WorldWideScience

Sample records for ocean tsunami hurricane

  1. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  2. Climatic Changes and Consequences on the French West Indies (C3AF), Hurricane and Tsunami Hazards Assessment

    Science.gov (United States)

    Arnaud, G.; Krien, Y.; Zahibo, N.; Dudon, B.

    2017-12-01

    Coastal hazards are among the most worrying threats of our time. In a context of climate change coupled to a large population increase, tropical areas could be the most exposed zones of the globe. In such circumstances, understanding the underlying processes can help to better predict storm surges and the associated global risks.Here we present the partial preliminary results integrated in a multidisciplinary project focused on climatic change effects over the coastal threat in the French West Indies and funded by the European Regional Development Fund. The study aims to provide a coastal hazard assessment based on hurricane surge and tsunami modeling including several aspects of climate changes that can affect hazards such as sea level rise, crustal subsidence/uplift, coastline changes etc. Several tsunamis scenarios have been simulated including tele-tsunamis to ensure a large range of tsunami hazards. Surge level of hurricane have been calculated using a large number of synthetic hurricanes to cover the actual and forecasted climate over the tropical area of Atlantic ocean. This hazard assessment will be later coupled with stakes assessed over the territory to provide risk maps.

  3. A Tsunami Ball Approach to Storm Surge and Inundation: Application to Hurricane Katrina, 2005

    Directory of Open Access Journals (Sweden)

    Steven N. Ward

    2009-01-01

    Full Text Available Most analyses of storm surge and inundation solve equations of continuity and momentum on fixed finite-difference/finite-element meshes. I develop a completely new approach that uses a momentum equation to accelerate bits or balls of water over variable depth topography. The thickness of the water column at any point equals the volume density of balls there. In addition to being more intuitive than traditional methods, the tsunami ball approach has several advantages. (a By tracking water balls of fixed volume, the continuity equation is satisfied automatically and the advection term in the momentum equation becomes unnecessary. (b The procedure is meshless in the finite-difference/finite-element sense. (c Tsunami balls care little if they find themselves in the ocean or inundating land. (d Tsunami ball calculations of storm surge can be done on a laptop computer. I demonstrate and calibrate the method by simulating storm surge and inundation around New Orleans, Louisiana caused by Hurricane Katrina in 2005 and by comparing model predictions with field observations. To illustrate the flexibility of the tsunami ball technique, I run two “What If” hurricane scenarios—Katrina over Savannah, Georgia and Katrina over Cape Cod, Massachusetts.

  4. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    Science.gov (United States)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  5. Tsunami Speed Variations in Density-stratified Compressible Global Oceans

    Science.gov (United States)

    Watada, S.

    2013-12-01

    Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.

  6. Open-Ocean and Coastal Properties of Recent Major Tsunamis

    Science.gov (United States)

    Rabinovich, A.; Thomson, R.; Zaytsev, O.

    2017-12-01

    The properties of six major tsunamis during the period 2009-2015 (2009 Samoa; 2010 Chile; 2011 Tohoku; 2012 Haida Gwaii; 2014 and 2015 Chile) were thoroughly examined using coastal data from British Columbia, the U.S. West Coast and Mexico, and offshore open-ocean DART and NEPTUNE stations. Based on joint spectral analyses of the tsunamis and background noise, we have developed a method to suppress the influence of local topography and to use coastal observations to determine the underlying spectra of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra were found to be in close agreement with the actual tsunami spectra evaluated from the analysis of directly measured open-ocean tsunami records. We have further used the spectral estimates to parameterize tsunamis based on their integral open-ocean spectral characteristics. Three key parameters are introduced to describe individual tsunami events: (1) Integral open-ocean energy; (2) Amplification factor (increase of the mean coastal tsunami variance relative to the open-ocean variance); and (3) Tsunami colour, the frequency composition of the open-ocean tsunami waves. In particular, we found that the strongest tsunamis, associated with large source areas (the 2010 Chile and 2011 Tohoku) are "reddish" (indicating the dominance of low-frequency motions), while small-source events (the 2009 Samoa and 2012 Haida Gwaii) are "bluish" (indicating strong prevalence of high-frequency motions).

  7. Tsunami Casualty Model

    Science.gov (United States)

    Yeh, H.

    2007-12-01

    More than 4500 deaths by tsunamis were recorded in the decade of 1990. For example, the 1992 Flores Tsunami in Indonesia took away at least 1712 lives, and more than 2182 people were victimized by the 1998 Papua New Guinea Tsunami. Such staggering death toll has been totally overshadowed by the 2004 Indian Ocean Tsunami that claimed more than 220,000 lives. Unlike hurricanes that are often evaluated by economic losses, death count is the primary measure for tsunami hazard. It is partly because tsunamis kill more people owing to its short lead- time for warning. Although exact death tallies are not available for most of the tsunami events, there exist gender and age discriminations in tsunami casualties. Significant gender difference in the victims of the 2004 Indian Ocean Tsunami was attributed to women's social norms and role behavior, as well as cultural bias toward women's inability to swim. Here we develop a rational casualty model based on humans' limit to withstand the tsunami flows. The application to simple tsunami runup cases demonstrates that biological and physiological disadvantages also make a significant difference in casualty rate. It further demonstrates that the gender and age discriminations in casualties become most pronounced when tsunami is marginally strong and the difference tends to diminish as tsunami strength increases.

  8. Tsunami Simulation Method Assimilating Ocean Bottom Pressure Data Near a Tsunami Source Region

    Science.gov (United States)

    Tanioka, Yuichiro

    2018-02-01

    A new method was developed to reproduce the tsunami height distribution in and around the source area, at a certain time, from a large number of ocean bottom pressure sensors, without information on an earthquake source. A dense cabled observation network called S-NET, which consists of 150 ocean bottom pressure sensors, was installed recently along a wide portion of the seafloor off Kanto, Tohoku, and Hokkaido in Japan. However, in the source area, the ocean bottom pressure sensors cannot observe directly an initial ocean surface displacement. Therefore, we developed the new method. The method was tested and functioned well for a synthetic tsunami from a simple rectangular fault with an ocean bottom pressure sensor network using 10 arc-min, or 20 km, intervals. For a test case that is more realistic, ocean bottom pressure sensors with 15 arc-min intervals along the north-south direction and sensors with 30 arc-min intervals along the east-west direction were used. In the test case, the method also functioned well enough to reproduce the tsunami height field in general. These results indicated that the method could be used for tsunami early warning by estimating the tsunami height field just after a great earthquake without the need for earthquake source information.

  9. Resiliency and Recovery: Lessons from the Asian Tsunami and Hurricane Katrina

    Science.gov (United States)

    Fernando, Delini M.; Hebert, Barbara B.

    2011-01-01

    Separated by continents and cultures, survivors of the Asian tsunami and Hurricane Katrina share a common bond in their extreme trauma and ensuing struggles. The authors discuss and illustrate core ideas based on the commonalities derived from the experiences of women survivors of these two disasters.

  10. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    Science.gov (United States)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami

  11. The Mauritius and Indian Tsunami Case Study

    African Journals Online (AJOL)

    Nafiisah

    such unforeseen disasters in order to alleviate sufferings and to reduce loss of lives. Nowadays .... up an Indian Ocean Tsunami Warning and Mitigation System (I.O.T.W.S). ... and other natural disasters like floods, typhoons, hurricanes, and.

  12. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami

    Science.gov (United States)

    Horton, B.; Rubin, C. M.; Sieh, K.; Jessica, P.; Daly, P.; Ismail, N.; Parnell, A. C.

    2017-12-01

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here, we identify coastal caves as a new depositional environment for reconstructing tsunami records and present a 5,000 year record of continuous tsunami deposits from a coastal cave in Sumatra, Indonesia which shows the irregular recurrence of 11 tsunamis between 7,400 and 2,900 years BP. The data demonstrates that the 2004 tsunami was just the latest in a sequence of devastating tsunamis stretching back to at least the early Holocene and suggests a high likelihood for future tsunamis in the Indian Ocean. The sedimentary record in the cave shows that ruptures of the Sunda megathrust vary between large (which generated the 2004 Indian Ocean tsunami) and smaller slip failures. The chronology of events suggests the recurrence of multiple smaller tsunamis within relatively short time periods, interrupted by long periods of strain accumulation followed by giant tsunamis. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. The very long dormant period suggests that the Sunda megathrust is capable of accumulating large slip deficits between earthquakes. Such a high slip rupture would produce a substantially larger earthquake than the 2004 event. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda Megathrust ruptures as large as that of 2004 Indian Ocean tsunami. The remarkable variability of recurrence suggests that regional hazard mitigation plans should be based upon the high likelihood of future destructive tsunami demonstrated by

  13. Elders recall an earlier tsunami on Indian Ocean shores

    Science.gov (United States)

    Kakar, Din Mohammad; Naeem, Ghazala; Usman, Abdullah; Hasan, Haider; Lohdi, Hira; Srinivasalu, Seshachalam; Andrade, Vanessa; Rajendran, C.P.; Naderi Beni, Abdolmajid; Hamzeh, Mohammad Ali; Hoffmann, Goesta; Al Balushi, Noora; Gale, Nora; Kodijat, Ardito; Fritz, Hermann M.; Atwater, Brian F.

    2014-01-01

    Ten years on, the Indian Ocean tsunami of 26 December 2004 still looms large in efforts to reduce coastal risk. The disaster has spurred worldwide advances in tsunami detection and warning, tsunami-risk assessment, and tsunami awareness [Satake, 2014]. Nearly a lifetime has passed since the northwestern Indian Ocean last produced a devastating tsunami. Documentation of this tsunami, in November 1945, was hindered by international instability in the wake of the Second World War and, in British India, by the approach of independence and partition. The parent earthquake, of magnitude 8.1, was widely recorded, and the tsunami registered on tide gauges, but intelligence reports and newspaper articles say little about inundation limits while permitting a broad range of catalogued death tolls. What has been established about the 1945 tsunami falls short of what's needed today for ground-truthing inundation models, estimating risk to enlarged populations, and anchoring awareness campaigns in local facts. Recent efforts to reduce coastal risk around the Arabian Sea include a project in which eyewitnesses to the 1945 tsunami were found and interviewed (Fig. 1), and related archives were gathered. Results are being made available through UNESCO's Indian Ocean Tsunami Information Center in hopes of increasing scientific understanding and public awareness of the region's tsunami hazards.

  14. The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from the Lesser Antilles, southern Caribbean

    Science.gov (United States)

    Spiske, Michaela; Böröcz, Zoltán; Bahlburg, Heinrich

    2008-04-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Parameters useful for distinguishing between hurricane and tsunami origins include distance of a deposit from the coast, boulder weight and inferred wave height. In order to investigate the role of porosity on boulder transport and elucidate the distinction between tsunami and hurricane impacts, we performed Archimedean and optical 3D-profilometry measurements for the determination of accurate physical parameters for porous reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles, Leeward Islands). Subsets of different coral species and lithotypes constituting the boulders were sampled, the physical parameters of boulders were analyzed, and each boulder component was attributed to a certain range of porosity and density. Lowest porosities were observed in calcarenite (5-8%), whereas highest porosities were measured for serpulid reef rock (47-68%). Porous serpulid reef rock (0.8-1.2 g/cm 3) and the coral Diploria sp. (0.6-1.0 g/cm 3) possess the lowest bulk densities, while less porous calcarenite (2.0-2.7 g/cm 3) and the coral Montastrea cavernosa yield the highest bulk density values (1.6-2.7 g/cm 3). The obtained physical parameters were used to calculate boulder weights and both hurricane and tsunami wave heights necessary to initiate transport of these boulders. Boulders are up to 5.6 times lighter than given in previously published data, and hence required minimum hurricane or tsunami waves are lower than hitherto assumed. The calculated wave heights, the high frequency of tropical storms and hurricanes in the southern Caribbean and the occurrence of boulders exclusively on the windward sides of the islands, implicate that for boulders on the ABC Islands a hurricane origin is more likely than a tsunami origin.

  15. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami.

    Science.gov (United States)

    Rubin, Charles M; Horton, Benjamin P; Sieh, Kerry; Pilarczyk, Jessica E; Daly, Patrick; Ismail, Nazli; Parnell, Andrew C

    2017-07-19

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11 prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.

  17. Deep-Ocean Assessment and Reporting of Tsunamis (DART(R))

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort to...

  18. Mega Tsunamis of the World Ocean and Their Implication for the Tsunami Hazard Assessment

    Science.gov (United States)

    Gusiakov, V. K.

    2014-12-01

    Mega tsunamis are the strongest tsunamigenic events of tectonic origin that are characterized by run-up heights up to 40-50 m measured along a considerable part of the coastline (up to 1000 km). One of the most important features of mega-tsunamis is their ability to cross the entire oceanic basin and to cause an essential damage to its opposite coast. Another important feature is their ability to penetrate into the marginal seas (like the Sea of Okhotsk, the Bering Sea) and cause dangerous water level oscillations along the parts of the coast, which are largely protected by island arcs against the impact of the strongest regional tsunamis. Among all known historical tsunamis (nearly 2250 events during the last 4000 years) they represent only a small fraction (less than 1%) however they are responsible for more than half the total tsunami fatalities and a considerable part of the overall tsunami damage. The source of all known mega tsunamis is subduction submarine earthquakes with magnitude 9.0 or higher having a return period from 200-300 years to 1000-1200 years. The paper presents a list of 15 mega tsunami events identified so far in historical catalogs with their basic source parameters, near-field and far-field impact effects and their generation and propagation features. The far-field impact of mega tsunamis is largely controlled by location and orientation of their earthquake source as well as by deep ocean bathymetry features. We also discuss the problem of the long-term tsunami hazard assessment when the occurrence of mega tsunamis is taken into account.

  19. Far-field tsunami magnitude determined from ocean-bottom pressure gauge data around Japan

    Science.gov (United States)

    Baba, T.; Hirata, K.; Kaneda, Y.

    2003-12-01

    \\hspace*{3mm}Tsunami magnitude is the most fundamental parameter to scale tsunamigenic earthquakes. According to Abe (1979), the tsunami magnitude, Mt, is empirically related to the crest to trough amplitude, H, of the far-field tsunami wave in meters (Mt = logH + 9.1). Here we investigate the far-field tsunami magnitude using ocean-bottom pressure gauge data. The recent ocean-bottom pressure measurements provide more precise tsunami data with a high signal-to-noise ratio. \\hspace*{3mm}Japan Marine Science and Technology Center is monitoring ocean bottom pressure fluctuations using two submarine cables of depths of 1500 - 2400 m. These geophysical observatory systems are located off Cape Muroto, Southwest Japan, and off Hokkaido, Northern Japan. The ocean-bottom pressure data recorded with the Muroto and Hokkaido systems have been collected continuously since March, 1997 and October, 1999, respectively. \\hspace*{3mm}Over the period from March 1997 to June 2003, we have observed four far-field tsunami signals, generated by earthquakes, on ocean-bottom pressure records. These far-field tsunamis were generated by the 1998 Papua New Guinea eq. (Mw 7.0), 1999 Vanuatu eq. (Mw 7.2), 2001 Peru eq. (Mw 8.4) and 2002 Papua New Guinea eq. (Mw 7.6). Maximum amplitude of about 30 mm was recorded by the tsunami from the 2001 Peru earthquake. \\hspace*{3mm}Direct application of the Abe's empirical relation to ocean-bottom pressure gauge data underestimates tsunami magnitudes by about an order of magnitude. This is because the Abe's empirical relation was derived only from tsunami amplitudes with coastal tide gauges where tsunami is amplified by the shoaling of topography and the reflection at the coastline. However, these effects do not work for offshore tsunami in deep oceans. In general, amplification due to shoaling near the coastline is governed by the Green's Law, in which the tsunami amplitude is proportional to h-1/4, where h is the water depth. Wave amplitude also is

  20. Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations

    Data.gov (United States)

    Department of Homeland Security — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort to...

  1. Development of Real-time Tsunami Inundation Forecast Using Ocean Bottom Tsunami Networks along the Japan Trench

    Science.gov (United States)

    Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.

    2015-12-01

    In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.

  2. Peru 2007 tsunami runup observations and modeling

    Science.gov (United States)

    Fritz, H. M.; Kalligeris, N.; Borrero, J. C.

    2008-05-01

    On 15 August 2007 an earthquake with moment magnitude (Mw) of 8.0 centered off the coast of central Peru, generated a tsunami with locally focused runup heights of up to 10 m. A reconnaissance team was deployed in the immediate aftermath and investigated the tsunami effects at 51 sites. The largest runup heights were measured in a sparsely populated desert area south of the Paracas Peninsula resulting in only 3 tsunami fatalities. Numerical modeling of the earthquake source and tsunami suggest that a region of high slip near the coastline was primarily responsible for the extreme runup heights. The town of Pisco was spared by the presence of the Paracas Peninsula, which blocked tsunami waves from propagating northward from the high slip region. The coast of Peru has experienced numerous deadly and destructive tsunamis throughout history, which highlights the importance of ongoing tsunami awareness and education efforts in the region. The Peru tsunami is compared against recent mega-disasters such as the 2004 Indian Ocean tsunami and Hurricane Katrina.

  3. Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect

    Science.gov (United States)

    Robertson, Darrel

    2016-01-01

    Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).

  4. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  5. Oceanic control of Northeast Pacific hurricane activity at interannual timescales

    International Nuclear Information System (INIS)

    Balaguru, Karthik; Ruby Leung, L; Yoon, Jin-ho

    2013-01-01

    Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north–south demarcation are considered rather than the basin as a whole. (letter)

  6. Introduction to "Tsunamis in the Pacific Ocean: 2011-2012"

    Science.gov (United States)

    Rabinovich, Alexander B.; Borrero, Jose C.; Fritz, Hermann M.

    2014-12-01

    With this volume of the Pure and Applied Geophysics (PAGEOPH) topical issue "Tsunamis in the Pacific Ocean: 2011-2012", we are pleased to present 21 new papers discussing tsunami events occurring in this two-year span. Owing to the profound impact resulting from the unique crossover of a natural and nuclear disaster, research into the 11 March 2011 Tohoku, Japan earthquake and tsunami continues; here we present 12 papers related to this event. Three papers report on detailed field survey results and updated analyses of the wave dynamics based on these surveys. Two papers explore the effects of the Tohoku tsunami on the coast of Russia. Three papers discuss the tsunami source mechanism, and four papers deal with tsunami hydrodynamics in the far field or over the wider Pacific basin. In addition, a series of five papers presents studies of four new tsunami and earthquake events occurring over this time period. This includes tsunamis in El Salvador, the Philippines, Japan and the west coast of British Columbia, Canada. Finally, we present four new papers on tsunami science, including discussions on tsunami event duration, tsunami wave amplitude, tsunami energy and tsunami recurrence.

  7. The Indian Ocean disaster: Tsunami physics and early warning dilemmas

    Science.gov (United States)

    Lomnitz, Cinna; Nilsen-Hofseth, Sara

    Understanding the physics of tsunamis may save lives, especially near the epicenter of a large earthquake where the danger is highest and early warning is least likely to be effective.Normal modes of Earth are standing waves of the Love (toroidal) or the Rayleigh (spheroidal) variety. The Indian Ocean tsunami may have been partly or wholly caused by low-order spheroidal modes of the Earth such as 0S2, 0S3, and 0S4, that may have excited a waveguide—a layer that confines and guides a propagating wave—in the ocean.

  8. Noise Reduction of Ocean-Bottom Pressure Data Toward Real-Time Tsunami Forecasting

    Science.gov (United States)

    Tsushima, H.; Hino, R.

    2008-12-01

    We discuss a method of noise reduction of ocean-bottom pressure data to be fed into the near-field tsunami forecasting scheme proposed by Tsushima et al. [2008a]. In their scheme, the pressure data is processed in real time as follows: (1) removing ocean tide components by subtracting the sea-level variation computed from a theoretical tide model, (2) applying low-pass digital filter to remove high-frequency fluctuation due to seismic waves, and (3) removing DC-offset and linear-trend component to determine a baseline of relative sea level. However, it turns out this simple method is not always successful in extracting tsunami waveforms from the data, when the observed amplitude is ~1cm. For disaster mitigation, accurate forecasting of small tsunamis is important as well as large tsunamis. Since small tsunami events occur frequently, successful tsunami forecasting of those events are critical to obtain public reliance upon tsunami warnings. As a test case, we applied the data-processing described above to the bottom pressure records containing tsunami with amplitude less than 1 cm which was generated by the 2003 Off-Fukushima earthquake occurring in the Japan Trench subduction zone. The observed pressure variation due to the ocean tide is well explained by the calculated tide signals from NAO99Jb model [Matsumoto et al., 2000]. However, the tide components estimated by BAYTAP-G [Tamura et al., 1991] from the pressure data is more appropriate for predicting and removing the ocean tide signals. In the pressure data after removing the tide variations, there remain pressure fluctuations with frequencies ranging from about 0.1 to 1 mHz and with amplitudes around ~10 cm. These fluctuations distort the estimation of zero-level and linear trend to define relative sea-level variation, which is treated as tsunami waveform in the subsequent analysis. Since the linear trend is estimated from the data prior to the origin time of the earthquake, an artificial linear trend is

  9. Basic study for tsunami detection with DBF ocean radar

    International Nuclear Information System (INIS)

    Sakai, Shin'ichi; Matsuyama, Masafumi; Okuda, Kouzou; Uehara, Fumihiro

    2015-01-01

    To develop early tsunami warning system utilizing ocean radars, the evaluation of the variety of measuring coverage and data accuracy is indispensable in real oceans. The field observation was carried out at 5 minutes interval with two digital beam forming ocean radars with VHF band from 2012 to 2014 in the sea of Enshu. The high data acquisition areas are found in the extent of 17 km off the coast on a hill site and of 13 km on a low ground site. The measured current by the ocean radar were well correlated with that by the current-meter in the depth of 2 m near the coast with the correlation coefficient of ∼0.6. It is inferred that the main factor of difference in both data sets was due to the presence of wind-driven current through the multi-regression analysis with both current data and wind data. In addition, the order of the temporal current deviations as to the representative time-scale of one hour is about 5 cm/s under the ordinary sea conditions, which suggest that ocean radars could sufficiently detect the current deviation due to grant tsunami. (author)

  10. Sedimentological and Micropaleontological Characteristics of the 2015 Hurricane Joaquin Deposit and their Implications for Long-Term Records of Storms and Tsunamis Impacting the Caribbean

    Science.gov (United States)

    Kosciuch, T. J.; Pilarczyk, J.; Reinhardt, E. G.; Mauviel, A.; Aucoin, C. D.

    2017-12-01

    The uncertainty of extreme wave events in the Caribbean was highlighted in October 2015 when Hurricane Joaquin tracked through, or near, several islands (e.g., Bahamas, Haiti, Turks and Caicos) as a Category 4 storm. The short observational record of landfalling hurricanes is insufficient in preparing many of these islands for such a rare, intense storm. Examining the sediments deposited by recent landfalling hurricanes assists the understanding of the long-term spatial and temporal variations in storm frequency and intensity. However, the interpretation of prehistoric hurricane deposits in the Caribbean is complicated by the possibility of tsunami deposits (e.g., Puerto Rico Trench, 1755 Lisbon Tsunami), which are similar in composition and difficult to differentiate from storm sediments. To circumvent this problem, we describe the microfossil and sedimentary characteristics of a modern storm analogue, the Hurricane Joaquin deposit, from San Salvador Island in the Bahamas and use it as a basis for interpreting a series of 10 anomalous sand deposits found in a coastal pond. San Salvador is a small (160 km2) island in the Bahamas with a history of landfalling hurricanes and tsunamis. On 4 October 2015, Hurricane Joaquin came within 7 km of San Salvador, inundating most of its coastline and depositing two distinct layers: a sand layer and a boulder layer. The sand layer was 12 to 104 cm thick, extended 135 m inland, and consisted of fine to medium sand. The sand layer contained high abundances of foraminifera, including Homotrema rubra, a foraminifer that lives on the reef and is detached by large waves. The presence of well-preserved fragments of Homotrema within the Joaquin deposit suggests transport from the reef and rapid burial. The boulder layer included large clasts (30 to 200 cm in length) that were imbricated perpendicular to the shoreline and extended 135 m inland. The boulder layer was more laterally extensive (1020 m) than the sand layer (110 m). The

  11. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  12. Nature Run for the North Atlantic Ocean Hurricane Region: System Evaluation and Regional Applications

    Science.gov (United States)

    Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.

    2016-02-01

    A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).

  13. Tsunamigenic Ratio of the Pacific Ocean earthquakes and a proposal for a Tsunami Index

    Directory of Open Access Journals (Sweden)

    A. Suppasri

    2012-01-01

    Full Text Available The Pacific Ocean is the location where two-thirds of tsunamis have occurred, resulting in a great number of casualties. Once information on an earthquake has been issued, it is important to understand if there is a tsunami generation risk in relation with a specific earthquake magnitude or focal depth. This study proposes a Tsunamigenic Ratio (TR that is defined as the ratio between the number of earthquake-generated tsunamis and the total number of earthquakes. Earthquake and tsunami data used in this study were selected from a database containing tsunamigenic earthquakes from prior 1900 to 2011. The TR is calculated from earthquake events with a magnitude greater than 5.0, a focal depth shallower than 200 km and a sea depth less than 7 km. The results suggest that a great earthquake magnitude and a shallow focal depth have a high potential to generate tsunamis with a large tsunami height. The average TR in the Pacific Ocean is 0.4, whereas the TR for specific regions of the Pacific Ocean varies from 0.3 to 0.7. The TR calculated for each region shows the relationship between three influential parameters: earthquake magnitude, focal depth and sea depth. The three parameters were combined and proposed as a dimensionless parameter called the Tsunami Index (TI. TI can express better relationship with the TR and with maximum tsunami height, while the three parameters mentioned above cannot. The results show that recent submarine earthquakes had a higher potential to generate a tsunami with a larger tsunami height than during the last century. A tsunami is definitely generated if the TI is larger than 7.0. The proposed TR and TI will help ascertain the tsunami generation risk of each earthquake event based on a statistical analysis of the historical data and could be an important decision support tool during the early tsunami warning stage.

  14. Sedimentology of onshore tsunami deposits of the Indian Ocean tsunami, 2004 in the mangrove forest of the Curieuse Marine National Park, Seychelles

    Science.gov (United States)

    Nentwig, V.; Bahlburg, H.; Monthy, D.

    2012-12-01

    The Seychelles were severely affected by the December 26, 2004 tsunami in the Indian Ocean. Since the tsunami history of small islands often remains unclear due to a young historiography we conducted a study of onshore tsunami deposits on the Seychelles in order to understand the scale of impact of the 2004 Indian Ocean tsunami and potential predecessors. As part of this project we found and studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond bay on the east coast of Curieuse Island. The 2004 Indian Ocean tsunami caused a change of habitat due to sedimentation of an extended sand sheet in the mangrove forest. We present results of the first detailed sedimentological study of onshore tsunami deposits of the 2004 Indian Ocean tsunami conducted on the Seychelles. The Curieuse mangrove forest at Old Turtle Pond bay is part of the Curieuse Marine National Park. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The silt to fine sand sized and organic rich mangrove soil was subsequently covered by carbonate fine to medium sand (1.5 to 2.1 Φ) containing coarser carbonate shell debris which had been trapped outside the mangrove bay before the tsunami. The tsunami deposited a sand sheet which is organized into different lobes. They extend landwards to different inundation distances as a function of morphology. Maximum inundation distance is 200 m. The sediments often cover the pneumatophores of the mangroves. No landward fining trend of the sand sheet has been observed. On the different sand lobes carbonate-cemented sandstone debris ranging in size from 0.5 up to 12 cm occurs. Also numerous mostly fragmented shells of bivalves and molluscs were distributed on top of the sand lobes. Intact bivalve shells were mostly positioned with the convex side upwards

  15. Tsunami Forecasting: The 10 August 2009 Andaman tsunami Demonstrates Progress

    Science.gov (United States)

    Titov, Vasily; Moore, Christopher; Uslu, Burak; Kanoglu, Utku

    2010-05-01

    The 10 August 2009 Andaman non-destructive tsunami in the Indian Ocean demonstrated advances in creating a tsunami-resilient global society. Following the Indian Ocean tsunami on 26 December 2004, scientists at the National Oceanic and Atmospheric Administration Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL) developed an interface for its validated and verified tsunami numerical model Method of Splitting Tsunamis (MOST). MOST has been benchmarked substantially through analytical solutions, experimental results and field measurements (Synolakis et al., 2008). MOST and its interface the Community Model Interface for Tsunami (ComMIT) are distributed through extensive capacity-building sessions for the Indian Ocean nations using UNESCO/Intergovernmental Oceanographic Commission (IOC), AusAID, and USAID funding. Over one hundred-sixty scientists have been trained in tsunami inundation mapping, leading to the first generation of inundation models for many Indian Ocean shorelines. During the 10 August 2009 Andaman tsunami event, NCTR scientists exercised the forecast system in research mode using the first generation inundation models developed during ComMIT trainings. Assimilating key data from a Kingdom of Thailand tsunameter, coastal tsunami amplitudes were predicted in Indonesia, Thailand, and India coastlines, before the first tsunami arrival, using models developed by ComMIT trainees. Since its first test in 2003, one more time, NCTR's forecasting methodology proved the effectiveness of operational tsunami forecasting using real-time deep-ocean data assimilated into forecast models (Wei et al., 2008 and Titov, 2009). The 2009 Andaman tsunami demonstrated that operational tsunami forecasting tools are now available and coupled with inundation mapping tools can be effective and can reduce false alarms. International collaboration is required to fully utilize this technology's potential. Enhanced educational efforts both at

  16. Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand

    Science.gov (United States)

    Koiwa, Naoto; Takahashi, Mio; Sugisawa, Shuhei; Ito, Akifumi; Matsumoto, Hide-aki; Tanavud, Charlchai; Goto, Kazuhisa

    2018-04-01

    The 2004 Indian Ocean tsunami had notable impacts on coastal landforms. Temporal change in topography by coastal erosion and subsequent formation of a new barrier spit on the nearshore of Pakrang Cape, southeastern Thailand, had been monitored for 10 years since 2005 based on field measurement using satellite images, high-resolution differential GPS, and/or handy GPS. Monitored topography data show that a barrier island was formed offshore from the cape several months after the tsunami event through progradation of multiple elongated gravelly beach ridges and washover fan composed of coral gravels. Subsequently, the barrier spit expanded to the open sea. The progradation and expansion were supported by supply of a large amount of coral debris produced by the tsunami waves. These observations provide useful data to elucidate processes of change in coastal landforms after a tsunami event. The 2004 Indian Ocean tsunami played an important role in barrier spit evolution over a period of at least a decade.

  17. Ocean-bottom pressure changes above a fault area for tsunami excitation and propagation observed by a submarine dense network

    Science.gov (United States)

    Yomogida, K.; Saito, T.

    2017-12-01

    Conventional tsunami excitation and propagation have been formulated by incompressible fluid with velocity components. This approach is valid in most cases because we usually analyze tunamis as "long gravity waves" excited by submarine earthquakes. Newly developed ocean-bottom tsunami networks such as S-net and DONET have dramatically changed the above situation for the following two reasons: (1) tsunami propagations are now directly observed in a 2-D array manner without being suffered by complex "site effects" of sea shore, and (2) initial tsunami features can be directly detected just above a fault area. Removing the incompressibility assumption of sea water, we have formulated a new representation of tsunami excitation based on not velocity but displacement components. As a result, not only dynamics but static term (i.e., the component of zero frequency) can be naturally introduced, which is important for the pressure observed on the ocean floor, which ocean-bottom tsunami stations are going to record. The acceleration on the ocean floor should be combined with the conventional tsunami height (that is, the deformation of the sea level above a given station) in the measurement of ocean-bottom pressure although the acceleration exists only during fault motions in time. The M7.2 Off Fukushima earthquake on 22 November 2016 was the first event that excited large tsunamis within the territory of S-net stations. The propagation of tsunamis is found to be highly non-uniform, because of the strong velocity (i.e., sea depth) gradient perpendicular to the axis of Japan Trench. The earthquake was located in a shallow sea close to the coast, so that all the tsunami energy is reflected by the trench region of high velocity. Tsunami records (pressure gauges) within its fault area recorded clear slow motions of tsunamis (i.e., sea level changes) but also large high-frequency signals, as predicted by our theoretical result. That is, it may be difficult to extract tsunami

  18. Evidence and mechanism of Hurricane Fran-Induced ocean cooling in the Charleston Trough

    Science.gov (United States)

    Xie, Lian; Pietrafesa, L. J.; Bohm, E.; Zhang, C.; Li, X.

    Evidence of enhanced sea surface cooling during and following the passage of Hurricane Fran in September 1996 over an oceanic depression located on the ocean margin offshore of Charleston, South Carolina (referred to as the Charleston Trough), [Pietrafesa, 1983] is documented. Approximately 4C° of sea surface temperature (SST) reduction within the Charleston Trough following the passage of Hurricane Fran was estimated based on SST imagery from Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 polar orbiting satellite. Simulations using a three-dimensional coastal ocean model indicate that the largest SST reduction occurred within the Charleston Trough. This SST reduction can be explained by oceanic mixing due to storm-induced internal inertia-gravity waves.

  19. Distribution of runup heights of the December 26, 2004 tsunami in the Indian Ocean

    Science.gov (United States)

    Choi, Byung Ho; Hong, Sung Jin; Pelinovsky, Efim

    2006-07-01

    A massive earthquake with magnitude 9.3 occurred on December 26, 2004 off the northern Sumatra generated huge tsunami waves affected many coastal countries in the Indian Ocean. A number of field surveys have been performed after this tsunami event; in particular, several surveys in the south/east coast of India, Andaman and Nicobar Islands, Sri Lanka, Sumatra, Malaysia, and Thailand have been organized by the Korean Society of Coastal and Ocean Engineers from January to August 2005. Spatial distribution of the tsunami runup is used to analyze the distribution function of the wave heights on different coasts. Theoretical interpretation of this distribution is associated with random coastal bathymetry and coastline led to the log-normal functions. Observed data also are in a very good agreement with log-normal distribution confirming the important role of the variable ocean bathymetry in the formation of the irregular wave height distribution along the coasts.

  20. The effects of wind and rainfall on suspended sediment concentration related to the 2004 Indian Ocean tsunami

    International Nuclear Information System (INIS)

    Zhang Xinfeng; Tang Danling; Li Zizhen; Zhang Fengpan

    2009-01-01

    The effects of rainfall and wind speed on the dynamics of suspended sediment concentration (SSC), during the 2004 Indian Ocean tsunami, were analyzed using spatial statistical models. The results showed a positive effect of wind speed on SSC, and inconsistent effects (positive and negative) of rainfall on SSC. The effects of wind speed and rainfall on SSC weakened immediately around the tsunami, indicating tsunami-caused floods and earthquake-induced shaking may have suddenly disturbed the ocean-atmosphere interaction processes, and thus weakened the effects of wind speed and rainfall on SSC. Wind speed and rainfall increased markedly, and reached their maximum values immediately after the tsunami week. Rainfall at this particular week exceeded twice the average for the same period over the previous 4 years. The tsunami-affected air-sea interactions may have increased both wind speed and rainfall immediately after the tsunami week, which directly lead to the variations in SSC.

  1. Beach recovery after 2004 Indian Ocean tsunami from Phang-nga, Thailand

    Science.gov (United States)

    Choowong, Montri; Phantuwongraj, Sumet; Charoentitirat, Thasinee; Chutakositkanon, Vichai; Yumuang, Sombat; Charusiri, Punya

    2009-03-01

    The 2004 Indian Ocean tsunami devastated the coastal areas along the Andaman western coast of Thailand and left unique physical evidence of its impact, including the erosional landforms of the pre-tsunami topography. Here we show the results from monitoring the natural recovery of beach areas at Khuk Khak and Bang Niang tidal channels of Khao Lak area, Phang-nga, Thailand. A series of satellite images before and after the tsunami event was employed for calculating the beach area and locating the position of the changed shoreline. Field surveys to follow-up the development of the post-tsunami beach area were conducted from 2005 to 2007 and the yearly beach profile was measured in 2006. As a result, the scoured beach areas where the tidal channel inlets were located underwent continuous recovery. The return of post-tsunami sediments within the beach zone was either achieved by normal wind and wave processes or during the storm surges in the rainy season. Post-2004 beach sediments were derived mainly from near offshore sources. The present situation of the beach zone has almost completed reversion back to the equilibrium stage and this has occurred within 2 years after the tsunami event. We suggest these results provide a better understanding of the geomorphological process involved in beach recovery after severe erosion such as by tsunami events.

  2. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  3. NUMERICAL MODELING OF THE GLOBAL TSUNAMI: Indonesian Tsunami of 26 December 2004

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2005-01-01

    Full Text Available A new model for the global tsunami computation is constructed. It includes a high order of approximation for the spatial derivatives. The boundary condition at the shore line is controlled by the total depth and can be set either to runup or to the zero normal velocity. This model, with spatial resolution of one minute, is applied to the tsunami of 26 December 2004 in the World Ocean from 80◦S to 69◦N. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a supercomputer. The high spatial resolution of one minute produces very small numerical dispersion even when tsunamis wave travel over large distances. Model results for the Indonesian tsunami show that the tsunami traveled to every location of the World Ocean. In the Indian Ocean the tsunami properties are related to the source function, i.e., to the magnitude of the bottom displacement and directional properties of the source. In the Southern Ocean surrounding Antarctica, in the Pacific, and especially in the Atlantic, tsunami waves propagate over large distances by energy ducting over oceanic ridges. Tsunami energy is concentrated by long wave trapping over the oceanic ridges. Our computations show the Coriolis force plays a noticeable but secondary role in the trapping. Travel times obtained from computations as arrival of the first significant wave show a clear and consistent pattern only in the region of the high amplitude and in the simply connected domains. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean. The path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a much longer distance via South Pacific ridges. The time difference between first signal and later signals strong enough to be recorded at North Pacific locations was several hours.

  4. New constraints on the magnitude of the 4 January 1907 tsunami earthquake off Sumatra, Indonesia, and its Indian Ocean-wide tsunami

    Science.gov (United States)

    Martin, S. S.; Li, L.; Okal, E.; Kanamori, H.; Morin, J.; Sieh, K.; Switzer, A.

    2017-12-01

    On 4 January 1907, an earthquake and tsunami occurred off the west coast of Sumatra, Indonesia, causing at least 2,188 fatalities. The earthquake was given an instrumental surface-wave magnitude (MS) in the range of 7.5 to 8.0 at periods of ≈40s. The tsunami it triggered was destructive on the islands of Nias and Simeulue; on the latter, this gave rise to the legend of the S'mong. This tsunami appears in records in India, Pakistan, Sri Lanka, and as far as the island of La Réunion. In relation to published seismic magnitudes for the earthquake, the tsunami was anomalously large, qualifying it as a "tsunami earthquake." Relocations using reported arrival times suggest an epicentral location near the trench. However, unusually for a tsunami earthquake the reported macroseismic intensities were higher than expected on Nias (6-7 EMS). We present a new study of this event based on macroseismic and tsunami observations culled from published literature and colonial press reports, as well as existing and newly acquired digitized or print seismograms. This multidisciplinary combination of macroseismic and seismological data with tsunami modelling has yielded new insights into this poorly understood but scientifically and societally important tsunami earthquake in the Indian Ocean. With these new data, we discriminated two large earthquakes within an hour of each other with clear differences in seismological character. The first, we interpret to be a tsunami earthquake with low levels of shaking (3-4 EMS). For this event, we estimate a seismic moment (M0) between 0.8 and 1.2 x1021 Nm (≈MW 7.9 to 8.0) based on digitized Wiechert records at Göttingen in the frequency band 6-8 mHz. These records document a regular growth of moment with period and suggest possibly larger values of M0 at even longer periods. The second earthquake caused damage on Nias (6-7 EMS). We estimate MS 6 ¾ - 7 for the second event based on seismograms from Manila, Mizusawa, and Osaka. We also

  5. Tsunami Hockey

    Science.gov (United States)

    Weinstein, S.; Becker, N. C.; Wang, D.; Fryer, G. J.

    2013-12-01

    An important issue that vexes tsunami warning centers (TWCs) is when to cancel a tsunami warning once it is in effect. Emergency managers often face a variety of pressures to allow the public to resume their normal activities, but allowing coastal populations to return too quickly can put them at risk. A TWC must, therefore, exercise caution when cancelling a warning. Kim and Whitmore (2013) show that in many cases a TWC can use the decay of tsunami oscillations in a harbor to forecast when its amplitudes will fall to safe levels. This technique should prove reasonably robust for local tsunamis (those that are potentially dangerous within only 100 km of their source region) and for regional tsunamis (whose danger is limited to within 1000km of the source region) as well. For ocean-crossing destructive tsunamis such as the 11 March 2011 Tohoku tsunami, however, this technique may be inadequate. When a tsunami propagates across the ocean basin, it will encounter topographic obstacles such as seamount chains or coastlines, resulting in coherent reflections that can propagate great distances. When these reflections reach previously-impacted coastlines, they can recharge decaying tsunami oscillations and make them hazardous again. Warning center scientists should forecast sea-level records for 24 hours beyond the initial tsunami arrival in order to observe any potential reflections that may pose a hazard. Animations are a convenient way to visualize reflections and gain a broad geographic overview of their impacts. The Pacific Tsunami Warning Center has developed tools based on tsunami simulations using the RIFT tsunami forecast model. RIFT is a linear, parallelized numerical tsunami propagation model that runs very efficiently on a multi-CPU system (Wang et al, 2012). It can simulate 30-hours of tsunami wave propagation in the Pacific Ocean at 4 arc minute resolution in approximately 6 minutes of real time on a 12-CPU system. Constructing a 30-hour animation using 1

  6. System for Reporting High Resolution Ocean Pressures in Near Realtime for the Purposes of Tsunami Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This invention is the NOAA Deep ocean Assessment and Reporting of Tsunami (DART) system, which utilizes a seafloor tsunameter linked to an ocean surface buoy via...

  7. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    Science.gov (United States)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  8. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  9. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  10. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits

    Science.gov (United States)

    Costa, Pedro J.M.; Gelfenbaum, Guy R.; Dawson, Sue; La selle, Seanpaul; Milne, F; Cascalho, J.; Ponte Lira, C.; Andrade, C.; Freitas, M. C.; Jaffe, Bruce E.

    2017-01-01

    Recent work has applied microtextural and heavy mineral analyses to sandy storm and tsunami deposits from Portugal, Scotland, Indonesia and the USA. We looked at the interpretation of microtextural imagery (scanning electron microscopy) of quartz grains and heavy mineral compositions. We consider inundation events of different chronologies and sources (the AD 1755 Lisbon and 2004 Indian Ocean tsunamis, the Great Storm of 11 January 2005 in Scotland, and Hurricane Sandy in 2012) that affected contrasting coastal and hinterland settings with different regional oceanographic conditions. Storm and tsunami deposits were examined along with potential source sediments (alluvial, beach, dune and nearshore sediments) to determine provenance.Results suggest that tsunami deposits typically exhibit a significant spatial variation in grain sizes, microtextures and heavy minerals. Storm deposits show less variability, especially in vertical profiles. Tsunami and storm quartz grains had more percussion marks and fresh surfaces compared to potential source material. Moreover, in the studied cases, tsunami samples had fewer fresh surfaces than storm deposits.Heavy mineral assemblages are typically site-specific. The concentration of heavy minerals decreases upwards in tsunamigenic units, whereas storm sediments show cyclic concentrations of heavy minerals, reflected in the laminations observed macroscopically in the deposits.

  11. Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    R. Stosius

    2010-06-01

    Full Text Available Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009, a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar altimetry, multiple height measurements within a wide field of view can be made simultaneously. With a dedicated Low Earth Orbit (LEO constellation of satellites equipped with GNSS-R, densely spaced sea surface height measurements could be established to detect tsunamis. This simulation study compares the Walker and the meshed comb constellation with respect to their global reflection point distribution. The detection performance of various LEO constellation scenarios with GPS, GLONASS and Galileo as signal sources is investigated. The study concentrates on the detection performance for six historic tsunami events in the Indian Ocean generated by earthquakes of different magnitudes, as well as on different constellation types and orbit parameters. The GNSS-R carrier phase is compared with the PARIS or code altimetry approach. The study shows that Walker constellations have a much better reflection point distribution compared to the meshed comb constellation. Considering simulation assumptions and assuming technical feasibility it can be demonstrated that strong tsunamis with magnitudes (M ≥8.5 can be detected with certainty from any orbit altitude within 15–25 min by a 48/8 or 81/9 Walker constellation if tsunami waves of 20 cm or higher can be detected by space-borne GNSS-R. The carrier phase approach outperforms the PARIS altimetry approach especially at low orbit altitudes and for a low number of LEO satellites.

  12. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    Science.gov (United States)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  13. NOAA/WEST COAST AND ALASKA TSUNAMI WARNING CENTER PACIFIC OCEAN RESPONSE CRITERIA

    Directory of Open Access Journals (Sweden)

    Garry Rogers

    2008-01-01

    Full Text Available New West Coast/Alaska Tsunami Warning Center (WCATWC response criteria for earthquakes occurring in the Pacific basin are presented. Initial warning decisions are based on earthquake location, magnitude, depth, and - dependent on magnitude - either distance from source or pre- computed threat estimates generated from tsunami models. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite.Changes to the previous criteria include: adding hypocentral depth dependence, reducing geographical warning extent for the lower magnitude ranges, setting special criteria for areas not well-connected to the open ocean, basing warning extent on pre-computed threat levels versus tsunami travel time for very large events, including the new advisory product, using the advisory product for far-offshore events in the lower magnitude ranges, and specifying distances from the coast for on-shore events which may be tsunamigenic.This report sets a baseline for response criteria used by the WCATWC considering its processing and observational data capabilities as well as its organizational requirements. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of slumps. As further research and development provides better tsunami source definition, observational data streams, and improved analysis tools, the criteria will continue to adjust. Future lines of research and development capable of providing operational tsunami warning centers with better tools are discussed.

  14. Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic of GPS data: application to the Tohoku 2011 tsunami

    Science.gov (United States)

    Yong, Wei; Newman, Andrew V.; Hayes, Gavin P.; Titov, Vasily V.; Tang, Liujuan

    2014-01-01

    Correctly characterizing tsunami source generation is the most critical component of modern tsunami forecasting. Although difficult to quantify directly, a tsunami source can be modeled via different methods using a variety of measurements from deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some of which in or near real time. Here we assess the performance of different source models for the destructive 11 March 2011 Japan tsunami using model–data comparison for the generation, propagation, and inundation in the near field of Japan. This comparative study of tsunami source models addresses the advantages and limitations of different real-time measurements with potential use in early tsunami warning in the near and far field. The study highlights the critical role of deep-ocean tsunami measurements and rapid validation of the approximate tsunami source for high-quality forecasting. We show that these tsunami measurements are compatible with other real-time geodetic data, and may provide more insightful understanding of tsunami generation from earthquakes, as well as from nonseismic processes such as submarine landslide failures.

  15. Sedimentology of Coastal Deposits in the Seychelles Islands—Evidence of the Indian Ocean Tsunami 2004

    Science.gov (United States)

    Nentwig, Vanessa; Bahlburg, Heinrich; Monthy, Devis

    2015-03-01

    The Seychelles, an archipelago in the Indian Ocean at a distance of 4,500-5,000 km from the west coast of Sumatra, were severely affected by the December 26, 2004 tsunami with wave heights up to 4 m. Since the tsunami history of small islands often remains unclear due to a young historical record, it is important to study the geological traces of high energy events preserved along their coasts. We conducted a survey of the impact of the 2004 Indian Ocean tsunami on the inner Seychelles islands. In detail we studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond in the Curieuse Marine National Park on the east coast of Curieuse Island. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami in 2004 by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap and assuring a low energetic hydrodynamic environment for the protection of the mangroves. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The tsunami caused a change of habitat by the sedimentation of sand lobes in the mangrove forest. The dark organic rich mangrove soil (1.9 Φ) was covered by bimodal fine to medium carbonate sand (1.7-2.2 Φ) containing coarser carbonate shell fragments and debris. Intertidal sediments and the mangrove soil acted as sources of the lobe deposits. The sand sheet deposited by the tsunami is organized into different lobes. They extend landwards to different inundation distances as a function of the morphology of the onshore area. The maximum extent of 180 m from the shoreline indicates the minimum inundation distance to the tsunami. The top parts of the sand lobes cover the pneumatophores of the mangroves. There is no landward fining trend along the sand lobes and normal grading of the deposits is rare, occurring only in 1 of 7 sites. The sand lobe deposits also lack sedimentary structures. On the surface of the sand lobes numerous mostly fragmented shells of bivalves and

  16. Suitability of Open-Ocean Instrumentation for Use in Near-Field Tsunami Early Warning Along Seismically Active Subduction Zones

    Science.gov (United States)

    Williamson, Amy L.; Newman, Andrew V.

    2018-05-01

    Over the past decade, the number of open-ocean gauges capable of parsing information about a passing tsunami has steadily increased, particularly through national cable networks and international buoyed efforts such as the Deep-ocean Assessment and Reporting of Tsunami (DART). This information is analyzed to disseminate tsunami warnings to affected regions. However, most current warnings that incorporate tsunami are directed at mid- and far-field localities. In this study, we analyze the region surrounding four seismically active subduction zones, Cascadia, Japan, Chile, and Java, for their potential to facilitate local tsunami early warning using such systems. We assess which locations currently have instrumentation in the right locations for direct tsunami observations with enough time to provide useful warning to the nearest affected coastline—and which are poorly suited for such systems. Our primary findings are that while some regions are ill-suited for this type of early warning, such as the coastlines of Chile, other localities, like Java, Indonesia, could incorporate direct tsunami observations into their hazard forecasts with enough lead time to be effective for coastal community emergency response. We take into account the effect of tsunami propagation with regard to shallow bathymetry on the fore-arc as well as the effect of earthquake source placement. While it is impossible to account for every type of off-shore tsunamigenic event in these locales, this study aims to characterize a typical large tsunamigenic event occurring in the shallow part of the megathrust as a guide in what is feasible with early tsunami warning.

  17. Tsunami hazard assessment in La Reunion and Mayotte Islands in the Indian Ocean : detailed modeling of tsunami impacts for the PREPARTOI project

    Science.gov (United States)

    Quentel, E.; Loevenbruck, A.; Sahal, A.; Lavigne, F.

    2011-12-01

    Significant tsunamis have often affected the southwest Indian Ocean. The scientific project PREPARTOI (Prévention et REcherche pour l'Atténuation du Risque Tsunami dans l'Océan Indien), partly founded by the MAIF foundation, aims at assessing the tsunami risk on both french islands of this region, La Réunion and Mayotte. Further purpose of this project is the detailed hazard and vulnerability study for specific places of these islands, selected according to their environmental and human issues and observed impacts of past tsunamis. Tsunami hazard in this region, recently highlighted by major events in the southwest Indian Ocean, has never been thoroughly evaluated. Our study, within the PREPARTOI project, contributes to fill in this lack. It aims at examining transoceanic tsunami hazard related to earthquakes by modeling the scenarios of major historical events. We consider earthquakes with magnitude greater than Mw 7.7 located on the Sumatra (1833, 2004, 2010), Java (2006) and Makran (1945) subduction zones. First, our simulations allow us to compare the tsunami impact at regional scale according to the seismic sources; we thus identify earthquakes locations which most affect the islands and describe the impact distribution along their coastline. In general, we note that, for the same magnitude, events coming from the southern part of Sumatra subduction zone induce a larger impact than the north events. The studied tsunamis initiated along the Java and Makran subduction zones have limited effects on both French islands. Then, detailed models for the selected sites are performed based on high resolution bathymetric and topographic data; they provide estimations of the water currents, the water heights and the potential inundations. When available, field measurements and maregraphic records allow testing our models. Arrival time, amplitude of the first wave and impact on the tide gauge time series are well reproduced. Models are consistent with the observations

  18. Indian Ocean Earthquake and Tsunamis: Food Aid Needs and the U.S. Response

    National Research Council Canada - National Science Library

    Hanrahan, Charles E

    2005-01-01

    ...) in Indonesia set off a series of large tsunamis across the Indian Ocean region. In all, 12 countries were hit by wave surges, with the brunt of the impact in coastal communities in Indonesia, the Maldives, Sri Lanka, and Thailand...

  19. Identification and characterization of tsunami deposits off southeast coast of India from the 2004 Indian Ocean tsunami: Rock magnetic and geochemical approach

    Science.gov (United States)

    Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.

    2014-06-01

    The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.

  20. Lessons unlearned in Japan before 2011: Effects of the 2004 Indian Ocean tsunami on a nuclear plant in India

    Science.gov (United States)

    Sugimoto, M.

    2015-12-01

    The 2004 Indian Ocean tsunami killed around 220,000 people and startled the world. North of Chennai (Madras), the Indian plant nearly affected by tsunami in 2004. The local residents really did not get any warning in India. "On December 26, the Madras Atomic Power Station looked like a desolate place with no power, no phones, no water, no security arrangement and no hindrance whatsoever for outsiders to enter any part of the plant," said S.P. Udaykumar of SACCER. Nuclear issues hide behind such big tsunami damaged. Few media reported outside India. As for US, San Francisco Chronicle reported scientists had to rethink about nuclear power plants by the 2004 tsunami in 11th July 2005. Few tsunami scientsts did not pay attention to nucler power plants nearly affected by tsunami in US. On the other hand, US government noticed the Indian plant nearly affected in 2004. US Goverment supported nucler disaster management in several countries. As for Japan, Japanese goverment mainly concentrated reconstrucation in affected areas and tsunami early warning system. I worked in Japanese embassy in Jakarta Indonesia at that time. I did not receive the information about the Indian plant nearly affected by tsunami and US supported nucler safety to the other coutries. The 2011 Tohoku earthquake and tsunami damaged society and nuclear power stations. The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident resulted in the largest release of radioactive material since the 1986 Chernobyl accident. Why did not Japanese tsunami scientists learn from warning signs from the nuclear plant in India by the 2004 Indian Ocean tsunami to the 2011 Fukushima accident? I would like to clarify the reason few tsunami scientist notice this point in my presentation.

  1. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  2. Should tsunami simulations include a nonzero initial horizontal velocity?

    Science.gov (United States)

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the

  3. NOAA/WDC Global Tsunami Deposits Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Discover where, when and how severely tsunamis affected Earth in geologic history. Information regarding Tsunami Deposits and Proxies for Tsunami Events complements...

  4. The 2004 Indian Ocean Tsunami in Maldives: waves and disaster affected by shape of coral reefs and islands

    Science.gov (United States)

    Kan, H.; Ali, M.; Riyaz, M.

    2005-12-01

    In Maldives, 39 islands are significantly damaged among 200 inhabited islands and nearly a third of the Maldivian people are severely affected by the Indian Ocean Tsunami in 26 December 2004. We surveyed tsunami impact in 43 islands by measuring island topography and run-up height, interview to local people and mapping of the flooded and destructed areas. The differences in tsunami height and disaster corresponding to the atoll shape and island topography are observed. In the northern atolls, atoll rims consist of many ring-shaped reefs, i.e. miniature atolls called `faro', and interrupted many channels between them. The interrupted atoll rim may play an important role to reducing tsunami run-up height. Severe damage was not observed in the eastern coast of the islands. Beach ridge also contribute to the protection against tsunami. However, in some islands, houses beside the lagoon are damaged by backwashing floodwater from the lagoon. Water marks show the run-up height of -1.8m above MSL. The lagoon water-level seems to set-up by tsunami which permeates into the lagoon through the interrupted atoll rim. The disaster was severe at the southern atolls of Meemu, Thaa and Laamu. The higher run-up heights of up to 3.2m above MSL and enormous building damages were observed at the islands on the eastern atoll rims. The continuous atoll rim of these atolls may reinforce tsunami impact at the eastern islands. In addition, tsunami surge washed the islands totally because of low island topography without beach ridge. Significant floodwater from lagoon was not observed in these atolls. It seems the lagoon water-level was not set-up largely. The continuous atoll rim reduces the tsunami influence to the lagoon and the western side of the atolls. The continuity of atoll rim is probably the major factor to cause the difference in water movement, i.e. tsunami run-up and lagoon set-up, which affects the disaster in the islands. Beach ridge contribute to reduce the tsunami impact to

  5. Numerical Modelling of the 26th December 2004 Indian Ocean Tsunami for the Southeastern Coast of India

    Science.gov (United States)

    Ioualalen, M.; Arreaga-Vargas, P.; Pophet, N.; Chlieh, M.; Ilayaraja, K.; Ordoñez, J.; Renteria, W.; Pazmiño, N.

    2010-10-01

    A numerical simulation of the 26th December, 2004 Indian Ocean tsunami of the Tamil Nadu coastal zone is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and included an accurate computational domain and a robust coseismic source. The simulation is first confronted to available tide gauge and runup observations. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result, a full picture of the tsunami impact is provided over the entire coastal zone Tamil Nadu. The processes responsible for coastal vulnerability are discussed.

  6. Hurricane Gustav Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Gustav poster. Multi-spectral image from NOAA-17 shows Hurricane Gustav having made landfall along the Louisiana coastline. Poster size is 36"x27"

  7. Seismically generated tsunamis.

    Science.gov (United States)

    Arcas, Diego; Segur, Harvey

    2012-04-13

    People around the world know more about tsunamis than they did 10 years ago, primarily because of two events: a tsunami on 26 December 2004 that killed more than 200,000 people around the shores of the Indian Ocean; and an earthquake and tsunami off the coast of Japan on 11 March 2011 that killed nearly 15,000 more and triggered a nuclear accident, with consequences that are still unfolding. This paper has three objectives: (i) to summarize our current knowledge of the dynamics of tsunamis; (ii) to describe how that knowledge is now being used to forecast tsunamis; and (iii) to suggest some policy changes that might protect people better from the dangers of future tsunamis.

  8. Tsunami Early Warning for the Indian Ocean Region - Status and Outlook

    Science.gov (United States)

    Lauterjung, Joern; Rudloff, Alexander; Muench, Ute; Gitews Project Team

    2010-05-01

    The German-Indonesian Tsunami Early Warning System (GITEWS) for the Indian Ocean region has gone into operation in Indonesia in November 2008. The system includes a seismological network, together with GPS stations and a network of GPS buoys additionally equipped with ocean bottom pressure sensors and a tide gauge network. The different sensor systems have, for the most part, been installed and now deliver respective data either online or interactively upon request to the Warning Centre in Jakarta. Before 2011, however, the different components requires further optimization and fine tuning, local personnel needs to be trained and eventual problems in the daily operation have to be dealt with. Furthermore a company will be founded in the near future, which will guarantee a sustainable maintenance and operation of the system. This concludes the transfer from a temporarily project into a permanent service. This system established in Indonesia differs from other Tsunami Warning Systems through its application of modern scientific methods and technologies. New procedures for the fast and reliable determination of strong earthquakes, deformation monitoring by GPS, the modeling of tsunamis and the assessment of the situation have been implemented in the Warning System architecture. In particular, the direct incorporation of different sensors provides broad information already at the early stages of Early Warning thus resulting in a stable system and minimizing breakdowns and false alarms. The warning system is designed in an open and modular structure based on the most recent developments and standards of information technology. Therefore, the system can easily integrate additional sensor components to be used for other multi-hazard purposes e.g. meteorological and hydrological events. Up to now the German project group is cooperating in the Indian Ocean region with Sri Lanka, the Maldives, Iran, Yemen, Tanzania and Kenya to set up the equipment primarily for

  9. Tsunamis - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tsunami is a Japanese word meaning harbor wave. It is a water wave or a series of waves generated by an impulsive vertical displacement of the surface of the ocean...

  10. Hurricane Ike Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ike poster. Multi-spectral image from NOAA-15 shows Hurricane Ike in the Gulf of Mexico heading toward Galveston Island, Texas. Poster size is 36"x27".

  11. Numerical tsunami simulations in the western Pacific Ocean and East China Sea from hypothetical M 9 earthquakes along the Nankai trough

    Science.gov (United States)

    Harada, Tomoya; Satake, Kenji; Furumura, Takashi

    2017-04-01

    We carried out tsunami numerical simulations in the western Pacific Ocean and East China Sea in order to examine the behavior of massive tsunami outside Japan from the hypothetical M 9 tsunami source models along the Nankai Trough proposed by the Cabinet Office of Japanese government (2012). The distribution of MTHs (maximum tsunami heights for 24 h after the earthquakes) on the east coast of China, the east coast of the Philippine Islands, and north coast of the New Guinea Island show peaks with approximately 1.0-1.7 m,4.0-7.0 m,4.0-5.0 m, respectively. They are significantly higher than that from the 1707 Ho'ei earthquake (M 8.7), the largest earthquake along the Nankai trough in recent Japanese history. Moreover, the MTH distributions vary with the location of the huge slip(s) in the tsunami source models although the three coasts are far from the Nankai trough. Huge slip(s) in the Nankai segment mainly contributes to the MTHs, while huge slip(s) or splay faulting in the Tokai segment hardly affects the MTHs. The tsunami source model was developed for responding to the unexpected occurrence of the 2011 Tohoku Earthquake, with 11 models along the Nanakai trough, and simulated MTHs along the Pacific coasts of the western Japan from these models exceed 10 m, with a maximum height of 34.4 m. Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with the Corioli's force and bottom friction (Satake, 1995) in the area of 115-155 ° E and 8° S-40° N. Because water depth of the East China Sea is shallower than 200 m, the tsunami propagation is likely to be affected by the ocean bottom fiction. The 30 arc-seconds gridded bathymetry data provided by the General Bathymetric Chart of the Oceans (GEBCO-2014) are used. For long propagation of tsunami we simulated tsunamis for 24 hours after the earthquakes. This study was supported by the"New disaster mitigation research project on Mega thrust earthquakes around Nankai

  12. Role of Compressibility on Tsunami Propagation

    Science.gov (United States)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development

  13. CONCEPTUAL DIFFERENCES BETWEEN THE PACIFIC, ATLANTIC AND ARCTIC TSUNAMI WARNING SYSTEMS FOR CANADA

    Directory of Open Access Journals (Sweden)

    T.S. Murty

    2005-01-01

    Full Text Available Canada has coastlines on three of the four oceans on the globe, namely, the Pacific, Atlantic and Arctic oceans. The Pacific and Atlantic oceans are connected to the Arctic Ocean in the north, but still they are three distinct oceans, and need three individual tsunami warning systems. Tsunamis in the Arctic Ocean are not as well documented as in the Pacific and Atlantic oceans. From what is known, tsunamis in the Arctic Ocean are rare and probably are small in amplitude. Because of very low population density, around the Canadian Arctic, at present, there is no priority for a tsunami warning system for Arctic Canada. For the Pacific Ocean, a tsunami warning system is in existence since 1948. In at least one sense, the warning aspects of the tsunami warning system for the Pacific coast of Canada, is relatively simple and straight forward, because it involves only the federal government (PSEPC and the provincial government of British Columbia (PEP. For the Atlantic Ocean, A tsunami warning system is now being established. The warning aspects will be some what more complex for eastern Canada, since it not only involves the federal government, but also five provinces, namely, Newfoundland and Labrador, Nova Scotia, New Brunswick, Prince Edward Island and Quebec. The Alaska tsunami warning center (ATWC in Palmer, Alaska, provides tsunami warnings for both Pacific and Atlantic Canada.

  14. Numerical modelling and evacuation strategies for tsunami awareness: lessons from the 2012 Haida Gwaii Tsunami

    OpenAIRE

    Santos, Angela; Tavares, Alexandre Oliveira; Queirós, Margarida

    2016-01-01

    On October 28, 2012, an earthquake occurred offshore Canada, with a magnitude Mw of 7.8, triggering a tsunami that propagated through the Pacific Ocean. The tsunami numerical model results show it would not be expected to generate widespread inundation on Hawaii. Yet, two hours after the earthquake, the Pacific Tsunami Warning Centre (PTWC) issued a tsunami warning to the state of Hawaii. Since the state was hit by several tsunamis in the past, regular siren exercises, tsuna...

  15. The Tsunami Geology of the Bay of Bengal Shores and the Predecessors of the 2004 Indian Ocean Event

    Science.gov (United States)

    Rajendran, C.; Rajendran, K.; Seshachalam, S.; Andrade, V.

    2010-12-01

    The 2004 Aceh-Andaman earthquake exceeded the known Indian Ocean precedents by its 1,300-km long fault rupture and the height and reach of its tsunami. Literature of the ancient Chola dynasty (AD 9-11 centuries) of south India and the archeological excavations allude to a sea flood that crippled the historic port at Kaveripattinam, a trading hub for Southeast Asia. Here, we combine a variety of data from the rupture zone as well as the distant shores to build a tsunami history of the Bay of Bengal. A compelling set of geological proxies of possible tsunami inundation include boulder beds of Car Nicobar Island in the south and the East Island in the northernmost Andaman, a subsided fossil mangrove forest near Port Blair and a washover sedimentation identified in the Kaveripattinam coast of Tamil Nadu, south India. We have developed an extensive chronology for these geological proxies, and we analyze them in conjunction with the historical information culled from different sources for major sea surges along the Bay of Bengal shores. The age data and the depositional characteristics of these geological proxies suggest four major tsunamis in the last 2000 years in the Bay of Bengal, including the 1881 Car Nicobar tsunami. Among these, the evidence for the event of 800-1200 cal yr BP is fairly well represented on both sides of the Bay of Bengal shores. Thus, we surmise that the 800-1000-year old tsunami mimics the transoceanic reach of the 2004 Indian Ocean and the age constraints also agree with the sea surge during the Chola period. We also obtained clues for a possible medieval tsunami from the islands occurred probably a few hundred years after the Chola tsunami, but its size cannot constrained, nor its source. The convergence of ages and the multiplicity of sites would suggest at least one full size predecessor of the 2004 event 1000-800 years ago.

  16. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  17. Extraction of two tsunamis signals generated by earthquakes around the Pacific rim

    Directory of Open Access Journals (Sweden)

    Chu Yonghai

    2014-05-01

    Full Text Available As one of the ocean sudden natural disasters, the tsunami is not easily to differentiate from the ocean variation in the open ocean due to the tsunami wave amplitude is lees than one meter with hundreds of kilometers wavelength. But the wave height will increases up to tens of meters with enormous energy when the tsunami aarives at the coast. It would not only devastate entire cities near coast, but also kill miilions of people. It is necessary to forecast and make warning before the tsunami aariving for many countries and regions around the Pacific rim. Two kinds of data were used in this study to extract the signals of 2011 Tohoku tsunami and 2014 Iquique tsunami. Wave undulations from DART (Deep-ocean Assessment and Reporting of Tsunamis buoys and SLA from altimetry could extract the tsunami signals generated by this two earthquake. The signals of Tohoku tsunami were stronger than that of Iquique tsunami probably due to the 2011 Tohoku tsunami was generated by a magnitude 9. 0 earthquake and the 2014 Iquique tsunami was triggered by a magnitude 8. 2 earthquake.

  18. When is a Tsunami a Mega-Tsunami?

    Science.gov (United States)

    Chague-Goff, C.; Goff, J. R.; Terry, J. P.; Goto, K.

    2014-12-01

    The 2004 Indian Ocean Tsunami is commonly called a mega-tsunami, and this attribute has also been linked to the 2011 Tohoku-oki tsunami. However, since this term was first coined in the early 1990's there have been very few attempts to define it. As such it has been applied in a rather arbitrary fashion to a number of tsunami characteristics, such as wave height or amplitude at both the source and at distant locations, run-up height, geographical extent and impact. The first use of the term is related to a tsunami generated by a large bolide impact and indeed it seems entirely appropriate that the term should be used for such rare events on geological timescales. However, probably as a result of media-driven hyperbole, scientists have used this term at least twice in the last decade, which is hardly a significant portion of the geological timescale. It therefore seems reasonable to suggest that these recent unexpectedly large events do not fall in the category of mega-tsunami but into a category of exceptional events within historical experience and local perspective. The use of the term mega-tsunami over the past 14 years is discussed and a definition is provided that marks the relative uniqueness of these events and a new term, appropriately Japanese in origin, namely that of souteigai-tsunami, is proposed. Examples of these tsunamis will be provided.

  19. 2004 Landfalling Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2004 U.S. Landfalling Hurricanes poster is a special edition poster which contains two sets of images of Hurricanes Charley, Frances, Ivan, and Jeanne, created...

  20. A synoptic picture of the impact of the 26th December 2004 Indian Ocean tsunami on the coast of Sri Lanka

    OpenAIRE

    Ioualalen, Mansour; Renteria, W.; Ilayaraja, K.; Chlieh, Mohamed; Arreaga-Vargas, R.

    2010-01-01

    A numerical simulation of the 26th December 2004 Indian Ocean tsunami for the entire coast of Sri Lanka is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and a robust coseismic source. The simulation is first confronted to available measured wave height. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result a synoptic picture of the tsunami impact is provided over ...

  1. Educating and Preparing for Tsunamis in the Caribbean

    Science.gov (United States)

    von Hillebrandt-Andrade, C.; Aliaga, B.; Edwards, S.

    2013-12-01

    The Caribbean and Adjacent Regions has a long history of tsunamis and earthquakes. Over the past 500 years, more than 75 tsunamis have been documented in the region by the NOAA National Geophysical Data Center. Just since 1842, 3446 lives have been lost to tsunamis; this is more than in the Northeastern Pacific for the same time period. With a population of almost 160 million, over 40 million visitors a year and a heavy concentration of residents, tourists, businesses and critical infrastructure along its shores (especially in the northern and eastern Caribbean), the risk to lives and livelihoods is greater than ever before. The only way to survive a tsunami is to get out of harm's way before the waves strike. In the Caribbean given the relatively short distances from faults, potential submarine landslides and volcanoes to some of the coastlines, the tsunamis are likely to be short fused, so it is imperative that tsunami warnings be issued extremely quickly and people be educated on how to recognize and respond. Nevertheless, given that tsunamis occur infrequently as compared with hurricanes, it is a challenge for them to receive the priority they require in order to save lives when the next one strikes the region. Close cooperation among countries and territories is required for warning, but also for education and public awareness. Geographical vicinity and spoken languages need to be factored in when developing tsunami preparedness in the Caribbean, to make sure citizens receive a clear, reliable and sound science based message about the hazard and the risk. In 2006, in the wake of the Indian Ocean tsunami and after advocating without success for a Caribbean Tsunami Warning System since the mid 90's, the Intergovernmental Oceanographic Commission of UNESCO established the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). Its purpose is to advance an end to end tsunami

  2. Hurricane Katrina Poster (August 28, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Katrina poster. Multi-spectral image from NOAA-18 shows a very large Hurricane Katrina as a category 5 hurricane in the Gulf of Mexico on August 28, 2005....

  3. Hurricane Rita Poster (September 22, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Rita poster. Multi-spectral image from NOAA-16 shows Hurricane Rita as a category-4 hurricane in the Gulf of Mexico on September 22, 2005. Poster size is...

  4. TSUNAMIS AND TSUNAMI-LIKE WAVES OF THE EASTERN UNITED STATES

    Directory of Open Access Journals (Sweden)

    James F. Lander

    2002-01-01

    Full Text Available The threat of tsunamis and tsunami-like waves hitting the eastern United States is very real despite a general impression to the contrary. We have cataloged 40 tsunamis and tsunami-like waves that have occurred in the eastern United States since 1600. Tsunamis were generated from such events as the 1755 Queen Anne’s earthquake, the Grand Banks event of 1929, the Charleston earthquake of 1886, and the New Madrid earthquakes of 1811-1812. The Queen Anne tsunami was observed as far away as St. Martin in the West Indies and is the only known teletsunami generated in this source region.Since subduction zones are absent around most of the Atlantic basin, tsunamis and tsunami-like waves along the United States East Coast are not generated from this traditional source, but appear, in most cases to be the result of slumping or landsliding associated with local earthquakes or with wave action associated with strong storms. Other sources of tsunamis and tsunami-like waves along the eastern seaboard have recently come to light including volcanic debris falls or catastrophic failure of volcanic slopes; explosive decompression of underwater methane deposits or oceanic meteor splashdowns. These sources are considered as well.

  5. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  6. Synthetic tsunamis along the Israeli coast.

    Science.gov (United States)

    Tobias, Joshua; Stiassnie, Michael

    2012-04-13

    The new mathematical model for tsunami evolution by Tobias & Stiassnie (Tobias & Stiassnie 2011 J. Geophys. Res. Oceans 116, C06026) is used to derive a synthetic tsunami database for the southern part of the Eastern Mediterranean coast. Information about coastal tsunami amplitudes, half-periods, currents and inundation levels is presented.

  7. Airburst-Generated Tsunamis

    Science.gov (United States)

    Berger, Marsha; Goodman, Jonathan

    2018-04-01

    This paper examines the questions of whether smaller asteroids that burst in the air over water can generate tsunamis that could pose a threat to distant locations. Such airburst-generated tsunamis are qualitatively different than the more frequently studied earthquake-generated tsunamis, and differ as well from tsunamis generated by asteroids that strike the ocean. Numerical simulations are presented using the shallow water equations in several settings, demonstrating very little tsunami threat from this scenario. A model problem with an explicit solution that demonstrates and explains the same phenomena found in the computations is analyzed. We discuss the question of whether compressibility and dispersion are important effects that should be included, and show results from a more sophisticated model problem using the linearized Euler equations that begins to addresses this.

  8. The Boxing Day Tsunami: Could the Disaster have been Anticipated?

    Science.gov (United States)

    Cummins, P. R.; Burbdige, D.

    2005-05-01

    The occurrence of the 26 December, 2004 Sumatra-Andaman earthquake and the accompanying "Boxing Day" Tsunami, which killed over 280,00, has been described as one of the most lethal natural disasters in human history. Many lives could have been saved had a tsunami warning system, similar to that which exists for the Pacific Ocean, been in operation for the Indian Ocean. The former exists because great subduction zone earthquakes have generated destructive, Pacific-wide tsunami in the Pacific Ocean with some frequency. Prior to 26 December, 2004, all of the world's earthquakes with magnitude > 9 were widely thought to have occurred in the Pacific Ocean, where they caused destructive tsunami. Could the occurrence of similar earthquakes and tsunami in the Indian Ocean been predicted prior to the 2004 Box Day Tragedy? This presentation will argue that the answer is "Yes". Almost without exception (the exception being the 1952 Kamchatka earthquake) the massive subduction zone earthquakes and tsunami of the Pacific Ocean have been associated with the subduction of relatively young ocean lithosphere (Boxing day event, the effects in the Bay of Bengal would not have been as severe. Thus, it seems to this author that the Boxing Day event could and should have been anticipated. This presentation will further consider why it was not, and what steps can be taken to anticipate and mitigate the effects of future events that may occur in the Indian Ocean and elsewhere.

  9. Historical Tsunami Event Locations with Runups

    Data.gov (United States)

    Department of Homeland Security — The Global Historical Tsunami Database provides information on over 2,400 tsunamis from 2100 BC to the present in the the Atlantic, Indian, and Pacific Oceans; and...

  10. NUMERICAL SIMULATION OF UJONG SEUDEUN LAND SEPARATION CAUSED BY THE 2004 INDIAN OCEAN TSUNAMI, ACEH-INDONESIA

    Directory of Open Access Journals (Sweden)

    Musa Al'ala

    2015-07-01

    Full Text Available The Aceh province in Indonesia, located around the Sumatra subduction area, was one of the worst hit areas with respect to damage from the impact of the 2004 Indian Ocean tsunami. A 9.15 Mw earthquake triggered the tsunami. One of the impacts was the disconnection of several areas from their mainland, thus creating new small islands. This happened around Ujong Seudeun village in Aceh Jaya District. Prior to the tsunami, the village had approximately 500 residents. However, after the tsunami, the area was severely eroded and a small strait had been inserted between the village and the Sumatra Island mainland. This study investigates the magnitude of the tsunami wave forces that separated the area to yield a newly deserted small island. This study was conducted by numerical simulations and by coupling the COMCOT (Cornell Multi-grid Coupled Tsunami Model and Delft3D models. These tools have specific advantages, namely, COMCOT’s linear modeling is based on a series of earthquake mechanisms and Delft3D uses non-linear morphological dynamic modeling. Their software includes the explicit leapfrog finite difference scheme (COMCOT and the non-linear shallow water equation (Delft3D. Bathymetry data fromnewly formed coastline and the small island’s shape were digitized using 2005 Quickbird Images. Results from this research reveal the estimated tsunami wave heights and forces that disconnected the small island of Ujong Seuden from the Sumatra Island mainland. These results can be used to further develop the COMCOT model to incorporate sediment modules.

  11. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean

    Science.gov (United States)

    Rodriguez, J. A. P.; Fairen, A. G.; Linares, R.; Zarroca, M.; Platz, T.; Komatsu, G.; Kargel, J. S.; Gulick, V.; Jianguo, Y.; Higuchi, K.; hide

    2016-01-01

    Viking image-based mapping of a widespread deposit covering most of the northern low-lands of Mars led to the proposal by Parker et al. that the deposit represents the vestiges of an enormous ocean that existed approx. 3.4 Ga. Later identified as the Vastitas Borealis Formation, the latest geologic map of Mars identifies this deposit as the Late Hesperian lowland unit (lHl). This deposit is typically bounded by raised lobate margins. In addition, some margins have associated rille channels, which could have been produced sub-aerially by the back-wash of high-energy tsunami waves. Radar-sounding data indicate that the deposit is ice-rich. However, until now, the lack of wave-cut shoreline features and the presence of lobate margins have remained an im-pediment to the acceptance of the paleo-ocean hypothesis.

  12. Continental United States Hurricane Strikes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  13. Should tsunami models use a nonzero initial condition for horizontal velocity?

    Science.gov (United States)

    Nava, G.; Lotto, G. C.; Dunham, E. M.

    2017-12-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami

  14. Environmental implications for disaster preparedness: lessons learnt from the Indian Ocean Tsunami.

    Science.gov (United States)

    Srinivas, Hari; Nakagawa, Yuko

    2008-10-01

    The impact of disasters, whether natural or man-made, not only has human dimensions, but environmental ones as well. Environmental conditions may exacerbate the impact of a disaster, and vice versa, disasters tend to have an impact on the environment. Deforestation, forest management practices, or agriculture systems can worsen the negative environmental impacts of a storm or typhoon, leading to landslides, flooding, silting, and ground/surface water contamination. We have only now come to understand these cyclical causes and impacts and realize that taking care of our natural resources and managing them wisely not only assures that future generations will be able to live in sustainable ways, but also reduces the risks that natural and man-made hazards pose to people living today. Emphasizing and reinforcing the centrality of environmental concerns in disaster management has become a critical priority, requiring the sound management of natural resources as a tool to prevent disasters and lessen their impacts on people, their homes, and livelihoods. As the horrors of the Asian tsunami of December 2004 continue to be evaluated, and people in the region slowly attempt to build a semblance of normalcy, we have to look to the lessons learnt from the tsunami disaster as an opportunity to prepare ourselves better for future disasters. This article focuses on findings and lessons learnt on the environmental aspects of the tsunami, and its implications on disaster preparedness plans. This article essentially emphasizes the cyclical interrelations between environments and disasters, by studying the findings and assessments of the recent Indian Ocean earthquake and tsunami that struck on 26 December 2004. It specifically looks at four key affected countries--Maldives, Sri Lanka, Indonesia, and Thailand.

  15. PRELIMINARY ANALYSIS OF THE EARTHQUAKE (MW 8.1 AND TSUNAMI OF APRIL 1, 2007, IN THE SOLOMON ISLANDS, SOUTHWESTERN PACIFIC OCEAN

    Directory of Open Access Journals (Sweden)

    Michael A. Fisher

    2007-01-01

    Full Text Available On April 1, 2007, a destructive earthquake (Mw 8.1 and tsunami struck the central Solomon Islands arc in the southwestern Pacific Ocean. The earthquake had a thrust-fault focal mechanism and occurred at shallow depth (between 15 km and 25 km beneath the island arc. The combined effects of the earthquake and tsunami caused dozens of fatalities and thousands remain without shelter. We present a preliminary analysis of the Mw-8.1 earthquake and resulting tsunami. Multichannel seismic- reflection data collected during 1984 show the geologic structure of the arc’s frontal prism within the earthquake’s rupture zone. Modeling tsunami-wave propagation indicates that some of the islands are so close to the earthquake epicenter that they were hard hit by tsunami waves as soon as 5 min. after shaking began, allowing people scant time to react.

  16. Real-time forecasting of the April 11, 2012 Sumatra tsunami

    Science.gov (United States)

    Wang, Dailin; Becker, Nathan C.; Walsh, David; Fryer, Gerard J.; Weinstein, Stuart A.; McCreery, Charles S.; ,

    2012-01-01

    The April 11, 2012, magnitude 8.6 earthquake off the northern coast of Sumatra generated a tsunami that was recorded at sea-level stations as far as 4800 km from the epicenter and at four ocean bottom pressure sensors (DARTs) in the Indian Ocean. The governments of India, Indonesia, Sri Lanka, Thailand, and Maldives issued tsunami warnings for their coastlines. The United States' Pacific Tsunami Warning Center (PTWC) issued an Indian Ocean-wide Tsunami Watch Bulletin in its role as an Interim Service Provider for the region. Using an experimental real-time tsunami forecast model (RIFT), PTWC produced a series of tsunami forecasts during the event that were based on rapidly derived earthquake parameters, including initial location and Mwp magnitude estimates and the W-phase centroid moment tensor solutions (W-phase CMTs) obtained at PTWC and at the U. S. Geological Survey (USGS). We discuss the real-time forecast methodology and how successive, real-time tsunami forecasts using the latest W-phase CMT solutions improved the accuracy of the forecast.

  17. NGDC/WDS Global Historical Tsunami Database, 2100 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Tsunami Database provides information on over 2,400 tsunamis from 2100 BC to the present in the the Atlantic, Indian, and Pacific Oceans; and...

  18. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    Science.gov (United States)

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  19. Introduction to "Global Tsunami Science: Past and Future, Volume III"

    Science.gov (United States)

    Rabinovich, Alexander B.; Fritz, Hermann M.; Tanioka, Yuichiro; Geist, Eric L.

    2018-04-01

    Twenty papers on the study of tsunamis are included in Volume III of the PAGEOPH topical issue "Global Tsunami Science: Past and Future". Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 and Volume II as PAGEOPH, vol. 174, No. 8, 2017. Two papers in Volume III focus on specific details of the 2009 Samoa and the 1923 northern Kamchatka tsunamis; they are followed by three papers related to tsunami hazard assessment for three different regions of the world oceans: South Africa, Pacific coast of Mexico and the northwestern part of the Indian Ocean. The next six papers are on various aspects of tsunami hydrodynamics and numerical modelling, including tsunami edge waves, resonant behaviour of compressible water layer during tsunamigenic earthquakes, dispersive properties of seismic and volcanically generated tsunami waves, tsunami runup on a vertical wall and influence of earthquake rupture velocity on maximum tsunami runup. Four papers discuss problems of tsunami warning and real-time forecasting for Central America, the Mediterranean coast of France, the coast of Peru, and some general problems regarding the optimum use of the DART buoy network for effective real-time tsunami warning in the Pacific Ocean. Two papers describe historical and paleotsunami studies in the Russian Far East. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: asteroid airburst and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  20. Twin predecessor of the 2004 Indian Ocean tsunami: Implications for rebuilt coastal communities

    Science.gov (United States)

    Sieh, K.; Daly, P.; McKinnon, E.; Chiang, H.; Pilarczyk, J.; Daryono, M. R.; Horton, B.; Shen, C.; Rubin, C. M.; Ismail, N.; Kelsey, H. M.

    2013-12-01

    We present stratigraphic, historical and archeological evidence for two closely timed predecessors of the giant 2004 tsunami on the northern coast of Aceh, northern Sumatra. Beachcliff exposures reveal two beds of tsunamigenic coral rubble within a small alluvial fan. Stratigraphical consistent radiocarbon and Uranium-Thorium disequilibrium dates indicate the the two beds were emplaced in the mid- to late 14th century, correlative with paleoseismic evidence of sudden uplifts of coral reefs on nearby Simeulue island in AD 1394 and, again in AD 1450. A nearby seacliff exposure contains evidence of nearly continuous settlement from ~AD 1240 to 1367, followed by tsunami destruction. Evidence of continuous settlement included South Asian ceramic and stoneware fragments, as well as a single Chinese coin dating to AD 1111-1118. Our data may solve the mysterious 15th century discontinuity in cultures along the northern Sumatran coast of the maritime silk route. This history of a doublet tsunami has implications for communities around the Indian Ocean that were rebuilt after the devastation of 2004, since reconstruction occurred with the tacit belief that such an event would not happen in the foreseeable future. History, geology and archeology hint that such a view may prove tragically incorrect.

  1. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  2. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  3. Impact of a Cosmic Body into Earth's Ocean and the Generation of Large Tsunami Waves: Insight from Numerical Modeling

    Science.gov (United States)

    Wünnemann, K.; Collins, G. S.; Weiss, R.

    2010-12-01

    The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.

  4. Hurricane Frances Poster (September 5, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Frances poster. Multi-spectral image from NOAA-17 shows Hurricane Frances over central Florida on September 5, 2004. Poster dimension is approximately...

  5. Yakutat Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yakutat, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  6. Bermuda Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  7. Hurricane Isabel Poster (September 18, 2003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Isabel poster. Multi-spectral image from NOAA-17 shows Hurricane Isabel making landfall on the North Carolina Outer Banks on September 18, 2003. Poster...

  8. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  9. Hurricane Charley Poster (August 13, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Charley poster. Multi-spectral image from NOAA-17 shows a small but powerful hurricane heading toward southern Florida on August 13, 2004. Poster dimension...

  10. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  11. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  12. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  13. Puerto Rico Seismic Network Operations During and After the Hurricane Maria: Response, Continuity of Operations, and Experiences

    Science.gov (United States)

    Vanacore, E. A.; Baez-Sanchez, G.; Huerfano, V.; Lopez, A. M.; Lugo, J.

    2017-12-01

    The Puerto Rico Seismic Network (PRSN) is an integral part of earthquake and tsunami monitoring in Puerto Rico and the Virgin Islands. The PRSN conducts scientific research as part of the University of Puerto Rico Mayaguez, conducts the earthquake monitoring for the region, runs extensive earthquake and tsunami education and outreach programs, and acts as a Tsunami Warning Focal Point Alternate for Puerto Rico. During and in the immediate aftermath of Hurricane Maria, the PRSN duties and responsibilities evolved from a seismic network to a major information and communications center for the western side of Puerto Rico. Hurricane Maria effectively destroyed most communications on island, critically between the eastern side of the island where Puerto Rico's Emergency Management's (PREMA) main office and the National Weather Service (NWS) is based and the western side of the island. Additionally, many local emergency management agencies on the western side of the island lost a satellite based emergency management information system called EMWIN which provides critical tsunami and weather information. PRSN's EMWIN system remained functional and consequently via this system and radio communications PRSN became the only information source for NWS warnings and bulletins, tsunami alerts, and earthquake information for western Puerto Rico. Additionally, given the functional radio and geographic location of the PRSN, the network became a critical communications relay for local emergency management. Here we will present the PRSN response in relation to Hurricane Maria including the activation of the PRSN devolution plan, adoption of duties, experiences and lessons learned for continuity of operations and adoption of responsibilities during future catastrophic events.

  14. Hurricane Jeanne Poster (September 25, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Jeanne poster. Multi-spectral image from NOAA-16 shows Hurricane Jeanne near Grand Bahama Island on September 25, 2004. Poster size is 34"x30".

  15. A BRIEF HISTORY OF TSUNAMIS IN THE CARIBBEAN SEA

    Directory of Open Access Journals (Sweden)

    Patricia A. Lockridge

    2002-01-01

    Full Text Available The area of the Caribbean Sea is geologically active. Earthquakes and volcanoes are common occurrences. These geologic events can generate powerful tsunamis some of which are more devastating than the earthquake or volcanic eruption itself. This document lists brief descriptions of 91 reported waves that might have been tsunamis within the Caribbean region. Of these, 27 are judged by the authors to be true, verified tsunamis and an additional nine are considered to be very likely true tsunamis. The additional 53 events either are not described with sufficient detail in the literature to verify their tsunami nature or are judged to be reports of other phenomenasuch as sea quakes or hurricane storm surges which may have been reported as tsunamis. Included in these 91 reports are teletsunamis, tectonic tsunamis, landslide tsunamis, and volcanic tsunamis that have caused major damage and deaths. Nevertheless, in recent history these events have been relatively rare. In the interim since the last major tsunami event in the Caribbean Sea the coastal regions have greatly increased in population. Coastal development has also increased. Today tourism is a major industry that exposes thousands of non-residents to the disastrous effects of a tsunami. These factors make the islands in this region much more vulnerable today than they were when the last major tsunami occurred in this area. This paper gives an overview of the tsunami history in the area. This history illustrates what can be expected in the future from this geologic hazard and provides information that will be useful for mitigation purposes.

  16. On the weak impact of the 26 December Indian Ocean tsunami on the Bangladesh coast

    Directory of Open Access Journals (Sweden)

    M. Ioualalen

    2007-01-01

    Full Text Available The 26 December 2004 Indian Ocean tsunami damaged severely most of the Gulf of Bengal's coastal areas, but the coast of Bangladesh which stands at the edge of an extraordinarily extended continental shelf. This latter feature has been built through huge discharges of river sediments along the Brahmaputra and Ganges rivers. As a result of this enormous discharge, another interesting feature of the area is the deep underwater Canyon, connected with the estuaries, running NE-SW from 25 km off the coast towards the continental slope. We investigate here how these two geological features may have modified/perturbed the Indian ocean tsunami propagation and impact on the Coast of Bangladesh. For that purpose we have realized an ensemble of numerical simulations based on Funwave Boussinesq numerical model and a validated coseismic source. It is found, at first order, that the extended shallow bathymetric profile of the continental shelf plays a key role in flattening the waveform through a defocussing process while the Canyon delays the process. The wave evolution seems to be related at first order to the bathymetric profile rather than to dynamical processes like nonlinearity, dispersion or bottom friction.

  17. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  18. Hurricane Hugo Poster (September 21, 1989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Hugo poster. Multi-spectral image from NOAA-11 captures Hurricane Hugo slamming into South Carolina coast on September 21, 1989. Poster size is 36"x36".

  19. Hurricane Ivan Poster (September 15, 2004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Ivan poster. Multi-spectral image from NOAA-16 shows Hurricane Ivan in the Gulf of Mexico on September 15, 2004. Poster size is 34"x30".

  20. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  1. Brief communication "Seismic and acoustic-gravity signals from the source of the 2004 Indian Ocean Tsunami"

    Directory of Open Access Journals (Sweden)

    A. Raveloson

    2012-02-01

    Full Text Available The great Sumatra-Andaman earthquake of 26 December 2004 caused seismic waves propagating through the solid Earth, tsunami waves propagating through the ocean and infrasound or acoustic-gravity waves propagating through the atmosphere. Since the infrasound wave travels faster than its associated tsunami, it is for warning purposes very intriguing to study the possibility of infrasound generation directly at the earthquake source. Garces et al. (2005 and Le Pichon et al. (2005 emphasized that infrasound was generated by mountainous islands near the epicenter and by tsunami propagation along the continental shelf to the Bay of Bengal. Mikumo et al. (2008 concluded from the analysis of travel times and amplitudes of first arriving acoustic-gravity waves with periods of about 400–700 s that these waves are caused by coseismic motion of the sea surface mainly to the west of the Nicobar islands in the open seas. We reanalyzed the acoustic-gravity waves and corrected the first arrival times of Mikumo et al. (2008 by up to 20 min. We found the source of the first arriving acoustic-gravity wave about 300 km to the north of the US Geological Survey earthquake epicenter. This confirms the result of Mikumo et al. (2008 that sea level changes at the earthquake source cause long period acoustic-gravity waves, which indicate that a tsunami was generated. Therefore, a denser local network of infrasound stations may be helpful for tsunami warnings, not only for very large earthquakes.

  2. Tsunamis detection, monitoring, and early-warning technologies

    CERN Document Server

    Joseph, Antony

    2011-01-01

    The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most devastating tsunami in over 400 years of recorded history. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis.

  3. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Introduction to “Global tsunami science: Past and future, Volume III”

    Science.gov (United States)

    Rabinovich, Alexander B.; Fritz, Hermann M.; Tanioka, Yuichiro; Geist, Eric L.

    2018-01-01

    Twenty papers on the study of tsunamis are included in Volume III of the PAGEOPH topical issue “Global Tsunami Science: Past and Future”. Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 and Volume II as PAGEOPH, vol. 174, No. 8, 2017. Two papers in Volume III focus on specific details of the 2009 Samoa and the 1923 northern Kamchatka tsunamis; they are followed by three papers related to tsunami hazard assessment for three different regions of the world oceans: South Africa, Pacific coast of Mexico and the northwestern part of the Indian Ocean. The next six papers are on various aspects of tsunami hydrodynamics and numerical modelling, including tsunami edge waves, resonant behaviour of compressible water layer during tsunamigenic earthquakes, dispersive properties of seismic and volcanically generated tsunami waves, tsunami runup on a vertical wall and influence of earthquake rupture velocity on maximum tsunami runup. Four papers discuss problems of tsunami warning and real-time forecasting for Central America, the Mediterranean coast of France, the coast of Peru, and some general problems regarding the optimum use of the DART buoy network for effective real-time tsunami warning in the Pacific Ocean. Two papers describe historical and paleotsunami studies in the Russian Far East. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: asteroid airburst and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  5. Oceanic Weather Decision Support for Unmanned Global Hawk Science Missions into Hurricanes with Tailored Satellite Derived Products

    Science.gov (United States)

    Feltz, Wayne; Griffin, Sarah; Velden, Christopher; Zipser, Ed; Cecil, Daniel; Braun, Scott

    2017-04-01

    The purpose of this presentation is to identify in-flight hazards to high-altitude aircraft, namely the Global Hawk. The Global Hawk was used during Septembers 2012-2016 as part of two NASA funded Hurricane Sentinel-3 field campaigns to over-fly hurricanes in the Atlantic Ocean. This talk identifies the cause of severe turbulence experienced over Hurricane Emily (2005) and how a combination of NOAA funded GOES-R algorithm derived cloud top heights/tropical overshooting tops using GOES-13/SEVIRI imager radiances, and lightning information are used to identify areas of potential turbulence for near real-time navigation decision support. Several examples will demonstrate how the Global Hawk pilots remotely received and used real-time satellite derived cloud and lightning detection information to keep the aircraft safely above clouds and avoid regions of potential turbulence.

  6. Hurricane Wilma Poster (October 24, 2005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Wilma poster. Multi-spectral image from NOAA-18 shows Hurricane Wilma exiting Florida off the east Florida coast on October 24, 2005. Poster size is 34"x30".

  7. The Historical Context of the 2017 Hurricane Season's Ocean Warmth

    Science.gov (United States)

    Jacobs, P.; Akella, S.; Trenberth, K. E.; Lijing, C.; Abraham, J. P.

    2017-12-01

    Public discussion of the unusually active 2017 North Atlantic Hurricane Season quickly focused on the role of sea surface temperatures (SSTs) in the North Atlantic. Some meteorologists characterized them as near-normal, while climate-focused voices tended to characterize them as warmer than average, placing them in the context of anthropogenic warming. Much of this divergence in views can be explained by the relatively recent, relatively warm baseline (1981-2010) used for daily SST information, such as provided by OISSTv2. Longer term records of SSTs, such as HadISST, HadSST, and ERSST only attempt to provide monthly averages, while tropical cyclones have lifetimes on the timescale of days. Further, hurricanes create a cold wake which can impact storm movement and intensity, as well as subsequent storms, but is gradually wiped out by the sun. This process is further complicated by the role of ocean heat content (OHC), an increase in which can mitigate the impact of upwelled water. Here we examine the statistical characteristics of daily SSTs and OHC during the satellite record, including their temporal autocorrelation, and use this information in conjunction with longer term monthly records to bound what we can and cannot confidently say about the longer term historical context of the storms Harvey, Irma, and Maria.

  8. Westport, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Virginia Beach Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Monterey, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Marshall Islands Fringing Reef and Atoll Lagoon Observations of the Tohoku Tsunami

    Science.gov (United States)

    Ford, Murray; Becker, Janet M.; Merrifield, Mark A.; Song, Y. Tony

    2014-12-01

    The magnitude 9.0 Tohoku earthquake on 11 March 2011 generated a tsunami which caused significant impacts throughout the Pacific Ocean. A description of the tsunami within the lagoons and on the surrounding fringing reefs of two mid-ocean atoll islands is presented using bottom pressure observations from the Majuro and Kwajalein atolls in the Marshall Islands, supplemented by tide gauge data in the lagoons and by numerical model simulations in the deep ocean. Although the initial wave arrival was not captured by the pressure sensors, subsequent oscillations on the reef face resemble the deep ocean tsunami signal simulated by two numerical models, suggesting that the tsunami amplitudes over the atoll outer reefs are similar to that in deep water. In contrast, tsunami oscillations in the lagoon are more energetic and long lasting than observed on the reefs or modelled in the deep ocean. The tsunami energy in the Majuro lagoon exhibits persistent peaks in the 30 and 60 min period bands that suggest the excitation of closed and open basin normal modes, while energy in the Kwajalein lagoon spans a broader range of frequencies with weaker, multiple peaks than observed at Majuro, which may be associated with the tsunami behavior within the more irregular geometry of the Kwajalein lagoon. The propagation of the tsunami across the reef flats is shown to be tidally dependent, with amplitudes increasing/decreasing shoreward at high/low tide. The impact of the tsunami on the Marshall Islands was reduced due to the coincidence of peak wave amplitudes with low tide; however, the observed wave amplitudes, particularly in the atoll lagoon, would have led to inundation at different tidal phases.

  13. Transformation of tsunami waves passing through the Straits of the Kuril Islands

    Science.gov (United States)

    Kostenko, Irina; Kurkin, Andrey; Pelinovsky, Efim; Zaytsev, Andrey

    2015-04-01

    Pacific ocean and themselves Kuril Islands are located in the zone of high seismic activity, where underwater earthquakes cause tsunamis. They propagate across Pacific ocean and penetrates into the Okhotsk sea. It is natural to expect that the Kuril Islands reflect the Okhotsk sea from the Pacific tsunami waves. It has long been noted that the historical tsunami appeared less intense in the sea of Okhotsk in comparison with the Pacific coast of the Kuril Islands. Despite the fact that in the area of the Kuril Islands and in the Pacific ocean earthquakes with magnitude more than 8 occur, in the entire history of observations on the Okhotsk sea coast catastrophic tsunami was not registered. The study of the peculiarities of the propagation of historical and hypothetical tsunami in the North-Eastern part of the Pacific ocean was carried out in order to identify level of effect of the Kuril Islands and Straits on them. Tsunami sources were located in the Okhotsk sea and in the Pacific ocean. For this purpose, we performed a series of computational experiments using two bathymetries: 1) with use Kuril Islands; 2) without Kuril Islands. Magnitude and intensity of the tsunami, obtained during numerical simulation of height, were analyzed. The simulation results are compared with the observations. Numerical experiments have shown that in the simulation without the Kuril Islands tsunamis in the Okhotsk sea have higher waves, and in the Central part of the sea relatively quickly damped than in fact. Based on shallow-water equation tsunami numerical code NAMI DANCE was used for numerical simulations. This work was supported by ASTARTE project.

  14. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  15. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. Newport, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  17. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  20. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. A Hybrid Tsunami Risk Model for Japan

    Science.gov (United States)

    Haseemkunju, A. V.; Smith, D. F.; Khater, M.; Khemici, O.; Betov, B.; Scott, J.

    2014-12-01

    Around the margins of the Pacific Ocean, denser oceanic plates slipping under continental plates cause subduction earthquakes generating large tsunami waves. The subducting Pacific and Philippine Sea plates create damaging interplate earthquakes followed by huge tsunami waves. It was a rupture of the Japan Trench subduction zone (JTSZ) and the resultant M9.0 Tohoku-Oki earthquake that caused the unprecedented tsunami along the Pacific coast of Japan on March 11, 2011. EQECAT's Japan Earthquake model is a fully probabilistic model which includes a seismo-tectonic model describing the geometries, magnitudes, and frequencies of all potential earthquake events; a ground motion model; and a tsunami model. Within the much larger set of all modeled earthquake events, fault rupture parameters for about 24000 stochastic and 25 historical tsunamigenic earthquake events are defined to simulate tsunami footprints using the numerical tsunami model COMCOT. A hybrid approach using COMCOT simulated tsunami waves is used to generate inundation footprints, including the impact of tides and flood defenses. Modeled tsunami waves of major historical events are validated against observed data. Modeled tsunami flood depths on 30 m grids together with tsunami vulnerability and financial models are then used to estimate insured loss in Japan from the 2011 tsunami. The primary direct report of damage from the 2011 tsunami is in terms of the number of buildings damaged by municipality in the tsunami affected area. Modeled loss in Japan from the 2011 tsunami is proportional to the number of buildings damaged. A 1000-year return period map of tsunami waves shows high hazard along the west coast of southern Honshu, on the Pacific coast of Shikoku, and on the east coast of Kyushu, primarily associated with major earthquake events on the Nankai Trough subduction zone (NTSZ). The highest tsunami hazard of more than 20m is seen on the Sanriku coast in northern Honshu, associated with the JTSZ.

  6. The Pacific Tsunami Warning Center's Response to the Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Weinstein, S. A.; Becker, N. C.; Shiro, B.; Koyanagi, K. K.; Sardina, V.; Walsh, D.; Wang, D.; McCreery, C. S.; Fryer, G. J.; Cessaro, R. K.; Hirshorn, B. F.; Hsu, V.

    2011-12-01

    The largest Pacific basin earthquake in 47 years, and also the largest magnitude earthquake since the Sumatra 2004 earthquake, struck off of the east coast of the Tohoku region of Honshu, Japan at 5:46 UTC on 11 March 2011. The Tohoku earthquake (Mw 9.0) generated a massive tsunami with runups of up to 40m along the Tohoku coast. The tsunami waves crossed the Pacific Ocean causing significant damage as far away as Hawaii, California, and Chile, thereby becoming the largest, most destructive tsunami in the Pacific Basin since 1960. Triggers on the seismic stations at Erimo, Hokkaido (ERM) and Matsushiro, Honshu (MAJO), alerted Pacific Tsunami Warning Center (PTWC) scientists 90 seconds after the earthquake began. Four minutes after its origin, and about one minute after the earthquake's rupture ended, PTWC issued an observatory message reporting a preliminary magnitude of 7.5. Eight minutes after origin time, the Japan Meteorological Agency (JMA) issued its first international tsunami message in its capacity as the Northwest Pacific Tsunami Advisory Center. In accordance with international tsunami warning system protocols, PTWC then followed with its first international tsunami warning message using JMA's earthquake parameters, including an Mw of 7.8. Additional Mwp, mantle wave, and W-phase magnitude estimations based on the analysis of later-arriving seismic data at PTWC revealed that the earthquake magnitude reached at least 8.8, and that a destructive tsunami would likely be crossing the Pacific Ocean. The earthquake damaged the nearest coastal sea-level station located 90 km from the epicenter in Ofunato, Japan. The NOAA DART sensor situated 600 km off the coast of Sendai, Japan, at a depth of 5.6 km recorded a tsunami wave amplitude of nearly two meters, making it by far the largest tsunami wave ever recorded by a DART sensor. Thirty minutes later, a coastal sea-level station at Hanasaki, Japan, 600 km from the epicenter, recorded a tsunami wave amplitude of

  7. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  8. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  9. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  10. Homer, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  11. Eureka, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eureka, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  13. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  14. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  15. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  16. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  17. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  18. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  19. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  20. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  1. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  2. Characteristics of Recent Tsunamis

    Science.gov (United States)

    Sweeney, A. D.; Eble, M. C.; Mungov, G.

    2017-12-01

    How long do tsunamis impact a coast? How often is the largest tsunami wave the first to arrive? How do measurements in the far field differ from those made close to the source? Extending the study of Eblé et al. (2015) who showed the prevalence of a leading negative phase, we assimilate and summarize characteristics of known tsunami events recorded on bottom pressure and coastal water level stations throughout the world oceans to answer these and other questions. An extensive repository of data from the National Centers for Environmental Information (NCEI) archive for tsunami-ready U.S. tide gauge stations, housing more than 200 sites going back 10 years are utilized as are some of the more 3000 marigrams (analog or paper tide gauge records) for tsunami events. The focus of our study is on five tsunamis generated by earthquakes: 2010 Chile (Maule), 2011 East Japan (Tohoku), 2012 Haida Gwaii, 2014 Chile (Iquique), and 2015 Central Chile and one meteorologically generated tsunami on June 2013 along the U.S. East Coast and Caribbean. Reference: Eblé, M., Mungov, G. & Rabinovich, A. On the Leading Negative Phase of Major 2010-2014 Tsunamis. Pure Appl. Geophys. (2015) 172: 3493. https://doi.org/10.1007/s00024-015-1127-5

  3. 2005 Significant U.S. Hurricane Strikes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Significant U.S. Hurricane Strikes poster is one of two special edition posters for the Atlantic Hurricanes. This beautiful poster contains two sets of...

  4. Numerical modelling and evacuation strategies for tsunami awareness: lessons from the 2012 Haida Gwaii Tsunami

    Directory of Open Access Journals (Sweden)

    Angela Santos

    2016-07-01

    Full Text Available On October 28, 2012, an earthquake occurred offshore Canada, with a magnitude Mw of 7.8, triggering a tsunami that propagated through the Pacific Ocean. The tsunami numerical model results show it would not be expected to generate widespread inundation on Hawaii. Yet, two hours after the earthquake, the Pacific Tsunami Warning Centre (PTWC issued a tsunami warning to the state of Hawaii. Since the state was hit by several tsunamis in the past, regular siren exercises, tsunami hazard maps and other prevention measures are available for public use, revealing that residents are well prepared regarding tsunami evacuation procedures. Nevertheless, residents and tourists evacuated mostly by car, and because of that, heavy traffic was reported, showing that it was a non-viable option for evacuation. The tsunami caused minor damages on the coastline, and several car accidents were reported, with one fatality. In recent years, there has been a remarkable interest in tsunami impacts. However, if risk planners seem to be very knowledgeable about how to avoid or mitigate their potential harmful effects, they seem to disregard its integration with other sectors of human activity and other social factors.

  5. Supply chain tsunamis : Research on low-probability, high-impact disruptions

    NARCIS (Netherlands)

    Akkermans, Henk; van Wassenhove, L.N.

    This study introduces supply chain tsunamis as a major strategic supply chain phenomenon. Like their ecological counterparts, supply chain tsunamis occur at relatively long intervals and are therefore easily mistaken for unique events, rather than recurring phenomena. In contrast to ocean tsunamis,

  6. The tsunami phenomenon

    Science.gov (United States)

    Röbke, B. R.; Vött, A.

    2017-12-01

    With human activity increasingly concentrating on coasts, tsunamis (from Japanese tsu = harbour, nami = wave) are a major natural hazard to today's society. Stimulated by disastrous tsunami impacts in recent years, for instance in south-east Asia (2004) or in Japan (2011), tsunami science has significantly flourished, which has brought great advances in hazard assessment and mitigation plans. Based on tsunami research of the last decades, this paper provides a thorough treatise on the tsunami phenomenon from a geoscientific point of view. Starting with the wave features, tsunamis are introduced as long shallow water waves or wave trains crossing entire oceans without major energy loss. At the coast, tsunamis typically show wave shoaling, funnelling and resonance effects as well as a significant run-up and backflow. Tsunami waves are caused by a sudden displacement of the water column due to a number of various trigger mechanisms. Such are earthquakes as the main trigger, submarine and subaerial mass wastings, volcanic activity, atmospheric disturbances (meteotsunamis) and cosmic impacts, as is demonstrated by giving corresponding examples from the past. Tsunamis are known to have a significant sedimentary and geomorphological off- and onshore response. So-called tsunamites form allochthonous high-energy deposits that are left at the coast during tsunami landfall. Tsunami deposits show typical sedimentary features, as basal erosional unconformities, fining-upward and -landward, a high content of marine fossils, rip-up clasts from underlying units and mud caps, all reflecting the hydrodynamic processes during inundation. The on- and offshore behaviour of tsunamis and related sedimentary processes can be simulated using hydro- and morphodynamic numerical models. The paper provides an overview of the basic tsunami modelling techniques, including discretisation, guidelines for appropriate temporal and spatial resolution as well as the nesting method. Furthermore, the

  7. Continental United States Hurricane Strikes 1950-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Continental U.S. Hurricane Strikes Poster is our most popular poster which is updated annually. The poster includes all hurricanes that affected the U.S. since...

  8. Tsunamis: stochastic models of occurrence and generation mechanisms

    Science.gov (United States)

    Geist, Eric L.; Oglesby, David D.

    2014-01-01

    The devastating consequences of the 2004 Indian Ocean and 2011 Japan tsunamis have led to increased research into many different aspects of the tsunami phenomenon. In this entry, we review research related to the observed complexity and uncertainty associated with tsunami generation, propagation, and occurrence described and analyzed using a variety of stochastic methods. In each case, seismogenic tsunamis are primarily considered. Stochastic models are developed from the physical theories that govern tsunami evolution combined with empirical models fitted to seismic and tsunami observations, as well as tsunami catalogs. These stochastic methods are key to providing probabilistic forecasts and hazard assessments for tsunamis. The stochastic methods described here are similar to those described for earthquakes (Vere-Jones 2013) and volcanoes (Bebbington 2013) in this encyclopedia.

  9. Excitation of tsunami by a pure strike-slip earthquake. ; Izu Oshima kinkai earthquake tsunami on Feb. 20, 1990. Yokozure danso jishin ni yoru tsunami no reiki. ; 1990 nen 2 gatsu 20 nichi Izu Oshima kinkai jishin tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. (Nippon Dental University, Tokyo (Japan). Niigata Junior College); Okada, M. (Meteorological Research Institute, Tsukuba (Japan))

    1993-06-24

    A numerical experiment was performed to reproduce the tsunami from the Izu-Oshima Kinkai Earthquake which occurred on February 20, 1990, using a tsunami excited by a pure strike-slip fault. An existence of a vertical fault with a length of 15 km and a width of 12 km was hypothesized in the south-north direction on the ocean bottom around the focal region. Then, a tsunami was assumed to have been excited when the fault was given a side-slip movement to create discrepancies of 1 m in the fault. Water level change for one hour after onset of the tsunami was calculated in one-second interval in each unit square with a side length of 1 km over an ocean area of 200 km from east to west and 150 km from north to south centering on the wave source. The results obtained from the calculation were harmonious with tsunami waveforms observed at five stations in the subject region and their spectral analytic results. Reproduced were the two predominant frequencies commonly observed at more than two stations, and difference in predominant cycles that appear according to azimuths of the observation points to the epicenter. These facts endorse the reasonability of the above hypothesis. 9 refs., 11 figs.

  10. The Indian Ocean tsunami and private donations to NGOs.

    Science.gov (United States)

    Kim, Youngwan; Nunnenkamp, Peter; Bagchi, Chandreyee

    2016-10-01

    Non-governmental organisations (NGOs) are widely believed to raise their flag in humanitarian hotspots with a strong media presence in order to attract higher private donations. We assess this hypothesis by comparing the changes in donations between US-based NGOs with and without aid operations in the four countries most affected by the tsunami in the Indian Ocean in 2004. Simple before-after comparisons tend to support the hypothesis that 'flying the flag' helps attract higher private donations. However, performing a difference-in-difference-in-differences (DDD) approach, we find only weak indications that private donors systematically and strongly preferred NGOs with operations in the region. Extended specifications of the baseline regressions reveal that our major findings are robust. NGO heterogeneity matters in some respects, but the DDD results hold when accounting for proxies of the NGOs' reputation and experience. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  11. Can undersea voltage measurements detect tsunamis?

    Digital Repository Service at National Institute of Oceanography (India)

    Manoj, C.; Kuvshinov, A.; Neetu, S.; Harinarayana, T.

    the temporal variations of these electric fields? To answer these questions, we use a barotropic tsunami model and a state-of-the-art 3-D EM induction code to simulate the electric and magnetic fields generated by the Indian Ocean Tsunami. We will first...). The 4 C. MANOJ et al.: TSUNAMI GENERATED ELECTRIC FIELDS solution allows for simulating electromagnetic (EM) field in a spherical models of the Earth with three-dimensional (3-D) distribution of electrical conductivity. These models consist of a number...

  12. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  13. Los Angeles, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Los Angeles, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Crescent City, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  15. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  18. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  19. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Use of Advanced Tsunami Hazard Assessment Techniques and Tsunami Source Characterizations in U.S. and International Nuclear Regulatory Activities

    Science.gov (United States)

    Kammerer, A. M.; Godoy, A. R.

    2009-12-01

    In response to the 2004 Indian Ocean Tsunami, as well as the anticipation of the submission of license applications for new nuclear facilities, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear power plants and other coastal facilities in the United States. To undertake this effort, the US NRC organized a collaborative research program jointly undertaken with researchers at the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) for the purpose of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. This study identified and modeled both seismic and landslide tsunamigenic sources in the near- and far-field. The results from this work are now being used directly as the basis for the review of tsunami hazard at potential nuclear plant sites. This application once again shows the importance that the earth sciences can play in addressing issues of importance to society. Because the Indian Ocean Tsunami was a global event, a number of cooperative international activities have also been initiated within the nuclear community. The results of US efforts are being incorporated into updated regulatory guidance for both the U.S. Nuclear Regulatory Commission and the United Nation’s International Atomic Energy Agency (IAEA). Coordinated efforts are underway to integrate state-of-the art tsunami warning tools developed by NOAA into NRC and IAEA activities. The goal of the warning systems project is to develop automated protocols that allow scientists at these agencies to have up-to-the minute user-specific information in hand shortly after a potential tsunami has been identified by the US Tsunami Warning System. Lastly, USGS and NOAA scientists are assisting the NRC and IAEA in a special Extra-Budgetary Program (IAEA EBP) on tsunami being coordinated by the IAEA’s International Seismic Safety

  1. Humanitarian Logistics - A new form of logistics?

    CSIR Research Space (South Africa)

    Ittmann, HW

    2005-08-01

    Full Text Available , New York, USA square4 26 December 2004, Indian Ocean Region square4 29 August 2005, Hurricane Catherine, New Orleans, USA square4 ……….Tsunami, Darfur, Hurricanes, Earthquakes, South African Food Crises, HIV/AIDS pandemic…….. square4 Every year...

  2. Fajardo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fajardo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  3. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  4. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  6. Arena Cove, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arena Cove, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  8. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  11. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. La Push, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. National Geophysical Data Center Tsunami Data Archive

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Brocko, R.

    2008-12-01

    NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology long-term tsunami data archive provides data and derived products essential for tsunami hazard assessment, forecast and warning, inundation modeling, preparedness, mitigation, education, and research. As a result of NOAA's efforts to strengthen its tsunami activities, the long-term tsunami data archive has grown from less than 5 gigabyte in 2004 to more than 2 terabytes in 2008. The types of data archived for tsunami research and operation activities have also expanded in fulfillment of the P.L. 109-424. The archive now consists of: global historical tsunami, significant earthquake and significant volcanic eruptions database; global tsunami deposits and proxies database; reference database; damage photos; coastal water-level data (i.e. digital tide gauge data and marigrams on microfiche); bottom pressure recorder (BPR) data as collected by Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys. The tsunami data archive comes from a wide variety of data providers and sources. These include the NOAA Tsunami Warning Centers, NOAA National Data Buoy Center, NOAA National Ocean Service, IOC/NOAA International Tsunami Information Center, NOAA Pacific Marine Environmental Laboratory, U.S. Geological Survey, tsunami catalogs, reconnaissance reports, journal articles, newspaper articles, internet web pages, and email. NGDC has been active in the management of some of these data for more than 50 years while other data management efforts are more recent. These data are openly available, either directly on-line or by contacting NGDC. All of the NGDC tsunami and related databases are stored in a relational database management system. These data are accessible over the Web as tables, reports, and interactive maps. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes

  17. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Bar Harbor, ME Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bar Harbor, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  20. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. 2004 INDIAN OCEAN TSUNAMI ON THE MALDIVES ISLANDS: INITIAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Barbara H. Keating

    2005-01-01

    Full Text Available Post-tsunami field surveys of the Maldives Islands where carried out to document the effects of the tsunami inundation. The study area was situated in the islands of South Male Atoll that were some of the most heavily damaged islands of the Maldive Islands. The tsunami damaged the natural environment, vegetation, man-made structures, and residents. The maximum tsunami wave height was 3-4 m. This level of inundation exceeded the height of most residents. The wave height was greatest on the eastern rim of the South Male Atoll (closest to the tsunami source and these islands were completely flooded. The islands within the interior of the atoll saw the lowest wave heights, and these were only marginally flooded.Surveys of flood lines left on the exterior and interior of structures were measured but proved to be substantially less than that reported by survivors. It appears that the highest inundation was not preserved as flood lines. We suggest that the turbulence associated with the tsunami inundation erased the highest lines or that they did not form due to an absence of debris and organic compounds that acted as adhesion during the initial flooding.Significant erosion was documented. Deposition took place in the form of sand sheets while only desultory deposition of coral clasts in marginal areas was found. Seasonal erosion, and storms are likely to remove most or all of the traces of the tsunami within these islands.

  2. Worldwide historical hurricane tracks from 1848 through the previous hurricane season

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Historical Hurricane Tracks web site provides visualizations of storm tracks derived from the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and...

  3. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  4. GPS water level measurements for Indonesia's Tsunami Early Warning System

    Directory of Open Access Journals (Sweden)

    T. Schöne

    2011-03-01

    Full Text Available On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements.

    The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS (Rudloff et al., 2009 combines GPS technology and ocean bottom pressure (OBP measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information.

    The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  5. NOAA/West coast and Alaska Tsunami warning center Atlantic Ocean response criteria

    Science.gov (United States)

    Whitmore, P.; Refidaff, C.; Caropolo, M.; Huerfano-Moreno, V.; Knight, W.; Sammler, W.; Sandrik, A.

    2009-01-01

    West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakesoccurring in the Atlantic and Caribbean basins are presented. Initial warning center decisions are based on an earthquake's location, magnitude, depth, distance from coastal locations, and precomputed threat estimates based on tsunami models computed from similar events. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of sub-sea landslides).The new criteria require development of a threat data base which sets warning or advisory zones based on location, magnitude, and pre-computed tsunami models. The models determine coastal tsunami amplitudes based on likely tsunami source parameters for a given event. Based on the computed amplitude, warning and advisory zones are pre-set.

  6. Coastal Hazards: Hurricanes, Tsunamis, Coastal Erosion.

    Science.gov (United States)

    Vandas, Steve

    1998-01-01

    Details an ocean-based lesson and provides background information on the designation of 1998 as the "Year of the Ocean" by the United Nations. Contains activities on the poster insert that can help raise student awareness of coastal-zone hazards. (DDR)

  7. CO-OPS 1-minute Raw Tsunami Water Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CO-OPS has been involved with tsunami warning and mitigation since the Coast and Geodetic Survey started the Tsunami Warning System in 1948 to provide warnings to...

  8. Tracks of Major Hurricanes of the Western Hemisphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36"x24" National Hurricane Center poster depicts the complete tracks of all major hurricanes in the north Atlantic and eastern north Pacific basins since as...

  9. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  10. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Pago Pago, American Samoa Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pago Pago, American Samoa Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  12. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  13. Atlantic City, New Jersey Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic City, New Jersey Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  15. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached the...

  17. The First Real-Time Tsunami Animation

    Science.gov (United States)

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  18. Tsunami Propagation Models Based on First Principles

    Science.gov (United States)

    2012-11-21

    geodesic lines from the epicenter shown in the figure are great circles with a longitudinal separation of 90o, which define a ‘ lune ’ that covers one...past which the waves begin to converge according to Model C. A tsunami propagating in this lune does not encounter any continental landmass until...2011 Japan tsunami in a lune of angle 90o with wavefronts at intervals of 5,000 km The 2011 Japan tsunami was felt throughout the Pacific Ocean

  19. A real two-phase submarine debris flow and tsunami

    International Nuclear Information System (INIS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-01-01

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  20. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  1. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. EFFECTS OF MEDU AND COASTAL TOPOGRAPHY ON THE DAMAGE PATTERN DURING THE RECENT INDIAN OCEAN TSUNAMI ALONG THE COAST OF TAMILNADU

    Directory of Open Access Journals (Sweden)

    J.P. Narayan

    2005-01-01

    Full Text Available Effects of Medu (naturally elevated landmass very close to the seashore and elongated parallel to the coast and coastal topography on the damage pattern during the deadliest Indian Ocean tsunami of December 26, 2004 is reported. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries bordering the Indian Ocean. The damage survey revealed large variation in damage along the coastal region of Tamilnadu (India.The most severe damage was observed in the Nagapattinam district on the east coast and the west coast of Kanyakumari district. Decrease of damage from Nagapattinam to Kanchipuram district was observed. Intense damage again appeared to the north of Adyar River (from Srinivaspuri to Anna Samadhi Park. Almost, no damage was observed along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts in Palk Strait, situated in the shadow zone of Sri Lanka.It was concluded that the width of continental shelf has played a major role in the pattern of tsunami damage. It was inferred that the width of the continental shelf and the interference of reflected waves from Sri Lanka and Maldives Islands with direct waves and receding waves was responsible for intense damage in Nagapattinam and Kanyakumari districts, respectively. During the damage survey authors also noted that there was almost no damage or much lesser damage to houses situated on or behind the Medu. Many people observed the first arrival. The largest tsunami amplitude occurred as the first arrival on the eastern coast and in the second arrival on the western coast.

  3. Coastal hazards: hurricanes, tsunamis, coastal erosion

    Science.gov (United States)

    Vandas, Stephen; Mersfelder, Lynne; Farrar, Frank; France, Rigoberto Guardado; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Oceans are the largest geographic feature on the surface of the Earth, covering approximately 70% of the planet's surface. As a result, oceans have a tremendous impact on the Earth, its climate, and its inhabitants. The coast or shoreline is the boundary between ocean environments and land habitats. By the year 2025, it is estimated that approximately two-thirds of the world's population will be living within 200 kilometers of a coast. In many ways, we treat the coast just like any other type of land area, as a safe and stable place to live and play. However, coastal environments are dynamic, and they constantly change in response to natural processes and to human activities.

  4. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  5. Evaluation of Tsunami-HySEA for tsunami forecasting at selected locations in U.S.

    Science.gov (United States)

    Gonzalez Vida, J. M., Sr.; Ortega, S.; Castro, M. J.; de la Asuncion, M.; Arcas, D.

    2017-12-01

    The GPU-based Tsunami-HySEA model (Macias, J. et al., Pure and Applied Geophysics, 1-37, 2017, Lynett, P. et al., Ocean modeling, 114, 2017) is used to test four tsunami events: the January, 13, 2007 earthquake in Kuril islands (Mw 8.1), the September, 29, 2009 earthquake in Samoa (Mw 8.3), the February, 27, 2010 earthquake in Chile (Mw 9.8) and the March, 11, 2011 earthquake in Tohoku (Mw 9.0). Initial conditions have been provided by NOAA Center for Tsunami Research (NCTR) obtained from DART inversion results. All simulations have been performed using a global 4 arc-min grid of the Ocean Pacific and three nested-meshes levels around the selected locations. Wave amplitudes time series have been computed at selected tide gauges located at each location and maximum amplitudes compared with both MOST model results and observations where they are available. In addition, inundation also has been computed at selected U.S. locations for the 2011 Tohoku and 2009 Samoa events under the assumption of a steady mean high water level. Finally, computational time is also evaluated in order to study the operational capabilities of Tsunami-HySEA for these kind of events. Ackowledgements: This work has been funded by WE133R16SE1418 contract between PMEL (NOAA) and the Universidad de Málaga (Spain).

  6. Public Perceptions of Tsunamis and the NOAA TsunamiReady Program in Los Angeles

    Science.gov (United States)

    Rosati, A.

    2010-12-01

    After the devastating December 2004 Indian Ocean Tsunami, California and other coastal states began installing "Tsunami Warning Zone" and "Evacuation Route" signs at beaches and major access roads. The geography of the Los Angeles area may not be conducive to signage alone for communication of the tsunami risk and safety precautions. Over a year after installation, most people surveyed did not know about or recognize the tsunami signs. More alarming is that many did not believe a tsunami could occur in the area even though earthquake generated waves have reached nearby beaches as recently as September 2009! UPDATE: FEB. 2010. Fifty two percent of the 147 people surveyed did not believe they would survive a natural disaster in Los Angeles. Given the unique geography of Los Angeles, how can the city and county improve the mental health of its citizens before and after a natural disaster? This poster begins to address the issues of community self-efficacy and resiliency in the face of tsunamis. Of note for future research, the data from this survey showed that most people believed climate change would increase the occurrence of tsunamis. Also, the public understanding of water inundation was disturbingly low. As scientists, it is important to understand the big picture of our research - how it is ultimately communicated, understood, and used by the public.

  7. Signals in the ionosphere generated by tsunami earthquakes: observations and modeling suppor

    Science.gov (United States)

    Rolland, L.; Sladen, A.; Mikesell, D.; Larmat, C. S.; Rakoto, V.; Remillieux, M.; Lee, R.; Khelfi, K.; Lognonne, P. H.; Astafyeva, E.

    2017-12-01

    Forecasting systems failed to predict the magnitude of the 2011 great tsunami in Japan due to the difficulty and cost of instrumenting the ocean with high-quality and dense networks. Melgar et al. (2013) show that using all of the conventional data (inland seismic, geodetic, and tsunami gauges) with the best inversion method still fails to predict the correct height of the tsunami before it breaks onto a coast near the epicenter (Even though typical tsunami waves are only a few centimeters high, they are powerful enough to create atmospheric vibrations extending all the way to the ionosphere, 300 kilometers up in the atmosphere. Therefore, we are proposing to incorporate the ionospheric signals into tsunami early-warning systems. We anticipate that the method could be decisive for mitigating "tsunami earthquakes" which trigger tsunamis larger than expected from their short-period magnitude. These events are challenging to characterize as they rupture the near-trench subduction interface, in a distant region less constrained by onshore data. As a couple of devastating tsunami earthquakes happens per decade, they represent a real threat for onshore populations and a challenge for tsunami early-warning systems. We will present the TEC observations of the recent Java 2006 and Mentawaii 2010 tsunami earthquakes and base our analysis on acoustic ray tracing, normal modes summation and the simulation code SPECFEM, which solves the wave equation in coupled acoustic (ocean, atmosphere) and elastic (solid earth) domains. Rupture histories are entered as finite source models, which will allow us to evaluate the effect of a relatively slow rupture on the surrounding ocean and atmosphere.

  8. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    Science.gov (United States)

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  9. Tsunamis and marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    The 26 December 2004 tsunami in the Indian Ocean exerted far reaching temporal and spatial impacts on marine biota. Our synthesis was based on satellite data acquired by the Laboratory for Tropical Marine Environmental Dynamics (LED) of the South...

  10. Scientific Animations for Tsunami Hazard Mitigation: The Pacific Tsunami Warning Center's YouTube Channel

    Science.gov (United States)

    Becker, N. C.; Wang, D.; Shiro, B.; Ward, B.

    2013-12-01

    Outreach and education save lives, and the Pacific Tsunami Warning Center (PTWC) has a new tool--a YouTube Channel--to advance its mission to protect lives and property from dangerous tsunamis. Such outreach and education is critical for coastal populations nearest an earthquake since they may not get an official warning before a tsunami reaches them and will need to know what to do when they feel strong shaking. Those who live far enough away to receive useful official warnings and react to them, however, can also benefit from PTWC's education and outreach efforts. They can better understand a tsunami warning message when they receive one, can better understand the danger facing them, and can better anticipate how events will unfold while the warning is in effect. The same holds true for emergency managers, who have the authority to evacuate the public they serve, and for the news media, critical partners in disseminating tsunami hazard information. PTWC's YouTube channel supplements its formal outreach and education efforts by making its computer animations available 24/7 to anyone with an Internet connection. Though the YouTube channel is only a month old (as of August 2013), it should rapidly develop a large global audience since similar videos on PTWC's Facebook page have reached over 70,000 viewers during organized media events, while PTWC's official web page has received tens of millions of hits during damaging tsunamis. These animations are not mere cartoons but use scientific data and calculations to render graphical depictions of real-world phenomena as accurately as possible. This practice holds true whether the animation is a simple comparison of historic earthquake magnitudes or a complex simulation cycling through thousands of high-resolution data grids to render tsunami waves propagating across an entire ocean basin. PTWC's animations fall into two broad categories. The first group illustrates concepts about seismology and how it is critical to

  11. Tsunami-hazard assessment based on subaquatic slope-failure susceptibility and tsunami-inundation modeling

    Science.gov (United States)

    Anselmetti, Flavio; Hilbe, Michael; Strupler, Michael; Baumgartner, Christoph; Bolz, Markus; Braschler, Urs; Eberli, Josef; Liniger, Markus; Scheiwiller, Peter; Strasser, Michael

    2015-04-01

    Due to their smaller dimensions and confined bathymetry, lakes act as model oceans that may be used as analogues for the much larger oceans and their margins. Numerous studies in the perialpine lakes of Central Europe have shown that their shores were repeatedly struck by several-meters-high tsunami waves, which were caused by subaquatic slides usually triggered by earthquake shaking. A profound knowledge of these hazards, their intensities and recurrence rates is needed in order to perform thorough tsunami-hazard assessment for the usually densely populated lake shores. In this context, we present results of a study combining i) basinwide slope-stability analysis of subaquatic sediment-charged slopes with ii) identification of scenarios for subaquatic slides triggered by seismic shaking, iii) forward modeling of resulting tsunami waves and iv) mapping of intensity of onshore inundation in populated areas. Sedimentological, stratigraphical and geotechnical knowledge of the potentially unstable sediment drape on the slopes is required for slope-stability assessment. Together with critical ground accelerations calculated from already failed slopes and paleoseismic recurrence rates, scenarios for subaquatic sediment slides are established. Following a previously used approach, the slides are modeled as a Bingham plastic on a 2D grid. The effect on the water column and wave propagation are simulated using the shallow-water equations (GeoClaw code), which also provide data for tsunami inundation, including flow depth, flow velocity and momentum as key variables. Combining these parameters leads to so called «intensity maps» for flooding that provide a link to the established hazard mapping framework, which so far does not include these phenomena. The current versions of these maps consider a 'worst case' deterministic earthquake scenario, however, similar maps can be calculated using probabilistic earthquake recurrence rates, which are expressed in variable amounts of

  12. Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green's Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan

    Science.gov (United States)

    Sandanbata, Osamu; Watada, Shingo; Satake, Kenji; Fukao, Yoshio; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime

    2018-04-01

    Ray tracing, which has been widely used for seismic waves, was also applied to tsunamis to examine the bathymetry effects during propagation, but it was limited to linear shallow-water waves. Green's law, which is based on the conservation of energy flux, has been used to estimate tsunami amplitude on ray paths. In this study, we first propose a new ray tracing method extended to dispersive tsunamis. By using an iterative algorithm to map two-dimensional tsunami velocity fields at different frequencies, ray paths at each frequency can be traced. We then show that Green's law is valid only outside the source region and that extension of Green's law is needed for source amplitude estimation. As an application example, we analyzed tsunami waves generated by an earthquake that occurred at a submarine volcano, Smith Caldera, near Torishima, Japan, in 2015. The ray-tracing results reveal that the ray paths are very dependent on its frequency, particularly at deep oceans. The validity of our frequency-dependent ray tracing is confirmed by the comparison of arrival angles and travel times with those of observed tsunami waveforms at an array of ocean bottom pressure gauges. The tsunami amplitude at the source is nearly twice or more of that just outside the source estimated from the array tsunami data by Green's law.

  13. TSUNAMIGENIC SOURCES IN THE INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    B. K. Rastogi

    2008-01-01

    Full Text Available Based on an assessment of the repeat periods of great earthquakes from past seismicity, convergence rates and paleoseismological results, possible future source zones of tsunami generating earthquakes in the Indian Ocean (possible seismic gap areas are identified along subduction zones and zones of compression. Central Sumatra, Java, Makran coast, Indus Delta, Kutch-Saurashtra, Bangladesh and southern Myanmar are identified as possible source zones of earthquakes in near future which might cause tsunamis in the Indian Ocean, and in particular, that could affect India. The Sunda Arc (covering Sumatra and Java subduction zone, situated on the eastern side of the Indian Ocean, is one of the most active plate margins in the world that generates frequent great earthquakes, volcanic eruptions and tsunamis. The Andaman- Nicobar group of islands is also a seismically active zone that generates frequent earthquakes. However, northern Sumatra and Andaman-Nicobar regions are assessed to be probably free from great earthquakes (M!8.0 for a few decades due to occurrence of 2004 Mw 9.3 and 2005 Mw 8.7 earthquakes. The Krakatau volcanic eruptions have caused large tsunamis in the past. This volcano and a few others situated on the ocean bed can cause large tsunamis in the future. List of past tsunamis generated due to earthquakes/volcanic eruptions that affected the Indian region and vicinity in the Indian Ocean are also presented.

  14. Hydrophysical manifestations of the Indian ocean tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, T.V.R.; Rao, B.P.

    described in detail by several authors. This chapter summarises the results of our investigations on the hydrophysical manifestations (salinity and temperature, coastal currents, internal waves, etc.) of the tsunami on the coastal environments in India...

  15. The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)

    Science.gov (United States)

    Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.

    2017-12-01

    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast

  16. New approaches in geological studies of tsunami deposits

    Science.gov (United States)

    Szczucinski, Witold

    2017-04-01

    During the last dozen of years tsunamis have appeared to be the most disastrous natural process worldwide. The dramatic, large tsunamis on Boxing Day, 2004 in the Indian Ocean and on March 11, 2011 offshore Japan caused catastrophes listed as the worst in terms of the number of victims and the economic losses, respectively. In the aftermath, they have become a topic of high public and scientific interest. The record of past tsunamis, mainly in form of tsunami deposits, is often the only way to identify tsunami risk at a particular coast due to relatively low frequency of their occurrence. The identification of paleotsunami deposits is often difficult mainly because the tsunami deposits are represented by various sediment types, may be similar to storm deposits or altered by post-depositional processes. There is no simple universal diagnostic set of criteria that can be applied to interpret tsunami deposits with certainty. Thus, there is a need to develop new methods, which would enhance 'classical', mainly sedimentological and stratigraphic approach. The objective of the present contribution is to show recent progress and application of new approaches including geochemistry (Chagué-Goff et al. 2017) and paleogenetics (Szczuciński et al. 2016) in studies of geological impacts of recent tsunamis from various geographical regions, namely in monsoonal-tropical, temperate and polar zones. It is mainly based on own studies of coastal zones affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami and older paleotsunamis in Japan, catastrophic saltwater inundations at the coasts of Baltic Sea and 2000 landslide-generated tsunami in Vaigat Strait (west Greenland). The study was partly funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553. Chagué-Goff C., Szczuciński W., Shinozaki T., 2017. Applications of geochemistry in tsunami research: A review. Earth-Science Reviews 165: 203-244. Szczuciński W., Pawłowska J., Lejzerowicz F

  17. A tsunami early warning system for the coastal area modeling

    Science.gov (United States)

    Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery

    2015-04-01

    The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.

  18. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  19. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined. ...... observations from the stepped frequency microwave radiometer (SFMR) on NOAA P3 aircraft. All the results show the capability of hurricane monitoring by satellite SAR. Copyright © 2013 by the International Society of Offshore and Polar Engineers (ISOPE)....

  20. Development of tsunami early warning systems and future challenges

    Directory of Open Access Journals (Sweden)

    J. Wächter

    2012-06-01

    Full Text Available Fostered by and embedded in the general development of information and communications technology (ICT, the evolution of tsunami warning systems (TWS shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors (e.g. tide gauges and buoys for the detection of tsunami waves in the ocean.

    Currently, the beginning implementation of regional tsunami warning infrastructures indicates a new phase in the development of TWS. A new generation of TWS should not only be able to realise multi-sensor monitoring for tsunami detection. Moreover, these systems have to be capable to form a collaborative communication infrastructure of distributed tsunami warning systems in order to implement regional, ocean-wide monitoring and warning strategies.

    In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS and in the EU-funded FP6 project Distant Early Warning System (DEWS, a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC and the Organization for the Advancement of Structured Information Standards (OASIS have been successfully incorporated.

    In the FP7 project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC, new developments in ICT (e.g. complex event processing (CEP and event-driven architecture (EDA are used to extend the existing platform to realise a component-based technology framework for building distributed tsunami warning systems.

  1. Tsunami Source Identification on the 1867 Tsunami Event Based on the Impact Intensity

    Science.gov (United States)

    Wu, T. R.

    2014-12-01

    The 1867 Keelung tsunami event has drawn significant attention from people in Taiwan. Not only because the location was very close to the 3 nuclear power plants which are only about 20km away from the Taipei city but also because of the ambiguous on the tsunami sources. This event is unique in terms of many aspects. First, it was documented on many literatures with many languages and with similar descriptions. Second, the tsunami deposit was discovered recently. Based on the literatures, earthquake, 7-meter tsunami height, volcanic smoke, and oceanic smoke were observed. Previous studies concluded that this tsunami was generated by an earthquake with a magnitude around Mw7.0 along the Shanchiao Fault. However, numerical results showed that even a Mw 8.0 earthquake was not able to generate a 7-meter tsunami. Considering the steep bathymetry and intense volcanic activities along the Keelung coast, one reasonable hypothesis is that different types of tsunami sources were existed, such as the submarine landslide or volcanic eruption. In order to confirm this scenario, last year we proposed the Tsunami Reverse Tracing Method (TRTM) to find the possible locations of the tsunami sources. This method helped us ruling out the impossible far-field tsunami sources. However, the near-field sources are still remain unclear. This year, we further developed a new method named 'Impact Intensity Analysis' (IIA). In the IIA method, the study area is divided into a sequence of tsunami sources, and the numerical simulations of each source is conducted by COMCOT (Cornell Multi-grid Coupled Tsunami Model) tsunami model. After that, the resulting wave height from each source to the study site is collected and plotted. This method successfully helped us to identify the impact factor from the near-field potential sources. The IIA result (Fig. 1) shows that the 1867 tsunami event was a multi-source event. A mild tsunami was trigged by a Mw7.0 earthquake, and then followed by the submarine

  2. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  3. Tsunami-Induced Nearshore Hydrodynamic Modeling using a 3D VOF Method: A Gulf of Mexico Case Study

    Science.gov (United States)

    Kian, R.; Horrillo, J. J.; Fang, N. Z.

    2017-12-01

    Long-term morphology changes can be interrupted by extreme events such as hurricanes and tsunamis. In particular, the impact of tsunamis on coastal erosion and accretion patterns is presently not well understood. In order to understand the sediment movement during coastal tsunami impact a numerical sediment transport model is added to a 3D VOF model. This model allows for spatially varying bottom sediment characteristics and entails functions for entrainment, bedload, and suspended load transport. As a case study, a Gulf of Mexico (GOM) coastal study site is selected to investigate the effect of a landslide-tsunami on the coastal morphology. The GOM is recognized as a vast and productive body of water with great ecologic and economic value. The morphodynamic response of the nearshore environment to the tsunami hydrodynamic forcing is influenced by many factors including bathymetry, topography, tsunami wave and current magnitude, and the characteristics of the local bottom substrate. The 3D model addition can account for all these factors. Finally, necessary strategies for reduction of the potential tsunami impact and management of the morphological changes are discussed.

  4. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    Science.gov (United States)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  5. Southern Louisiana 1/3 arc-second MHW DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Modeling and mapping of coastal processes (e.g. tsunamis, hurricane storm-surge, and sea-level rise) requires digital representations of Earth's solid surface,...

  6. Southern Louisiana 1/3 arc-second NAVD 88 DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Modeling and mapping of coastal processes (e.g. tsunamis, hurricane storm-surge, and sea-level rise) requires digital representations of Earth's solid surface,...

  7. New method to determine initial surface water displacement at tsunami source

    Science.gov (United States)

    Lavrentyev, Mikhail; Romanenko, Alexey; Tatarintsev, Pavel

    2013-04-01

    Friday, March 11, 2011 at 05:46:23 UTC, Japan was struck by an 8.9-magnitude earthquake near its Northeastern coast. This is one of the largest earthquakes that Japan has ever experienced. Tsunami waves swept away houses and cars and caused massive human losses. To predict tsunami wave parameters better and faster, we propose to improve data inversion scheme and achieve the performance gain of data processing. One of the reasons of inaccurate predictions of tsunami parameters is that very little information is available about the initial disturbance of the sea bed at tsunami source. In this paper, we suggest a new way of improving the quality of tsunami source parameters prediction. Modern computational technologies can accurately calculate tsunami wave propagation over the deep ocean provided that the initial displacement (perturbation of the sea bed at tsunami source) is known [4]. Direct geophysical measurements provide the location of an earthquake hypocenter and its magnitude (the released energy evaluation). Among the methods of determination of initial displacement the following ones should be considered. Calculation through the known fault structure and available seismic information. This method is widely used and provides useful information. However, even if the exact knowledge about rock blocks shifts is given, recalculation in terms of sea bed displacement is needed. This results in a certain number of errors. GPS data analysis. This method was developed after the December 2004 event in the Indian Ocean. A good correlation between dry land based GPS sensors and tsunami wave parameters was observed in the particular case of the West coast of Sumatra, Indonesia. This approach is very unique and can hardly been used in other geo locations. Satellite image analysis. The resolution of modern satellite images has dramatically improved. In the future, correct data of sea surface displacement will probably be available in real time, right after a tsunamigenic

  8. How to learn and develop from both good and bad lessons- the 2011Tohoku tsunami case -

    Science.gov (United States)

    Sugimoto, Megumi; Okazumi, Toshio

    2013-04-01

    The 2011 Tohoku tsunami revealed Japan has repeated same mistakes in a long tsunami disaster history. After the disaster Japanese remember many old lessons and materials: an oral traditional evacuation method 'Tsunami TENDENKO' which is individual independent quick evacuation, a tsunami historical memorial stone "Don't construct houses below this stone to seaside" in Aneyoshi town Iwate prefecture, Namiwake-shrine naming from the story of protect people from tsunami in Sendai city, and so on. Tohoku area has created various tsunami historical cultures to descendent. Tohoku area had not had a tsunami disaster for 50 years after the 1960 Chilean tsunami. The 2010 Chilean tsunami damaged little fish industry. People gradually lost tsunami disaster awareness. At just the bad time the magnitude (M) 9 scale earthquake attacked Tohoku. It was for our generations an inexperienced scale disaster. People did not make use of the ancestor's lessons to survive. The 2004 Sumatra tsunami attacked just before 7 years ago. The magnitude scale is almost same as M 9 scale. Why didn't Tohoku people and Japanese tsunami experts make use of the lessons? Japanese has a character outside Japan. This lesson shows it is difficult for human being to learn from other countries. As for Three mile island accident case in US, it was same for Japan. To addition to this, there are similar types of living lessons among different hazards. For examples, nuclear power plantations problem occurred both the 2012 Hurricane Sandy in US and the 2011 Tohoku tsunami. Both local people were not informed about the troubles though Oyster creek nuclear power station case in US did not proceed seriously all. Tsunami and Hurricane are different hazard. Each exparts stick to their last. 1. It is difficult for human being to transfer living lessons through next generation over decades. 2. It is difficult for human being to forecast inexperienced events. 3. It is usually underestimated the danger because human being

  9. Alternative Tsunami Models

    Science.gov (United States)

    Tan, A.; Lyatskaya, I.

    2009-01-01

    The interesting papers by Margaritondo (2005 "Eur. J. Phys." 26 401) and by Helene and Yamashita (2006 "Eur. J. Phys." 27 855) analysed the great Indian Ocean tsunami of 2004 using a simple one-dimensional canal wave model, which was appropriate for undergraduate students in physics and related fields of discipline. In this paper, two additional,…

  10. Leading Wave Amplitude of a Tsunami

    Science.gov (United States)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk

  11. Life After the Tsunami, a Motivation to Learn about Earth Hazards

    Science.gov (United States)

    Kerlow, I.; Sieh, K.; Rubin, C. M.

    2014-12-01

    Banda Aceh: Life After the Tsunami is a documentary feature film that explores the impact of tsunamis in the Banda Aceh communities of today and of centuries ago. The film uses the results of paleotsunami research conducted in the area to explain the dynamics of natural hazards within a humanistic framework. The film also presents testimonies of local survivors of the 2004 Indian Ocean tsunami to showcase the direct relationship that exists between scientific knowledge and survival rates. The proposed session focuses on how to use stories about the human experiences to motivate general audiences to learn about Earth science and natural hazards. It will also summarize some of the development and production challenges faced by the interdisciplinary team, especially in terms of presenting deep science in a format that is easy to understand by a general audience. The film is three years in the making and is anchored by several interconnected topics: 1. Testimonies dealing with tales of survival and human experiences during, right after, and since the tsunami.2. Cross-reference of social history with tectonics and tsunami activity in the Acehnese and West Sumatran regions of Indonesia.3. Scientific facts about paleotsunami research in the region, including general and easy-to-understand information about the Sumatran Plate Boundary, Sumatran subduction zone, and the Great Sumatran fault. The film is scheduled to be released on the 10th anniversary of the 2004 Indian Ocean Tsunami. Banda Aceh: Life After the Tsunami (working title) is produced by the Earth Observatory of Singapore (EOS) in partnership with the International Center for Aceh and Indian Ocean Studies (ICAIOS) at Syiah Kuala University, in Banda Aceh, Indonesia.

  12. Challenges in Defining Tsunami Wave Height

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.

    2017-12-01

    The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.

  13. Tsunami Warning Services for the U.S. and Canadian Atlantic Coasts

    Science.gov (United States)

    Whitmore, P. M.; Knight, W.

    2008-12-01

    In January 2005, the National Oceanic and Atmospheric Administration (NOAA) developed a tsunami warning program for the U.S. Atlantic and Gulf of Mexico coasts. Within a year, this program extended further to the Atlantic coast of Canada and the Caribbean Sea. Warning services are provided to U.S. and Canadian coasts (including Puerto Rico and the Virgin Islands) by the NOAA/West Coast and Alaska Tsunami Warning Center (WCATWC) while the NOAA/Pacific Tsunami Warning Center (PTWC) provides services for non-U.S. entities in the Caribbean Basin. The Puerto Rico Seismic Network (PRSN) is also an active partner in the Caribbean Basin warning system. While the nature of the tsunami threat in the Atlantic Basin is different than in the Pacific, the warning system philosophy is similar. That is, initial messages are based strictly on seismic data so that information is provided to those at greatest risk as fast as possible while supplementary messages are refined with sea level observations and forecasts when possible. The Tsunami Warning Centers (TWCs) acquire regional seismic data through many agencies, such as the United States Geological Survey, Earthquakes Canada, regional seismic networks, and the PRSN. Seismic data quantity and quality are generally sufficient throughout most of the Atlantic area-of-responsibility to issue initial information within five minutes of origin time. Sea level data are mainly provided by the NOAA/National Ocean Service. Coastal tide gage coverage is generally denser along the Atlantic coast than in the Pacific. Seven deep ocean pressure sensors (DARTs), operated by the National Weather Service (NWS) National Data Buoy Center, are located in the Atlantic Basin (5 in the Atlantic Ocean, 1 in the Caribbean, and 1 in the Gulf of Mexico). The DARTs provide TWCs with the means to verify tsunami generation in the Atlantic and provide critical data with which to calibrate forecast models. Tsunami warning response criteria in the Atlantic Basin

  14. Hurricanes accelerated the Florida-Bahamas lionfish invasion.

    Science.gov (United States)

    Johnston, Matthew W; Purkis, Sam J

    2015-06-01

    In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport. © 2015 John Wiley & Sons Ltd.

  15. Seaside, Oregon, Tsunami Vulnerability Assessment Pilot Study

    Science.gov (United States)

    Dunbar, P. K.; Dominey-Howes, D.; Varner, J.

    2006-12-01

    The results of a pilot study to assess the risk from tsunamis for the Seaside-Gearhart, Oregon region will be presented. To determine the risk from tsunamis, it is first necessary to establish the hazard or probability that a tsunami of a particular magnitude will occur within a certain period of time. Tsunami inundation maps that provide 100-year and 500-year probabilistic tsunami wave height contours for the Seaside-Gearhart, Oregon, region were developed as part of an interagency Tsunami Pilot Study(1). These maps provided the probability of the tsunami hazard. The next step in determining risk is to determine the vulnerability or degree of loss resulting from the occurrence of tsunamis due to exposure and fragility. The tsunami vulnerability assessment methodology used in this study was developed by M. Papathoma and others(2). This model incorporates multiple factors (e.g. parameters related to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. Data provided with FEMA's HAZUS loss estimation software and Clatsop County, Oregon, tax assessment data were used as input to the model. The results, presented within a geographic information system, reveal the percentage of buildings in need of reinforcement and the population density in different inundation depth zones. These results can be used for tsunami mitigation, local planning, and for determining post-tsunami disaster response by emergency services. (1)Tsunami Pilot Study Working Group, Seaside, Oregon Tsunami Pilot Study--Modernization of FEMA Flood Hazard Maps, Joint NOAA/USGS/FEMA Special Report, U.S. National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Federal Emergency Management Agency, 2006, Final Draft. (2)Papathoma, M., D. Dominey-Howes, D.,Y. Zong, D. Smith, Assessing Tsunami Vulnerability, an example from Herakleio, Crete, Natural Hazards and Earth System Sciences, Vol. 3, 2003, p. 377-389.

  16. Near-field hazard assessment of March 11, 2011 Japan Tsunami sources inferred from different methods

    Science.gov (United States)

    Wei, Y.; Titov, V.V.; Newman, A.; Hayes, G.; Tang, L.; Chamberlin, C.

    2011-01-01

    Tsunami source is the origin of the subsequent transoceanic water waves, and thus the most critical component in modern tsunami forecast methodology. Although impractical to be quantified directly, a tsunami source can be estimated by different methods based on a variety of measurements provided by deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some in real time, some in post real-time. Here we assess these different sources of the devastating March 11, 2011 Japan tsunami by model-data comparison for generation, propagation and inundation in the near field of Japan. This study provides a comparative study to further understand the advantages and shortcomings of different methods that may be potentially used in real-time warning and forecast of tsunami hazards, especially in the near field. The model study also highlights the critical role of deep-ocean tsunami measurements for high-quality tsunami forecast, and its combination with land GPS measurements may lead to better understanding of both the earthquake mechanisms and tsunami generation process. ?? 2011 MTS.

  17. ASSIMILATION OF REAL-TIME DEEP SEA BUOY DATA FOR TSUNAMI FORECASTING ALONG THAILAND’S ANDAMAN COASTLINE

    Directory of Open Access Journals (Sweden)

    Seree Supharatid

    2008-01-01

    Full Text Available The occurrence of 2004 Indian Ocean tsunami enhanced the necessity for a tsunami early warning system for countries bordering the Indian Ocean, including Thailand. This paper describes the assimilation of real-time deep sea buoy data for tsunami forecasting along Thailand’s Andaman coastline. Firstly, the numerical simulation (by the linear and non-linear shallow water equations was carried out for hypothetical cases of tsunamigenic earthquakes with epicenters located in the Andaman micro plate. Outputs of the numerical model are tsunami arrival times and the maximum wave height that can be expected at 58 selected communities along Thailand Andaman coastline and two locations of DART buoys in the Indian Ocean. Secondly, a “neural” network model (GRNN was developed to access the data from the numerical computations for subsequent construction of a tsunami database that can be displayed on a web-based system. This database can be updated with the integration from two DART buoys and from several GRNN models.

  18. Impact-generated Tsunamis: An Over-rated Hazard

    Science.gov (United States)

    Melosh, H. J.

    2003-01-01

    A number of authors have suggested that oceanic waves (tsunami) created by the impact of relatively small asteroids into the Earth's oceans might cause widespread devastation to coastal cities. If correct, this suggests that asteroids > 100 m in diameter may pose a serious hazard to humanity and could require a substantial expansion of the current efforts to identify earth-crossing asteroids > 1 km in diameter. The debate on this hazard was recently altered by the release of a document previously inaccessible to the scientific community. In 1968 the US Office of Naval Research commissioned a summary of several decades of research into the hazard proposed by waves generated by nuclear explosions in the ocean. Authored by tsunami expert William Van Dorn, this 173-page report entitled Handbook of Explosion-Generated Water Waves affords new insight into the process of impact wave formation, propagation, and run up onto the shoreline.

  19. Use of a Systems Information Broker to Aide in the Dynamic Interfacing of C2 Nodes

    National Research Council Canada - National Science Library

    Anunciado, Dagohoy H

    2007-01-01

    Missions assigned to military forces will change as world events occur. Recent events like the Indian Ocean Tsunami and Hurricane Katrina in the United States required a massive humanitarian effort that included military forces...

  20. On the Influence of Global Warming on Atlantic Hurricane Frequency

    Science.gov (United States)

    Hosseini, S. R.; Scaioni, M.; Marani, M.

    2018-04-01

    In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  1. Far-Field Tsunami Hazard Assessment Along the Pacific Coast of Mexico by Historical Records and Numerical Simulation

    Science.gov (United States)

    Ortiz-Huerta, Laura G.; Ortiz, Modesto; García-Gastélum, Alejandro

    2018-03-01

    Historical records of the Chile (22 May 1960), Alaska (27 March 1964), and Tohoku (11 March 2011) tsunamis recorded along the Pacific Coast of Mexico are used to investigate the goodness of far-field tsunami modeling using a focal mechanism consisting in a uniform slip distribution on large thrust faults around the Pacific Ocean. The Tohoku 2011 tsunami records recorded by Deep ocean Assessment and Reporting of Tsunami (DART) stations, and at coastal tide stations, were used to validate transoceanic tsunami models applicable to the harbors of Ensenada, Manzanillo, and Acapulco on the coast of Mexico. The amplitude resulting from synthetic tsunamis originated by M w 9.3 earthquakes around the Pacific varies from 1 to 2.5 m, depending on the tsunami origin region and on the directivity due to fault orientation and waveform modification by prominent features of sea bottom relief.

  2. Far-Field Tsunami Hazard Assessment Along the Pacific Coast of Mexico by Historical Records and Numerical Simulation

    Science.gov (United States)

    Ortiz-Huerta, Laura G.; Ortiz, Modesto; García-Gastélum, Alejandro

    2018-04-01

    Historical records of the Chile (22 May 1960), Alaska (27 March 1964), and Tohoku (11 March 2011) tsunamis recorded along the Pacific Coast of Mexico are used to investigate the goodness of far-field tsunami modeling using a focal mechanism consisting in a uniform slip distribution on large thrust faults around the Pacific Ocean. The Tohoku 2011 tsunami records recorded by Deep ocean Assessment and Reporting of Tsunami (DART) stations, and at coastal tide stations, were used to validate transoceanic tsunami models applicable to the harbors of Ensenada, Manzanillo, and Acapulco on the coast of Mexico. The amplitude resulting from synthetic tsunamis originated by M w 9.3 earthquakes around the Pacific varies from 1 to 2.5 m, depending on the tsunami origin region and on the directivity due to fault orientation and waveform modification by prominent features of sea bottom relief.

  3. Indian Ocean tsunami: relationships among posttraumatic stress, posttraumatic growth, resource loss, and coping at 3 and 15 months.

    Science.gov (United States)

    Sattler, David N; Assanangkornchai, Sawitri; Moller, Adam M; Kesavatana-Dohrs, Wiworn; Graham, James M

    2014-01-01

    This study examines variables associated with posttraumatic stress symptoms (PTS) and posttraumatic growth among 2 independent samples of survivors following the Indian Ocean tsunami in Khao Lak, Thailand. Participants were exposed to unprecedented horror and loss of life and property. At 3 months participants (N = 248) were living in temporary shelters, and at 15 months a second sample (N = 255) was living in homes built after the tsunami. Prior traumatic experiences, life threat, loss of personal characteristic resources and condition resources, somatic problems, and social support accounted for close to half of the variance in PTS in each sample. At 3 months, emotion-focused coping and concerns about government favoritism also contributed to PTS. At 15 months, lack of prior disaster experience and loss of energy resources also contributed to PTS. Distress was higher among participants surveyed at 3 months than among those surveyed at 15 months. Posttraumatic growth was positively associated with social support and problem-focused coping in both samples. The findings support conservation of resources stress theory ( Hobfoll, 2012 ) and underscore how systemic issues affect mental health. The implications of the findings are discussed, as is the educational International Tsunami Museum designed by the first author to address systemic stressors.

  4. TSUNAMI LOADING ON BUILDINGS WITH OPENINGS

    Directory of Open Access Journals (Sweden)

    P. Lukkunaprasit

    2009-01-01

    Full Text Available Reinforced concrete (RC buildings with openings in the masonry infill panels have shown superior performance to those without openings in the devastating 2004 Indian Ocean Tsunami. Understanding the effect of openings and the resulting tsunami force is essential for an economical and safe design of vertical evacuation shelters against tsunamis. One-to-one hundred scale building models with square shape in plan were tested in a 40 m long hydraulic flume with 1 m x 1 m cross section. A mild slope of 0.5 degree representing the beach condition at Phuket, Thailand was simulated in the hydraulic laboratory. The model dimensions were 150 mm x 150 mm x 150 mm. Two opening configurations of the front and back walls were investigated, viz., 25% and 50% openings. Pressure sensors were placed on the faces of the model to measure the pressure distribution. A high frequency load cell was mounted at the base of the model to record the tsunami forces. A bi-linear pressure profile is proposed for determining the maximum tsunami force acting on solid square buildings. The influence of openings on the peak pressures on the front face of the model is found to be practically insignificant. For 25% and 50% opening models, the tsunami forces reduce by about 15% and 30% from the model without openings, respectively. The reduction in the tsunami force clearly demonstrates the benefit of openings in reducing the effect of tsunami on such buildings.

  5. Examining Hurricane Track Length and Stage Duration Since 1980

    Science.gov (United States)

    Fandrich, K. M.; Pennington, D.

    2017-12-01

    Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a

  6. Observing Traveling Ionospheric Disturbances Caused by Tsunamis Using GPS TEC Measurements

    Science.gov (United States)

    Galvan, David A.; Komjathy, Attila; Hickey, Michael; Foster, James; Mannucci, Anthony J.

    2010-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following two recent seismic events: the American Samoa earthquake of September 29, 2009, and the Chile earthquake of February 27, 2010. Fluctuations in TEC correlated in time, space, and wave properties with these tsunamis were observed in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with wavelengths and periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the tsunamis in certain locations, but not in others. Where variations are observed, the typical amplitude tends to be on the order of 1% of the background TEC value. Variations with amplitudes 0.1 - 0.2 TECU are observable with periods and timing affiliated with the tsunami. These observations are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement in some locations, though there are cases when the model predicts an observable tsunami-driven signature and none is observed. These TEC variations are not always seen when a tsunami is present, but in these two events the regions where a strong ocean tsunami was observed did coincide with clear TEC observations, while a lack of clear TEC observations coincided with smaller tsunami amplitudes. There exists the potential to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for early warning systems.

  7. Lasting Impact of a Tsunami Event on Sediment-Organism Interactions in the Ocean

    Science.gov (United States)

    Seike, Koji; Sassa, Shinji; Shirai, Kotaro; Kubota, Kaoru

    2018-02-01

    Although tsunami sedimentation is a short-term phenomenon, it may control the long-term benthic environment by altering seafloor surface characteristics such as topography and grain-size composition. By analyzing sediment cores, we investigated the long-term effect of the 2011 tsunami generated by the Tohoku Earthquake off the Pacific coast of Japan on sediment mixing (bioturbation) by an important ecosystem engineer, the heart urchin Echinocardium cordatum. Recent tsunami deposits allow accurate estimation of the depth of current bioturbation by E. cordatum, because there are no preexisting burrows in the sediments. The in situ hardness of the substrate decreased significantly with increasing abundance of E. cordatum, suggesting that echinoid bioturbation softens the seafloor sediment. Sediment-core analysis revealed that this echinoid rarely burrows into the coarser-grained (medium-grained to coarse-grained) sandy layer deposited by the 2011 tsunami; thus, the vertical grain-size distribution resulting from tsunami sedimentation controls the depth of E. cordatum bioturbation. As sandy tsunami layers are preserved in the seafloor substrate, their restriction on bioturbation continues for an extended period. The results demonstrate that understanding the effects on seafloor processes of extreme natural events that occur on geological timescales, including tsunami events, is important in revealing continuing interactions between seafloor sediments and marine benthic invertebrates.

  8. Spatial grids for hurricane climate research

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, James B.; Hodges, Robert E.; Jagger, Thomas H. [Florida State University, Tallahassee, FL (United States)

    2012-07-15

    The authors demonstrate a spatial framework for studying hurricane climatology. The framework consists of a spatial tessellation of the hurricane basin using equal-area hexagons. The hexagons are efficient at covering hurricane tracks and provide a scaffolding to combine attribute data from tropical cyclones with spatial climate data. The framework's utility is demonstrated using examples from recent hurricane seasons. Seasons that have similar tracks are quantitatively assessed and grouped. Regional cyclone frequency and intensity variations are mapped. A geographically-weighted regression of cyclone intensity on sea-surface temperature emphasizes the importance of a warm ocean in the intensification of cyclones over regions where the heat content is greatest. The largest differences between model predictions and observations occur near the coast. The authors suggest the framework is ideally suited for comparing tropical cyclones generated from different numerical simulations. (orig.)

  9. Preliminary study on detection sediment contamination in soil affected by the Indian Ocean giant tsunami 2004 in Aceh, Indonesia using laser-induced breakdown spectroscopy (LIBS)

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Nasrullah, E-mail: nasrullah.idris@unsyiah.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Jl. Syech Abdurrauf No. 3 Darussalam, 23111 Banda Aceh, Aceh (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Jl. Syech Abdurrauf No. 3 Darussalam, 23111 Banda Aceh, Aceh (Indonesia); Hedwig, Rinda; Lie, Zener Sukra [Department of Computer Engineering, Bina Nusantara University, 9 K. H. Syahdan, Jakarta 14810 (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630, Jakarta (Indonesia)

    2016-03-11

    This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma were detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.

  10. The potential role of real-time geodetic observations in tsunami early warning

    Science.gov (United States)

    Tinti, Stefano; Armigliato, Alberto

    2016-04-01

    Tsunami warning systems (TWS) have the final goal to launch a reliable alert of an incoming dangerous tsunami to coastal population early enough to allow people to flee from the shore and coastal areas according to some evacuation plans. In the last decade, especially after the catastrophic 2004 Boxing Day tsunami in the Indian Ocean, much attention has been given to filling gaps in the existing TWSs (only covering the Pacific Ocean at that time) and to establishing new TWSs in ocean regions that were uncovered. Typically, TWSs operating today work only on earthquake-induced tsunamis. TWSs estimate quickly earthquake location and size by real-time processing seismic signals; on the basis of some pre-defined "static" procedures (either based on decision matrices or on pre-archived tsunami simulations), assess the tsunami alert level on a large regional scale and issue specific bulletins to a pre-selected recipients audience. Not unfrequently these procedures result in generic alert messages with little value. What usually operative TWSs do not do, is to compute earthquake focal mechanism, to calculate the co-seismic sea-floor displacement, to assess the initial tsunami conditions, to input these data into tsunami simulation models and to compute tsunami propagation up to the threatened coastal districts. This series of steps is considered nowadays too time consuming to provide the required timely alert. An equivalent series of steps could start from the same premises (earthquake focal parameters) and reach the same result (tsunami height at target coastal areas) by replacing the intermediate steps of real-time tsunami simulations with proper selection from a large archive of pre-computed tsunami scenarios. The advantage of real-time simulations and of archived scenarios selection is that estimates are tailored to the specific occurring tsunami and alert can be more detailed (less generic) and appropriate for local needs. Both these procedures are still at an

  11. Tsunami Hazard, Vulnerability and Risk assessment for the coast of Oman

    Science.gov (United States)

    Gonzalez, Mauricio; Aniel-Quiroga, Íñigo; Aguirre-Ayerbe, Ignacio; Álvarez-Gómez, José Antonio; MArtínez, Jara; Gonzalez-Riancho, Pino; Fernandez, Felipe; Medina, Raúl; Al-Yahyai, Sultan

    2016-04-01

    Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, and causing the loss of thousands of human lives and extensive damage to coastal infrastructures around the world. Advances in the understanding and prediction of tsunami impacts allow the development of new methodologies in this field. This work presents the methodology that has been followed for developing the tsunami hazard, vulnerability and risk assessment for the coast of Oman, including maps containing the results of the process. Oman is located in the south eastern corner of the Arabian Peninsula and of the Arabian plate, in front of the Makran Subduction Zone (MSZ), which is the major source of earthquakes in the eastern border of the Arabian plate and Oman (Al-Shaqsi, 2012). There are at least three historical tsunamis assigned to seismic origin in the MSZ (Heidarzadeh et al., 2008; Jordan, 2008). These events show the high potential for tsunami generation of the MSZ, being one of the most tsunamigenic zones in the Indian Ocean. For the tsunami hazard assessment, worst potential cases have been selected, as well as the historical case of 1945, when an 8.1 earthquake generated a tsunami affecting the coast of Oman, and prompting 4000 casualties in the countries of the area. These scenarios have been computationally simulated in order to get tsunami hazard maps, including flooding maps. These calculations have been carried out at national and local scale, in 9 municipalities all along the coast of Oman, including the cities of Sohar, Wudam, Sawadi, Muscat, Quriyat, Sur, Masirah, Al Duqm, and Salalah. Using the hazard assessment as input, this work presents as well an integrated framework for the tsunami vulnerability and risk assessment carried out in the Sultanate of Oman. This framework considers different dimensions (human, structural) and it is developed at two different spatial resolutions, national and local scale. The national

  12. NOAA tsunami water level archive - scientific perspectives and discoveries

    Science.gov (United States)

    Mungov, G.; Eble, M. C.; McLean, S. J.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Currently, NGDC archives and processes high-resolution data recorded by the Deep-ocean Assessment and Reporting of Tsunami (DART) network, the coastal-tide-gauge network from the National Ocean Service (NOS) as well as tide-gauge data recorded by all gauges in the two National Weather Service (NWS) Tsunami Warning Centers' (TWCs) regional networks. The challenge in processing these data is that the observations from the deep-ocean, Pacific Islands, Alaska region, and United States West and East Coasts display commonalities, but, at the same time, differ significantly, especially when extreme events are considered. The focus of this work is on how time integration of raw observations (10-seconds to 1-minute) could mask extreme water levels. Analysis of the statistical and spectral characteristics obtained from records with different time step of integration will be presented. Results show the need to precisely calibrate the despiking procedure against raw data due to the significant differences in the variability of deep-ocean and coastal tide-gauge observations. It is shown that special attention should be drawn to the very strong water level declines associated with the passage of the North Atlantic cyclones. Strong changes for the deep ocean and for the West Coast have implications for data quality but these same features are typical for the East Coast regime.

  13. Seismogeodesy for rapid earthquake and tsunami characterization

    Science.gov (United States)

    Bock, Y.

    2016-12-01

    Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of

  14. The effect of compliant prisms on subduction zone earthquakes and tsunamis

    Science.gov (United States)

    Lotto, Gabriel C.; Dunham, Eric M.; Jeppson, Tamara N.; Tobin, Harold J.

    2017-01-01

    Earthquakes generate tsunamis by coseismically deforming the seafloor, and that deformation is largely controlled by the shallow rupture process. Therefore, in order to better understand how earthquakes generate tsunamis, one must consider the material structure and frictional properties of the shallowest part of the subduction zone, where ruptures often encounter compliant sedimentary prisms. Compliant prisms have been associated with enhanced shallow slip, seafloor deformation, and tsunami heights, particularly in the context of tsunami earthquakes. To rigorously quantify the role compliant prisms play in generating tsunamis, we perform a series of numerical simulations that directly couple dynamic rupture on a dipping thrust fault to the elastodynamic response of the Earth and the acoustic response of the ocean. Gravity is included in our simulations in the context of a linearized Eulerian description of the ocean, which allows us to model tsunami generation and propagation, including dispersion and related nonhydrostatic effects. Our simulations span a three-dimensional parameter space of prism size, prism compliance, and sub-prism friction - specifically, the rate-and-state parameter b - a that determines velocity-weakening or velocity-strengthening behavior. We find that compliant prisms generally slow rupture velocity and, for larger prisms, generate tsunamis more efficiently than subduction zones without prisms. In most but not all cases, larger, more compliant prisms cause greater amounts of shallow slip and larger tsunamis. Furthermore, shallow friction is also quite important in determining overall slip; increasing sub-prism b - a enhances slip everywhere along the fault. Counterintuitively, we find that in simulations with large prisms and velocity-strengthening friction at the base of the prism, increasing prism compliance reduces rather than enhances shallow slip and tsunami wave height.

  15. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  16. Hurricane Irene Poster (August 27, 2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Irene poster. Color composite GOES image shows Irene moving through the North Carolina Outer Banks on August 27, 2011. Poster size is 36"x27"

  17. Ocean Observing Public-Private Collaboration to Improve Tropical Storm and Hurricane Predictions in the Gulf of Mexico

    Science.gov (United States)

    Perry, R.; Leung, P.; McCall, W.; Martin, K. M.; Howden, S. D.; Vandermeulen, R. A.; Kim, H. S. S.; Kirkpatrick, B. A.; Watson, S.; Smith, W.

    2016-02-01

    In 2008, Shell partnered with NOAA to explore opportunities for improving storm predictions in the Gulf of Mexico. Since, the collaboration has grown to include partners from Shell, NOAA National Data Buoy Center and National Center for Environmental Information, National Center for Environmental Prediction, University of Southern Mississippi, and the Gulf of Mexico Coastal Ocean Observing System. The partnership leverages complementary strengths of each collaborator to build a comprehensive and sustainable monitoring and data program to expand observing capacity and protect offshore assets and Gulf communities from storms and hurricanes. The program combines in situ and autonomous platforms with remote sensing and numerical modeling. Here we focus on profiling gliders and the benefits of a public-private partnership model for expanding regional ocean observing capacity. Shallow and deep gliders measure ocean temperature to derive ocean heat content (OHC), along with salinity, dissolved oxygen, fluorescence, and CDOM, in the central and eastern Gulf shelf and offshore. Since 2012, gliders have collected 4500+ vertical profiles and surveyed 5000+ nautical miles. Adaptive sampling and mission coordination with NCEP modelers provides specific datasets to assimilate into EMC's coupled HYCOM-HWRF model and 'connect-the-dots' between well-established Eulerian metocean measurements by obtaining (and validating) data between fixed stations (e.g. platform and buoy ADCPs) . Adaptive sampling combined with remote sensing provides satellite-derived OHC validation and the ability to sample productive coastal waters advected offshore by the Loop Current. Tracking coastal waters with remote sensing provides another verification of estimate Loop Current and eddy boundaries, as well as quantifying productivity and analyzing water quality on the Gulf coast, shelf break and offshore. Incorporating gliders demonstrates their value as tools to better protect offshore oil and gas assets

  18. Ionospheric and satellite observations for studying the dynamic behavior of typhoons and the detection of severe storms and tsunamis

    Science.gov (United States)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.

  19. After The Tsunami: Human Rights of Vulnerable Populations

    OpenAIRE

    Fletcher, Laurel; Stover, Eric; Weinstein, Harvey

    2005-01-01

    The tsunami of December 26, 2004 devastated thousands of communities along the coastline of the Indian Ocean. More than 240,000 people were killed, with tens of thousands missing and presumed dead, and more than a million people displaced. Immediately following the tsunami, international aid agencies feared that human traffickers might seize the opportunity to compel those most vulnerable (women, children, and migrant workers) into situations of forced labor. Fortunately, few incidents of tra...

  20. 2012-2013 Post-Hurricane Sandy EAARL-B Submerged Topography - Barnegat Bay, New Jersey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically...

  1. TOWARD INDONESIAN TSUNAMI EARLY WARNING SYSTEM BY USING RAPID RUPTURE DURATIONS CALCULATION

    Directory of Open Access Journals (Sweden)

    M. Adlazim

    2011-01-01

    Full Text Available Indonesia has an Indonesian Tsunami Early Warning System (Ina-TEWS since 2008. The Ina-TEWS has used automatic processing on hypocenter; Mwp, Mw (mB and Mj. If earthquake occurred in Ocean, depth 7, then Ina-TEWS announce early warning that the earthquake can generate tsunami. However, the announcement of the Ina-TEWS is still not accuracy. Purpose of this study is to estimate earthquake rupture duration of large Indonesia earthquakes that occurred in Indian Ocean, Java, Timor Sea, Banda Sea, Arafura Sea and Pacific Ocean using a direct procedure and software developed Lomax and Michelini for rapid assessment of earthquake tsunami potential by deriving two simple measures from vertical component broadband P-wave velocity record. The first is the high-frequency apparent rupture duration, Tdur which may be related to can be related to the critical parameters rupture length (L, depth (z, and shear modulus (μ. The second is a confirmation of the earlier finding by Lomax and Michelini, namely that the rupture duration has a stronger influence to generate tsunami than Mw and Depth. We analyzed at least 510 vertical seismogram recorded by GEOFON-IA and IRIS-DMC networks. Our analysis shows that the seismic potency, LWD, which is more obviously related to capability to generate a tsunami than former. The larger Tdur the larger is the seismic potency LWD because Tdur is proportional to L/vr (with vr – rupture velocity. We also suggest that tsunami potential is not directly related to the faulting type of source and for events that have rupture duration greater than 50 s, the earthquakes generated tsunami. With available real-time seismogram data, rapid calculation, rupture duration discriminant can be completed within 3 to 8 min after the P-onset.

  2. Cash grants in humanitarian assistance: a nongovernmental organization experience in Aceh, Indonesia, following the 2004 Indian Ocean Tsunami.

    Science.gov (United States)

    Doocy, Shannon; Johnson, Diane; Robinson, Courtland

    2008-06-01

    Historically, cash interventions, as opposed to material or in-kind aid, have been relatively uncommon in the humanitarian response to emergencies. The widespread implementation of cash-based programs following the 2004 Indian Ocean tsunami provided an opportunity to examine cash distributions following disasters. The Mercy Corps cash grant program in Aceh, Indonesia, was a short-term intervention intended to assist in recompensing losses from the December 2004 tsunami. An evaluation of the Mercy Corps cash grant program was conducted for the 12-month period following the tsunami using program monitoring data and a systematic survey of cash grant beneficiaries. in 2005, the cash grant program disbursed more than US$3.3 million to more than 53,000 beneficiaries; the average cash grant award was US$6390, which was shared by an average of 108 beneficiaries. In a beneficiary survey, more than 95% of respondents reported the grant allocation processes were fair and transparent and that grant funds were received. The Mercy Corps experience with cash programs suggests that cash interventions in the emergency context, when properly administered, can have an immediate impact and serve as an efficient mechanism for providing assistance. Organizations involved in humanitarian relief, particularly donors and nongovernmental organizations, should consider incorporating cash-based interventions as an element of their response in future emergencies.

  3. Simulation of a Dispersive Tsunami due to the 2016 El Salvador-Nicaragua Outer-Rise Earthquake (M w 6.9)

    Science.gov (United States)

    Tanioka, Yuichiro; Ramirez, Amilcar Geovanny Cabrera; Yamanaka, Yusuke

    2018-01-01

    The 2016 El Salvador-Nicaragua outer-rise earthquake (M w 6.9) generated a small tsunami observed at the ocean bottom pressure sensor, DART 32411, in the Pacific Ocean off Central America. The dispersive observed tsunami is well simulated using the linear Boussinesq equations. From the dispersive character of tsunami waveform, the fault length and width of the outer-rise event is estimated to be 30 and 15 km, respectively. The estimated seismic moment of 3.16 × 1019 Nm is the same as the estimation in the Global CMT catalog. The dispersive character of the tsunami in the deep ocean caused by the 2016 outer-rise El Salvador-Nicaragua earthquake could constrain the fault size and the slip amount or the seismic moment of the event.

  4. Simulation of a Dispersive Tsunami due to the 2016 El Salvador-Nicaragua Outer-Rise Earthquake ( M w 6.9)

    Science.gov (United States)

    Tanioka, Yuichiro; Ramirez, Amilcar Geovanny Cabrera; Yamanaka, Yusuke

    2018-04-01

    The 2016 El Salvador-Nicaragua outer-rise earthquake ( M w 6.9) generated a small tsunami observed at the ocean bottom pressure sensor, DART 32411, in the Pacific Ocean off Central America. The dispersive observed tsunami is well simulated using the linear Boussinesq equations. From the dispersive character of tsunami waveform, the fault length and width of the outer-rise event is estimated to be 30 and 15 km, respectively. The estimated seismic moment of 3.16 × 1019 Nm is the same as the estimation in the Global CMT catalog. The dispersive character of the tsunami in the deep ocean caused by the 2016 outer-rise El Salvador-Nicaragua earthquake could constrain the fault size and the slip amount or the seismic moment of the event.

  5. The Record of Tsunamis and Storms in a Coastal Mangrove Pond, NW Puerto Rico

    Science.gov (United States)

    Jaffe, B. E.; Buckley, M. L.; Watt, S. G.; Moya, J. C.; Richmond, B. M.; Gelfenbaum, G. R.; La Selle, S.

    2017-12-01

    The written record of tsunamis in the Caribbean extends back over 500 years, yet, is incomplete. In particular, it is not known whether great earthquakes or submarine landslides near the Puerto Rico Trench have generated large tsunamis that impact the north coast of Puerto Rico. We cored a coastal mangrove pond in NW Puerto Rico to search for tsunami deposits. The pond extends from 150 to 350 m from the shoreline, and is 0.5 m above sea level. The area between the pond and the ocean presently has a high of 3 m above sea level, but had dunes up to 10 m high before they were mined for sand beginning in the 1960s. Pond sediments are predominately mud or mangrove peat and contain prominent sand layers. At the sediment surface, a tabular sandy overwash deposit up to 40 cm thick extends inland approximately 30 m from the pond's seaward edge and abruptly ends. This sand layer contains no evidence of vertical grading and was likely formed by one or more recent hurricanes, which with the removal of coastal dunes in the 1960s are able to flood the pond. In contrast, underlying the overwash deposit and mangrove peat at a depth of approximately 60 cm is a thin (1 - 7 cm thick) sand layer extending to the landward limit of the pond. This layer has features of a tsunami deposit, including suspension grading, which is a specific type of normal grading where the entire grain-size distribution shifts to finer sizes upward that is created when sediment settles out of suspension as a high-speed flow wanes, an erosive basal contact, and an organic cap. In addition, couplets or triplets of sand inter-layered with mud are present within the thin sandy layer at some locations. Alternation of sand and mud layers at this scale is a signature of series of tsunami waves. Radiocarbon dates from organic material above and below the thin sand layer constrain deposition as occurring sometime from 1446 to 1919 AD. We present the features of the coastal mangrove pond deposits and evaluate whether

  6. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    Science.gov (United States)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  7. Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides

    CERN Document Server

    Schneider, Wilhelm; Trulsen, Karsten

    2006-01-01

    Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.

  8. The 26 December 2004 Sumatra tsunami recorded on the coast of ...

    African Journals Online (AJOL)

    Analysis of sea-level data obtained from the Atlantic Global Sea Level Observing System (GLOSS) sea-level station at Takoradi, Ghana, West Africa, clearly reveals a tsunami signal associated with the Mw = 9.3 Sumatra earthquake of 26 December 2004 in the Indian Ocean. The tsunami arrived at this location on 27 ...

  9. Tsunami mitigation by resonant triad interaction with acoustic-gravity waves.

    Science.gov (United States)

    Kadri, Usama

    2017-01-01

    Tsunamis have been responsible for the loss of almost a half million lives, widespread long lasting destruction, profound environmental effects, and global financial crisis, within the last two decades. The main tsunami properties that determine the size of impact at the shoreline are its wavelength and amplitude in the ocean. Here, we show that it is in principle possible to reduce the amplitude of a tsunami, and redistribute its energy over a larger space, through forcing it to interact with resonating acoustic-gravity waves. In practice, generating the appropriate acoustic-gravity modes introduces serious challenges due to the high energy required for an effective interaction. However, if the findings are extended to realistic tsunami properties and geometries, we might be able to mitigate tsunamis and so save lives and properties. Moreover, such a mitigation technique would allow for the harnessing of the tsunami's energy.

  10. NOAA's Integrated Tsunami Database: Data for improved forecasts, warnings, research, and risk assessments

    Science.gov (United States)

    Stroker, Kelly; Dunbar, Paula; Mungov, George; Sweeney, Aaron; McCullough, Heather; Carignan, Kelly

    2015-04-01

    The National Oceanic and Atmospheric Administration (NOAA) has primary responsibility in the United States for tsunami forecast, warning, research, and supports community resiliency. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Service for Geophysics provide a unique collection of data enabling communities to ensure preparedness and resilience to tsunami hazards. Immediately following a damaging or fatal tsunami event there is a need for authoritative data and information. The NGDC Global Historical Tsunami Database (http://www.ngdc.noaa.gov/hazard/) includes all tsunami events, regardless of intensity, as well as earthquakes and volcanic eruptions that caused fatalities, moderate damage, or generated a tsunami. The long-term data from these events, including photographs of damage, provide clues to what might happen in the future. NGDC catalogs the information on global historical tsunamis and uses these data to produce qualitative tsunami hazard assessments at regional levels. In addition to the socioeconomic effects of a tsunami, NGDC also obtains water level data from the coasts and the deep-ocean at stations operated by the NOAA/NOS Center for Operational Oceanographic Products and Services, the NOAA Tsunami Warning Centers, and the National Data Buoy Center (NDBC) and produces research-quality data to isolate seismic waves (in the case of the deep-ocean sites) and the tsunami signal. These water-level data provide evidence of sea-level fluctuation and possible inundation events. NGDC is also building high-resolution digital elevation models (DEMs) to support real-time forecasts, implemented at 75 US coastal communities. After a damaging or fatal event NGDC begins to collect and integrate data and information from many organizations into the hazards databases. Sources of data include our NOAA partners, the U.S. Geological Survey, the UNESCO Intergovernmental Oceanographic Commission (IOC) and International Tsunami Information Center

  11. Tsunami.gov: NOAA's Tsunami Information Portal

    Science.gov (United States)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  12. Washington Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  13. Quantifying Coastal Hazard of Airburst-Generated Tsunamis

    Science.gov (United States)

    Titov, V. V.; Boslough, M.

    2017-12-01

    The effort to prevent or mitigate the effects of an impact on Earth is known as planetary defense. A significant component of planetary defense research involves risk assessment. Much of our understanding of the risk from near-Earth objects comes from the geologic record in the form of impact craters, but not all asteroid impacts are crater-forming events. Small asteroids explode before reaching the surface, generating an airburst, and most impacts into the ocean do not penetrate the water to form a crater in the sea floor. The risk from these non-crater-forming ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall threat. One of the suggested mechanisms for the production of asteroid-generated tsunami is by direct coupling of the pressure wave to the water, analogous to the means by which a moving weather front can generate a meteotsunami. To test this hypothesis, we have run a series of airburst simulations and provided time-resolved pressure and wind profiles for tsunami modelers to use as source functions. We used hydrocodes to model airburst scenarios and provide time dependent boundary conditions as input to shallow-water wave propagation codes. The strongest and most destructive meteotsunami are generated by atmospheric pressure oscillations with amplitudes of only a few hPa, corresponding to changes in sea level of a few cm. The resulting wave is strongest when there is a resonance between the ocean and the atmospheric forcing. The blast wave from an airburst propagates at a speed close to a tsunami speed only in the deepest part of the ocean, and a Proudman resonance cannot be usually achieved even though the overpressures are orders of magnitude greater. However, blast wave profiles are N-waves in which a sharp shock wave leading to overpressure is followed by a more gradual rarefaction to a much longer-duration underpressure phase. Even though the blast outruns the water wave it is

  14. ON THE INFLUENCE OF GLOBAL WARMING ON ATLANTIC HURRICANE FREQUENCY

    Directory of Open Access Journals (Sweden)

    S. R. Hosseini

    2018-04-01

    Full Text Available In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane’s intensity and Sea Surface Temperature (SST has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR. The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82. In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  15. A probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  16. A~probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-05-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  17. Coastal Amplification Laws for the French Tsunami Warning Center: Numerical Modeling and Fast Estimate of Tsunami Wave Heights Along the French Riviera

    Science.gov (United States)

    Gailler, A.; Hébert, H.; Schindelé, F.; Reymond, D.

    2018-04-01

    Tsunami modeling tools in the French tsunami Warning Center operational context provide rapidly derived warning levels with a dimensionless variable at basin scale. A new forecast method based on coastal amplification laws has been tested to estimate the tsunami onshore height, with a focus on the French Riviera test-site (Nice area). This fast prediction tool provides a coastal tsunami height distribution, calculated from the numerical simulation of the deep ocean tsunami amplitude and using a transfer function derived from the Green's law. Due to a lack of tsunami observations in the western Mediterranean basin, coastal amplification parameters are here defined regarding high resolution nested grids simulations. The preliminary results for the Nice test site on the basis of nine historical and synthetic sources show a good agreement with the time-consuming high resolution modeling: the linear approximation is obtained within 1 min in general and provides estimates within a factor of two in amplitude, although the resonance effects in harbors and bays are not reproduced. In Nice harbor especially, variation in tsunami amplitude is something that cannot be really assessed because of the magnitude range and maximum energy azimuth of possible events to account for. However, this method is well suited for a fast first estimate of the coastal tsunami threat forecast.

  18. International year of planet earth 7. Oceans, submarine land-slides and consequent tsunamis in Canada

    Science.gov (United States)

    Mosher, D.C.

    2009-01-01

    Canada has the longest coastline and largest continental margin of any nation in the World. As a result, it is more likely than other nations to experience marine geohazards such as submarine landslides and consequent tsunamis. Coastal landslides represent a specific threat because of their possible proximity to societal infrastructure and high tsunami potential; they occur without warning and with little time lag between failure and tsunami impact. Continental margin landslides are common in the geologic record but rare on human timescales. Some ancient submarine landslides are massive but more recent events indicate that even relatively small slides on continental margins can generate devastating tsunamis. Tsunami impact can occur hundreds of km away from the source event, and with less than 2 hours warning. Identification of high-potential submarine landslide regions, combined with an understanding of landslide and tsunami processes and sophisticated tsunami propagation models, are required to identify areas at high risk of impact.

  19. THE ALL-SOURCE GREEN’S FUNCTION AND ITS APPLICATIONS TO TSUNAMI PROBLEMS

    Directory of Open Access Journals (Sweden)

    ZHIGANG XU

    2007-01-01

    Full Text Available The classical Green’s function provides the global linear response to impulse forcing at a particular source location. It is a type of one-source-all-receiver Green’s function. This paper presents a new type of Green’s function, referred to as the all-source-one-receiver, or for short the all-source Green’s function (ASGF, in which the solution at a point of interest (POI can be written in terms of global forcing without requiring the solution at other locations. The ASGF is particularly applicable to tsunami problems. The response to forcing anywhere in the global ocean can be determined within a few seconds on an ordinary personal computer or on a web server. The ASGF also brings in two new types of tsunami charts, one for the arrival time and the second for the gain, without assuming the location of the epicenter or reversibility of the tsunami travel path. Thus it provides a useful tool for tsunami hazard preparedness and to rapidly calculate the real-time responses at selected POIs for a tsunami generated anywhere in the world’s oceans.

  20. The Sri Lanka tsunami experience.

    Science.gov (United States)

    Yamada, Seiji; Gunatilake, Ravindu P; Roytman, Timur M; Gunatilake, Sarath; Fernando, Thushara; Fernando, Lalan

    2006-01-01

    The Indian Ocean tsunami of 2004 killed 31,000 people in Sri Lanka and produced morbidity primarily resulting from near-drownings and traumatic injuries. In the immediate aftermath, the survivors brought bodies to the hospitals, which hampered the hospitals' operations. The fear of epidemics led to mass burials. Infectious diseases were prevented through the provision of clean water and through vector control. Months after the tsunami, little rebuilding of permanent housing was evident, and many tsunami victims continued to reside in transit camps without means of generating their own income. The lack of an incident command system, limited funding, and political conflicts were identified as barriers to optimal relief efforts. Despite these barriers, Sri Lanka was fortunate in drawing upon a well-developed community health infrastructure as well as local and international resources. The need continues for education and training in clinical skills for mass rescue and emergency treatment, as well as participation in a multidisciplinary response.

  1. A Look Inside Hurricane Alma

    Science.gov (United States)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  2. Ionospheric detection of tsunami earthquakes: observation, modeling and ideas for future early warning

    Science.gov (United States)

    Occhipinti, G.; Manta, F.; Rolland, L.; Watada, S.; Makela, J. J.; Hill, E.; Astafieva, E.; Lognonne, P. H.

    2017-12-01

    Detection of ionospheric anomalies following the Sumatra and Tohoku earthquakes (e.g., Occhipinti 2015) demonstrated that ionosphere is sensitive to earthquake and tsunami propagation: ground and oceanic vertical displacement induces acoustic-gravity waves propagating within the neutral atmosphere and detectable in the ionosphere. Observations supported by modelling proved that ionospheric anomalies related to tsunamis are deterministic and reproducible by numerical modeling via the ocean/neutral-atmosphere/ionosphere coupling mechanism (Occhipinti et al., 2008). To prove that the tsunami signature in the ionosphere is routinely detected we show here perturbations of total electron content (TEC) measured by GPS and following tsunamigenic earthquakes from 2004 to 2011 (Rolland et al. 2010, Occhipinti et al., 2013), nominally, Sumatra (26 December, 2004 and 12 September, 2007), Chile (14 November, 2007), Samoa (29 September, 2009) and the recent Tohoku-Oki (11 Mars, 2011). Based on the observations close to the epicenter, mainly performed by GPS networks located in Sumatra, Chile and Japan, we highlight the TEC perturbation observed within the first 8 min after the seismic rupture. This perturbation contains information about the ground displacement, as well as the consequent sea surface displacement resulting in the tsunami. In addition to GNSS-TEC observations close to the epicenter, new exciting measurements in the far-field were performed by airglow measurement in Hawaii show the propagation of the internal gravity waves induced by the Tohoku tsunami (Occhipinti et al., 2011). This revolutionary imaging technique is today supported by two new observations of moderate tsunamis: Queen Charlotte (M: 7.7, 27 October, 2013) and Chile (M: 8.2, 16 September 2015). We finally detail here our recent work (Manta et al., 2017) on the case of tsunami alert failure following the Mw7.8 Mentawai event (25 October, 2010), and its twin tsunami alert response following the Mw7

  3. Historical tsunami database for France and its overseas territories

    Directory of Open Access Journals (Sweden)

    J. Lambert

    2011-04-01

    Full Text Available A search and analysis of a large number of historical documents has made it possible: (i to discover so-far unknown tsunamis that have hit the French coasts during the last centuries, and (ii conversely, to disprove the tsunami nature of several events referred to in recent catalogues. This information has been structured into a database and also made available as a website (tsunamis.f/" target="_blank">http://www.tsunamis.fr that is accessible in French, English and Spanish. So far 60 genuine ("true" tsunamis have been described (with their dates, causes, oceans/seas, places observed, number of waves, flood and ebb distances, run-up, and intensities and referenced against contemporary sources. Digitized documents are accessible online. In addition, so as to avoid confusion, tsunamis revealed as "false" or "doubtful" have been compiled into a second catalogue.

    Both the database and the website are updated annually corresponding to the state of knowledge, so as to take into account newly discovered historical references and the occurrence of new tsunamis on the coasts of France and many of its overseas territories: Guadeloupe, Martinique, French Guiana, New Caledonia, Réunion, and Mayotte.

  4. Pronóstico de tsunamis para las Islas Galápagos

    OpenAIRE

    Rentería, W.

    2013-01-01

    This study present the implementation of a Tsunami Forecast System for Galapagos Islands. This system is formed by the development of short and long term forecast models. The first is used in real time, with the information of the occurrence of a tsunami event in the pacific ocean, in order to predict the physical effects of the impact on islands. While, the long term forecast, is used to identify tsunami generation zones with potential threat to damage the islands and also is used to have a ...

  5. THE FRENCH TSUNAMI WARNING CENTER FOR THE MEDITERRANEAN AND NORTHEAST ATLANTIC: CENALT

    Directory of Open Access Journals (Sweden)

    H. Hébert

    2013-01-01

    Full Text Available CENALT (CENtre d’ALerte aux Tsunamis is responsible for the French National Tsunami Warning Centre (NTWC. The CENALT is established in the framework of the Unesco/IOC/ICG/NEAMTWS. Its objective is to transmit a warning message in less than fifteen minutes for any events that could trigger a tsunami in the Western Mediterranean Sea and the North- Eastern Atlantic Ocean. The data collected from French installations and from institutions of European and North African countries is processed with software that permits early epicenter location of seismic events and measurements of expected tsunami impacts on the shore. On-duty analysts revise interactively all the generated information and use references of historical tsunami and earthquake databases - as well as computed tsunami scenarios – in order to disseminate the more comprehensive message possible.

  6. Modelling of Charles Darwin's tsunami reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great 1835 earthquake. He described his impressions and results of the earthquake-induced natural catastrophe in The Voyage of the Beagle. His description of the tsunami could easily be read as a report from Indonesia or Sri Lanka, after the catastrophic tsunami of 26 December 2004. In particular, Darwin emphasised the dependence of earthquake-induced waves on a form of the coast and the coastal depth: ‘… Talcuhano and Callao are situated at the head of great shoaling bays, and they have always suffered from this phenomenon; whereas, the town of Valparaiso, which is seated close on the border of a profound ocean... has never been overwhelmed by one of these terrific deluges…' . He reports also, that ‘… the whole body of the sea retires from the coast, and then returns in great waves of overwhelming force ...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). The coastal evolution of a tsunami was analytically studied in many publications (see, for example, Synolakis, C.E., Bernard, E.N., 2006. Philos. Trans. R. Soc., Ser. A, 364, 2231-2265; Tinti, S., Tonini, R. 205. J.Fluid Mech., 535, 11-21). However, the Darwin's reports and the influence of the coastal depth on the formation and the evolution of the steep front and the profile of tsunami did not practically discuss. Recently, a mathematical theory of these phenomena was presented in researchspace. auckland. ac. nz/handle/2292/4474. The theory describes the waves which are excited due to nonlinear effects within a shallow coastal zone. The tsunami elevation is described by two components: . Here is the linear (prime) component. It describes the wave coming from the deep ocean. is the nonlinear component. This component may become very important near the coastal line. After that the theory of the shallow waves is used. This theory yields the linear equation for and the weakly

  7. Airborne eXpendable BathyThermographs (AXBT) data from Ocean Surveys in the Gulf of Mexico during Hurricane Lili 2002-10-02 to 2002-10-04 (NCEI Accession 0159386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne eXpendable BathyThermographs (AXBT) data from deployments during field operations to study Hurricane Lili. The data were used in model simulations for...

  8. 2006 - 2016: Ten Years Of Tsunami In French Polynesia

    Science.gov (United States)

    Reymond, D.; Jamelot, A.; Hyvernaud, O.

    2016-12-01

    Located in South central Pacific and despite of its far field situation, the French Polynesia is very much concerned by the tsunamis generated along the major subduction zones located around the Pacific. At the time of writing, 10 tsunamis have been generated in the Pacific Ocean since 2006; all these events recorded in French Polynesia, produced different levels of warning, starting from a simple seismic warning with an information bulletin, up to an effective tsunami warning with evacuation of the coastal zone. These tsunamigenic events represent an invaluable opportunity of evolutions and tests of the tsunami warning system developed in French Polynesia: during the last ten years, the warning rules had evolved from a simple criterion of magnitudes up to the computation of the main seismic source parameters (location, slowness determinant (Newman & Okal, 1998) and focal geometry) using two independent methods: the first one uses an inversion of W-phases (Kanamori & Rivera, 2012) and the second one performs an inversion of long period surface waves (Clément & Reymond, 2014); the source parameters such estimated allow to compute in near real time the expected distributions of tsunami heights (with the help of a super-computer and parallelized codes of numerical simulations). Furthermore, two kinds of numerical modeling are used: the first one, very rapid (performed in about 5minutes of computation time) is based on the Green's law (Jamelot & Reymond, 2015), and a more detailed and precise one that uses classical numerical simulations through nested grids (about 45 minutes of computation time). Consequently, the criteria of tsunami warning are presently based on the expected tsunami heights in the different archipelagos and islands of French Polynesia. This major evolution allows to differentiate and use different levels of warning for the different archipelagos,working in tandem with the Civil Defense. We present the comparison of the historical observed tsunami

  9. Long-term perspectives on giant earthquakes and tsunamis at subduction zones

    Science.gov (United States)

    Satake, K.; Atwater, B.F.; ,

    2007-01-01

    Histories of earthquakes and tsunamis, inferred from geological evidence, aid in anticipating future catastrophes. This natural warning system now influences building codes and tsunami planning in the United States, Canada, and Japan, particularly where geology demonstrates the past occurrence of earthquakes and tsunamis larger than those known from written and instrumental records. Under favorable circumstances, paleoseismology can thus provide long-term advisories of unusually large tsunamis. The extraordinary Indian Ocean tsunami of 2004 resulted from a fault rupture more than 1000 km in length that included and dwarfed fault patches that had broken historically during lesser shocks. Such variation in rupture mode, known from written history at a few subduction zones, is also characteristic of earthquake histories inferred from geology on the Pacific Rim. Copyright ?? 2007 by Annual Reviews. All rights reserved.

  10. Toward tsunami early warning system in Indonesia by using rapid rupture durations estimation

    International Nuclear Information System (INIS)

    Madlazim

    2012-01-01

    Indonesia has Indonesian Tsunami Early Warning System (Ina-TEWS) since 2008. The Ina-TEWS has used automatic processing on hypocenter; Mwp, Mw (mB) and Mj. If earthquake occurred in Ocean, depth 7, then Ina-TEWS announce early warning that the earthquake can generate tsunami. However, the announcement of the Ina-TEWS is still not accuracy. Purposes of this research are to estimate earthquake rupture duration of large Indonesia earthquakes that occurred in Indian Ocean, Java, Timor sea, Banda sea, Arafura sea and Pasific ocean. We analyzed at least 330 vertical seismogram recorded by IRIS-DMC network using a direct procedure for rapid assessment of earthquake tsunami potential using simple measures on P-wave vertical seismograms on the velocity records, and the likelihood that the high-frequency, apparent rupture duration, T dur . T dur can be related to the critical parameters rupture length (L), depth (z), and shear modulus (μ) while T dur may be related to wide (W), slip (D), z or μ. Our analysis shows that the rupture duration has a stronger influence to generate tsunami than Mw and depth. The rupture duration gives more information on tsunami impact, Mo/μ, depth and size than Mw and other currently used discriminants. We show more information which known from the rupture durations. The longer rupture duration, the shallower source of the earthquake. For rupture duration greater than 50 s, the depth less than 50 km, Mw greater than 7, the longer rupture length, because T dur is proportional L and greater Mo/μ. Because Mo/μ is proportional L. So, with rupture duration information can be known information of the four parameters. We also suggest that tsunami potential is not directly related to the faulting type of source and for events that have rupture duration greater than 50 s, the earthquakes generated tsunami. With available real-time seismogram data, rapid calculation, rupture duration discriminant can be completed within 4–5 min after an earthquake

  11. NOVEL TSUNAMI BARRIERS AND THEIR APPLICATIONS FOR HYDROELECTRIC ENERGY STORAGE, FISH FARMING, AND FOR LAND RECLAMATION

    Directory of Open Access Journals (Sweden)

    Hans J. Scheel

    2014-10-01

    Full Text Available The tsunami hazard can be mitigated if the destructive waves generated from earthquakes and landslides can be reflected by a stable submerged vertical barrier before striking coastal communities or important structures. Building such deep walls by conventional submarine technology is difficult. The present study describes the principle and the erection of such submarine defensive walls by a relatively simple efficient and economic technology. This technology is based on lowering high- strength steel fences with horizontal anchors, or two parallel steel fences with distance holders, into the sea and fixing them with rocks deposited from top. Dredged material like gravel or sand can be used for additional filling. This Tsunami-Flooding Barrier (TFB extends a few meters above sea level and carries on top a concrete supply and service road protected on both sides against storm waves by concrete walls. Replaceable surge stoppers (parapets, wave return walls prevent overtopping and erosion of the seaward barrier face. The TFBs protect the coastline against tsunami and the highest storm waves from hurricanes, but also can provide protection from oil spills or other contaminations from the ocean and thus protect flora, fauna, coral reefs and beaches. Channels and gates allow navigation and can be closed quickly upon a tsunami or storm warning. The construction costs can be eventually compensated by using the reservoirs between coast and barriers for hydroelectric energy storage (using pump-turbines in the barriers or for fish-farming, or alternatively the reservoir can be filled with rocks, rubble, gravel, sand and covered with soil in order to reclaim new land. Tidal energy can be generated by installing turbines within these barriers. Also, this submarine architecture may be applied to protect pillars of bridges and offshore platforms, and for erecting “roads” into the sea to connect near-shore platforms and wind-parks with the coast and

  12. 2014 NOAA Ortho-rectified Mosaic of Hurricane Sandy Coastal Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.35m GSD created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in Hurricane Sandy coastal...

  13. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific

    Science.gov (United States)

    Cronin, S. J.; Smith, I. E.

    2015-12-01

    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only gods flying overhead with baskets of ash, and an analysis of the high-level wind distribution patterns, lake and wetland sites were investigated along the Tongan chain. In most cases former lagoon basins lifted above sea-level by a combination of tectonic rise and the lowering of mean sea levels by around 2 m since the Mid-Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of particles.

  14. An approximate method of short-term tsunami forecast and the hindcasting of some recent events

    Directory of Open Access Journals (Sweden)

    Yu. P. Korolev

    2011-11-01

    Full Text Available The paper presents a method for a short-term tsunami forecast based on sea level data from remote sites. This method is based on Green's function for the wave equation possessing the fundamental property of symmetry. This property is well known in acoustics and seismology as the reciprocity principle. Some applications of this principle on tsunami research are considered in the current study. Simple relationships and estimated transfer functions enabled us to simulate tsunami waveforms for any selected oceanic point based only on the source location and sea level data from a remote reference site. The important advantage of this method is that it is irrespective of the actual source mechanism (seismic, submarine landslide or other phenomena. The method was successfully applied to hindcast several recent tsunamis observed in the Northwest Pacific. The locations of the earthquake epicenters and the tsunami records from one of the NOAA DART sites were used as inputs for the modelling, while tsunami observations at other DART sites were used to verify the model. Tsunami waveforms for the 2006, 2007 and 2009 earthquake events near Simushir Island were simulated and found to be in good agreement with the observations. The correlation coefficients between the predicted and observed tsunami waveforms were from 0.50 to 0.85. Thus, the proposed method can be effectively used to simulate tsunami waveforms for the entire ocean and also for both regional and local tsunami warning services, assuming that they have access to the real-time sea level data from DART stations.

  15. Sea level hazards: Altimetric monitoring of tsunamis and sea level rise

    Science.gov (United States)

    Hamlington, Benjamin Dillon

    Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.

  16. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Science.gov (United States)

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-12-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  17. The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Ross, Stephanie L.; Jones, Lucile M.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey (CGS), the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  18. Subinertial response of the Gulf Stream System to Hurricane Fran of 1996

    Science.gov (United States)

    Xie, Lian; Pietrafesa, Leonard J.; Zhang, Chen

    The evidence of subinertial-frequency (with periods from 2 days to 2 weeks) oceanic response to Hurricane Fran of 1996 is documented. Hurricane Fran traveled northward across the Gulf Stream and then over a cool-core trough, known as the Charleston Trough, due east of Charleston, SC and in the lee of the Charleston Bump during the period 4-5 September, 1996. During the passage of the storm, the trough closed into a gyre to form an intense cool-core cyclonic eddy. This cool-core eddy had an initial size of approximately 130 km by 170 km and drifted northeastward along the Gulf Stream front at a speed of 13 to 15 km/day as a subinertial baroclinic wave. Superimposed on this subinertial-frequency wave were near-inertial frequency, internal inertia-gravity waves formed in the stratified mixed-layer base after the passage of the storm. The results from a three-dimensional numerical ocean model confirm the existence of both near-inertial and subinertial-frequency waves in the Gulf Stream system during and after the passage of Hurricane Fran. Model results also showed that hurricane-forced oceanic response can modify Gulf Stream variability at both near-inertial and subinertial frequencies.

  19. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  20. The U.S. Navy in the World (2001-2010): Context for U.S. Navy Capstone Strategies and Concepts

    Science.gov (United States)

    2011-12-01

    NOCJO, Fleet Response Plan NSP ISO POM 08 NOC Rumsfeld Winter Iraq ABOT attack Indian Ocean tsunami Hurricane Katrina Bali terror bombings OEF begins...Colombia Cuban Communist anti-US leadership transition uncertainties  Increasing Venezuelan hostility to US Anti-American & authoritarian Hugo Chavez...disasters hit US Gulf Coast  Hurricane Katrina (Aug 2005) Deepwater Horizon Oil Spill (2010) 53 54 2000s: The nation (VI)  Press reporting on military

  1. Effects of 2010 Hurricane Earl amidst geologic evidence for greater overwash at Anegada, British Virgin Islands

    Science.gov (United States)

    Atwater, B. F.; Fuentes, Z.; Halley, R. B.; Ten Brink, U. S.; Tuttle, M. P.

    2014-03-01

    A post-hurricane survey of a Caribbean island affords comparisons with geologic evidence for greater overwash at the same place. This comparison, though of limited application to other places, helps calibrate coastal geology for assessment of earthquake and tsunami potential along the Antilles Subduction Zone. The surveyed island, Anegada, is 120 km south of the Puerto Rico Trench and is near the paths of hurricanes Donna (1960) and Earl (2010), which were at or near category 4 when at closest approach. The survey focused on Earl's geologic effects, related them to the surge from Hurricane Donna, and compared them further with erosional and depositional signs of southward overwash from the Atlantic Ocean that dates to 1200-1450 AD and to 1650-1800 AD. The main finding is that the geologic effects of these earlier events dwarf those of the recent hurricanes. Hurricane Earl's geologic effects at Anegada, observed mainly in 2011, were limited to wrack deposition along many of the island's shores and salt ponds, accretion of small washover (spillover) fans on the south shore, and the suspension and deposition of microbial material from interior salt ponds. Earl's most widespread deposit at Anegada, the microbial detritus, was abundantly juxtaposed with evidence for catastrophic overwash in prior centuries. The microbial detritus formed an extensive coating up to 2 cm thick that extended into breaches in beach-ridge plains of the island's north shore, onto playas that are underlain by a sand-and-shell sheet that extends as much as 1.5 km southward from the north shore, and among southward-strewn limestone boulders pendant to outcrops as much as 1 km inland. Earl's spillover fans also contrast with a sand-and-shell sheet, which was dated previously to 1650-1800, by being limited to the island's south shore and by extending inland a few tens of meters at most. These findings complement those reported in this issue by Michaela Spiske and Robert Halley (Spiske and Halley

  2. Tsunami deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  3. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  4. Low ionospheric reactions on tropical depressions prior hurricanes

    Science.gov (United States)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  5. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust

    Science.gov (United States)

    Witter, Robert C.; Carver, G.A.; Briggs, Richard; Gelfenbaum, Guy R.; Koehler, R.D.; La Selle, SeanPaul M.; Bender, Adrian M.; Engelhart, S.E.; Hemphill-Haley, E.; Hill, Troy D.

    2016-01-01

    Current models used to assess earthquake and tsunami hazards are inadequate where creep dominates a subduction megathrust. Here we report geological evidence for large tsunamis, occurring on average every 300–340 years, near the source areas of the 1946 and 1957 Aleutian tsunamis. These areas bookend a postulated seismic gap over 200 km long where modern geodetic measurements indicate that the megathrust is currently creeping. At Sedanka Island, evidence for large tsunamis includes six sand sheets that blanket a lowland facing the Pacific Ocean, rise to 15 m above mean sea level, contain marine diatoms, cap terraces, adjoin evidence for scour, and date from the past 1700 years. The youngest sheet, and modern drift logs found as far as 800 m inland and >18 m elevation, likely record the 1957 tsunami. Modern creep on the megathrust coexists with previously unrecognized tsunami sources along this part of the Aleutian Subduction Zone.

  6. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    Science.gov (United States)

    Brocko, V. R.; Varner, J.

    2007-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Deep Ocean Assessment and Reporting of Tsunamis (DART) data, historical reports, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the Global Tsunami Database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. Authors may submit their own descriptions and upload digital versions of publications. Users may sort by any populated field, including event, location, region, age of deposit, author, publication type (extract information from peer reviewed publications only, if you wish), grain size, composition, presence/absence of plant material. Users may find tsunami deposit references for a given location, event or author; search for particular properties of tsunami deposits; and even identify potential collaborators. Users may also download public-domain documents. Data and information may be viewed using tools designed to extract and

  7. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  8. Necessity of countermeasures for hurricane, typhoon and cyclone in accordance with the progress of global warming

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Sugiyama, Kenichiro

    2014-01-01

    In recent years, according to the progress of global warming, hurricanes and typhoons getting bigger and bigger, about 20% increase per decade. Hurricanes and typhoons are given thermal energy from vaporizing steam from surface of sea water. Hurricane Sandy attacked New York on 22-29, Oct. 2012. Typhoon 26th attacked Ohshima, Oct. 2013, and Typhoon 30th attacked Philippine on Nov. 4-11. Tropical cyclone Phailin attacked India on Oct. 12, 2013. Its diameter was 2300km. They were all category 5. Human beings are now on the front of the natural disasters. We think the risk is higher than active faults that moves only several thousand years period. In the US, a nuclear power plant stopped its operation when a category 5 hurricane arrived nearby, which was monitored from a weather satellite. The countermeasures for tornado and tsunami will be effective for typhoon. NRA found the lack of description in the new regulatory guideline and they said the management plan should be considered by licensees. The Japan Society of Maintenology will start preparing the guideline for typhoon. (author)

  9. Long-term statistics of extreme tsunami height at Crescent City

    Science.gov (United States)

    Dong, Sheng; Zhai, Jinjin; Tao, Shanshan

    2017-06-01

    Historically, Crescent City is one of the most vulnerable communities impacted by tsunamis along the west coast of the United States, largely attributed to its offshore geography. Trans-ocean tsunamis usually produce large wave runup at Crescent Harbor resulting in catastrophic damages, property loss and human death. How to determine the return values of tsunami height using relatively short-term observation data is of great significance to assess the tsunami hazards and improve engineering design along the coast of Crescent City. In the present study, the extreme tsunami heights observed along the coast of Crescent City from 1938 to 2015 are fitted using six different probabilistic distributions, namely, the Gumbel distribution, the Weibull distribution, the maximum entropy distribution, the lognormal distribution, the generalized extreme value distribution and the generalized Pareto distribution. The maximum likelihood method is applied to estimate the parameters of all above distributions. Both Kolmogorov-Smirnov test and root mean square error method are utilized for goodness-of-fit test and the better fitting distribution is selected. Assuming that the occurrence frequency of tsunami in each year follows the Poisson distribution, the Poisson compound extreme value distribution can be used to fit the annual maximum tsunami amplitude, and then the point and interval estimations of return tsunami heights are calculated for structural design. The results show that the Poisson compound extreme value distribution fits tsunami heights very well and is suitable to determine the return tsunami heights for coastal disaster prevention.

  10. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  11. Characteristics of the 2011 Tohoku Tsunami and introduction of two level tsunamis for tsunami disaster mitigation.

    Science.gov (United States)

    Sato, Shinji

    2015-01-01

    Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.

  12. The 8 September 2017 Tsunami Triggered by the M w 8.2 Intraplate Earthquake, Chiapas, Mexico

    Science.gov (United States)

    Ramírez-Herrera, María Teresa; Corona, Néstor; Ruiz-Angulo, Angel; Melgar, Diego; Zavala-Hidalgo, Jorge

    2018-01-01

    The 8 September 2017, M w 8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake in recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco, including more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, an intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here, we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our post-tsunami field survey. The associated tsunami waves were recorded first at Huatulco tide gauge station at 5:04 (GMT) 12 min after the earthquake. We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on our preliminary tsunami model (maximum tsunami amplitudes between 94.5° and 93.0°W). Runup and inundation distances were measured along eight sites. The tsunami occurred at low tide. The maximum runup was 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast in front of the epicenter and in the central sector of the Gulf of Tehuantepec. Tsunami scour and erosion was evident along the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landward up to 172 m distance.

  13. Emergency preparedness in the case of Makran tsunami: a case study on tsunami risk visualization for the western parts of Gujarat, India

    Directory of Open Access Journals (Sweden)

    V. M. Patel

    2016-03-01

    Full Text Available The west coast of India is affected by tsunamigenic earthquake along the Makran subduction zone. On 28 November 1945 at 21:56 coordinated universal time (UTC, a massive Makran earthquake (M8.0 generated a destructive tsunami that propagated across the Northern Arabian Sea and the Indian Ocean. This tsunamigenic earthquake was responsible for the loss of life and great destruction along the coasts of India, Pakistan, Iran and Oman. Modelling of tsunami stages has been made for the coasts of Pakistan, Iran, India and Oman using NAMI-DANCE computer code. The fault parameters of the earthquakes for the generation of tsunami are epicentre (25.15° N, 63.48° E, fault area (200 km length and 100 km width, angle of strike, dip and rake (246°, 7° and 90°, focal depth (15 km, slip magnitude (7 m. The bathymetry data are taken from General Bathymetric Chart of the Oceans (GEBCO and land topography data were collected using Shuttle Radar Topography Mission (SRTM. The present simulation is carried out for a duration of 360 min. It is observed that the maximum calculated tsunami run-ups were about 0.7–1.1 m along the coast of Oman, 0.5 m near Muscat, 0.1 m near Sur, 0.7–1.35 m along the western coast of India, 0.5–2.3 m along the southern coast of Iran and 1.2–5.8 m along the southern coast of Pakistan. After the tsunamigenic earthquake, the tsunami wave reached the Gulf of Kachchh in about 240 min, Okha in about 185 min, Dwarka in about 150 min, Porbandar in about 155 min, Mumbai in about 300 min and Goa in about 210 min. The calculated 2-hr tsunami travel time to the Indian coast is in good agreement with the available reports and published data. If the tsunami strikes during high tide, we should expect more serious hazards which would impact local coastal communities. The results obtained in this study are converted to be compatible with the geographic information system based applications for display and spatial analysis of

  14. Tsunami excitation by inland/coastal earthquakes: the Green function approach

    Directory of Open Access Journals (Sweden)

    T. B. Yanovskaya

    2003-01-01

    Full Text Available In the framework of the linear theory, the representation theorem is derived for an incompressible liquid layer with a boundary of arbitrary shape and in a homogeneous gravity field. In addition, the asymptotic representation for the Green function, in a layer of constant thickness is obtained. The validity of the approach for the calculation of the tsunami wavefield based on the Green function technique is verified comparing the results with those obtained from the modal theory, for a liquid layer of infinite horizontal dimensions. The Green function approach is preferable for the estimation of the excitation spectra, since in the case of an infinite liquid layer it leads to simple analytical expressions. From this analysis it is easy to describe the peculiarities of tsunami excitation by different sources. The method is extended to the excitation of tsunami in a semiinfinite layer with a sloping boundary. Numerical modelling of the tsunami wavefield, excited by point sources at different distances from the coastline, shows that when the source is located at a distance from the coastline equal or larger than the source depth, the shore presence does not affect the excitation of the tsunami. When the source is moved towards thecoastline, the low frequency content in the excitation spectrum ecreases, while the high frequencies content increases dramatically. The maximum of the excitation spectra from inland sources, located at a distance from the shore like the source depth, becomes less than 10% of that radiated if the same source is located in the open ocean. The effect of the finiteness of the source is also studied and the excitation spectrum is obtained by integration over the fault area. Numerical modelling of the excitation spectra for different source models shows that, for a given seismic moment, the spectral level, as well as the maximum value of the spectra, decreases with increasing fault size. When the sources are located in the

  15. Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations

    Directory of Open Access Journals (Sweden)

    Ian D. Lloyd

    2011-11-01

    Full Text Available This paper examines the ability of recent versions of the Geophysical Fluid Dynamics Laboratory Operational Hurricane Forecast Model (GHM to reproduce the observed relationship between hurricane intensity and hurricane-induced Sea Surface Temperature (SST cooling. The analysis was performed by taking a Lagrangian composite of all hurricanes in the North Atlantic from 1998–2009 in observations and 2005–2009 for the GHM. A marked improvement in the intensity-SST relationship for the GHM compared to observations was found between the years 2005 and 2006–2009 due to the introduction of warm-core eddies, a representation of the loop current, and changes to the drag coefficient parameterization for bulk turbulent flux computation. A Conceptual Hurricane Intensity Model illustrates the essential steady-state characteristics of the intensity-SST relationship and is explained by two coupled equations for the atmosphere and ocean. The conceptual model qualitatively matches observations and the 2006–2009 period in the GHM, and presents supporting evidence for the conclusion that weaker upper oceanic thermal stratification in the Gulf of Mexico, caused by the introduction of the loop current and warm core eddies, is crucial to explaining the observed SST-intensity pattern. The diagnostics proposed by the conceptual model offer an independent set of metrics for comparing operational hurricane forecast models to observations.

  16. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  17. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  18. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery

    Directory of Open Access Journals (Sweden)

    Shasha Jiang

    2016-05-01

    Full Text Available Automated remote sensing methods have not gained widespread usage for damage assessment after hurricane events, especially for low-rise buildings, such as individual houses and small businesses. Hurricane wind, storm surge with waves, and inland flooding have unique damage signatures, further complicating the development of robust automated assessment methodologies. As a step toward realizing automated damage assessment for multi-hazard hurricane events, this paper presents a mono-temporal image classification methodology that quickly and accurately differentiates urban debris from non-debris areas using post-event images. Three classification approaches are presented: spectral, textural, and combined spectral–textural. The methodology is demonstrated for Gulfport, Mississippi, using IKONOS panchromatic satellite and NOAA aerial colour imagery collected after 2005 Hurricane Katrina. The results show that multivariate texture information significantly improves debris class detection performance by decreasing the confusion between debris and other land cover types, and the extracted debris zone accurately captures debris distribution. Additionally, the extracted debris boundary is approximately equivalent regardless of imagery type, demonstrating the flexibility and robustness of the debris mapping methodology. While the test case presents results for hurricane hazards, the proposed methodology is generally developed and expected to be effective in delineating debris zones for other natural hazards, including tsunamis, tornadoes, and earthquakes.

  19. SAFRR (Science Application for Risk Reduction) Tsunami Scenario--Executive Summary and Introduction: Chapter A in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Ross, Stephanie L.; Jones, Lucile M.; Miller, Kevin H.; Porter, Keith A.; Wein, Anne; Wilson, Rick I.; Bahng, Bohyun; Barberopoulou, Aggeliki; Borrero, Jose C.; Brosnan, Deborah M.; Bwarie, John T.; Geist, Eric L.; Johnson, Laurie A.; Kirby, Stephen H.; Knight, William R.; Long, Kate; Lynett, Patrick; Mortensen, Carl E.; Nicolsky, Dmitry J.; Perry, Suzanne C.; Plumlee, Geoffrey S.; Real, Charles R.; Ryan, Kenneth; Suleimani, Elena; Thio, Hong Kie; Titov, Vasily V.; Whitmore, Paul M.; Wood, Nathan J.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey, the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  20. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  1. Hurricane Wind Vector Estimates from WindSat Polarimetric Radiometer

    National Research Council Canada - National Science Library

    Adams, Ian S; Hennon, Christopther C; Jones, W. L; Ahmad, Khalil

    2005-01-01

    .... In late 2004, the first preliminary oceanic wind vector results were released, and this paper presents the first evaluation of this product for several Atlantic hurricanes during the 2003 season...

  2. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Science.gov (United States)

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  3. Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy

    Science.gov (United States)

    Warner, John C.; Schwab, William C.; List, Jeffrey; Safak, Ilgar; Liste, Maria; Baldwin, Wayne E.

    2017-01-01

    Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on Oct 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system and observation analysis from a series of geologic surveys and oceanographic instrument deployments focused on a region offshore of Fire Island, NY. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis

  4. Improving tsunami resiliency: California's Tsunami Policy Working Group

    Science.gov (United States)

    Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie L.; Kontar, Y.A.; Santiago-Fandiño, V.; Takahashi, T.

    2014-01-01

    California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.

  5. Tsunami on Sanriku Coast in 1586: Orphan or Ghost Tsunami ?

    Science.gov (United States)

    Satake, K.

    2017-12-01

    The Peruvian earthquake on July 9, 1586 was the oldest earthquake that damaged Lima. The tsunami height was assigned as 24 m in Callao and 1-2 m in Miyagi prefecture in Japan by Soloviev and Go (1975). Dorbath et al. (1990) studied historical earthquakes in Peru and estimated that the 1586 earthquake was similar to the 1974 event (Mw 8.1) with source length of 175 km. They referred two different tsunami heights, 3. 7m and 24 m, in Callao, and judged that the latter was exaggerated. Okal et al. (2006) could not make a source model to explain both tsunami heights in Callao and Japan. More recently, Butler et al. (2017) estimated the age of coral boulders in Hawaii as AD 1572 +/- 21, speculated the tsunami source in Aleutians, and attributed it to the source of the 1586 tsunami in Japan. Historical tsunamis, both near-field and far-field, have been documented along the Sanriku coast since 1586 (e.g., Watanabe, 1998). However, there is no written document for the 1586 tsunami (Tsuji et al., 2013). Ninomiya (1960) compiled the historical tsunami records on the Sanriku coast soon after the 1960 Chilean tsunami, and correlated the legend of tsunami in Tokura with the 1586 Peruvian earthquake, although he noted that the dates were different. About the legend, he referred to Kunitomi(1933) who compiled historical tsunami data after the 1933 Showa Sanriku tsunami. Kunitomi referred to "Tsunami history of Miyagi prefecture" published after the 1896 Meiji Sanriku tsunami. "Tsunami history" described the earthquake and tsunami damage of Tensho earthquake on January 18 (Gregorian),1586 in central Japan, and correlated the tsunami legend in Tokura on June 30, 1586 (G). Following the 2011 Tohoku tsunami, tsunami legend in Tokura was studied again (Ebina, 2015). A local person published a story he heard from his grandfather that many small valleys were named following the 1611 tsunami, which inundated further inland than the 2011 tsunami. Ebina (2015), based on historical documents

  6. Tsunami Source Inversion Using Tide Gauge and DART Tsunami Waveforms of the 2017 Mw8.2 Mexico Earthquake

    Science.gov (United States)

    Adriano, Bruno; Fujii, Yushiro; Koshimura, Shunichi; Mas, Erick; Ruiz-Angulo, Angel; Estrada, Miguel

    2018-01-01

    On September 8, 2017 (UTC), a normal-fault earthquake occurred 87 km off the southeast coast of Mexico. This earthquake generated a tsunami that was recorded at coastal tide gauge and offshore buoy stations. First, we conducted a numerical tsunami simulation using a single-fault model to understand the tsunami characteristics near the rupture area, focusing on the nearby tide gauge stations. Second, the tsunami source of this event was estimated from inversion of tsunami waveforms recorded at six coastal stations and three buoys located in the deep ocean. Using the aftershock distribution within 1 day following the main shock, the fault plane orientation had a northeast dip direction (strike = 320°, dip = 77°, and rake =-92°). The results of the tsunami waveform inversion revealed that the fault area was 240 km × 90 km in size with most of the largest slip occurring on the middle and deepest segments of the fault. The maximum slip was 6.03 m from a 30 × 30 km2 segment that was 64.82 km deep at the center of the fault area. The estimated slip distribution showed that the main asperity was at the center of the fault area. The second asperity with an average slip of 5.5 m was found on the northwest-most segments. The estimated slip distribution yielded a seismic moment of 2.9 × 10^{21} Nm (Mw = 8.24), which was calculated assuming an average rigidity of 7× 10^{10} N/m2.

  7. Asteroid-Generated Tsunami and Impact Risk

    Science.gov (United States)

    Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.

    2016-12-01

    The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  8. Female hurricanes are deadlier than male hurricanes.

    Science.gov (United States)

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  9. Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal

    OpenAIRE

    Wronna, M.; Omira, R.; Baptista, M. A.

    2015-01-01

    In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This...

  10. Evaluation of Seismic Rupture Models for the 2011 Tohoku-Oki Earthquake Using Tsunami Simulation

    Directory of Open Access Journals (Sweden)

    Ming-Da Chiou

    2013-01-01

    Full Text Available Developing a realistic, three-dimensional rupture model of the large offshore earthquake is difficult to accomplish directly through band-limited ground-motion observations. A potential indirect method is using a tsunami simulation to verify the rupture model in reverse because the initial conditions of the associated tsunamis are caused by a coseismic seafloor displacement correlating to the rupture pattern along the main faulting. In this study, five well-developed rupture models for the 2011 Tohoku-Oki earthquake were adopted to evaluate differences in simulated tsunamis and various rupture asperities. The leading wave of the simulated tsunamis triggered by the seafloor displacement in Yamazaki et al. (2011 model resulted in the smallest root-mean-squared difference (~0.082 m on average from the records of the eight DART (Deep-ocean Assessment and Reporting of Tsunamis stations. This indicates that the main seismic rupture during the 2011 Tohoku earthquake should occur in a large shallow slip in a narrow range adjacent to the Japan trench. This study also quantified the influences of ocean stratification and tides which are normally overlooked in tsunami simulations. The discrepancy between the simulations with and without stratification was less than 5% of the first peak wave height at the eight DART stations. The simulations, run with and without the presence of tides, resulted in a ~1% discrepancy in the height of the leading wave. Because simulations accounting for tides and stratification are time-consuming and their influences are negligible, particularly in the first tsunami wave, the two factors can be ignored in a tsunami prediction for practical purposes.

  11. Run-up of tsunamis and long waves in terms of surf-similarity

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2008-01-01

    of the surf-similarity parameter and the amplitude to depth ratio determined at some offshore location. We use the analytical expressions to analyze the impact of tsunamis on beaches and relate the discussion to the recent Indian Ocean tsunami from December 26, 2004. An important conclusion is that extreme...... run-up combined with extreme flow velocities occurs for surf-similarity parameters of the order 3-6, and for typical tsunami wave periods this requires relatively mild beach slopes. Next, we compare the theoretical solutions to measured run-up of breaking and non-breaking irregular waves on steep...

  12. First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission

    Science.gov (United States)

    Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric

    2017-12-01

    We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.

  13. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    Science.gov (United States)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  14. Integrating Caribbean Seismic and Tsunami Hazard into Public Policy and Action

    Science.gov (United States)

    von Hillebrandt-Andrade, C.

    2012-12-01

    The Caribbean has a long history of tsunamis and earthquakes. Over the past 500 years, more than 80 tsunamis have been documented in the region by the NOAA National Geophysical Data Center. Almost 90% of all these historical tsunamis have been associated with earthquakes. Just since 1842, 3510 lives have been lost to tsunamis; this is more than in the Northeastern Pacific for the same time period. With a population of almost 160 million and a heavy concentration of residents, tourists, businesses and critical infrastructure along the Caribbean shores (especially in the northern and eastern Caribbean), the risk to lives and livelihoods is greater than ever before. Most of the countries also have a very high exposure to earthquakes. Given the elevated vulnerability, it is imperative that government officials take steps to mitigate the potentially devastating effects of these events. Nevertheless, given the low frequency of high impact earthquakes and tsunamis, in comparison to hurricanes, combined with social and economic considerations, the needed investments are not made and disasters like the 2010 Haiti earthquake occur. In the absence of frequent significant events, an important driving force for public officials to take action, is the dissemination of scientific studies. When papers of this nature have been published and media advisories issued, public officials demonstrate heightened interest in the topic which in turn can lead to increased legislation and funding efforts. This is especially the case if the material can be easily understood by the stakeholders and there is a local contact. In addition, given the close link between earthquakes and tsunamis, in Puerto Rico alone, 50% of the high impact earthquakes have also generated destructive tsunamis, it is very important that earthquake and tsunami hazards studies demonstrate consistency. Traditionally in the region, earthquake and tsunami impacts have been considered independently in the emergency planning

  15. Indian Ocean Earthquake and Tsunami: Humanitarian Assistance and Relief Operations

    National Research Council Canada - National Science Library

    Margesson, Rhoda

    2005-01-01

    On December 26, 2004, a magnitude 9.0 undersea earthquake off the west coast of northern Sumatra, Indonesia, unleashed a tsunami that affected more than 12 countries throughout south and southeast Asia and stretched as far...

  16. Probabilistic Tsunami Hazard Assessment from Incomplete and Uncertain Historical Catalogues with Application to Tsunamigenic Regions in the Pacific Ocean

    Science.gov (United States)

    Smit, Ansie; Kijko, Andrzej; Stein, Alfred

    2017-08-01

    The paper presents a new method for empirical assessment of tsunami recurrence parameters, namely the mean tsunami activity rate λT, the Soloviev-Imamura frequency-magnitude power law bT-value, and the coastline-characteristic, maximum possible tsunami intensity i_{ max }. The three coastline-characteristic recurrence parameters are estimated locally by maximum likelihood techniques using only tsunami event catalogues. The method provides for incompleteness of the tsunami catalogue, uncertainty in the tsunami intensity determination, and uncertainty associated with the parameters in the applied tsunami occurrence models. Aleatory and epistemic uncertainty is introduced in the tsunami models by means of the use of mixture distributions. Both the mean tsunami activity rate λT of the Poisson occurrence model, and the bT-value of the Soloviev-Imamura frequency-intensity power law are random variables. The proposed procedure was applied to estimate the probabilities of exceedance and return periods for tsunamis in the tsunamigenic regions of Japan, Kuril-Kamchatka, and South America.

  17. Far field tsunami simulations of the 1755 Lisbon earthquake: Implications for tsunami hazard to the U.S. East Coast and the Caribbean

    Science.gov (United States)

    Barkan, R.; ten Brink, Uri S.; Lin, J.

    2009-01-01

    The great Lisbon earthquake of November 1st, 1755 with an estimated moment magnitude of 8.5-9.0 was the most destructive earthquake in European history. The associated tsunami run-up was reported to have reached 5-15??m along the Portuguese and Moroccan coasts and the run-up was significant at the Azores and Madeira Island. Run-up reports from a trans-oceanic tsunami were documented in the Caribbean, Brazil and Newfoundland (Canada). No reports were documented along the U.S. East Coast. Many attempts have been made to characterize the 1755 Lisbon earthquake source using geophysical surveys and modeling the near-field earthquake intensity and tsunami effects. Studying far field effects, as presented in this paper, is advantageous in establishing constraints on source location and strike orientation because trans-oceanic tsunamis are less influenced by near source bathymetry and are unaffected by triggered submarine landslides at the source. Source location, fault orientation and bathymetry are the main elements governing transatlantic tsunami propagation to sites along the U.S. East Coast, much more than distance from the source and continental shelf width. Results of our far and near-field tsunami simulations based on relative amplitude comparison limit the earthquake source area to a region located south of the Gorringe Bank in the center of the Horseshoe Plain. This is in contrast with previously suggested sources such as Marqu??s de Pombal Fault, and Gulf of C??diz Fault, which are farther east of the Horseshoe Plain. The earthquake was likely to be a thrust event on a fault striking ~ 345?? and dipping to the ENE as opposed to the suggested earthquake source of the Gorringe Bank Fault, which trends NE-SW. Gorringe Bank, the Madeira-Tore Rise (MTR), and the Azores appear to have acted as topographic scatterers for tsunami energy, shielding most of the U.S. East Coast from the 1755 Lisbon tsunami. Additional simulations to assess tsunami hazard to the U.S. East

  18. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  19. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  20. A Review of Methodologies on Vulnerability Assessment of Buildings to Tsunami Damage

    Science.gov (United States)

    Gunasekera, R.; Rosetto, T.; Tabuchi, S.; Suppasri, A.; Futami, T.; Scott, I.; Maegawa, H.

    2012-04-01

    The infrequency, suddenness and violence tsunamis has led to a lack of knowledge on tsunami and lack of data available for the calibration of numerical models particularly in relation to tsunami damage. Therefore, there are very few tsunami structural vulnerability studies available. Of the available literature, most of these started after the disastrous 2004 Indian Ocean event. Most of fragility curves have been developed in some areas struck by the 2004 tsunami, which are very different in architecture and engineering respect to the US, Japanese or European ones. This review aims to highlight the strengths and weaknesses of current knowledge on tsunami fragility by critically assessing several fragility curves based on post tsunami damage surveys in Chile, Japan (including initial findings of the March 2011 event), Samoa, Sri Lanka and Thailand. It is observed that there is no consensus on how to derive tsunami fragility curves. Most of the examined relationships are seen to relate to residential buildings, and, due to the location of recent tsunami occurrences, they mostly represent non-engineered buildings (i.e. all use data from Thailand, Sri Lanka, Samoa, or Sumatra), which limits their usefulness. In the absence of a good understanding of tsunami actions on buildings most existing fragility relationships adopt inundation depth as the hazard parameter in the vulnerability function, which does not account for the other components of onshore flow contributing to tsunami loads on buildings, such as flow velocity.

  1. Identifying the role of initial wave parameters on tsunami focusing

    Science.gov (United States)

    Aydın, Baran

    2018-04-01

    Unexpected local tsunami amplification, which is referred to as tsunami focusing, is attributed to two different mechanisms: bathymetric features of the ocean bottom such as underwater ridges and dipolar shape of the initial wave itself. In this study, we characterize the latter; that is, we explore how amplitude and location of the focusing point vary with certain geometric parameters of the initial wave such as its steepness and crest length. Our results reveal two important features of tsunami focusing: for mild waves maximum wave amplitude increases significantly with transverse length of wave crest, while location of the focusing point is almost invariant. For steep waves, on the other hand, increasing crest length dislocates focusing point significantly, while it causes a rather small increase in wave maximum.

  2. Development of Physics and Control of Multiple Forcing Mechanisms for the Alaska Tsunami Forecast Model

    Science.gov (United States)

    Bahng, B.; Whitmore, P.; Macpherson, K. A.; Knight, W. R.

    2016-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes or other mechanisms in either the Pacific Ocean, Atlantic Ocean or Gulf of Mexico. At the U.S. National Tsunami Warning Center (NTWC), the use of the model has been mainly for tsunami pre-computation due to earthquakes. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. The model has also been used for tsunami hindcasting due to submarine landslides and due to atmospheric pressure jumps, but in a very case-specific and somewhat limited manner. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves approach coastal waters. The shallow-water wave physics is readily applicable to all of the above tsunamis as well as to tides. Recently, the model has been expanded to include multiple forcing mechanisms in a systematic fashion, and to enhance the model physics for non-earthquake events.ATFM is now able to handle multiple source mechanisms, either individually or jointly, which include earthquake, submarine landslide, meteo-tsunami and tidal forcing. As for earthquakes, the source can be a single unit source or multiple, interacting source blocks. Horizontal slip contribution can be added to the sea-floor displacement. The model now includes submarine landslide physics, modeling the source either as a rigid slump, or as a viscous fluid. Additional shallow-water physics have been implemented for the viscous submarine landslides. With rigid slumping, any trajectory can be followed. As for meteo-tsunami, the forcing mechanism is capable of following any trajectory shape. Wind stress physics has also been implemented for the meteo-tsunami case, if required. As an example of multiple

  3. Village Level Tsunami Threat Maps for Tamil Nadu, SE Coast of India: Numerical Modeling Technique

    Science.gov (United States)

    MP, J.; Kulangara Madham Subrahmanian, D.; V, R. M.

    2014-12-01

    The Indian Ocean tsunami (IOT) devastated several countries of North Indian Ocean. India is one of the worst affected countries after Indonesia and Sri Lanka. In India, Tamil Nadu suffered maximum with fatalities exceeding 8,000 people. Historical records show that tsunami has invaded the shores of Tamil Nadu in the past and has made people realize that the tsunami threat looms over Tamil Nadu and it is necessary to evolve strategies for tsunami threat management. The IOT has brought to light that tsunami inundation and runup varied within short distances and for the disaster management for tsunami, large scale maps showing areas that are likely to be affected by future tsunami are identified. Therefore threat assessment for six villages including Mamallapuram (also called Mahabalipuram) which is famous for its rock-cut temples, from the northern part of Tamil Nadu state of India has been carried out and threat maps categorizing the coast into areas of different degree of threat are prepared. The threat was assessed by numerical modeling using TUNAMI N2 code considering different tsunamigenic sources along the Andaman - Sumatra trench. While GEBCO and C-Map data was used for bathymetry and for land elevation data was generated by RTK - GPS survey for a distance of 1 km from shore and SRTM for the inland areas. The model results show that in addition to the Sumatra source which generated the IOT in 2004, earthquakes originating in Car Nicobar and North Andaman can inflict more damage. The North Andaman source can generate a massive tsunami and an earthquake of magnitude more than Mw 9 can not only affect Tamil Nadu but also entire south east coast of India. The runup water level is used to demarcate the tsunami threat zones in the villages using GIS.

  4. Physical Observations of the Tsunami during the September 8th 2017 Tehuantepec, Mexico Earthquake

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Corona, N.; Ruiz-Angulo, A.; Melgar, D.; Zavala-Hidalgo, J.

    2017-12-01

    The September 8th 2017, Mw8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco; it had more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, a deep intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our field observations. Tide gauge data indicate 11.3 and 8.2 cm of coastal subsidence at Salina Cruz and Puerto Chiapas stations. The associated tsunami waves were recorded first at Salina Cruz tide gauge station at 5:13 (GMT). We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on the preliminary tsunami model (maximum tsunami amplitudes between -94.5 and -93.0 W). Runup and inundation distances were measured with an RTK GPS and using a Sokkia B40 level along 8 sites. We corrected runup data with estimated astronomical tide levels at the time of the tsunami. The tsunami occurred at low tide. The maximum runup was 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast directly opposite the epicenter and in the central sector of the Gulf of Tehuantepec. In general, our field data agree with the predicted results from the preliminary tsunami model. Tsunami scour and erosion was evident on the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landwards up to 172 m distance. Even though the Mexican tsunami early warning system (CAT) issued several warnings, the tsunami arrival struck the Chiapas coast prior to the arrival of official warnings to the

  5. TSUNAMI HAZARD MITIGATION AND THE NOAA NATIONAL WATER LEVEL OBSERVATION NETWORK

    Directory of Open Access Journals (Sweden)

    James R. Hubbard

    2002-01-01

    Full Text Available With the renewed interest in regional Tsunami Warning Systems and the potential tsunami threats throughout the Caribbean and West coast of the United States, the National Ocean Service (NOS, National Water Level Observation Network (NWLON consisting of 175 primary stations, is well situated to play a role in the National Hazard Mitigation effort. In addition, information regarding local mean sea level trends and GPS derived geodetic datum relationships at numerous coastal locations is readily available for tsunami hazard assessment and mapping applications.Tsunami inundation maps and modeling are just two of the more important products which may be derived from NWLON data. In addition to the seven water level gauges that are hardwired into the West Coast and Alaska Tsunami Warning Center (WClATWC, NOS has a significant number of gauges with real-time satellite telemetry capabilities located along the Pacific Northwest coastline, the Gulf of Mexico and the Caribbean. These gauges, in concert with near shore buoy systems, have the potential for increasing the effectiveness of the existing tsunami warning system.The recent expansion of the Caribbean Sea Level Gauge Network through the NOS regional partnerships with Central American and Caribbean countries have opened an opportunity for a basin-wide tsunami warning network in a region which is ill prepared for a major tsunami event.

  6. Tsunami hazard and risk assessment in El Salvador

    Science.gov (United States)

    González, M.; González-Riancho, P.; Gutiérrez, O. Q.; García-Aguilar, O.; Aniel-Quiroga, I.; Aguirre, I.; Alvarez, J. A.; Gavidia, F.; Jaimes, I.; Larreynaga, J. A.

    2012-04-01

    Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, causing the loss of thousands of human lives and extensive damage to coastal infrastructure around the world. Several works have attempted to study these phenomena in order to understand their origin, causes, evolution, consequences, and magnitude of their damages, to finally propose mechanisms to protect coastal societies. Advances in the understanding and prediction of tsunami impacts allow the development of adaptation and mitigation strategies to reduce risk on coastal areas. This work -Tsunami Hazard and Risk Assessment in El Salvador-, funded by AECID during the period 2009-12, examines the state of the art and presents a comprehensive methodology for assessing the risk of tsunamis at any coastal area worldwide and applying it to the coast of El Salvador. The conceptual framework is based on the definition of Risk as the probability of harmful consequences or expected losses resulting from a given hazard to a given element at danger or peril, over a specified time period (European Commission, Schneiderbauer et al., 2004). The HAZARD assessment (Phase I of the project) is based on propagation models for earthquake-generated tsunamis, developed through the characterization of tsunamigenic sources -sismotectonic faults- and other dynamics under study -tsunami waves, sea level, etc.-. The study area is located in a high seismic activity area and has been hit by 11 tsunamis between 1859 and 1997, nine of them recorded in the twentieth century and all generated by earthquakes. Simulations of historical and potential tsunamis with greater or lesser affection to the country's coast have been performed, including distant sources, intermediate and close. Deterministic analyses of the threats under study -coastal flooding- have been carried out, resulting in different hazard maps (maximum wave height elevation, maximum water depth, minimum tsunami

  7. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas....... Especially in the initial phase of floating foundation concept development, site specific metocean data are usually not available. As the areas of interest are furthermore not covered by any design standard, in terms of design sea states, generic and in engineering terms applicable environmental background...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...

  8. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  9. Numerical Study on the 1682 Tainan Historic Tsunami Event

    Science.gov (United States)

    Tsai, Y.; Wu, T.; Lee, C.; KO, L.; Chuang, M.

    2013-12-01

    We intend to reconstruct the tsunami source of the 1682/1782 tsunami event in Tainan, Taiwan, based on the numerical method. According to Soloviev and Go (1974), a strong earthquake shook the Tainan and caused severe damage, followed by tsunami waves. Almost the whole island was flooded by tsunami for over 120 km. More than 40,000 inhabitants were killed. Forts Zealand and Pigchingi were washed away. 1682/1782 event was the highest death toll in the Pacific Ocean regarded by Bryant (2001). However, the year is ambiguous in 1682 or 1782, and death toll is doubtful. We tend to believe that this event was happened in 1682 based on the evolution of the harbor name. If the 1682 tsunami event does exist, the hazard mitigation plan has to be modified, and restoring the 1682 event becomes important. In this study, we adopted the tsunami reverse tracking method (TRTM) to examine the possible tsunami sources. A series of numerical simulations were carried out by using COMCOT (Cornell Multi-grid Coupled Tsunami model), and nested grid with 30 m resolution was applied to the study area. According to the result of TRTM, the 1682 tsunami is most likely sourcing from the north segment of Manila Trench. From scenario study, we concluded that the 1682 event was triggered by an Mw >= 8.8 earthquake in north segment of Manila Trench, and 4 m wave height was observed in Tainan and its inundation range is agreeable with historical records. If this scenario occurred again, sever damage and death toll will be seen many high population cities, such as Tainan city, Kaohsiung city and Kenting, where No. 3 nuclear power plant is located. Detailed results will be presented in the full paper. Figure 1. Map of Tsunami Reverse Tracking Method (TRTM) in Tainan. Black arrow indicates direction of possible tsunami direction. The color bar denotes the magnitude of the maximum moment flux. Figure 2. Scenario result of Mw 8.8 in northern segment of Manila Trench. (Left: Initial free surface elevation

  10. The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia

    Directory of Open Access Journals (Sweden)

    J. Lauterjung

    2010-04-01

    Full Text Available Indonesia is located along the most prominent active continental margin in the Indian Ocean, the so-called Sunda Arc and, therefore, is one of the most threatened regions of the world in terms of natural hazards such as earthquakes, volcanoes, and tsunamis. On 26 December 2004 the third largest earthquake ever instrumentally recorded (magnitude 9.3, Stein and Okal, 2005 occurred off-shore northern Sumatra and triggered a mega-tsunami affecting the whole Indian Ocean. Almost a quarter of a million people were killed, as the region was not prepared either in terms of early-warning or in terms of disaster response.

    In order to be able to provide, in future, a fast and reliable warning procedure for the population, Germany, immediately after the catastrophe, offered during the UN World Conference on Disaster Reduction in Kobe, Hyogo/Japan in January 2005 technical support for the development and installation of a tsunami early warning system for the Indian Ocean in addition to assistance in capacity building in particular for local communities. This offer was accepted by Indonesia but also by other countries like Sri Lanka, the Maldives and some East-African countries. Anyhow the main focus of our activities has been carried out in Indonesia as the main source of tsunami threat for the entire Indian Ocean. Challenging for the technical concept of this warning system are the extremely short warning times for Indonesia, due to its vicinity to the Sunda Arc. For this reason the German Indonesian Tsunami Early Warning System (GITEWS integrates different modern and new scientific monitoring technologies and analysis methods.

  11. Meteorological tsunamis along the East Coast of the United States

    Science.gov (United States)

    Rabinovich, A.

    2012-12-01

    Tsunami-like intense sea level oscillations are common along the East Coast of the United States. They are generated by various types of atmospheric disturbances, including hurricanes, frontal passages, tornados, trains of atmospheric gravity waves, pressure jumps, squalls, and gales, that each set up a local, time-limited barotropic response in the affected body of water. These meteorologically induced waves have the same temporal and spatial scales as their seismically generated counterparts and inflict comparable destructions. Observed around the globe, these devastating waves are known locally as "abiki" in Nagaski Bay (Japan), "rissaga" in Spain, "šćiga" along the Croation Coast bordering the Adriatic Sea, "milghuba" in Malta, and "marrobbio" in Italy. Collectively, they may be considered as "meteorological tsunamis" or "meteotsunamis." The updated NOAA tide gauge network with 1 min sampling enabled us to examine resonant amplifications of specific events observed in 2007-2012 and physical properties of meteotsunamis impacting the United States East Coast in general. Of particular interest and focus was the "derecho" event of June 29 - July 2, 2012.

  12. On the evolution and run-up of tsunamis

    DEFF Research Database (Denmark)

    Madsen, Per A.

    2010-01-01

    bottom from the ocean to the beach. We monitor the development of time- and space-scales and compare with solitary wave theory. Next, we simulate the disintegration of long waves into a train of undular bores and discuss the relevance of this phenomenon for tsunami runup. We conclude that solitary wave...

  13. Tsunami hazard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  14. Sediments from the Boxing Day tsunami on the coasts of southeastern India and Kenya

    Science.gov (United States)

    Weiss, R.; Bahlburg, H.

    2006-12-01

    On the Boxing Day 2004, the world community experienced a catastrophic tsunami in the Indian Ocean and could also saw how unprepared and unaware countries along the Indian ocean were. Beyond the tragedy of the tremendous loss of lives, the result of this event is an opportunity to study a global tsunami (mega-tsunami) in many regards. Here, we report on tsunami sediments left behind on beaches at the coast of Tamil Nadu (India) and on beaches between Malindi and Lamu (Kenya). Characteristic debris accumulations on the beach surface at Tamil Nadu (India) showed the impact of three tsunami waves. In this area, the tsunami climbed ~5 m up the beach; the last traces of a tsunami wave were found ~580 m away from the shoreline. Palm trees indicated an overland flow depth of 3.5 m, ~50 m from the shoreline. The tsunami deposits were up to 30 cm thick. They had an erosional base to the underlying soil and pre-tsunami beach deposits and were made up of moderately well- to well-sorted coarse and medium sand. The sand sheet thins inland, but without a decrease in grain size. Three distinct layers could be identified within the tsunami deposit. The lower one occasionally displayed cross-bedding with foresets dipping landward indicating deposition during run-up. The two upper layers were graded or parallel-laminated without indicators of flow directions. The boundaries between the different layers were marked by dark laminae, rich in heavy minerals. Also, the presence of benthic foraminifera indicates entrainment of sediment into the water column by the incoming tsunami wave in water depths less than 30 m. On beaches between Malindi and Lamu, Kenya, the traces of only one tsunami wave could be found, which attained a run-up height of about 3 m and traveled ~35 m inland with respect to the tidal stage at tsunami impact. The tsunami sediments consist of one layer of fine sand and are predominantly composed of heavy minerals supplied to the sea by nearby rivers. A slight fining

  15. Far-field tsunami of 2017 Mw 8.1 Tehuantepec, Mexico earthquake recorded by Chilean tide gauge network: Implications for tsunami warning systems

    Science.gov (United States)

    González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.

    2017-12-01

    The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field tide gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the tide level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early response. Most important operational efforts have focused on strengthening tide gauge network for national area of responsibility. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of responsibility in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as tide gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of responsibility. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at

  16. Tsunami Ionospheric warning and Ionospheric seismology

    Science.gov (United States)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  17. Observations and Modeling of the August 27, 2012 Earthquake and Tsunami affecting El Salvador and Nicaragua

    Science.gov (United States)

    Borrero, Jose C.; Kalligeris, Nikos; Lynett, Patrick J.; Fritz, Hermann M.; Newman, Andrew V.; Convers, Jaime A.

    2014-12-01

    On 27 August 2012 (04:37 UTC, 26 August 10:37 p.m. local time) a magnitude M w = 7.3 earthquake occurred off the coast of El Salvador and generated surprisingly large local tsunami. Following the event, local and international tsunami teams surveyed the tsunami effects in El Salvador and northern Nicaragua. The tsunami reached a maximum height of ~6 m with inundation of up to 340 m inland along a 25 km section of coastline in eastern El Salvador. Less severe inundation was reported in northern Nicaragua. In the far-field, the tsunami was recorded by a DART buoy and tide gauges in several locations of the eastern Pacific Ocean but did not cause any damage. The field measurements and recordings are compared to numerical modeling results using initial conditions of tsunami generation based on finite-fault earthquake and tsunami inversions and a uniform slip model.

  18. Earthquakes & Tsunamis flirting with the Ionosphere: the Sumatra gossip !!

    Science.gov (United States)

    Occhipinti, G.; Coïsson, P.; Rolland, L. M.; Lognonne, P.

    2009-12-01

    The December 26, 2004 Sumatra Earthquake and the related Indian Ocean Tsunami generated the largest remote sensing data-set observing natural hazards. The observations showed both, ground motion and ocean sea surface displacement, as well as the related strong ionospheric anomalies. Total electron content (TEC) perturbations have been observed on a global scale, using ground-based GPS receivers [DasGupta et al., 2006, Liu et al., 2006b] and dual-frequency altimeters (e.g., Jason-1 and Topex/Poseidon [Artru et al., 2005]); plasma velocity perturbation has been observed by Doppler soundings [Liu et al., 2006b, Occhipinti et al., 2009]. The observed perturbations may be characterized as two different waves: the first one is an atmospheric wave in the acoustic domain induced by propagation of Rayleigh waves on the Earth surface; the second one is a slower atmospheric wave in the gravity domain strongly coupled with the generated tsunami. Both waves are reproduced by our accurate modeling taking into account the earthquake/tsunami-neutral atmosphere coupling at the base of the atmosphere, as well as the neutral-plasma coupling in the overlying ionosphere [Occhipinti et al., 2006, 2006, 2009]. Here we present a review of the ionospheric observations related to the Sumatra event in the light of modeling to deeply investigate the coupling mechanism between Solid-Earth/Ocean/Atmosphere/Ionosphere. The matching between data and modeling opens new perspectives in the solid earth research as well as in the tsunami detection providing a new insight into the role of the remote sensing in the monitoring of natural hazard. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006a] Geophys. Res. Lett., 33, L02103, 2006. [Liu et al., 2006b] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., 173, 3, 753-1135, 2008. [Occhipinti et

  19. Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy

    Science.gov (United States)

    Warner, John C.; Schwab, William C.; List, Jeffrey H.; Safak, Ilgar; Liste, Maria; Baldwin, Wayne

    2017-04-01

    Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on October 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system that covered spatial scales ranging from the entire US east coast (1000 s of km) to local domains (10 s of km). Additionally, the modeled response for the region offshore of Fire Island, NY was compared to observational analysis from a series of geologic surveys from that location. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses

  20. Archival and Discovery of November 4, 1952 Tsunami Event on Marigrams

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA National Centers for Environmental Information have more than 3,000 tsunami marigram (tide gauge) records in both image and paper format. The majority of these...

  1. Archival and Discovery of April 1, 1946 Tsunami Event on Marigrams

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA National Centers for Environmental Information have more than 3,000 tsunami marigram (tide gauge) records in both image and paper format. The majority of these...

  2. Archival and Discovery of March 28, 1964 Tsunami Event on Marigrams

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA National Centers for Environmental Information have more than 3,000 tsunami marigram (tide gauge) records in both image and paper format. The majority of these...

  3. Tsunami in the Ionosphere ? a pinch of gravity with a good plasma sauce !

    Science.gov (United States)

    Occhipinti, Giovanni; Rolland, Ms Lucie; Kherani, Alam; Lognonné, Philippe; Komjathy, Attila; Mannucci, Anthony

    A series of ionospheric anomalies following the Sumatra tsunami has been reported in the scientific literature (e.g., Liu et al. 2006; DasGupta et al. 2006; Occhipinti et al. 2006). Similar anomalies were also observed after the tsunamigenic earthquake in Peru in 2001 (Artru et al., 2005) and after the recent earthquakes in Sumatra and Chile in 2007. All these anomalies show the signature in the ionosphere of tsunami-generated internal gravity waves (IGW) propagating in the neutral atmosphere over oceanic regions. Most of these ionospheric anomalies are deterministic and reproducible by numerical modeling (Occhipinti et al., 2006) via the ocean/neutral atmosphere/ionosphere coupling mechanism. In addition, the numerical modeling supplies useful helps in the estimation of expected anomalies in the global scale to explore the effect of geomagnetic field in the neutral/plasma coupling (Occhipinti et al., 2008). Here we present an overview of the physical coupling mechanism highlighting the strong ampli- fication mechanism of atmospheric IGW; it allows to detect these anomalies when the tsunami is offshore where the see level displacement is still small. This property adds to the increasing coverage of ionospheric sounding measurements, suggests the implication of ionospheric sounding in the future oceanic monitoring and tsunami warning system. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., in press.

  4. Significant Tsunami Events

    Science.gov (United States)

    Dunbar, P. K.; Furtney, M.; McLean, S. J.; Sweeney, A. D.

    2014-12-01

    Tsunamis have inflicted death and destruction on the coastlines of the world throughout history. The occurrence of tsunamis and the resulting effects have been collected and studied as far back as the second millennium B.C. The knowledge gained from cataloging and examining these events has led to significant changes in our understanding of tsunamis, tsunami sources, and methods to mitigate the effects of tsunamis. The most significant, not surprisingly, are often the most devastating, such as the 2011 Tohoku, Japan earthquake and tsunami. The goal of this poster is to give a brief overview of the occurrence of tsunamis and then focus specifically on several significant tsunamis. There are various criteria to determine the most significant tsunamis: the number of deaths, amount of damage, maximum runup height, had a major impact on tsunami science or policy, etc. As a result, descriptions will include some of the most costly (2011 Tohoku, Japan), the most deadly (2004 Sumatra, 1883 Krakatau), and the highest runup ever observed (1958 Lituya Bay, Alaska). The discovery of the Cascadia subduction zone as the source of the 1700 Japanese "Orphan" tsunami and a future tsunami threat to the U.S. northwest coast, contributed to the decision to form the U.S. National Tsunami Hazard Mitigation Program. The great Lisbon earthquake of 1755 marked the beginning of the modern era of seismology. Knowledge gained from the 1964 Alaska earthquake and tsunami helped confirm the theory of plate tectonics. The 1946 Alaska, 1952 Kuril Islands, 1960 Chile, 1964 Alaska, and the 2004 Banda Aceh, tsunamis all resulted in warning centers or systems being established.The data descriptions on this poster were extracted from NOAA's National Geophysical Data Center (NGDC) global historical tsunami database. Additional information about these tsunamis, as well as water level data can be found by accessing the NGDC website www.ngdc.noaa.gov/hazard/

  5. Strategy to design the sea-level monitoring networks for small tsunamigenic oceanic basins: the Western Mediterranean case

    Directory of Open Access Journals (Sweden)

    F. Schindelé

    2008-09-01

    Full Text Available The 26 December 2004 Indian Ocean tsunami triggered a number of international and national initiatives aimed at establishing modern, reliable and robust tsunami warning systems. In addition to the seismic network for initial warning, the main component of the monitoring system is the sea level network. Networks of coastal tide gages and tsunameters are implemented to detect the tsunami after the occurrence of a large earthquake, to confirm or refute the tsunami occurrence. Large oceans tsunami monitoring currently in place in the Pacific and in implementation in the Indian Ocean will be able to detect tsunamis in 1 h. But due to the very short time of waves propagation, in general less than 1 h, a tsunami monitoring system in a smaller basin requires a denser network located close to the seismic zones. A methodology is proposed based on the modeling of tsunami travel time and waveform, and on the estimation of the delay of transmission to design the location and the spacing of the stations. In the case of Western Mediterranean, we demonstrate that a network of around 17 coastal tide gages and 13 tsunameters located at 50 km along the shore is required to detect and measure nearly all tsunamis generated on the Northern coasts of Africa.

  6. Tsunami hazard

    International Nuclear Information System (INIS)

    2013-01-01

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  7. Tsunami Source Modeling of the 2015 Volcanic Tsunami Earthquake near Torishima, South of Japan

    Science.gov (United States)

    Sandanbata, O.; Watada, S.; Satake, K.; Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.

    2017-12-01

    An abnormal earthquake occurred at a submarine volcano named Smith Caldera, near Torishima Island on the Izu-Bonin arc, on May 2, 2015. The earthquake, which hereafter we call "the 2015 Torishima earthquake," has a CLVD-type focal mechanism with a moderate seismic magnitude (M5.7) but generated larger tsunami waves with an observed maximum height of 50 cm at Hachijo Island [JMA, 2015], so that the earthquake can be regarded as a "tsunami earthquake." In the region, similar tsunami earthquakes were observed in 1984, 1996 and 2006, but their physical mechanisms are still not well understood. Tsunami waves generated by the 2015 earthquake were recorded by an array of ocean bottom pressure (OBP) gauges, 100 km northeastern away from the epicenter. The waves initiated with a small downward signal of 0.1 cm and reached peak amplitude (1.5-2.0 cm) of leading upward signals followed by continuous oscillations [Fukao et al., 2016]. For modeling its tsunami source, or sea-surface displacement, we perform tsunami waveform simulations, and compare synthetic and observed waveforms at the OBP gauges. The linear Boussinesq equations are adapted with the tsunami simulation code, JAGURS [Baba et al., 2015]. We first assume a Gaussian-shaped sea-surface uplift of 1.0 m with a source size comparable to Smith Caldera, 6-7 km in diameter. By shifting source location around the caldera, we found the uplift is probably located within the caldera rim, as suggested by Sandanbata et al. [2016]. However, synthetic waves show no initial downward signal that was observed at the OBP gauges. Hence, we add a ring of subsidence surrounding the main uplift, and examine sizes and amplitudes of the main uplift and the subsidence ring. As a result, the model of a main uplift of around 1.0 m with a radius of 4 km surrounded by a ring of small subsidence shows good agreement of synthetic and observed waveforms. The results yield two implications for the deformation process that help us to understanding

  8. Tsunami-induced boulder transport - combining physical experiments and numerical modelling

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; May, Simon Matthias; Schüttrumpf, Holger; Brueckner, Helmut; Prasad Pudasaini, Shiva

    2016-04-01

    since they have been largely neglected. In order to tackle these gaps, we develop a novel BTM in two steps. First, scaled physical experiments are performed that determine the exact hydrodynamic processes within a tsunami during boulder transportations. Furthermore, the experiments are the basis for calibrating the numerical BTM. The BTM is based on the numerical two-phase mass flow model of Pudasaini (2012) that employs an advanced and unified high-resolution computational tool for mixtures consisting of the solid and fluid components and their interactions. This allows for the motion of the boulder while interacting with the particle-laden tsunami on the inundated coastal plane as a function of the total fluid and solid stresses. Our approach leads to fundamentally new insights in to the essential physical processes in BTM. Goto, K., Chavanich, S. A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., Sugawara, D. and Yanagisawa, H.: Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sediment. Geol., 202, 821-837, 2007. Imamura, F., Goto, K. and Ohkubo, S.: A numerical model of the transport of a boulder by tsunami. J. Geophys. Res. Oceans, 113, C01008, 2008. Pudasaini, S. P.: A general two-phase debris flow model. J. Geophys. Res. Earth Surf., 117, F03010, 2012.

  9. Communicating Tsunami Preparedness Through the Lessons Learned by Survivors

    Science.gov (United States)

    Kerlow, I.

    2015-12-01

    Often times science communication is reactive and it minimizes the perceptions of the general public. The Tsunami of New Dreams is a film with the testimonies of survivors of the 2004 Indian Ocean tsunami in Banda Aceh and Aceh Besar in West Sumatra, Indonesia. Production of the film spanned over five years and dozens of interviews, and is based on a unique geographic, demographic and experiential sampling of the local population. This documentary feature film underscores the importance of Earth science and science communication in building sustainable communities. The film is a lesson in survival and sustainability, and it provides a simple but powerful testimony of what to do and what not to do before and during a tsunami. The film also highlights the direct relationship that exists between disaster survival rates and the knowledge of basic Earth science and preparedness facts. We hope that the human stories presented in the film will serve as a strong motivator for general audiences to learn about natural hazards, preparedness, and Earth science. These engaging narratives can touch the minds and hearts of general audiences much faster than technical lectures in a classroom. Some of the testimonies are happy and others are sad, but they all present the wide range of beliefs that influenced the outcomes of the natural disaster. The interviews with survivors are complemented with unique archival footage of the tsunami and unique footage of daily life in Aceh. Hand-drawn illustrations are used to recreate what survivors did immediately after the earthquake, and during the extreme moments when they faced the tsunami waves. Animated visuals, maps and diagrams enhance the understanding of earthquake and tsunami dynamics. The film is a production of the Earth Observatory of Singapore (EOS) in collaboration with the International Center for Aceh and Indian Ocean Studies (ICAIOS) in Banda Aceh, Indonesia. The film is scheduled for release in late 2015. This is a unique

  10. Tsunami Simulators in Physical Modelling Laboratories - From Concept to Proven Technique

    Science.gov (United States)

    Allsop, W.; Chandler, I.; Rossetto, T.; McGovern, D.; Petrone, C.; Robinson, D.

    2016-12-01

    Before 2004, there was little public awareness around Indian Ocean coasts of the potential size and effects of tsunami. Even in 2011, the scale and extent of devastation by the Japan East Coast Tsunami was unexpected. There were very few engineering tools to assess onshore impacts of tsunami, so no agreement on robust methods to predict forces on coastal defences, buildings or related infrastructure. Modelling generally used substantial simplifications of either solitary waves (far too short durations) or dam break (unrealistic and/or uncontrolled wave forms).This presentation will describe research from EPI-centre, HYDRALAB IV, URBANWAVES and CRUST projects over the last 10 years that have developed and refined pneumatic Tsunami Simulators for the hydraulic laboratory. These unique devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example defences. They have reproduced full-duration tsunamis including the Mercator trace from 2004 at 1:50 scale. Engineering scale models subjected to those tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences and pressures / forces on buildings. This presentation will describe how these pneumatic Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facility within which they operate, and will highlight research results from the three generations of Tsunami Simulator. Of direct relevance to engineers and modellers will be measurements of wave run-up levels and comparison with theoretical predictions. Recent measurements of forces on individual buildings have been generalized by separate experiments on buildings (up to 4 rows) which show that the greatest forces can act on the landward (not seaward) buildings. Continuing research in the 70m long 4m wide Fast Flow Facility on tsunami defence structures have also measured forces on buildings in the lee of a failed defence wall.

  11. USGS SAFRR Tsunami Scenario: Potential Impacts to the U.S. West Coast from a Plausible M9 Earthquake near the Alaska Peninsula

    Science.gov (United States)

    Ross, S.; Jones, L. M.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J. T.; Geist, E. L.; Johnson, L. A.; Hansen, R. A.; Kirby, S. H.; Knight, E.; Knight, W. R.; Long, K.; Lynett, P. J.; Miller, K. M.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E. N.; Thio, H. K.; Titov, V. V.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2012-12-01

    The U.S. Geological Survey's Science Application for Risk Reduction (SAFRR) project, in collaboration with the California Geological Survey, the California Emergency Management Agency, the National Oceanic and Atmospheric Administration, and other agencies and institutions are developing a Tsunami Scenario to describe in detail the impacts of a tsunami generated by a hypothetical, but realistic, M9 earthquake near the Alaska Peninsula. The overarching objective of SAFRR and its predecessor, the Multi-Hazards Demonstration Project, is to help communities reduce losses from natural disasters. As requested by emergency managers and other community partners, a primary approach has been comprehensive, scientifically credible scenarios that start with a model of a geologic event and extend through estimates of damage, casualties, and societal consequences. The first product was the ShakeOut scenario, addressing a hypothetical earthquake on the southern San Andreas fault, that spawned the successful Great California ShakeOut, an annual event and the nation's largest emergency preparedness exercise. That was followed by the ARkStorm scenario, which addresses California winter storms that surpass hurricanes in their destructive potential. Some of the Tsunami Scenario's goals include developing advanced models of currents and inundation for the event; spurring research related to Alaskan earthquake sources; engaging the port and harbor decision makers; understanding the economic impacts to local, regional and national economy in both the short and long term; understanding the ecological, environmental, and societal impacts of coastal inundation; and creating enhanced communication products for decision-making before, during, and after a tsunami event. The state of California, through CGS and Cal EMA, is using the Tsunami Scenario as an opportunity to evaluate policies regarding tsunami impact. The scenario will serve as a long-lasting resource to teach preparedness and

  12. Near Field Modeling for the Maule Tsunami from DART, GPS and Finite Fault Solutions (Invited)

    Science.gov (United States)

    Arcas, D.; Chamberlin, C.; Lagos, M.; Ramirez-Herrera, M.; Tang, L.; Wei, Y.

    2010-12-01

    The earthquake and tsunami of February, 27, 2010 in central Chile has rekindled an interest in developing techniques to predict the impact of near field tsunamis along the Chilean coastline. Following the earthquake, several initiatives were proposed to increase the density of seismic, pressure and motion sensors along the South American trench, in order to provide field data that could be used to estimate tsunami impact on the coast. However, the precise use of those data in the elaboration of a quantitative assessment of coastal tsunami damage has not been clarified. The present work makes use of seismic, Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems, and GPS measurements obtained during the Maule earthquake to initiate a number of tsunami inundation models along the rupture area by expressing different versions of the seismic crustal deformation in terms of NOAA’s tsunami unit source functions. Translation of all available real-time data into a feasible tsunami source is essential in near-field tsunami impact prediction in which an impact assessment must be generated under very stringent time constraints. Inundation results from each different source are then contrasted with field and tide gauge data by comparing arrival time, maximum wave height, maximum inundation and tsunami decay rate, using field data collected by the authors.

  13. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    Science.gov (United States)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  14. Landslide Tsunami Hazard in Madeira Island, NE Atlantic - Numerical Simulation of the 4 March 1930 Tsunami

    Science.gov (United States)

    Omira, R.; Baptista, M. A.; Quartau, R.; Ramalho, M. I.

    2017-12-01

    Madeira, the main Island of the Madeira Archipelago with an area of 728 km2, is a North East Atlantic volcanic Island highly susceptible to cliff instability. Historical records contain accounts of a number of mass-wasting events along the Island, namely in 1969, 1804, 1929 and 1930. Collapses of cliffs are major hazards in oceanic Islands as they involve relatively large volumes of material, generating fast running debris avalanches, and even cause destructive tsunamis when entering the sea. On March 4th, 1930, a sector of the Cape Girão cliff, located in the southern shore of Madeira Island, collapsed into the sea and generated an 8 m tsunami wave height. The landslide-induced tsunami propagated along Madeirás south coast and flooded the Vigário beach, 200-300 m of inundation extent, causing 20 casualties. In this study, we investigate the 1930 subaerial landslide-induced tsunami and its impact on the nearest coasts using numerical modelling. We first reconstruct the pre-event morphology of the area, and then simulate the initial movement of the sliding mass, the propagation of the tsunami wave and the inundation of the coast. We use a multi-layer numerical model, in which the lower layer represents the deformable slide, assumed to be a visco-plastic fluid, and bounded above by air, in the subaerial motion phase, and by seawater governed by shallow water equations. The results of the simulation are compared with the historical descriptions of the event to calibrate the numerical model and evaluate the coastal impact of a similar event in present-day coastline configuration of the Island. This work is supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz and by TROYO project.

  15. Short-term Inundation Forecasting for Tsunamis Version 4.0 Brings Forecasting Speed, Accuracy, and Capability Improvements to NOAA's Tsunami Warning Centers

    Science.gov (United States)

    Sterling, K.; Denbo, D. W.; Eble, M. C.

    2016-12-01

    Short-term Inundation Forecasting for Tsunamis (SIFT) software was developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) for use in tsunami forecasting and has been used by both U.S. Tsunami Warning Centers (TWCs) since 2012, when SIFTv3.1 was operationally accepted. Since then, advancements in research and modeling have resulted in several new features being incorporated into SIFT forecasting. Following the priorities and needs of the TWCs, upgrades to SIFT forecasting were implemented into SIFTv4.0, scheduled to become operational in October 2016. Because every minute counts in the early warning process, two major time saving features were implemented in SIFT 4.0. To increase processing speeds and generate high-resolution flooding forecasts more quickly, the tsunami propagation and inundation codes were modified to run on Graphics Processing Units (GPUs). To reduce time demand on duty scientists during an event, an automated DART inversion (or fitting) process was implemented. To increase forecasting accuracy, the forecasted amplitudes and inundations were adjusted to include dynamic tidal oscillations, thereby reducing the over-estimates of flooding common in SIFTv3.1 due to the static tide stage conservatively set at Mean High Water. Further improvements to forecasts were gained through the assimilation of additional real-time observations. Cabled array measurements from Bottom Pressure Recorders (BPRs) in the Oceans Canada NEPTUNE network are now available to SIFT for use in the inversion process. To better meet the needs of harbor masters and emergency managers, SIFTv4.0 adds a tsunami currents graphical product to the suite of disseminated forecast results. When delivered, these new features in SIFTv4.0 will improve the operational tsunami forecasting speed, accuracy, and capabilities at NOAA's Tsunami Warning Centers.

  16. Issues of tsunami hazard maps revealed by the 2011 Tohoku tsunami

    Science.gov (United States)

    Sugimoto, M.

    2013-12-01

    Tsunami scientists are imposed responsibilities of selection for people's tsunami evacuation place after the 2011 Tohoku Tsunami in Japan. A lot of matured people died out of tsunami hazard zone based on tsunami hazard map though students made a miracle by evacuation on their own judgment in Kamaishi city. Tsunami hazard maps were based on numerical model smaller than actual magnitude 9. How can we bridge the gap between hazard map and future disasters? We have to discuss about using tsunami numerical model better enough to contribute tsunami hazard map. How do we have to improve tsunami hazard map? Tsunami hazard map should be revised included possibility of upthrust or downthrust after earthquakes and social information. Ground sank 1.14m below sea level in Ayukawa town, Tohoku. Ministry of Land, Infrastructure, Transport and Tourism's research shows around 10% people know about tsunami hazard map in Japan. However, people know about their evacuation places (buildings) through experienced drills once a year even though most people did not know about tsunami hazard map. We need wider spread of tsunami hazard with contingency of science (See the botom disaster handbook material's URL). California Emergency Management Agency (CEMA) team practically shows one good practice and solution to me. I followed their field trip in Catalina Island, California in Sep 2011. A team members are multidisciplinary specialists: A geologist, a GIS specialist, oceanographers in USC (tsunami numerical modeler) and a private company, a local policeman, a disaster manager, a local authority and so on. They check field based on their own specialties. They conduct an on-the-spot inspection of ambiguous locations between tsunami numerical model and real field conditions today. The data always become older. They pay attention not only to topographical conditions but also to social conditions: vulnerable people, elementary schools and so on. It takes a long time to check such field

  17. The 2004 Sumatra tsunami in the southeastern Pacific: Coastal and offshore measurements and numerical modeling

    Science.gov (United States)

    Moore, C. W.; Eble, M. C.; Rabinovich, A.; Titov, V. V.

    2016-12-01

    The Mw = 9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra generated a catastrophic tsunami that crossed the Indian Ocean and was widespread in the Pacific and Atlantic oceans being recorded by a great number of coastal tide gauges located in 15-25 thousand kilometers from the source area. The data from these instruments throughout the world oceans enabled estimates of various statistical parameters and energy decay of this event. However, only very few open-ocean records of this tsunami had been obtained. A unique high-resolution record of this tsunami from DART 32401 located offshore of northern Chile, combined with the South American mainland tide gauge measurements and the data from three island stations (San Felix, Juan Fernandez and Easter) enabled us to examine far-field characteristics of the event in the southeastern Pacific and to compare the results of global numerical simulations with observations. The maximum wave height measured at DART 32401 was only 1.8 cm but the signal was very clear and reliable. Despite their small heights, the waves demonstrated consistent spatial and temporal structure and good agreement with DART 46405/NeMO records in the NE Pacific. The travel time from the source area to DART 32401 was 25h 55min in good agreement with the computed travel time (25h 45min) and consistent with the times obtained from the nearby coastal tide gauges. This agreement was much better than it followed from the direct travel time estimation based classical kinematic theory that gave the travel time approximately 1.5 hrs shorter than observed. The later actual arrival of the 2004 tsunami waves corresponds to the most energetically economic path along the mid-ocean ridge wave-guides, which is distinctly reproduced by the numerical model. Also, the numerical model described well the frequency content, amplitudes and general structure of the observed waves at this DART and the three island stations. Maximum wave heights in this

  18. Simulation of tsunami effects on sea surface salinity using MODIS satellite data

    International Nuclear Information System (INIS)

    Ramlan, N E F; Genderen, J van; Hashim, M; Marghany, M

    2014-01-01

    Remote sensing technology has been recognized as powerful tool for environmental disaster studies. Ocean surface salinity is considered as a major element in the marine environment. In this study, we simulate the 2004 tsunami's impact on a physical ocean parameter using the least square algorithm to retrieve sea surface salinity (SSS) from MODIS satellite data. The accuracy of this work has been examined using the root mean of sea surface salinity retrieved from MODIS satellite data. The study shows a comprehensive relationship between the in situ measurements and least square algorithm with high r 2 of 0.95, and RMS of bias value of ±0.9 psu. In conclusion, the least square algorithm can be used to retrieve SSS from MODIS satellite data during a tsunami event

  19. Tsunami Deposits on Simeulue Island, Indonesia--A tale of two tsunamis

    Science.gov (United States)

    Jaffe, B. E.; Higman, B.

    2007-12-01

    As tsunami deposits become more widely used for evaluating tsunami risk, it has become increasingly valuable to improve the ability to interpret deposits to determine tsunami characteristics such as size and flow speed. A team of U.S. and Indonesian scientists went to Simeulue Island 125 km east of Sumatra in April 2005 to learn more about the relation between tsunami deposition and flow. Busong, on the southeast coast of Simeulue Island, was inundated twice in a three-months period by tsunamis. The 26 December 2004 tsunami inundated 130 m inland to an elevation of approximately 4 m. The 28 March 2005 tsunami inundated less than 100 m to an elevation of approximately 2 m. Both tsunamis created deposits that were observed to be an amalgamated 20- cm thick, predominately fine to medium sand overlying a sandy soil. The contact between 2004 and 2005 tsunami deposits is at 13 cm above the top of the sandy soil and is clearly marked by vegetation that grew on the 2004 deposit in the 3 months between tsunamis. Grass roots are present in the upper half of the 2004 deposit and absent both below that level and in the 2005 deposit. We analyzed the fine-scale sedimentary structures and vertical variation in grain size of the deposits to search for diagnostic criteria for unequivocally identifying deposits formed by multiple tsunamis. At Busung, we expected there to be differences between each tsunami's deposits because the tsunami height, period, and direction of the 2004 and 2005 tsunamis were different. Both the 2004 and 2005 deposits were predominately normally graded, although each had inversely graded and massive sections. Faint laminations, which became more defined in a peel of the deposit, were discontinuous and predominately quasi-parallel. Knowing where the contact between the two tsunamis was, subtle sedimentary differences were identified that may be used to tell that it is composed of two separate tsunamis. We will present quantitative analyses of the variations

  20. On The Computation Of The Best-fit Okada-type Tsunami Source

    Science.gov (United States)

    Miranda, J. M. A.; Luis, J. M. F.; Baptista, M. A.

    2017-12-01

    The forward simulation of earthquake-induced tsunamis usually assumes that the initial sea surface elevation mimics the co-seismic deformation of the ocean bottom described by a simple "Okada-type" source (rectangular fault with constant slip in a homogeneous elastic half space). This approach is highly effective, in particular in far-field conditions. With this assumption, and a given set of tsunami waveforms recorded by deep sea pressure sensors and (or) coastal tide stations it is possible to deduce the set of parameters of the Okada-type solution that best fits a set of sea level observations. To do this, we build a "space of possible tsunami sources-solution space". Each solution consists of a combination of parameters: earthquake magnitude, length, width, slip, depth and angles - strike, rake, and dip. To constrain the number of possible solutions we use the earthquake parameters defined by seismology and establish a range of possible values for each parameter. We select the "best Okada source" by comparison of the results of direct tsunami modeling using the solution space of tsunami sources. However, direct tsunami modeling is a time-consuming process for the whole solution space. To overcome this problem, we use a precomputed database of Empirical Green Functions to compute the tsunami waveforms resulting from unit water sources and search which one best matches the observations. In this study, we use as a test case the Solomon Islands tsunami of 6 February 2013 caused by a magnitude 8.0 earthquake. The "best Okada" source is the solution that best matches the tsunami recorded at six DART stations in the area. We discuss the differences between the initial seismic solution and the final one obtained from tsunami data This publication received funding of FCT-project UID/GEO/50019/2013-Instituto Dom Luiz.

  1. Shoreline change after 12 years of tsunami in Banda Aceh, Indonesia: a multi-resolution, multi-temporal satellite data and GIS approach

    Science.gov (United States)

    Sugianto, S.; Heriansyah; Darusman; Rusdi, M.; Karim, A.

    2018-04-01

    The Indian Ocean Tsunami event on the 26 December 2004 has caused severe damage of some shorelines in Banda Aceh City, Indonesia. Tracing back the impact can be seen using remote sensing data combined with GIS. The approach is incorporated with image processing to analyze the extent of shoreline changes with multi-temporal data after 12 years of tsunami. This study demonstrates multi-resolution and multi-temporal satellite images of QuickBird and IKONOS to demarcate the shoreline of Banda Aceh shoreline from before and after tsunami. The research has demonstrated a significant change to the shoreline in the form of abrasion between 2004 and 2005 from few meters to hundred meters’ change. The change between 2004 and 2011 has not returned to the previous stage of shoreline before the tsunami, considered post tsunami impact. The abrasion occurs between 18.3 to 194.93 meters. Further, the change in 2009-2011 shows slowly change of shoreline of Banda Aceh, considered without impact of tsunami e.g. abrasion caused by ocean waves that erode the coast and on specific areas accretion occurs caused by sediment carried by the river flow into the sea near the shoreline of the study area.

  2. Preliminary numerical simulations of the 27 February 2010 Chile tsunami: first results and hints in a tsunami early warning perspective

    Science.gov (United States)

    Tinti, S.; Tonini, R.; Armigliato, A.; Zaniboni, F.; Pagnoni, G.; Gallazzi, Sara; Bressan, Lidia

    2010-05-01

    The tsunamigenic earthquake (M 8.8) that occurred offshore central Chile on 27 February 2010 can be classified as a typical subduction-zone earthquake. The effects of the ensuing tsunami have been devastating along the Chile coasts, and especially between the cities of Valparaiso and Talcahuano, and in the Juan Fernandez islands. The tsunami propagated across the entire Pacific Ocean, hitting with variable intensity almost all the coasts facing the basin. While the far-field propagation was quite well tracked almost in real-time by the warning centres and reasonably well reproduced by the forecast models, the toll of lives and the severity of the damage caused by the tsunami in the near-field occurred with no local alert nor warning and sadly confirms that the protection of the communities placed close to the tsunami sources is still an unresolved problem in the tsunami early warning field. The purpose of this study is two-fold. On one side we perform numerical simulations of the tsunami starting from different earthquake models which we built on the basis of the preliminary seismic parameters (location, magnitude and focal mechanism) made available by the seismological agencies immediately after the event, or retrieved from more detailed and refined studies published online in the following days and weeks. The comparison with the available records of both offshore DART buoys and coastal tide-gauges is used to put some preliminary constraints on the best-fitting fault model. The numerical simulations are performed by means of the finite-difference code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna, Italy, which can solve both the linear and non-linear versions of the shallow-water equations on nested grids. The second purpose of this study is to use the conclusions drawn in the previous part in a tsunami early warning perspective. In the framework of the EU-funded project DEWS (Distant Early Warning System), we will

  3. Prediction of Tsunami Inundation in the City of Lisbon (portugal)

    Science.gov (United States)

    Baptista, M.; Miranda, J.; Omira, R.; Catalao Fernandes, J.

    2010-12-01

    Lisbon city is located inside the estuary of Tagus river, 20 km away from the Atlantic ocean. The city suffered great damage from tsunamis and its downtown was flooded at least twice in 1531 and 1755. Since the installation of the tide-gage network, in the area, three tsunamis caused by submarine earthquakes, were recorded in November 1941, February 1969 and May 1975. The most destructive tsunamis listed along Tagus Estuary are the 26th January 1531, a local tsunami event restricted to the Tagus Estuary, and the well known 1st November 1755 transoceanic event, both following highly destructive earthquakes, which deeply affected Lisbon. The economic losses due to the impact of the 1755 tsunami in one of Europe’s 18t century main harbor and commercial fleets were enormous. Since then the Tagus estuary suffered strong morphologic changes manly due to dredging works, construction of commercial and industrial facilities and recreational docks, some of them already projected to preserve Lisbon. In this study we present preliminary inundation maps for the Tagus estuary area in the Lisbon County, for conditions similar to the 1755 tsunami event, but using present day bathymetric and topographic maps. Inundation modelling is made using non linear shallow water theory and the numerical code is based upon COMCOT code. Nested grids resolutions used in this study are 800 m, 200 m and 50 m, respectively. The inundation is discussed in terms of flow depth, run up height, maximum inundation area and current flow velocity. The effects of estuary modifications on tsunami propagation are also investigated.

  4. Test of TEDA, Tsunami Early Detection Algorithm

    Science.gov (United States)

    Bressan, Lidia; Tinti, Stefano

    2010-05-01

    mainly characterized by the astronomical tide and white noise. TEDA has been tested on specific events recorded by Adak Island tide-gauge, in Alaska, and by DART buoys, located offshore Alaska, thanks to the collaboration with NCTR of PMEL/NOAA (NOAA Centre for Tsunami Research of Pacific and Marine Environmental Laboratory/National Oceanic and Atmospheric Administration). Three methods for the characterization of the background signal have been tested and compared with different characterization settings, in order to find the most appropriate calibration. To evaluate the algorithm performance, different indicators have been taken into account, such as the number of false detections, the number of events detected, the delay of detection and the duration of the tsunami alert state. Particular attention has been reserved to the number of false detections, which compromise heavily the reliability of a detection algorithm and undermine the usefulness of the algorithm itself. The method to test TEDA is presented here and is proposed as an example of procedure to evaluate the performance of the tsunami detection algorithms used in the Tsunami Early Warning Systems practice.

  5. Numerical study of sediment dynamics during hurricane Gustav

    Science.gov (United States)

    Zang, Zhengchen; Xue, Z. George; Bao, Shaowu; Chen, Qin; Walker, Nan D.; Haag, Alaric S.; Ge, Qian; Yao, Zhigang

    2018-06-01

    In this study, the coupled ocean-atmosphere-wave-and-sediment transport (COAWST) modeling system was employed to explore sediment dynamics in the northern Gulf of Mexico during hurricane Gustav in 2008. The performance of the model was evaluated quantitatively and qualitatively against in-situ and remote sensing measurements, respectively. After Gustav's landfall in coastal Louisiana, the maximum significant wave heights reached more than 8 m offshore and they decreased quickly as it moved toward the inner shelf, where the vertical stratification was largely destroyed. Alongshore currents were dominant westward on the eastern sector of the hurricane track, and offshoreward currents prevailed on the western sector. High suspended sediment concentrations (>1000 mg/l) were confined to the inner shelf at surface layers and the simulated high concentrations at the bottom layer extended to the 200 m isobaths. The stratification was restored one week after landfall, although not fully. The asymmetric hurricane winds induced stronger hydrodynamics in the eastern sector, which led to severe erosion. The calculated suspended sediment flux (SSF) was convergent to the hurricane center and the maximum SSF was simulated near the south and southeast of the Mississippi river delta. The averaged post-hurricane deposition over the Louisiana shelf was 4.0 cm, which was 3.2-26 times higher than the annual accumulation rate under normal weather conditions.

  6. Satellite Assessment of Bio-Optical Properties of Northern Gulf of Mexico Coastal Waters Following Hurricanes Katrina and Rita

    OpenAIRE

    Lohrenz, Steven E.; Cai, Wei-Jun; Chen, Xiaogang; Tuel, Merritt

    2008-01-01

    The impacts of major tropical storms events on coastal waters include sediment resuspension, intense water column mixing, and increased delivery of terrestrial materials into coastal waters. We examined satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor aboard the Aqua spacecraft following two major hurricane events: Hurricane Katrina, which made landfall on 29 August 2005, and Hurricane Rita, which made landfall on 24 September. MODIS A...

  7. ASTARTE: Assessment Strategy and Risk Reduction for Tsunamis in Europe

    Science.gov (United States)

    Baptista, M. A.; Yalciner, A. C.; Canals, M.

    2014-12-01

    Tsunamis are low frequency but high impact natural disasters. In 2004, the Boxing Day tsunami killed hundreds of thousands of people from many nations along the coastlines of the Indian Ocean. Tsunami run-up exceeded 35 m. Seven years later, and in spite of some of the best warning technologies and levels of preparedness in the world, the Tohoku-Oki tsunami in Japan dramatically showed the limitations of scientific knowledge on tsunami sources, coastal impacts and mitigation measures. The experience from Japan raised serious questions on how to improve the resilience of coastal communities, to upgrade the performance of coastal defenses, to adopt a better risk management, and also on the strategies and priorities for the reconstruction of damaged coastal areas. Societal resilience requires the reinforcement of capabilities to manage and reduce risk at national and local scales.ASTARTE (Assessment STrategy And Risk for Tsunami in Europe), a 36-month FP7 project, aims to develop a comprehensive strategy to mitigate tsunami impact in this region. To achieve this goal, an interdisciplinary consortium has been assembled. It includes all CTWPs of NEAM and expert institutions across Europe and worldwide. ASTARTE will improve i) basic knowledge of tsunami generation and recurrence going beyond simple catalogues, with novel empirical data and new statistical analyses for assessing long-term recurrence and hazards of large events in sensitive areas of NEAM, ii) numerical techniques for tsunami simulation, with focus on real-time codes and novel statistical emulation approaches, and iii) methods for assessment of hazard, vulnerability, and risk. ASTARTE will also provide i) guidelines for tsunami Eurocodes, ii) better tools for forecast and warning for CTWPs and NTWCs, and iii) guidelines for decision makers to increase sustainability and resilience of coastal communities. In summary, ASTARTE will develop basic scientific and technical elements allowing for a significant

  8. A new survey method of tsunami inundation area using chemical analysis of soil. Application to the field survey on the 2010 Chilean tsunami at Chile

    International Nuclear Information System (INIS)

    Yoshii, Takumi; Matsuyama, Masafumi; Koshimura, Shunichi; Mas, Erick; Matsuoka, Masashi; Jimenez, Cesar

    2011-01-01

    The severe earthquake of Mw 8.8 occurred on 27 Feb. 2010 at the center of Chile. The tsunami generated by the earthquake attacked the coast of Chile and it propagated to the Pacific Ocean coastline. The field survey on the disaster damages due to the tsunami was conducted near Talcahuano in Chile to prepare for the great tsunamis accompanied by the earthquakes predicted to occur near Japan within several decades. The aims of this field survey were to survey disaster damages especially relevant to electric equipments and to develop the survey method based on a chemical analysis of the inundated soil which supplies objective data with high accuracy compared to the conventional methods. In the survey area, the average of inundation heights was 6 m, however it locally reached up to 25 m. The maximum sea-level height of the series of the tsunamis was recorded in the third or fourth wave (roughly 3 hours after the earthquake occurrence). The first floors of houses were severely destroyed and some ships were carried and left on land by the tsunamis. Furthermore, the large amount of sediment was deposited in towns. Removing the drifted ships and tsunami deposit is important consideration for quick recovery from a disaster due to a tsunami. The soil samples were obtained from both the inundated and the not-inundated position. The stirred solution was made by the soil and ultrapure water, then, the content of water-soluble ions, electric conductivity (EC), and pH were measured. The soil obtained in the tsunami inundated area contains much water-soluble ions (Na + , Mg 2+ , Cl - , Br - , SO 4 2- ) compared to the samples obtained in the not-inundated area. The discriminant analysis of the tsunami inundation was conducted using the amount of ions in the soil. High discriminant accuracy (over 90%) was obtained with Na + , Mg 2+ , Cl - , Br - , SO 4 2- and EC. Br - , Cl - , Na + are believed to be suitable for the discriminant analysis about tsunamis considering the contaminant

  9. Submarine mass wasting and associated tsunami risk offshore western Thailand, Andaman Sea, Indian Ocean

    Directory of Open Access Journals (Sweden)

    J. M. Schwab

    2012-08-01

    Full Text Available 2-D seismic data from the top and the western slope of Mergui Ridge in water depths between 300 and 2200 m off the Thai west coast have been investigated in order to identify mass transport deposits (MTDs and evaluate the tsunamigenic potential of submarine landslides in this outer shelf area. Based on our newly collected data, 17 mass transport deposits have been identified. Minimum volumes of individual MTDs range between 0.3 km3 and 14 km3. Landslide deposits have been identified in three different settings: (i stacked MTDs within disturbed and faulted basin sediments at the transition of the East Andaman Basin to the Mergui Ridge; (ii MTDs within a pile of drift sediments at the basin-ridge transition; and (iii MTDs near the edge of/on top of Mergui Ridge in relatively shallow water depths (< 1000 m. Our data indicate that the Mergui Ridge slope area seems to have been generally unstable with repeated occurrence of slide events. We find that the most likely causes for slope instabilities may be the presence of unstable drift sediments, excess pore pressure, and active tectonics. Most MTDs are located in large water depths (> 1000 m and/or comprise small volumes suggesting a small tsunami potential. Moreover, the recurrence rates of failure events seem to be low. Some MTDs with tsunami potential, however, have been identified on top of Mergui Ridge. Mass-wasting events that may occur in the future at similar locations may trigger tsunamis if they comprise sufficient volumes. Landslide tsunamis, emerging from slope failures in the working area and affecting western Thailand coastal areas therefore cannot be excluded, though the probability is very small compared to the probability of earthquake-triggered tsunamis, arising from the Sunda Trench.

  10. Test operation of a real-time tsunami inundation forecast system using actual data observed by S-net

    Science.gov (United States)

    Suzuki, W.; Yamamoto, N.; Miyoshi, T.; Aoi, S.

    2017-12-01

    If the tsunami inundation information can be rapidly and stably forecast before the large tsunami attacks, the information would have effectively people realize the impeding danger and necessity of evacuation. Toward that goal, we have developed a prototype system to perform the real-time tsunami inundation forecast for Chiba prefecture, eastern Japan, using off-shore ocean bottom pressure data observed by the seafloor observation network for earthquakes and tsunamis along the Japan Trench (S-net) (Aoi et al., 2015, AGU). Because tsunami inundation simulation requires a large computation cost, we employ a database approach searching the pre-calculated tsunami scenarios that reasonably explain the observed S-net pressure data based on the multi-index method (Yamamoto et al., 2016, EPS). The scenario search is regularly repeated, not triggered by the occurrence of the tsunami event, and the forecast information is generated from the selected scenarios that meet the criterion. Test operation of the prototype system using the actual observation data started in April, 2017 and the performance and behavior of the system during non-tsunami event periods have been examined. It is found that the treatment of the noises affecting the observed data is the main issue to be solved toward the improvement of the system. Even if the observed pressure data are filtered to extract the tsunami signals, the noises in ordinary times or unusually large noises like high ocean waves due to storm affect the comparison between the observed and scenario data. Due to the noises, the tsunami scenarios are selected and the tsunami is forecast although any tsunami event does not actually occur. In most cases, the selected scenarios due to the noises have the fault models in the region along the Kurile or Izu-Bonin Trenches, far from the S-net region, or the fault models below the land. Based on the parallel operation of the forecast system with a different scenario search condition and

  11. Probabilistic tsunami hazard assessment from incomplete and uncertain historical catalogues with application to tsunamigenic regions in the Pacific Ocean.

    NARCIS (Netherlands)

    Smit, A.; Kijko, Andrzej; Stein, A.

    The paper presents a new method for empirical assessment of tsunami recurrence parameters, namely the mean tsunami activity rate λT , the Soloviev–Imamura frequency–magnitude power law bT -value, and the coastline-characteristic, maximum possible tsunami intensity imax . The three

  12. PERSISTENT HIGH WATER LEVELS AROUND ANDAMAN & NICOBAR ISLANDS FOLLOWING THE 26 DECEMBER 2004 TSUNAMI

    Directory of Open Access Journals (Sweden)

    A.D. Rao

    2006-01-01

    Full Text Available During the tsunami of 26th December 2004 in the Indian Ocean, media reports suggested that high water levels persisted around the Andaman & Nicobar Islands for several days. These persistent high water levels can be explained by invoking the existence of trapped and partially leaky modes on the shelves surrounding these islands. It has been known in the studies of tides in the global oceans, that there are two distinct types of oscillations, separated in their frequencies by the period of the pendulum day. One species are the gravity waves, and the others are the rotational waves, associated with earth's rotation. Both these species can be found in tidal records around islands as well as near coastlines. Essentially these are either trapped or partly leaky modes, partly trapped on the continental shelves. These two types of modes are usually found in the tsunami records on tide gauges. The tide gauge records as well as visual descriptions of the water levels during and after the occurrence of a tsunami clearly show the presence of these oscillations.

  13. Topographic data acquisition in tsunami-prone coastal area using Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Marfai, M. A.; Sunarto; Khakim, N.; Cahyadi, A.; Rosaji, F. S. C.; Fatchurohman, H.; Wibowo, Y. A.

    2018-04-01

    The southern coastal area of Java Island is one of the nine seismic gaps prone to tsunamis. The entire coastline in one of the regencies, Gunungkidul, is exposed to the subduction zone in the Indian Ocean. Also, the growing tourism industries in the regency increase its vulnerability, which places most of its areas at high risk of tsunamis. The same case applies to Kukup, i.e., one of the most well-known beaches in Gunungkidul. Structurally shaped cliffs that surround it experience intensive wave erosion process, but it has very minimum access for evacuation routes. Since tsunami modeling is a very advanced analysis, it requires an accurate topographic data. Therefore, the research aimed to generate the topographic data of Kukup Beach as the baseline in tsunami risk reduction analysis and disaster management. It used aerial photograph data, which was acquired using Unmanned Aerial Vehicle (UAV). The results showed that the aerial photographs captured by drone had accurate elevation and spatial resolution. Therefore, they are applicable for tsunami modeling and disaster management.

  14. Assessment of tsunami hazard for coastal areas of Shandong Province, China

    Science.gov (United States)

    Feng, Xingru; Yin, Baoshu

    2017-04-01

    extreme oceanic conditions. The results of this study will be useful for the design of coastal engineering projects and the establishment of a tsunami warning system for Shandong Province.

  15. Emergency management response to a warning-level Alaska-source tsunami impacting California: Chapter J in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Miller, Kevin M.; Long, Kate

    2013-01-01

    This chapter is directed towards two audiences: Firstly, it targets nonemergency management readers, providing them with insight on the process and challenges facing emergency managers in responding to tsunami Warning, particularly given this “short fuse” scenario. It is called “short fuse” because there is only a 5.5-hour window following the earthquake before arrival of the tsunami within which to evaluate the threat, disseminate alert and warning messages, and respond. This action initiates a period when crisis communication is of paramount importance. An additional dynamic that is important to note is that within 15 minutes of the earthquake, the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) will issue alert bulletins for the entire Pacific Coast. This is one-half the time actually presented by recent tsunamis from Japan, Chile, and Samoa. Second, the chapter provides emergency managers at all levels with insights into key considerations they may need to address in order to augment their existing plans and effectively respond to tsunami events. We look at emergency management response to the tsunami threat from three perspectives:“Top Down” (Threat analysis and Alert/Warning information from the Federal agency charged with Alert and Warning) “Bottom Up” (Emergency management’s Incident Command approach to responding to emergencies and disasters based on the needs of impacted local jurisdictions) “Across Time” (From the initiating earthquake event through emergency response) We focus on these questions: What are the government roles, relationships, and products that support Tsunami Alert and Warning dissemination? (Emergency Planning and Preparedness.) What roles, relationships, and products support emergency management response to Tsunami Warning and impact? (Engendering prudent public safety response.) What are the key emergency management activities, considerations, and challenges brought

  16. Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

    Science.gov (United States)

    Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Adela Monreal-Gómez, María; Sánchez-Santillán, Norma Leticia; Salas-Monreal, David

    2018-04-01

    Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean-atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

  17. Tsunamis triggered by the 12 January 2010 Earthquake in Haiti

    Science.gov (United States)

    Fritz, H. M.; Hillaire, J. V.; Molière, E.; Mohammed, F.; Wei, Y.

    2010-12-01

    On 12 January 2010 a magnitude Mw 7.0 earthquake occurred 25 km west-southwest of Haiti’s Capital of Port-au-Prince, which resulted in more than 230,000 fatalities. In addition tsunami waves triggered by the earthquake caused at least 3 fatalities at Petit Paradis. Unfortunately, the people of Haiti had neither ancestral knowledge nor educational awareness of tsunami hazards despite the 1946 Dominican Republic tsunami at Hispaniola’s northeast coast. In sharp contrast Sri Lankan UN-soldiers on duty at Jacmel self-evacuated given the memory of the 2004 Indian Ocean tsunami. The International Tsunami Survey Team (ITST) documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, and performance of the man-made infrastructure and impact on the natural environment. The 31 January to 7 February 2010 ITST covered the greater Bay of Port-au-Prince and more than 100 km of Hispaniola’s south coast between Pedernales, Dominican Republic and Jacmel, Haiti. The Hispaniola survey data includes more than 20 runup and flow depth measurements. The tsunami impacts peaked with maximum flow depths exceeding 3 m both at Petit Paradis inside the Bay of Grand Goâve located 45 km west-southwest of Port-au-Prince and at Jacmel on Haiti’s south coast. A significant variation in tsunami impact was observed on Hispaniola and tsunami runup of more than 1 m was still observed at Pedernales in the Dominican Republic. Jacmel, which is near the center of the south coast, represents an unfortunate example of a village and harbor that was located for protection from storm waves but is vulnerable to tsunami waves with runup doubling from the entrance to the head of the bay. Inundation and damage was limited to less than 100 m inland at both Jacmel and Petit Paradis. Differences in wave period were documented between the tsunami waves at Petit Paradis and Jacmel. The Petit Paradis tsunami is attributed to a coastal submarine landslide

  18. Tsunami vulnerability assessment mapping for the west coast of Peninsular Malaysia using a geographical information system (GIS)

    International Nuclear Information System (INIS)

    Najihah, R; Effendi, D M; Hairunnisa, M A; Masiri, K

    2014-01-01

    The catastrophic Indian Ocean tsunami of 26 December 2004 raised a number of questions for scientist and politicians on how to deal with the tsunami risk and assessment in coastal regions. This paper discusses the challenges in tsunami vulnerability assessment and presents the result of tsunami disaster mapping and vulnerability assessment study for West Coast of Peninsular Malaysia. The spatial analysis was carried out using Geographical Information System (GIS) technology to demarcate spatially the tsunami affected village's boundary and suitable disaster management program can be quickly and easily developed. In combination with other thematic maps such as road maps, rail maps, school maps, and topographic map sheets it was possible to plan the accessibility and shelter to the affected people. The tsunami vulnerability map was used to identify the vulnerability of villages/village population to tsunami. In the tsunami vulnerability map, the intensity of the tsunami was classified as hazard zones based on the inundation level in meter (contour). The approach produced a tsunami vulnerability assessment map consists of considering scenarios of plausible extreme, tsunami-generating events, computing the tsunami inundation levels caused by different events and scenarios and estimating the possible range of casualties for computing inundation levels. The study provides an interactive means to identify the tsunami affected areas after the disaster and mapping the tsunami vulnerable village before for planning purpose were the essential exercises for managing future disasters

  19. Tsunami vulnerability assessment mapping for the west coast of Peninsular Malaysia using a geographical information system (GIS)

    Science.gov (United States)

    Najihah, R.; Effendi, D. M.; Hairunnisa, M. A.; Masiri, K.

    2014-02-01

    The catastrophic Indian Ocean tsunami of 26 December 2004 raised a number of questions for scientist and politicians on how to deal with the tsunami risk and assessment in coastal regions. This paper discusses the challenges in tsunami vulnerability assessment and presents the result of tsunami disaster mapping and vulnerability assessment study for West Coast of Peninsular Malaysia. The spatial analysis was carried out using Geographical Information System (GIS) technology to demarcate spatially the tsunami affected village's boundary and suitable disaster management program can be quickly and easily developed. In combination with other thematic maps such as road maps, rail maps, school maps, and topographic map sheets it was possible to plan the accessibility and shelter to the affected people. The tsunami vulnerability map was used to identify the vulnerability of villages/village population to tsunami. In the tsunami vulnerability map, the intensity of the tsunami was classified as hazard zones based on the inundation level in meter (contour). The approach produced a tsunami vulnerability assessment map consists of considering scenarios of plausible extreme, tsunami-generating events, computing the tsunami inundation levels caused by different events and scenarios and estimating the possible range of casualties for computing inundation levels. The study provides an interactive means to identify the tsunami affected areas after the disaster and mapping the tsunami vulnerable village before for planning purpose were the essential exercises for managing future disasters.

  20. NEAR REAL-TIME DETERMINATION OF EARTHQUAKE SOURCE PARAMETERS FOR TSUNAMI EARLY WARNING FROM GEODETIC OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    S. Manneela

    2016-06-01

    Full Text Available Exemplifying the tsunami source immediately after an earthquake is the most critical component of tsunami early warning, as not every earthquake generates a tsunami. After a major under sea earthquake, it is very important to determine whether or not it has actually triggered the deadly wave. The near real-time observations from near field networks such as strong motion and Global Positioning System (GPS allows rapid determination of fault geometry. Here we present a complete processing chain of Indian Tsunami Early Warning System (ITEWS, starting from acquisition of geodetic raw data, processing, inversion and simulating the situation as it would be at warning center during any major earthquake. We determine the earthquake moment magnitude and generate the centroid moment tensor solution using a novel approach which are the key elements for tsunami early warning. Though the well established seismic monitoring network, numerical modeling and dissemination system are currently capable to provide tsunami warnings to most of the countries in and around the Indian Ocean, the study highlights the critical role of geodetic observations in determination of tsunami source for high-quality forecasting.

  1. Tsunami hazard assessment along Diba-Oman and Diba-Al-Emirates coasts

    Directory of Open Access Journals (Sweden)

    El-Hussain Issa

    2017-01-01

    Full Text Available Tsunami is among the most devastating natural hazards phenomenon responsible for significant loss of life and property throughout history. The Sultanate of Oman and United Arab Emirates are among the Indian Ocean countries that were subjected to one confirmed tsunami in November 27, 1945 due to an Mw 8.1 earthquake in Makran Subduction Zone. In this study, we present preliminary deterministic tsunami hazard assessment for the coasts of Diba Oman and Diba Al-Emirates, which are located on the western coast of the Oman Sea. The tsunami vulnerability of these cities increases due to the construction of many critical infrastructures and urban concentration along their coasts. Therefore, tsunami hazard assessment is necessary to mitigate the risk on the socio-economic system and sustainable developments. The major known source of tsunamis able to impact both coasts of Oman and United Arab Emirates is the Makran Subduction Zone (MSZ which extends for approximately 900 km. The deterministic approach uses specific scenarios considering the maximum credible earthquakes occurring in the MSZ and computes the ensuing tsunami impact in the coasts of the study area. The maximum wave height graphs and inundation maps are obtained for tsunami scenarios caused by 8.8 earthquake magnitude in eastern MSZ and 8.2 magnitude from western MSZ. The Mw8.8 eastern MSZ causes a maximum inundation distance of 447 meters and a maximum flow depth of 1.37 meter. Maximum inundation distance larger than 420 meters occurs due to the Mw8.2 western MSZ scenario. For this scenario, numerical simulations show a maximum flow depth of about 2.34 meters.

  2. What Causes Tsunamis?

    Science.gov (United States)

    Mogil, H. Michael

    2005-01-01

    On December 26, 2004, a disastrous tsunami struck many parts of South Asia. The scope of this disaster has resulted in an outpouring of aid throughout the world and brought attention to the science of tsunamis. "Tsunami" means "harbor wave" in Japanese, and the Japanese have a long history of tsunamis. The word…

  3. Coastal Sediment Distribution Patterns Following Category 5 Hurricanes (Irma and Maria): Pre and Post Hurricane High Resolution Multibeam Surveys of Eastern St. John, US Virgin Islands

    Science.gov (United States)

    Browning, T. N.; Sawyer, D. E.; Russell, P.

    2017-12-01

    In August of 2017 we collected high resolution multibeam data of the seafloor in a large embayment in eastern St. John, US Virgin Islands (USVI). One month later, the eyewall of Category 5 Hurricane Irma directly hit St. John as one of the largest hurricanes on record in the Atlantic Ocean. A week later, Category 5 Hurricane Maria passed over St. John. While the full extent of the impacts are still being assessed, the island experienced a severe loss of vegetation, infrastructure, buildings, roads, and boats. We mobilized less than two months afterward to conduct a repeat survey of the same area on St. John. We then compared these data to document and quantify the sediment influx and movement that occurred in coastal embayments as a result of Hurricanes Irma and Maria. The preliminary result of the intense rain, wind, and storm surge likely yields an event deposit that can be mapped and volumetrically quantified in the bays of eastern St. John. The results of this study allow for a detailed understanding of the post-hurricane pulse of sediment that enters the marine environment, the sediment flux seaward, and the morphological changes to the bay floor.

  4. GEODYNAMICS OF NAZCA RIDGE’S OBLIQUE SUBDUCTION AND MIGRATION - IMPLICATIONS FOR TSUNAMI GENERATION ALONG CENTRAL AND SOUTHERN PERU: Earthquake and Tsunami of 23 June 2001

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2012-01-01

    Full Text Available Peru is in a region of considerable geologic and seismic complexity. Thrust faulting along the boundary where the Nazca plate subducts beneath the South American continent has created three distinct seismic zones. The angle of subduction of the Nazca oceanic plate beneath the South American plate is not uniform along the entire segment of the Peru-Chile Trench. Furthermore, subduction is affected by buoyancy forces of the bounding oceanic ridges and fractures - such as the Mendana Fracture Zone (MFZ to the North and the Nazca Ridge to the South. This narrow zone is characterized by shallow earthquakes that can generate destructive tsunamis of varied intensities. The present study examines the significance of Nazca Ridge’s oblique subduction and migration to the seismicity of Central/Southern Peru and to tsunami generation. The large tsunamigenic earthquake of 23 June 2001 is presented as a case study. This event generated a destructive, local tsunami that struck Peru’s southern coasts with waves ranging from 3 to 4.6 meters (10-15 feet and inland inundation that ranged from 1 to 3 km. In order to understand the near and far-field tsunamigenic efficiency of events along Central/Southern Peru and the significance of Nazca Ridge’s oblique subduction, the present study examines further the geologic structure of the region and this quake’s moment tensor analysis, energy release, fault rupture and the spatial distribution of aftershocks. Tsunami source mechanism characteristics for this event are presented, as inferred from seismic intensities, energy releases, fault plane solutions and the use of empirical relationships. The study concludes that the segment of subduction and faulting paralleling the Peru-Chile Trench from about 150 to 180 South, as well as the obliquity of convergent tectonic plate collision in this region, may be the reason for shorter rupture lengths of major earthquakes and the generation of only local destructive tsunamis.

  5. The Solomon Islands Tsunami of 6 February 2013 in the Santa Cruz Islands: Field Survey and Modeling

    Science.gov (United States)

    Fritz, Hermann M.; Papantoniou, Antonios; Biukoto, Litea; Albert, Gilly; Wei, Yong

    2014-05-01

    On February 6, 2013 at 01:12:27 UTC (local time: UTC+11), a magnitude Mw 8.0 earthquake occurred 70 km to the west of Ndendo Island (Santa Cruz Island) in the Solomon Islands. The under-thrusting earthquake near a 90° bend, where the Australian plate subducts beneath the Pacific plate generated a locally focused tsunami in the Coral Sea and the South Pacific Ocean. The tsunami claimed the lives of 10 people and injured 15, destroyed 588 houses and partially damaged 478 houses, affecting 4,509 people in 1,066 households corresponding to an estimated 37% of the population of Santa Cruz Island. A multi-disciplinary international tsunami survey team (ITST) was deployed within days of the event to document flow depths, runup heights, inundation distances, sediment and coral boulder depositions, land level changes, damage patterns at various scales, performance of the man-made infrastructure and impact on the natural environment. The 19 to 23 February 2013 ITST covered 30 locations on 4 Islands: Ndendo (Santa Cruz), Tomotu Noi (Lord Howe), Nea Tomotu (Trevanion, Malo) and Tinakula. The reconnaissance completely circling Ndendo and Tinakula logged 240 km by small boat and additionally covered 20 km of Ndendo's hard hit western coastline by vehicle. The collected survey data includes more than 80 tsunami runup and flow depth measurements. The tsunami impact peaked at Manoputi on Ndendo's densely populated west coast with maximum tsunami height exceeding 11 m and local flow depths above ground exceeding 7 m. A fast tide-like positive amplitude of 1 m was recorded at Lata wharf inside Graciosa Bay on Ndendo Island and misleadingly reported in the media as representative tsunami height. The stark contrast between the field observations on exposed coastlines and the Lata tide gauge recording highlights the importance of rapid tsunami reconnaissance surveys. Inundation distance and damage more than 500 m inland were recorded at Lata airport on Ndendo Island. Landslides were

  6. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-06-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500-10,000 m3s-1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  7. Malaria - Africa's silent tsunami | CRDI - Centre de recherches pour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... help those in distress was justifiably roused following the Indian Ocean tsunami. ... Now there is a rapid movement to a “culture” or norm of net use. ... At the time, however, virtually all mosquito nets were imported from Asia, ... L'union fait la force : des universités africaines se regroupent pour avoir plus de bande passante.

  8. Predicting natural catastrophes tsunamis

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    1. Tsunamis - Introduction - Definition of phenomenon - basic properties of the waves Propagation and dispersion Interaction with coasts - Geological and societal effects Origin of tsunamis - natural sources Scientific activities in connection with tsunamis. Ideas about simulations 2. Tsunami generation - The earthquake source - conventional theory The earthquake source - normal mode theory The landslide source Near-field observation - The Plafker index Far-field observation - Directivity 3. Tsunami warning - General ideas - History of efforts Mantle magnitudes and TREMOR algorithms The challenge of "tsunami earthquakes" Energy-moment ratios and slow earthquakes Implementation and the components of warning centers 4. Tsunami surveys - Principles and methodologies Fifteen years of field surveys and related milestones. Reconstructing historical tsunamis: eyewitnesses and geological evidence 5. Lessons from the 2004 Indonesian tsunami - Lessons in seismology Lessons in Geology The new technologies Lessons in civ...

  9. A Self-Consistent Fault Slip Model for the 2011 Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Yamazaki, Yoshiki; Cheung, Kwok Fai; Lay, Thorne

    2018-02-01

    The unprecedented geophysical and hydrographic data sets from the 2011 Tohoku earthquake and tsunami have facilitated numerous modeling and inversion analyses for a wide range of dislocation models. Significant uncertainties remain in the slip distribution as well as the possible contribution of tsunami excitation from submarine slumping or anelastic wedge deformation. We seek a self-consistent model for the primary teleseismic and tsunami observations through an iterative approach that begins with downsampling of a finite fault model inverted from global seismic records. Direct adjustment of the fault displacement guided by high-resolution forward modeling of near-field tsunami waveform and runup measurements improves the features that are not satisfactorily accounted for by the seismic wave inversion. The results show acute sensitivity of the runup to impulsive tsunami waves generated by near-trench slip. The adjusted finite fault model is able to reproduce the DART records across the Pacific Ocean in forward modeling of the far-field tsunami as well as the global seismic records through a finer-scale subfault moment- and rake-constrained inversion, thereby validating its ability to account for the tsunami and teleseismic observations without requiring an exotic source. The upsampled final model gives reasonably good fits to onshore and offshore geodetic observations albeit early after-slip effects and wedge faulting that cannot be reliably accounted for. The large predicted slip of over 20 m at shallow depth extending northward to 39.7°N indicates extensive rerupture and reduced seismic hazard of the 1896 tsunami earthquake zone, as inferred to varying extents by several recent joint and tsunami-only inversions.

  10. Tsunami evacuation buildings and evacuation planning in Banda Aceh, Indonesia.

    Science.gov (United States)

    Yuzal, Hendri; Kim, Karl; Pant, Pradip; Yamashita, Eric

    Indonesia, a country of more than 17,000 islands, is exposed to many hazards. A magnitude 9.1 earthquake struck off the coast of Sumatra, Indonesia, on December 26, 2004. It triggered a series of tsunami waves that spread across the Indian Ocean causing damage in 11 countries. Banda Aceh, the capital city of Aceh Province, was among the most damaged. More than 31,000 people were killed. At the time, there were no early warning systems nor evacuation buildings that could provide safe refuge for residents. Since then, four tsunami evacuation buildings (TEBs) have been constructed in the Meuraxa subdistrict of Banda Aceh. Based on analysis of evacuation routes and travel times, the capacity of existing TEBs is examined. Existing TEBs would not be able to shelter all of the at-risk population. In this study, additional buildings and locations for TEBs are proposed and residents are assigned to the closest TEBs. While TEBs may be part of a larger system of tsunami mitigation efforts, other strategies and approaches need to be considered. In addition to TEBs, robust detection, warning and alert systems, land use planning, training, exercises, and other preparedness strategies are essential to tsunami risk reduction.

  11. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  12. Simulations of the Ocean Response to a Hurricane: Nonlinear Processes

    KAUST Repository

    Zedler, Sarah E.

    2009-10-01

    Superinertial internal waves generated by a tropical cyclone can propagate vertically and laterally away from their local generation site and break, contributing to turbulent vertical mixing in the deep ocean and maintenance of the stratification of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized as a function of storm speed and central latitude. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model (OGCM) was used to simulate the open ocean response to realistic westward-tracking hurricane-type surface wind stress and heat and net freshwater buoyancy forcing for regions representative of midlatitudes in the Atlantic, the Caribbean, and low latitudes in the eastern Pacific. The model had high horizontal [Δ(x, y) = 1/6°] and vertical (Δz = 5 m in top 100 m) resolution and employed a parameterization for vertical mixing induced by shear instability. In the horizontal momentum equation, the relative size of the nonlinear advection terms, which had a dominant frequency near twice the inertial, was large only in the upper 200 m of water. Below 200 m, the linear momentum equations obeyed a linear balance to 2%. Fluctuations at nearly twice the inertial frequency (2f) were prevalent throughout the depth of the water column, indicating that these nonlinear advection terms in the upper 200 m forced a linear mode below at nearly twice the inertial frequency via vorticity conservation. Maximum variance at 2f in horizontal velocity occurred on the south side of the track. This was in response to vertical advection of northward momentum, which in the north momentum equation is an oscillatory positive definite term that constituted a net force to the south at a frequency near 2f. The ratio of this term to the Coriolis force was larger on the

  13. Numerical experiment on tsunami deposit distribution process by using tsunami sediment transport model in historical tsunami event of megathrust Nankai trough earthquake

    Science.gov (United States)

    Imai, K.; Sugawara, D.; Takahashi, T.

    2017-12-01

    A large flow caused by tsunami transports sediments from beach and forms tsunami deposits in land and coastal lakes. A tsunami deposit has been found in their undisturbed on coastal lakes especially. Okamura & Matsuoka (2012) found some tsunami deposits in the field survey of coastal lakes facing to the Nankai trough, and tsunami deposits due to the past eight Nankai Trough megathrust earthquakes they identified. The environment in coastal lakes is stably calm and suitable for tsunami deposits preservation compared to other topographical conditions such as plains. Therefore, there is a possibility that the recurrence interval of megathrust earthquakes and tsunamis will be discussed with high resolution. In addition, it has been pointed out that small events that cannot be detected in plains could be separated finely (Sawai, 2012). Various aspects of past tsunami is expected to be elucidated, in consideration of topographical conditions of coastal lakes by using the relationship between the erosion-and-sedimentation process of the lake bottom and the external force of tsunami. In this research, numerical examination based on tsunami sediment transport model (Takahashi et al., 1999) was carried out on the site Ryujin-ike pond of Ohita, Japan where tsunami deposit was identified, and deposit migration analysis was conducted on the tsunami deposit distribution process of historical Nankai Trough earthquakes. Furthermore, examination of tsunami source conditions is possibly investigated by comparison studies of the observed data and the computation of tsunami deposit distribution. It is difficult to clarify details of tsunami source from indistinct information of paleogeographical conditions. However, this result shows that it can be used as a constraint condition of the tsunami source scale by combining tsunami deposit distribution in lakes with computation data.

  14. Modeling of Tsunami Currents in Harbors

    Science.gov (United States)

    Lynett, P. J.

    2010-12-01

    , there must be some limitations for predicting the turbulent flow structures, even if they are dominantly 2D-horizontal motions. In this paper, the turbulent motions due to long waves and currents, with a focus on port and harbor effects, is investigated. Recent work studying wind wave evolution inside harbors and tsunami effects inside and near harbors will be presented. Presented case studies will focus on the generation of turbulent eddies by structures such as breakwaters and wharves, and the controlling effects these eddies have on currents. The knowledge that these types of currents might occur in a harbor is very important for planning, and for emergency operations during such an event. Okal, E.A., Fritz, H.M., Synolakis, C.E., Raad, P.E., Al-Shijbi, Y., and Al-Saifi, M., 2006. Field survey of the 2004 Indian Ocean tsunami in Oman, 2004, Great Sumatra Earthquakes and Indian Ocean Tsunamis of December 26, 2004 and March 28, 2005, Earthquake Spectra 22 (S4), June 2006.

  15. Characterization of 2004 Indian Ocean tsunami induced deposits along the Chennai coast using magnetic and geochemical techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Venkatachalapathy, R.

    , and reflect changes in the detrital component mineralogy which is largely influenced by the tsunami event To identify t he connection between the tsunami deposit and different sedimentologic units present in the study area, textural, geochemical and rock...

  16. Estimation of Phytoplankton Responses to Hurricane Gonu over the Arabian Sea Based on Ocean Color Data

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2008-08-01

    Full Text Available In this study the authors investigated phytoplankton variations in the Arabian Sea associated with Hurricane Gonu using remote-sensing data of chlorophyll-a (Chl-a, sea surface temperature (SST and winds. Additional data sets used for the study included the hurricane and Conductivity-Temperature-Depth data. Hurricane Gonu, presenting extremely powerful wind intensity, originated over the central Arabian Sea (near 67.7ºE, 15.1ºN on June 2, 2007; it traveled along a northwestward direction and made landfall in Iran around June 7. Before Hurricane Gonu, Chl-a data indicated relatively low phytoplankton biomass (0.05-0.2 mg m-3, along with generally high SST (>28.5 ºC and weak wind (<10 m s-1 in the Arabian Sea. Shortly after Gonu’s passage, two phytoplankton blooms were observed northeast of Oman (Chl-a of 3.5 mg m-3 and in the eastern central Arabian Sea (Chl-a of 0.4 mg m-3, with up to 10-fold increase in surface Chl-a concentrations, respectively. The Chl-a in the two post-hurricane blooms were 46% and 42% larger than those in June of other years, respectively. The two blooms may be attributed to the storm-induced nutrient uptake, since hurricane can influence intensively both dynamical and biological processes through vertical mixing and Ekman Pumping.

  17. New Science Applications Within the U.S. National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Wilson, R. I.; Eble, M. C.; Forson, C. K.; Horrillo, J. J.; Nicolsky, D.

    2017-12-01

    The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a collaborative State and Federal program which supports consistent and cost effective tsunami preparedness and mitigation activities at a community level. The NTHMP is developing a new five-year Strategic Plan based on the 2017 Tsunami Warning, Education, and Research Act as well as recommendations the 2017 NTHMP External Review Panel. Many NTHMP activities are based on the best available scientific methods through the NTHMP Mapping and Modeling Subcommittee (MMS). The primary activities for the MMS member States are to characterize significant tsunami sources, numerically model those sources, and create tsunami inundation maps for evacuation planning. This work remains a focus for many unmapped coastlines. With the lessons learned from the 2004 Indian Ocean and 2011 Tohoku Japan tsunamis, where both immediate risks and long-term recovery issues where recognized, the NTHMP MMS is expanding efforts into other areas that address community resilience. Tsunami evacuation modeling based on both pedestrian and vehicular modes of transportation are being developed by NTHMP States. Products include tools for the public to create personal evacuation maps. New tsunami response planning tools are being developed for both maritime and coastal communities. Maritime planning includes tsunami current-hazard maps for in-harbor and offshore response activities. Multi-tiered tsunami evacuation plans are being developed in some states to address local- versus distant-source tsunamis, as well as real-time evacuation plans, or "playbooks," for distant-source tsunamis forecasted to be less than the worst-case flood event. Products to assist community mitigation and recovery are being developed at a State level. Harbor Improvement Reports, which evaluate the impacts of currents, sediment, and debris on harbor infrastructure, include direct mitigation activities for Local Hazard Mitigation Plans. Building code updates in the

  18. Tsunami Amplitude Estimation from Real-Time GNSS.

    Science.gov (United States)

    Jeffries, C.; MacInnes, B. T.; Melbourne, T. I.

    2017-12-01

    Tsunami early warning systems currently comprise modeling of observations from the global seismic network, deep-ocean DART buoys, and a global distribution of tide gauges. While these tools work well for tsunamis traveling teleseismic distances, saturation of seismic magnitude estimation in the near field can result in significant underestimation of tsunami excitation for local warning. Moreover, DART buoy and tide gauge observations cannot be used to rectify the underestimation in the available time, typically 10-20 minutes, before local runup occurs. Real-time GNSS measurements of coseismic offsets may be used to estimate finite faulting within 1-2 minutes and, in turn, tsunami excitation for local warning purposes. We describe here a tsunami amplitude estimation algorithm; implemented for the Cascadia subduction zone, that uses continuous GNSS position streams to estimate finite faulting. The system is based on a time-domain convolution of fault slip that uses a pre-computed catalog of hydrodynamic Green's functions generated with the GeoClaw shallow-water wave simulation software and maps seismic slip along each section of the fault to points located off the Cascadia coast in 20m of water depth and relies on the principle of the linearity in tsunami wave propagation. The system draws continuous slip estimates from a message broker, convolves the slip with appropriate Green's functions which are then superimposed to produce wave amplitude at each coastal location. The maximum amplitude and its arrival time are then passed into a database for subsequent monitoring and display. We plan on testing this system using a suite of synthetic earthquakes calculated for Cascadia whose ground motions are simulated at 500 existing Cascadia GPS sites, as well as real earthquakes for which we have continuous GNSS time series and surveyed runup heights, including Maule, Chile 2010 and Tohoku, Japan 2011. This system has been implemented in the CWU Geodesy Lab for the Cascadia

  19. Year-ahead prediction of US landfalling hurricane numbers: intense hurricanes

    OpenAIRE

    Khare, Shree; Jewson, Stephen

    2005-01-01

    We continue with our program to derive simple practical methods that can be used to predict the number of US landfalling hurricanes a year in advance. We repeat an earlier study, but for a slightly different definition landfalling hurricanes, and for intense hurricanes only. We find that the averaging lengths needed for optimal predictions of numbers of intense hurricanes are longer than those needed for optimal predictions of numbers of hurricanes of all strengths.

  20. EARLY DETECTION OF NEAR-FIELD TSUNAMIS USING UNDERWATER SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    L. E. Freitag

    2012-01-01

    Full Text Available We propose a novel approach for near-field tsunami detection, specifically for the area near the city of Padang, Indonesia. Padang is located on the western shore of Sumatra, directly across from the Mentawai segment of the Sunda Trench, where accumulated strain has not been released since the great earthquake of 1797. Consequently, the risk of a major tsunamigenic earthquake on this segment is high. Currently, no ocean-bottom pressure sensors are deployed in the Mentawai basin to provide a definitive tsunami warning for Padang. Timely warnings are essential to initiate evacuation procedures and minimize loss of human life. Our approach augments existing technology with a network of underwater sensors to detect tsunamis generated by an earthquake or landslide fast enough to provide at least 15 minutes of warning. Data from the underwater sensor network would feed into existing decision support systems that accept input from land and sea-based sensors and provide warning information to city and regional authorities.

  1. Impact of earthquake-induced tsunamis on public health

    Science.gov (United States)

    Mavroulis, Spyridon; Mavrouli, Maria; Lekkas, Efthymios; Tsakris, Athanassios

    2017-04-01

    Tsunamis are caused by rapid sea floor displacement during earthquakes, landslides and large explosive eruptions in marine environment setting. Massive amounts of sea water in the form of devastating surface waves travelling hundreds of kilometers per hour have the potential to cause extensive damage to coastal infrastructures, considerable loss of life and injury and emergence of infectious diseases (ID). This study involved an extensive and systematic literature review of 50 research publications related to public health impact of the three most devastating tsunamis of the last 12 years induced by great earthquakes, namely the 2004 Sumatra-Andaman earthquake (moment magnitude Mw 9.2), the 2009 Samoa earthquake (Mw 8.1) and the 2011 Tōhoku (Japan) earthquake (Mw 9.0) in the Indian, Western Pacific and South Pacific Oceans respectively. The inclusion criteria were literature type comprising journal articles and official reports, natural disaster type including tsunamis induced only by earthquakes, population type including humans, and outcome measure characterized by disease incidence increase. The potential post-tsunami ID are classified into 11 groups including respiratory, pulmonary, wound-related, water-borne, skin, vector-borne, eye, fecal-oral, food-borne, fungal and mite-borne ID. Respiratory infections were detected after all the above mentioned tsunamis. Wound-related, skin and water-borne ID were observed after the 2004 and 2011 tsunamis, while vector-borne, fecal-oral and eye ID were observed only after the 2004 tsunami and pulmonary, food-borne and mite-borne ID were diagnosed only after the 2011 tsunami. Based on available age and genre data, it is concluded that the most vulnerable population groups are males, children (age ≤ 15 years) and adults (age ≥ 65 years). Tetanus and pneumonia are the deadliest post-tsunami ID. The detected risk factors include (1) lowest socioeconomic conditions, poorly constructed buildings and lack of prevention

  2. Combining historical eyewitness accounts on tsunami-induced waves and numerical simulations for getting insights in uncertainty of source parameters

    Science.gov (United States)

    Rohmer, Jeremy; Rousseau, Marie; Lemoine, Anne; Pedreros, Rodrigo; Lambert, Jerome; benki, Aalae

    2017-04-01

    Recent tsunami events including the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami have caused many casualties and damages to structures. Advances in numerical simulation of tsunami-induced wave processes have tremendously improved forecast, hazard and risk assessment and design of early warning for tsunamis. Among the major challenges, several studies have underlined uncertainties in earthquake slip distributions and rupture processes as major contributor on tsunami wave height and inundation extent. Constraining these uncertainties can be performed by taking advantage of observations either on tsunami waves (using network of water level gauge) or on inundation characteristics (using field evidence and eyewitness accounts). Despite these successful applications, combining tsunami observations and simulations still faces several limitations when the problem is addressed for past tsunamis events like 1755 Lisbon. 1) While recent inversion studies can benefit from current modern networks (e.g., tide gauges, sea bottom pressure gauges, GPS-mounted buoys), the number of tide gauges can be very scarce and testimonies on tsunami observations can be limited, incomplete and imprecise for past tsunamis events. These observations often restrict to eyewitness accounts on wave heights (e.g., maximum reached wave height at the coast) instead of the full observed waveforms; 2) Tsunami phenomena involve a large span of spatial scales (from ocean basin scales to local coastal wave interactions), which can make the modelling very demanding: the computation time cost of tsunami simulation can be very prohibitive; often reaching several hours. This often limits the number of allowable long-running simulations for performing the inversion, especially when the problem is addressed from a Bayesian inference perspective. The objective of the present study is to overcome both afore-described difficulties in the view to combine historical observations on past tsunami-induced waves

  3. Development of tsunami hazard analysis

    International Nuclear Information System (INIS)

    2012-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidebooks on tsunami deposit survey in JAPAN. In order to prepare the guidebook of tsunami deposits survey and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, and (2) field survey on tsunami deposit to prepare the guidebook. As to (1), we especially gear to tsunami deposits distributed in the Pacific coast of Tohoku region, and organize the information gained about tsunami deposits in the database. In addition, as to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. These results are reflected in the guidebook on the tsunami deposits in the lake as needed. (author)

  4. Development of tsunami hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidebooks on tsunami deposit survey in JAPAN. In order to prepare the guidebook of tsunami deposits survey and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, and (2) field survey on tsunami deposit to prepare the guidebook. As to (1), we especially gear to tsunami deposits distributed in the Pacific coast of Tohoku region, and organize the information gained about tsunami deposits in the database. In addition, as to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. These results are reflected in the guidebook on the tsunami deposits in the lake as needed. (author)

  5. Resolution testing and limitations of geodetic and tsunami datasets for finite fault inversions along subduction zones

    Science.gov (United States)

    Williamson, A.; Newman, A. V.

    2017-12-01

    Finite fault inversions utilizing multiple datasets have become commonplace for large earthquakes pending data availability. The mixture of geodetic datasets such as Global Navigational Satellite Systems (GNSS) and InSAR, seismic waveforms, and when applicable, tsunami waveforms from Deep-Ocean Assessment and Reporting of Tsunami (DART) gauges, provide slightly different observations that when incorporated together lead to a more robust model of fault slip distribution. The merging of different datasets is of particular importance along subduction zones where direct observations of seafloor deformation over the rupture area are extremely limited. Instead, instrumentation measures related ground motion from tens to hundreds of kilometers away. The distance from the event and dataset type can lead to a variable degree of resolution, affecting the ability to accurately model the spatial distribution of slip. This study analyzes the spatial resolution attained individually from geodetic and tsunami datasets as well as in a combined dataset. We constrain the importance of distance between estimated parameters and observed data and how that varies between land-based and open ocean datasets. Analysis focuses on accurately scaled subduction zone synthetic models as well as analysis of the relationship between slip and data in recent large subduction zone earthquakes. This study shows that seafloor deformation sensitive datasets, like open-ocean tsunami waveforms or seafloor geodetic instrumentation, can provide unique offshore resolution for understanding most large and particularly tsunamigenic megathrust earthquake activity. In most environments, we simply lack the capability to resolve static displacements using land-based geodetic observations.

  6. Hurricane Gustav Aerial Photography: Rapid ResponseImagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regionsafter Hurricane Gustav made landfall. The aerial photography missions wereconducted by the NOAA Remote...

  7. Hurricane Ike Aerial Photography: Rapid ResponseImagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regionsafter Hurricane Ike made landfall. The aerial photography missions wereconducted by the NOAA Remote...

  8. Preliminary Hazard Assessment for Tectonic Tsunamis in the Eastern Mediterranean

    Science.gov (United States)

    Aydin, B.; Bayazitoglu, O.; Sharghi vand, N.; Kanoglu, U.

    2017-12-01

    There are many critical industrial facilities such as energy production units and energy transmission lines along the southeast coast of Turkey. This region is also active on tourism, and agriculture and aquaculture production. There are active faults in the region, i.e. the Cyprus Fault, which extends along the Mediterranean basin in the east-west direction and connects to the Hellenic Arc. Both the Cyprus Fault and the Hellenic Arc are seismologically active and are capable of generating earthquakes with tsunamigenic potential. Even a small tsunami in the region could cause confusion as shown by the recent 21 July 2017 earthquake of Mw 6.6, which occurred in the Aegean Sea, between Bodrum, Turkey and Kos Island, Greece since region is not prepared for such an event. Moreover, the Mediterranean Sea is one of the most vulnerable regions against sea level rise due to global warming, according to the 5th Report of the Intergovernmental Panel on Climate Change. For these reasons, a marine hazard such as a tsunami can cause much worse damage than expected in the region (Kanoglu et al., Phil. Trans. R. Soc. A 373, 2015). Hence, tsunami hazard assessment is required for the region. In this study, we first characterize earthquakes which have potential to generate a tsunami in the Eastern Mediterranean. Such study is a prerequisite for regional tsunami mitigation studies. For fast and timely predictions, tsunami warning systems usually employ databases that store pre-computed tsunami propagation resulting from hypothetical earthquakes with pre-defined parameters. These pre-defined sources are called tsunami unit sources and they are linearly superposed to mimic a real event, since wave propagation is linear offshore. After investigating historical earthquakes along the Cyprus Fault and the Hellenic Arc, we identified tsunamigenic earthquakes in the Eastern Mediterranean and proposed tsunami unit sources for the region. We used the tsunami numerical model MOST (Titov et al

  9. Odessa Tsunami of 27 June 2014: Observations and Numerical Modelling

    Science.gov (United States)

    Šepić, Jadranka; Rabinovich, Alexander B.; Sytov, Victor N.

    2018-04-01

    On 27 June, a 1-2-m high wave struck the beaches of Odessa, the third largest Ukrainian city, and the neighbouring port-town Illichevsk (northwestern Black Sea). Throughout the day, prominent seiche oscillations were observed in several other ports of the Black Sea. Tsunamigenic synoptic conditions were found over the Black Sea, stretching from Romania in the west to the Crimean Peninsula in the east. Intense air pressure disturbances and convective thunderstorm clouds were associated with these conditions; right at the time of the event, a 1.5-hPa air pressure jump was recorded at Odessa and a few hours earlier in Romania. We have utilized a barotropic ocean numerical model to test two hypotheses: (1) a tsunami-like wave was generated by an air pressure disturbance propagating directly over Odessa ("Experiment 1"); (2) a tsunami-like wave was generated by an air pressure disturbance propagating offshore, approximately 200 km to the south of Odessa, and along the shelf break ("Experiment 2"). Both experiments decisively confirm the meteorological origin of the tsunami-like waves on the coast of Odessa and imply that intensified long ocean waves in this region were generated via the Proudman resonance mechanism while propagating over the northwestern Black Sea shelf. The "Odessa tsunami" of 27 June 2014 was identified as a "beach meteotsunami", similar to events regularly observed on the beaches of Florida, USA, but different from the "harbour meteotsunamis", which occurred 1-3 days earlier in Ciutadella (Baleares, Spain), Mazara del Vallo (Sicily, Italy) and Vela Luka (Croatia) in the Mediterranean Sea, despite that they were associated with the same atmospheric system moving over the Mediterranean/Black Sea region on 23-27 June 2014.

  10. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    Science.gov (United States)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite

  11. Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes

    Science.gov (United States)

    Zhang, F.; Li, C.

    2012-12-01

    Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;

  12. On The Source Of The 25 November 1941 - Atlantic Tsunami

    Science.gov (United States)

    Baptista, M. A.; Lisboa, F. B.; Miranda, J. M. A.

    2015-12-01

    In this study we analyze the tsunami recorded in the North Atlantic following the 25 November 1941 earthquake. The earthquake with a magnitude of 8.3, located on the Gloria Fault, was one of the largest strike slip events recorded. The Gloria fault is a 500 km long scarp in the North Atlantic Ocean between 19W and 24W known to be a segment of the Eurasia-Nubia plate boundary between Iberia and the Azores. Ten tide stations recorded the tsunami. Six in Portugal (mainland, Azores and Madeira Islands), two in Morocco, one in the United Kingdom and one in Spain (Tenerife-Canary Islands). The tsunami waves reached Azores and Madeira Islands less than one hour after the main shock. The tide station of Casablanca (in Morocco) recorded the maximum amplitude of 0.54 m. All amplitudes recorded are lower than 0.5 m but the tsunami reached Portugal mainland in high tide conditions where the sea flooded some streets We analyze the 25 November 1941 tsunami data using the tide-records in the coasts of Portugal, Spain, Morocco and UK to infer its source. The use of wavelet analysis to characterize the frequency content of the tide-records shows predominant periods of 9-13min e 18-22min. A preliminary location of the tsunami source location was obtained Backward Ray Tracing (BRT). The results of the BRT technique are compatible with the epicenter location of the earthquake. We compute empirical Green functions for the earthquake generation area, and use a linear shallow water inversion technique to compute the initial water displacement. The comparison between forward modeling with observations shows a fair agreement with available data. This work received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)"

  13. A contribution to the selection of tsunami human vulnerability indicators: conclusions from tsunami impacts in Sri Lanka and Thailand (2004), Samoa (2009), Chile (2010) and Japan (2011)

    Science.gov (United States)

    González-Riancho, P.; Aliaga, B.; Hettiarachchi, S.; González, M.; Medina, R.

    2015-07-01

    After several tsunami events with disastrous consequences around the world, coastal countries have realized the need to be prepared to minimize human mortality and damage to coastal infrastructures, livelihoods and resources. The international scientific community is striving to develop and validate methodologies for tsunami hazard and vulnerability and risk assessments. The vulnerability of coastal communities is usually assessed through the definition of sets of indicators based on previous literature and/or post-tsunami reports, as well as on the available data for the study site. The aim of this work is to validate, in light of past tsunami events, the indicators currently proposed by the scientific community to measure human vulnerability, to improve their definition and selection as well as to analyse their validity for different country development profiles. The events analysed are the 2011 Great Tohoku tsunami, the 2010 Chilean tsunami, the 2009 Samoan tsunami and the 2004 Indian Ocean tsunami. The results obtained highlight the need for considering both permanent and temporal human exposure, the former requiring some hazard numerical modelling, while the latter is related to site-specific livelihoods, cultural traditions and gender roles. The most vulnerable age groups are the elderly and children, the former having much higher mortality rates. Female mortality is not always higher than male mortality and not always related to dependency issues. Higher numbers of disabled people do not always translate into higher numbers of victims. Besides, it is clear that mortality is not only related to the characteristics of the population but also of the buildings. A high correlation has been found between the affected buildings and the number of victims, being very high for completely damaged buildings. Distance to the sea, building materials and expected water depths are important determining factors regarding the type of damage to buildings.

  14. Hurricane Humberto Aerial Photography: Rapid Response Imagery of the Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the surrounding regions after Hurricane Humberto made landfall. The aerial photography missions were conducted by the NOAA...

  15. Tsunami hazard maps of spanish coast at national scale from seismic sources

    Science.gov (United States)

    Aniel-Quiroga, Íñigo; González, Mauricio; Álvarez-Gómez, José Antonio; García, Pablo

    2017-04-01

    Tsunamis are a moderately frequent phenomenon in the NEAM (North East Atlantic and Mediterranean) region, and consequently in Spain, as historic and recent events have affected this area. I.e., the 1755 earthquake and tsunami affected the Spanish Atlantic coasts of Huelva and Cadiz and the 2003 Boumerdés earthquake triggered a tsunami that reached Balearic island coast in less than 45 minutes. The risk in Spain is real and, its population and tourism rate makes it vulnerable to this kind of catastrophic events. The Indian Ocean tsunami in 2004 and the tsunami in Japan in 2011 launched the worldwide development and application of tsunami risk reduction measures that have been taken as a priority in this field. On November 20th 2015 the directive of the Spanish civil protection agency on planning under the emergency of tsunami was presented. As part of the Spanish National Security strategy, this document specifies the structure of the action plans at different levels: National, regional and local. In this sense, the first step is the proper evaluation of the tsunami hazard at National scale. This work deals with the assessment of the tsunami hazard in Spain, by means of numerical simulations, focused on the elaboration of tsunami hazard maps at National scale. To get this, following a deterministic approach, the seismic structures whose earthquakes could generate the worst tsunamis affecting the coast of Spain have been compiled and characterized. These worst sources have been propagated numerically along a reconstructed bathymetry, built from the best resolution available data. This high-resolution bathymetry was joined with a 25-m resolution DTM, to generate continuous offshore-onshore space, allowing the calculation of the flooded areas prompted by each selected source. The numerical model applied for the calculation of the tsunami propagations was COMCOT. The maps resulting from the numerical simulations show not only the tsunami amplitude at coastal areas but

  16. Diatom assemblages as guides to flow conditions during the 2004 Indian Ocean tsunami at Phra Thong Island, Thailand

    Science.gov (United States)

    Sawai, Y.; Jankaew, K.; Martin, M. E.; Choowong, M.; Charoentitirat, T.; Prendergast, A.

    2008-12-01

    Diatom assemblages in the 2004 tsunami deposits of Phra Thong Island, Thailand represent flow conditions during the tsunami. The tsunami deposit consists of single or multiple graded beds. Diatom assemblages in the lowermost part of the deposit predominantly comprise beach and subtidal species. In the middle part of the deposit, the assemblages are dominated by marine plankton with increasing finer fractions. A mixed assemblage of freshwater, brackish, and marine species occupies the uppermost part of the deposit. Changes in flow conditions during the tsunami can explain these diatom assemblage variations. During fast current velocities, medium sand is deposited; only beach and subtidal diatoms that live attached to the sand can be incorporated into the tsunami deposit under these flow conditions. It is difficult for diatoms in suspension to settle out under fast current velocities. With decreasing current velocities, marine plankton can settle out of the water column .Finally, during the suspension stage (calm currents) between tsunami waves, the entrained freshwater, brackish, and marine species settle out with mud and plant trash. Fewer broken valves in the lowermost part of the deposit is probably a results of rapid entrainment, whilst selective breakage of marine plankton (Thalassionema nitzschioides, and Thalassiosira and Coscinodiscus spp.) in the middle part of the deposit probably results from abrasion by turbulent current before their deposition.

  17. The human impact of tsunamis: a historical review of events 1900-2009 and systematic literature review.

    Science.gov (United States)

    Doocy, Shannon; Daniels, Amy; Dick, Anna; Kirsch, Thomas D

    2013-04-16

    Introduction. Although rare, tsunamis have the potential to cause considerable loss of life and injury as well as widespread damage to the natural and built environments. The objectives of this review were to describe the impact of tsunamis on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of tsunamis were compiled using two methods, a historical review from 1900 to mid 2009 of tsunami events from multiple databases and a systematic literature review to October 2012 of publications. Analysis included descriptive statistics and bivariate tests for associations between tsunami mortality and characteristics using STATA 11. Findings. There were 255,195 deaths (range 252,619-275,784) and 48,462 injuries (range 45,466-51,457) as a result of tsunamis from 1900 to 2009. The majority of deaths (89%) and injuries reported during this time period were attributed to a single event -the 2004 Indian Ocean tsunami. Findings from the systematic literature review indicate that the primary cause of tsunami-related mortality is drowning, and that females, children and the elderly are at increased mortality risk. The few studies that reported on tsunami-related injury suggest that males and young adults are at increased injury-risk. Conclusions. Early warning systems may help mitigate tsunami-related loss of life.

  18. Second international tsunami workshop on the technical aspects of tsunami warning systems, tsunami analysis, preparedness, observation and instrumentation

    International Nuclear Information System (INIS)

    1989-01-01

    The Second Workshop on the Technical Aspects of Tsunami Warning Systems, Tsunami Analysis, Preparedness, Observation, and Instrumentation, sponsored and convened by the Intergovernmental Oceanographic Commission (IOC), was held on 1-2 August 1989, in the modern and attractive research town of Academgorodok, which is located 20 km south from downtown Novosibirsk, the capital of Siberia, USSR. The Program was arranged in eight major areas of interest covering the following: Opening and Introduction; Survey of Existing Tsunami Warning Centers - present status, results of work, plans for future development; Survey of some existing seismic data processing systems and future projects; Methods for fast evaluation of Tsunami potential and perspectives of their implementation; Tsunami data bases; Tsunami instrumentation and observations; Tsunami preparedness; and finally, a general discussion and adoption of recommendations. The Workshop presentations not only addressed the conceptual improvements that have been made, but focused on the inner workings of the Tsunami Warning System, as well, including computer applications, on-line processing and numerical modelling. Furthermore, presentations reported on progress has been made in the last few years on data telemetry, instrumentation and communications. Emphasis was placed on new concepts and their application into operational techniques that can result in improvements in data collection, rapid processing of the data, in analysis and prediction. A Summary Report on the Second International Tsunami Workshop, containing abstracted and annotated proceedings has been published as a separate report. The present Report is a Supplement to the Summary Report and contains the full text of the papers presented at this Workshop. Refs, figs and tabs

  19. A shallow water model for the propagation of tsunami via Lattice Boltzmann method

    Science.gov (United States)

    Zergani, Sara; Aziz, Z. A.; Viswanathan, K. K.

    2015-01-01

    An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory.

  20. A shallow water model for the propagation of tsunami via Lattice Boltzmann method

    International Nuclear Information System (INIS)

    Zergani, Sara; Aziz, Z A; Viswanathan, K K

    2015-01-01

    An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory

  1. 2012 U.S. Geological Survey Topographic Lidar: Northeast Atlantic Coast Post-Hurricane Sandy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an...

  2. Mathematical Modelling of Tsunami Propagation 1EZE, C. L.; 2UKO ...

    African Journals Online (AJOL)

    MICHAEL

    propagation of waves in the open ocean; (c) propagation of waves in shallow water and on the shore. The development of numerical models to describe tsunami wave generation, propagation and interaction with complicated topography such as bays or harbours and the resulting flooding has advanced to the stage where ...

  3. Tsunami Modeling and Prediction Using a Data Assimilation Technique with Kalman Filters

    Science.gov (United States)

    Barnier, G.; Dunham, E. M.

    2016-12-01

    Earthquake-induced tsunamis cause dramatic damages along densely populated coastlines. It is difficult to predict and anticipate tsunami waves in advance, but if the earthquake occurs far enough from the coast, there may be enough time to evacuate the zones at risk. Therefore, any real-time information on the tsunami wavefield (as it propagates towards the coast) is extremely valuable for early warning systems. After the 2011 Tohoku earthquake, a dense tsunami-monitoring network (S-net) based on cabled ocean-bottom pressure sensors has been deployed along the Pacific coast in Northeastern Japan. Maeda et al. (GRL, 2015) introduced a data assimilation technique to reconstruct the tsunami wavefield in real time by combining numerical solution of the shallow water wave equations with additional terms penalizing the numerical solution for not matching observations. The penalty or gain matrix is determined though optimal interpolation and is independent of time. Here we explore a related data assimilation approach using the Kalman filter method to evolve the gain matrix. While more computationally expensive, the Kalman filter approach potentially provides more accurate reconstructions. We test our method on a 1D tsunami model derived from the Kozdon and Dunham (EPSL, 2014) dynamic rupture simulations of the 2011 Tohoku earthquake. For appropriate choices of model and data covariance matrices, the method reconstructs the tsunami wavefield prior to wave arrival at the coast. We plan to compare the Kalman filter method to the optimal interpolation method developed by Maeda et al. (GRL, 2015) and then to implement the method for 2D.

  4. Building Damage and Business Continuity Management in the Event of Natural Hazards: Case Study of the 2004 Tsunami in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Masami Sugiura

    2013-01-01

    Full Text Available The Sumatra Earthquake and Indian Ocean Tsunami event on the 26 December 2004 has provided a unique and valuable opportunity to evaluate the performance of various structures, facilities and lifeline systems during the tsunami wave attacks. There are especially meaningful observations concerning the structural changes due to the tsunami forces, which open up a wide area of research to develop the mitigation procedure. The business restoration process of business companies in terms of buildings, facilities and lifelines have shown greater research interest. In this study, we investigated the restoration process of business sectors in East and South coastal region in Sri Lanka after the 2004 Indian Ocean Tsunami. A field survey was conducted in East and South coast of Sri Lanka, in order to study the affecting parameters to damage assessment in the restoration process of the business companies. The results of the questionnaire-based field survey are then compared with the statistical analysis results. Finally, the factors affecting the restoration process after the tsunami are identified. As a main conclusion, financial support could be the most important reason for delays in restoration. Moreover, it has been observed that the tsunami inundation level of higher than one meter may have had more effect concerning the damage to the structures and requires additional time for restoration than other areas.

  5. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  6. Building strategies for tsunami scenarios databases to be used in a tsunami early warning decision support system: an application to western Iberia

    Science.gov (United States)

    Tinti, S.; Armigliato, A.; Pagnoni, G.; Zaniboni, F.

    2012-04-01

    One of the most challenging goals that the geo-scientific community is facing after the catastrophic tsunami occurred on December 2004 in the Indian Ocean is to develop the so-called "next generation" Tsunami Early Warning Systems (TEWS). Indeed, the meaning of "next generation" does not refer to the aim of a TEWS, which obviously remains to detect whether a tsunami has been generated or not by a given source and, in the first case, to send proper warnings and/or alerts in a suitable time to all the countries and communities that can be affected by the tsunami. Instead, "next generation" identifies with the development of a Decision Support System (DSS) that, in general terms, relies on 1) an integrated set of seismic, geodetic and marine sensors whose objective is to detect and characterise the possible tsunamigenic sources and to monitor instrumentally the time and space evolution of the generated tsunami, 2) databases of pre-computed numerical tsunami scenarios to be suitably combined based on the information coming from the sensor environment and to be used to forecast the degree of exposition of different coastal places both in the near- and in the far-field, 3) a proper overall (software) system architecture. The EU-FP7 TRIDEC Project aims at developing such a DSS and has selected two test areas in the Euro-Mediterranean region, namely the western Iberian margin and the eastern Mediterranean (Turkish coasts). In this study, we discuss the strategies that are being adopted in TRIDEC to build the databases of pre-computed tsunami scenarios and we show some applications to the western Iberian margin. In particular, two different databases are being populated, called "Virtual Scenario Database" (VSDB) and "Matching Scenario Database" (MSDB). The VSDB contains detailed simulations of few selected earthquake-generated tsunamis. The cases provided by the members of the VSDB are computed "real events"; in other words, they represent the unknowns that the TRIDEC

  7. 2005 United States Army Corps of Engineers (USACE) Post-Hurricane Katrina Levee Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These topographic data were collected for the U.S. Army Corps of Engineers by a helicopter-mounted LiDAR sensor over the New Orleans Hurricane Protection Levee...

  8. The short-term effect on carbonate parameters from hurricanes Harvey, Irma, and Maria.

    Science.gov (United States)

    Jonsson, B. F.; Salisbury, J., II; Melendez Oyola, M.

    2017-12-01

    Tropical storms and hurricanes are events with potentially extreme impacts on ocean conditions. Strong winds generating vigorous vertical mixing and extensive precipitation affect both temperature and salinity in the mixed layer. The surface temperature, for example, decreased several degrees C in the wake of both hurricanes Irma and Maria. While it is clear that the physical state of the surface ocean is affected by hurricanes, how such storms affect carbonate system variability is still an open question. Changes in temperature and salinity combined with extreme winds create the potential for changes in solubility of pCO2, and large net fluxes of CO2 across the air-sea interface. A deepening of the mixed layer from wind-driven mixing may further affect the carbonate system, as sub-surface waters rich in dissolved inorganic carbon and nutrients are entrained to the surface. To examine these process, we evaluate simulated fields of temperature and salinity (from a 1/12° global data assimilated General Circulation Model), satellite ocean color and wind speed data within the context of a conceptual box model. Our model is compared to observed pCO2, wind speed, temperature and salinity data from buoyed assets that survived the storms. We address total CO2 fluxes, the relative effects temperature, salinity and biology on the carbonate system, and the time scales over which the system is "restored" to its initial state. We explore the connection between the magnitude of perturbation and the length of time it takes for the system to recover, and observe recovery over time scales lasting from days to weeks depending on the storm. Although not observed in these data, we speculate that depending on the buoyancy frequency, recovery elsewhere could take place over monthly time scales, raising the potential that hurricanes could exacerbate or alleviate environmental stresses on calcifying marine organisms.

  9. Hurricane Satellite (HURSAT) from International Satellite Cloud Climatology Project (ISCCP) B1, Version 6

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from derived International Satellite Cloud Climatology Project (ISCCP) B1 observations of tropical cyclones worldwide. The B1 data...

  10. Stochastic evaluation of tsunami inundation and quantitative estimating tsunami risk

    International Nuclear Information System (INIS)

    Fukutani, Yo; Anawat, Suppasri; Abe, Yoshi; Imamura, Fumihiko

    2014-01-01

    We performed a stochastic evaluation of tsunami inundation by using results of stochastic tsunami hazard assessment at the Soma port in the Tohoku coastal area. Eleven fault zones along the Japan trench were selected as earthquake faults generating tsunamis. The results show that estimated inundation area of return period about 1200 years had good agreement with that in the 2011 Tohoku earthquake. In addition, we evaluated quantitatively tsunami risk for four types of building; a reinforced concrete, a steel, a brick and a wood at the Soma port by combining the results of inundation assessment and tsunami fragility assessment. The results of quantitative estimating risk would reflect properly vulnerability of the buildings, that the wood building has high risk and the reinforced concrete building has low risk. (author)

  11. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  12. A culture of tsunami preparedness and applying knowledge from recent tsunamis affecting California

    Science.gov (United States)

    Miller, K. M.; Wilson, R. I.

    2012-12-01

    It is the mission of the California Tsunami Program to ensure public safety by protecting lives and property before, during, and after a potentially destructive or damaging tsunami. In order to achieve this goal, the state has sought first to use finite funding resources to identify and quantify the tsunami hazard using the best available scientific expertise, modeling, data, mapping, and methods at its disposal. Secondly, it has been vital to accurately inform the emergency response community of the nature of the threat by defining inundation zones prior to a tsunami event and leveraging technical expertise during ongoing tsunami alert notifications (specifically incoming wave heights, arrival times, and the dangers of strong currents). State scientists and emergency managers have been able to learn and apply both scientific and emergency response lessons from recent, distant-source tsunamis affecting coastal California (from Samoa in 2009, Chile in 2010, and Japan in 2011). Emergency managers must understand and plan in advance for specific actions and protocols for each alert notification level provided by the NOAA/NWS West Coast/Alaska Tsunami Warning Center. Finally the state program has provided education and outreach information via a multitude of delivery methods, activities, and end products while keeping the message simple, consistent, and focused. The goal is a culture of preparedness and understanding of what to do in the face of a tsunami by residents, visitors, and responsible government officials. We provide an update of results and findings made by the state program with support of the National Tsunami Hazard Mitigation Program through important collaboration with other U.S. States, Territories and agencies. In 2009 the California Emergency Management Agency (CalEMA) and the California Geological Survey (CGS) completed tsunami inundation modeling and mapping for all low-lying, populated coastal areas of California to assist local jurisdictions on

  13. U.S. Navy - U.S. Air Force Relationships 1970-2010. Revision

    Science.gov (United States)

    2011-06-01

    OK(1992) • Inherited Looking Glass National Command Authorities (NCA) airborne strategic command & control role from USAF (1998) • Multi-role E...begins JTF HOA begins OIF begins PSI begins Iraq ABOT attack Indian Ocean tsunami Hurricane Katrina Bali terror bombings Lebanon evacuation DPRK...II) ^*NA • Material • Rising overall defense budgets • Stability of service budget shares • Imposed ceilings on service budgets • Personal

  14. How C2 Goes Wrong (Briefing Chart)

    Science.gov (United States)

    2014-06-01

    Guardian/Pix/pictures/2012/12/19/1355903591995/Hillsborough-disaster-010.jpg Cases (3): Disaster/Emergency Response (Cont.) Columbine High School ... Shootings , April 20, 1999 Indian Ocean Tsunami, December 26, 2004 Hurricane Katrina, August 23 2005 Black Saturday Fires, Victoria, Australia, February...After bombing but before mass shootings • Citizen gave police a description of perpetrator, and vehicle license number • Officers did not pass the

  15. C2 Failures: A Taxonomy and Analysis

    Science.gov (United States)

    2013-06-01

    Columbine High School Shootings 1999, April 20 United States (Colorado) 13 deaths, 24 injuries [17...8217very unwieldy’ and ’internal coordinating meetings were a shambles.’" Huber et al. (2008), p.4 Columbine High School Shootings "…’Who’s in Charge... Columbine High School Shootings Response [17] Indian Ocean Tsunami Response [18] Hurricane Katrina Response [19] Black Saturday Fires Response

  16. Development of Parallel Code for the Alaska Tsunami Forecast Model

    Science.gov (United States)

    Bahng, B.; Knight, W. R.; Whitmore, P.

    2014-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.

  17. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    Science.gov (United States)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  18. Probabilistic Tsunami Hazard Analysis

    Science.gov (United States)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  19. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing

    Science.gov (United States)

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian

    2015-01-01

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833

  20. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    Science.gov (United States)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-01-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500–10,000 m3s−1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  1. Observations and Modeling of the 27 February 2010 Tsunami in Chile

    Science.gov (United States)

    Synolakis, C. E.; Fritz, H. M.; Petroff, C. M.; Catalan, P. A.; Cienfuegos, R.; Winckler, P.; Kalligeris, N.; Weiss, R.; Meneses, G.; Valderas-Bermejo, C.; Ebeling, C. W.; Papadopoulos, A.; Contreras, M.; Almar, R.; Dominguez, J. C.; Barrientos, S. E.

    2010-12-01

    On 27 February 2010, a magnitude Mw 8.8 earthquake occurred just off the coast of Chile, 100km N of Concepción, causing substantial damage and loss of life on Chile’s mainland and the Juan Fernandez archipelago. The tsunami accounts for 124 victims out of about 500 fatalities. Fortunately, ancestral knowledge from past tsunamis such as the giant 1960 event and tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. The majority of the tsunami victims were tourists staying overnight in low lying camp grounds along the coast. A multi-disciplinary ITST was deployed within days of the event to document flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, performance of the man-made infrastructure and impact on the natural environment per established protocols. The 3-25 March ITST covered an 800km stretch of coastline from Quintero to Mehuín in various subgroups the Pacific Islands of Santa María, Juan Fernández Archipelago, and Rapa Nui (Easter Island), while Mocha Island was surveyed 21-23 May, 2010. The collected survey data includes more than 400 tsunami runup and flow depth measurements. The tsunami impact peaked with a localized maximum runup of 29m on a coastal bluff at Constitución and 23 m on marine terraces on Mocha. A significant variation in tsunami impact was observed along Chile’s mainland both at local and regional scales. Inundation and damage also occurred several kilometers inland along rivers. Observations from the Chile tsunami are compared against the 2004 Indian Ocean tsunami. The tsunamigenic seafloor displacements were partially characterized based on coastal uplift measurements along a 100 km stretch of coastline between Caleta Chome and Punta Morguilla. More than 2 m vertical uplift were measured on Santa Maria Island. Coastal uplift measurements in Chile are compared with tectonic land level changes

  2. A POSSIBLE TSUNAMI IN THE LABRADOR SEA RELATED TO THE DRAINAGE OF GLACIAL LAKE AGASSIZ ~8400 YEARS B.P.

    Directory of Open Access Journals (Sweden)

    N. Nirupama

    2005-01-01

    Full Text Available For thousands of years, the thick Laurentide Ice Sheet covered a large part of northern North America, damming northward-draining rivers. As this ice retreated, large lakes formed along its margin. Glacial Lake Agassiz was the largest of these ice-marginal lakes, covering an area of >800,000 km2 (more than twice the size of the largest lake in the modern world, the Caspian Sea before it drained catastrophically into the Labrador Sea. Even before that, Lake Agassiz had periodically released large volumes of water into the ocean via the Great Lakes-St. Lawrence and the Athabasca-Mackenzie River systems. The last and largest of these outbursts released >150,000 km3 through Hudson Bay and Hudson Strait in 6-12 months; the average flux over that period was ~5 Sv (1 Sv = 1×106 m3s-1.When a volume of water this large is discharged into a coastal sea like the Labrador Sea, it may generate a surface flood wave or a tsunami if the water mass is large enough and introduced in a short time. To our knowledge no previous calculations have been made to estimate the potential impact of a flood burst on the generation of solitary waves. Using analogies of tsunamis generated by submarine landslides and ocean earthquakes, the amplitude of a Lake Agassiz generated tsunami is estimated to have been at least 2 m. Directionality considerations, as well as the effect of the Coriolis Force in the Northern Hemisphere, suggest that the resulting tsunami probably traveled 50-100 km along the west coast of the Labrador Sea, south of Hudson Strait where the outburst entered the ocean, before being dissipated. The erosional and depositional affects of historic and prehistoric tsunamis are present in the geological record, and provide guidance in seeking evidence for the Lake Agassiz flood burst and subsequent tsunami. This record may be found along the western coast of the Labrador Sea as well as along the shores of Hudson Strait.

  3. Strongest Tropical cyclones: 1980-2009: A 30-year collage of Hurricane Satellite (HURSAT) data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Strongest Tropical Cyclones: 1980-2009 poster - a 30-year collage of Hurricane Satellite (HURSAT) data. This poster depicts a series of 5 degree grids where within...

  4. Hurricane Ophelia Aerial Photography: High-Resolution Imagery of the North Carolina Coast After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the North Carolina coast after Hurricane Ophelia made landfall. The regions photographed range from Hubert, North Carolina to...

  5. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    Science.gov (United States)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  6. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  7. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  8. Hurricane Resource Reel

    Data.gov (United States)

    National Aeronautics and Space Administration — This Reel Includes the Following Sections TRT 50:10 Hurricane Overviews 1:02; Hurricane Arthur 15:07; Cyclone Pam 19:48; Typhoon Hagupit 21:27; Hurricane Bertha...

  9. Tsunami Disaster Response: A Case Analysis of the Information Society in Thailand

    Science.gov (United States)

    Aswalap, Supaluk Joy

    2009-01-01

    The December 2004 Indian Ocean Tsunami wrecked thousands of lives, homes, and livelihoods--losses that could have been avoided with timely and better information. A resource such as information is needed at a fundamental level much like water, food, medicine, or shelter. This dissertation examines the development of the Thai information…

  10. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    OpenAIRE

    Chen, Y; Randerson, JT; Morton, DC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the south...

  11. After Van Gogh: The geopolitics of the tsunami relief effort in the Netherlands

    NARCIS (Netherlands)

    Mamadouh, V.

    2008-01-01

    The paper examines the Dutch humanitarian response to the 2004 Indian Ocean earthquake through the lens of geopolitics. It analyses the ways geopolitical representations shape non-state collective action, in this case the relief effort to help victims of the tsunami of 26 December 2004. Drawing on

  12. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    Science.gov (United States)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  13. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration

    Science.gov (United States)

    Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J.

    2017-04-01

    It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves.

  14. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    Science.gov (United States)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit

  15. EAARL-B Coastal Topography--Eastern New Jersey, Hurricane Sandy, 2012: First Surface, Pre-Sandy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the New Jersey coastline, pre- and post-Hurricane Sandy (October...

  16. Real-time Inversion of Tsunami Source from GNSS Ground Deformation Observations and Tide Gauges.

    Science.gov (United States)

    Arcas, D.; Wei, Y.

    2017-12-01

    Over the last decade, the NOAA Center for Tsunami Research (NCTR) has developed an inversion technique to constrain tsunami sources based on the use of Green's functions in combination with data reported by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems. The system has consistently proven effective in providing highly accurate tsunami forecasts of wave amplitude throughout an entire basin. However, improvement is necessary in two critical areas: reduction of data latency for near-field tsunami predictions and reduction of maintenance cost of the network. Two types of sensors have been proposed as supplementary to the existing network of DART®systems: Global Navigation Satellite System (GNSS) stations and coastal tide gauges. The use GNSS stations to provide autonomous geo-spatial positioning at specific sites during an earthquake has been proposed in recent years to supplement the DART® array in tsunami source inversion. GNSS technology has the potential to provide substantial contributions in the two critical areas of DART® technology where improvement is most necessary. The present study uses GNSS ground displacement observations of the 2011 Tohoku-Oki earthquake in combination with NCTR operational database of Green's functions, to produce a rapid estimate of tsunami source based on GNSS observations alone. The solution is then compared with that obtained via DART® data inversion and the difficulties in obtaining an accurate GNSS-based solution are underlined. The study also identifies the set of conditions required for source inversion from coastal tide-gauges using the degree of nonlinearity of the signal as a primary criteria. We then proceed to identify the conditions and scenarios under which a particular gage could be used to invert a tsunami source.

  17. Analysis of storm-tide impacts from Hurricane Sandy in New York

    Science.gov (United States)

    Schubert, Christopher E.; Busciolano, Ronald J.; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    The hybrid cyclone-nor’easter known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-water-mark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment.

  18. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  19. How soon is too soon? When to cancel a warning after a damaging tsunami

    Science.gov (United States)

    Fryer, G. J.; Becker, N. C.; Wang, D.; Weinstein, S.; Richards, K.

    2012-12-01

    Following an earthquake a tsunami warning center (TWC) must determine if a coastal evacuation is necessary and must do so fast enough for the warning to be useful to affected coastlines. Once a damaging tsunami has arrived, the TWC must decide when to cancel its warning, a task often more challenging than the initial hazard assessment. Here we demonstrate the difficulties by investigating the impact of the Tohoku tsunami of 11 March 2011 on the State of Hawaii, which relies on the Pacific Tsunami Warning Center (PTWC) for tsunami hazard guidance. PTWC issued a Tsunami Watch for Hawaii at 10 March 1956 HST (10 minutes after the earthquake) and upgraded to a Tsunami Warning at 2131 HST. The tsunami arrived in Hawaii just before 0300 HST the next day, reached a maximum runup of over 5 m, and did roughly $50 million in damage throughout the state. PTWC downgraded the Warning to an Advisory at 0730 HST, and canceled the Advisory at 1140 HST. The timing of the downgrade was appropriate—by then it was safe for coastal residents to re-enter the evacuation zone but not to enter the water—but in retrospect PTWC cancelled its Advisory too early. By late morning tide gauges throughout the state had all registered maximum wave heights of 30 cm or less for a couple of hours, so PTWC cancelled. The Center was unaware, however, of ocean behavior at locations without instruments. At Ma'alaea Harbor on the Island of Maui, for example, sea level oscillations exposed the harbor bottom every 20 minutes for several hours after the cancellation. At Waikiki on Oahu, lifeguards rescued 25 swimmers (who had either ignored or were unaware of the cancellation message's caution about hazardous currents) in the hours after the cancellation and performed CPR on one near-drowning victim. Fortunately, there were no deaths. Because of dangerous surges, ocean safety officials closed Hanauma Bay, a popular snorkeling spot on Oahu, for a full day after the tsunami hit. They reassessed the bay the

  20. Correlation of Fault Size, Moment Magnitude, and Tsunami Height to Proved Paleo-tsunami Data in Sulawesi Indonesia

    Science.gov (United States)

    Julius, A. M.; Pribadi, S.

    2016-02-01

    Sulawesi (Indonesia) island is located in the meeting of three large plates i.e. Indo-Australia, Pacific, and Eurasia. This configuration surely make high risk on tsunami by earthquake and by sea floor landslide. NOAA and Russia Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determine of correlation between all tsunami parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights in this study sourced from NOAA and Russia Tsunami database and completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between fault area, moment magnitude, and tsunami height by simple regression in Sulawesi. The step of this research are data collect, processing, and regression analysis. Result shows very good correlation, each moment magnitude, tsunami heights, and fault parameter i.e. long, wide, and slip are correlate linier. In increasing of fault area, the tsunami height and moment magnitude value also increase. In increasing of moment magnitude, tsunami height also increase. This analysis is enough to proved all Sulawesi tsunami parameter catalog in NOAA, Russia Tsunami Laboratory and PTWC are correct. Keyword: tsunami, magnitude, height, fault