variability in the tropical Pacific are initialized from ocean analyses. In ocean initial states, small scale perturbations are inevitably smoothed or distorted by the observational limits and data assimilation procedures, which tends to induce potential ocean initial errors for the El Nino-Southern Oscillation (ENSO) prediction. Here, the evolution and effects of ocean initial errors from the small scale perturbation on the developing phase of ENSO are investigated by an ensemble of coupled model predictions. Results show that the ocean initial errors at the thermocline in the western tropical Pacific grow rapidly to project on the first mode of equatorial Kelvin wave and propagate to the east along the thermocline. In boreal spring when the surface buoyancy flux weakens in the eastern tropical Pacific, the subsurface errors influence sea surface temperature variability and would account for the seasonal dependence of prediction skill in the NINO3 region. It is concluded that the ENSO prediction in the eastern tropical Pacific after boreal spring can be improved by increasing the observational accuracy of subsurface ocean initial states in the western tropical Pacific.

  13. Simulation of melt spreading in consideration of phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    2002-07-01

    The analysis of melt spreading and relocation phenomena in the containment of LWR power plants in case of hypothetical severe accidents leading to core melting is an important issue for reactor safety investigations. For the simulation of melt spreading the code LAVA has been developed on the basis of a method from the related subject of volcanology by adding more detailed models for heat transfer phenomena and flow rheology. The development is supported by basic analysis of the spreading of gravity currents as well as experimental investigations of the rheology of solidifying melts. These exhibit strong non-Newtonian effects in case of a high content of solids in the freezing melt. The basic model assumption in LAVA is the ideal Bingham plastic approach to the non-Newtonian, shear-thinning characteristic of solidifying melts. For the recalculation of melt spreading experiments, the temperature-dependent material properties for solidifying melt mixtures have been calculated using correlations from the literature. With the parameters and correlations for the rheological material properties approached by results from literature, it was possible to recalculate successfully recent spreading experiments with simulant materials and prototypic reactor core materials. An application to the behaviour of core melt in the reactor cavity assumed a borderline case for the issue of spreading. This limit is represented by melt conditions (large solid fraction, low volume flux), under which the melt is hardly spreadable. Due to the persistent volume flux the reactor cavity is completely, but inhomogeneously filled with melt. The degree of inhomogeneity is rather small, so it is concluded, that for the long-term coolability of a melt pool in narrow cavities the spreading of melt will probably have only negligible influence. (orig.)

  14. OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products

    Science.gov (United States)

    Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively (http://nomads.ncep.noaa.gov/txt_descriptions/marRutledge-1.pdf). The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output (http://www.opc.ncep.noaa.gov/newNCOM/NCOM_currents.shtml) with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability (http://www.northerngulfinstitute.org/edac/ocean_nomads.php) under the NGI Ecosystem Data Assembly Center (EDAC) project (http://www.northerngulfinstitute.org/edac/). Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed (http://testbed.sura.org/) this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS (http://www.ncddc.noaa.gov/ocean-nomads/). Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas

  15. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.

    2015-01-01

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal

  16. Ethane ocean on Titan

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  17. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.

    2015-01-03

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  18. FACTORS INFLUENCING YIELD SPREADS OF THE MALAYSIAN BONDS

    OpenAIRE

    Norliza Ahmad; Joriah Muhammad; Tajul Ariffin Masron

    2009-01-01

    Malaysian bond market is developing rapidly but not much is understood in terms of macroeconomic factors that could influence the yield spread of the Ringgit Malaysian denominated bonds. Based on a multifactor model, this paper examines the impact of four macroeconomic factors namely: Kuala Lumpur Composite Index (KLCI), Industry Production Index (IPI), Consumer Price Index (CPI) and interest rates (IR) on bond yield spread of the Malaysian Government Securities (MGS) and Corporate Bonds (CBs...

  19. Assessment of thema code against spreading experiments

    International Nuclear Information System (INIS)

    Spindler, B.; Veteau, J.M.; Cecco, L. de; Montanelli, P.; Pineau, D.

    2000-01-01

    In the frame work of severe accident research, the spreading code THEMA, developed at CEA/DRN, aims at predicting the spreading extent of molten core after a vessel melt-through. The code solves fluid balance equations integrated over the fluid depth for oxidic and/or metallic phases under the shallow water assumption, using a finite difference scheme. Solidification is taken into account through crust formation on the substrate and at contact with the surroundings, as well as increase of fluid viscosity with solid fraction in the melt. A separate energy equation is solved for the solid substrate, including possible ablation. The assessment of THEMA code against the spreading experiments performed in the framework of the corium spreading and coolability project of the European Union is presented. These experiments use either simulating materials at medium (RIT), or at high temperature (KATS), or corium (VULCANO, FARO), conducted at different mass flow rates and with large or low solidification interval. THEMA appears to be able to simulate the whole set of the experiments investigated. Comparison between experimental and computed spreading lengths and substrate temperatures are quite satisfactory. The results show a rather large sensitivity at mass flow rate and inlet temperature, indicating that, generally, efforts should be made to improve the accuracy of the measurements of such parameters in the experiments. (orig.)

  20. Epidemic spreading on dual-structure networks with mobile agents

    Science.gov (United States)

    Yao, Yiyang; Zhou, Yinzuo

    2017-02-01

    The rapid development of modern society continually transforms the social structure which leads to an increasingly distinct dual structure of higher population density in urban areas and lower density in rural areas. Such structure may induce distinctive spreading behavior of epidemics which does not happen in a single type structure. In this paper, we study the epidemic spreading of mobile agents on dual structure networks based on SIRS model. First, beyond the well known epidemic threshold for generic epidemic model that when the infection rate is below the threshold a pertinent infectious disease will die out, we find the other epidemic threshold which appears when the infection rate of a disease is relatively high. This feature of two thresholds for the SIRS model may lead to the elimination of infectious disease when social network has either high population density or low population density. Interestingly, however, we find that when a high density area is connected to a low density may cause persistent spreading of the infectious disease, even though the same disease will die out when it spreads in each single area. This phenomenon indicates the critical role of the connection between the two areas which could radically change the behavior of spreading dynamics. Our findings, therefore, provide new understanding of epidemiology pertinent to the characteristic modern social structure and have potential to develop controlling strategies accordingly.

  1. Measuring and Controlling the Energy Spread in CEBAF

    CERN Document Server

    Krafft, G A; Dickson, R W; Kazimi, R; Lebedev, V A; Tiefenback, M G

    2000-01-01

    As compared to electron storage rings, one advantage of recirculating linear accelerators is that the beam properties at target are no longer dominated by the equilibrium between quantum radiative diffusion and radiation damping because new beam is continually injected into the accelerator. This allows the energy spread from a CEBAF-type machine to be relatively small; the measured energy spread from CEBAF at 4 GeV is less than 100 parts per million accumulated over times of order several days. In this paper, the various subsystems contributing to the energy spread of a CEBAF-type accelerator are reviewed, as well as the machine diagnostics and controls that are used in CEBAF to ensure that a small energy spread is provided during routine running. Examples of relevant developments are (1) stable short bunches emerging from the injector, (2) precision timing and phasing of the linacs with respect to the centroid of the beam bunches on all passes, (3) implementing 2 kHz sampling rate feedback systems for final ...

  2. Blue Ocean Thinking

    Science.gov (United States)

    Orem, Donna

    2016-01-01

    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  3. Ocean Sense: Student-Led, Real-Time Research at the Bottom of the Ocean - Without Leaving the Classroom

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; McLean, M. A.; Riddell, D. J.; Ewing, N.; Brown, J. C.

    2016-12-01

    This presentation outlines the authentic research experiences created by Ocean Networks Canada's Ocean Sense program, a transformative education program that connects students and teachers with place-based, real-time data via the Internet. This program, developed in collaboration with community educators, features student-centric activities, clearly outlined learning outcomes, assessment tools and curriculum aligned content. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. Data from these observatories are fundamental to lessons and activities in the Ocean Sense program. Marketed as Ocean Sense: Local observations, global connections, the program introduces middle and high school students to research methods in biology, oceanography and ocean engineering. It includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. Connection to place and local relevance of the program is enhanced through an emphasis on Indigenous and place-based knowledge. The program promotes of cross-cultural learning with the inclusion of Indigenous knowledge of the ocean. Ocean Sense provides students with an authentic research experience by connecting them to real-time data, often within their own communities. Using the freely accessible data portal, students can curate the data they need from a range of instruments and time periods. Further, students are not restricted to their local community; if their question requires a greater range of

  4. Spreading Speed of Magnetopause Reconnection X-Lines Using Ground-Satellite Coordination

    Science.gov (United States)

    Zou, Ying; Walsh, Brian M.; Nishimura, Yukitoshi; Angelopoulos, Vassilis; Ruohoniemi, J. Michael; McWilliams, Kathryn A.; Nishitani, Nozomu

    2018-01-01

    Conceptual and numerical models predict that magnetic reconnection starts at a localized region and then spreads out of the reconnection plane. At the Earth's magnetopause this spreading would occur primarily in local time along the boundary. Different simulations have found the spreading to occur at different speeds such as the Alfvén speed and speed of the current carriers. We use conjugate Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and Super Dual Auroral Radar Network (SuperDARN) radar measurements to observationally determine the X-line spreading speed at the magnetopause. THEMIS probes the reconnection parameters locally, and SuperDARN tracks the reconnection development remotely. Spreading speeds under different magnetopause boundary conditions are obtained and compared with model predictions. We find that while spreading under weak guide field could be explained by either the current carriers or the Alfvén waves, spreading under strong guide field is consistent only with the current carriers.

  5. Springer handbook of ocean engineering

    CERN Document Server

    Xiros, Nikolaos

    2016-01-01

    The handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes but is not limited to; an overview of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies, and ocean vehicles and automation. The handbook will be of interest to practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore, and marine engineering and naval architecture.

  6. Ocean CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Yuji; Hakuta, Toshikatsu [National Inst. of Materials and Chemical Research, AIST, MITI, Higashi, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Most countries in the world will continue to depend on fossil fuels for their main energy at least for half a country, even in the confrontation with the threat of global warming. This indicates that the development of CO{sub 2} removal technologies such as recovering CO{sub 2} from flue gases and sequestering it of in the deep oceans or subterranean sites is necessary, at least until non-fossil fuel dependent society is developed. Ocean CO{sub 2} disposal is one of the promising options for the sequestration of CO{sub 2} recovered from flue gases. Oceans have sufficient capacity to absorb all the CO{sub 2} emitted in the world. It is very significant to research and develop the technologies for ocean CO{sub 2} disposal.

  7. Maximum spreading of liquid drop on various substrates with different wettabilities

    Science.gov (United States)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  8. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  9. Tides. Ocean Related Curriculum Activities.

    Science.gov (United States)

    Marrett, Andrea

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  10. Reverse preferential spread in complex networks

    Science.gov (United States)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  11. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    Science.gov (United States)

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  12. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean- New constraints from high-resolution satellite-derived gravity data

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Chaubey, A.K.; Mishra, A.; Kumar, S.; Rajawat, A.S.

    due to rifting between Seychelles and Laxmi Ridge-India and subsequent sea- floor spreading along paleo-Carlsberg Ridge since the Paleocene (magnetic Chron 28n, �63 Ma). The evolution of these two large conjugate ocean basins (Fig. 2) was dominated... by two major geo- Indian Ocean (Morgan, 1981; Duncan and Hargr the Indian plate moved over it. These tectonic e found impact on both the evolving conjugate o result, structural and tectonic elements of the ba Earlier studies suggest that oceanic...

  13. How Is Mono Spread?

    Science.gov (United States)

    ... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...

  14. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M S; Gyldenkaerne, S

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  15. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  16. An initial assessment of Ocean Energy Resources in the Western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, Linus; Ehnberg, Jimmy

    2011-07-01

    The demand for modern energy is accelerating in the Western Indian Ocean (coastal East Africa). A mixture of different energy sources will by necessity be the option for the long-term future and the most adequate solutions naturally vary between locations. The vast coastlines and many islands of the region make ocean energy (OE) a relevant field to explore. With an early understanding of the resources strategic planning towards sustainable development is facilitate. Moreover, early awareness facilitates a respectful integration of new technologies in the fragile and for local people invaluable ecosystems. This study provides a first assessment of the frontier OE technologies and corresponding resources in the region. Five renewable Ocean Energy technologies have been reviewed and the physical resource abundance for respective energy source has been screened based on available literature and databases. The Western Indian Ocean is shared between nine African countries and two French departments. The studied countries are the Comoros, Kenya, Madagascar, Mauritius, Mayotte, Mozambique, the Seychelles, Tanzania, and Reunion. The energy situation is insufficient throughout the region, either as consequence of lacking domestic energy sources or rudimentary grid extension. The results indicate that ocean energy resources are abundant in much of the region, but different sources have potential in different areas. Several countries have favourable physical conditions for extracting energy from waves and from the temperature gradient between the surface and deep water. Wave power is a young but currently available technology which can be utilized for both large- and small-scale applications. Ocean Thermal Energy Conversion is a technology under development that, once proven, may be applicable for large-scale power production. The physical conditions for small-scale tidal barrage power, tidal stream power, and ocean current power are less pronounced but may be of interest at

  17. Blue ocean strategy.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  18. The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model

    Science.gov (United States)

    Gibbons, Ana D.; Whittaker, Joanne M.; Müller, R. Dietmar

    2013-03-01

    models for the Cretaceous seafloor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 ( 126.7-120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at 136 Ma northwest of Australia, and reached the southern tip of India at 126 Ma. Seafloor spreading in the Enderby Basin was abandoned at 115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that seafloor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic flow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from 100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate flanks of a "leaky" transform fault following the 100 Ma spreading reorganization. Our model also identifies the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.

  19. Impact of international and local conditions on sovereign bond spreads: International evidence

    Directory of Open Access Journals (Sweden)

    Selma Izadi

    2018-03-01

    Full Text Available This paper examines the effect of international and domestic factors on the sovereign bond spreads for 22 developed countries in North America, Europe and Pacific Rim regions. First, for all the regions the impact of global factors on the sovereign bond spreads is more intense than regional factors. Second, the findings confirm that for the bond spreads of each region over its domestic government bonds, the countries’ local fundamentals are better determinants of the spreads compared to the spread over US government bonds as a safe haven. Third, the influence of worldwide factors in the Eurozone compared to other regions bond spreads is less. Fourth, the relationship of the market sentiment and the investor risk aversion with the sovereign bond spreads of all regions is positive. Equity market volatility plays significant role in yield speads in international bond markets.

  20. Investigation on influence of crust formation on VULCANO VE-U7 corium spreading with MPS method

    International Nuclear Information System (INIS)

    Yasumura, Yusan; Yamaji, Akifumi; Furuya, Masahiro; Ohishi, Yuji; Duan, Guangtao

    2017-01-01

    Highlights: • The new crust formation model was developed for the MPS spreading analysis code. • The VULCANO VE-U7 corium spreading experiment was analyzed by the developed code. • The termination of the spreading was governed by the crust formation at the leading edge. - Abstract: In a severe accident of a light water reactor, the corium spreading behavior on a containment floor is important as it may threaten the containment vessel integrity. The Moving Particle Semi-implicit (MPS) method is one of the Lagrangian particle methods for simulation of incompressible flow. In this study, the MPS method is further developed to simulate corium spreading involving not only flow, but also heat transfer, phase change and thermo-physical property change of corium. A new crust formation model was developed, in which, immobilization of crust was modeled by stopping the particle movement when its solid fraction is above the threshold and is in contact with the substrate or any other immobilized particles. The VULCANO VE-U7 corium spreading experiment was analyzed by the developed MPS spreading analysis code to investigate influences of different particle sizes, the corium viscosity changes, and the “immobilization solid fraction” of the crust formation model on the spreading and its termination. Viscosity change of the corium was influential to the overall progression of the spreading leading edge, whereas termination of the spreading was primarily determined by the immobilization of the leading edge (i.e., crust formation). The progression of the leading edge and termination of the spreading were well predicted, but the simulation overestimated the substrate temperature. Further investigations may be necessary for the future study to see if thermal resistance at the corium-substrate boundary has significant influence on the overall spreading behavior and its termination.

  1. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  2. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  3. Port Blair declaration pledged to establish and develop Andaman and Nicobar Ocean Biogeographic Information System - Meeting report

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Achuthankutty, C.T.; Nazar, A.K.A.

    to implement such an inform a tion system, and monitor the progress of ANOBIS. The task force would comprise of techn i cal and da ta - management representatives from pa r - ticipating institutions, and would ensure seamless establishment and development... Declaration pledged to establish and develop Andaman and Nicobar Ocean Biogeographic Information Sy s tem* T he Andaman and Nicobar (A&N) I s- lands are located in the Indian Ocean, in the southern reaches of the Bay of Be n gal. The Andaman Sea...

  4. The Ocean Literacy Campaign

    Science.gov (United States)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  5. Spreading of healthy mood in adolescent social networks.

    Science.gov (United States)

    Hill, E M; Griffiths, F E; House, T

    2015-08-22

    Depression is a major public health concern worldwide. There is evidence that social support and befriending influence mental health, and an improved understanding of the social processes that drive depression has the potential to bring significant public health benefits. We investigate transmission of mood on a social network of adolescents, allowing flexibility in our model by making no prior assumption as to whether it is low mood or healthy mood that spreads. Here, we show that while depression does not spread, healthy mood among friends is associated with significantly reduced risk of developing and increased chance of recovering from depression. We found that this spreading of healthy mood can be captured using a non-linear complex contagion model. Having sufficient friends with healthy mood can halve the probability of developing, or double the probability of recovering from, depression over a 6-12-month period on an adolescent social network. Our results suggest that promotion of friendship between adolescents can reduce both incidence and prevalence of depression. © 2015 The Authors.

  6. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling.

    Science.gov (United States)

    Cotterill, Carol; McInroy, David; Stevenson, Alan

    2013-04-01

    Mission Specific Platform (MSP) expeditions are operated by the European Consortium for Ocean Research Drilling (ECORD). Each MSP expedition is unique within the Integrated Ocean Drilling Program (IODP). In order to complement the abilities of the JOIDES Resolution and the Chikyu, the ECORD Science Operator (ESO) must source vessels and technology suitable for each MSP proposal on a case-by-case basis. The result is that ESO can meet scientific requirements in a flexible manner, whilst maintaining the measurements required for the IODP legacy programme. The process of tendering within EU journals for vessels and technology means that the planning process for each MSP Expedition starts many years in advance of the operational phase. Involvement of proposal proponents from this early stage often leads to the recognition for technological research and development to best meet the scientific aims and objectives. One example of this is the planning for the Atlantis Massif proposal, with collaborative development between the British Geological Survey (BGS) and MARUM, University of Bremen, on suitable instruments for seabed drills, with the European Petrophysics Consortium (EPC) driving the development of suitable wireline logging tools that can be used in association with such seabed systems. Other technological developments being undertaken within the European IODP community include in-situ pressure sampling for gas hydrate expeditions, deep biosphere and fluid sampling equipment and CORK technology. This multi-national collaborative approach is also employed by ESO in the operational phase. IODP Expedition 302 ACEX saw vessel and ice management support from Russia and Sweden to facilitate the first drilling undertaken in Arctic sea ice. A review of MSP expeditions past, present and future reveal the significant impact of European led operations and scientific research within the current IODP programme, and also looking forward to the start of the new International

  7. Generation of Mid-Ocean Ridge Geometries by Strain Induced Damage

    Science.gov (United States)

    Hieronymus, C. F.

    2001-12-01

    Motivated by the success of wax models in which spreading segments, transform faults, and overlapping spreading centers form in a thin plate of solid wax under tension overlying a reservoir of molten wax, the dynamics of an elastic plate with damage is investigated. The effects of the underlying medium are neglected. A thin elastic plate with localized weaknesses in the elastic moduli is exposed to a deviatoric stress field. Stresses and strains are concentrated near the boundaries and inside the weak zones. Weakening of the material is assumed to occur where stress and strain are high, i.e. in regions of high elastic energy. The weak zones typically develop into linear bands of reduced elastic strength resembling fractures and shear zones. Different dependencies of the elastic moduli on damage result in different geometries of weak zones. An initially circular weakness has two locations of normal stress concentration; reduction of bulk and shear modulus there results in formation of an opening mode fracture with low resistance to any type of deformation. Two such fractures offset from each other and propagating toward each other interact by overlapping and curving toward each other. This overlapping geometry, which is observed along the East Pacific Rise, is stable; the fractures do not cut each other off. Introduction of a second type of damage causes the overlapping region between the two fractures to fail, and the more commonly observed transform offset develops. With another type of damage-strain dependency, oblique spreading occurs along lines 45o from the applied stress. Such patterns form frequently in certain types of wax, but are not observed along mid-ocean ridges. The model results suggest that it is the rheology of the solid plate, not the dynamics of the underlying mantle that control the morphology of the spreading ridge. Standard damage theory uses only a single damage parameter. The fact that the failure modes described above are limited to systems

  8. The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading

    OpenAIRE

    Amundsen, Ingrid Marie Hasle; Blinova, Maria; Hjelstuen, Berit Oline; Mjelde, Rolf; Haflidason, Haflidi

    2011-01-01

    The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identi...

  9. OceanSITES format and Ocean Observatory Output harmonisation: past, present and future

    Science.gov (United States)

    Pagnani, Maureen; Galbraith, Nan; Diggs, Stephen; Lankhorst, Matthias; Hidas, Marton; Lampitt, Richard

    2015-04-01

    The Global Ocean Observing System (GOOS) initiative was launched in 1991, and was the first step in creating a global view of ocean observations. In 1999 oceanographers at the OceanObs conference envisioned a 'global system of eulerian observatories' which evolved into the OceanSITES project. OceanSITES has been generously supported by individual oceanographic institutes and agencies across the globe, as well as by the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology (under JCOMMOPS). The project is directed by the needs of research scientists, but has a strong data management component, with an international team developing content standards, metadata specifications, and NetCDF templates for many types of in situ oceanographic data. The OceanSITES NetCDF format specification is intended as a robust data exchange and archive format specifically for time-series observatory data from the deep ocean. First released in February 2006, it has evolved to build on and extend internationally recognised standards such as the Climate and Forecast (CF) standard, BODC vocabularies, ISO formats and vocabularies, and in version 1.3, released in 2014, ACDD (Attribute Convention for Dataset Discovery). The success of the OceanSITES format has inspired other observational groups, such as autonomous vehicles and ships of opportunity, to also use the format and today it is fulfilling the original concept of providing a coherent set of data from eurerian observatories. Data in the OceanSITES format is served by 2 Global Data Assembly Centres (GDACs), one at Coriolis, in France, at ftp://ftp.ifremer.fr/ifremer/oceansites/ and one at the US NDBC, at ftp://data.ndbc.noaa.gov/data/oceansites/. These two centres serve over 26,800 OceanSITES format data files from 93 moorings. The use of standardised and controlled features enables the files held at the OceanSITES GDACs to be electronically discoverable and ensures the widest access to the data. The Ocean

  10. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    Science.gov (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  11. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  12. Lattice model for influenza spreading with spontaneous behavioral changes.

    Science.gov (United States)

    Fierro, Annalisa; Liccardo, Antonella

    2013-01-01

    Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself. The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts, adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through the "thought contagion" among aware and unaware individuals. The peculiarity of the present approach is that the awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of contagion. In particular, the model is validated against the A(H1N1) epidemic outbreak in Italy during the 2009/2010 season, by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI). We find that, increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in influencing the epidemic spreading of infectious diseases.

  13. Lattice model for influenza spreading with spontaneous behavioral changes.

    Directory of Open Access Journals (Sweden)

    Annalisa Fierro

    Full Text Available Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself. The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts, adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through the "thought contagion" among aware and unaware individuals. The peculiarity of the present approach is that the awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of contagion. In particular, the model is validated against the A(H1N1 epidemic outbreak in Italy during the 2009/2010 season, by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI. We find that, increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in influencing the epidemic spreading of infectious

  14. Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability

    Science.gov (United States)

    Li, Hongmei; Ilyina, Tatiana

    2018-01-01

    We investigate the internal decadal variability of the ocean carbon uptake using 100 ensemble simulations based on the Max Planck Institute Earth system model (MPI-ESM). We find that on decadal time scales, internal variability (ensemble spread) is as large as the forced temporal variability (ensemble mean), and the largest internal variability is found in major carbon sink regions, that is, the 50-65°S band of the Southern Ocean, the North Pacific, and the North Atlantic. The MPI-ESM ensemble produces both positive and negative 10 year trends in the ocean carbon uptake in agreement with observational estimates. Negative decadal trends are projected to occur in the future under RCP4.5 scenario. Due to the large internal variability, the Southern Ocean and the North Pacific require the most ensemble members (more than 53 and 46, respectively) to reproduce the forced decadal trends. This number increases up to 79 in future decades as CO2 emission trajectory changes.

  15. Rifting-to-drifting transition of the South China Sea: Moho reflection characteristics in continental-ocean transition zone

    Science.gov (United States)

    Wen, Y.; Li, C.

    2017-12-01

    Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of

  16. The development of radioactivity diffusion model in global ocean

    International Nuclear Information System (INIS)

    Nakano, M.; Watanabe, H.; Katagiri, H.

    2000-01-01

    The radioactivity diffusion model in global ocean has been developing in order to assess the long-term behavior of radioactive materials for discharge from nuclear facility. The model system consists of two parts. One is to calculate current velocity; and the other is for particle chasing. Both systems are executed by Macintosh personal computer. A lot of techniques to estimate ocean current velocity were investigated in geophysical field. The robust diagnosis model advocated by Sarmiento and Bryan was applied to build the numerical calculation system for getting the current velocity field in global scale. The latitudinal and longitudinal lattices were 2 degrees each and the number of vertical layer was 15. The movement of radioactive materials by current and diffusion were calculated using the particle chasing system. The above-mentioned current velocity field and the initial particle positions at will were read by the system. The movement of a particle was calculated using the interpolated current data step by step. The diffusion of a particle was calculated by random walk method. The model was verified by using the fallout data from atmospheric nuclear test. Yearly and latitudinal fallout data was adopted from UNSCEAR1977. The calculation result was compared with the observation data that includes total amount and vertical profile of Cs-137 and Pu-239,240 in the North Pacific Ocean. The result of the verification was agreed with the following general knowledge. Though the fallout amount between 40N and 50N was the biggest in the world, the amount in the seawater between 40N and 50N was smaller than that in south of 40N because of horizontal transportation, which carried water from north to south. As for vertical profile, Cs-137 could be accurately calculated except the surface layer. However the observation peak of Pu-239,240 existed deeper than the calculation peak. This model could calculate the vertical profile of Cs-137 because most of Cs exists as dissolved

  17. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M.S.; Gyldenkaerne, S.

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  18. Ocean Acidification: a review of the current status of research and institutional developments

    NARCIS (Netherlands)

    Beek, van I.J.M.; Dedert, M.

    2012-01-01

    Ocean acidification is defined as the change in ocean chemistry driven by the oceanic uptake of chemical inputs to the atmosphere, including carbon, nitrogen and sulphur compounds. Ocean acidification is also referred to as ‘the other CO2 problem’ of anthropogenic carbon dioxide (CO2) emissions

  19. Ocean Thermal Extractable Energy Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Ascari, Matthew [Lockheed Martin Corporation, Bethesda, MD (United States)

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  20. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  1. Connecting Coastal Communities with Ocean Science: A Look at Ocean Sense and the Inclusion of Place-based Indigenous Knowledge

    Science.gov (United States)

    McLean, M. A.; Brown, J.; Hoeberechts, M.

    2016-02-01

    Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.

  2. Trans Ocean Gas CNG transportation development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    Liquefied natural gas (LNG) transportation is on the rise due to increased global demand for natural gas. However, the challenge of transporting LNG lies in finding suitable locations for import terminals. Compressed natural gas (CNG) transportation offers an alternative method for transporting stranded natural gas to existing markets and for creating new natural gas markets not practical for LNG or pipelines. The founder of Trans Ocean Gas Inc. (TOG) modified an existing fibre reinforced plastic (FRP) pressure vessel technology to safely store CNG on a ship. The newly developed containment system has proven to overcome all the deficiencies of steel-based systems. TOG patented the containment system and will license its use to owners of stranded gas and shipping service providers around the world. Financial support is needed to perform verification testing and for regulatory approval. The CNG systems will be built and assembled throughout facilities in Atlantic Canada. 2 tabs., 3 figs.

  3. Default Spread dan Term Spread sebagai Variabel Proxy Siklus Bisnis pada Model Fama-French

    Directory of Open Access Journals (Sweden)

    Edwin Hendra

    2015-08-01

    Full Text Available This research aims to apply the Fama-French models and test the effect of alternative variable of bond yield spread, default spread (RBBB – RAAA and RAAA – RF, and the term spread (RSUN10-RSUN1, as proxy variables of the business cycle, in IDX stock data during 2005-2010. Four types of asset pricing models tested are Sharpe-Lintner CAPM, Fama-French models, Hwang et al.model, and hybrid model. The results showed that the size effect and value effect has an impact on excess stock returns. Slopes of market beta, SMB, and HML are more sensitive to stock big size and high B / M. Default spreads and term spreads in Hwang et al. model can explain the value effect, and weakly explain the size effect, meanwhile the power of explanation disappeared on Hybrid models. Based on the assessment adjusted R2 and the frequency of rejection of non-zero alpha, is found that the hybrid model is the most suitable model.  

  4. Our Changing Oceans: All about Ocean Acidification

    International Nuclear Information System (INIS)

    Rickwood, Peter

    2013-01-01

    The consequences of ocean acidification are global in scale. More research into ocean acidification and its consequences is needed. It is already known, for example, that there are regional differences in the vulnerability of fisheries to acidification. The combination of other factors, such as global warming, the destruction of habitats, overfishing and pollution, need to be taken into account when developing strategies to increase the marine environment’s resilience. Among steps that can be taken to reduce the impact is better protection of marine coastal ecosystems, such as mangrove swamps and seagrass meadows, which will help protect fisheries. This recommendation was one of the conclusions of a three-day workshop attended by economists and scientists and organized by the IAEA and the Centre Scientifique de Monaco in November 2012. In their recommendations the workshop also stressed that the impact of increasing ocean acidity must be taken into account in the management of fisheries, particularly where seafood is a main dietary source

  5. Structural variation of the oceanic Moho in the Pacific plate revealed by active-source seismic data

    Science.gov (United States)

    Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi

    2017-10-01

    The characteristics of the oceanic Moho are known to depend on various factors, such as seafloor spreading rate, crustal age, and accretionary processes at a ridge. However, the effect of local magmatic activities on the seismic signature of the Moho is poorly understood. Here an active-source reflection and refraction survey is used to investigate crustal structure and Moho characteristics along a >1000-km-long profile southeast of the Shatsky Rise in a Pacific Ocean basin formed from the Late Jurassic to Early Cretaceous and spanning the onset of Shatsky Rise volcanism. Although the seismic velocity structure estimated from the refraction data showed typical characteristics of the oceanic crust of the old Pacific plate, the appearance of the Moho reflections was spatially variable. We observed clear Moho reflections such as those to be expected where the spreading rate is fast to intermediate only at the southwestern end of the profile, whereas Moho reflections were diffuse, weak, or absent along other parts of the profile. The poor Moho reflections can be explained by the presence of a thick crust-mantle transition layer, which is temporally coincident with the formation of the Shatsky Rise. We inferred that the crust-mantle transition layer was formed by changes in on-axis accretion process or modification of the primary Moho by off-axis magmatism, induced by magmatic activity of the Shatsky Rise.

  6. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter.

    Science.gov (United States)

    Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto

    2016-11-01

    The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values ​​are re-established. Thus, the effects of

  7. Migrating Toward Fully 4-D Geodynamical Models of Asthenospheric Circulation and Melt Production at Mid-Ocean Ridges

    Science.gov (United States)

    van Dam, L.; Kincaid, C. R.; Pockalny, R. A.; Sylvia, R. T.; Hall, P. S.

    2017-12-01

    Lateral migration of mid-ocean ridge spreading centers is a well-documented phenomenon leading to asymmetric melt production and the surficial expressions thereof. This form of plate motion has been difficult to incorporate into both numerical and analogue geodynamical models, and consequently, current estimates of time-dependent flow, material transport, and melting in the mantle beneath ridges are lacking. To address this, we have designed and built an innovative research apparatus that allows for precise and repeatable simulations of mid-ocean ridge spreading and migration. Three pairs of counter-rotating belts with adjustable lateral orientations are scaled to simulate spreading at, and flow beneath, three 600km wide ridge segments with up to 300km transform offsets. This apparatus is attached to a drive system that allows us to test a full range of axis-parallel to axis-normal migration directions, and is suspended above a reservoir of viscous glucose syrup, a scaled analogue for the upper mantle, and neutrally buoyant tracers. We image plate-driven flow in the syrup with high-resolution digital cameras and use particle image velocimetry methods to obtain information about transport pathlines and flow-induced anisotropy. Suites of experiments are run with and without ridge migration to determine the overall significance of migration on spatial and temporal characteristics of shallow mantle flow. Our experiments cover an expansive parameter space by including various spreading rates, migration speeds and directions, degrees of spreading asymmetry, transform-offset lengths, and upper mantle viscosity conditions. Preliminary results highlight the importance of modeling migratory plate forces. Mantle material exhibits a significant degree of lateral transport, particularly between ridge segments and towards the melt triangle. Magma supply to the melting region is highly complex; parcels of material do not necessarily move along fixed streamlines, rather, they can

  8. Possible Ballast Water Transfer of Lionfish to the Eastern Pacific Ocean.

    Science.gov (United States)

    MacIsaac, Hugh J; De Roy, Emma M; Leung, Brian; Grgicak-Mannion, Alice; Ruiz, Gregory M

    2016-01-01

    The Indo-Pacific Red Lionfish was first reported off the Florida coast in 1985, following which it has spread across much of the SE USA, Gulf of Mexico, and Caribbean Sea. Lionfish negatively impact fish and invertebrate assemblages and abundances, thus further spread is cause for concern. To date, the fish has not been reported on the Pacific coast of North or Central America. Here we examine the possibility of ballast water transfer of lionfish from colonized areas in the Atlantic Ocean to USA ports on the Pacific coast. Over an eight-year period, we documented 27 commercial vessel-trips in which ballast water was loaded in colonized sites and later discharged untreated into Pacific coast ports in the USA. California had the highest number of discharges including San Francisco Bay and Los Angeles-Long Beach. A species distribution model suggests that the probability of lionfish establishment is low for the western USA, Colombia and Panama, low to medium for Costa Rica, Nicaragua, El Salvador and Guatemala, medium to high for mainland Ecuador, and very high for western Mexico, Peru and the Galapagos Islands. Given the species' intolerance of freshwater conditions, we propose that ballast water exchange be conducted in Gatún Lake, Panama for western-bound vessels carrying 'risky' ballast water to prevent invasion of the eastern Pacific Ocean.

  9. Possible Ballast Water Transfer of Lionfish to the Eastern Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Hugh J MacIsaac

    Full Text Available The Indo-Pacific Red Lionfish was first reported off the Florida coast in 1985, following which it has spread across much of the SE USA, Gulf of Mexico, and Caribbean Sea. Lionfish negatively impact fish and invertebrate assemblages and abundances, thus further spread is cause for concern. To date, the fish has not been reported on the Pacific coast of North or Central America. Here we examine the possibility of ballast water transfer of lionfish from colonized areas in the Atlantic Ocean to USA ports on the Pacific coast. Over an eight-year period, we documented 27 commercial vessel-trips in which ballast water was loaded in colonized sites and later discharged untreated into Pacific coast ports in the USA. California had the highest number of discharges including San Francisco Bay and Los Angeles-Long Beach. A species distribution model suggests that the probability of lionfish establishment is low for the western USA, Colombia and Panama, low to medium for Costa Rica, Nicaragua, El Salvador and Guatemala, medium to high for mainland Ecuador, and very high for western Mexico, Peru and the Galapagos Islands. Given the species' intolerance of freshwater conditions, we propose that ballast water exchange be conducted in Gatún Lake, Panama for western-bound vessels carrying 'risky' ballast water to prevent invasion of the eastern Pacific Ocean.

  10. Cooperative spreading processes in multiplex networks.

    Science.gov (United States)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  11. Spread effects - methodology; Spredningseffekter - metodegrunnlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)

  12. Collaborative Oceanographic Research Opportunities with Schmidt Ocean Institute

    Science.gov (United States)

    Zykov, V.

    2014-12-01

    Schmidt Ocean Institute (http://www.schmidtocean.org/) was founded by Dr. Eric Schmidt and Wendy Schmidt in 2009 to support frontier oceanographic research and exploration to expand the understanding of the world's oceans through technological advancement, intelligent, data-rich observation and analysis, and open sharing of information. Schmidt Ocean Institute operates a state-of-the-art globally capable research vessel Falkor (http://www.schmidtocean.org/story/show/47). After two years of scientific operations in the Atlantic Ocean, Gulf of Mexico, Caribbean, Eastern and Central Pacific, R/V Falkor is now preparing to support research in the Western Pacific and Eastern Indian Oceans in 2015 and 2016. As part of the long term research program development for Schmidt Ocean Institute, we aim to identify initiatives and projects that demonstrate strong alignment with our strategic interests. We focus on scientific opportunities that highlight effective use of innovative technologies to better understand the oceans, such as, for example, research enabled with remotely operated and autonomous vehicles, acoustics, in-situ sensing, telepresence, etc. Our technology-first approach to ocean science gave rise to infrastructure development initiatives, such as the development of a new full ocean depth Hybrid Remotely Operated Vehicle, new 6000m scientific Autonomous Underwater Vehicle, live HD video streaming from the ship to YouTube, shipboard high performance supercomputing, etc. We also support projects focusing on oceanographic technology research and development onboard R/V Falkor. We provide our collaborators with access to all of R/V Falkor's facilities and instrumentation in exchange for a commitment to make the resulting scientific data openly available to the international oceanographic community. This presentation aims to expand awareness about the interests and capabilities of Schmidt Ocean Institute and R/V Falkor among our scientific audiences and further

  13. Tectonics of the Ninetyeast Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Abraham, H.; Sager, W.W.; Pringle, M.S.; Frey, F.; Rao, D.G.; Levchenko, O.V.

    and the Wharton spreading ridge. Satellite gravity data and magnetic anomalies 34 through 19 define crustal isochrons and show fracture zones striking approx. N5 degrees E. One of these, at 89 degrees E, crosses the approx. N10 degrees E trending NER, impacting...

  14. Ocean-atmosphere coupled climate model development at SAWS: description and diagnosis

    CSIR Research Space (South Africa)

    Beraki, A

    2011-09-01

    Full Text Available This paper introduces the South African Weather Service's coupled ocean-atmosphere model. The paper also demonstrates the advances made in configuring an operational coupled ocean-atmosphere model in South Africa for seasonal forecast production...

  15. The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organisms

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Bailey

    2011-11-01

    Full Text Available Predicting the impact of warming and acidifying on oceans on the early development life history stages of invertebrates although difficult, is essential in order to anticipate the severity and consequences of future climate change. This review summarises the current literature and meta-analyses on the early life-history stages of invertebrates including fertilisation, larval development and the implications for dispersal and settlement of populations. Although fertilisation appears robust to near future predictions of ocean acidification, larval development is much more vulnerable and across invertebrate groups, evidence indicates that the impacts may be severe. This is especially for those many marine organisms which start to calcify in their larval and/or juvenile stages. Species-specificity and variability in responses and current gaps in the literature are highlighted, including the need for studies to investigate the total effects of climate change including the synergistic impact of temperature, and the need for long-term multigenerational experiments to determine whether vulnerable invertebrate species have the capacity to adapt to elevations in atmospheric CO2 over the next century.

  16. Clonal Spread in Second Growth Stands of Coast Redwood, Sequoia sempervirens

    Science.gov (United States)

    Vladimir Douhovnikoff; Richard S. Dodd

    2007-01-01

    Coast redwood (Sequoia sempervirens) is one of the rare conifers to reproduce successfully through clonal spread. The importance of this mode of reproduction in stand development is largely unknown. Understanding the importance of clonal spread and the spatial structure of clones is crucial for stand management strategies that would aim to maximize...

  17. Ocean surface partitioning strategies using ocean colour remote Sensing: A review

    Science.gov (United States)

    Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.

    2017-06-01

    The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and

  18. Development of QC Procedures for Ocean Data Obtained by National Research Projects of Korea

    Science.gov (United States)

    Kim, S. D.; Park, H. M.

    2017-12-01

    To establish data management system for ocean data obtained by national research projects of Ministry of Oceans and Fisheries of Korea, KIOST conducted standardization and development of QC procedures. After reviewing and analyzing the existing international and domestic ocean-data standards and QC procedures, the draft version of standards and QC procedures were prepared. The proposed standards and QC procedures were reviewed and revised by experts in the field of oceanography and academic societies several times. A technical report on the standards of 25 data items and 12 QC procedures for physical, chemical, biological and geological data items. The QC procedure for temperature and salinity data was set up by referring the manuals published by GTSPP, ARGO and IOOS QARTOD. It consists of 16 QC tests applicable for vertical profile data and time series data obtained in real-time mode and delay mode. Three regional range tests to inspect annual, seasonal and monthly variations were included in the procedure. Three programs were developed to calculate and provide upper limit and lower limit of temperature and salinity at depth from 0 to 1550m. TS data of World Ocean Database, ARGO, GTSPP and in-house data of KIOST were analysed statistically to calculate regional limit of Northwest Pacific area. Based on statistical analysis, the programs calculate regional ranges using mean and standard deviation at 3 kind of grid systems (3° grid, 1° grid and 0.5° grid) and provide recommendation. The QC procedures for 12 data items were set up during 1st phase of national program for data management (2012-2015) and are being applied to national research projects practically at 2nd phase (2016-2019). The QC procedures will be revised by reviewing the result of QC application when the 2nd phase of data management programs is completed.

  19. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    Science.gov (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  20. Fluorescent visualization of a spreading surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-15

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  1. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  2. Carbon and its isotopes in mid-oceanic basaltic glasses

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO 2 is about 3.8per mille enriched in 13 C, relative to dissolved carbon. Despite this fractionation, delta 13 Csub(PDB) values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the delta 13 Csub(PDB) of mantle carbon likely lies between -5 and -7. The carbon abundances and delta 13 Csub(PDB) values of Kilauea East Rift glasses apparently are influences by the differentiation and movement of magma within that Hawaiian volcano. Using 3 He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 x 10 13 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. (orig.)

  3. Effect of network topology on the spreading of technologies

    International Nuclear Information System (INIS)

    Kocsis, G.; Kun, F.

    2007-01-01

    Complete text of publication follows. Technological evolution of socio-economic systems has two major components: (i) Innovation New products, ideas, paradigms emerge as a result of innovations which are then tested by the market. (ii) Spreading Successful technologies spread over the system resulting in an overall technological progress. In the present project we study the spreading of new technological achievements, searching for the conditions of technological development. One of the key components of the spreading of successful technologies is the copying, i.e. members of the system adopt technologies used by other individuals according to certain decision mechanisms. Decision making is usually based on a cost-benefit balance so that a technology gets adopted by a large number of individuals if the upgrading provides enough benefits. The gradual adaptation of high level technologies leads to spreading of technologies and an overall technological progress of the socio-economic system. We proposed an agent based model for the spreading process of such technologies in which the interaction of individuals plays a crucial role. Agents of the model use products of different technologies to collaborate with each other which induce costs proportional to the difference of technological levels. Additional costs arise when technologies of different providers are used. Agents can adopt technologies and providers of their interacting partners in order to reduce their costs leading to microscopic rearrangements of the system. Starting from a random configuration of different technological levels a complex time evolution emerges where the spreading of advanced technologies and the overall technological progress of the system are determined by the amount of advantages more advanced technologies provide, and by the structure of the social environment of agents. When technological progress arises, the spreading of technologies in the system can be described by extreme order

  4. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  5. Terrestrial spreading centers under Venus conditions - Evaluation of a crustal spreading model for Western Aphrodite Terra

    Science.gov (United States)

    Sotin, C.; Senske, D. A.; Head, J. W.; Parmentier, E. M.

    1989-01-01

    The model of Reid and Jackson (1981) for terrestrial spreading centers is applied to Venus conditions. On the basis of spreading rate, mantle temperature, and surface temperature, the model predicts both isostatic topography and crustal thickness. The model and Pioneer Venus altimetry and gravity data are used to test the hypothesis of Head and Crumpler (1987) that Western Aphrodite Terra is the location of crustal spreading on Venus. It is concluded that a spreading center model for Ovda Regio in Western Aphrodite Terra could account for the observed topography and line-of-sight gravity anomalies found in the Pioneer data.

  6. Designing Tools for Ocean Exploration. Galapagos Rifts Expedition--Grades 9-12. Overview: Ocean Exploration.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity teaches about the complexity of ocean exploration, the technological applications and capabilities required for ocean exploration, the importance of teamwork in scientific research projects, and developing abilities necessary to do scientific inquiry. The activity provides learning objectives, a list of needed materials, key…

  7. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation

  8. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD

    Science.gov (United States)

    2010-04-13

    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  9. Navigating a sea of values: Understanding public attitudes toward the ocean and ocean energy resources

    Science.gov (United States)

    Lilley, Jonathan Charles

    In examining ocean values and beliefs, this study investigates the moral and ethical aspects of the relationships that exist between humans and the marine environment. In short, this dissertation explores what the American public thinks of the ocean. The study places a specific focus upon attitudes to ocean energy development. Using both qualitative and quantitative methods, this research: elicits mental models that exist in society regarding the ocean; unearths what philosophies underpin people's attitudes toward the ocean and offshore energy development; assesses whether these views have any bearing on pro-environmental behavior; and gauges support for offshore drilling and offshore wind development. Despite the fact that the ocean is frequently ranked as a second-tier environmental issue, Americans are concerned about the state of the marine environment. Additionally, the data show that lack of knowledge, rather than apathy, prevents people from undertaking pro-environmental action. With regard to philosophical beliefs, Americans hold slightly more nonanthropocentric than anthropocentric views toward the environment. Neither anthropocentrism nor nonanthropocentrism has any real impact on pro-environmental behavior, although nonanthropocentric attitudes reduce support for offshore wind. This research also uncovers two gaps between scientific and public perceptions of offshore wind power with respect to: 1) overall environmental effects; and 2) the size of the resource. Providing better information to the public in the first area may lead to a shift toward offshore wind support among opponents with nonanthropocentric attitudes, and in both areas, is likely to increase offshore wind support.

  10. Sensory evaluation of commercial fat spreads based on oilseeds and walnut

    Directory of Open Access Journals (Sweden)

    Dimić Etelka B.

    2013-01-01

    Full Text Available The main focus of this study was on the sensory evaluation of commercial oilseeds spreads, as the most significant characteristic of this type of product from the consumers’ point of view. Sensory analysis was conducted by five experts using a quantitative descriptive and sensory profile test, applying a scoring method according to the standard procedure. Five different spreads were evaluated: sunflower, pumpkin, sesame, peanut, and walnut. Oil content and amounts of separated oil on the surface were determined for each spread. The results have shown that the color of spreads was very different, depending on the oilseed: gray for sunflower, brown for walnut, yellowish-brown for peanut butter, ivory for sesame and profoundly dark green for pumpkin seeds spread. The flavor and odor of the spreads were characteristic for the raw materials used; however, the sunflower and walnut spreads had a slight rancid flavor. Generally, the spreadability of all spreads was good, but their mouth feel was not acceptable. During the consumption, all of them were sticking immensely to the roof of the mouth, which made the swallowing harder. The highest total score of 16.20 points (max. 20 was obtained for the peanut butter, while the lowest (10.38 was achieved by the sunflower butter. Oil separation (various degrees was noticed in all spreads, which negatively influenced the appearance and entire sensorial quality of the products. The quantity of separated oil depended on the age and total amount of oil in the spreads, and was between 1.13% in the peanut butter and 12.15% in the walnut spread in reference to the net weight of the product. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014: Development of the new functional confectionery products based on oil crops

  11. Magnetization of the oceanic crust: TRM or CRM?

    Science.gov (United States)

    Raymond, C. A.; Labrecque, J. L.

    1987-01-01

    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  12. Effects of individual popularity on information spreading in complex networks

    Science.gov (United States)

    Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin

    2018-01-01

    In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.

  13. The spreading of radiolabelled fatty suppository bases in the human rectum

    International Nuclear Information System (INIS)

    Sugito, Keiko; Ogata, Hiroyasu; Noguchi, Masahiro; Kogure, Takahashi; Takano, Masaaki; Maruyama, Yuzo; Sasaki, Yasuhito

    1988-01-01

    The purpose of this study was to develop a radiolabelling method for assessing the spreading of fatty suppository bases (Witepsol H-5, W-35 and S-55), and to apply this technique to the evaluation of suppository disposition in the human rectum. 99m/Tc was bound chemically to the bases Witepsol H-5 and W-35, and mixed physically with Witepsol S-55. The spreading of each suppository base was monitored by gamma-scintigraphy following rectal administration. The mean radioactivity remaining at the inserted region 4 h after administration was 44.2% of total activity. The mean perpendicular maximum spreading distance from this region was 7.7 cm on the scintigram near to the sigmoid colon. Defecation was suggested to be a factor influencing the spread of suppository bases. However, there was no clear relationship between the type of suppository base used and the extent of its spread within the rectum. 6 refs.; 4 figs.; 1 table

  14. Basinal seamounts and seamount chains of the Central Indian Ocean: Probable near-axis origin from a fast-spreading ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Batiza, R.

    Hydrosweep mapping of crust in the Central Indian Ocean Basin reveals abundant volcanoes occurring both as isolated seamounts and linear seamount chains parallel to flow lines. Their shapes, sizes and overall style of occurrence...

  15. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Oppositely directed pairs of propagating rifts in back-arc basins: Double saloon door seafloor spreading during subduction rollback

    Science.gov (United States)

    Martin, A. K.

    2006-06-01

    When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of

  17. Testing Predictions of Continental Insulation using Oceanic Crustal Thicknesses

    Science.gov (United States)

    Hoggard, Mark; Shorttle, Oliver; White, Nicky

    2016-04-01

    The thermal blanketing effect of continental crust has been predicted to lead to elevated temperatures within the upper mantle beneath supercontinents. Initial break-up is associated with increased magmatism and the generation of flood basalts. Continued rifting and sea-floor spreading lead to a steady reduction of this thermal anomaly. Recently, evidence in support of this behaviour has come from the major element geochemistry of mid-ocean ridge basalts, which suggest excess rifting temperatures of ˜ 150 °C that decay over ˜ 100 Ma. We have collated a global inventory of ˜ 1000 seismic reflection profiles and ˜ 500 wide-angle refraction experiments from the oceanic realm. Data are predominantly located along passive margins, but there are also multiple surveys in the centres of the major oceanic basins. Oceanic crustal thickness has been mapped, taking care to avoid areas of secondary magmatic thickening near seamounts or later thinning such as across transform faults. These crustal thicknesses are a proxy for mantle potential temperature at the time of melt formation beneath a mid-ocean ridge system, allowing us to quantify the amplitude and duration of thermal anomalies generated beneath supercontinents. The Jurassic break-up of the Central Atlantic and the Cretaceous rifting that formed the South Atlantic Ocean are both associated with excess temperatures of ˜ 50 °C that have e-folding times of ˜ 50 Ma. In addition to this background trend, excess temperatures reach > 150 °C around the region of the Rio Grande Rise, associated with the present-day Tristan hotspot. The e-folding time of this more local event is ˜ 10 Ma, which mirrors results obtained for the North Atlantic Ocean south of Iceland. In contrast, crustal thicknesses from the Pacific Ocean reveal approximately constant potential temperature through time. This observation is in agreement with predictions, as the western Pacific was formed by rifting of an oceanic plate. In summary

  18. Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. R. Liberato

    2013-09-01

    Full Text Available In winter of 2009–2010 south-western Europe was hit by several destructive windstorms. The most important was Xynthia (26–28 February 2010, which caused 64 reported casualties and was classified as the 2nd most expensive natural hazard event for 2010 in terms of economic losses. In this work we assess the synoptic evolution, dynamical characteristics and the main impacts of storm Xynthia, whose genesis, development and path were very uncommon. Wind speed gusts observed at more than 500 stations across Europe are evaluated as well as the wind gust field obtained with a regional climate model simulation for the entire North Atlantic and European area. Storm Xynthia was first identified on 25 February around 30° N, 50° W over the subtropical North Atlantic Ocean. Its genesis occurred on a region characterized by warm and moist air under the influence of a strong upper level wave embedded in the westerlies. Xynthia followed an unusual SW–NE path towards Iberia, France and central Europe. The role of moist air masses on the explosive development of Xynthia is analysed by considering the evaporative sources. A lagrangian model is used to identify the moisture sources, sinks and moisture transport associated with the cyclone during its development phase. The main supply of moisture is located over an elongated region of the subtropical North Atlantic Ocean with anomalously high SST, confirming that the explosive development of storm Xynthia had a significant contribution from the subtropics.

  19. Spreading to localized targets in complex networks

    Science.gov (United States)

    Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu

    2016-12-01

    As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.

  20. Estimation of wave directional spreading

    Digital Repository Service at National Institute of Oceanography (India)

    Deo, M.C.; Gondane, D.S.; SanilKumar, V.

    One of the useful measures of waves directional spreading at a given location is the directional spreading parameter. This paper presents a new approach to arrive at its characteristic value using the computational technique of Artificial Neural...

  1. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    Science.gov (United States)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  2. Warming of the Indian Ocean Threatens Eastern and Southern Africa, but could be Mitigated by Agricultural Development

    Science.gov (United States)

    Funk, Chris; Dettinger, Michael D.; Brown, Molly E.; Michaelsen, Joel C.; Verdin, James P.; Barlow, Mathew; Howell, Andrew

    2008-01-01

    Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high and declining per capita agricultural capacity retards progress towards Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation identify another problematic trend. Main growing season rainfall receipts have diminished by approximately 15% in food insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus late 20th century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling millions of undernourished people as a function of rainfall, population, cultivated area, seed and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people. On the other hand, modest increases in per capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.

  3. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted

  4. Spreading gossip in social networks

    Science.gov (United States)

    Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  5. Spreading gossip in social networks.

    Science.gov (United States)

    Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J

    2007-09-01

    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.

  6. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  7. COMBINED SURGERY OF SPREAD THYROID CANCER

    Directory of Open Access Journals (Sweden)

    V. Zh. Brzhezovsky

    2014-01-01

    Full Text Available Results of treating of 99 patients with differentiated thyroid cancer spreading beyond the capsule of the organ were analysed. In most cases with spreading the tumor to the tracheal rings performing of organ-preserving operations (from “window-like” tracheal resections to circular tracheal resection with intertracheal anastomosis is possible. Choosing of type of operation to be performed depends on localisation and spread of tumor invasion of trachea, pharynx and esophagus. Using of combined operations in patients with locally-spread thyroid cancer allows to achieve long and stable remission in most of the cases.

  8. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  9. Global Ocean Carbon and Biogeochemistry Coordination

    Science.gov (United States)

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur

    2016-04-01

    The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the

  10. Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread

    Science.gov (United States)

    Taylor, Matthew P.; Kratchmarov, Radomir; Enquist, Lynn W.

    2013-01-01

    Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread. PMID:23978901

  11. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Human Health Act of 2004. Major outcomes of the OHH Act of 2004 include: --A national focus on ocean health and its relation to human health and well-being; --Enhanced interagency coordination and cooperation in research, development, and education; --Emphasis on development of a new, interdisciplinary community of practice; --Increased understanding of linkages between marine animal health and human health and the dangers of transmission of zoonotic diseases from the marine environment; --A richer understanding of factors affecting the occurrence and impacts of ocean health threats; --An enhanced ability of the ocean science and public health communities to respond to health-related emergencies; --A strong focus on development of ecological forecasts that are providing early warning of ocean health threats and impacts, thus improving the effectiveness of protection and mitigation actions. Taken together, these outcomes contribute significantly to more sustainable management of coastal resources and communities.

  12. From continental to oceanic rifting in the Gulf of California

    Science.gov (United States)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo

    2017-11-01

    The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal

  13. Spread Spectrum Receiver Electromagnetic Interference (EMI) Test Guide

    Science.gov (United States)

    Wheeler, M. L.

    1998-01-01

    The objective of this test guide is to document appropriate unit level test methods and techniques for the performance of EMI testing of Direct Sequence (DS) spread spectrum receivers. Consideration of EMI test methods tailored for spread spectrum receivers utilizing frequency spreading, techniques other than direct sequence (such as frequency hopping, frequency chirping, and various hybrid methods) is beyond the scope of this test guide development program and is not addressed as part of this document EMI test requirements for NASA programs are primarily developed based on the requirements contained in MIL-STD-46 1 D (or earlier revisions of MIL-STD-46 1). The corresponding test method guidelines for the MIL-STD-461 D tests are provided in MIL-STD-462D. These test methods are well documented with the exception of the receiver antenna port susceptibility tests (intermodulation, cross modulation, and rejection of undesired signals) which must be tailored to the specific type of receiver that is being tested. Thus, test methods addressed in this guide consist only of antenna port tests designed to evaluate receiver susceptibility characteristics. MIL-STD-462D should be referred for guidance pertaining to test methods for EMI tests other than the antenna port tests. The scope of this test guide includes: (1) a discussion of generic DS receiver performance characteristics; (2) a summary of S-band TDRSS receiver operation; (3) a discussion of DS receiver EMI susceptibility mechanisms and characteristics; (4) a summary of military standard test guidelines; (5) recommended test approach and methods; and (6) general conclusions and recommendations for future studies in the area of spread spectrum receiver testing.

  14. Epidemic spreading through direct and indirect interactions.

    Science.gov (United States)

    Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Saha, Sudipta

    2014-09-01

    In this paper we study the susceptible-infected-susceptible epidemic dynamics, considering a specialized setting where popular places (termed passive entities) are visited by agents (termed active entities). We consider two types of spreading dynamics: direct spreading, where the active entities infect each other while visiting the passive entities, and indirect spreading, where the passive entities act as carriers and the infection is spread via them. We investigate in particular the effect of selection strategy, i.e., the way passive entities are chosen, in the spread of epidemics. We introduce a mathematical framework to study the effect of an arbitrary selection strategy and derive formulas for prevalence, extinction probabilities, and epidemic thresholds for both indirect and direct spreading. We also obtain a very simple relationship between the extinction probability and the prevalence. We pay special attention to preferential selection and derive exact formulas. The analysis reveals that an increase in the diversity in the selection process lowers the epidemic thresholds. Comparing the direct and indirect spreading, we identify regions in the parameter space where the prevalence of the indirect spreading is higher than the direct one.

  15. The development of pathogen resistance in Daphnia magna: implications for disease spread in age-structured populations.

    Science.gov (United States)

    Garbutt, Jennie S; O'Donoghue, Anna J P; McTaggart, Seanna J; Wilson, Philip J; Little, Tom J

    2014-11-01

    Immunity in vertebrates is well established to develop with time, but the ontogeny of defence in invertebrates is markedly less studied. Yet, age-specific capacity for defence against pathogens, coupled with age structure in populations, has widespread implications for disease spread. Thus, we sought to determine the susceptibility of hosts of different ages in an experimental invertebrate host-pathogen system. In a series of experiments, we show that the ability of Daphnia magna to resist its natural bacterial pathogen Pasteuria ramosa changes with host age. Clonal differences make it difficult to draw general conclusions, but the majority of observations indicate that resistance increases early in the life of D. magna, consistent with the idea that the defence system develops with time. Immediately following this, at about the time when a daphnid would be most heavily investing in reproduction, resistance tends to decline. Because many ecological factors influence the age structure of Daphnia populations, our results highlight a broad mechanism by which ecological context can affect disease epidemiology. We also show that a previously observed protective effect of restricted maternal food persists throughout the entire juvenile period, and that the protective effect of prior treatment with a small dose of the pathogen ('priming') persists for 7 days, observations that reinforce the idea that immunity in D. magna can change over time. Together, our experiments lead us to conclude that invertebrate defence capabilities have an ontogeny that merits consideration with respect to both their immune systems and the epidemic spread of infection. © 2014. Published by The Company of Biologists Ltd.

  16. International Ocean Symposium (IOS) 1996; Kokusai kaiyo symposium 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-18

    This is a proceedings of the International Ocean Symposium 1996. On the first day of the symposium, the following were given with a theme `The Ocean, Can She Save Us`: Underwater research and future of mankind as a commemorative speech; The ocean, can she save us -- trying to discover the true figure of the ocean as a keynote speech. Panel discussion was held on The global environment and the infinite potential of the ocean. On the second day, an approach was made mostly from a cultural aspect with a theme `The Ocean and the Japanese.` The following were given: Human links between east and west as a commemorative speech; The ocean and Japanese culture as a keynote speech; Civilization spanning across oceans as a panel discussion. The Japanese have been developing their individual technologies in shipbuilding, shipping, and ocean development, have been raised by Mother Ocean, and have lived together. Ocean has been supplying humans food, water, oxygen, marine routes, and even dream and hope. The environmental pollution is the result of the human greediness. It is fear and friendship between humans and ocean that can save humans and ocean.

  17. Spread-sheet application to classify radioactive material for shipment

    International Nuclear Information System (INIS)

    Brown, A.N.

    1998-01-01

    A spread-sheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spread-sheet are used to confirm the proper US DOT classification when offering radioactive material packages for transport. The user must input to the spread-sheet the mass of the material being classified, the physical form (liquid or not) and the activity of each regulated nuclide. The spread-sheet uses these inputs to calculate two general values: 1)the specific activity of the material and a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material. If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three low specific activity designations (LSA-I, LSA-II, LSA-III, or not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity). This spread-sheet has proven to be an invaluable aid for shippers of radioactive materials at the Idaho National Engineering and Environmental Laboratory. (authors)

  18. Spread spectrum mobile communication experiment using ETS-V satellite

    Science.gov (United States)

    Ikegami, Tetsushi; Suzuki, Ryutaro; Kadowaki, Naoto; Taira, Shinichi; Sato, Nobuyasu

    1990-01-01

    The spread spectrum technique is attractive for application to mobile satellite communications, because of its random access capability, immunity to inter-system interference, and robustness to overloading. A novel direct sequence spread spectrum communication equipment is developed for land mobile satellite applications. The equipment is developed based on a matched filter technique to improve the initial acquisition performance. The data rate is 2.4 kilobits per sec. and the PN clock rate is 2.4552 mega-Hz. This equipment also has a function of measuring the multipath delay profile of land mobile satellite channel, making use of a correlation property of a PN code. This paper gives an outline of the equipment and the field test results with ETS-V satellite.

  19. Study on the Filament Yarns Spreading Techniques and Assessment Methods of the Electronic Fiberglass Fabric

    Science.gov (United States)

    Wang, Xi; Chen, Shouhui; Zheng, Tianyong; Ning, Xiangchun; Dai, Yifei

    2018-03-01

    The filament yarns spreading techniques of electronic fiberglass fabric were developed in the past few years in order to meet the requirements of the development of electronic industry. Copper clad laminate (CCL) requires that the warp and weft yarns of the fabric could be spread out of apart and formed flat. The penetration performance of resin could be improved due to the filament yarns spreading techniques of electronic fiberglass fabric, the same as peeling strength of CCL and drilling performance of printed circuit board (PCB). This paper shows the filament yarns spreading techniques of electronic fiberglass fabric from several aspects, such as methods and functions, also with the assessment methods of their effects.

  20. Marine Biology Activities. Ocean Related Curriculum Activities.

    Science.gov (United States)

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  1. Paleoenvironments of the Jurassic and Cretaceous Oceans: Selected Highlights

    Science.gov (United States)

    Ogg, J. G.

    2007-12-01

    There are many themes contributing to the sedimentation history of the Mesozoic oceans. This overview briefly examines the roles of the carbonate compensation depth (CCD) and the associated levels of atmospheric carbon dioxide, of the evolution of marine calcareous microplankton, of major transgressive and regressive trends, and of super-plume eruptions. Initiation of Atlantic seafloor spreading in the Middle Jurassic coincided with an elevated carbonate compensation depth (CCD) in the Pacific-Tethys mega-ocean. Organic-rich sediments that would become the oil wealth of regions from Saudi Arabia to the North Sea were deposited during a continued rise in CCD during the Oxfordian-early Kimmeridgian, which suggests a possible increase in carbon dioxide release by oceanic volcanic activity. Deep-sea deposits in near-equatorial settings are dominated by siliceous shales or cherts, which reflect the productivity of siliceous microfossils in the tropical surface waters. The end-Jurassic explosion in productivity by calcareous microplankton contributed to the lowering of the CCD and onset of the chalk ("creta") deposits that characterize the Tithonian and lower Cretaceous in all ocean basins. During the mid-Cretaceous, the eruption of enormous Pacific igneous provinces (Ontong Java Plateau and coeval edifices) increased carbon dioxide levels. The resulting rise in CCD terminated chalk deposition in the deep sea. The excess carbon was progressively removed in widespread black-shale deposits in the Atlantic basins and other regions - another major episode of oil source rock. A major long-term transgression during middle and late Cretaceous was accompanied by extensive chalk deposition on continental shelves and seaways while the oceanic CCD remained elevated. Pacific guyots document major oscillations (sequences) of global sea level superimposed on this broad highstand. The Cretaceous closed with a progressive sea-level regression and lowering of the CCD that again enabled

  2. Free energy analysis of cell spreading.

    Science.gov (United States)

    McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick

    2017-10-01

    In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing

  3. Variability, interaction and change in the atmosphere-ocean-ecology system of the Western Indian Ocean.

    Science.gov (United States)

    Spencer, T; Laughton, A S; Flemming, N C

    2005-01-15

    Traditional ideas of intraseasonal and interannual climatic variability in the Western Indian Ocean, dominated by the mean cycle of seasonally reversing monsoon winds, are being replaced by a more complex picture, comprising air-sea interactions and feedbacks; atmosphere-ocean dynamics operating over intrannual to interdecadal time-scales; and climatological and oceanographic boundary condition changes at centennial to millennial time-scales. These forcings, which are mediated by the orography of East Africa and the Asian continent and by seafloor topography (most notably in this area by the banks and shoals of the Mascarene Plateau which interrupts the westward-flowing South Equatorial Current), determine fluxes of water, nutrients and biogeochemical constituents, the essential controls on ocean and shallow-sea productivity and ecosystem health. Better prediction of climatic variability for rain-fed agriculture, and the development of sustainable marine resource use, is of critical importance to the developing countries of this region but requires further basic information gathering and coordinated ocean observation systems.

  4. Forecasting oil price movements with crack spread futures

    International Nuclear Information System (INIS)

    Murat, Atilim; Tokat, Ekin

    2009-01-01

    In oil markets, the crack spread refers to the crude-product price relationship. Refiners are major participants in oil markets and they are primarily exposed to the crack spread. In other words, refiner activity is substantially driven by the objective of protecting the crack spread. Moreover, oil consumers are active participants in the oil hedging market and they are frequently exposed to the crack spread. From another perspective, hedge funds are heavily using crack spread to speculate in oil markets. Based on the high volume of crack spread futures trading in oil markets, the question we want to raise is whether the crack spread futures can be a good predictor of oil price movements. We investigated first whether there is a causal relationship between the crack spread futures and the spot oil markets in a vector error correction framework. We found the causal impact of crack spread futures on spot oil market both in the long- and the short-run after April 2003 where we detected a structural break in the model. To examine the forecasting performance, we use the random walk model (RWM) as a benchmark, and we also evaluate the forecasting power of crack spread futures against the crude oil futures. The results showed that (a) both the crack spread futures and the crude oil futures outperformed the RWM; and (b) the crack spread futures are almost as good as the crude oil futures in predicting the movements in spot oil markets. (author)

  5. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  6. The Role of Mid-Atlantic Ocean Data Portal in Supporting Ocean Planning

    Directory of Open Access Journals (Sweden)

    Richard G. Lathrop

    2017-08-01

    Full Text Available The Mid-Atlantic Regional Council on the Ocean (MARCO was established in 2009 to enhance the vitality of the region's ocean ecosystem and economy. One of MARCO's first action items was the development of the Mid-Atlantic Ocean Data Portal to serve as an on-line platform to engage stakeholders across the region with the objective of improving their understanding of how ocean resources and places are being used, managed, and conserved. A key component is the Marine Planner, an interactive map-based visualization and decision support tool. These types of on-line tools are becoming increasingly popular means of putting essential data and state-of-the-art visualization technology into the hands of the agencies, industry, community leaders, and stakeholders engaged in ocean planning. However, to be effective, the underlying geospatial data has to be seen as objective, comprehensive, up-to-date and regionally consistent. To meet this challenge, the portal utilizes a distributed network of web map services from credible and authoritative sources. Website analytics and feedback received during the review and comment period of the 2016 release of the Mid-Atlantic Ocean Action Plan confirm that the Data Portal is viewed as integral to this ocean planning process by the MidAtlantic Regional Planning Body and key stakeholders. While not all stakeholders may agree with specific planning decisions, there is broad based agreement on the need for better data and making access to that data widely available.

  7. The ocean planet.

    Science.gov (United States)

    Hinrichsen, D

    1998-01-01

    The Blue Planet is 70% water, and all but 3% of it is salt water. Life on earth first evolved in the primordial soup of ancient seas, and though today's seas provide 99% of all living space on the planet, little is known about the world's oceans. However, the fact that the greatest threats to the integrity of our oceans come from land-based activities is becoming clear. Humankind is in the process of annihilating the coastal and ocean ecosystems and the wealth of biodiversity they harbor. Mounting population and development pressures have taken a grim toll on coastal and ocean resources. The trend arising from such growth is the chronic overexploitation of marine resources, whereby rapidly expanding coastal populations and the growth of cities have contributed to a rising tide of pollution in nearly all of the world's seas. This crisis is made worse by government inaction and a frustrating inability to enforce existing coastal and ocean management regulations. Such inability is mainly because concerned areas contain so many different types of regulations and involve so many levels of government, that rational planning and coordination of efforts are rendered impossible. Concerted efforts are needed by national governments and the international community to start preserving the ultimate source of all life on earth.

  8. Co-ordination Action on Ocean Energy (CA-OE)

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    In October 2004, the Co-ordination Action on Ocean Energy (CA-OE) was launched, co-financed by the European Commission, under the Renewable Energy Technologies priority within the 6th Framework programme, contract number 502701, chaired by Kim Nielsen, Rambøll, Denmark. The project involves 41...... partners. In general the public is not aware of the development of ocean energy and its exploitation. There is a need to make a united effort from the developers and research community to present the various principles and results in a coordinated manner with public appeal. The main objectives of the Co......-ordination Action on Ocean Energy are: To develop a common knowledge base necessary for coherent research and development policiesTo bring a co-ordinated approach within key areas of ocean energy research and development.To provide a forum for the longer term marketing of promising research developments...

  9. Mapping the ocean current strength and persistence in the Agulhas to inform marine energy development

    CSIR Research Space (South Africa)

    Meyer, I

    2017-04-01

    Full Text Available sensing - Acoustic Doppler Current Profiler - Natal pulses U N C O R R EC TE D PR O O F 1 Mapping the Ocean Current Strength 2 and Persistence in the Agulhas to Inform 3 Marine Energy Development 4 I. Meyer, L. Braby, M. Krug and B. Backeberg 5... International Publishing AG 2017 Z. Yang and A. Copping (eds.), Marine Renewable Energy, DOI 10.1007/978-3-319-53536-4_8 1 A u th o r P ro o f U N C O R R EC TE D PR O O F 16 Current. Western boundary ocean currents have become an area of focus (Duerr and 17...

  10. The Rothermel surface fire spread model and associated developments: A comprehensive explanation

    Science.gov (United States)

    Patricia L. Andrews

    2018-01-01

    The Rothermel surface fire spread model, with some adjustments by Frank A. Albini in 1976, has been used in fire and fuels management systems since 1972. It is generally used with other models including fireline intensity and flame length. Fuel models are often used to define fuel input parameters. Dynamic fuel models use equations for live fuel curing. Models have...

  11. Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands

    International Nuclear Information System (INIS)

    Osorio, Andrés F.; Arias-Gaviria, Jessica; Devis-Morales, Andrea; Acevedo, Diego; Velasquez, Héctor Iván; Arango-Aramburo, Santiago

    2016-01-01

    Small islands face difficult challenges to guarantee energy, freshwater and food supply, and sustainable development. The urge to meet their needs, together with the mitigation and adaptation plans to address climate change, have led them to develop renewable energy systems, with a special interest in Ocean Thermal Energy Conversion (OTEC) in tropical islands. Deep Ocean Water (DOW) is a resource that can provide electricity (through OTEC in combination with warm surface water), low temperatures for refrigeration, and nutrients for food production. In this paper we propose an Ocean Technology Ecopark (OTEP) as an integral solution for small islands that consists of an OTEC plant, other alternative uses of DOW, and a Research and Development (R&D) center. We present an application of OTEP to San Andres, a Colombian island that meets all the necessary conditions for the implementation of OTEC technology, water desalinization, and a business model for DOW. We present the main entrance barriers and a four-stage roadmap for the consolidation and sustainability of the OTEP. - Highlights: • Small islands face problems such as development, energy, freshwater and food supply. • Tropical islands with access to deep ocean water can use OTEC all year round. • An Ocean Ecopark is proposed as an integral solution for San Andrés Island, Colombia. • The Ecopark consists of OTEC, desalinization, SWAC, greenhouses, and R&D activities. • This article discusses entrance barriers and presents a four-stage roadmap

  12. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    Science.gov (United States)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  13. Aquantis C-Plane Ocean Current Turbine Project

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex [Dehlsen Associates, LLC, Santa Barbara, CA (United States)

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  14. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  15. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun

    2017-10-01

    Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO 2 ): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatch rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO 2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO 2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO 2 levels that are predicted as a result of ocean acidification in the next 100-200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO 2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO 2 projected for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Deciphering Detailed Plate Kinematics of the Indian Ocean: A Combined Indian-Australian-French Initiative

    Science.gov (United States)

    Vadakkeyakath, Y.; Müller, R.; Dyment, J.; Bhattacharya, G.; Lister, G. S.; Kattoju, K. R.; Whittaker, J.; Shuhail, M.; Gibbons, A.; Jacob, J.; White, L. T.; Bissessur, P. D.; Kiranmai, S.

    2012-12-01

    The Indian Ocean formed as a result of the fragmentation and dispersal of East Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major events such as the Kerguelen, Marion and Reunion hotspot inception and the Indo-Eurasian collision. A broad model for evolution of the Indian Ocean was proposed in the early 1980s. Subsequently, French scientists collected a large amount of magnetic data from the western and southern parts of the Indian Ocean while Indian and Australian scientists collected considerable volumes of magnetic data from the regions of Indian Ocean around their mainlands. Using these data, the Indian, French and Australian researchers independently carried out investigations over different parts of the Indian Ocean and provided improved models of plate kinematics at different sectoral plate boundaries. Under two Indo-French collaborative projects, detailed magnetic investigations were carried out in the Northwestern and Central Indian Ocean by combining the available magnetic data from conjugate regions. Those projects were complemented by additional area-specific studies in the Mascarene, Wharton, Laxmi and Gop basins, which are characterized by extinct spreading regimes. These Indo-French projects provided high resolution and improved plate tectonic models for the evolution of the conjugate Arabian and Eastern Somali basins that constrain the relative motion between the Indian-African (now Indian-Somalian) plate boundaries, and the conjugate Central Indian, Crozet and Madagascar basins that mainly constrain the relative motions of Indian-African (now Capricorn-Somalian) and Indian-Antarctic (now Capricorn-Antarctic) plate boundaries. During the same period, Australian scientists carried out investigations in the southeastern part of the Indian Ocean and provided an improved understanding of the plate tectonic evolution of the Indian

  17. Gossip spread in social network Models

    Science.gov (United States)

    Johansson, Tobias

    2017-04-01

    Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.

  18. Airborne spread of foot-and-mouth disease - Model intercomparison

    DEFF Research Database (Denmark)

    Gloster, John; Jones, Andrew; Redington, Alison

    2010-01-01

    Foot-and-mouth disease virus (FMDV) spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route, with the relative importance of each mechanism depending on the particular outbreak characteristics....... Atmospheric dispersion models have been developed to assess airborne spread of FMDV in a number of countries, including the UK, Denmark, Australia, New Zealand, USA and Canada. These models were compared at a Workshop hosted by the Institute for Animal Health/Met Office in 2008. Each modeller was provided...... with data relating to the 1967 outbreak of FMD in Hampshire, UK, and asked to predict the spread of FMDV by the airborne route. A number of key issues emerged from the Workshop and subsequent modelling work: (1) in general all models predicted similar directions for livestock at risk, with much...

  19. Perineural spread in head and neck tumors.

    Science.gov (United States)

    Brea Álvarez, B; Tuñón Gómez, M

    2014-01-01

    Perineural spread is the dissemination of some types of head and neck tumors along nervous structures. Perineural spread has negative repercussions on treatment because it requires more extensive resection and larger fields of irradiation. Moreover, perineural spread is associated with increased local recurrence, and it is considered an independent indicator of poor prognosis in the TNM classification for tumor staging. However, perineural spread often goes undetected on imaging studies. In this update, we review the concept of perineural spread, its pathogenesis, and the main pathways and connections among the facial nerves, which are essential to understand this process. Furthermore, we discuss the appropriate techniques for imaging studies, and we describe and illustrate the typical imaging signs that help identify perineural spread on CT and MRI. Finally, we discuss the differential diagnosis with other entities. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  20. A ripple-spreading genetic algorithm for the aircraft sequencing problem.

    Science.gov (United States)

    Hu, Xiao-Bing; Di Paolo, Ezequiel A

    2011-01-01

    When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.

  1. Dynamical attribution of oceanic prediction uncertainty in the North Atlantic: application to the design of optimal monitoring systems

    Science.gov (United States)

    Sévellec, Florian; Dijkstra, Henk A.; Drijfhout, Sybren S.; Germe, Agathe

    2017-11-01

    In this study, the relation between two approaches to assess the ocean predictability on interannual to decadal time scales is investigated. The first pragmatic approach consists of sampling the initial condition uncertainty and assess the predictability through the divergence of this ensemble in time. The second approach is provided by a theoretical framework to determine error growth by estimating optimal linear growing modes. In this paper, it is shown that under the assumption of linearized dynamics and normal distributions of the uncertainty, the exact quantitative spread of ensemble can be determined from the theoretical framework. This spread is at least an order of magnitude less expensive to compute than the approximate solution given by the pragmatic approach. This result is applied to a state-of-the-art Ocean General Circulation Model to assess the predictability in the North Atlantic of four typical oceanic metrics: the strength of the Atlantic Meridional Overturning Circulation (AMOC), the intensity of its heat transport, the two-dimensional spatially-averaged Sea Surface Temperature (SST) over the North Atlantic, and the three-dimensional spatially-averaged temperature in the North Atlantic. For all tested metrics, except for SST, ˜ 75% of the total uncertainty on interannual time scales can be attributed to oceanic initial condition uncertainty rather than atmospheric stochastic forcing. The theoretical method also provide the sensitivity pattern to the initial condition uncertainty, allowing for targeted measurements to improve the skill of the prediction. It is suggested that a relatively small fleet of several autonomous underwater vehicles can reduce the uncertainty in AMOC strength prediction by 70% for 1-5 years lead times.

  2. Ocean Worlds Analog Systems in the Hadal Ocean: Systematic Examination of Pressure, Food Supply, Topography, and Evolution on Hadal Life

    Science.gov (United States)

    Shank, T. M.; German, C.; Machado, C.; Bowen, A.; Drazen, J.; Yancey, P.; Jamieson, A.; Rowden, A.; Clark, M.; Heyl, T.; Mayor, D.; Piertney, S.; Ruhl, H.

    2018-05-01

    Key questions on life’s evolution are being pursued in Earth’s hadal ocean, Earth’s only analog to Europa’s ocean. A recent WHOI-JPL partnership is developing an armada of autonomous underwater drone vehicles to explore of Earth’s and Europa’s oceans.

  3. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems

    International Nuclear Information System (INIS)

    Martin Taylor, S.

    2009-01-01

    The health of the world's oceans and their impact on global environmental and climate change make the development of cabled observing systems vital and timely as a data source and archive of unparalleled importance for new discoveries. The VENUS and NEPTUNE Canada observatories are on the forefront of a new generation of ocean science and technology. Funding of over $100M, principally from the Governments of Canada and BC, for these two observatories supports integrated ocean systems science at a regional scale enabled by new developments in powered sub-sea cable technology and in cyber-infrastructure that streams continuous real-time data to Internet-based web platforms. VENUS is a coastal observatory supporting two instrumented arrays in the Saanich Inlet, near Victoria, and in the Strait of Georgia, off Vancouver. NEPTUNE Canada is an 800 km system on the Juan de Fuca Plate off the west coast of British Columbia, which will have five instrumented nodes in operation over the next 18 months. This paper describes the development and management of these two observatories, the principal research themes, and the applications of the research to public policy, economic development, and public education and outreach. Both observatories depend on partnerships with universities, government agencies, private sector companies, and NGOs. International collaboration is central to the development of the research programs, including partnerships with initiatives in the EU, US, Japan, Taiwan and China.

  4. Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction

    Science.gov (United States)

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater. PMID:24067442

  5. The Ocean as a teaching tool: the first MOOC on Ocean Literacy

    Science.gov (United States)

    Santin, Selvaggia; Santoro, Francesca

    2017-04-01

    Education its broader understanding (in both formal and informal settings) serves as a high potential channel to reach young citizens. As a lack of sufficient 'Ocean Literacy' has been identified in many countries, this clearly presents a barrier for citizens to engage in ocean responsible behaviour or consider ocean-related careers. In order to sensitize and enable teachers and students to incorporate ocean literacy into educational programmes we build up a first Massive Open Online Course on Emma Platform, an European Multiple MOOC Aggregator that provides a system for the delivery of free, open, online courses in multiple languages from different European universities. Almost 500 students were enrolled from all over the world and we proposed a multi-perspective approach building on the UNESCO experience in the field of education for sustainable development. The course had two sections: a narrative format which introduces to the Ocean Literacy principles, focusing on how to incorporate them into lessons with tips, advice, references and activities; and an interactive section with webinairs which covers contemporary and emerging issues such as seafood, marine pollution and human health, simulating a "real-world experiences" with a problems-solutions approach.

  6. Digital hf radar observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Argo, P.E.

    1984-01-01

    Modern digital ionosondes, with both direction finding and doppler capabilities can provide large scale pictures of the Spread-F irregularity regions. A morphological framework has been developed that allows interpretation of the hf radar data. A large scale irregularity structure is found to be nightward of the dusk terminator, stationary in the solar reference frame. As the plasma moves through this foehn-wall-like structure it descends, and irregularities may be generated. Localized upwellings, or bubbles, may be produced, and they drift with the background plasma. The spread-F irregularity region is found to be best characterized as a partly cloudy sky, due to the patchiness of the substructures. 13 references, 16 figures

  7. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2012-01-01

    drifting (Figures 26, and 27.By comparing the equations that describe the model of the northern drift of the lithosphere and the model of the core drift towards the North Pole, it is possible to establish a quantitative ‘bridge’ between the structures of meridional compression of the lithosphere and the core drifting structures.Conclusions based on the model of the northern drift of the lithosphere conform to many independent data and concepts, such as disturbance of the isostatic equilibrium of the Antarctica lithosphere and its high standing; the anomalously wide shelf of the Arctic ocean (Figure 28а and the increased thickness of the sediment cover, that is rich in hydrocarbons, in combination with the ultralow velocity of spreading in Gakkel Ridge; the approximately equal areas of Antarctica and the Arctic ocean as antipodes (Figure 28б; elongation (according to GPS data of the parallels in the Southern hemisphere, and their shortening in the Northern hemisphere (Figure 26; radial (relative to the South Pole rifts and other lineaments in Antarctica (Figures 29, and 30; the sub-concentric (relative to the same pole system of spreading around Antarctica, which develops northward into the submeridional system including three ‘trunks’ at a distance of about 90° (Figure 31.Due to the higher velocity of the northern drift of the lithosphere within the band with the middle meridian 100° E – 80° W, wherein the main mass of the continental lithosphere is concentrated and whose two ‘poles’ are marked by the axes of the African and Pacific superplumes (Figures 3, 4, 5, and 32, the following specific features have developed: maximum elongation of the Antarctic continent in the Southern (‘stretched’ hemisphere (Figure 28 б; maximum shortening of the Arctic ocean in the Northern (‘compressed’ hemisphere (Figure 28а; maximum spreading velocity in the SouthEastern Indian Ridge (Figure 33; maximum northern component of the horizontal displacements velocity

  8. Ocean energy: key legal issues and challenges

    International Nuclear Information System (INIS)

    Wright, Glen; Rochette, Julien; O'Hagan, Anne Marie; De Groot, Jiska; Leroy, Yannick; Soininen, Niko; Salcido, Rachael; Castelos, Montserrat Abad; Jude, Simon; Kerr, Sandy

    2015-01-01

    Ocean energy is a novel renewable energy resource being developed as part of the push towards a 'Blue Economy'. The literature on ocean energy has focused on technical, environmental, and, increasingly, social and political aspects. Legal and regulatory factors have received less attention, despite their importance in supporting this new technology and ensuring its sustainable development. In this Issue Brief, we set out some key legal challenges for the development of ocean energy technologies, structured around the following core themes of marine governance: (i) international law; (ii) environmental impacts; (iii) rights and ownership; (iv) consenting processes; and (v) management of marine space and resources. (authors)

  9. Ocean Research - Perspectives from an international Ocean Research Coordination Network

    Science.gov (United States)

    Pearlman, Jay; Williams, Albert, III

    2013-04-01

    The need for improved coordination in ocean observations is more urgent now given the issues of climate change, sustainable food sources and increased need for energy. Ocean researchers must work across disciplines to provide policy makers with clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions asked over the last 100 years at the time and space scales that are relevant. Programs like GLOBEC moved us forward but we are still challenged by the disciplinary divide. Interdisciplinary problem solving must be addressed not only by the exchange of data between the many sides, but through levels where questions require day-to-day collaboration. A National Science Foundation-funded Research Coordination Network (RCN) is addressing approaches for improving interdisciplinary research capabilities in the ocean sciences. During the last year, the RCN had a working group for Open Data led by John Orcutt, Peter Pissierssens and Albert Williams III. The teams has focused on three areas: 1. Data and Information formats and standards; 2. Data access models (including IPR, business models for open data, data policies,...); 3. Data publishing, data citation. There has been a significant trend toward free and open access to data in the last few years. In 2007, the US announced that Landsat data would be available at no charge. Float data from the US (NDBC), JCOMM and OceanSites offer web-based access. The IODE is developing its Ocean Data Portal giving immediate and free access to ocean data. However, from the aspect of long-term collaborations across communities, this global trend is less robust than might appear at the surface. While there are many standard data formats for data exchange, there is not yet widespread uniformity in their adoption. Use of standard data formats can be encouraged in several ways: sponsors of

  10. Numerical Modeling of Ocean Circulation

    Science.gov (United States)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  11. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

    International Nuclear Information System (INIS)

    Ricke, K L; Caldeira, K; Orr, J C; Schneider, K

    2013-01-01

    Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 2 emissions abatement, the Ωa threshold for reefs is critical to projecting their fate. Our results indicate that to maintain a majority of reefs surrounded by waters with Ωa > 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results. (letter)

  12. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters

    International Nuclear Information System (INIS)

    Van Sebille, Erik; England, Matthew H; Froyland, Gary

    2012-01-01

    Much of the debris in the near-surface ocean collects in so-called garbage patches where, due to convergence of the surface flow, the debris is trapped for decades to millennia. Until now, studies modelling the pathways of surface marine debris have not included release from coasts or factored in the possibilities that release concentrations vary with region or that pathways may include seasonal cycles. Here, we use observational data from the Global Drifter Program in a particle-trajectory tracer approach that includes the seasonal cycle to study the fate of marine debris in the open ocean from coastal regions around the world on interannual to centennial timescales. We find that six major garbage patches emerge, one in each of the five subtropical basins and one previously unreported patch in the Barents Sea. The evolution of each of the six patches is markedly different. With the exception of the North Pacific, all patches are much more dispersive than expected from linear ocean circulation theory, suggesting that on centennial timescales the different basins are much better connected than previously thought and that inter-ocean exchanges play a large role in the spreading of marine debris. This study suggests that, over multi-millennial timescales, a significant amount of the debris released outside of the North Atlantic will eventually end up in the North Pacific patch, the main attractor of global marine debris. (letter)

  13. Simulation of bomb tritium entry into the Atlantic Ocean

    International Nuclear Information System (INIS)

    Sarmiento, J.L.

    1983-01-01

    Tritium is used in a model-calibration study that aimed at developing three-dimensional ocean circulation and mixing models for climate and geochemical simulations. The North Atlantic tritium distribution is modeled using a three-dimensional advective field predicted by a primitive equation ocean circulation model. The effect of wintertime convection is parametrized by homogenizing the tracer to the observed March mixed-layer depth. Mixing is parametrized by horizontal and vertical Fickian diffusivities of 5 x 10 -6 cm 2 s -1 and 0.5 cm 2 s -1 , respectively. The spreading of tritium in the model is dominated by advection in the horizontal, and by wintertime convection and advection in the vertical. The horizontal and vertical mixing provided by the model have negligible effect. A comparison of the model tracer fields with observations shows that most of the basic patterns of the tritium field are repreduced. The model's mean vertical penetration of 543 m in 1972 is comparable to the 592 penetration obtained from the data. The major discrepancy between model and data is an inadequate penetration into deeper portions of the northwestern subtropical gyre main thermoclien. Some of the problem that may contribute to this are identified. A tritium simulation with a smoothed input gives a penetration depth of only 395 m. The smoothing puts a high fraction of the tritium into low-latitude, low-penetration regions such as the equator. This suggests that great care needs to be exercised in using simplified models of tritium observations to predict the behavior of tracers with different input functions, like fossil fuel CO 2

  14. General characteristics of relative dispersion in the ocean

    Science.gov (United States)

    Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico

    2017-04-01

    The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.

  15. Cross Validating Ocean Prediction and Monitoring Systems

    National Research Council Canada - National Science Library

    Mooers, Christopher; Meinen, Christopher; Baringer, Molly; Bang, Inkweon; Rhodes, Robert C; Barron, Charlie N; Bub, Frank

    2005-01-01

    With the ongoing development of ocean circulation models and real-time observing systems, routine estimation of the synoptic state of the ocean is becoming feasible for practical and scientific purposes...

  16. Experiments on non-isothermal spreading

    International Nuclear Information System (INIS)

    Ehrhard, P.

    1992-09-01

    Experiments are performed on axisymmetric spreading of viscous drops on glass plates. Two liquids are investigated: silicone oil (M-100) spreads to 'infinity' and paraffin oil spreads to a finite-radius steady state. The experiments with silicone oil partly recover the behaviour of previous workers data; those experiments with paraffin oil provide new data. It is found that gravitational forces dominate at long enough times while at shorter times capillary forces dominate. When the plate is heated or cooled with respect to the ambient gas, thermocapillary forces generate flows that alter the spreading dynamics. Heating (cooling) the plate is found to retard (augment) the streading. Moreover, in case of partial wetting, the finally-approached drop radius is smaller (larger) for a heated (cooled) plate. These data are all new. All these observations are in excellent quantitative agreement with the related model predictions of Ehrhard and Davis (1991). A breakdown of the axisymmetric character of the flow is observed only for very long times and/or very thin liquid layers. (orig.) [de

  17. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  18. Measuring ocean acidification: new technology for a new era of ocean chemistry.

    Science.gov (United States)

    Byrne, Robert H

    2014-05-20

    Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world's oceans. Among the best-documented seawater effects are a worldwide increase in open-ocean acidity and large-scale declines in calcium carbonate saturation states. The susceptibility of some young, fast-growing calcareous organisms to adverse impacts highlights the potential for biological and economic consequences. Many important aspects of seawater CO2 chemistry can be only indirectly observed at present, and important but difficult-to-observe changes can include shifts in the speciation and possibly bioavailability of some life-essential elements. Innovation and invention are urgently needed to develop the in situ instrumentation required to document this era of rapid ocean evolution.

  19. The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms

    Science.gov (United States)

    Williams, P.

    2016-02-01

    The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database (OACurriculumCollection.org). This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.

  20. RU COOL's scalable educational focus on immersing society in the ocean through ocean observing systems

    Science.gov (United States)

    Schofield, O.; McDonnell, J. D.; Kohut, J. T.; Glenn, S. M.

    2016-02-01

    Many regions of the ocean are exhibiting significant change, suggesting the need to develop effective focused education programs for a range of constituencies (K-12, undergraduate, and general public). We have been focused on developing a range of educational tools in a multi-pronged strategy built around using streaming data delivered through customized web services, focused undergraduate tiger teams, teacher training and video/documentary film-making. Core to the efforts is on engaging the undergraduate community by leveraging the data management tools of the U.S. Integrated Ocean Observing System (IOOS) and the education tools of the U.S. National Science Foundation's (NSF) Ocean Observing Initiative (OOI). These intuitive interactive browser-based tools reduce the barriers for student participation in sea exploration and discovery, and allowing them to become "field going" oceanographers while sitting at their desk. Those undergraduate student efforts complement efforts to improve educator and student engagement in ocean sciences through exposure to scientists and data. Through professional development and the creation of data tools, we will reduce the logistical costs of bringing ocean science to students in grades 6-16. We are providing opportunities to: 1) build capacity of scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia. We are using a blended learning approach to promote partnerships and cross-disciplinary sharing. Finally we use data and video products to entrain public support through the development of science documentaries about the science and people who conduct it. For example Antarctic Edge is a feature length award-winning documentary about climate change that has garnered interest in movie theatres

  1. Outwitting the series resistance in scanning spreading resistance microscopy

    International Nuclear Information System (INIS)

    Schulze, A.; Cao, R.; Eyben, P.; Hantschel, T.; Vandervorst, W.

    2016-01-01

    The performance of nanoelectronics devices critically depends on the distribution of active dopants inside these structures. For this reason, dopant profiling has been defined as one of the major metrology challenges by the international technology roadmap of semiconductors. Scanning spreading resistance microscopy (SSRM) has evolved as one of the most viable approaches over the last decade due to its excellent spatial resolution, sensitivity and quantification accuracy. However, in case of advanced device architectures like fins and nanowires a proper measurement of the spreading resistance is often hampered by the increasing impact of parasitic series resistances (e.g. bulk series resistance) arising from the confined nature of the aforementioned structures. In order to overcome this limitation we report in this paper the development and implementation of a novel SSRM mode (fast Fourier transform-SSRM: FFT-SSRM) which essentially decouples the spreading resistance from parasitic series resistance components. We show that this can be achieved by a force modulation (leading to a modulated spreading resistance signal) in combination with a lock-in deconvolution concept. In this paper we first introduce the principle of operation of the technique. We discuss in detail the underlying physical mechanisms as well as the technical implementation on a state-of-the-art atomic force microscope (AFM). We demonstrate the performance of FFT-SSRM and its ability to remove substantial series resistance components in practice. Eventually, the possibility of decoupling the spreading resistance from the intrinsic probe resistance will be demonstrated and discussed. - Highlights: • A novel electrical AFM mode for carrier profiling in confined volumes is presented. • Thereby the force and hence the contact area between AFM probe and sample is modulated. • Information on the spreading resistance is derived using a lock-in approach. • Bulk series resistance components are

  2. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  3. Energy Spread Sources in TESLA and TTF

    International Nuclear Information System (INIS)

    Mosnier, A.; Tessier, J.M.

    1995-03-01

    The beam energy spread in the TESLA linac must be small enough to limit the emittance dilution due to the dispersive effects. This report summarizes the major sources of energy spread both for the TESLA linac and the TTF linac, where these estimations will be carefully checked with beam experiments. The first part recalls the intra-bunch energy spread while the second part looks into the bunch-to-bunch energy spread induced by rf field fluctuations within the bunch train and from pulse-to-pulse. (author). 3 refs., 4 figs

  4. Coding-Spreading Tradeoff in CDMA Systems

    National Research Council Canada - National Science Library

    Bolas, Eduardo

    2002-01-01

    .... Comparing different combinations of coding and spreading with a traditional DS-CDMA, as defined in the IS-95 standard, allows the criteria to be defined for the best coding-spreading tradeoff in CDMA systems...

  5. Deterministic ripple-spreading model for complex networks.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  6. Dynamics of Ionic Shifts in Cortical Spreading Depression.

    Science.gov (United States)

    Enger, Rune; Tang, Wannan; Vindedal, Gry Fluge; Jensen, Vidar; Johannes Helm, P; Sprengel, Rolf; Looger, Loren L; Nagelhus, Erlend A

    2015-11-01

    Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K(+) or glutamate have been proposed. Here we use extracellular direct current potential recordings, K(+)-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca(2+) and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca(2+) carrying the cortical spreading depression wavefront and are in favor of interstitial K(+) diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression. © The Author 2015. Published by Oxford University Press.

  7. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    Science.gov (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  8. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Science.gov (United States)

    Baudais, Jean-Yves; Crussière, Matthieu

    2007-12-01

    Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM) are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM) waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT) system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC) channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR) is low.

  9. Spread and Liquidity Issues: A markets comparison

    Directory of Open Access Journals (Sweden)

    Strašek Sebastjan

    2016-03-01

    Full Text Available The financial crises are closely connected with spread changes and liquidity issues. After defining and addressing spread considerations, we research in this paper the topic of liquidity issues in times of economic crisis. We analyse the liquidity effects as recorded on spreads of securities from different markets. We stipulate that higher international risk aversion in times of financial crises coincides with widening security spreads. The paper then introduces liquidity as a risk factor into the standard value-at-risk framework, using GARCH methodology. The comparison of results of these models suggests that the size of the tested markets does not have a strong effect on the models. Thus, we find that spread analysis is an appropriate tool for analysing liquidity issues during a financial crisis.

  10. Spread F in the Midlatitude Ionosphere According to DPS-4 Ionosonde Data

    Science.gov (United States)

    Panchenko, V. A.; Telegin, V. A.; Vorob'ev, V. G.; Zhbankov, G. A.; Yagodkina, O. I.; Rozhdestvenskaya, V. I.

    2018-03-01

    The results of studying spread F obtained from the DPS-4 ionosonde data at the observatory of the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Moscow) are presented. The methodical questions that arise during the study of a spread F phenomenon in the ionosphere are considered; the current results of terrestrial observations are compared with previously published data and the results of sounding onboard an Earth-satellite vehicle. The automated algorithm for estimation of the intensity of frequency spread F, which was developed by the authors and was successfully verified via comparison of the data of the digisonde DPS-4 and the results of manual processing, is described. The algorithm makes it possible to quantify the intensity of spread F in megahertz (the dFs parameter) and in the number of points (0, 1, 2, 3). The strongest spread (3 points) is shown to be most likely around midnight, while the weakest spread (0 points) is highly likely to occur during the daytime. The diurnal distribution of a 1-2 point spread F in the winter indicates the presence of additional maxima at 0300-0600 UT and 1400-1700 UT, which may appear due to the terminator. Despite the large volume of processed data, we can not definitively state that the appearance of spread F depends on the magnetic activity indices Kp, Dst, and AL, although the values of the dFs frequency spread interval strongly increased both at day and night during the magnetic storm of March 17-22, 2015, especially in the phase of storm recovery on March 20-22.

  11. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science

    Science.gov (United States)

    Holloway, A. E.

    2016-02-01

    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  12. Arctic Ocean Regional Climatology (NCEI Accession 0115771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Arctic Ocean, NCEI developed a new set of high-resolution...

  13. Seismological Imaging of Melt Production Regions Beneath the Backarc Spreading Center and Volcanic Arc, Mariana Islands

    Science.gov (United States)

    Wiens, Douglas; Pozgay, Sara; Barklage, Mitchell; Pyle, Moira; Shiobara, Hajime; Sugioka, Hiroko

    2010-05-01

    We image the seismic velocity and attenuation structure of the mantle melt production regions associated with the Mariana Backarc Spreading Center and Mariana Volcanic Arc using data from the Mariana Subduction Factory Imaging Experiment. The passive component of this experiment consisted of 20 broadband seismographs deployed on the island chain and 58 ocean-bottom seismographs from June, 2003 until April, 2004. We obtained the 3D P and S wave velocity structure of the Mariana mantle wedge from a tomographic inversion of body wave arrivals from local earthquakes as well as P and S arrival times from large teleseismic earthquakes determined by multi-channel cross correlation. We also determine the 2-D attenuation structure of the mantle wedge using attenuation tomography based on local and regional earthquake spectra, and a broader-scale, lower resolution 3-D shear velocity structure from inversion of Rayleigh wave phase velocities using a two plane wave array analysis approach. We observe low velocity, high attenuation anomalies in the upper mantle beneath both the arc and backarc spreading center. These anomalies are separated by a higher velocity, lower attenuation region at shallow depths (< 80 km), implying distinct magma production regions for the arc and backarc in the uppermost mantle. The largest magnitude anomaly beneath the backarc spreading center is found at shallower depth (25-50 km) compared to the arc (50-100 km), consistent with melting depths estimated from the geochemistry of arc and backarc basalts (K. Kelley, pers. communication). The velocity and attenuation signature of the backarc spreading center is narrower than the corresponding anomaly found beneath the East Pacific Rise by the MELT experiment, perhaps implying a component of focused upwelling beneath the spreading center. The strong velocity and attenuation anomaly beneath the spreading center contrasts strongly with preliminary MT inversion results showing no conductivity anomaly in the

  14. Linear magnetic anomalies and tectonic development of the middle Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    -By analyzing the magnetic anomalies, the linear magnetic anomalies in the middle Okinawa Trough are identified. It means that the crust along the spreading axis is broken, and new oceanic crust is formed. Geophysical data have revealed that a model of three extensive episodes occurs in the Okinawa Trough, which can be named as "doming episode" from the Middle to Late Miocene (Phase I), the episode from the Pliocence to Early Pleistocene (Phase Ⅱ ), and the recent "spreading episode" (Phase Ⅲ ). The magnetic anomalies in the middle Okinawa Trough are very similar to those found in the middle Red Sea, indicating that the Okinawa Trough is developing towards the "Red Sea stage". Similar to the Red Sea, there are a "main trough" and a "axial trough" in the Okinawa Trough.

  15. Topology dependent epidemic spreading velocity in weighted networks

    International Nuclear Information System (INIS)

    Duan, Wei; Qiu, Xiaogang; Quax, Rick; Lees, Michael; Sloot, Peter M A

    2014-01-01

    Many diffusive processes occur on structured networks with weighted links, such as disease spread by airplane transport or information diffusion in social networks or blogs. Understanding the impact of weight-connectivity correlations on epidemic spreading in weighted networks is crucial to support decision-making on disease control and other diffusive processes. However, a real understanding of epidemic spreading velocity in weighted networks is still lacking. Here we conduct a numerical study of the velocity of a Reed–Frost epidemic spreading process in various weighted network topologies as a function of the correlations between edge weights and node degrees. We find that a positive weight-connectivity correlation leads to a faster epidemic spreading compared to an unweighted network. In contrast, we find that both uncorrelated and negatively correlated weight distributions lead to slower spreading processes. In the case of positive weight-connectivity correlations, the acceleration of spreading velocity is weak when the heterogeneity of weight distribution increases. (paper)

  16. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-07

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Carbon isotopes and concentrations in mid-oceanic ridge basalts

    International Nuclear Information System (INIS)

    Pineau, F.; Javoy, M.

    1983-01-01

    In order to estimate carbon fluxes at mid-ocean ridges and carbon isotopic compositions in the convective mantle, we have studied carbon concentrations and isotopic compositions in tholeiitic glasses from the FAMOUS zone (Mid-Atlantic Ridge at 36 0 N) and East Pacific Rise from 21 0 N (RITA zone) to 20 0 S. These samples correspond essentially to the whole spectrum of spreading rates (2-16 cm/yr). The contain: -CO 2 vesicles in various quantities (3-220 ppm C) with delta 13 C between -4 and -9per mille relative to PDB, in the range of carbonatites and diamonds. - Carbonate carbon (3-100 ppm C) with delta 13 C between -2.6 and -20.0per mille relative to PDB. - Dissolved carbon at a concentration of 170+-10 ppm under 250 bar pressure with delta 13 C from -9 to -21per mille relative to PDB. This dissolved carbon, not contained in large CO 2 vesicles, corresponds to a variety of chemical forms among which part of the above carbonates, microscopic CO 2 bubbles and graphite. The lightest portions of this dissolved carbon are extracted at low temperatures (400-600 0 C) whereas the CO 2 from the vesicles is extracted near fusion temperature. These features can be explained by outgassing processes in two steps from the source region of the magma: (1) equilibrium outgassing before the second percolation threshold, where micron size bubbles are continuously reequilibrated with the magma; (2) distillation after the second percolation threshold when larger bubbles travel faster than magma concentrations to the surface. The second step may begin at different depths apparently related to the spreading rate, shallower for fast-spreading ridges than for slow-spreading ridges. (orig./WL)

  18. High Tide, Low Tide. Ocean Related Curriculum Activities.

    Science.gov (United States)

    Snively, Gloria

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  19. Epidemic spreading in time-varying community networks.

    Science.gov (United States)

    Ren, Guangming; Wang, Xingyuan

    2014-06-01

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q epidemic spreading in complex networks with community structure.

  20. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    Mechkov, S; Oshanin, G; Cazabat, A M

    2009-01-01

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  1. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE)

    Science.gov (United States)

    Greely, T. M.; Lodge, A.

    2009-12-01

    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  2. Spreading dynamics in complex networks

    International Nuclear Information System (INIS)

    Pei, Sen; Makse, Hernán A

    2013-01-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)

  3. Spreading dynamics in complex networks

    Science.gov (United States)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  4. Modeling Europa's Ice-Ocean Interface

    Science.gov (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  5. The 2010 Southern California Ocean Bottom Seismometer Deployment

    Science.gov (United States)

    Booth, C. M.; Kohler, M. D.; Weeraratne, D. S.

    2010-12-01

    Subduction, mid-ocean ridge spreading, and transpressional deformation are all processes that played important roles in the evolution of the diffuse Pacific-North America plate boundary offshore Southern California. Existing seismic data for the boundary typically end at the coastline due to the fact that onshore data collection is easier and more feasible. As a result, current models for plate boundary deformation and mantle flow lack data from nearly half the plate boundary offshore. In August 2010, twenty-four broadband and ten short period ocean bottom seismometers (OBS) were deployed on a research cruise as part of a year-long passive OBS experiment off the coast of Southern California. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) will study local seismicity, and crustal and upper mantle seismic structure. Studies using onshore data have shown a high velocity anomaly that exists in the region of convergence under the Transverse Ranges. The Transverse Ranges belong to a large crustal block that experienced clockwise rotation of at least ninety degrees. Geologic studies indicate that the entire Channel Islands on the western end belongs to the region of convergence and have been a part of this rotation. In anticipation of OBS data analysis, a hypothetical velocity model is being developed for the crust and uppermost mantle for the region under the Channel Islands. P-wave arrival times are predicted by propagating teleseismic waves through the model. Different possible P-wave arrival patterns are explored by varying the lithospheric thickness. The long-term goal for developing this model will be to compare it with the actual OBS travel-time residual data to assess the best-fitting model. In preparation for the ALBACORE cruise, existing gravity data near the Channel Island region were examined for correlations with geologic features. Gravity data collected during the ALBACORE cruise will help

  6. An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization.

    Science.gov (United States)

    Shulkind, Gal; Nazarathy, Moshe

    2012-11-05

    DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.

  7. Three-dimensional Seismic Survey of the Continental-Ocean Transition Zone of the Northern South China Sea

    Science.gov (United States)

    Zhao, M.; Wang, Q.; Sibuet, J. C.; Sun, L.; Sun, Z.; Qiu, X.

    2017-12-01

    The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which has experienced extension, rifting, breakup, post-spreading magmatism on its northern margin during the Cenozoic era. The complexity of this margin is exacerbated by rifting and seafloor spreading processes, which developed at the expenses of the subducting proto-South China Sea. Based on Sun et al. (2014, 2016) proposals, 6 sites were drilled on the northern SCS margin from February to June 2017, during IODP Expeditions 367/368. The preliminary results indicate that the width of the COT is about 20 km and is different from the typical magma-poor Iberia margin whose width is around 100 km. The combination of three-dimensional (3D) Ocean Bottom Seismometers (OBS) refractive survey with IODP drilling results, will improve the drilling achievement and greatly contribute to the understanding of the specific mechanism of rifting and breakup processes of the northern SCS. In particular, it is expected to constrain: 1) the nature of the crust in the COT, 2) the degree of serpentinization of the upper mantle beneath the COT, and 3) the 3D extension of the COT, the oceanic crust and the serpentinized mantle. We firstly carry out the resolution tests and calculate the interval of OBSs using a ray tracing and travel time modelling software. 7-km interval between OBSs is the optimal interval for the resolution tests and ray coverage, which will provide optimal constraints for the characterization of the 20-km wide COT. The 3D seismic survey will be carried out in 2018. The design of the OBSs arrangement and the location of shooting lines are extremely important. At present, we propose 5 main profiles and 14 shooting lines along the multi-channel seismic lines already acquired in the vicinity of the 6 drilling sites. Any comments and suggestions concerning the OBSs arrangement will be appreciated. This work is supported by the Chinese National Natural Science Foundation (contracts

  8. Oceanic diffusion in the coastal area

    International Nuclear Information System (INIS)

    Rukuda, Masaaki

    1980-03-01

    Described in this paper is the eddy diffusion in the area off Tokai Village investigated by means of dye diffusion experiment and of oceanic observation. In order to assess the oceanic diffusion in coastal areas, improved methods effective in complex field were developed. The oceanic diffusion was separated in two groups, horizontal and vertical diffusion respectively. Both these diffusions are combined and their analysis together is difficult. The oceanic diffusion is thus considered separately. Instantaneous point release is the basis of horizontal diffusion analysis. Continuous release is then the overlap of numerous instantaneous releases. It was shown that the diffusion parameters derived from the results of diffusion experiment or oceanic observation vary widely with time and place and with sea conditions. A simple diffusion equation was developed from the equation of continuity. The results were in good agreement with seasonal mean horizontal distribution of river water in the sea area. The vertical observation in diffusion experiment is difficult and the vertical structure of oceanic condition is complex, so that the research on vertical diffusion generally is not advanced yet. With river water as the tracer, a method of estimating vertical diffusion parameters with a Gaussian model or one-dimensional model was developed. The vertical diffusion near sea bottom was numerically analized with suspended particles in seawater as the tracer. Diffusion was computed for each particle size, and by summing up the vertical distribution of beam attenuation coefficient was estimated. By comparing the results of estimation and those of observation the vertical diffusivity and the particle size distribution at sea bottom could be estimated. (author)

  9. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development.

    Science.gov (United States)

    Funk, Chris; Dettinger, Michael D; Michaelsen, Joel C; Verdin, James P; Brown, Molly E; Barlow, Mathew; Hoell, Andrew

    2008-08-12

    Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by approximately 15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling "millions of undernourished people" as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.

  10. Isolating Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) from Modular Ocean Model (MOM5) to Couple it with a Global Ocean Model

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.; Park, H. S.; Kim, K. Y.; Lee, J.; Byun, Y. H.

    2017-12-01

    This research is motivated by a need to develop a new coupled ocean-biogeochemistry model, a key tool for climate projections. The Modular Ocean Model (MOM5) is a global ocean/ice model developed by the Geophysical Fluid Dynamics Laboratory (GFDL) in the US, and it incorporates Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ), which simulates the marine biota associated with carbon cycles. We isolated TOPAZ from MOM5 into a stand-alone version (TOPAZ-SA), and had it receive initial data and ocean physical fields required. Then, its reliability was verified by comparing the simulation results from the TOPAZ-SA with the MOM5/TOPAZ. This stand-alone version of TOPAZ is to be coupled to the Nucleus for European Modelling of the Ocean (NEMO). Here we present the preliminary results. Acknowledgements This research was supported by the project "Research and Development for KMA Weather, Climate, and Earth system Services" (NIMS-2016-3100) of the National Institute of Meteorological Sciences/Korea Meteorological Administration.

  11. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  12. Technical development concerning abandonment of low level radioactive wastes into ocean

    International Nuclear Information System (INIS)

    Hitomi, Seiichi

    1981-01-01

    The amount of radioactive wastes generated in nuclear power stations has increased year by year, and the measures to treat and dispose them safely and surely have become urgent problem. In October, 1976, the Atomic Energy Commission presented the basic policy with ''On the countermeasures to radioactive wastes'', and the necessity of establishing a corporation undertaking the execution of trial disposal was mentioned. The foundation ''Atomic Energy Environment Conditioning Center'' was established accordingly, and it is making the preparation of the required tests and researches and the trial disposal in ocean. Four sea areas were selected as the possible areas for the disposal in ocean, and the survey on the environment of these sea areas was carried out for three years. Since 1977, the detailed survey has been made about the B sea area which seemed to be most desirable. In order to execute the trial disposal in ocean safely and surely, the soundness of solidified bodies, the preparation of a ship for abandonment, the works of transport and abandonment, and the pressurizing test of the drums for abandonment in a high pressure tank were studied. The survey of four sea areas and the evaluation of safety in ocean environment are described. The relevant laws were revised so as to accord with international treaties. The international relations concerning this problem are explained. (Kako, I.)

  13. NOAA's Role in Sustaining Global Ocean Observations: Future Plans for OAR's Ocean Observing and Monitoring Division

    Science.gov (United States)

    Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney

    2017-04-01

    The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.

  14. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Directory of Open Access Journals (Sweden)

    Baudais Jean-Yves

    2007-01-01

    Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.

  15. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  16. Modelling indirect interactions during failure spreading in a project activity network.

    Science.gov (United States)

    Ellinas, Christos

    2018-03-12

    Spreading broadly refers to the notion of an entity propagating throughout a networked system via its interacting components. Evidence of its ubiquity and severity can be seen in a range of phenomena, from disease epidemics to financial systemic risk. In order to understand the dynamics of these critical phenomena, computational models map the probability of propagation as a function of direct exposure, typically in the form of pairwise interactions between components. By doing so, the important role of indirect interactions remains unexplored. In response, we develop a simple model that accounts for the effect of both direct and subsequent exposure, which we deploy in the novel context of failure propagation within a real-world engineering project. We show that subsequent exposure has a significant effect in key aspects, including the: (a) final spreading event size, (b) propagation rate, and (c) spreading event structure. In addition, we demonstrate the existence of 'hidden influentials' in large-scale spreading events, and evaluate the role of direct and subsequent exposure in their emergence. Given the evidence of the importance of subsequent exposure, our findings offer new insight on particular aspects that need to be included when modelling network dynamics in general, and spreading processes specifically.

  17. Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.

    Science.gov (United States)

    Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir

    2010-05-01

    The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the

  18. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  19. The small world yields the most effective information spreading

    International Nuclear Information System (INIS)

    Lü Linyuan; Chen Duanbing; Zhou Tao

    2011-01-01

    The spreading dynamics of information and diseases are usually analyzed by using a unified framework and analogous models. In this paper, we propose a model to emphasize the essential difference between information spreading and epidemic spreading, where the memory effects, the social reinforcement and the non-redundancy of contacts are taken into account. Under certain conditions, the information spreads faster and broader in regular networks than in random networks, which to some extent supports the recent experimental observation of spreading in online society (Centola D 2010 Science 329 1194). At the same time, the simulation result indicates that the random networks tend to be favorable for effective spreading when the network size increases. This challenges the validity of the above-mentioned experiment for large-scale systems. More importantly, we show that the spreading effectiveness can be sharply enhanced by introducing a little randomness into the regular structure, namely the small-world networks yield the most effective information spreading. This work provides insights into the role of local clustering in information spreading. (paper)

  20. Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses

    Science.gov (United States)

    Xue, Yan; Balmaseda, Magdalena A.; Boyer, Tim; Ferry, Nicolas; Good, Simon; Ishikawa, Ichiro; Rienecker, Michele; Rosati, Tony; Yin, Yonghong; Kumar, Arun

    2012-01-01

    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have

  1. Vector population growth and condition-dependent movement drive the spread of plant pathogens.

    Science.gov (United States)

    Shaw, Allison K; Peace, Angela; Power, Alison G; Bosque-Pérez, Nilsa A

    2017-08-01

    Plant viruses, often spread by arthropod vectors, impact natural and agricultural ecosystems worldwide. Intuitively, the movement behavior and life history of vectors influence pathogen spread, but the relative contribution of each factor has not been examined. Recent research has highlighted the influence of host infection status on vector behavior and life history. Here, we developed a model to explore how vector traits influence the spread of vector-borne plant viruses. We allowed vector life history (growth rate, carrying capacity) and movement behavior (departure and settlement rates) parameters to be conditional on whether the plant host is infected or healthy and whether the vector is viruliferous (carrying the virus) or not. We ran simulations under a wide range of parameter combinations and quantified the fraction of hosts infected over time. We also ran case studies of the model for Barley yellow dwarf virus, a persistently transmitted virus, and for Potato virus Y, a non-persistently transmitted virus. We quantified the relative importance of each parameter on pathogen spread using Latin hypercube sampling with the statistical partial rank correlation coefficient technique. We found two general types of mechanisms in our model that increased the rate of pathogen spread. First, increasing factors such as vector intrinsic growth rate, carrying capacity, and departure rate from hosts (independent of whether these factors were condition-dependent) led to more vectors moving between hosts, which increased pathogen spread. Second, changing condition-dependent factors such as a vector's preference for settling on a host with a different infection status than itself, and vector tendency to leave a host of the same infection status, led to increased contact between hosts and vectors with different infection statuses, which also increased pathogen spread. Overall, our findings suggest that vector population growth rates had the greatest influence on rates of virus

  2. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    Science.gov (United States)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the

  3. 77 FR 2514 - National Ocean Council-National Ocean Policy Draft Implementation Plan

    Science.gov (United States)

    2012-01-18

    ... Ocean Council developed actions to achieve the Policy's nine priority objectives, and to address some of..., contribute trillions of dollars a year to the national economy, and are essential to public health and... departments, agencies, and offices developed the actions in the draft Implementation Plan with significant...

  4. Cooling rates and the depth of detachment faulting at oceanic core complexes: Evidence from zircon Pb/U and (U-Th)/He ages

    Science.gov (United States)

    Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.

    2011-01-01

    Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.

  5. Improved Global Ocean Color Using Polymer Algorithm

    Science.gov (United States)

    Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques

    2010-12-01

    A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.

  6. Colonic motility and enema spreading

    International Nuclear Information System (INIS)

    Hardy, J.G.; Wood, E.; Clark, A.G.; Reynolds, J.R.; Queen's Medical Centre, Nottingham

    1986-01-01

    Radiolabelled enema solution was administered to eight healthy subjects, both in fasted and fed states. Enema spreading was monitored over a 4-h period using gamma scintigraphy and colonic motility was recorded simultaneously using a pressure sensitive radiotelemetry capsule. The rate and extent of enema dispersion were unaffected by eating. Spreading could be correlated with colonic motility and was inhibited by aboral propulsion of the colonic contents. (orig.)

  7. Ocean tides for satellite geodesy

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  8. Melt spreading code assessment, modifications, and initial application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is a 1,600-MWe Pressurized Water Reactor (PWR) that is undergoing a design certification review by the U.S. Nuclear Regulatory Commission (NRC). The EPR severe accident design philosophy is predicated upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external flooding. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: 1) an external core melt retention system to temporarily hold core melt released from the vessel; 2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; 3) a melt plug that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, 4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and non-uniform spreading. The NRC is using MELTSPREAD to evaluate melt spreading in the EPR design. The development of MELTSPREAD ceased in the early 1990's, and so the code was first assessed against the more contemporary spreading database and code modifications, as warranted, were carried out before performing confirmatory plant calculations. This paper provides principle findings from the MELTSPREAD assessment activities and resulting code modifications, and also summarizes the results of initial scoping calculations for the EPR plant design and preliminary plant analyses, along with the plan for performing the final set of plant calculations including sensitivity studies

  9. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  10. Ocean FEST (Families Exploring Science Together)

    Science.gov (United States)

    Bruno, B. C.; Wiener, C. S.

    2009-12-01

    Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In

  11. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  12. Generation and reception of spread-spectrum signals

    Science.gov (United States)

    Moser, R.

    1983-05-01

    The term 'spread-spectrum' implies a technique whereby digitized information is added to a pseudo-random number sequence and the resultant bit stream changes some parameter of the carrier frequency in discrete increments. The discrete modulation of the carrier frequency is usually realized either as a multiple level phase shift keyed or frequency shift keyed signal. The resultant PSK-modulated frequency spectrum is referred to as direct sequence spread-spectrum, whereas the FSK-modulated carrier frequency is referred to as a frequency hopped spread spectrum. These can be considered the major subsets of the more general term 'spread-spectrum'. In discussing signal reception, it is pointed out that active correlation methods are used for channel synchronization when the psuedo random sequences are long or when the processing gain is large, whereas the passive methods may be used for either short pseudo-random noise generation codes or to assist in attaining initial synchronization in long sequence spread-spectrum systems.

  13. The Imaging and Evolution of Seismic Layer 2A Thickness from a 0-70 Ma Oceanic Crustal Transect in the South Atlantic

    Science.gov (United States)

    Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.

    2017-12-01

    Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust 15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external factors have altered the crust at

  14. Spread Spectrum Techniques and their Applications to Wireless Communications

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Cianca, E.

    2005-01-01

    Spread Spectrum (SS) radio communications is on the verge of potentially explosive commercial development An SS-based multiple access, such as CDMA, has been chosen for 3G wireless communications. Other current applications of SS techniues are in Wireless LANs and Satellite Navigation Systems...

  15. Heterogeneous incidence and propagation of spreading depolarizations

    Science.gov (United States)

    Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek

    2016-01-01

    Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866

  16. Epidemic spreading in time-varying community networks

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-06-15

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.

  17. Epidemic spreading in time-varying community networks

    International Nuclear Information System (INIS)

    Ren, Guangming; Wang, Xingyuan

    2014-01-01

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q c . The epidemic will survive when q > q c and die when q  c . These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure

  18. Spanish leadership in marine renewable energies. The project Ocean Lider; Liderazgo espanol en energias renovables oceanicas. El proyecto Ocean Lider

    Energy Technology Data Exchange (ETDEWEB)

    Amante, J.

    2012-07-01

    The Cenit-e Ocean Lider project is an ambitious R+D technological initiative promoted by a consortium of companies with a strong research capability which addresses the challenge of developing the necessary technologies to set up integrated large scale installations that can harness energies of marine renewable sources, such as waves, tidal currents and wind. Ocean Lider developed knowledge and technologies would provide some new power plant concepts, devices, structures, data acquisition and site characterization systems, vessels, etc. In this way, some new technologies for harnessing ocean energy generation, distribution and transmission would be developed and sized according to a large scale scheme, to make this hybrid harvest (wave, current and wind) as profitable as possible. (Author)

  19. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  20. Satellite based Ocean Forecasting, the SOFT project

    Science.gov (United States)

    Stemmann, L.; Tintoré, J.; Moneris, S.

    2003-04-01

    The knowledge of future oceanic conditions would have enormous impact on human marine related areas. For such reasons, a number of international efforts are being carried out to obtain reliable and manageable ocean forecasting systems. Among the possible techniques that can be used to estimate the near future states of the ocean, an ocean forecasting system based on satellite imagery is developped through the Satelitte based Ocean ForecasTing project (SOFT). SOFT, established by the European Commission, considers the development of a forecasting system of the ocean space-time variability based on satellite data by using Artificial Intelligence techniques. This system will be merged with numerical simulation approaches, via assimilation techniques, to get a hybrid SOFT-numerical forecasting system of improved performance. The results of the project will provide efficient forecasting of sea-surface temperature structures, currents, dynamic height, and biological activity associated to chlorophyll fields. All these quantities could give valuable information on the planning and management of human activities in marine environments such as navigation, fisheries, pollution control, or coastal management. A detailed identification of present or new needs and potential end-users concerned by such an operational tool is being performed. The project would study solutions adapted to these specific needs.

  1. Non-isothermal spreading of liquid drops on horizontal plates

    International Nuclear Information System (INIS)

    Ehrhard, P.; Davis, S.H.

    1990-05-01

    A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process. When the advancing contact angle is zero, heating will cause the drop to spread only finitely far. For positive advancing contact angles, sufficient cooling will cause unlimited spreading. Thus, the heat transfer serves as a sentitive control on the spreading. (orig.) [de

  2. An assessment of ten ocean reanalyses in the polar regions

    Science.gov (United States)

    Uotila, Petteri

    2017-04-01

    Ocean reanalysis (ORA) combines observations either statistically or with a hydrodynamical model, to reconstruct historical changes in the ocean. Global and regional ORA products are increasingly used in polar research, but their quality remains to be systematically assessed. To address this, the Polar ORA Intercomparison Project (PORA-IP) has been established following on from the ORA-IP project (Balmaseda et al. 2015, with other papers in a special issue of Climate Dynamics). The PORA-IP is constituted under the COST EOS initiative with plans to review reanalyses products in both the Arctic and Antarctic, and is endorsed by YOPP - the Year of Polar Prediction project. Currently, the PORA-IP team consists of 21 researchers from 15 institutes and universities. The ORA-IP products with polar physics, such as sea ice, have been updated where necessary and collected in a public database. In addition to model output, available observational polar climatologies are collected and used in the assessments. Due to the extensive variety of products, this database should become a valuable resource outside the PORA-IP community. For a comprehensive evaluation of the ten ORA products (CGLORSv5, ECDA3.1, GECCO2, Glorys2v4, GloSea5_GO5, MOVEG2i, ORAP5, SODA3.3.1, TOPAZ4 and UR025.4) in the Arctic and Southern Oceans several specific diagnostics are assessed. The PORA-IP diagnostics target the following topics: hydrography; heat, salinity and freshwater content; ocean transports and surface currents; mixed layer depth; sea-ice concentration and thickness; and snow thickness over sea ice. Based on these diagnostics, ORA product biases against observed data and their mutual spread are quantified, and possible reasons for discrepancies discussed. So far, we have identified product outliers and evaluated the multi-model mean. We have identified the importance of the atmospheric forcing, air-ocean coupling protocol and sea-ice data assimilation for the product performance. Moreover, we

  3. Epidemic spreading on interconnected networks.

    Science.gov (United States)

    Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián

    2012-08-01

    Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.

  4. The Atlantis Bank Gabbro Massif, SW Indian Ridge: the Largest Know Exposure of the Lower Crust in the Oceans

    Science.gov (United States)

    Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.

    2017-12-01

    Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and

  5. Functional properties of a new spread based on olive oil and honeybees

    Directory of Open Access Journals (Sweden)

    Asma Tekiki

    2018-01-01

    Full Text Available a new alimentary concept has been developed since the 80’s. This one is called “functional food”.  In this context, the olive oil and honey are traditionally used in their initial state as a basic food. They are considered as a potential source of new bioactive products from which we can formulate several functional foods. This work will focus on the elaboration of a new spread of honey and olive oil using beeswax as an emulsifier. Physical-chemical characterization, antioxidant and antibacterial activity were evaluated. As for the phenols content, spreads prepared from thyme honey has the highest content (337 mg GAE/kg compared to other spreads. The antioxidant activity was evaluated by three different methods namely: DPPH test, ABTS + test and the iron reduction method (FRAP which proves that this last has a higher activity than the other spreads (EC50 of 70 mg /L using DPPH, EC50 of 20 mg /L using ABTS. An agar-well diffusion assay was used to assess the activity of honeys against seven bacteria strains. All prepared spreads honey samples showed highest antibacterial activity against all bacterial strains tested (diameter of ZI > 20mm. Hence, we note that our new spread proved by excellence to be a functional food due to the high content of phenols and the important antibacterial and antioxidant activities.

  6. Development of Ocean Acidification Flow-Thru Experimental Raceway Units (OAFTERU): Simulating the Future Reefs in the Keys Today

    Science.gov (United States)

    Hall, E. R.; Vaughan, D.; Crosby, M. P.

    2011-12-01

    Ocean acidification, a consequence of anthropogenic CO2 production due to fossil fuel combustion, deforestation, and cement production, has been referred to as "the other CO2 problem" and is receiving much attention in marine science and public policy communities. Critical needs that have been identified by top climate change and marine scientists include using projected pCO2 (partial pressure of CO2 in seawater) levels in manipulative experiments to determine physiological indices of ecologically important species, such as corals. Coral reefs were one of the first ecosystems to be documented as susceptible to ocean acidification. The Florida Keys reef system has already experienced a long-term deterioration, resulting in increased calls for large scale coral reef ecosystem restoration of these critical resources. It has also been speculated that this decline in reef ecosystem health may be exacerbated by increasing atmospheric CO2 levels with resulting ocean acidification. Therefore, reef resilience to ocean acidification and the potential for successful restoration of these systems under forecasted long-term modified pH conditions in the Florida Keys is of great concern. Many studies for testing effects of ocean acidification on corals have already been established and tested. However, many employ pH modification experimental designs that include addition of acid to seawater which may not mimic conditions of climate change induced ocean acidification. It would be beneficial to develop and maintain an ocean acidification testing system more representative of climate change induced changes, and specific to organisms and ecosystems indigenous to the Florida Keys reef tract. The Mote Marine Laboratory research facility in Summerland Key, FL has an established deep well from which its supply of seawater is obtained. This unique source of seawater is 80 feet deep, "fossil" marine water. It is pumped from the on-site aquifer aerated to reduce H2S and ammonia, and passed

  7. A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results

    Science.gov (United States)

    D.R. Weise; E. Koo; X. Zhou; S. Mahalingam

    2011-01-01

    Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...

  8. Use of Real Time Satellite Infrared and Ocean Color to Produce Ocean Products

    Science.gov (United States)

    Roffer, M. A.; Muller-Karger, F. E.; Westhaver, D.; Gawlikowski, G.; Upton, M.; Hall, C.

    2014-12-01

    Real-time data products derived from infrared and ocean color satellites are useful for several types of users around the world. Highly relevant applications include recreational and commercial fisheries, commercial towing vessel and other maritime and navigation operations, and other scientific and applied marine research. Uses of the data include developing sampling strategies for research programs, tracking of water masses and ocean fronts, optimizing ship routes, evaluating water quality conditions (coastal, estuarine, oceanic), and developing fisheries and essential fish habitat indices. Important considerations for users are data access and delivery mechanisms, and data formats. At this time, the data are being generated in formats increasingly available on mobile computing platforms, and are delivered through popular interfaces including social media (Facebook, Linkedin, Twitter and others), Google Earth and other online Geographical Information Systems, or are simply distributed via subscription by email. We review 30 years of applications and describe how we develop customized products and delivery mechanisms working directly with users. We review benefits and issues of access to government databases (NOAA, NASA, ESA), standard data products, and the conversion to tailored products for our users. We discuss advantages of different product formats and of the platforms used to display and to manipulate the data.

  9. A mathematical model of the spread of the AIDS virus

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, J.M.; Stanley, E.A.

    1987-01-01

    A mathematical computer model of the spread of the AIDS epidemic in the US is being developed at Los Alamos National Laboratory. This model predicts the spreading of the HIV infection, and subsequent development of clinical AIDS in various population groups. These groups are chosen according to age, frequency and type of sexual contact, population density, and region of the country. Type of sexual contact includes not only the heterosexual, homosexual differentiation but also repeated contacts with such primary partners as spouses. In conjunction with the computer model, we are developing a database containing relevant information on the natural history of the viral infection, the prevalence of the infection and of clinical AIDS in the population, the distribution of people into sexual behavior groups as a function of age and information on interregional contacts. The effects of variable infectiousness and sexual activity during the long period from infection to disease are found to have a major impact on the predictions of the model. 24 refs., 5 figs.

  10. Development of improved space sampling strategies for ocean chemical properties: Total carbon dioxide and dissolved nitrate

    Science.gov (United States)

    Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.

    1995-01-01

    Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.

  11. Development of an Indian Ocean moored buoy array for climate studies

    Digital Repository Service at National Institute of Oceanography (India)

    McPhaden, M.J.; Kuroda, Y.; Murty, V.S.N.

    of measurements to societal benefit. Chief among the principles is the need to distributed data openly in a timely manner. There is a preference for communication of data in real time to make it available at climate analysis and prediction centers.... This is essential to demonstrate the value of IndOOS and capture the potential societal benefits. 1. Introduction The Indian Ocean is unique among the three tropical ocean basins in that it is blocked at 25°N by the Asian land mass. Seasonal heating over...

  12. Norwegian Ocean Observatory Network (NOON)

    Science.gov (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  13. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development

    Science.gov (United States)

    Funk, Chris C.; Dettinger, Michael D.; Michaelsen, Joel C.; Verdin, James P.; Brown, Molly E.; Barlow, Mathew; Hoell, Andrew

    2008-01-01

    Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by ???15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling 'millions of undernourished people' as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability. ?? 2008 by The National Academy of Sciences of the USA.

  14. B-DEOS: British Dynamics of Earth and Ocean systems- new approaches for a multidisciplinary ocean observing system in the Atlantic and S Ocean

    Science.gov (United States)

    Schultz, A.; Lampitt, R. S.

    2001-12-01

    Advances in theoretical understanding of the natural systems in the sea and in the Earth below have been closely associated with new data sets made possible by technological advances. The plate tectonic revolution, the discovery of hydrothermal circulation, and many other examples can be attributed to the application of innovative new technology to the study of the sea. A consortium of research groups and institutions within the United Kingdom is planning a system of multidisciplinary ocean observatories to study the components of, and linkages between the physical, chemical and biological processes regulating the earth-ocean-atmosphere-biosphere system. An engineering feasibility design study has been completed which has resulted in a robust and flexible design for a telecommunications/power buoy system, and a UK NERC Thematic Programme is in the advanced planning stage. Representatives of the US, Japan, France, Portugal, Spain, Germany and other countries have been involved in consultations, and a coordinated international effort is expected to develop throughout the Atlantic and S Oceans, with collaborations extended to observatories operated by cooperating partners in other regions. The B-DEOS observatory system is designed to allow studies on scales of order cm to 1000 km, as well as to supplement on larger spatial scales the emerging global ocean and seafloor solid earth observatory network. The facility will make it possible to obtain requisite long-term synoptic baseline data, and to monitor natural and man-made changes to this system by: 1) Establishing a long-term, permanent and relocatable network of instrumented seafloor platforms, moorings and profiler vehicles, provided with power from the ocean surface and internal power supplies, and maintaining a real- or near-real time bidirectional Internet link to shore. 2) Examining the time varying properties of these different environments (solid earth, ocean, atmosphere, biosphere), exploring the links

  15. A Trip Through the Virtual Ocean: Understanding Basic Oceanic Process Using Real Data and Collaborative Learning

    Science.gov (United States)

    Hastings, D. W.

    2012-12-01

    at 20°W; and 3) a latitude vs. longitude at 4,000 m depth in the entire ocean. Students do this work at home, and come to class prepared with hypotheses that explain variations of their variable observed in their figures. Nutrients, for example, are typically depleted in the surface ocean, increase at intermediate depths, and then typically decrease in deep water. How do oceanic processes drive these variations? In the context of the other variables, and with the help of other group members, they typically develop an understanding of surface productivity, respiration of organic matter in deeper waters, upwelling of deeper water, ocean circulation, insolation, evaporation, precipitation, and temperature dependence of gas solubility. Students then prepare a written explanation to accompany the plots. Cartoon-like depictions of nutrient profiles typically presented in introductory texts have their place, but they lack the complexity inherent in real data. The objective is to mimic the excitement of discovery and the challenge of developing a hypothesis to explain existing data. The ability to develop viable hypotheses to explain real data with real variability are what motivate and inspire many scientists. How can we expect to motivate and inspire students with lackluster descriptions of ocean processes?

  16. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31' N: Associated rocks of the oceanic core complex and their hydrothermal alteration

    Science.gov (United States)

    Pertsev, A. N.; Bortnikov, N. S.; Vlasov, E. A.; Beltenev, V. E.; Dobretsova, I. G.; Ageeva, O. A.

    2012-09-01

    The oceanic core complexes and large-offset detachment faults characteristic of the slow-spreading Mid-Atlantic Ridge are crucial for the structural control of large hydrothermal systems, including those forming sub-seafloor polymetallic sulfide mineralization. The structural-geological, petrographic, and mineralogical data are considered for the oceanic core complex enclosing the Semenov-1, -2, -3, -4, and -5 inactive hydrothermal sulfide fields recently discovered on the Mid-Oceanic Ridge at 13°31' N. The oceanic core complex is composed of serpentinized and talc-replaced peridotites and sporadic gabbroic rocks, however, all hydrothermal fields reveal compositional indications of basaltic substrate. The volcanic structures superposed on the oceanic core complex are marked by outcrops of pillow lavas with fresh quenched glass. Dolerites regarded as volcanic conduits seem to represent separate dike swarms. The superposed volcanic structures develop largely along the near-latitudinal high-angle tectonic zone controlling the Semenov-1, -2, -5, and -3 hydrothermal sulfide fields. The manifestations of hydrothermal metasomatic alteration are diverse. The widespread talcose rocks with pyrrhotite-pyrite mineralization after serpentinite, as well as finding of talc-chlorite metabasalt are interpreted as products of hydrothermal activity in the permeable zone of detachment fault. Chloritization and brecciation of basalts with superposed quartz or opal, barite, and pyrite or chalcopyrite mineralization directly related to the sub-seafloor sulfide deposition. The native copper mineralization in almost unaltered basalts at the Semenov-4 field is suggested to precipitate from ore-forming fluids before they reach the level of sub-seafloor sulfide deposition. Amphibolites with plagiogranite veinlets are interpreted as tectonic fragments of the highest-temperature portions of hydrothermal systems, where partial melting of basic rocks in the presence of aqueous fluid with

  17. Youth Science Ambassadors: Connecting Indigenous communities with Ocean Networks Canada tools to inspire future ocean scientists and marine resource managers

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.

    2017-12-01

    This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This

  18. Agricultural pathogen decontamination technology-reducing the threat of infectious agent spread.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Bieker, Jill Marie; Tucker, Mark David

    2005-10-01

    Outbreaks of infectious agricultural diseases, whether natural occurring or introduced intentionally, could have catastrophic impacts on the U.S. economy. Examples of such agricultural pathogens include foot and mouth disease (FMD), avian influenza (AI), citrus canker, wheat and soy rust, etc. Current approaches to mitigate the spread of agricultural pathogens include quarantine, development of vaccines for animal diseases, and development of pathogen resistant crop strains in the case of plant diseases. None of these approaches is rapid, and none address the potential persistence of the pathogen in the environment, which could lead to further spread of the agent and damage after quarantine is lifted. Pathogen spread in agricultural environments commonly occurs via transfer on agricultural equipment (transportation trailers, tractors, trucks, combines, etc.), having components made from a broad range of materials (galvanized and painted steel, rubber tires, glass and Plexiglas shields, etc), and under conditions of heavy organic load (mud, soil, feces, litter, etc). A key element of stemming the spread of an outbreak is to ensure complete inactivation of the pathogens in the agricultural environment and on the equipment used in those environments. Through the combination of enhanced agricultural pathogen decontamination chemistry and a validated inactivation verification methodology, important technologies for incorporation as components of a robust response capability will be enabled. Because of the potentially devastating economic impact that could result from the spread of infectious agricultural diseases, the proposed capability components will promote critical infrastructure protection and greater border and food supply security. We investigated and developed agricultural pathogen decontamination technologies to reduce the threat of infectious-agent spread, and thus enhance agricultural biosecurity. Specifically, enhanced detergency versions of the patented

  19. A Southern Ocean variability study using the Argo-based Model for Investigation of the Global Ocean (AMIGO)

    Science.gov (United States)

    Lebedev, Konstantin

    2017-04-01

    The era of satellite observations of the ocean surface that started at the end of the 20th century and the development of the Argo project in the first years of the 21st century, designed to collect information of the upper 2000 m of the ocean using satellites, provides unique opportunities for continuous monitoring of the Global Ocean state. Starting from 2005, measurements with the Argo floats have been performed over the majority of the World Ocean. In November 2007, the Argo program reached coverage of 3000 simultaneously operating floats (one float in a three-degree square) planned during the development of the program. Currently, 4000 Argo floats autonomously profile the upper 2000-m water column of the ocean from Antarctica to Spitsbergen increasing World Ocean temperature and salinity databases by 12000 profiles per month. This makes it possible to solve problems on reconstructing and monitoring the ocean state on an almost real-time basis, study the ocean dynamics, obtain reasonable estimates of the climatic state of the ocean in the last decade and estimate existing intraclimatic trends. We present the newly developed Argo-Based Model for Investigation of the Global Ocean (AMIGO), which consists of a block for variational interpolation of the profiles of drifting Argo floats to a regular grid and a block for model hydrodynamic adjustment of variationally interpolated fields. Such a method makes it possible to obtain a full set of oceanographic characteristics - temperature, salinity, density, and current velocity - using irregularly located Argo measurements (the principle of the variational interpolation technique entails minimization of the misfit between the interpolated fields defined on the regular grid and irregularly distributed data; hence the optimal solution passes as close to the data as possible). The simulations were performed for the entire globe limited in the north by 85.5° N using 1° grid spacing in both longitude and latitude. At the

  20. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    Science.gov (United States)

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  1. Heck and Heckle Seamounts, northeast Pacific Ocean: High extrusion rates of primitive and highly depleted mid-ocean ridge basalt on off-ridge seamounts

    Science.gov (United States)

    Leybourne, M. I.; van Wagoner, N. A.

    1991-09-01

    We analyzed, petrographically and chemically, basalt from eight dredge hauls from the Heck and Heckle seamounts, northeast Pacific Ocean. Major elements were determined for mineral, glass, and whole rock samples, and trace and rare earth elements were determined for glass and whole rock samples. The dredge hauls included hyaloclastites and fragments from sheet flows and pillows. The clinkery fragments are interpreted to be deformed sheet flow tops, characteristic of high effusion rates. The hyaloclastites recovered are reworked deposits, as indicated by the wide compositional range of the glass shards, abundance of clay and calcite matrix, and bedding. Most rocks are aphyric, but the analyzed plagioclase and olivine phenocrysts and microcrysts are equilibrium compositions and show minor compositional zonation (up to 7.5% An, chains have a limited range of incompatible element ratios, whereas the adjacent West Valley Segment of the Juan de Fuca Ridge is highly heterogeneous. In contrast, lavas from the East Pacific near-ridge seamounts exhibit a wider range of incompatible element ratios than do the adjacent East Pacific Rise basalts. On the West Valley Segment, magma supply is less robust associated with lower spreading rates compared to the East Pacific Rise at 10°N. In contrast, at fast spreading centers robust melting produces a mixed mantle signature in axial lavas, while suppressed melting at the seamounts reveals the heterogeneities. We suggest that at some spreading ridges, more fertile portions of the mantle are preferentially melted such that the outwelled portions of the mantle tapped by the seamounts are more depleted.

  2. Application of ABCD Analysis Model for Black Ocean Strategy

    OpenAIRE

    Sreeramana Aithal; Suresh Kumar P. M.; Shailashree V. T.

    2015-01-01

    Strategic planning and decision making has an important role in organizational development and sustainability. Various types of strategies are used in strategic management such as Red ocean strategy, Blue ocean strategy, Green ocean strategy and Purple ocean strategy. These strategies are used in organizations by top level executive managers for long term sustainability of organization and to face or avoid the competition. Based on organizational analysis, it is observed that some...

  3. Life Cycle of the Salmon. Ocean Related Curriculum Activities.

    Science.gov (United States)

    Tarabochia, Kathy

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  4. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  5. Spreading in online social networks: the role of social reinforcement.

    Science.gov (United States)

    Zheng, Muhua; Lü, Linyuan; Zhao, Ming

    2013-07-01

    Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.

  6. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  7. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-08-01

    The operational and technical feasibility of the penetrator option for HGW disposal has been reviewed and the areas where research is required to confirm feasibility have been identified. The research requirements have been presented against the Department's ocean disposal programme timescale on a series of bar charts. The bar charts show the need for theoretical and experimental studies of the basic mechanisms governing hole closure and the development of suitable instrumentation to assess the actual behaviour of the remoulded sediment in deep ocean trials. Detailed planning of deep ocean trials in sufficient time to develop strategy, models and instrumentation, identification of site investigation requirements and thermal response studies of sediments are also required. (author)

  8. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  9. Social Distancing Strategies against Disease Spreading

    Science.gov (United States)

    Valdez, L. D.; Buono, C.; Macri, P. A.; Braunstein, L. A.

    2013-12-01

    The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.e., the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.e., the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.

  10. Disease spreading in real-life networks

    Science.gov (United States)

    Gallos, Lazaros; Argyrakis, Panos

    2002-08-01

    In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.

  11. Energy spread in ion beam analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2000-01-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures

  12. Energy spread in ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kkfki.hu

    2000-03-01

    In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures.

  13. Ocean climate indicators: A monitoring inventory and plan for tracking climate change in the north-central California coast and ocean region

    Science.gov (United States)

    Duncan, Benet; Higgason, Kelley; Suchanek, Tom; Largier, John; Stachowicz, Jay; Allen, Sarah; Bograd, Steven; Breen, R.; Gellerman, Holly; Hill, Tessa; Jahncke, Jaime; Johnson, Rebecca L.; Lonhart, Steve I.; Morgan, Steven; Wilkerson, Frances; Roletto, Jan

    2013-01-01

    The impacts of climate change, defined as increasing atmospheric and oceanic carbon dioxide and associated increases in average global temperature and oceanic acidity, have been observed both globally and on regional scales, such as in the North-central California coast and ocean, a region that extends from Point Arena to Point Año Nuevo and includes the Pacific coastline of the San Francisco Bay Area. Because of the high economic and ecological value of the region’s marine environment, the Gulf of the Farallones National Marine Sanctuary (GFNMS) and other agencies and organizations have recognized the need to evaluate and plan for climate change impacts. Climate change indicators can be developed on global, regional, and site-specific spatial scales, and they provide information about the presence and potential impacts of climate change. While indicators exist for the nation and for the state of California as a whole, no system of ocean climate indicators exist that specifically consider the unique characteristics of the California coast and ocean region. To that end, GFNMS collaborated with over 50 regional, federal, and state natural resource managers, research scientists, and other partners to develop a set of 2 ocean climate indicators specific to this region. A smaller working group of 13 regional partners developed monitoring goals, objectives, strategies, and activities for the indicators and recommended selected species for biological indicators, resulting in the Ocean Climate Indicators Monitoring Inventory and Plan. The working group considered current knowledge of ongoing monitoring, feasibility of monitoring, costs, and logistics in selecting monitoring activities and selected species.

  14. An isopycnic ocean carbon cycle model

    Directory of Open Access Journals (Sweden)

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  15. Linear theory of equatorial spread F

    International Nuclear Information System (INIS)

    Hudson, M.K.; Kennel, C.F.

    1975-01-01

    A fluid dispersion relation for the drift and interchange (Rayleigh-Taylor) modes in a collisional plasma forms the basis for a linear theory of equatorial spread F. The collisional drift mode growth rate will exceed the growth rate of the Rayleigh-Taylor mode at short perpendicular wavelengths and density gradient scale lengths, and the drift mode can grow on top side as well as on bottom side density gradients. However, below the F peak, where spread F predominates, it is concluded that both the drift and the Rayleigh-Taylor modes contribute to the total spread F spectrum, the Rayleigh-Taylor mode dominating at long and the drift mode at short perpendicular wavelengths above the ion Larmor radius

  16. Marine radioactivity studies in the World Oceans (MARS)

    International Nuclear Information System (INIS)

    Povinec, P.P.; Togawa, O.

    1999-01-01

    The International Atomic Energy Agency's Marine Environment Laboratory is carrying out from 1996 a project with international participation 'Marine Radioactivity Studies in the World Oceans (MARS)'. The main objectives of the project are to provide new data on marine radioactivity and to develop a better understanding of the present radionuclide distribution in the open ocean. Within the framework of the project, various research activities are being carried out to fulfill the objectives: Coordinated Research Programme (CRP), scientific expeditions to the open ocean, development of a database for marine radioactivity, evaluation of radionuclide distributions and dose assessments. (author)

  17. Epidemic spreading in a hierarchical social network.

    Science.gov (United States)

    Grabowski, A; Kosiński, R A

    2004-09-01

    A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.

  18. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  19. Autonomous observations of the ocean biological carbon pump

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  20. Avian Influenza spread and transmission dynamics

    Science.gov (United States)

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  1. Ocean gliders as key component within the AORAC-SA

    Science.gov (United States)

    Barrera, C.; Hernandez Brito, J.; Castro, A.; Rueda, M. J.; Llinas, O.

    2016-02-01

    The Atlantic Ocean Research Alliance Coordination and Support Action (AORAC-SA) is designed to provide scientific, technical and logistical support to the EU in developing and implementing transAtlantic Marine Research Cooperation between the European Union, the United States of America and Canada. The Coordination and Support Action (CSA) is carried out within the framework of the Atlantic Ocean Research Alliance (AORA) as outlined in the Galway Statement on Atlantic Ocean Cooperation (May 2013). The CSA will be responsible for the organization of expert and stakeholder meetings, workshops and conferences required by the AORA and related to identified research priorities support actions and other initiatives as they arise, taking into account related Horizon 2020 supported transAtlantic projects and on-going national and EU collaborative projects. The AORAC-SA support and governance structure comprises a Secretariat and Management Team, guided by a high-level Operational Board, representative of the major European Marine Research Programming and Funding Organizations as well as those of the USA and Canada. As example of this research cooperative framework, ocean gliders have become nowadays a common, innovative and sustainable ocean-observations tool for the Atlantic basin, linking research groups, govermental institutions and private companies from both sides in terms of technical developments, transatlantic missions in partnership, training forums, etc. aiming to develop common practices and protocols for a better ocean resources management and understanding. Within this context, the Oceanic Platform of the Canary Islands (PLOCAN), as AORAC-SA partner, is working on specific actions like ocean glider observations programs (endurance line) by AtlantOS project (www.atlantos-h2020.eu), related new technical developments by NeXOS FP-7 project (www.nexosproject.eu) and a yearly International Glider School forum hosting (www.gliderschool.eu).

  2. Engaging Ocean Grads As Interdisciplinary Professional Problem Solvers: Why Preparing Our Future Ocean Leaders Means Inspiring Them to Look Beyond Their Academic Learning.

    Science.gov (United States)

    Good, L. H.; Erickson, A.

    2016-02-01

    Academic learning and research experiences alone cannot prepare our emerging ocean leaders to take on the challenges facing our oceans. Developing solutions that incorporate environmental and ocean sciences necessitates an interdisciplinary approach, requiring emerging leaders to be able to work in collaborative knowledge to action systems, rather than on micro-discipline islands. Professional and informal learning experiences can enhance graduate marine education by helping learners gain the communication, collaboration, and innovative problem-solving skills necessary for them to interact with peers at the interface of science and policy. These rich experiences can also provide case-based and hands-on opportunities for graduate learners to explore real-world examples of ocean science, policy, and management in action. However, academic programs are often limited in their capacity to offer such experiences as a part of a traditional curriculum. Rather than expecting learners to rely on their academic training, one approach is to encourage and support graduates to seek professional development beyond their university's walls, and think more holistically about their learning as it relates to their career interests. During this session we discuss current thinking around the professional learning needs of emerging ocean leaders, what this means for academic epistemologies, and examine initial evaluation outcomes from activities in our cross-campus consortium model in Monterey Bay, California. This innovative model includes seven regional academic institutions working together to develop an interdisciplinary ocean community and increase access to professional development opportunities to better prepare regional ocean-interested graduate students and early career researchers as future leaders.

  3. ONR Ocean Wave Dynamics Workshop

    Science.gov (United States)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  4. Weak Serpentine-bearing Fault Zones: laboratory evidence and implications for the activity of of oceanic detachments

    Science.gov (United States)

    Tesei, T.; Harbord, C. W. A.; Paola, N.; Collettini, C.; Viti, C.

    2017-12-01

    Serpentinites are major constituents of oceanic lithosphere shear zones located at slow-spreading margins, transform plate boundaries and obduction complexes. Geological and geophysical evidence suggests that these shear zones are inherently weak and, therefore, studies of serpentine friction are of paramount importance to constrain the strength of oceanic faults. However, laboratory friction experiments give a wide range of friction values for serpentine, which are not conclusive to explain the observed fault weakness. These variable results may arise from the difficulties to accurately characterize the mineralogical composition of serpentinite rocks and, hence, from the lack of pure monomineralic reference samples. Here we present laboratory experiments performed on a suite of serpentine samples, whose mineralogical composition was accurately characterized from the hand specimen down to the nanoscale. We observe that the main, low temperature polymorphs components of ocean-floor retrograde serpentinites (e.g. lizardite, chrysotile and polygonal serpentine) exhibit friction coefficients, µ reported, over a range of pressure and temperature conditions. We applied the frictional reactivation theory based on our experimental result to serpentine-bearing oceanic detachments. We show that detachments may slip until they rotate to very shallow dips 15°, as documented along some Atlantic detachments, accommodating large amounts of extension before being abandoned.

  5. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing

    Directory of Open Access Journals (Sweden)

    J. M. Gregory

    2016-11-01

    Full Text Available The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere–ocean general circulation models (AOGCMs. It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sea-level rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable

  6. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) Contribution to CMIP6: Investigation of Sea-Level and Ocean Climate Change in Response to CO2 Forcing

    Science.gov (United States)

    Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; hide

    2016-01-01

    The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model

  7. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    Science.gov (United States)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  8. US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    2009-06-01

    example, detailed surface current information derived from HYCOM is summarized by OCENS (Ocean and Coastal ENviromental Sensing, http...Computing Modernization Program at the Naval Oceanographic Office, the Engineer Research and Development Center, and the Army Research Laboratory

  9. Assimilative and non-assimilative color spreading in the watercolor configuration

    Directory of Open Access Journals (Sweden)

    Eiji eKimura

    2014-09-01

    Full Text Available A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect. The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC is paired with a blue outer contour (OC, yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and OC luminances (Experiment 1 as well as the background luminance (Experiment 2. The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminances (IC contrast was smaller than that of the OC (OC contrast, the induced color became similar to the IC color (assimilative spreading. In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading. Extending these findings, Experiment 3 showed that bilateral color spreading, e.g., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading [Grossberg, S. & Mingolla, E. (1985 Percept. Psychophys., 38, 141-171] and extended for the watercolor effect [Pinna, B., & Grossberg, S. (2005 J. Opt. Soc. Am. A, 22, 2207-2221]. However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading.

  10. Assimilative and non-assimilative color spreading in the watercolor configuration.

    Science.gov (United States)

    Kimura, Eiji; Kuroki, Mikako

    2014-01-01

    A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC) is paired with a blue outer contour (OC), yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and the OC luminance (Experiment 1) as well as the background luminance (Experiment 2). The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminance (IC contrast) was smaller in size than that of the OC (OC contrast), the induced color became similar to the IC color (assimilative spreading). In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading). Extending these findings, Experiment 3 showed that bilateral color spreading, i.e., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and the non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading (Grossberg and Mingolla, 1985) and extended for the watercolor effect (Pinna and Grossberg, 2005). However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading.

  11. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Science.gov (United States)

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  12. Ocean Networks Canada's "Big Data" Initiative

    Science.gov (United States)

    Dewey, R. K.; Hoeberechts, M.; Moran, K.; Pirenne, B.; Owens, D.

    2013-12-01

    Ocean Networks Canada operates two large undersea observatories that collect, archive, and deliver data in real time over the Internet. These data contribute to our understanding of the complex changes taking place on our ocean planet. Ocean Networks Canada's VENUS was the world's first cabled seafloor observatory to enable researchers anywhere to connect in real time to undersea experiments and observations. Its NEPTUNE observatory is the largest cabled ocean observatory, spanning a wide range of ocean environments. Most recently, we installed a new small observatory in the Arctic. Together, these observatories deliver "Big Data" across many disciplines in a cohesive manner using the Oceans 2.0 data management and archiving system that provides national and international users with open access to real-time and archived data while also supporting a collaborative work environment. Ocean Networks Canada operates these observatories to support science, innovation, and learning in four priority areas: study of the impact of climate change on the ocean; the exploration and understanding the unique life forms in the extreme environments of the deep ocean and below the seafloor; the exchange of heat, fluids, and gases that move throughout the ocean and atmosphere; and the dynamics of earthquakes, tsunamis, and undersea landslides. To date, the Ocean Networks Canada archive contains over 130 TB (collected over 7 years) and the current rate of data acquisition is ~50 TB per year. This data set is complex and diverse. Making these "Big Data" accessible and attractive to users is our priority. In this presentation, we share our experience as a "Big Data" institution where we deliver simple and multi-dimensional calibrated data cubes to a diverse pool of users. Ocean Networks Canada also conducts extensive user testing. Test results guide future tool design and development of "Big Data" products. We strive to bridge the gap between the raw, archived data and the needs and

  13. The current state of PET spread in China

    International Nuclear Information System (INIS)

    Zhang Hong

    2009-01-01

    Chinese nuclear medicine has 53 years history since 1956, and now is spreading in the country with the development of economy. Positron emission tomography (PET) has a rapid development in China, especially in the application of oncology, neurological and cardiologic diseases. The research of molecular imaging including PET also has been initiated. Zhejiang University as the largest university in China, has established the center of excellence in molecular imaging to improve the development of molecular imaging, which has active partnership and collaborative relationship with Japan, USA and European countries. The future of molecular imaging including PET in China is bright. (author)

  14. Effects of human dynamics on epidemic spreading in Côte d'Ivoire

    Science.gov (United States)

    Li, Ruiqi; Wang, Wenxu; Di, Zengru

    2017-02-01

    Understanding and predicting outbreaks of contagious diseases are crucial to the development of society and public health, especially for underdeveloped countries. However, challenging problems are encountered because of complex epidemic spreading dynamics influenced by spatial structure and human dynamics (including both human mobility and human interaction intensity). We propose a systematical model to depict nationwide epidemic spreading in Côte d'Ivoire, which integrates multiple factors, such as human mobility, human interaction intensity, and demographic features. We provide insights to aid in modeling and predicting the epidemic spreading process by data-driven simulation and theoretical analysis, which is otherwise beyond the scope of local evaluation and geometrical views. We show that the requirement that the average local basic reproductive number to be greater than unity is not necessary for outbreaks of epidemics. The observed spreading phenomenon can be roughly explained as a heterogeneous diffusion-reaction process by redefining mobility distance according to the human mobility volume between nodes, which is beyond the geometrical viewpoint. However, the heterogeneity of human dynamics still poses challenges to precise prediction.

  15. Local and Regional Spread of Primary Conjunctival Squamous Cell Carcinoma.

    Science.gov (United States)

    Desai, Shilpa J; Pruzan, Noelle L; Geske, Michael J; Jeng, Bennie H; Bloomer, Michele M; Vagefi, M Reza

    2016-04-06

    Two cases of biopsy-proven conjunctival squamous cell carcinoma (SCC) that developed local and regional spread are described. The cases involved a 65-year-old woman and a 79-year-old man who were initially treated at outside institutions for SCC of the conjunctiva. The patients did not have a history of immune compromise. The female patient presented with direct extension into the lacrimal gland but deferred recommended exenteration. Despite eventual exenteration, she developed metastasis to a neck node 6 months later, which was treated with radiotherapy. The male patient presented with local recurrence and a parotid node metastasis treated with exenteration, parotidectomy, selective neck dissection, and postoperative radiotherapy. Review of the outside pathology of both cases revealed positive tumor margins at the time of original resection. Local control of conjunctival SCC is of critical importance to reduce the risk of orbital extension and regional spread.

  16. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  17. Lexical Ambiguity: Making a Case against Spread

    Science.gov (United States)

    Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.

    2012-01-01

    We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."

  18. Ocean Prediction Center

    Science.gov (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  19. A review of recent results on spread F theory

    International Nuclear Information System (INIS)

    Ossakow, S.L.

    1979-01-01

    Ionospheric Spread F was discovered some four decades ago. Yet only in the past few years has significant progress been made in the theoretical explanation of such phenomena. In particular, considerable effort has been expended to explain equatorial Spread F and the attendant satellite signal propagation scintillation phenomena. The present review dwells mainly in this low latitude area. The various linear plasma instabilities thought to initiate equatorial Spread F are discussed. Recent theoretical and numerical simulation studies of the nonlinear evolution of the collisional Rayleigh-Taylor instability in equatorial Spread F are reviewed. Also, analytical studies of rising equatorial Spread F bubbles in the collisional and collisionless Rayleigh-Taylor regime are discussed, as well as the nohlinear saturation of instabilities in these two regimes. Current theories on very small scale (< approx 10 meters) size irregularities observed by radar backscatter during equatorial Spread F and their relation to the larger wavelength scintillation causing irregularities are discussed. Application of turbulence theory to equatorial Spread F phenomena is reviewed. Remaining problems to be dealt with at equatorial latitudes are summarized. (Auth.)

  20. Understanding the spreading patterns of mobile phone viruses

    Science.gov (United States)

    Wang, Pu; Gonzalez, Marta; Hidalgo, Cesar; Barabasi, Albert-Laszlo

    2009-03-01

    Mobile viruses are little more than a nuisance today, but given our increased reliance on wireless communication, in the near future they could pose more risk than their PC based counterparts. Despite of the more than three hundred mobile viruses known so far, little is known about their spreading pattern, partly due to a lack of data on the communication and travel patterns of mobile phone users. Starting from the traffic and the communication pattern of six million mobile phone users, we model the vulnerability of mobile communications against potential virus outbreaks. We show that viruses exploiting Bluetooth and multimedia messaging services (MMS) follow markedly different spreading patterns. The Bluetooth virus can reach all susceptible handsets, but spreads relatively slowly, as its spread is driven by human mobility. In contrast, an MMS virus can spread rapidly, but because the underlying social network is fragmented, it can reach only a small fraction of all susceptible users. This difference affects both their spreading rate, the number of infected users, as well as the defense measures one needs to take to protect the system against potential viral outbreak.

  1. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  2. PREDICTION OF DENGUE FEVER EPIDEMIC SPREADING USING DYNAMICS TRANSMISSION VECTOR MODEL

    Directory of Open Access Journals (Sweden)

    Retno Widyaningrum

    2014-05-01

    Full Text Available Increasing number of dengue cases in Surabaya shows that its city has high potential of dengue fever epidemic. Although some policies were designed by Surabaya Health Department, such as fogging and mosquito’s nest eradication, but these efforts still out of target because of inaccurate predictions. Ineffectiveness eradication of dengue fever epidemic is caused by lack of information and knowledge on environmental conditions in Surabaya. Developing spread and prediction system to minimize dengue fever epidemic is necessary to be conducted immediately. Spread and prediction system can improve eradication and prevention accuracy. The transmission dynamics vector simulation will be used as an approach to draw a complex system ofmosquito life cycle in which involve a lot offactors. Dynamics transmission model used to build model in mosquito model (oviposition rate and pre adult mosquito, infected and death cases in dengue fever. The model of mosquito and infected population can represent system. The output of this research is website of spread and prediction system of dengue fever epidemics to predict growth rate of Aedes Aegypti mosquito, infected, and death population because of dengue fever epidemics. The deviation of infected population is 0,519. The model of death cases in dengue fever is less precision with the deviation 1,229. Death cases model need improvement by adding some variables that influence to dengue fever death cases. Spread ofdengue fever prediction will help the government, health department to decide the best policies in minimizing the spread ofdengue fever epidemics.

  3. Report on achievements in fiscal 1998. Research and development of a technology to forecast environmental effect in association with isolation of carbon dioxide in oceans. Ocean surveys and development of a technology to evaluate CO2 separation capability; 1998 nendo nisanka tanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu seika hokokusho. Kaiyo chosa oyobi CO{sub 2} kakuri noryoku hyoka gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Assuming that CO2 is dissolved and separated in the middle layer in a sea area around Japan, ocean surveys were carried out to acquire fundamental data required for development of a technology to evaluate CO2 separation capability of ocean, and for development of a technology to forecast environmental effect. In addition, using the western part of the Pacific Ocean as the object, development was performed on a numerical model to forecast behavior of CO2 in ocean in the scale of several ten years to several hundred years, and evaluate capability of CO2 separation from atmosphere. The research and development items for the current fiscal year are as follows: (1) ocean surveys, (2) model development, and (3) surveys and studies required for the ocean surveys and experiments. The survey voyage for item (1) was executed centering on the courses of traverse on 140 degree line of east longitude and 147 degree line of east longitude. The voyage surveyed densities of sea water, such data as chemical tracers, discharged mid-layer neutral buoys, carbonic acid based substances, marine living organisms, and sedimentary particles. For item (2), trial calculations were performed by using an inverse model to estimate structures of ocean flows, and discussions were given to enhance the accuracy. For item (3), design and fabrication were carried out on an equipment to experiment on-site dissolution of calcium carbonate, and a chamber for on-site experiments at deep sea bottom. (NEDO)

  4. Dynamics of a Snowball Earth ocean.

    Science.gov (United States)

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-07

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  5. Development of manganese nodule resources in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    Resources evalution on grade and abundance of nodules using statistical methods for grab samples and photography data, combined with bathymetric and structural mapping, were carried out for delineation of the potential area of Central Indian Ocean...

  6. A simple predictive model for the structure of the oceanic pycnocline

    Science.gov (United States)

    Gnanadesikan

    1999-03-26

    A simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pycnocline diffusivity and Southern Ocean winds and eddies. The results show that Southern Ocean processes help maintain the global ocean structure and that pycnocline diffusion controls low-latitude upwelling.

  7. a Discrete Mathematical Model to Simulate Malware Spreading

    Science.gov (United States)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  8. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim

    2011-04-09

    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  9. The development dynamics and spreading peculiarities of the pathological process in the retroperitonael space in acute pancreatitis

    Directory of Open Access Journals (Sweden)

    V. V. Ganzhy

    2015-08-01

    Full Text Available Despite rapid development of medicine, acute pancreatitis (AP is still a problem. Aim. To evaluate pathological changes of retroperitoneal space (RS, the results of ultrasound research, computed tomography and laparoscopy were studied in 62 patients with severe form of AP. Methods and results. Our own improved division of retroperitoneal space was used during work. It was based on already existing classification and it’s simple and can be used in everyday practice. It was revealed that infiltrative changes of RS develop more often in patients with edematous form of disease. In patients with necrotic form infiltrative changes as well as liquid ones can develop in the RS. The more extensive is pancreas necrosis, the higher is the probability that greater number of anatomic areas will be involved into the pathological process. It was noticed that complications appear more often in patients with liquid changes in the RS as well as they have higher percentage of mortality. Conclusion. Thereby, dynamic observation of area and depth of pathological process spreading, its condition allows deciding on correct treatment strategy.

  10. The Market as an Institution for Zoning the Ocean

    Science.gov (United States)

    Clinton, J. E.; Hoagland, P.

    2008-12-01

    In recent years, spatial conflicts among ocean users have increased significantly, particularly in the coastal ocean. Ocean zoning has been proposed as a promising solution to these conflicts. Strikingly, most ocean zoning proponents focus on a centralized approach, involving government oversight, planning, and spatial allocations. We hypothesize that a market may be more efficient for allocating ocean space, because it tends to put ocean space in the hands of the highest valued uses, and it does not require public decision-makers to compile and analyze large amounts of information. Importantly, where external costs arise, a market in ocean space may need government oversight or regulation. We develop four case studies demonstrating that private allocations of ocean space are taking place already. This evidence suggests that a regulated market in ocean space may perform well as an allocative institution. We find that the proper functioning of a market in ocean space depends positively upon the strength of legal property rights and supportive public policies and negatively upon the number of users and the size of transaction costs.

  11. Relationship between attenuation coefficients and dose-spread kernels

    International Nuclear Information System (INIS)

    Boyer, A.L.

    1988-01-01

    Dose-spread kernels can be used to calculate the dose distribution in a photon beam by convolving the kernel with the primary fluence distribution. The theoretical relationships between various types and components of dose-spread kernels relative to photon attenuation coefficients are explored. These relations can be valuable as checks on the conservation of energy by dose-spread kernels calculated by analytic or Monte Carlo methods

  12. NOAA AVHRR Clear-Sky Products over Oceans (ACSPO): Sea Surface Temperature, Clear Sky Radiances, and Aerosol Optical Depth for the Global Ocean, 2011 - present (NCEI Accession 0072979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Clear-Sky Processor over Oceans, jointly developed between NESDIS STAR and OSDPD, produces AVHRR clear-sky products over oceans. ACSPO generates output...

  13. Effects of rewiring strategies on information spreading in complex dynamic networks

    Science.gov (United States)

    Ally, Abdulla F.; Zhang, Ning

    2018-04-01

    Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.

  14. Individual stock-option prices and credit spreads

    NARCIS (Netherlands)

    Cremers, M.; Driessen, J.; Maenhout, P.; Weinbaum, D.

    2008-01-01

    This paper introduces measures of volatility and jump risk that are based on individual stock options to explain credit spreads on corporate bonds. Implied volatilities of individual options are shown to contain useful information for credit spreads and improve on historical volatilities when

  15. Influence of trust in the spreading of information

    Science.gov (United States)

    Wu, Hongrun; Arenas, Alex; Gómez, Sergio

    2017-01-01

    The understanding and prediction of information diffusion processes on networks is a major challenge in network theory with many implications in social sciences. Many theoretical advances occurred due to stochastic spreading models. Nevertheless, these stochastic models overlooked the influence of rational decisions on the outcome of the process. For instance, different levels of trust in acquaintances do play a role in information spreading, and actors may change their spreading decisions during the information diffusion process accordingly. Here, we study an information-spreading model in which the decision to transmit or not is based on trust. We explore the interplay between the propagation of information and the trust dynamics happening on a two-layer multiplex network. Actors' trustable or untrustable states are defined as accumulated cooperation or defection behaviors, respectively, in a Prisoner's Dilemma setup, and they are controlled by a memory span. The propagation of information is abstracted as a threshold model on the information-spreading layer, where the threshold depends on the trustability of agents. The analysis of the model is performed using a tree approximation and validated on homogeneous and heterogeneous networks. The results show that the memory of previous actions has a significant effect on the spreading of information. For example, the less memory that is considered, the higher is the diffusion. Information is highly promoted by the emergence of trustable acquaintances. These results provide insight into the effect of plausible biases on spreading dynamics in a multilevel networked system.

  16. Time of Emergence of Ocean Interior Acidification and De-oxygenation in a Water Mass Framework

    Science.gov (United States)

    Coronado, M.; Frenger, I.; Froelicher, T. L.; Rodgers, K. B.; Schlunegger, S.; Sasano, D.; Ishii, M.

    2016-02-01

    Potential marine ecosystem stressors, such as acidification and de-oxygenation, are expected to impact biology over the course of the 21st century. Detection of these changes in ocean biogeochemistry is made complicated by the background natural variability of the climate system (Frölicher et al., 2007 and Rodgers et al., 2015). Here we present a novel method for the interpretation of ocean interior measurement for environmental change. We use a water mass framework to compare a high-frequency repeat hydrographic section at 165E in the Pacific (Sasano et al., 2015) with initial condition ensemble experiments ran with GFDL's Earth System Model (ESM2M). In this study, "emergence" for a trend occurs when an anthropogenic signal (either modeled or observed) exceeds the noise (envelope of spread amongst ensemble members, generated by internal variability). By using a water mass as opposed to the standard depth framework, we remove the effects of anthropogenic trends and internal variability of deepening isopycnals, allowing for greater emergence of bio-geochemical signals. We find that emergence of anthropogenic trends in acidification and omega aragonite emerge sooner and with greater confidence than do trends in ocean interior oxygen concentrations. More broadly, this study demonstrates the utility of applying initial condition ensembles to interpret ocean interior variability and trends, rather than the traditional practice of using observations to validate models.

  17. Spreading a medication administration intervention organizationwide in six hospitals.

    Science.gov (United States)

    Kliger, Julie; Singer, Sara; Hoffman, Frank; O'Neil, Edward

    2012-02-01

    Six hospitals from the San Francisco Bay Area participated in a 12-month quality improvement project conducted by the Integrated Nurse Leadership Program (INLP). A quality improvement intervention that focused on improving medication administration accuracy was spread from two pilot units to all inpatient units in the hospitals. INLP developed a 12-month curriculum, presented in a combination of off-site training sessions and hospital-based training and consultant-led meetings, to teach clinicians the key skills needed to drive organizationwide change. Each hospital established a nurse-led project team, as well as unit teams to address six safety processes designed to improve medication administration accuracy: compare medication to the medication administration record; keep medication labeled throughout; check two patient identifications; explain drug to patient (if applicable); chart immediately after administration; and protect process from distractions and interruptions. From baseline until one year after project completion, the six hospitals improved their medication accuracy rates, on average, from 83.4% to 98.0% in the spread units. The spread units also improved safety processes overall from 83.1% to 97.2%. During the same time, the initial pilot units also continued to improve accuracy from 94.0% to 96.8% and safety processes overall from 95.3% to 97.2%. With thoughtful planning, engaging those doing the work early and focusing on the "human side of change" along with technical knowledge of improvement methodologies, organizations can spread initiatives enterprisewide. This program required significant training of frontline workers in problem-solving skills, leading change, team management, data tracking, and communication.

  18. Minimizing Energy Spread In The REX/HIE-ISOLDE Linac

    CERN Document Server

    Yucemoz, Mert

    2017-01-01

    This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.

  19. Neutralisation of HIV-1 cell-cell spread by human and llama antibodies.

    Science.gov (United States)

    McCoy, Laura E; Groppelli, Elisabetta; Blanchetot, Christophe; de Haard, Hans; Verrips, Theo; Rutten, Lucy; Weiss, Robin A; Jolly, Clare

    2014-10-02

    Direct cell-cell spread of HIV-1 is a very efficient mode of viral dissemination, with increasing evidence suggesting that it may pose a considerable challenge to controlling viral replication in vivo. Much current vaccine research involves the study of broadly neutralising antibodies (bNabs) that arise during natural infection with the aims of eliciting such antibodies by vaccination or incorporating them into novel therapeutics. However, whether cell-cell spread of HIV-1 can be effectively targeted by bNabs remains unclear, and there is much interest in identifying antibodies capable of efficiently neutralising virus transmitted by cell-cell contact. In this study we have tested a panel of bNAbs for inhibition of cell-cell spread, including some not previously evaluated for inhibition of this mode of HIV-1 transmission. We found that three CD4 binding site antibodies, one from an immunised llama (J3) and two isolated from HIV-1-positive patients (VRC01 and HJ16) neutralised cell-cell spread between T cells, while antibodies specific for glycan moieties (2G12, PG9, PG16) and the MPER (2F5) displayed variable efficacy. Notably, while J3 displayed a high level of potency during cell-cell spread we found that the small size of the llama heavy chain-only variable region (VHH) J3 is not required for efficient neutralisation since recombinant J3 containing a full-length human heavy chain Fc domain was significantly more potent. J3 and J3-Fc also neutralised cell-cell spread of HIV-1 from primary macrophages to CD4+ T cells. In conclusion, while bNabs display variable efficacy at preventing cell-cell spread of HIV-1, we find that some CD4 binding site antibodies can inhibit this mode of HIV-1 dissemination and identify the recently described llama antibody J3 as a particularly potent inhibitor. Effective neutralisation of cell-cell spread between physiologically relevant cell types by J3 and J3-Fc supports the development of VHH J3 nanobodies for therapeutic or

  20. The spreading time in SIS epidemics on networks

    Science.gov (United States)

    He, Zhidong; Van Mieghem, Piet

    2018-03-01

    In a Susceptible-Infected-Susceptible (SIS) process, we investigate the spreading time Tm, which is the time when the number of infected nodes in the metastable state is first reached, starting from the outbreak of the epidemics. We observe that the spreading time Tm resembles a lognormal-like distribution, though with different deep tails, both for the Markovian and the non-Markovian infection process, which implies that the spreading time can be very long with a relatively high probability. In addition, we show that a stronger virus, with a higher effective infection rate τ or an earlier timing of the infection attempts, does not always lead to a shorter average spreading time E [Tm ] . We numerically demonstrate that the average spreading time E [Tm ] in the complete graph and the star graph scales logarithmically as a function of the network size N for a fixed fraction of infected nodes in the metastable state.