WorldWideScience

Sample records for ocean carbon flux

  1. Anthropogenic perturbation of the carbon fluxes from land to ocean

    KAUST Repository

    Regnier, Pierre

    2013-06-09

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr -1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr -1) or sequestered in sediments (∼0.5 Pg C yr -1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ∼0.1 Pg C yr -1 to the open ocean. According to our analysis, terrestrial ecosystems store ∼0.9 Pg C yr -1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr -1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

  2. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Gaye, B.

    Mass fluxes of diatom opal, planktonic foraminifera carbonate and coccolithophorid carbonate were measured with time-series sediment traps at six sites in the Arabian Sea, Bay of Bengal and Equatorial Indian Ocean (EIOT). The above fluxes were...

  3. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Science.gov (United States)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  4. Impact of climatic change on ocean carbon fluxes. Role of the decadal variability

    International Nuclear Information System (INIS)

    Seferian, Roland

    2013-01-01

    Since the industrial revolution, oceans have absorbed roughly one quarter of the anthropogenic emissions of CO 2 , slowing down climate change. The evolution of the ocean carbon sink, paralleled to the anthropogenic CO 2 emissions, is ruled by the CO 2 as well as climate. Influence of atmospheric CO 2 in the recent evolution of the ocean carbon sink is well understood whilst this is not the case for the climate's one. Indeed, some authors claim that the recent variations of the ocean CO 2 sink can be attributed to climate change, whereas some others suggest that these latter are controlled by a decadal variability, which is poorly understood. In this thesis, we address question relative to the role of the decadal variability of the ocean carbon fluxes through the mean of numerical modeling. On one hand, we have demonstrated that ocean carbon fluxes exhibit decadal fluctuations within the high latitudes oceans. These fluctuations displays modes of 10 to 50-year long which account for 20 to 40% of the year-to-year variability. Thanks to Detection and Attribution methods applied to RECCAP project's reconstructions (1960-2005), we have then assessed whether the occurrence of fluctuations at decadal time scale could hamper the detection of the climate contribution to the recent evolution of ocean carbon fluxes. We have shown that the climate contribution is indeed not detected in the high latitude oceans due to the presence of decadal mode of variability. In the low latitude oceans instead, the weaker fluctuations of ocean carbon fluxes at decadal time scale favor the detection of climate influence in the recent variations of the CO 2 fluxes. (author) [fr

  5. Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes

    Directory of Open Access Journals (Sweden)

    R. Séférian

    2013-04-01

    Full Text Available Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear whether detected changes over the recent time period can be attributed to anthropogenic climate change or rather to natural climate variability (internal plus naturally forced variability alone. One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000 yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20 yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterised by decadal to multi-decadal modes of variability (10 to 50 yr that account for 20–40% of the interannual regional variance. These modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.

  6. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2011-02-01

    Full Text Available The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  7. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    NARCIS (Netherlands)

    Spilling, K.; Schulz, K.G.; Paul, A.J.; Boxhammer, T.; Achterberg, E.P.; Hornick, T.; Lischka, S.; Stuhr, A.; Bermúdez, R.; Czerny, J.; Crawfurd, K.; Brussaard, C.P.D.; Grossart, H.-P.; Riebesell, U.

    2016-01-01

    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging

  8. Anthropogenic perturbation of the carbon fluxes from land to ocean

    KAUST Repository

    Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; Mackenzie, Fred T.; Gruber, Nicolas; Janssens, Ivan A.; Laruelle, Goulven G.; Lauerwald, Ronny; Luyssaert, Sebastiaan; Andersson, Andreas J.; Arndt, Sandra; Arnosti, Carol; Borges, Alberto V.; Dale, Andrew W.; Gallego-Sala, Angela; Goddé ris, Yves; Goossens, Nicolas; Hartmann, Jens; Heinze, Christoph; Ilyina, Tatiana; Joos, Fortunat; LaRowe, Douglas E.; Leifeld, Jens; Meysman, Filip J. R.; Munhoven, Guy; Raymond, Peter A.; Spahni, Renato; Suntharalingam, Parvadha; Thullner, Martin

    2013-01-01

    to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr -1) or sequestered in sediments (∼0.5 Pg C yr -1) along the continuum of freshwater bodies

  9. Southern Ocean Carbon Dioxide and Oxygen Fluxes Detected by SOCCOM Biogeochemical Profiling Floats

    Science.gov (United States)

    Sarmiento, J. L.; Bushinksy, S.; Gray, A. R.

    2016-12-01

    The Southern Ocean is known to play an important role in the global carbon cycle, yet historically our measurements of this remote region have been sparse and heavily biased towards summer. Here we present new estimates of air-sea fluxes of carbon dioxide and oxygen calculated with measurements from autonomous biogeochemical profiling floats. At high latitudes in and southward of the Antarctic Circumpolar Current, we find a significant flux of CO2 from the ocean to the atmosphere during 2014-2016, which is particularly enhanced during winter months. These results suggest that previous estimates may be biased towards stronger Southern Ocean CO2 uptake due to undersampling in winter. We examine various implications of having a source of CO2 that is higher than previous estimates. We also find that CO2:O2 flux ratios north of the Subtropical Front are positive, consistent with the fluxes being driven by changes in solubility, while south of the Polar Front biological processes and upwelling of deep water combine to produce a negative CO2:O2 flux ratio.

  10. Carbon and nitrogen fluxes in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Naik, H.; DeSouza, W.; Narvekar, P.V.; Paropkari, A.L.; Bange, H.W.

    , the reverse is probably true for the burial. Notwithstanding these uncertainties, it seems reasonable to conclude that the POC delivery by rivers substantially exceeds sedimentary organic carbon burial in the NEIO. In spite of the higher sedimentation... in the NEIO has been reported to range from 0.3 to 2.5 (average 1.4) Tg N yr -1 (Schäfer et al., 1993). This is slightly higher than the DIN delivery by rivers. Rate of N 2 -fixation in the NEIO has not been measured so far. However, it is probably much...

  11. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    OpenAIRE

    A. Gnanadesikan; I. Marinov

    2010-01-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By ...

  12. Quantifying and predicting historical and future patterns of carbon fluxes from the North American Continent to Ocean

    Science.gov (United States)

    Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.

    2017-12-01

    Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.

  13. Impact of sinking carbon flux on accumulation of deep-ocean carbon in the Northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; Saino, T.

    calculations using 14 C activity arises from the separation of natural 90 Biogeochemistry (2007) 82:89–100 123 and bomb-produced 14 C. Rubin and Key (2002) proposed the potential alkalinity method to achieve the separation. However, they found anomalous scatter... in the relationship between 14 C and potential alkalinity caused by data from the northern Indian Ocean (north of equator) and attributed that to the possible transportation of bomb radiocarbon, as carbonate particles from the surface ocean to the sediment...

  14. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    International Nuclear Information System (INIS)

    Omar, Abdirahman M.

    2003-01-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally, changes

  15. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.

    2003-07-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  16. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  17. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands)

    Science.gov (United States)

    Ariza, A.; Garijo, J. C.; Landeira, J. M.; Bordes, F.; Hernández-León, S.

    2015-05-01

    Diel Vertical Migration (DVM) in marine ecosystems is performed by zooplankton and micronekton, promoting a poorly accounted export of carbon to the deep ocean. Major efforts have been made to estimate carbon export due to gravitational flux and to a lesser extent, to migrant zooplankton. However, migratory flux by micronekton has been largely neglected in this context, due to its time-consuming and difficult sampling. In this paper, we evaluated gravitational and migratory flux due to the respiration of zooplankton and micronekton in the northeast subtropical Atlantic Ocean (Canary Islands). Migratory flux was addressed by calculating the biomass of migrating components and measuring the electron transfer system (ETS) activity in zooplankton and dominant species representing micronekton (Euphausia gibboides, Sergia splendens and Lobianchia dofleini). Our results showed similar biomass in both components. The main taxa contributing to DVM within zooplankton were juvenile euphausiids, whereas micronekton were mainly dominated by fish, followed by adult euphausiids and decapods. The contribution to respiratory flux of zooplankton (3.4 ± 1.9 mg C m-2 d-1) was similar to that of micronekton (2.9 ± 1.0 mg C m-2 d-1). In summary, respiratory flux accounted for 53% (range 23-71) of the gravitational flux measured at 150 m depth (11.9 ± 5.8 mg C m-2 d-1). However, based on larger migratory ranges and gut clearance rates, micronekton are expected to be the dominant component that contributes to carbon export in deeper waters. Micronekton estimates in this paper as well as those in existing literature, although variable due to regional differences and difficulties in calculating their biomass, suggest that carbon fluxes driven by this community are important for future models of the biological carbon pump.

  18. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    Science.gov (United States)

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  19. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations.

    Science.gov (United States)

    Egea, Luis G; Jiménez-Ramos, Rocío; Hernández, Ignacio; Bouma, Tjeerd J; Brun, Fernando G

    2018-01-01

    Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC) in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important implications for the

  20. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC fluxes in seagrass populations.

    Directory of Open Access Journals (Sweden)

    Luis G Egea

    Full Text Available Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. For example, the impact of higher CO2 and different hydrodynamic regimes on seagrass performance remains unknown. We studied the effects of OA under different current velocities on productivity of the seagrass Zostera noltei, using changes in dissolved oxygen as a proxy for the seagrass carbon metabolism, and release of dissolved organic carbon (DOC in a four-week experiment using an open-water outdoor mesocosm. Under current pH conditions, increasing current velocity had a positive effect on productivity, but this depended on shoot density. However, this positive effect of current velocity disappeared under OA conditions. OA conditions led to a significant increase in gross production rate and respiration, suggesting that Z. noltei is carbon-limited under the current inorganic carbon concentration of seawater. In addition, an increase in non-structural carbohydrates was found, which may lead to better growing conditions and higher resilience in seagrasses subjected to environmental stress. Regarding DOC flux, a direct and positive relationship was found between current velocity and DOC release, both under current pH and OA conditions. We conclude that OA and high current velocity may lead to favourable growth scenarios for Z. noltei populations, increasing their productivity, non-structural carbohydrate concentrations and DOC release. Our results add new dimensions to predictions on how seagrass ecosystems will respond to climate change, with important

  1. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    Science.gov (United States)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57

  2. Regionally variable chemistry, auto-heterotrophic coupling and vertical carbon flux in the northwestern Indian Ocean: A case study for biochemical pump

    Digital Repository Service at National Institute of Oceanography (India)

    Rajendran, A; Biddanda, B.

    Large scale regional differences in surface productivity as well as water column chemistry exist in the Arabian Sea environment in north-south direction. The available primary productivity data are incorporated into existing global ocean carbon flux...

  3. Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux

    Science.gov (United States)

    Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer

    2013-06-01

    The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.

  4. Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean

    Science.gov (United States)

    Fischer, G.; Karakaş, G.

    2009-01-01

    The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling

  5. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, May 6-8, 2008

    Science.gov (United States)

    Robbins, L.L.; Coble, P.G.; Clayton, T.D.; Cai, W.J.

    2009-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. In May 2008, the Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico was held in St. Petersburg, FL, to address the information gaps of carbon fluxes associated with the Gulf of Mexico and to offer recommendations to guide future research. The meeting was attended by over 90 participants from over 50 U.S. and Mexican institutions and agencies. The Ocean Carbon and Biogeochemistry program (OCB; http://www.us-ocb.org/) sponsored this workshop with support from the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the University of South Florida. The goal of

  6. Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: A process-based modeling study

    Science.gov (United States)

    Tian, Hanqin; Yang, Qichun; Najjar, Raymond G.; Ren, Wei; Friedrichs, Marjorie A. M.; Hopkinson, Charles S.; Pan, Shufen

    2015-04-01

    The magnitude, spatiotemporal patterns, and controls of carbon flux from land to the ocean remain uncertain. Here we applied a process-based land model with explicit representation of carbon processes in streams and rivers to examine how changes in climate, land conversion, management practices, atmospheric CO2, and nitrogen deposition affected carbon fluxes from eastern North America to the Atlantic Ocean, specifically the Gulf of Maine (GOM), Middle Atlantic Bight (MAB), and South Atlantic Bight (SAB). Our simulation results indicate that the mean annual fluxes (±1 standard deviation) of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the past three decades (1980-2008) were 2.37 ± 0.60, 1.06 ± 0.20, and 3.57 ± 0.72 Tg C yr-1, respectively. Carbon export demonstrated substantial spatial and temporal variability. For the region as a whole, the model simulates a significant decrease in riverine DIC fluxes from 1901 to 2008, whereas there were no significant trends in DOC or POC fluxes. In the SAB, however, there were significant declines in the fluxes of all three forms of carbon, and in the MAB subregion, DIC and POC fluxes declined significantly. The only significant trend in the GOM subregion was an increase in DIC flux. Climate variability was the primary cause of interannual variability in carbon export. Land conversion from cropland to forest was the primary factor contributing to decreases in all forms of C export, while nitrogen deposition and fertilizer use, as well as atmospheric CO2 increases, tended to increase DOC, POC, and DIC fluxes.

  7. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  8. Environmental controls on the seasonal carbon dioxide fluxes in the northeastern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Maya, M.V.; Shetye, S.; PrasannaKumar, S.; Fernandes, V.; Paul, J.; Ramaiah, N.

    the JGOFS protocol. Total carbon dioxide was determined by Coulometry using UIC Inc. instruments coulometer. pH on free ion (pHf) and total scale (pHT) was estimated by cresol red spectrophotometry12. Precision of analyses for carbon dioxide...

  9. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux

    Science.gov (United States)

    Pakhomov, E. A.; Froneman, P. W.; Perissinotto, R.

    Available data on the spatial distribution and feeding ecophysiology of Antarctic krill, Euphausia superba, and the tunicate, Salpa thompsoni, in the Southern Ocean are summarized in this study. Antarctic krill and salps generally display pronounced spatial segregation at all spatial scales. This appears to be the result of a clear biotopical separation of these key species in the Antarctic pelagic food web. Krill and salps are found in different water masses or water mass modifications, which are separated by primary or secondary frontal features. On the small-scale (salps are usually restricted to the specific water parcels, or are well segregated vertically. Krill and salp grazing rates estimated using the in situ gut fluorescence technique are among the highest recorded in the Antarctic pelagic food web. Although krill and salps at times may remove the entire daily primary production, generally their grazing impact is moderate (⩽50% of primary production). The regional ecological consequences of years of high salp densities may be dramatic. If the warming trend, which is observed around the Antarctic Peninsula and in the Southern Ocean, continues, salps may become a more prominent player in the trophic structure of the Antarctic marine ecosystem. This likely would be coupled with a dramatic decrease in krill productivity, because of a parallel decrease in the spatial extension of the krill biotope. The high Antarctic regions, particularly the Marginal Ice Zone, have, however, effective physiological mechanisms that may provide protection against the salp invasion.

  10. Multi-proxy approach (Thorium-234, excess Barium) of export and remineralisation fluxes of carbon and biogenic elements associated with the oceanic biological pump

    International Nuclear Information System (INIS)

    Lemaitre, Nolwenn

    2017-01-01

    The main objective of this thesis is to improve our understanding of the different controls that affect the oceanic biological carbon pump. Particulate export and remineralisation fluxes were investigated using the thorium-234 ( 234 Th) and biogenic barium (Baxs) proxies. In the North Atlantic, the highest particulate organic carbon (POC) export fluxes were associated to biogenic (biogenic silica or calcium carbonate) and lithogenic minerals, ballasting the particles. Export efficiency was generally low (≤ 10%) and inversely related to primary production, highlighting a phase lag between production and export. The highest transfer efficiencies, i.e. the fraction of POC that reached 400 m, were driven by sinking particles ballasted by calcite or lithogenic minerals. The regional variation of meso-pelagic remineralisation was attributed to changes in bloom intensity, phytoplankton cell size, community structure and physical forcing (down-welling). Carbon remineralisation balanced, or even exceeded, POC export, highlighting the impact of meso-pelagic remineralisation on the biological pump with a near-zero, deep carbon sequestration for spring 2014. Export of trace metals appeared strongly influenced by lithogenic material advected from the margins. However, at open ocean stations not influenced by lithogenic matter, trace metal export rather depended on phytoplankton activity and biomass. A last part of this work focused on export of biogenic silica, particulate nitrogen and iron near the Kerguelen Island. This area is characterized by a natural iron-fertilization that increases export fluxes. Inside the fertilized area, flux variability is related to phytoplankton community composition. (author)

  11. Fluxes of dissolved organic carbon and nitrogen to the northern Indian Ocean from the Indian monsoonal rivers

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, M.S.; Prasad, V.R.; Sarma, V.V.S.S.; Reddy, N.P.C.; Hemalatha, K.P.J.; Rao, Y.V.

    normalized fluxes of DOC and DON were found to be higher in the estuaries located in the southwestern than the estuaries from other regions of India. It was attributed to relatively higher soil organic carbon, biomass carbon, and heavy rainfall in catchment...

  12. Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-04-01

    Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

  13. Upper ocean carbon flux determined by the 234Th approach and sediment traps using size-fractionated POC and 234Th data from the Golf of Mexico

    International Nuclear Information System (INIS)

    Hung, Chin-Chang; Roberts, Kimberly A.; Santschi, Peter H.; Guo, Laodong

    2004-01-01

    Size-fractionated particulate 234 Th and particulate organic carbon (POC) fluxes were measured in the Gulf of Mexico during 2000 and 2001 in order to obtain a better estimation of upper ocean organic carbon export out of the euphotic zone within cold core and warm core rings, and to assess the relative merit of sediment trap and POC/ 234 Th methods. In 2000, the flux of POC measured by sediment traps at 120 m ranged from 60 to 148 mg C m -2 d -1 , while 234 Th-derived POC fluxes in large particles (>53 μm) varied from 18 to 61 mg C m -2 d -1 using the ratio of POC/ 234 Th at 120 m, and from 51 to 163 mg C m -2 d -1 using an average ratio of POC/ 234 Th for the upper 120 m water column. In 2001, the fluxes of POC measured by traps deployed at 120 m water depth ranged from 39 to 48 mg C m -2 d -1 , while the 234 Th-derived POC fluxes in large particles (>53 μm) varied from 7 to 37 mg C m -2 d -1 using a ratio of POC/ 234 Th at 120 m, and from 37 to 45 mg C m -2 d -1 using an average ratio of POC/ 234 Th within the 0-120 m interval. The results show that POC fluxes estimated by the 234 Th method using the average ratio of POC/ 234 Th within the euphotic zone are similar to those measured by sediment traps. Furthermore, the results demonstrate that the variability in POC export fluxes estimated by the 234 Th/ 238 U disequilibrium approach is strongly related to the ratio of POC/ 234 Th that is taken, and for which we have independent evidence that it may be controlled by the chemical composition of the suspended particles. The results also reveal that using POC/ 234 Th ratios in small particles may result in an estimate of the POC export flux that is considerably higher than when using POC/ 234 Th ratios in large particles (>53 μm). The POC flux calculated from ratios in large particles is, however, more comparable to the POC flux determined directly by sediment traps, but both of these estimates are much lower than that determined by using the POC/ 234 Th ratios in

  14. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    Science.gov (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  15. Seasonality and flux estimates of dissolved organic carbon in tidal wetlands and estuaries in the U.S. Mid- Atlantic Bight and Gulf of Mexico from ocean color

    Science.gov (United States)

    Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.

    2016-02-01

    Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.

  16. In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific

    Science.gov (United States)

    Trull, T. W.; Bray, S. G.; Buesseler, K. O.; Lamborg, C. H.; Manganini, S.; Moy, C.; Valdes, J.

    2008-07-01

    Among the parameters affecting carbon transfer to the ocean interior, particle sinking rates vary three orders of magnitude and thus more than primary production, f-ratios, or particle carbon contents [e.g., Boyd, P.W., Trull, T.W., 2006. Understanding the export of marine biogenic particles: is there consensus? Progress in Oceanography 4, 276-312, doi:10.1016/j.pocean.2006.10.007]. Very few data have been obtained from the mesopelagic zone where the majority of carbon remineralization occurs and the attenuation of the sinking flux is determined. Here, we report sinking rates from ˜300 m depth for the subtropical (station ALOHA, June 2004) and subarctic (station K2, July 2005) North Pacific Ocean, obtained from short (6.5 day) deployments of an indented rotating sphere (IRS) sediment trap operating as an in situ settling column [Peterson, M.L., Wakeham, S.G., Lee, C., Askea, M.A., Miquel, J.C., 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnology and Oceanography Methods 3, 520-532] to separate the flux into 11 sinking-rate fractions ranging from >820 to >2 m d -1 that are collected by a carousel for further analysis. Functioning of the IRS trap was tested using a novel programming sequence to check that all particles have cleared the settling column prior to the next delivery of particles by the 6-hourly rotation cycle of the IRS. There was some evidence (from the flux distribution among the cups and photomicroscopy of the collected particles) that very slow-sinking particles may have been under-collected because they were unable to penetrate the brine-filled collection cups, but good evidence for appropriate collection of fast-settling fractions. Approximately 50% of the particulate organic carbon (POC) flux was sinking at greater than 100 m d -1 at both stations. At ALOHA, more than 15% of the POC flux sank at >820 m d -1, but low fluxes make this uncertain, and precluded resolution of particles

  17. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  18. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  19. Land-ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47-50°S)

    Science.gov (United States)

    González, H. E.; Castro, L. R.; Daneri, G.; Iriarte, J. L.; Silva, N.; Tapia, F.; Teca, E.; Vargas, C. A.

    2013-12-01

    Patagonian fjord systems, and in particular the fjords and channels associated with the Baker/Pascua Rivers, are currently under conspicuous natural and anthropogenic perturbations. These systems display very high variability, where limnetic and oceanic features overlap generating strong vertical and horizontal physicochemical gradients. The CIMAR 14-Fiordos cruise was conducted in the Chilean fjords located between 47° and 50°S during the spring (October-November) of 2008. The main objectives were to study vertical and horizontal gradients in physical, chemical and biological characteristics of the water column, and to assess plankton dynamics and trophic carbon fluxes in the fjords and channels of central-south Patagonia. The water column was strongly stratified, with a pycnocline at ca. 20 m depth separating a surface layer of silicic acid-rich freshwater discharged by rivers, from the underlying nitrate- and orthophosphate-rich Subantarctic waters. The outflows from the Baker and Pascua Rivers, which range annually between 500 and 1500 m3 s-1, generate the strong land-ocean gradient in salinity (1-32 psu) and inorganic nutrient concentrations (2-8 and 2-24 μM in nitrate and silicic-acid, respectively) we observed along the Baker Fjord. The POC:chl-a ratio fluctuated from 1087 near the fjord’s head to 175 at its oceanic end in the Penas Gulf. This change was mainly due to an increase in diatom dominance and a concurrent decrease in allochthonous POC towards the ocean. Depth-integrated net primary production (NPP) and bacterial secondary production (BSP) fluctuated between 49 and 1215 and 36 and 150 mg C m-2 d-1, respectively, with higher rates in oceanic waters. At a time series station located close to the Baker River mouth, the average NPP was lower (average 360 mg C m-2 d-1) than at more oceanic stations (average 1063 mg C m-2 d-1), and numerically dominated (45%) by the picoplankton (food web is the main trophic pathway in these environments.

  20. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict

    International Nuclear Information System (INIS)

    Broecker, W.S.; Ledwell, J.R.; Takahashi, T.; Weiss, R.; Merlivat, L.; Memery, L.; Tsung-Hung Peng; Jahne, B.; Otto Munnich, K.

    1986-01-01

    Eddy correlation measurements over the ocean give CO 2 fluxes an order of magnitude or more larger than expected from mass balance or more larger than expected from mass balance measurements using radiocarbon and radon 222. In particular, Smith and Jones (1985) reported large upward and downward fluxes in a surf zone at supersaturations of 15% and attributed them to the equilibration of bubbles at elevated pressures. They argue that even on the open ocean such bubble injection may create steady state CO 2 supersaturations and that inferences of fluxes based on air-sea pCO 2 differences and radon exchange velocities must be made with caution. We defend the global average CO 2 exchange rate determined by three independent radioisotopic means: prebomb radiocarbon inventories; global surveys of mixed layer radon deficits; and oceanic uptake of bomb-produced radiocarbon. We argue that laboratory and lake data do not lead one to expect fluxes as large as reported from the eddy correlation technique; that the radon method of determining exchange velocities is indeed useful for estimating CO 2 fluxes; that supersaturations of CO 2 due to bubble injection on the open ocean are negligible; that the hypothesis that Smith and Jones advance cannot account for the fluxes that they report; and that the pCO 2 values reported by Smith and Jones are likely to be systematically much too high. The CO 2 fluxes for the ocean measured to data by the micrometeorological method can be reconciled with neither the observed concentrations of radioisotopes of radon and carbon in the oceans nor the tracer experiments carried out in lakes and in wind/wave tunnels

  1. Determination of ocean/atmosphere carbon dioxide flux within OMP survey area. Final technical progress report, June, 1 1993--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, D.W.; Takahashi, T.

    1995-10-17

    Determination of the net flux of atmospheric CO{sub 2} with the ocean at the continental margin is one of the three principal goals of the Ocean Margins Program. The work reported here represents the initial phase of that determination, as carried out during two cruises within the OMP survey area in 1993 and 1994. The interannual variability was addressed through the occupation of hydrographic stations of nearly identical location one year apart, while the spatial variability in the air-sea PCO{sub 2} difference (ApCO{sub 2}), representing the driving force for net CO{sub 2} flux, was addressed during a survey of much of the continental shelf between the survey area off North Carolina and Georges Bank. Not addressed by the initial cruises was the seasonal variability of the net CO{sub 2} flux, since both scoping cruises were mounted during the same season of the respective years.

  2. A Synoptic Assessment of the Amazon River-Ocean Continuum during Boreal Autumn: From Physics to Plankton Communities and Carbon Flux

    Directory of Open Access Journals (Sweden)

    Moacyr Araujo

    2017-07-01

    Full Text Available The Amazon generates the world's largest offshore river plume, which covers extensive areas of the tropical Atlantic. The data and samples in this study were obtained during the oceanographic cruise Camadas Finas III in October 2012 along the Amazon River-Ocean Continuum (AROC. The cruise occurred during boreal autumn, when the river plume reaches its maximum eastward extent. In this study, we examine the links between physics, biogeochemistry and plankton community structure along the AROC. Hydrographic results showed very different conditions, ranging from shallow well-mixed coastal waters to offshore areas, where low salinity Amazonian waters mix with open ocean waters. Nutrients, mainly NO3− and SiO2−, were highly depleted in coastal regions, and the magnitude of primary production was greater than that of respiration (negative apparent oxygen utilization. In terms of phytoplankton groups, diatoms dominated the region from the river mouth to the edge of the area affected by the North Brazil Current (NBC retroflection (with chlorophyll a concentrations ranging from 0.02 to 0.94 mg m−3. The North Equatorial Counter Current (NECC region, east of retroflection, is fully oligotrophic and the most representative groups are Cyanobacteria and dinoflagellates. Additionally, in this region, blooms of cyanophyte species were associated with diatoms and Mesozooplankton (copepods. A total of 178 zooplankton taxa were observed in this area, with Copepoda being the most diverse and abundant group. Two different zooplankton communities were identified: a low-diversity, high-abundance coastal community and a high-diversity, low-abundance oceanic community offshore. The CO2 fugacity (fCO2sw, calculated from total alkalinity (1,450 < TA < 2,394 μmol kg−1 and dissolved inorganic carbon (1,303 < DIC < 2,062 μmol kg−1 measurements, confirms that the Amazon River plume is a sink of atmospheric CO2 in areas with salinities <35 psu, whereas, in regions

  3. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    Science.gov (United States)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  4. The reactivity of plant-derived organic matter in the Amazon River and implications on aquatic carbon fluxes to the atmosphere and ocean

    Science.gov (United States)

    Ward, N. D.; Sawakuchi, H. O.; Keil, R. G.; da Silva, R.; Brito, D. C.; Cunha, A. C.; Gagne-Maynard, W.; de Matos, A.; Neu, V.; Bianchi, T. S.; Krusche, A. V.; Richey, J. E.

    2014-12-01

    The remineralization of terrestrially-derived organic carbon (OC), along with direct CO2 inputs from autochthonous plant respiration in floodplains, results in an evasive CO2 gas flux from inland waters that is an order of magnitude greater than the flux of OC to the ocean. This phenomenon is enhanced in tropical systems as a result of elevated temperatures and productivity relative to temperate and high-latitude counterparts. Likewise, this balance is suspected to be influenced by increasing global temperatures and alterations to hydrologic and land use regimes. Here, we assess the reactivity of terrestrial and aquatic plant-derived OM near the mouth of the Amazon River. The stable isotopic signature of CO2 (δ13CO2) was monitored in real-time during incubation experiments performed in a closed system gas phase equilibration chamber connected to a Picarro Cavity Ring-Down Spectrometer. Incubations were performed under natural conditions and with the injection of isotopically labeled terrestrial macromolecules (e.g. lignin) and algal fatty acids. Under natural conditions, δ13CO2 became more depleted, shifting from roughly -23‰ to -27‰ on average, suggesting that C3 terrestrial vegetation was the primary fuel for CO2 production. Upon separate injections of 13C-labeled lignin and algal fatty acids, δ13CO2 increased near instantaneously and peaked in under 12 hours. Roughly 75% of the labeled lignin was converted to CO2 at the peak in δ13CO2, whereas less than 20% of the algal fatty acids were converted to CO2 (preliminary data subject to change). The rate of labeled-OC remineralization was enhanced by the addition of a highly labile substrate (e.g. ethyl acetate). Likewise, constant measurements of O2/pCO2 along the lower river revealed anomalously high CO2 and low O2 levels near the confluence of the mainstem and large tributaries with high algal productivity. These collective results suggest that the remineralization of complex terrestrial macromolecules is

  5. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  6. Global Ocean Carbon and Biogeochemistry Coordination

    Science.gov (United States)

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur

    2016-04-01

    The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the

  7. Ocean carbon uptake and storage

    International Nuclear Information System (INIS)

    Tilbrook, Bronte

    2007-01-01

    Full text: The ocean contains about 95% of the carbon in the atmosphere, ocean and land biosphere system, and is of fundamental importance in regulating atmospheric carbon dioxide concentrations. In the 1990s an international research effort involving Australia was established to determine the uptake and storage of anthropogenic C02 for all major ocean basins. The research showed that about 118 of the 244 + 20 billion tons of the anthropogenic carbon emitted through fossil fuel burning and cement production has been stored in the ocean since preindustrial times, thus helping reduce the rate of increase in atmospheric C02. The research also showed the terrestrial biosphere has been a small net source of C02 (39 ± 28 billion tons carbon) to the atmosphere over the same period. About 60% of the total ocean inventory of the anthropogenic C02 was found in the Southern Hemisphere, with most in the 30 0 S to 50 0 S latitude band. This mid-latitude band is where surface waters are subducted as Mode and Intermediate waters, which is a major pathway controlling ocean C02 uptake. High storage (23% of the total) also occurs in the North Atlantic, associated with deep water formation in that basin. The ocean uptake and storage is expected to increase in the coming decades as atmospheric C02 concentrations rise. However, a number of feedback mechanisms associated with surface warming, changes in circulation, and biological effects are likely to impact on the uptake capacity. The accumulation or storage-of the C02 in the ocean is also the major driver of ocean acidification with potential to disrupt marine ecosystems. This talk will describe the current understanding of the ocean C02 uptake and storage and a new international research strategy to detect how the ocean uptake and storage will evolve on interannual through decadal scales. Understanding the ocean response to increasing atmospheric C02 will be a key element in managing future C02 increases and establishing

  8. The impact of lateral carbon fluxes on the European carbon balance

    International Nuclear Information System (INIS)

    Ciais, P.; Hauglustaine, D.; Borges, A.V.; Abril, G.; Meybeck, M.; Folberth, G.; Janssens, I.A.

    2008-01-01

    To date, little is known about the impact of processes which cause lateral carbon fluxes over continents, and from continents to oceans on the CO 2 - and carbon budgets at local, regional and continental scales. Lateral carbon fluxes contribute to regional carbon budgets as follows: Ecosystem CO 2 sink=Ecosystem carbon accumulation + Lateral carbon fluxes. We estimated the contribution of wood and food product trade, of emission and oxidation of reduced carbon species, and of river erosion and transport as lateral carbon fluxes to the carbon balance of Europe (EU-25). The analysis is completed by new estimates of the carbon fluxes of coastal seas. We estimated that lateral transport (all processes combined) is a flux of 165 Tg C yr -1 at the scale of EU-25. The magnitude of lateral transport is thus comparable to current estimates of carbon accumulation in European forests. The main process contributing to the total lateral flux out of Europe is the flux of reduced carbon compounds, corresponding to the sum of non-CO 2 gaseous species (CH 4 , CO, hydrocarbons,... ) emitted by ecosystems and exported out of the European boundary layer by the large scale atmospheric circulation. (authors)

  9. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  10. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model

    Directory of Open Access Journals (Sweden)

    M. Gehlen

    2006-01-01

    Full Text Available This study focuses on an improved representation of the biological soft tissue pump in the global three-dimensional biogeochemical ocean model PISCES. We compare three parameterizations of particle dynamics: (1 the model standard version including two particle size classes, aggregation-disaggregation and prescribed sinking speed; (2 an aggregation-disaggregation model with a particle size spectrum and prognostic sinking speed; (3 a mineral ballast parameterization with no size classes, but prognostic sinking speed. In addition, the model includes a description of surface sediments and organic carbon early diagenesis. Model output is compared to data or data based estimates of ocean productivity, pe-ratios, particle fluxes, surface sediment bulk composition and benthic O2 fluxes. Model results suggest that different processes control POC fluxes at different depths. In the wind mixed layer turbulent particle coagulation appears as key process in controlling pe-ratios. Parameterization (2 yields simulated pe-ratios that compare well to observations. Below the wind mixed layer, POC fluxes are most sensitive to the intensity of zooplankton flux feeding, indicating the importance of zooplankton community composition. All model parameters being kept constant, the capability of the model to reproduce yearly mean POC fluxes below 2000 m and benthic oxygen demand does at first order not dependent on the resolution of the particle size spectrum. Aggregate formation appears essential to initiate an intense biological pump. At great depth the reported close to constant particle fluxes are most likely the result of the combined effect of aggregate formation and mineral ballasting.

  11. A Synoptic Assessment of the Amazon River-Ocean Continuum during Boreal Autumn: From Physics to Plankton Communities and Carbon Flux

    Science.gov (United States)

    Araujo, Moacyr; Noriega, Carlos; Hounsou-gbo, Gbekpo Aubains; Veleda, Doris; Araujo, Julia; Bruto, Leonardo; Feitosa, Fernando; Flores-Montes, Manuel; Lefèvre, Nathalie; Melo, Pedro; Otsuka, Amanda; Travassos, Keyla; Schwamborn, Ralf; Neumann-Leitão, Sigrid

    2017-01-01

    The Amazon generates the world's largest offshore river plume, which covers extensive areas of the tropical Atlantic. The data and samples in this study were obtained during the oceanographic cruise Camadas Finas III in October 2012 along the Amazon River-Ocean Continuum (AROC). The cruise occurred during boreal autumn, when the river plume reaches its maximum eastward extent. In this study, we examine the links between physics, biogeochemistry and plankton community structure along the AROC. Hydrographic results showed very different conditions, ranging from shallow well-mixed coastal waters to offshore areas, where low salinity Amazonian waters mix with open ocean waters. Nutrients, mainly NO3− and SiO2−, were highly depleted in coastal regions, and the magnitude of primary production was greater than that of respiration (negative apparent oxygen utilization). In terms of phytoplankton groups, diatoms dominated the region from the river mouth to the edge of the area affected by the North Brazil Current (NBC) retroflection (with chlorophyll a concentrations ranging from 0.02 to 0.94 mg m−3). The North Equatorial Counter Current (NECC) region, east of retroflection, is fully oligotrophic and the most representative groups are Cyanobacteria and dinoflagellates. Additionally, in this region, blooms of cyanophyte species were associated with diatoms and Mesozooplankton (copepods). A total of 178 zooplankton taxa were observed in this area, with Copepoda being the most diverse and abundant group. Two different zooplankton communities were identified: a low-diversity, high-abundance coastal community and a high-diversity, low-abundance oceanic community offshore. The CO2 fugacity (fCO2sw), calculated from total alkalinity (1,450 35 and higher-intensity winds, the CO2 flux is reversed. Lower fCO2sw values were observed in the NECC area. The ΔfCO2 in this region was less than 5 μatm (−0.3 mmol m−2 d−1), while the ΔfCO2 in the coastal region was

  12. A Synoptic Assessment of the Amazon River-Ocean Continuum during Boreal Autumn: From Physics to Plankton Communities and Carbon Flux.

    Science.gov (United States)

    Araujo, Moacyr; Noriega, Carlos; Hounsou-Gbo, Gbekpo Aubains; Veleda, Doris; Araujo, Julia; Bruto, Leonardo; Feitosa, Fernando; Flores-Montes, Manuel; Lefèvre, Nathalie; Melo, Pedro; Otsuka, Amanda; Travassos, Keyla; Schwamborn, Ralf; Neumann-Leitão, Sigrid

    2017-01-01

    The Amazon generates the world's largest offshore river plume, which covers extensive areas of the tropical Atlantic. The data and samples in this study were obtained during the oceanographic cruise Camadas Finas III in October 2012 along the Amazon River-Ocean Continuum (AROC). The cruise occurred during boreal autumn, when the river plume reaches its maximum eastward extent. In this study, we examine the links between physics, biogeochemistry and plankton community structure along the AROC. Hydrographic results showed very different conditions, ranging from shallow well-mixed coastal waters to offshore areas, where low salinity Amazonian waters mix with open ocean waters. Nutrients, mainly [Formula: see text] and [Formula: see text], were highly depleted in coastal regions, and the magnitude of primary production was greater than that of respiration (negative apparent oxygen utilization). In terms of phytoplankton groups, diatoms dominated the region from the river mouth to the edge of the area affected by the North Brazil Current (NBC) retroflection (with chlorophyll a concentrations ranging from 0.02 to 0.94 mg m -3 ). The North Equatorial Counter Current (NECC) region, east of retroflection, is fully oligotrophic and the most representative groups are Cyanobacteria and dinoflagellates. Additionally, in this region, blooms of cyanophyte species were associated with diatoms and Mesozooplankton (copepods). A total of 178 zooplankton taxa were observed in this area, with Copepoda being the most diverse and abundant group. Two different zooplankton communities were identified: a low-diversity, high-abundance coastal community and a high-diversity, low-abundance oceanic community offshore. The CO 2 fugacity (fCO 2 sw), calculated from total alkalinity (1,450 35 and higher-intensity winds, the CO 2 flux is reversed. Lower fCO 2 sw values were observed in the NECC area. The ΔfCO 2 in this region was less than 5 μatm (-0.3 mmol m -2 d -1 ), while the ΔfCO 2 in the

  13. Autonomous observations of the ocean biological carbon pump

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  14. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  15. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    Science.gov (United States)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is

  16. Towards a better understanding of microbial carbon flux in the sea

    Czech Academy of Sciences Publication Activity Database

    Gasol, J.M.; Pinhassi, J.; Alonso-Sáez, L.; Ducklow, H.; Herndl, G. J.; Koblížek, Michal; Labrenz, M.; Luo, Y.; Morán, X. A. G.; Reinthaler, T.; Simon, M.

    2008-01-01

    Roč. 53, - (2008), s. 21-38 ISSN 0948-3055 Institutional research plan: CEZ:AV0Z50200510 Keywords : carbon flux * microbioal ecology * ocean Subject RIV: EE - Microbiology, Virology Impact factor: 2.190, year: 2008

  17. New approaches for air-sea fluxes in the Southern Ocean

    CSIR Research Space (South Africa)

    Gille, S

    2016-05-01

    Full Text Available Air-sea exchanges in the Southern Ocean of momentum, heat, freshwater, carbon dioxide, and other gases are not well documented because fluxes are sparsely sampled (see Figure 1) and because high winds, high sea state, and lack of calibration...

  18. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    Science.gov (United States)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  19. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  20. The ocean carbon sink - impacts, vulnerabilities and challenges

    Science.gov (United States)

    Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quéré, C.; Bakker, D. C. E.

    2015-06-01

    Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air-sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed.

  1. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    Science.gov (United States)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  2. Evaluation of radiative fluxes over the north Indian Ocean

    Science.gov (United States)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2018-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  3. Hidden cycle of dissolved organic carbon in the deep ocean.

    Science.gov (United States)

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  4. Carbon and its isotopes in mid-oceanic basaltic glasses

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO 2 is about 3.8per mille enriched in 13 C, relative to dissolved carbon. Despite this fractionation, delta 13 Csub(PDB) values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the delta 13 Csub(PDB) of mantle carbon likely lies between -5 and -7. The carbon abundances and delta 13 Csub(PDB) values of Kilauea East Rift glasses apparently are influences by the differentiation and movement of magma within that Hawaiian volcano. Using 3 He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 x 10 13 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. (orig.)

  5. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  6. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  7. The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle

    Science.gov (United States)

    Latto, Rebecca; Romanou, Anastasia

    2018-03-01

    In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the ocean carbon states, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important in

  8. Validation and Intercomparison of Ocean Color Algorithms for Estimating Particulate Organic Carbon in the Oceans

    Directory of Open Access Journals (Sweden)

    Hayley Evers-King

    2017-08-01

    Full Text Available Particulate Organic Carbon (POC plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-color signal is influenced by particle composition, size, and concentration and provides a way to observe variability in the POC pool at a range of temporal and spatial scales. To provide accurate estimates of POC concentration from satellite ocean color data requires algorithms that are well validated, with uncertainties characterized. Here, a number of algorithms to derive POC using different optical variables are applied to merged satellite ocean color data provided by the Ocean Color Climate Change Initiative (OC-CCI and validated against the largest database of in situ POC measurements currently available. The results of this validation exercise indicate satisfactory levels of performance from several algorithms (highest performance was observed from the algorithms of Loisel et al., 2002; Stramski et al., 2008 and uncertainties that are within the requirements of the user community. Estimates of the standing stock of the POC can be made by applying these algorithms, and yield an estimated mixed-layer integrated global stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary regionally, suggesting that blending of region-specific algorithms may provide the best way forward for generating global POC products.

  9. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-07

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Lithogenic fluxes to the northern Indian Ocean - An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.

    Lithogenic fluxes to the northern Indian Ocean, measurEd. by time-series sediment traps, exhibit a strong seasonality with the bulk of the material (40 to 80 %) being deposited during the southwest monsoon period. This seasonality is more pronounced...

  11. Increased particle flux to the deep ocean related to monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Ittekkot, V.; Manganini, S.J.; Ramaswamy, V.; Haake, B.; Degens, E.T.; Desai, B.N.; Honjo, S.

    . To assess the impact of monsoon-driven processes on the downward particle flux variations in the open ocean we deployed three moored arrays consisting of six time-series sediment traps at selected locations in the western, central and eastern parts...

  12. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling?

    Directory of Open Access Journals (Sweden)

    A. Bory

    2002-12-01

    Full Text Available Atmospheric inputs to the ocean of dust originating from Africa are compared with downward dust flux in the oceanic water column. Atmospheric fluxes were estimated using remote-sensing-derived dust optical thickness and parameters from a transport/deposition model (TM2z. Oceanic fluxes were measured directly over/in two regions of contrasting primary productivity of the northeastern tropical Atlantic (one mesotrophic and one oligotrophic, located at about 500 and 1500 km off Mauritania underlying the offshore dust plume. In both regions, estimates of annual atmospheric dust inputs to the ocean surface are lower than, but of the same order of magnitude as, oceanic fluxes (49.5 and 8.8 mg.m-2 .d-1 in the mesotrophic and oligotrophic regions. Part of this mismatch may reflect both a general flaw in the dust grain size distribution used in transport models, which likely underestimates large particles, and/or lateral advection to each region of dustier surface waters from upstream, where dust deposition is higher. Higher-frequency temporal coupling between atmospheric and oceanic fluxes seems to be primary-productivity dependent, as hypothesized in previously reported studies.Key words. Atmospheric composition and structure (aerosols and particles; geochemical cycles Oceanography: biological and chemical (geochemistry

  13. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  14. The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle

    Directory of Open Access Journals (Sweden)

    R. Latto

    2018-03-01

    Full Text Available In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the ocean carbon states, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS climate model. Our analysis shows that ocean carbon states are associated with the subtropical–subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air–sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown

  15. Global ocean carbon uptake: magnitude, variability and trends

    Directory of Open Access Journals (Sweden)

    R. Wanninkhof

    2013-03-01

    Full Text Available The globally integrated sea–air anthropogenic carbon dioxide (CO2 flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs. The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO2 uptake for the time period based on a compilation of approaches is −2.0 Pg C yr−1. The interannual variability in the sea–air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr−1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from −0.13 (Pg C yr−1 decade−1 to −0.50 (Pg C yr−1 decade−1 for the two decades under investigation. The OBGCMs and the data-based sea–air CO2 flux estimates show appreciably smaller decadal trends than estimates based on changes in carbon inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.

  16. Revised budget for the oceanic uptake of anthropogenic carbon dioxide

    Science.gov (United States)

    Sarmiento, J.L.; Sundquist, E.T.

    1992-01-01

    TRACER-CALIBRATED models of the total uptake of anthropogenic CO2 by the world's oceans give estimates of about 2 gigatonnes carbon per year1, significantly larger than a recent estimate2 of 0.3-0.8 Gt C yr-1 for the synoptic air-to-sea CO2 influx. Although both estimates require that the global CO2 budget must be balanced by a large unknown terrestrial sink, the latter estimate implies a much larger terrestrial sink, and challenges the ocean model calculations on which previous CO2 budgets were based. The discrepancy is due in part to the net flux of carbon to the ocean by rivers and rain, which must be added to the synoptic air-to-sea CO2 flux to obtain the total oceanic uptake of anthropogenic CO2. Here we estimate the magnitude of this correction and of several other recently proposed adjustments to the synoptic air-sea CO2 exchange. These combined adjustments minimize the apparent inconsistency, and restore estimates of the terrestrial sink to values implied by the modelled oceanic uptake.

  17. The Ocean Carbon States Database: A Proof-of-Concept Application of Cluster Analysis in the Ocean Carbon Cycle

    Science.gov (United States)

    Latto, Rebecca; Romanou, Anastasia

    2018-01-01

    In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the 'ocean carbon states', as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important

  18. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    Science.gov (United States)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  19. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-06-03

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  20. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  1. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    Science.gov (United States)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  2. Carbon-climate feedbacks accelerate ocean acidification

    Science.gov (United States)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  3. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    International Nuclear Information System (INIS)

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton

  4. Southern Ocean carbon-wind stress feedback

    Science.gov (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  5. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    Science.gov (United States)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  6. Carbon stocks and flux in French forests

    International Nuclear Information System (INIS)

    Dupouey, Jean-Luc; Pignard, Gerome; Badeau, Vincent; Thimonier, A.; Dhote, Jean-Francois; Nepveu, G.; Berges, L.; Augusto, L.; Belkacem, S.; Nys, C.

    2000-01-01

    Forests contain most of the carbon stored in the earth's biomass (81 %) and could play a role in CO 2 mitigation to a certain extent. We estimate French forest carbon stocks in biomass to be 860 MtC on 14.5 million hectares of forests, and 1,140 MtC in forest soils. Total carbon in the 14.5 million hectares of French forests is estimated at 2,000 MtC. Average annual flux for the 1979/91 period is 10.5 MtC/y, i.e. 10 % of national fossil fuel emissions. The main causes of this net carbon uptake are the rapid increase of forest area, increasing productivity due to environmental changes, ageing or, in some localized areas, more intensive silviculture practices. These carbon sinks are not offset by the harvesting level which remains low on average (61 % of the annual volume growth). Forestry carbon mitigation options applicable in France are discussed. The need for global economic and ecological budgets (including carbon stocks, soil fertility and biodiversity) of the possible alternatives is stressed. (authors)

  7. Carbon fluxes from an urban tropical grassland

    International Nuclear Information System (INIS)

    Ng, B.J.L.; Hutyra, L.R.; Nguyen, H.; Cobb, A.R.; Kai, F.M.; Harvey, C.; Gandois, L.

    2015-01-01

    Turfgrass covers a large fraction of the urbanized landscape, but the carbon exchange of urban lawns is poorly understood. We used eddy covariance and flux chambers in a grassland field manipulative experiment to quantify the carbon mass balance in a Singapore tropical turfgrass. We also assessed how management and variations in environmental factors influenced CO 2 respiration. Standing aboveground turfgrass biomass was 80 gC m −2 , with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1 . The contribution of autotrophic respiration was 49–76% of total ecosystem respiration. Both chamber and eddy covariance measurements suggest the system was in approximate carbon balance. While we did not observe a significant relationship between the respiration rates and soil temperature or moisture, daytime fluxes increased during the rainy interval, indicating strong overall moisture sensitivity. Turfgrass biomass is small, but given its abundance across the urban landscape, it significantly influences diurnal CO 2 concentrations. - Highlights: • We measured urban turfgrass CO 2 respiration rates and soil characteristics. • Mean observed ecosystem respiration was 7.9 ± 1.1 μmol m −2  s −1 . • Soil temperature and moisture were largely insignificant drivers of observed flux. - We found a Singapore urban turfgrass to be approximately carbon neutral, with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1

  8. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  9. Non-riverine pathways of terrigenous carbon to the ocean

    Science.gov (United States)

    Dittmar, T.

    2007-12-01

    The extent and nature of non-riverine fluxes of carbon from land to ocean are poorly understood. Tidal pumping from highly productive coastal environments, atmospheric deposition and submarine groundwater discharge can be significant transport mechanisms for carbon to the ocean. Evidence is mounting that tidally-induced porewater fluxes ("outwelling") of dissolved organic matter (DOM) from mangroves and salt marshes alone may be similar in magnitude as the global riverine flux of DOM. Tidal pumping of dissolved inorganic carbon (DIC) might exceed organic carbon fluxes by far, but the existing knowledge on DIC outwelling is too scarce for a first global estimate. Results from two case studies on the biogeochemistry of DOM outwelling are presented, from the mangroves in Northern Brazil and the salt marshes in the Northern Gulf of Mexico. Ongoing research in the Northern Gulf of Mexico indicates that outwelling and groundwater inputs probably exceed riverine DOM fluxes in this region. Similar observations were made in Northern Brazil. There, the fate of mangrove-derived DOM could be traced from its source in the mangrove sediments to the outer North Brazil shelf by using a combination of isotopic and molecular approaches. Reversed-phase liquid chromatography / mass spectrometry (LC/MS) provided a multifaceted array of information that mirrors the molecular complexity of DOM. Statistical analyses on these data revealed significant differences between mangrove and open-ocean DOM which successively disappeared by irradiating the samples with natural sunlight. Nuclear magnetic resonance analyses yielded concurrent results. Ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) is the only technique capable of resolving and identifying individual elemental compositions in these complex mixtures. We applied this technique for characterizing mangrove-derived DOM and to assess the molecular changes that occur in the initial stages of

  10. Carbonate compensation depth: relation to carbonate solubility in ocean waters.

    Science.gov (United States)

    Ben-Yaakov, S; Ruth, E; Kaplan, I R

    1974-05-31

    In situ calcium carbonate saturometry measurements suggest that the intermediate water masses of the central Pacific Ocean are close to saturation with resppect to both calcite and local carbonate sediment. The carbonate compensation depth, located at about 3700 meters in this area, appears to represent a depth above which waters are essentially saturated with respect to calcite and below which waters deviate toward undersaturation with respect to calcite.

  11. An isopycnic ocean carbon cycle model

    Directory of Open Access Journals (Sweden)

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  12. Deciphering ocean carbon in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Mary Ann; Kujawinski, Elizabeth B.; Stubbins, Aron; Fatland, Rob; Aluwihare, Lihini I.; Buchan, Alison; Crump, Byron C.; Dorrestein, Pieter C.; Dyhrman, Sonya T.; Hess, Nancy J.; Howe, Bill; Longnecker, Krista; Medeiros, Patricia M.; Niggemann, Jutta; Obernosterer, Ingrid; Repeta, Daniel J.; Waldbauer, Jacob R.

    2016-03-07

    Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. The cycling of DOM over short and long time scales has profound impacts on the quantity of carbon sequestered in the oceans and the foundations of the food webs that support ocean life. At the heart of this cycle lie molecular-level relationships between the individual molecules in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have defied clear definition and study because both DOM and microbial communities consist of many thousands of individual components. Emerging tools in analytical chemistry, microbiology and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions that are being addressed using this new toolkit and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.

  13. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barrón, Cristina

    2015-10-21

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  14. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barró n, Cristina; Duarte, Carlos M.

    2015-01-01

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  15. Deep ocean fluxes and their link to surface ocean processes and the biological pump

    Digital Repository Service at National Institute of Oceanography (India)

    Rixen, T.; Guptha, M.V.S.; Ittekkot, V.

    's role as a reservoir for atmospheric CO sub(2).The results show a pronounced monsoon-driven seasonality with enhanced organic carbon fluxes into the deep-sea during the SW Monsoon and during the early and late NE Monsoon north of 10 degrees N...

  16. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    Science.gov (United States)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  17. The validation of ocean surface heat fluxes in AMIP

    International Nuclear Information System (INIS)

    Gleckler, P.J.; Randall, D.A.

    1993-09-01

    Recent intercomparisons of Atmospheric General Circulation Models (AGCMS) constrained with sea-surface temperatures have shown that while there are substantial differences among various models (with each other and available observations), overall the differences between them have been decreasing. The primary goal of AMIP is to enable a systematic intercomparison and validation of state-of-the- art AGCMs by supporting in-depth diagnosis of and interpretation of the model results. Official AMIP simulations are 10 years long, using monthly mean Sea-Surface Temperatures (SSTs) and sea ice conditions which are representative of the 1979--1988 decade. Some model properties are also dictated by the design of AMIP such as the solar constant, the atmospheric CO 2 concentration, and the approximate horizontal resolution. In this paper, some of the preliminary results of AMIP Subproject No. 5 will be summarized. The focus will be on the intercomparison and validation of ocean surface heat fluxes of the AMIP simulations available thus far

  18. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  19. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Directory of Open Access Journals (Sweden)

    L. Patara

    2009-03-01

    Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  20. DOE Ocean Carbon Sequestration Research Workshop 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Chavez, Francisco [Monterey Bay Aquarium Research Inst. (MBARI), Moss Landing, CA (United States); Maltrud, Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Eric [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Arrigo, Kevin [Stanford Univ., CA (United States). Dept. of Geophysics; Barry, James [Monterey Bay Aquarium Research Inst. (MBARI), Moss Landing, CA (United States); Carmen, Kevin [Louisiana State Univ., Baton Rouge, LA (United States); Bishop, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bleck, Rainer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gruber, Niki [Univ. of California, Los Angeles, CA (United States); Erickson, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kennett, James [Univ. of California, Santa Barbara, CA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tagliabue, Alessandro [Lab. of Climate and Environmental Sciences (LSCE), Gif-sur-Yvette (France); Paytan, Adina [Stanford Univ., CA (United States); Repeta, Daniel [Woods Hole Oceanographic Inst. (WHOI), Woods Hole, MA (United States); Yager, Patricia L. [Univ. of Georgia, Athens, GA (United States); Marshall, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gnanadesikan, Anand [Geophysical Fluid Dynamics Lab. (GFDL), Princeton, NJ (United States)

    2007-01-11

    The purpose of this proposal was to fund a workshop to bring together the principal investigators of all the projects that were being funded under the DOE ocean carbon sequestration research program. The primary goal of the workshop was to interchange research results, to discuss ongoing research, and to identify future research priorities. In addition, we hoped to encourage the development of synergies and collaborations between the projects and to write an EOS article summarizing the results of the meeting. Appendix A summarizes the plan of the workshop as originally proposed, Appendix B lists all the principal investigators who were able to attend the workshop, Appendix C shows the meeting agenda, and Appendix D lists all the abstracts that were provided prior to the meeting. The primary outcome of the meeting was a decision to write two papers for the reviewed literature on carbon sequestration by iron fertilization, and on carbon sequestration by deep sea injection and to examine the possibility of an overview article in EOS on the topic of ocean carbon sequestration.

  1. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  2. Geochemistry and Flux of Terrigenous Dissolved Organic Matter to the Arctic Ocean

    Science.gov (United States)

    Spencer, R. G.; Mann, P. J.; Hernes, P. J.; Tank, S. E.; Striegl, R. G.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2011-12-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC) and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is of key importance for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric dissolved organic matter (CDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  3. Trends and regional distributions of land and ocean carbon sinks

    Directory of Open Access Journals (Sweden)

    J. L. Sarmiento

    2010-08-01

    Full Text Available We show here an updated estimate of the net land carbon sink (NLS as a function of time from 1960 to 2007 calculated from the difference between fossil fuel emissions, the observed atmospheric growth rate, and the ocean uptake obtained by recent ocean model simulations forced with reanalysis wind stress and heat and water fluxes. Except for interannual variability, the net land carbon sink appears to have been relatively constant at a mean value of −0.27 Pg C yr−1 between 1960 and 1988, at which time it increased abruptly by −0.88 (−0.77 to −1.04 Pg C yr−1 to a new relatively constant mean of −1.15 Pg C yr−1 between 1989 and 2003/7 (the sign convention is negative out of the atmosphere. This result is detectable at the 99% level using a t-test. The land use source (LU is relatively constant over this entire time interval. While the LU estimate is highly uncertain, this does imply that most of the change in the net land carbon sink must be due to an abrupt increase in the land sink, LS = NLS – LU, in response to some as yet unknown combination of biogeochemical and climate forcing. A regional synthesis and assessment of the land carbon sources and sinks over the post 1988/1989 period reveals broad agreement that the Northern Hemisphere land is a major sink of atmospheric CO2, but there remain major discrepancies with regard to the sign and magnitude of the net flux to and from tropical land.

  4. Global patterns of organic carbon export and sequestration in the ocean (Arne Richter Award for Outstanding Young Scientists)

    Science.gov (United States)

    Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.

    2012-04-01

    A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.

  5. Deciphering ocean carbon in a changing world.

    Science.gov (United States)

    Moran, Mary Ann; Kujawinski, Elizabeth B; Stubbins, Aron; Fatland, Rob; Aluwihare, Lihini I; Buchan, Alison; Crump, Byron C; Dorrestein, Pieter C; Dyhrman, Sonya T; Hess, Nancy J; Howe, Bill; Longnecker, Krista; Medeiros, Patricia M; Niggemann, Jutta; Obernosterer, Ingrid; Repeta, Daniel J; Waldbauer, Jacob R

    2016-03-22

    Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM, and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology, and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.

  6. Carbon isotopes and concentrations in mid-oceanic ridge basalts

    International Nuclear Information System (INIS)

    Pineau, F.; Javoy, M.

    1983-01-01

    In order to estimate carbon fluxes at mid-ocean ridges and carbon isotopic compositions in the convective mantle, we have studied carbon concentrations and isotopic compositions in tholeiitic glasses from the FAMOUS zone (Mid-Atlantic Ridge at 36 0 N) and East Pacific Rise from 21 0 N (RITA zone) to 20 0 S. These samples correspond essentially to the whole spectrum of spreading rates (2-16 cm/yr). The contain: -CO 2 vesicles in various quantities (3-220 ppm C) with delta 13 C between -4 and -9per mille relative to PDB, in the range of carbonatites and diamonds. - Carbonate carbon (3-100 ppm C) with delta 13 C between -2.6 and -20.0per mille relative to PDB. - Dissolved carbon at a concentration of 170+-10 ppm under 250 bar pressure with delta 13 C from -9 to -21per mille relative to PDB. This dissolved carbon, not contained in large CO 2 vesicles, corresponds to a variety of chemical forms among which part of the above carbonates, microscopic CO 2 bubbles and graphite. The lightest portions of this dissolved carbon are extracted at low temperatures (400-600 0 C) whereas the CO 2 from the vesicles is extracted near fusion temperature. These features can be explained by outgassing processes in two steps from the source region of the magma: (1) equilibrium outgassing before the second percolation threshold, where micron size bubbles are continuously reequilibrated with the magma; (2) distillation after the second percolation threshold when larger bubbles travel faster than magma concentrations to the surface. The second step may begin at different depths apparently related to the spreading rate, shallower for fast-spreading ridges than for slow-spreading ridges. (orig./WL)

  7. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  8. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    OpenAIRE

    Battaglia Gianna; Steinacher Marco; Joos Fortunat

    2016-01-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo sche...

  9. A new look at ocean carbon remineralization for estimating deepwater sequestration

    DEFF Research Database (Denmark)

    Guidi, L.; Legendre, L.; Reygondeau, Gabriel

    2015-01-01

    provinces, where these estimates range between -50 and +100% of the commonly used globally uniform remineralization value. We apply the regionalized values to satellite-derived estimates of upper ocean POC export to calculate regionalized and ocean-wide deep carbon fluxes and sequestration. The resulting....... These results stress that variable remineralization and sequestration depth should be used to model ocean carbon sequestration and feedback on the atmosphere......The "biological carbon pump" causes carbon sequestration in deep waters by downward transfer of organic matter, mostly as particles. This mechanism depends to a great extent on the uptake of CO2 by marine plankton in surface waters and subsequent sinking of particulate organic carbon (POC) through...

  10. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A; Jayakumar, D.A; George, M.D.; Narvekar, P.V.; DeSousa, S

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  11. Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model

    Science.gov (United States)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-01-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  12. Carbon and energy fluxes from China's largest freshwater lake

    Science.gov (United States)

    Gan, G.; LIU, Y.

    2017-12-01

    Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.

  13. Satellite-based Calibration of Heat Flux at the Ocean Surface

    Science.gov (United States)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  14. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    Diurnal variability of the surface fluxes and ocean heat content was studied using the time-series data on marine surface meteorological parameters and upper ocean temperature collected at an oceanic station in the Bay of Bengal during 1st to 8th...

  15. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Heinze, C.

    1992-02-01

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO 2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  16. Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Lenton, A.; Law, R.M.; Metzl, N.; Patra, P.K.; Doney, S.C.; Lima, I.D.; Dlugokencky, E.; Ramonet, M.; Valsala, V.

    : interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability...

  17. Salp contributions to vertical carbon flux in the Sargasso Sea

    Science.gov (United States)

    Stone, Joshua P.; Steinberg, Deborah K.

    2016-07-01

    We developed a one-dimensional model to estimate salp contributions to vertical carbon flux at the Bermuda Atlantic Time-series Study (BATS) site in the North Atlantic subtropical gyre for a 17-yr period (April 1994 to December 2011). We based the model parameters on published rates of salp physiology and experimentally determined sinking and decomposition rates of salp carcasses. Salp grazing was low during non-bloom conditions, but routinely exceeded 100% of chlorophyll standing stock and primary production during blooms. Fecal pellet production was the largest source of salp carbon flux (78% of total), followed by respiration below 200 m (19%), sinking of carcasses (3%), and DOC excretion below 200 m (salp-mediated carbon flux. Seasonally, salp flux was higher during spring-summer than fall-winter, due to seasonal changes in species composition and abundance. Salp carbon export to 200 m was on average 2.3 mg C m-2 d-1 across the entire time series. This is equivalent to 11% of the mean 200 m POC flux measured by sediment traps in the region. During years with significant salp blooms, however, annually-averaged salp carbon export was the equivalent of up to 60% of trap POC flux at 200 m. Salp carbon flux attenuated slowly, and at 3200 m the average modeled carbon from salps was 109% of the POC flux measured in sediment traps at that depth. Migratory and carcass carbon export pathways should also be considered (alongside fecal pellet flux) as facilitating carbon export to sequestration depths in future studies.

  18. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn

    2016-07-01

    A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. The Eddington approximation calculation of radiation flux in the atmosphere–ocean system

    International Nuclear Information System (INIS)

    Shi, Chong; Nakajima, Teruyuki

    2015-01-01

    An analytical approximation method is presented to calculate the radiation flux in the atmosphere–ocean system using the Eddington approximation when the upwelling radiation from the ocean body is negligibly small. Numerical experiments were carried out to investigate the feasibility of the method in two cases: flat and rough ocean surfaces. The results show good consistency for the reflectivity at the top of atmosphere and transmissivity just above the ocean surface, in comparison with the exact values calculated by radiative transfer models in each case. Moreover, an obvious error might be introduced for the calculation of radiation flux at larger solar zenith angles when the roughness of the ocean surface is neglected. - Highlights: • The Eddington approximation method is extended to the atmosphere–ocean system. • The roughness of ocean surface cannot be neglected at lager solar zenith angles. • Unidirectional reflectivity for rough ocean surface is proposed

  20. Vertical suspsended sediment fluxes observed from ocean gliders

    Science.gov (United States)

    Merckelbach, Lucas; Carpenter, Jeffrey

    2016-04-01

    Many studies trying to understand a coastal system in terms of sediment transport paths resort to numerical modelling - combining circulation models with sediment transport models. Two aspects herein are crucial: sediment fluxes across the sea bed-water column interface, and the subsequent vertical mixing by turbulence. Both aspects are highly complex and have relatively short time scales, so that the processes involved are implemented in numerical models as parameterisations. Due to the effort required to obtain field observations of suspended sediment concentrations (and other parameters), measurements are scarce, which makes the development and tuning of parameterisations a difficult task. Ocean gliders (autonomous underwater vehicles propelled by a buoyancy engine) provide a platform complementing more traditional methods of sampling. In this work we present observations of suspended sediment concentration (SSC) and dissipation rate taken by two gliders, each equipped with optical sensors and a microstructure sensor, along with current observations from a bottom mounted ADCP, all operated in the German Bight sector of the North Sea in Summer 2014. For about two weeks of a four-week experiment, the gliders were programmed to fly in a novel way as Lagrangian profilers to water depths of about 40 m. The benefit of this approach is that the rate of change of SSC - and other parameters - is local to the water column, as opposed to an unknown composition of temporal and spatial variability when gliders are operated in the usual way. Therefore, vertical sediment fluxes can be calculated without the need of the - often dubious - assumption that spatial variability can be neglected. During the experiment the water column was initially thermally stratified, with a cross-pycnocline diffusion coefficient estimated at 7\\cdot10-5 m2 s-1. Halfway through the experiment the remnants of tropical storm Bertha arrived at the study site and caused a complete mixing of the water

  1. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  2. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    Science.gov (United States)

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  3. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed

    Science.gov (United States)

    Hesshaimer, Vago; Heimann, Martin; Levin, Ingeborg

    1994-07-01

    RADIOCARBON produced naturally in the upper atmosphere or arti-ficially during nuclear weapons testing is the main tracer used to validate models of oceanic carbon cycling, in particular the exchange of carbon dioxide with the atmosphere1-3 and the mixing parameters within the ocean itself4-7. Here we test the overall consistency of exchange fluxes between all relevant compartments in a simple model of the global carbon cycle, using measurements of the long-term tropospheric CO2 concentration8 and radiocarbon composition9-12, the bomb 14C inventory in the stratosphere13,14 and a compilation of bomb detonation dates and strengths15. We find that to balance the budget, we must invoke an extra source to account for 25% of the generally accepted uptake of bomb 14C by the oceans3. The strength of this source decreases from 1970 onwards, with a characteristic timescale similar to that of the ocean uptake. Significant radiocarbon transport from the remote high stratosphere and significantly reduced uptake of bomb 14C by the biosphere can both be ruled out by observational constraints. We therefore conclude that the global oceanic bomb 14C inventory should be revised downwards. A smaller oceanic bomb 14C inventory also implies a smaller oceanic radiocarbon penetration depth16, which in turn implies that the oceans take up 25% less anthropogenic CO2 than had previously been believed.

  4. Autonomous observing strategies for the ocean carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.; Davis, Russ E.

    2000-07-26

    Understanding the exchanges of carbon between the atmosphere and ocean and the fate of carbon delivered to the deep sea is fundamental to the evaluation of ocean carbon sequestration options. An additional key requirement is that sequestration must be verifiable and that environmental effects be monitored and minimized. These needs can be addressed by carbon system observations made from low-cost autonomous ocean-profiling floats and gliders. We have developed a prototype ocean carbon system profiler based on the Sounding Oceanographic Lagrangian Observer (SOLO; Davis et al., 1999). The SOLO/ carbon profiler will measure the two biomass components of the carbon system and their relationship to physical variables, such as upper ocean stratification and mixing. The autonomous observations within the upper 1500 m will be made on daily time scales for periods of months to seasons and will be carried out in biologically dynamic locations in the world's oceans that are difficult to access with ships (due to weather) or observe using remote sensing satellites (due to cloud cover). Such an observational capability not only will serve an important role in carbon sequestration research but will provide key observations of the global ocean's natural carbon cycle.

  5. Process studies of the carbonate system in coastal and ocean environments of the Atlantic Ocean

    NARCIS (Netherlands)

    Salt, L.A.

    2014-01-01

    The increase in anthropogenic, atmospheric carbon dioxide (CO2) has been largely mitigated by ocean uptake since the start of the Industrial Revolution, with the Atlantic Ocean providing the largest store of anthropogenic carbon. The thesis of Lesley Salt examines how the uptake of CO2 varies in

  6. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda

    Science.gov (United States)

    Conte, Maureen H.; Ralph, Nate; Ross, Edith H.

    Since 1978, the Oceanic Flux Program (OFP) time-series sediment traps have measured particle fluxes in the deep Sargasso Sea near Bermuda. There is currently a 20+yr flux record at 3200-m depth, a 12+yr flux at 1500-m depth, and a 9+yr record at 500-m depth. Strong seasonality is observed in mass flux at all depths, with a flux maximum in February-March and a smaller maximum in December-January. There is also significant interannual variability in the flux, especially with respect to the presence/absence of the December-January flux maximum and in the duration of the high flux period in the spring. The flux records at the three depths are surprisingly coherent, with no statistically significant temporal lag between 500 and 3200-m fluxes at our biweekly sample resolution. Bulk compositional data indicate an extremely rapid decrease in the flux of organic constituents with depth between 500 and 1500-m, and a smaller decrease with depth between 1500 and 3200-m depth. In contrast, carbonate flux is uniform or increases slightly between 500 and 1500-m, possibly reflecting deep secondary calcification by foraminifera. The lithogenic flux increases by over 50% between 500 and 3200-m depth, indicating strong deep water scavenging/repackaging of suspended lithogenic material. Concurrent with the rapid changes in flux composition, there is a marked reduction in the heterogeneity of the sinking particle pool with depth, especially within the mesopelagic zone. By 3200-m depth, the bulk composition of the sinking particle pool is strikingly uniform, both seasonally and over variations in mass flux of more than an order of magnitude. These OFP results provide strong indirect evidence for the intensity of reprocessing of the particle pool by resident zooplankton within mesopelagic and bathypelagic waters. The rapid loss of organic components, the marked reduction in the heterogeneity of the bulk composition of the flux, and the increase in terrigenous fluxes with depth are most

  7. Estimation of the Atmosphere-Ocean Fluxes of Greenhouse Gases and Aerosols at the Finer Resolution of the Coastal Ocean

    Czech Academy of Sciences Publication Activity Database

    Vieira, V.; Sahlée, E.; Juruš, Pavel; Clementi, E.; Pettersson, H.; Mateus, M.

    2016-01-01

    Roč. 18 (2016), EGU2016-1990-1 ISSN 1607-7962. [EGU General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985807 Keywords : greenhouse gases * carbon cycle * atmosphere- ocean interaction * atmosphere modelling * ocean modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  8. 10Be/230Th ratios as proxy for particle flux in the equatorial Pacific ocean

    International Nuclear Information System (INIS)

    Anderson, R.F.; Fleisher, M.Q.; Kubik, P.W.; Suter, M.

    1997-01-01

    Particulate 10 Be/ 230 Th ratios collected by sediment traps in the central equatorial Pacific Ocean exhibit a positive correlation with particle flux, but little or no correlation with particle composition. (author) 1 fig., 4 refs

  9. Annual mean statistics of the surface fluxes of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Rao, L.V.G.

    MEAN STATISTICS OF THE SURFACE FLUXES OF THE TROPICAL INDIAN OCEAN (Research Note) M. R. RAMESH KUMAR and L. V. GANGADHARA RAO Physical Oceanography Division, National Institute of Oceanography, Dona Paula, 403004, Goa, India (Received in final...

  10. Atmospheric moisture transport and fresh water flux over oceans derived from spacebased sensors

    Science.gov (United States)

    Liu, W. T.; Tang, W.

    2001-01-01

    preliminary results will be shown to demonstrate the application of spacebased IMT and fresh water flux in ocean-atmosphere-land interaction studies, such as the hydrologica balance on Amazon rainfall and Indian monsoon.

  11. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program

    Science.gov (United States)

    Lamborg, C. H.; Buesseler, K. O.; Lam, P. J.

    2008-07-01

    As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we collected and analyzed sinking particles using sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). In this paper, we present the results of minor and trace element determinations made on these samples. Minor and trace elements in the sinking material showed 2 trends in flux with depth: increasing and constant. The sinking particulate phase of some elements (Al, Fe, Mn) was dominated by material of lithogenic origin and exhibited flux that was constant with depth and consistent with eolian dust inputs (ALOHA), or increasing in flux with depth as a result of lateral inputs from a shelf (K2). This shelf-derived material also appears to have been confined to very small particles, whose inherent sinking rates are slow, and residence time within the mesopelagic "twilight zone" would be consequently long. Furthermore, the flux of this material did not change with substantial changes in the rain of biogenic material from the surface (K2), suggesting mechanistic decoupling from the flux of organic carbon and macronutrients. Micronutrient (Fe, Co, Zn and Cu) fluxes examined in a 1-D mass balance suggest widely differing sources and sinks in the water column as well as impacts from biological uptake and regeneration. For example, total Fe fluxes into and out of the euphotic zone appeared to be dominated by lithogenic material and far exceed biological requirements. The export flux of Fe, however, appeared to be balanced by the eolian input of soluble Fe. For Zn and Cu, the situation is reversed, with atmospheric inputs insufficient to support fluxes, and the cycling therefore dominated by the draw down of an internal pool. For Co, the situation lies in between, with important, but ultimately insufficient atmospheric inputs.

  12. Remote sensing mapping of carbon and energy fluxes over forests

    NARCIS (Netherlands)

    Roerink, G.J.; Wit, de A.J.W.; Pelgrum, H.; Mücher, C.A.

    2001-01-01

    This report presents the results of the EU project "Carbon and water fluxes of Mediterranean forests and impacts of land use/cover changes". The objectives of the project can be summarized as follows: (I) surface energy balance mapping using remote sensing, (ii) carbon uptake mapping using remote

  13. Bioavailable dissolved and particulate organic carbon flux from coastal temperate rainforest watersheds

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; D'Amore, D. V.; Moll, A.

    2017-12-01

    Coastal temperate rainforest (CTR) watersheds of southeast Alaska have dense soil carbon stocks ( 300 Mg C ha-1) and high specific discharge (1.5-7 m yr-1) driven by frontal storms from the Gulf of Alaska. As a result, dissolved organic carbon (DOC) fluxes from Alaskan CTR watersheds are estimated to exceed 2 Tg yr-1; however, little is known about the export of particulate organic carbon (POC). The magnitude and bioavailability of this land-to-ocean flux of terrigenous organic matter ultimately determines how much metabolic energy is translocated to downstream and coastal marine ecosystems in this region. We sampled streamwater weekly from May through October from four watersheds of varying landcover (gradient of wetland to glacial coverage) to investigate changes in the concentration and flux of DOC and POC exported to the coastal ocean. We also used headspace analysis of CO2 following 14 day laboratory incubations to determine the flux of bioavailable DOC and POC exported from CTR watersheds. Across all sites, bioavailable DOC concentrations ranged from 0.2 to 1.9 mg L-1 but were on average 0.6 mg L-1. For POC, bioavailable concentrations ranged from below detection to 0.3 mg L-1 but were on average 0.1 mg L-1. The concentration, flux and bioavailability of DOC was higher than for POC highlighting the potential importance of DOC as a metabolic subsidy to downstream and coastal environments. Ratios of DOC to POC decreased during high flow events because the increase in POC concentrations with discharge exceeds that for DOC. Overall, our findings suggest that projected increases in precipitation and storm intensity will drive changes in the speciation, magnitude and bioavailability of the organic carbon flux from CTR watersheds.

  14. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    Science.gov (United States)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  15. Plankton networks driving carbon export in the oligotrophic ocean

    Science.gov (United States)

    Larhlimi, Abdelhalim; Roux, Simon; Darzi, Youssef; Audic, Stephane; Berline, Léo; Brum, Jennifer; Coelho, Luis Pedro; Espinoza, Julio Cesar Ignacio; Malviya, Shruti; Sunagawa, Shinichi; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Poulain, Julie; Searson, Sarah; Stemmann, Lars; Not, Fabrice; Hingamp, Pascal; Speich, Sabrina; Follows, Mick; Karp-Boss, Lee; Boss, Emmanuel; Ogata, Hiroyuki; Pesant, Stephane; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G.; Bork, Peer; de Vargas, Colomban; Iudicone, Daniele; Sullivan, Matthew B.; Raes, Jeroen; Karsenti, Eric; Bowler, Chris; Gorsky, Gabriel

    2015-01-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. PMID:26863193

  16. Plankton networks driving carbon export in the oligotrophic ocean

    Science.gov (United States)

    2016-04-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.

  17. Application of a Subfilter-Scale Flux Model over the Ocean Using OHATS Field Data

    DEFF Research Database (Denmark)

    Kelly, Mark C.; Wyngaard, John C.; Sullivan, Peter P.

    2009-01-01

    the scalar flux model appeared to perform adequately over the ocean. Analysis of data from the Ocean Horizontal Array Turbulence Study (OHATS) reveals a need to account for the moving ocean–air interface in the subfilter stress model. The authors develop simple parameterizations for the effect of surface......-induced pressure fluctuations on the subfilter stress, leading to good predictions of subfilter momentum flux both over land and in OHATS....

  18. Forest disturbance and North American carbon flux

    Science.gov (United States)

    S. N. Goward; J. G. Masek; W. Cohen; G. Moisen; G. J. Collatz; S. Healey; R. A. Houghton; C. Huang; R. Kennedy; B. Law; S. Powell; D. Turner; M. A. Wulder

    2008-01-01

    North America's forests are thought to be a significant sink for atmospheric carbon. Currently, the rate of sequestration by forests on the continent has been estimated at 0.23 petagrams of carbon per year, though the uncertainty about this estimate is nearly 50%. This offsets about 13% of the fossil fuel emissions from the continent [Pacala et al., 2007]. However...

  19. Stable carbon isotope response to oceanic anoxic events

    International Nuclear Information System (INIS)

    Hu Xiumian; Wang Chengshan; Li Xianghui

    2001-01-01

    Based on discussion of isotope compositions and fractionation of marine carbonate and organic carbon, the author studies the relationship between oceanic anoxic events and changes in the carbon isotope fractionation of both carbonate and organic matter. During the oceanic anoxic events, a great number of organisms were rapidly buried, which caused a kind of anoxic conditions by their decomposition consuming dissolved oxygen. Since 12 C-rich organism preserved, atmosphere-ocean system will enrich relatively of 13 C. As a result, simultaneous marine carbonate will record the positive excursion of carbon isotope. There is a distinctive δ 13 C excursion during oceanic anoxic events in the world throughout the geological time. In the Cenomanian-Turonian anoxic event. this positive excursion arrived at ∼0.2% of marine carbonate and at ∼0.4% of organic matter, respectively. Variations in the carbon isotopic compositions of marine carbonate and organic carbon record the changes in the fraction of organic carbon buried throughout the geological time and may provide clues to the changes in rates of weathering and burial of organic carbon. This will provide a possibility of interpreting not only the changes in the global carbon cycle throughout the geological time, but also that in atmospheric p CO 2

  20. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  1. Marine geochemistry ocean circulation, carbon cycle and climate change

    CERN Document Server

    Roy-Barman, Matthieu

    2016-01-01

    Marine geochemistry uses chemical elements and their isotopes to study how the ocean works. It brings quantitative answers to questions such as: What is the deep ocean mixing rate? How much atmospheric CO2 is pumped by the ocean? How fast are pollutants removed from the ocean? How do ecosystems react to the anthropogenic pressure? The book provides a simple introduction to the concepts (environmental chemistry, isotopes), the methods (field approach, remote sensing, modeling) and the applications (ocean circulation, carbon cycle, climate change) of marine geochemistry with a particular emphasis on isotopic tracers. Marine geochemistry is not an isolated discipline: numerous openings on physical oceanography, marine biology, climatology, geology, pollutions and ecology are proposed and provide a global vision of the ocean. It includes new topics based on ongoing research programs such as GEOTRACES, Global Carbon Project, Tara Ocean. It provides a complete outline for a course in marine geochemistry. To favor a...

  2. Evaluations of carbon fluxes estimated by top-down and bottom-up approaches

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.; Nasahara, K.; Matsunaga, T.

    2013-12-01

    There are two types of estimating carbon fluxes using satellite observation data, and these are referred to as top-down and bottom-up approaches. Many uncertainties are however still remain in these carbon flux estimations, because the true values of carbon flux are still unclear and estimations vary according to the type of the model (e.g. a transport model, a process based model) and input data. The CO2 fluxes in these approaches are estimated by using different satellite data such as the distribution of CO2 concentration in the top-down approach and the land cover information (e.g. leaf area, surface temperature) in the bottom-up approach. The satellite-based CO2 flux estimations with reduced uncertainty can be used efficiently for identifications of large emission area and carbon stocks of forest area. In this study, we evaluated the carbon flux estimates from two approaches by comparing with each other. The Greenhouse gases Observing SATellite (GOSAT) has been observing atmospheric CO2 concentrations since 2009. GOSAT L4A data product is the monthly CO2 flux estimations for 64 sub-continental regions and is estimated by using GOSAT FTS SWIR L2 XCO2 data and atmospheric tracer transport model. We used GOSAT L4A CO2 flux as top-down approach estimations and net ecosystem productions (NEP) estimated by the diagnostic type biosphere model BEAMS as bottom-up approach estimations. BEAMS NEP is only natural land CO2 flux, so we used GOSAT L4A CO2 flux after subtraction of anthropogenic CO2 emissions and oceanic CO2 flux. We compared with two approach in temperate north-east Asia region. This region is covered by grassland and crop land (about 60 %), forest (about 20 %) and bare ground (about 20 %). The temporal variation for one year period was indicated similar trends between two approaches. Furthermore we show the comparison of CO2 flux estimations in other sub-continental regions.

  3. Time series measurements of carbon fluxes from a mangrove-dominated estuary

    Science.gov (United States)

    Volta, C.; Ho, D. T.; Friederich, G.; Del Castillo, C. E.; Engel, V. C.; Bhat, M.

    2017-12-01

    Mangrove ecosystems are among the most important and productive coastal ecosystems globally, and due to their high productivity and rapid carbon cycling, these ecosystems are important modulators of carbon fluxes from the land to the ocean and between the water and the atmosphere. Therefore, they may play a crucial role in the global carbon cycle and climate. Nonetheless, to date, estimates of carbon fluxes in mangrove-dominated estuaries are associated with large uncertainties, because studies have typically focused on limited spatial and temporal scales. For the first time, continuous time series measurements of temperature, salinity, CDOM, pH and pCO2 covering both the dry and the wet seasons were made in Shark River, a tidal estuary in the largest contiguous mangrove forest in North America. The measurements were made at two permanent stations along the estuarine domain, and allowed estimates of net dissolved carbon export from the Shark River to the Gulf of Mexico, as well as the CO2 emissions to the atmosphere to be made at seasonal and annual timescales. Results reveal that, compared to the dry season, the wet season was characterized by higher dissolved carbon export and CO2 emissions, due to meteorological, hydrological, and biogeochemical processes. Additionally, an analysis of relationships between hydrodynamic control factors (i.e. water discharge and water level) in the upstream freshwater marsh and carbon fluxes in the Shark River highlighted the importance of developing good water management strategies in the future. Finally, the study estimated the social cost of carbon fluxes in the Shark River estuary as a contribution to carbon accounting in mangrove ecosystems.

  4. Carbon dioxide fluxes from an urban area in Beijing

    Science.gov (United States)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  5. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.

    . The fluxes of heat and freshwater across the air-sea interface, and hence the surface buoyancy flux, show strong spatial and temporal variability. The Bay of Bengal and eastern equatorial Indian Ocean are characterized by a net freshwater gain due to heavy...

  6. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  7. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean

    Science.gov (United States)

    Mazloff, M. R.; Cornuelle, B. D.; Gille, S. T.; Verdy, A.

    2018-02-01

    The spatial correlation scales of oceanic dissolved inorganic carbon, heat content, and carbon and heat exchanges with the atmosphere are estimated from a realistic numerical simulation of the Southern Ocean. Biases in the model are assessed by comparing the simulated sea surface height and temperature scales to those derived from optimally interpolated satellite measurements. While these products do not resolve all ocean scales, they are representative of the climate scale variability we aim to estimate. Results show that constraining the carbon and heat inventory between 35°S and 70°S on time-scales longer than 90 days requires approximately 100 optimally spaced measurement platforms: approximately one platform every 20° longitude by 6° latitude. Carbon flux has slightly longer zonal scales, and requires a coverage of approximately 30° by 6°. Heat flux has much longer scales, and thus a platform distribution of approximately 90° by 10° would be sufficient. Fluxes, however, have significant subseasonal variability. For all fields, and especially fluxes, sustained measurements in time are required to prevent aliasing of the eddy signals into the longer climate scale signals. Our results imply a minimum of 100 biogeochemical-Argo floats are required to monitor the Southern Ocean carbon and heat content and air-sea exchanges on time-scales longer than 90 days. However, an estimate of formal mapping error using the current Argo array implies that in practice even an array of 600 floats (a nominal float density of about 1 every 7° longitude by 3° latitude) will result in nonnegligible uncertainty in estimating climate signals.

  8. Multicentury changes in ocean and land contributions to the climate-carbon feedback

    Science.gov (United States)

    Randerson, J. T.; Lindsay, K.; Munoz, E.; Fu, W.; Moore, J. K.; Hoffman, F. M.; Mahowald, N. M.; Doney, S. C.

    2015-06-01

    Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate-carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate-carbon feedback.

  9. The NASA Carbon Airborne Flux Experiment (CARAFE: instrumentation and methodology

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2018-03-01

    Full Text Available The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1–1000 km, potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40–90 % for a nominal resolution of 2 km or 16–35 % when averaged over a full leg (typically 30–40 km. CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  10. The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology

    Science.gov (United States)

    Wolfe, Glenn M.; Kawa, S. Randy; Hanisco, Thomas F.; Hannun, Reem A.; Newman, Paul A.; Swanson, Andrew; Bailey, Steve; Barrick, John; Thornhill, K. Lee; Diskin, Glenn; DiGangi, Josh; Nowak, John B.; Sorenson, Carl; Bland, Geoffrey; Yungel, James K.; Swenson, Craig A.

    2018-03-01

    The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1-1000 km), potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE) utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40-90 % for a nominal resolution of 2 km or 16-35 % when averaged over a full leg (typically 30-40 km). CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  11. Major role of marine vegetation on the oceanic carbon cycle

    NARCIS (Netherlands)

    Duarte, C.M.; Middelburg, J.J.; Caraco, N.

    2005-01-01

    The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove

  12. Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    Science.gov (United States)

    Jochum, M.; Peacock, S.; Moore, J. K.; Lindsay, K. T.

    2009-12-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea-ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net carbon fluxes are insignificant. This surprising result is due to several effects, two of which stand out: Firstly, colder sea surface temperature leads to a more effective solubility pump but also to increased sea-ice concentration which blocks air-sea exchange; and secondly, the weakening of Southern Ocean winds, which is predicted by some idealized studies, is small compared to its interannual variability.

  13. Carbon fluxes on North American rangelands

    Science.gov (United States)

    Tony Svejcar; Raymond Angell; James A. Bradford; William Dugas; William Emmerich; Albert B. Frank; Tagir Gilmanov; Marshall Haferkamp; Douglas A. Johnson; Herman Mayeux; Pat Mielnick; Jack Morgan; Nicanor Z. Saliendra; Gerald E. Schuman; Phillip L. Sims; Kereith Snyder

    2008-01-01

    Rangelands account for almost half of the earth's land surface and may play an important role in the global carbon (C) cycle. We studied net ecosystem exchange (NEE) of C on eight North American rangeland sites over a 6-yr period. Management practices and disturbance regimes can influence NEE; for consistency, we compared ungrazed and undisturbed rangelands...

  14. Chapter 9: Carbon fluxes across regions.

    Science.gov (United States)

    Beverly E. Law; Dave Turner; John Campbell; Michael Lefsky; Michael Guzy; Osbert Sun; Steve Van Tuyl; Warren Cohen

    2006-01-01

    Scaling biogeochemical processes to regions, continents, and the globe is critical for understanding feedbacks between the biosphere and atmosphere in the analysis of global change. This includes the effects of changing atmospheric carbon dioxide, climate, disturbances, and increasing nitrogen deposition from air pollution (Ehleringer and Field 1993, Vitousek et al....

  15. Combined simulation of carbon and water isotopes in a global ocean model

    Science.gov (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  16. 1km Global Terrestrial Carbon Flux: Estimations and Evaluations

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.

    2017-12-01

    Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed

  17. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific

    Science.gov (United States)

    Buesseler, K. O.; Trull, T. W.; Steinberg, D. K.; Silver, M. W.; Siegel, D. A.; Saitoh, S.-I.; Lamborg, C. H.; Lam, P. J.; Karl, D. M.; Jiao, N. Z.; Honda, M. C.; Elskens, M.; Dehairs, F.; Brown, S. L.; Boyd, P. W.; Bishop, J. K. B.; Bidigare, R. R.

    2008-07-01

    The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's "twilight zone" (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3-week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency ( Teff) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150-m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500-m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended and sinking

  18. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Buesseler, K.O.; Trull, T.W.; Steinberg, D.K.; Silver, M.W.; Siegel, D.A.; Saitoh, S.-I.; Lamborg, C.H.; Lam, P.J.; Karl, D.M.; Jiao, N.Z.; Honda, M.C.; Elskens, M.; Dehairs, F.; Brown, S.L.; Boyd, P.W.; Bishop, J.K.B.; Bidigare, R.R.

    2008-06-10

    The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's 'twilight zone' (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency (T{sub eff}) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150 m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of

  19. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  1. Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels

    Science.gov (United States)

    Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.

    2010-12-01

    For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to

  2. Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface

    Science.gov (United States)

    Keitzl, T.; Mellado, J. P.; Notz, D.

    2016-12-01

    The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.

  3. Fugitive carbon dioxide: It's not hiding in the ocean

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1992-01-01

    The fugitive carbon is the difference between the 7 billion or so tons that spew as carbon dioxide from smokestacks and burning tropical forests and the 3.4 billion tons known to stay in the atmosphere. Finding the other 3 billion or 4 billion tons has frustrated researchers for the past 15 years. The oceans certainly take up some of it. Any forecast of global warming has to be based on how much of the carbon dioxide released by human activity will remain in the atmosphere, and predictions vary by 30% depending on the mix of oceanic and terrestrial processes assumed to be removing the gas. What's more, those predictions assume that the processes at work today will go on operating. But not knowing where all the carbon is going raises the unnerving possibility that whatever processes are removing it may soon fall down on the job without warning, accelerating any warming. Such concerns add urgency to the question of whether the ocean harbors the missing carbon. But there's no simple way to find out. The obvious strategy might seem to be to measure the carbon content of the ocean repeatedly to see how much it increases year by year. The trouble is that several billion tons of added carbon, though impressive on a human scale, are undetectable against the huge swings in ocean carbon that occur from season to season, year to year, and place to place

  4. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-12-01

    The coastal ocean is a marginal region of the global ocean, but is home to metabolically intense ecosystems which increase the structural complexity of the benthos. These ecosystems have the ability to alter the carbon chemistry of surrounding waters through their metabolism, mainly through processes which directly release or consume carbon dioxide. In this way, coastal habitats can engineer their environment by acting as sources or sinks of carbon dioxide and altering their environmental chemistry from the regional norm. In most coastal water masses, it is difficult to resolve the ecosystem effect on coastal carbon biogeochemistry due to the mixing of multiple offshore end members, complex geography or the influence of variable freshwater inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability of three Red Sea benthic coastal habitats (coral reefs, seagrass meadows and mangrove forests) to create characteristic ecosystem end-members, which deviate from the biogeochemistry of offshore source waters. This is done by both calculating non-conservative deviations in carbonate stocks collected over each ecosystem, and by quantifying net carbonate fluxes (in seagrass meadows and mangrove forests only) using 24 hour incubations. Results illustrate that carbonate stocks over ecosystems conform to broad ecosystem trends, which are different to the offshore end-member, and are influenced by inherited properties from surrounding ecosystems. Carbonate fluxes also show ecosystem dependent trends and further illustrate the importance of sediment processes in influencing CaCO3 fluxes in blue carbon benthic habitats, which warrants further attention. These findings show the respective advantages of studying both carbonate stocks and fluxes of coastal benthic ecosystems in order to

  5. Monitoring Forest Carbon Stocks and Fluxes in the Congo Basin

    OpenAIRE

    2010-01-01

    The Central African Forests Commission (COMIFAC) and its partners (OFAC, USAID, EC-JRC, OSFAC, WWF, WRI, WCS, GOFC-GOLD, START, UN-FAO) organized an international conference on "Monitoring of Carbon stocks and fluxes in the Congo Basin" in Brazzaville, Republic of Congo, 2-4 February 2010. The conference brought together leading international specialists to discuss approaches for quantifying stocks and flows of carbon in tropical forests of the Congo Basin. The conference provided a unique op...

  6. Fluvial Export Variability Of Limiting Nutrient Fluxes To The Indian Ocean From Kelani, Kalu and Gin Rivers Of Sri Lanka

    Science.gov (United States)

    Ranasinghage, P. N.; Silva, A. N.; Vlahos, P.

    2016-12-01

    Inorganic `reactive' nutrients hold the highest importance in understanding the role of limiting nutrients in the ocean since they facilitate marine biological productivity and carbon sequestration that would eventually pave the way to regulate the biogeochemical climate feedbacks. Significant inorganic fractions are expected to be exported episodically to the ocean from fluvial fluxes though this is poorly understood. Thus, no considerable amounts of published work regarding the fluxes from Sri Lankan freshwater streams have ever been recorded. A study was carried out to quantify the contribution of Kelani, Kalu and Gin Rivers, three major rivers in the wet zone of Sri Lanka, in exporting major limiting nutrient fluxes to the Indian Ocean; to understand the significance of their variability patterns with rainfall and understand differences in their inputs. The study was conducted during the summer monsoonal period from late August to early November at two-three week intervals where water samples were collected for ammonia, nitrite, nitrate, orthophosphate, silica, sulfate and iron analysis by Colorimetric Spectroscopy. Discharge and rainfall data were retrieved from the Department of Irrigation and Department of Meteorology, Sri Lanka respectively. According to Two Way ANOVA, none of the individual fluxes showed significant differences (p>0.1) both in their temporal and spatial variability suggesting that studied rivers respond similarly in fluvial transportation owing to the similar rainfall intensities observed during the study period in the wet zone. Linear Regression Analysis indicates that only PO43- (p<0.01), SO42- (p<0.01) and NO2-(p<0.01 for Kelani and Kalu; 0.0.1Key words; nutrients, fluvial, fluxes, Redfield ratios

  7. Partitioning Water Vapor and Carbon Dioxide Fluxes using Correlation Analysis

    Science.gov (United States)

    Scanlon, T. M.

    2008-12-01

    A variety of methods are currently available to partition water vapor fluxes (into components of transpiration and direct evaporation) and carbon dioxide fluxes (into components of photosynthesis and respiration), using chambers, isotopes, and regression modeling approaches. Here, a methodology is presented that accounts for correlations between high-frequency measurements of water vapor (q) and carbon dioxide (c) concentrations being influenced by their non-identical source-sink distributions and the relative magnitude of their constituent fluxes. Flux-variance similarity assumptions are applied separately to the stomatal and the non-stomatal exchange, and the flux components are identified by considering the q-c correlation. Water use efficiency for the vegetation, and how it varies with respect to vapor pressure deficit, is the only input needed for this approach that uses standard eddy covariance measurements. The method is demonstrated using data collected over a corn field throughout a growing season. In particular, the research focuses on the partitioning of the water flux with the aim of improving how direct evaporation is handled in soil-vegetation- atmosphere transfer models over the course of wetting and dry-down cycles.

  8. The effect of typhoon on particulate organic carbon flux in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2010-10-01

    Full Text Available Severe tropical storms play an important role in triggering phytoplankton blooms, but the extent to which such storms influence biogenic carbon flux from the euphotic zone is unclear. In 2008, typhoon Fengwong provided a unique opportunity to study the in situ biological responses including phytoplankton blooms and particulate organic carbon fluxes associated with a severe storm in the southern East China Sea (SECS. After passage of the typhoon, the sea surface temperature (SST in the SECS was markedly cooler (∼25 to 26 °C than before typhoon passage (∼28 to 29 °C. The POC flux 5 days after passage of the typhoon was 265 ± 14 mg C m−2 d−1, which was ∼1.7-fold that (140–180 mg C m−2 d−1 recorded during a period (June–August, 2007 when no typhoons occurred. A somewhat smaller but nevertheless significant increase in POC flux (224–225 mg C m−2 d−1 was detected following typhoon Sinlaku which occurred approximately 1 month after typhoon Fengwong, indicating that typhoon events can increase biogenic carbon flux efficiency in the SECS. Remarkably, phytoplankton uptake accounted for only about 5% of the nitrate injected into the euphotic zone by typhoon Fengwong. It is likely that phytoplankton population growth was constrained by a combination of light limitation and grazing pressure. Modeled estimates of new/export production were remarkably consistent with the average of new and export production following typhoon Fengwong. The same model suggested that during non-typhoon conditions approximately half of the export of organic carbon occurs via convective mixing of dissolved organic carbon, a conclusion consistent with earlier work at comparable latitudes in the open ocean.

  9. Precipitation as driver of carbon fluxes in 11 African ecosystems

    NARCIS (Netherlands)

    Merbold, L.; Ardo, J.; Arneth, A.; Scholes, R.J.; Nouvellon, Y.; Grandcourt, de A.; Archibald, S.; Bonnefonds, J.M.; Boulain, N.; Bruemmer, C.; Brueggemann, N.; Cappelaere, B.; Ceschia, E.; El-Khidir, H.A.M.; El-Tahir, B.A.; Falk, U.; Lloyd, J.; Kergoat, L.; Dantec, Le V.; Mougin, E.; Muchinda, M.; Mukelabai, M.M.; Ramier, D.; Roupsard, O.; Timouk, F.; Veenendaal, E.M.; Kutsch, W.L.

    2009-01-01

    This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available

  10. Ocean Heat and Carbon Uptake in Transient Climate Change: Identifying Model Uncertainty

    Science.gov (United States)

    Romanou, Anastasia; Marshall, John

    2015-01-01

    Global warming on decadal and centennial timescales is mediated and ameliorated by the oceansequestering heat and carbon into its interior. Transient climate change is a function of the efficiency by whichanthropogenic heat and carbon are transported away from the surface into the ocean interior (Hansen et al. 1985).Gregory and Mitchell (1997) and Raper et al. (2002) were the first to identify the importance of the ocean heat uptakeefficiency in transient climate change. Observational estimates (Schwartz 2012) and inferences from coupledatmosphere-ocean general circulation models (AOGCMs; Gregory and Forster 2008; Marotzke et al. 2015), suggest thatocean heat uptake efficiency on decadal timescales lies in the range 0.5-1.5 W/sq m/K and is thus comparable to theclimate feedback parameter (Murphy et al. 2009). Moreover, the ocean not only plays a key role in setting the timing ofwarming but also its regional patterns (Marshall et al. 2014), which is crucial to our understanding of regional climate,carbon and heat uptake, and sea-level change. This short communication is based on a presentation given by A.Romanou at a recent workshop, Oceans Carbon and Heat Uptake: Uncertainties and Metrics, co-hosted by US CLIVARand OCB. As briefly reviewed below, we have incomplete but growing knowledge of how ocean models used in climatechange projections sequester heat and carbon into the interior. To understand and thence reduce errors and biases inthe ocean component of coupled models, as well as elucidate the key mechanisms at work, in the final section we outlinea proposed model intercomparison project named FAFMIP. In FAFMIP, coupled integrations would be carried out withprescribed overrides of wind stress and freshwater and heat fluxes acting at the sea surface.

  11. TropFlux: air-sea fluxes for the global tropical oceans-description and evaluation

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.

    This paper evaluates several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data...

  12. A Coupled Epipelagic-Meso/Bathypelagic Particle Flux Model for the Bermuda Atlantic Time-series Station (BATS)/Oceanic Flux Program (OFP) Site

    Science.gov (United States)

    Glover, D. M.; Conte, M.

    2002-12-01

    Of considerable scientific interest is the role remineralization plays in the global carbon cycle. It is the ``biological pump'' that fixes carbon in the upper water column and exports it for long time periods to the deep ocean. From a global carbon cycle point-of-view, it is the processes that govern remineralization in the mid- to deep-ocean waters that provide the feedback to the biogeochemical carbon cycle. In this study we construct an ecosystem model that serves as a mechanistic link between euphotic processes and mesopelagic and bathypelagic processes. We then use this prognostic model to further our understanding of the unparalleled time-series of deep-water sediment traps (21+ years) at the Oceanic Flux Program (OFP) and the euphotic zone measurements (10+ years) at the Bermuda Atlantic Time-series Site (BATS). At the core of this mechanistic ecosystem model of the mesopelagic zone is a model that consists of an active feeding habit zooplankton, a passive feeding habit zooplankton, large detritus (sinks), small detritus (non-sinking), and a nutrient pool. As the detritus, the primary source of food, moves through the water column it is fed upon by the active/passive zooplankton pair and undergoes bacterially mediated remineralization into nutrients. The large detritus pool at depth gains material from the formation of fecal pellets from the passive and active zooplankton. Sloppy feeding habits of the active zooplankton contribute to the small detrital pool. Zooplankton mortality (both classes) also contribute directly to the large detritus pool. Aggregation and disaggregation transform detrital particles from one pool to the other and back again. The nutrients at each depth will gain from detrital remineralization and zooplankton excretion. The equations that model the active zooplankton, passive zooplankton, large detritus, small detritus, and nutrients will be reviewed, results shown and future model modifications discussed.

  13. Major role of marine vegetation on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    C. M. Duarte

    2005-01-01

    Full Text Available The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests to the global level and a top-down approach derived from considerations of global sediment balance and a compilation of the organic carbon content of vegeatated sediments. Up-scaling of individual burial estimates values yielded a total carbon burial in vegetated habitats of 111 Tmol C y-1. The total burial in unvegetated sediments was estimated to be 126 Tg C y-1, resulting in a bottom-up estimate of total burial in the ocean of about 244 Tg C y-1, two-fold higher than estimates of oceanic carbon burial that presently enter global carbon budgets. The organic carbon concentrations in vegetated marine sediments exceeds by 2 to 10-fold those in shelf/deltaic sediments. Top-down recalculation of ocean sediment budgets to account for these, previously neglected, organic-rich sediments, yields a top-down carbon burial estimate of 216 Tg C y-1, with vegetated coastal habitats contributing about 50%. Even though vegetated carbon burial contributes about half of the total carbon burial in the ocean, burial represents a small fraction of the net production of these ecosystems, estimated at about 3388 Tg C y-1, suggesting that bulk of the benthic net ecosystem production must support excess respiration in other compartments, such as unvegetated sediments and the coastal pelagic compartment. The total excess organic carbon available to be exported to the ocean is estimated at between 1126 to 3534 Tg C y-1, the bulk of which must be respired in the open ocean. Widespread loss of vegetated coastal habitats must have reduced carbon burial in the ocean by about 30 Tg C y-1, identifying the destruction of these ecosystems as an important loss of CO

  14. Reduction in Surface Ocean Carbon Storage across the Middle Miocene

    Science.gov (United States)

    Babila, T. L.; Sosdian, S. M.; Foster, G. L.; Lear, C. H.

    2017-12-01

    During the Middle Miocene, Earth underwent a profound climate shift from the warmth of the Miocene Climatic Optimum (MCO; 14-17 Ma) to the stable icehouse of today during the Middle Miocene Climate transition (MMCT). Elevated atmospheric carbon dioxide concentrations (pCO2) revealed by boron isotope records (δ11B) link massive volcanic outputs of Columbia River Flood Basalts to the general warmth of MCO. Superimposed on the long-term cooling trend (MMCT) is a gradual pCO2 decline and numerous positive carbon isotope (δ13C) excursions that indicate dynamic variations in the global carbon cycle. Enhanced organic carbon burial via marine productivity, increased silicate weathering and volcanic emission cessation are each invoked to explain the drawdown of pCO2. To better constrain the oceanic role in carbon sequestration over the Middle Miocene detailed records of carbonate chemistry are needed. We present high resolution Boron/Calcium (B/Ca) and δ13C records in planktonic foraminifer T.trilobus spanning 12-17 Ma at ODP 761 (tropical eastern Indian Ocean) to document changes in surface ocean carbonate chemistry. An overall 30% increase in B/Ca ratios is expressed as two stepwise phases occurring at 14.7 and 13 Ma. Cyclic B/Ca variations are coherent with complimentary δ13C records suggesting a tight coupling between ocean carbonate chemistry parameters. Lower resolution B/Ca data at DSDP 588 (Pacific) and ODP 926 (Atlantic) corroborate the trends observed at ODP 761. We employ a paired approach that combines B/Ca (this study) to δ11B (Foster et al., 2012) and an ad hoc calibration to estimate changes in surface ocean dissolved inorganic carbon (DIC). We estimate a substantial decrease in surface ocean DIC spanning the Middle Miocene that culminates with modern day like values. This gradual decline in surface ocean DIC is coeval with existing deep-ocean records which together suggests a whole ocean reduction in carbon storage. We speculate that enhanced weathering

  15. Development of improved space sampling strategies for ocean chemical properties: Total carbon dioxide and dissolved nitrate

    Science.gov (United States)

    Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.

    1995-01-01

    Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.

  16. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    Science.gov (United States)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is

  17. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  18. Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle

    Directory of Open Access Journals (Sweden)

    D. Iudicone

    2011-05-01

    Full Text Available The scientific motivation for this study is to understand the processes in the ocean interior controlling carbon transfer across 30° S. To address this, we have developed a unified framework for understanding the interplay between physical drivers such as buoyancy fluxes and ocean mixing, and carbon-specific processes such as biology, gas exchange and carbon mixing. Given the importance of density in determining the ocean interior structure and circulation, the framework is one that is organized by density and water masses, and it makes combined use of Eulerian and Lagrangian diagnostics. This is achieved through application to a global ice-ocean circulation model and an ocean biogeochemistry model, with both components being part of the widely-used IPSL coupled ocean/atmosphere/carbon cycle model.

    Our main new result is the dominance of the overturning circulation (identified by water masses in setting the vertical distribution of carbon transport from the Southern Ocean towards the global ocean. A net contrast emerges between the role of Subantarctic Mode Water (SAMW, associated with large northward transport and ingassing, and Antarctic Intermediate Water (AAIW, associated with a much smaller export and outgassing. The differences in their export rate reflects differences in their water mass formation processes. For SAMW, two-thirds of the surface waters are provided as a result of the densification of thermocline water (TW, and upon densification this water carries with it a substantial diapycnal flux of dissolved inorganic carbon (DIC. For AAIW, principal formatin processes include buoyancy forcing and mixing, with these serving to lighten CDW. An additional important formation pathway of AAIW is through the effect of interior processing (mixing, including cabelling that serve to densify SAMW.

    A quantitative evaluation of the contribution of mixing, biology and gas exchange to the DIC evolution per water mass reveals that

  19. An inter-comparison of six latent and sensible heat flux products over the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Lejiang Yu

    2011-11-01

    Full Text Available The latent heat fluxes (LHF and sensible heat fluxes (SHF over the Southern Ocean from six different data sets are inter-compared for the period 1988–2000. The six data sets include three satellite-based products, namely, the second version of the Goddard Satellite-Based Surface Turbulent Fluxes data set (GSSTF-2, the third version of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3 and the Japanese Ocean Fluxes Data Sets with Use of Remote Sensing Observations (J-OFURO; two global reanalysis products, namely, the National Centers for Environmental Prediction–Department of Energy Reanalysis 2 data set (NCEP-2 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis data set (ERA-40; and the Objectively Analyzed Air–Sea Fluxes for the Global Oceans data set (OAFlux. All these products reveal a similar pattern in the averaged flux fields. The zonal mean LHF fields all exhibit a continuous increase equatorward. With an exception of HOAPS-3, the zonal mean SHF fields display a minimum value near 50°S, increasing both pole- and equatorward. The differences in the standard deviation for LHF are larger among the six data products than the differences for SHF. Over the regions where the surface fluxes are significantly influenced by the Antarctic Oscillation and the Pacific–South American teleconnection, the values and distributions of both LHF and SHF are consistent among the six products. It was found that the spatial patterns of the standard deviations and trends of LHF and SHF can be explained primarily by sea–air specific humidity and temperature differences; wind speed plays a minor role.

  20. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  1. Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau

    Science.gov (United States)

    Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.

    2016-05-01

    We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.

  2. The role of nutricline depth in regulating the ocean carbon cycle.

    Science.gov (United States)

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G

    2008-12-23

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.

  3. Biological production in the Indian Ocean upwelling zones - Part 1: refined estimation via the use of a variable compensation depth in ocean carbon models

    Science.gov (United States)

    Geethalekshmi Sreeush, Mohanan; Valsala, Vinu; Pentakota, Sreenivas; Venkata Siva Rama Prasad, Koneru; Murtugudde, Raghu

    2018-04-01

    Biological modelling approach adopted by the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP-II) provided amazingly simple but surprisingly accurate rendition of the annual mean carbon cycle for the global ocean. Nonetheless, OCMIP models are known to have seasonal biases which are typically attributed to their bulk parameterisation of compensation depth. Utilising the criteria of surface Chl a-based attenuation of solar radiation and the minimum solar radiation required for production, we have proposed a new parameterisation for a spatially and temporally varying compensation depth which captures the seasonality in the production zone reasonably well. This new parameterisation is shown to improve the seasonality of CO2 fluxes, surface ocean pCO2, biological export and new production in the major upwelling zones of the Indian Ocean. The seasonally varying compensation depth enriches the nutrient concentration in the upper ocean yielding more faithful biological exports which in turn leads to accurate seasonality in the carbon cycle. The export production strengthens by ˜ 70 % over the western Arabian Sea during the monsoon period and achieves a good balance between export and new production in the model. This underscores the importance of having a seasonal balance in the model export and new productions for a better representation of the seasonality of the carbon cycle over upwelling regions. The study also implies that both the biological and solubility pumps play an important role in the Indian Ocean upwelling zones.

  4. Ocean carbon and heat variability in an Earth System Model

    Science.gov (United States)

    Thomas, J. L.; Waugh, D.; Gnanadesikan, A.

    2016-12-01

    Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.

  5. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    Science.gov (United States)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  6. Fluxes of Methane and Carbon Dioxide from a Subarctic Lake

    DEFF Research Database (Denmark)

    Jammet, Mathilde Manon

    ) and carbon dioxide (CO2) with the atmosphere. Yet uncertainties in the magnitude and drivers of these fluxes remain, partly due to a lack of direct observations covering all seasons of the year, but also because of the diversity in measurement methods that often miss components of the transport processes......Ongoing climate warming is expected to affect the carbon functioning of subarctic ecosystems. Lakes and wetlands, which are common ecosystems of the high northern latitudes, are of utmost interest in this context because they exchange large amounts of the climate-forcing gases methane (CH4......-out and the release of CH4 and CO2 was established. These results underline the crucial importance of shoulder seasons in the annual carbon emissions from seasonally frozen lakes. Overall, the lake was an important annual source of carbon to the atmosphere, partially compensating the higher, annual sink function...

  7. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  8. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  9. Scaling-up of CO2 fluxes to assess carbon sequestration in rangelands of Central Asia

    Science.gov (United States)

    Bruce K. Wylie; Tagir G. Gilmanov; Douglas A. Johnson; Nicanor Z. Saliendra; Larry L. Tieszen; Ruth Anne F. Doyle; Emilio A. Laca

    2006-01-01

    Flux towers provide temporal quantification of local carbon dynamics at specific sites. The number and distribution of flux towers, however, are generally inadequate to quantify carbon fluxes across a landscape or ecoregion. Thus, scaling up of flux tower measurements through use of algorithms developed from remote sensing and GIS data is needed for spatial...

  10. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    Directory of Open Access Journals (Sweden)

    R. E. Zeebe

    2012-01-01

    Full Text Available The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  11. The oceanic response to carbon emissions over the next century: investigation using three ocean carbon cycle models

    International Nuclear Information System (INIS)

    Chuck, A.; Tyrrell, T.; Holligan, P.M.; Totterdell, I.J.

    2005-01-01

    A recent study of coupled atmospheric carbon dioxide and the biosphere found alarming sensitivity of next-century atmospheric pCO 2 (and hence planetary temperature) to uncertainties in terrestrial processes. Here we investigate whether there is similar sensitivity associated with uncertainties in the behaviour of the ocean carbon cycle. We investigate this important question using three models of the ocean carbon cycle of varying complexity: (1) a new three-box oceanic carbon cycle model; (2) the HILDA multibox model with high vertical resolution at low latitudes; (3) the Hadley Centre ocean general circulation model (HadOCC). These models were used in combination to assess the quantitative significance (to year 2100 pCO 2 ) of potential changes to the ocean stimulated by global warming and other anthropogenic activities over the period 2000-2100. It was found that an increase in sea surface temperature and a decrease in the mixing rate due to stratification give rise to the greatest relative changes in pCO 2 , both being positive feedbacks. We failed to find any comparable large sensitivity due to the ocean

  12. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Science.gov (United States)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  13. Carbon Dioxide Emission Pathways Avoiding Dangerous Ocean Impacts

    OpenAIRE

    Kvale, K.; Zickfeld, K.; Bruckner, T.; Meissner, K. J.; Tanaka, K.; Weaver, A. J.

    2012-01-01

    Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-called guardrails) are defined in terms of global mean temperature, sea level rise, and ocean acidification. A global-mean climate model [the Aggregated Carbon Cycle, Atmospheric Chemistry and Climate Model (ACC2)] is coupled with an economic module [tak...

  14. Global assessment of ocean carbon export by combining satellite observations and food-web models

    Science.gov (United States)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  15. The potential of 230Th for detection of ocean acidification impacts on pelagic carbonate production

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2018-06-01

    Full Text Available Concentrations of dissolved 230Th in the ocean water column increase with depth due to scavenging and downward particle flux. Due to the 230Th scavenging process, any change in the calcium carbonate (CaCO3 fraction of the marine particle flux due to changes in biological CaCO3 hard-shell production as a consequence of progressing ocean acidification would be reflected in the dissolved 230Th activity. Our prognostic simulations with a biogeochemical ocean general circulation model using different scenarios for the reduction of CaCO3 production under ocean acidification and different greenhouse gas emission scenarios – the Representative Concentration Pathways (RCPs 8.5 to 2.6 – reveal the potential for deep 230Th measurements to detect reduced CaCO3 production at the sea surface. The time of emergence of an acidification-induced signal on dissolved 230Th is of the same order of magnitude as for alkalinity measurements. Interannual and decadal variability in factors other than a reduction in CaCO3 hard-shell production may mask the ocean-acidification-induced signal in dissolved 230Th and make detection of the pure CaCO3-induced signal more difficult so that only really strong changes in marine CaCO3 export would be unambiguously identifiable soon. Nevertheless, the impacts of changes in CaCO3 export production on marine 230Th are stronger than those for changes in POC (particulate organic carbon or clay fluxes.

  16. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    Science.gov (United States)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  17. Ocean fertilization, carbon credits and the Kyoto Protocol

    Science.gov (United States)

    Westley, M. B.; Gnanadesikan, A.

    2008-12-01

    Commercial interest in ocean fertilization as a carbon sequestration tool was excited by the December 1997 agreement of the Kyoto Protocol to the United Nations Convention on Climate Change. The Protocol commits industrialized countries to caps on net greenhouse gas emissions and allows for various flexible mechanisms to achieve these caps in the most economically efficient manner possible, including trade in carbon credits from projects that reduce emissions or enhance sinks. The carbon market was valued at 64 billion in 2007, with the bulk of the trading (50 billion) taking place in the highly regulated European Union Emission Trading Scheme, which deals primarily in emission allowances in the energy sector. A much smaller amount, worth $265 million, was traded in the largely unregulated "voluntary" market (Capoor and Ambrosi 2008). As the voluntary market grows, so do calls for its regulation, with several efforts underway to set rules and standards for the sale of voluntary carbon credits using the Kyoto Protocol as a starting point. Four US-based companies and an Australian company currently seek to develop ocean fertilization technologies for the generation of carbon credits. We review these plans through the lens of the Kyoto Protocol and its flexible mechanisms, and examine whether and how ocean fertilization could generate tradable carbon credits. We note that at present, ocean sinks are not included in the Kyoto Protocol, and that furthermore, the Kyoto Protocol only addresses sources and sinks of greenhouse gases within national boundaries, making open-ocean fertilization projects a jurisdictional challenge. We discuss the negotiating history behind the limited inclusion of land use, land use change and forestry in the Kyoto Protocol and the controversy and eventual compromise concerning methodologies for terrestrial carbon accounting. We conclude that current technologies for measuring and monitoring carbon sequestration following ocean fertilization

  18. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    Science.gov (United States)

    Foken, T.; Biermann, T.; Babel, W.; Ma, Y.

    2013-12-01

    With an approximate cover of 450,000 km2 on the Tibetan Plateau (TP), the Cyperaceae Kobresia pygmaea forms he world's largest alpine ecosystem. This species, especially adapted to grazing pressure, grows to a height of only 2-6 cm and can be found in an altitudinal range of 4000 to 5960 m a.s.l. A special characteristic of this ecosystem is the stable turf layer, which is built up from roots and plays a significant role in protecting soil from erosion. This is of great importance since soils on the TP store 2.5 % of the global soil organic carbon stocks. The aim of the investigation was the study of the carbon storage and the impact of human-induced land use change on these Kobresia pygmaea pastures. We therefore applied eddy-covariance measurements and modelling as a long-term control of the fluxes between the atmosphere and the pastures and 13C labelling for the investigation of flux partitioning, and chamber measurements to investigate the degradation of the pastures. Combining CO2 budgets observed in 2010 with eddy-covariance measurements and relative partitioning of Carbon fluxes estimated with 13C labelling enabled us to characterise the C turnover for the vegetation period with absolute fluxes within the plant-soil-atmosphere continuum. These results revealed that this ecosystem indeed stores a great amount of C in below-ground pools, especially in the root turf layer. To further investigate the importance of the root layer, the experiments in 2012 focused on flux measurements over the different surface types which make up the heterogeneity of the Kobresia pygmaea pastures and might result from degradation due to extensive grazing. The three surface types investigated with a LiCOR long-term monitoring chamber system include Kobresia pygmaea with intact turf layer (IRM), a surface type where the turf layer is still present but the vegetation is sparse and mainly consists of Cryptogam crusts (DRM) and finally areas without the turf layer (BS). According to

  19. The Ocean's Carbon Factory: Ocean Composition. The Growth Patterns of Phytoplankton Species

    Science.gov (United States)

    Gregg, Watson

    2000-01-01

    According to biological data recorded by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite, the ocean contains nearly half of all the Earth's photosynthesis activity. Through photosynthesis, plant life forms use carbon from the atmosphere, and in return, plants produce the oxygen that life requires. In effect, ocean chlorophyll works like a factory, taking carbon and "manufacturing" the air we breathe. Most ocean-bound photosynthesis is performed by single-celled plants called phytoplankton. "These things are so small," according to Michael Behrenfeld, a researcher at NASA Goddard Space Flight Center, "that if you take hundreds of them and stack them end-to-end, the length of that stack is only the thickness of a penny". The humble phytoplankton species plays a vital role in balancing the amounts of oxygen and carbon dioxide in the atmosphere. Therefore, understanding exactly how phytoplankton growth works is important.

  20. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade

    Science.gov (United States)

    Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.

  1. Inverse carbon dioxide flux estimates for the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Meesters, A.G.C.A.; Tolk, L.F.; Dolman, A.J. [Faculty of Earth and Life Sciences, VU University, Amsterdam (Netherlands); Peters, W.; Hutjes, R.W.A.; Vellinga, O.S.; Elbers, J.A. [Department Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen (Netherlands); Vermeulen, A.T. [Biomass, Coal and Environmental Research, Energy research Center of the Netherlands ECN, Petten (Netherlands); Van der Laan, S.; Neubert, R.E.M.; Meijer, H.A.J. [Centre for Isotope Research, Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen (Netherlands)

    2012-10-26

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2 uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.

  2. Changing fluxes of carbon and other solutes from the Mekong River.

    Science.gov (United States)

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  3. Influence of diatom diversity on the ocean biological carbon pump

    Science.gov (United States)

    Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe

    2018-01-01

    Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

  4. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton

    Science.gov (United States)

    Longhurst, Alan R.; Glen Harrison, W.

    1988-06-01

    Where the photic zone is a biological steady-state, the downward flux of organic material across the pycnocline to the interior of the ocean is thought to be balanced by upward turbulent flux of inorganic nitrogen across the nutricline. This model ignores a significant downward dissolved nitrogen flux caused by the diel vertical migration of interzonal zooplankton and nekton that feed in the photic zone at night and excrete nitrogenous compounds at depth by day. In the oligotrophic ocean this flux can be equivalent to the flux of particulate organic nitrogen from the photic zone in the form of faecal pellets and organic flocculates. Where nitrogen is the limiting plant nutrient, and the flux by diel migration of interzonal plankton is significant compared to other nitrogen exports from the photic zone, there must be an upward revision of previous estimates for the ratio of new to total primary production in the photic zone if a nutrient balance is to be maintained. This upward revision is of the order 5-100% depending on the oceanographic regime.

  5. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  6. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  7. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    Science.gov (United States)

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The role of ocean currents for carbonate platform stratigraphy (Invited)

    Science.gov (United States)

    Betzler, C.; Lindhorst, S.; Luedmann, T.; Eberli, G. P.; Reijmer, J.; Huebscher, C. P.

    2013-12-01

    Breaks and turnovers in carbonate bank growth and development record fluctuations in sea-level and environmental changes. For the carbonate banks of the Bahamas, the Maldives, the Queensland, and the Marion Plateau, sea-level changes and synchronous oceanographic and atmospheric circulation events were recorded through compositional and architectural changes. Most of these major carbonate edifices contain drift deposits, indicating that oceanic currents were a major driver of carbonate-bank evolution. It is proposed that such currents have a larger imprint on the growth patterns and the stratigraphic packaging of carbonates than previously thought. In the Bahamas, slope facies of carbonate banks exposed to deep oceanic currents are not arranged into sediment-texture controlled and depth-dependant strike-continuous facies belts. Facies patterns are controlled by the interplay of shallow-water input, succeeding sediment sorting as well as redistribution and erosion processes. This complements the classical windward - leeward classification of carbonate platform slopes and accounts for the significant and potentially dominant process of alongslope sediment transport and dispersal. Deep oceanic currents also have the potential to steepen the carbonate bank slopes, through sediment winnowing at the distal slope, such as for example in the Maldives. This process can be enhanced as the bank grows and expands in size which may accelerate currents. Oceanic current onset or amplification, however, may also account for slope steepening as an externally, i.e. climate-driven agent, thus forcing the banks into an aggradation mode of growth which is not a response to sea-level fluctuations or a result of the windward / leeward exposure of the bank edge. Ignorance of the impact of currents on platforms and platform slopes may lead to an erroneous conclusion that changes in sediment production, distribution, and morphologies of sediment bodies are features solely related to sea

  9. Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain

    Science.gov (United States)

    Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.

    2016-07-01

    Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin

  10. Upscaling Our Approach to Peatland Carbon Sequestration: Remote Sensing as a Tool for Carbon Flux Estimation.

    Science.gov (United States)

    Lees, K.; Khomik, M.; Clark, J. M.; Quaife, T. L.; Artz, R.

    2017-12-01

    Peatlands are an important part of the Earth's carbon cycle, comprising approximately a third of the global terrestrial carbon store. However, peatlands are sensitive to climatic change and human mismanagement, and many are now degraded and acting as carbon sources. Restoration work is being undertaken at many sites around the world, but monitoring the success of these schemes can be difficult and costly using traditional methods. A landscape-scale alternative is to use satellite data in order to assess the condition of peatlands and estimate carbon fluxes. This work focuses on study sites in Northern Scotland, where parts of the largest blanket bog in Europe are being restored from forest plantations. A combination of laboratory and fieldwork has been used to assess the Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and respiration of peatland sites in different conditions, and the climatic vulnerability of key peat-forming Sphagnum species. The results from these studies have been compared with spectral data in order to evaluate the extent to which remote sensing can function as a source of information for peatland health and carbon flux models. This work considers particularly the effects of scale in calculating peatland carbon flux. Flux data includes chamber and eddy covariance measurements of carbon dioxide, and radiometric observations include both handheld spectroradiometer results and satellite images. Results suggest that despite the small-scale heterogeneity and unique ecosystem factors in blanket bogs, remote sensing can be a useful tool in monitoring peatland health and carbon sequestration. In particular, this study gives unique insights into the relationships between peatland vegetation, carbon flux and spectral reflectance.

  11. Growth of carbon nanocone arrays on a metal catalyst: The effect of carbon flux ionization

    International Nuclear Information System (INIS)

    Levchenko, I.; Khachan, J.; Vladimirov, S. V.; Ostrikov, K.

    2008-01-01

    The growth of carbon nanocone arrays on metal catalyst particles by deposition from a low-temperature plasma is studied by multiscale Monte Carlo/surface diffusion numerical simulation. It is demonstrated that the variation in the degree of ionization of the carbon flux provides an effective control of the growth kinetics of the carbon nanocones, and leads to the formation of more uniform arrays of nanostructures. In the case of zero degree of ionization (neutral gas process), a width of the distribution of nanocone heights reaches 360 nm with the nanocone mean height of 150 nm. When the carbon flux of 75% ionization is used, the width of the distribution of nanocone heights decreases to 100 nm, i.e., by a factor of 3.6. A higher degree of ionization leads to a better uniformity of the metal catalyst saturation and the nanocone growth, thus contributing to the formation of more height-uniform arrays of carbon nanostructures.

  12. Warm ocean processes and carbon cycling in the Eocene.

    Science.gov (United States)

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  13. Carbon cycle, chemical erosion of continents and transfers to the oceans

    International Nuclear Information System (INIS)

    Amiotte Suchet, P.

    1995-01-01

    This study tries to define the processes that control the CO 2 consumption due to the chemical erosion of continents, to appreciate the spatial-temporal fluxes of consumed CO 2 , and to estimate the transfers of dissolved mineral carbon from the continents to the oceans. Complementary approaches using different scales of time and space are necessary to study all these processes. Chemical alteration of minerals from continental rocks is due to the carbonic acid indirectly produced by atmospheric CO 2 via the photosynthesis and the degradation of organic matter in soils. The transfer of dissolved CO 2 towards the oceans is done by the drainage waters of the river basins. Continental erosion develops at the interfaces of the biosphere, atmosphere and ocean reservoirs and is controlled by numerous geological, hydro-climatical, biological and anthropic factors. Seasonal variations of CO 2 consumption has been studied for the Garonne (France), Congo and Ubangui basins to determine the mechanisms that control this consumption. A predictive model has been developed to simulate the consumed CO 2 fluxes on continental surfaces for which the spatial distribution of lithology and drainage is known. This model has been validated using available data from the Garonne (France), Congo and Amazone basins. (J.S.). 272 refs., 78 figs., 41 tabs., 1 annexe

  14. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Accounting for urban biogenic fluxes in regional carbon budgets.

    Science.gov (United States)

    Hardiman, Brady S; Wang, Jonathan A; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Friedl, Mark A

    2017-08-15

    Many ecosystem models incorrectly treat urban areas as devoid of vegetation and biogenic carbon (C) fluxes. We sought to improve estimates of urban biomass and biogenic C fluxes using existing, nationally available data products. We characterized biogenic influence on urban C cycling throughout Massachusetts, USA using an ecosystem model that integrates improved representation of urban vegetation, growing conditions associated with urban heat island (UHI), and altered urban phenology. Boston's biomass density is 1/4 that of rural forests, however 87% of Massachusetts' urban landscape is vegetated. Model results suggest that, kilogram-for-kilogram, urban vegetation cycles C twice as fast as rural forests. Urban vegetation releases (R E ) and absorbs (GEE) the equivalent of 11 and 14%, respectively, of anthropogenic emissions in the most urban portions of the state. While urban vegetation in Massachusetts fully sequesters anthropogenic emissions from smaller cities in the region, Boston's UHI reduces annual C storage by >20% such that vegetation offsets only 2% of anthropogenic emissions. Asynchrony between temporal patterns of biogenic and anthropogenic C fluxes further constrains the emissions mitigation potential of urban vegetation. However, neglecting to account for biogenic C fluxes in cities can impair efforts to accurately monitor, report, verify, and reduce anthropogenic emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  17. Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats

    Science.gov (United States)

    Llort, Joan; Langlais, C.; Matear, R.; Moreau, S.; Lenton, A.; Strutton, Peter G.

    2018-02-01

    The vertical transport of surface water and carbon into ocean's interior, known as subduction, is one of the main mechanisms through which the ocean influences Earth's climate. New instrumental approaches have shown the occurrence of localized and intermittent subduction episodes associated with small-scale ocean circulation features. These studies also revealed the importance of such events for the export of organic matter, the so-called eddy-pump. However, the transient and localized nature of episodic subduction hindered its large-scale evaluation to date. In this work, we present an approach to detect subduction events at the scale of the Southern Ocean using measurements collected by biogeochemical autonomous floats (BGCArgo). We show how subduction events can be automatically identified as anomalies of spiciness and Apparent Oxygen Utilization (AOU) below the mixed layer. Using this methodology over more than 4,000 profiles, we detected 40 subduction events unevenly distributed across the Sothern Ocean. Events were more likely found in hot spots of eddy kinetic energy (EKE), downstream major bathymetric features. Moreover, the bio-optical measurements provided by BGCArgo allowed measuring the amount of Particulate Organic Carbon (POC) being subducted and assessing the contribution of these events to the total downward carbon flux at 100 m (EP100). We estimated that the eddy-pump represents less than 19% to the EP100 in the Southern Ocean, although we observed particularly strong events able to locally duplicate the EP100. This approach provides a novel perspective on where episodic subduction occurs that will be naturally improved as BGCArgo observations continue to increase.

  18. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    Science.gov (United States)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  19. Carbonate preservation during the 'mystery interval' in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    maximum is a feature noted across the world oceans and considered to signify carbonate preservation, although it is missing from many sediment cores from the eastern equatorial Pacific, tropical Atlantic and subtropical Indian Ocean The carbonate...

  20. Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes

    Science.gov (United States)

    Santschi, Peter H.; Anderson, Robert F.; Fleisher, Martin Q.; Bowles, Walter

    1991-06-01

    Fluxes of reactive chemical species across the sediment-water interface can profoundly influence the dominant biogeochemical cycles in the worlds ocean. However, reliable in-situ measurements of benthic fluxes of many reactive species cannot be carried out without adjustment of stirring rates inside benthic flux chambers to match boundary layer conditions prevailing outside. A simple method to compare flow levels consists of measurements of gypsum dissolution rates inside benthic chambers and on the seafloor. The measurement of the diffusion-controlled dissolution rate of gypsum allows the estimation of the diffusive sublayer thickness and the time-averaged bottom stress on the seafloor. This method had previously been intercalibrated with the stress sensor method in flumes and inside benthic chambers. We describe here free-vehicle deployments of alabaster plates on the bottom of the ocean which gave results consistent with hydrodynamic theory. Errors in the calculated diffusive sublayer thicknesses were estimated to be about 10-15% for typical deployment conditions in the ocean. Current velocities 5 m off the bottom, which were measured concurrently during two deployments, allowed for comparisons with hydrodynamic predictions of diffusive sublayer thicknesses. The values obtained this way agreed within 15%. The measured mass transfer velocity was found to correlate with the plate dimension L, to the power of ⅓. This confirms the theoretical procedure for extrapolating to infinite plate size when calculating the sublayer impedance of solute fluxes from sediments (where L is large). Typical values of diffusive sublayer thicknesses, corrected to infinite plate size, were 1200 μm for current velocities, U100, of 2 cm s-1, and 500 μm at 8 cm s-1. Furthermore, values of friction velocities calculated from alabaster dissolution were compared with those using stress sensors. Gypsum plate values of u* were 0 and 30% lower than skin friction values of u*, at u* values

  1. Intra-slab COH fluid fluxes evidenced by fluid-mediated decarbonation of lawsonite eclogite-facies altered oceanic metabasalts

    Science.gov (United States)

    Vitale Brovarone, Alberto; Chu, Xu; Martin, Laure; Ague, Jay J.; Monié, Patrick; Groppo, Chiara; Martinez, Isabelle; Chaduteau, Carine

    2018-04-01

    The interplay between the processes controlling the mobility of H2O and C-bearing species during subduction zone metamorphism exerts a critical control on plate tectonics and global volatile recycling. Here we present the first study on fresh, carbonate-bearing, lawsonite eclogite-facies metabasalts from Alpine Corsica, France, which reached the critical depths at which important devolatilization reactions occur in subducting slabs. The studied samples indicate that the evolution of oceanic crustal sequences subducted under present-day thermal regimes is dominated by localized fluid-rock interactions that are strongly controlled by the nature and extent of inherited (sub)seafloor hydrothermal processes, and by the possibility of deep fluids to be channelized along inherited or newly-formed discontinuities. Fluid channelization along inherited discontinuities controlled local rehydration and dehydration/decarbonation reactions and the stability of carbonate and silicate minerals at the blueschist-eclogite transition. Fluid-mediated decarbonation was driven by upward, up-temperature fluid flow in the inverted geothermal gradient of a subducting oceanic slab, a process that has not been documented in natural samples to date. We estimate that the observed fluid-rock reactions released 20-60 kg CO2 per m3 of rock (i.e. 0.7-2.1 wt% CO2), which is in line with the values predicted from decarbonation of metabasalts in open systems at these depths. Conversely, the estimated time-integrated fluid fluxes (20-50 t/m2) indicate that the amount of carbon transported by channelized fluid flow within the volcanic part of subducting oceanic plates is potentially much higher than previous numerical estimates, testifying to the percolation of C-bearing fluids resulting from devolatilization/dissolution processes operative in large reservoirs.

  2. Thermodynamic Cconstraints on Coupled Carbonate-Pyrite Weathering Dynamics and Carbon Fluxes

    Science.gov (United States)

    Winnick, M.; Maher, K.

    2017-12-01

    Chemical weathering within the critical zone regulates global biogeochemical cycles, atmospheric composition, and the supply of key nutrients to terrestrial and aquatic ecosystems. Recent studies suggest that thermodynamic limits on solute production act as a first-order control on global chemical weathering rates; however, few studies have addressed the factors that set these thermodynamic limits in natural systems. In this presentation, we investigate the effects of soil CO2 concentrations and pyrite oxidation rates on carbonate dissolution and associated carbon fluxes in the East River watershed in Colorado, using concentration-discharge relationships and thermodynamic constraints. Within the shallow subsurface, soil respiration rates and moisture content determine the extent of carbonic acid-promoted carbonate dissolution through their modulation of soil pCO2 and the balance of open- v. closed-system weathering processes. At greater depths, pyrite oxidation generates sulfuric acid, which alters the approach to equilibrium of infiltrating waters. Through comparisons of concentration-discharge data and reactive transport model simulations, we explore the conditions that determine whether sulfuric acid reacts to dissolve additional carbonate mineral or instead reacts with alkalinity already in solution - the balance of which determines watershed carbon flux budgets. Our study highlights the importance of interactions between the chemical structure of the critical zone and the hydrologic regulation of flowpaths in determining concentration-discharge relationships and overall carbon fluxes.

  3. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2010-07-01

    Full Text Available In a sensitivity experiment, an eddy-permitting ocean general circulation model is forced with realistic freshwater fluxes from the Greenland Ice Sheet, averaged for the period 1991–2000. The fluxes are obtained with a mass balance model for the ice sheet, forced with the ERA-40 reanalysis dataset. The freshwater flux is distributed around Greenland as an additional term in prescribed runoff, representing seasonal melting of the ice sheet and a fixed year-round iceberg calving flux, for 8.5 model years. By adding Greenland freshwater fluxes with realistic geographical distribution and seasonality, the experiment is designed to investigate the oceanic response to a sudden and spatially/temporally uniform amplification of ice sheet melting and discharge, rather than localized or gradual changes in freshwater flux. The impacts on regional hydrography and circulation are investigated by comparing the sensitivity experiment to a control experiment, without additional fluxes. By the end of the sensitivity experiment, the majority of additional fresh water has accumulated in Baffin Bay, and only a small fraction has reached the interior of the Labrador Sea, where winter mixed layer depth is sensitive to small changes in salinity. As a consequence, the impact on large-scale circulation is very slight. An indirect impact of strong freshening off the west coast of Greenland is a small anti-cyclonic component to the circulation around Greenland, which opposes the wind-driven cyclonic circulation and reduces net southward flow through the Canadian Archipelago by ~10%. Implications for the post-2000 acceleration of Greenland mass loss are discussed.

  4. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  5. Gradient flux measurements of sea-air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment

    Science.gov (United States)

    Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.

    2018-04-01

    Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.

  6. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  7. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  8. Inertial-dissipation methods and turbulent fluxes at the air-ocean interface

    DEFF Research Database (Denmark)

    Fairall, C. W.; Larsen, Søren Ejling

    1986-01-01

    The use of high frequency atmospheric turbulence properties (inertial subrange spectra, structure function parameters or dissipation rates) to infer surface fluxes of momentum, sensible heat and latent heat is more practical for most ocean going platforms than direct covariance measurement....... The relationships required to deduce the fluxes from such data are examined in detail in this paper and several ambiguities and uncertainties are identified. It is noted that, over water, data on water vapor properties (the dimensionless functions for the mean profile, the structure function parameter...... and the variance transport term) are extremely sparse and the influence of sea spray is largely unknown. Special attention is given to flux estimation on the basis of the structure function formalism. Existing knowledge about the relevant similarity functions is summarized and discussed in light of the ambiguities...

  9. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  10. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth; Myers, Paul G.; Hu, Xianmin; Mucci, Alfonso

    2018-02-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC) and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2) water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d-1 m-2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10-3 Tg C d-1. TA and the oxygen isotope ratio of water (δ18O-H2O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will

  11. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    J. Mol

    2018-02-01

    Full Text Available The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL onto the shelf. Profiles of DIC and total alkalinity (TA taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4 configuration of the Nucleus of European Modelling of the Ocean (NEMO framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2 water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d−1 m−2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10−3 Tg C d−1. TA and the oxygen isotope ratio of water (δ18O-H2O are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air–sea fluxes of carbon dioxide (CO2 in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis

  12. Carbon Fluxes at the AmazonFACE Research Site

    Science.gov (United States)

    Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.

    2017-12-01

    The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE

  13. Counterintuitive Constraints on Chaos Formation Set by Heat Flux through Europa's Ocean

    Science.gov (United States)

    Goodman, J. C.

    2013-12-01

    Models for the formation of disruptive chaos features on the icy surface of Europa fall into two broad categories: either chaos is formed when basal heating causes localized melting and thinning of the ice shell, or basal heating drives diapiric convection within the ice shell. We argue that in both of these cases, heating of the ice shell from below does not lead to chaos formation at the location of heating. If chaos is formed when a localized oceanic heat source, such as a hydrothermal plume, "melts through" the ice crust, we must consider what happens to the melted liquid. If Europa's ocean is salty, the melt will form a buoyant pool inside the melted cavity, leading to a stable interface between cold fresh meltwater and warm salty seawater. This stable interface acts like an ablative heat shield, protecting the ice from further damage. Some heat can be transferred across the stable layer by double diffusion, but this transfer is very inefficient. We calculate that local ocean heating cannot be balanced by local flux through the stable layer: instead, the warm ocean water must spread laterally until it is delivering heat to the ice base on a regional or global scale (a heating zone hundreds or thousands of km across, for conservative parameters.) If chaos is formed by diapiric solid-state convection within the ice shell, many investigators have assumed that diapirism and chaos should be most prevalent where the basal heat flux is strongest. We argue that this is not the case. In Rayleigh-Benard convection, increasing the heat flux will make convection more vigorous --- if and only if the convecting layer thickness does not change. We argue that increased basal heat flux will thin the ice shell, reducing its Rayleigh number and making convection less likely, not more. This insight allows us to reverse the logic of recent discussions of the relationship between ocean circulation and chaos (for instance, Soderlund et al, 2013 LPSC). We argue that global oceanic

  14. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Chevet, G.

    2010-01-01

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author) [fr

  15. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  16. Gradient flux measurements of sea–air DMS transfer during the Surface Ocean Aerosol Production (SOAP experiment

    Directory of Open Access Journals (Sweden)

    M. J. Smith

    2018-04-01

    Full Text Available Direct measurements of marine dimethylsulfide (DMS fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP voyage in February–March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L−1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC technique using atmospheric pressure chemical ionization–mass spectrometry (API-CIMS and the gradient flux (GF technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean–Atmosphere Response Experiment gas transfer algorithm (COAREG. A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89. A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG

  17. Ocean carbon sequestration by fertilization: An integrated bioeochemical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N.; Sarmiento, J.L.; Gnandesikan, A.

    2005-05-31

    Under this grant, the authors investigated a range of issues associated with the proposal to fertilize the ocean with nutrients (such as iron) in order to increase the export of organic matter from the ocean's near surface waters and consequently increase the uptake of CO{sub 2} from the atmosphere. There are several critical scientific questions that have the potential to be make-or-break issues for this proposed carbon sequestration mechanism: (1) If iron is added to the ocean, will export of organic carbon from the surface actually occur? Clearly, if no export occurs, then there will be no sequestration. (2) if iron fertilization does lead to export of organic carbon from the surface of the ocean, how much CO{sub 2} will actually be removed from the atmosphere? Even if carbon is removed from the surface of the ocean, this does not guarantee that there will be significant removal of CO{sub 2} from the atmosphere, since the CO{sub 2} may be supplied by a realignment of dissolved inorganic carbon within the ocean. (3) What is the time scale of any sequestration that occurs? If sequestered CO{sub 2} returns to the atmosphere on a relatively short time scale, iron fertilization will not contribute significantly to slowing the growth of atmospheric CO{sub 2}. (4) Can the magnitude of sequestration be verified? If verification is extremely difficult or impossible, this option is likely to be viewed less favorably. (5) What unintended consequences might there be from fertilizing the ocean with iron? If these are severe enough, they will be a significant impact on policy decisions. Most research on carbon sequestration by fertilization has focused on the first of these issues. Although a number of in situ fertilization experiments have successfully demonstrated that the addition of iron leads to a dramatic increase in ocean productivity, the question of whether this results in enhanced export remains an open one. The primary focus of the research was on the

  18. {sup 10}Be/{sup 230}Th ratios as proxy for particle flux in the equatorial Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.F.; Fleisher, M.Q. [LDEO of Columbia Univ. (United States); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Particulate {sup 10}Be/{sup 230}Th ratios collected by sediment traps in the central equatorial Pacific Ocean exhibit a positive correlation with particle flux, but little or no correlation with particle composition. (author) 1 fig., 4 refs.

  19. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D'Orbigny...

  20. Seasonal variability of the vertical fluxes of @iGlobigerina bulloides@@ (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of @iGlobigerina bulloides@@ (@i...

  1. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D...

  2. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  3. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  4. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  5. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    Directory of Open Access Journals (Sweden)

    A. Yool

    2013-09-01

    Full Text Available Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2 emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and – via ocean acidification – chemical changes as direct and indirect results of these emissions. Given strong biophysical coupling, the marine biota is also expected to experience strong changes in response to this anthropogenic forcing. Here we examine the large-scale response of ocean biogeochemistry to climate and acidification impacts during the 21st century for Representative Concentration Pathways (RCPs 2.6 and 8.5 using an intermediate complexity global ecosystem model, MEDUSA-2.0. The primary impact of future change lies in stratification-led declines in the availability of key nutrients in surface waters, which in turn leads to a global decrease (1990s vs. 2090s in ocean productivity (−6.3%. This impact has knock-on consequences for the abundance of the low trophic level biogeochemical actors modelled by MEDUSA-2.0 (−5.8%, and these would be expected to similarly impact higher trophic level elements such as fisheries. Related impacts are found in the flux of organic material to seafloor communities (−40.7% at 1000 m, and in the volume of ocean suboxic zones (+12.5%. A sensitivity analysis removing an acidification feedback on calcification finds that change in this process significantly impacts benthic communities, suggesting that a~better understanding of the OA-sensitivity of calcifying organisms, and their role in ballasting sinking organic carbon, may significantly improve forecasting of these ecosystems. For all processes, there is geographical variability in change – for instance, productivity declines −21% in the Atlantic and increases +59% in

  6. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    Science.gov (United States)

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  7. Response of air-sea carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    Science.gov (United States)

    Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.

    2010-07-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net air-sea carbon fluxes are small, which is due to several effects, two of which stand out: first, colder sea surface temperature leads to a more effective solubility pump but also to increased sea ice concentration which blocks air-sea exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  8. Bacteria in the greenhouse: Modeling the role of oceanic plankton in the global carbon cycle

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Fasham, M.J.R.

    1992-01-01

    To plan effectively to deal with the greenhouse effect, a fundamental understanding is needed of the biogeochemical and physical machinery that cycles carbon in the global system; in addition, models are needed of the carbon cycle to project the effects of increasing carbon dioxide. In this chapter, a description is given of efforts to simulate the cycling of carbon and nitrogen in the upper ocean, concentrating on the model's treatment of marine phytoplankton, and what it reveals of their role in the biogeochemical cycling of carbon between the ocean and atmosphere. The focus is on the upper ocean because oceanic uptake appears to regulate the level of carbon dioxide in the atmosphere

  9. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    Science.gov (United States)

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  10. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Wijnbladh, Erik; Joensson, Bror Fredrik; Kumblad, Linda

    2006-01-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  11. Precipitation as driver of carbon fluxes in 11 African ecosystems

    Directory of Open Access Journals (Sweden)

    L. Merbold

    2009-06-01

    Full Text Available This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available ranged in mean annual rainfall from 320 mm (Sudan to 1150 mm (Republic of Congo and include a spectrum of vegetation types (or land cover (open savannas, woodlands, croplands and grasslands. Given the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies in these highly seasonal environments.

    Values for maximum net carbon assimilation rates (photosynthesis ranged from −12.5 μmol CO2 m−2 s−1 in a dry, open Millet cropland (C4-plants up to −48 μmol CO2 m−2 s−1 for a tropical moist grassland. Maximum carbon assimilation rates were highly correlated with mean annual rainfall (r2=0.74. Maximum photosynthetic uptake rates (Fpmax were positively related to satellite-derived fAPAR. Ecosystem respiration was dependent on temperature at all sites, and was additionally dependent on soil water content at sites receiving less than 1000 mm of rain per year. All included ecosystems dominated by C3-plants, showed a strong decrease in 30-min assimilation rates with increasing water vapour pressure deficit above 2.0 kPa.

  12. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    Science.gov (United States)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  13. Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-series Study site)

    Science.gov (United States)

    Signorini, Sergio R.; McClain, Charles R.; Christian, James R.

    2001-01-01

    An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon fluxes in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The sea-air flux ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom flux of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso Sea by the warmest SST and lowest surface salinity of the period (1992-1998).

  14. Estimation of the atmosphere-ocean fluxes of greenhouse gases and aerosols at the finer resolution of the coastal ocean.

    Science.gov (United States)

    Vieira, Vasco; Sahlée, Erik; Jurus, Pavel; Clementi, Emanuela; Pettersson, Heidi; Mateus, Marcos

    2016-04-01

    The balances and fluxes of greenhouse gases and aerosols between atmosphere and ocean are fundamental for Earth's heat budget. Hence, the scientific community needs to know and simulate them with accuracy in order to monitor climate change from Earth-Observation satellites and to produce reliable estimates of climate change using Earth-System Models (ESM). So far, ESM have represented earth's surface with coarser resolutions so that each cell of the marine domain is dominated by the open ocean. In such case it is enough to use simple algorithms considering the wind speed 10m above sea-surface (u10) as sole driver of the gas transfer velocity. The formulation by Wanninkhof (1992) is broadly accepted as the best. However, the ESM community is becoming increasingly aware of the need to model with finer resolutions. Then, it is no longer enough to only consider u10 when modelling gas transfer velocities across the coastal oceans' surfaces. More comprehensive formulations are required that adjust better to local conditions by also accounting for the effects of sea-surface agitation, wave breaking, atmospheric stability of the Surface Boundary Layer, current drag with the bottom, surfactants and rain. Accurate algorithms are also fundamental to monitor atmosphere and ocean greenhouse gas concentrations using satellite data and reverse modelling. Past satellite missions ERS, Envisat, Jason-2, Aqua, Terra and Metop, have already been remotely sensing the ocean's surface at much finer resolutions than ESM using instruments like MERIS, MODIS, AMR, AATSR, MIPAS, Poseidon-3, SCIAMACHY, SeaWiFS, and IASI. The planned new satellite missions Sentinel-3, OCO-2 and GOSAT will further increase the resolutions. We developed a framework to congregate competing formulations for the estimation of the solubility and transfer velocity of virtually any gas on the biosphere taking into consideration the atmosphere and ocean fundamental variables and their derived geophysical processes

  15. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  16. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  17. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    KAUST Repository

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-01-01

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic

  18. Management effects on carbon fluxes in boreal forests (Invited)

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  19. Methanethiol Concentrations and Sea-Air Fluxes in the Subarctic NE Pacific Ocean

    Science.gov (United States)

    Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.

    2017-12-01

    Exchange of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and sea-air fluxes is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. Sea-air fluxes of MeSH averaged 15% of the combined DMS+MeSH flux, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.

  20. Evolution of organic carbon burial in the Global Ocean during the Neogene

    Science.gov (United States)

    LI, Z.; Zhang, Y.

    2017-12-01

    Although only a small fraction of the organic carbon (OC) that rains from surface waters is eventually buried in the sediments, it is a process that controls the organic sub-cycle of the long-term carbon cycle, and the key for atmospheric O2, CO2 and nutrient cycling. Here we constrain the spatiotemporal variability of OC burial by quantifying the total organic carbon (TOC) mass accumulation rate (MAR) over the Neogene (23.0-2.6 Ma) by compiling the TOC, age model and sediment density data from sites retrieved by the Deep Sea Drilling Program, Ocean Drilling Program, and Integrated Ocean Drilling Program. We screened all available sites which yielded 80 sites with adequate data quality, covering all major ocean basins and sedimentary depositional environments. All age models are updated to the GTS 2012 timescale so the TOC MAR records from different sites are comparable. Preliminary results show a clear early Miocene peak of OC burial in many sites related to high sediment flux which might reflect the orogenic uplift and/or glacier erosion. Places that receive high influx of terrigenous inputs become "hotspots" for Neogene burial of OC. At "open ocean" sites, OC burial seems to be more impacted by marine productivity changes, with a pronounced increase during the middle Miocene "Monterey Formation" and late Miocene - early Pliocene "Biogenic Bloom". Upon the completion of the data collection, we will further explore the regional and global OC burial in the context of tectonic uplift, climate change and the evolution of primary producers and consumers during the last 23 million years of Earth history.

  1. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean

    Science.gov (United States)

    Lana, A.; Bell, T. G.; Simó, R.; Vallina, S. M.; Ballabrera-Poy, J.; Kettle, A. J.; Dachs, J.; Bopp, L.; Saltzman, E. S.; Stefels, J.; Johnson, J. E.; Liss, P. S.

    2011-03-01

    The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over the last decade, new global monthly climatologies of surface ocean DMS concentration and sea-to-air emission flux are presented as updates of those constructed 10 years ago. Interpolation/extrapolation techniques were applied to project the discrete concentration data onto a first guess field based on Longhurst's biogeographic provinces. Further objective analysis allowed us to obtain the final monthly maps. The new climatology projects DMS concentrations typically in the range of 1-7 nM, with higher levels occurring in the high latitudes, and with a general trend toward increasing concentration in summer. The increased size and distribution of the observations in the DMS database have produced in the new climatology substantially lower DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new DMS concentration climatology in conjunction with state-of-the-art parameterizations for the sea/air gas transfer velocity and climatological wind fields, we estimate that 28.1 (17.6-34.4) Tg of sulfur are transferred from the oceans into the atmosphere annually in the form of DMS. This represents a global emission increase of 17% with respect to the equivalent calculation using the previous climatology. This new DMS climatology represents a valuable tool for atmospheric chemistry, climate, and Earth System models.

  2. Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    W. Koeve

    2010-08-01

    Full Text Available The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N2-production may have additional, "collateral" effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine oxygen minimum zones (OMZ focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N2-production and including various combinations of dissimilatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (ΔCO2:ΔN2, varying between 1.7 and 6.5, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where suboxic N-conversions are supported by diffusive fluxes of NH4+ originating from neighbouring waters with sulphate reduction, much lower values of ΔCO2:ΔN2 can be found. However, accounting for concomitant diffusive fluxes of CO2, the ratio approaches higher values similar to those computed for open ocean OMZs. Based on this analysis, we question the significance of collateral effects concerning the trophic

  3. Cycling of organic carbon in the ocean: use of naturally occuring radiocarbon as a long and short term tracer

    International Nuclear Information System (INIS)

    Williams, P.M.; Linick, T.W.

    1975-01-01

    The natural radiocarbon activities of surface, bathypelagic and benthic marine organisms have been measured for samples collected from the north central, north eastern and central equatorial Pacific Ocean and from the Ross Sea in Antarctica. These measurements show that 1961-1962 bomb-carbon-14 has been incorporated into the bathypelagic specimens in varying amounts. Thus, pollutants introduced into surface waters of the oceans may be removed more or less rapidly from the euphotic zone into the deep water depending upon particular food chain mechanisms. These results are discussed in relation to the cycling of disolved organic carbon, the flux of particulate organic carbon through the seawater column into the sediments, and to the oxidation rates of organic matter in the deep sea. (author)

  4. Carbon dioxide, water vapour and energy fluxes over a semi ...

    Indian Academy of Sciences (India)

    42

    of energy fluxes showed dominance of latent heat fluxes over sensible heat flux. .... for measurement of air temperature, rainfall, relative humidity, wind speed etc. ... within the radius of 100 m around the tower by using plant canopy analyzer ..... 2001), similar mechanisms might operate in our study resulting in flux deficit.

  5. Dissolved black carbon along the land to ocean continuum of Paraiba do Sul River, Brazil

    Science.gov (United States)

    Marques da Silva Junior, Jomar; Dittmar, Thorsten; Niggemann, Jutta; Gomes de Almeida, Marcelo; de Rezende, Carlos Eduardo

    2016-04-01

    Rivers annually carry 25-28 Tg of pyrogenic dissolved organic matter (or dissolved black carbon, DBC) into the ocean, which is equivalent to about 10% of the entire land-ocean flux of dissolved organic carbon (Jaffé et al., Science 340, 345-347). Objective of this study was to identify the main processes behind the release and turnover of DBC on a riverine catchment scale. As model system we chose the land to ocean continuum of Paraíba do Sul River (Brazil), the only river system for which long-term DBC flux data exist (Dittmar, Rezende et al., Nature Geoscience 5, 618-622). The catchment was originally covered by Atlantic rain forest (mainly C3 plants) which was almost completely destroyed over the past centuries by slash-and-burn. As a result, large amounts of wood-derived charcoal reside in the soils. Today, fire-managed pasture and sugar cane (both dominated by C4 plants) cover most of the catchment. Water samples were collected at 24 sites along the main channel of the river, at 14 sites of the main tributaries and at 21 sites along the salinity gradient in the estuary and up to 35 km offshore. Sampling was performed in the wet seasons of 2013 and 2014, and the dry season of 2013. DBC was determined on a molecular level as benzenepolycarboxylic acids after nitric acid oxidation (Dittmar, Limnology and Oceanography: Methods 6, 230-235). Stable carbon isotopes (δ13C) were determined in solid phase extractable dissolved organic carbon (SPE-DOC) to distinguish C4 and C3 sources. Our results clearly show a relationship between hydrology and DBC concentrations in the river, with highest DBC concentrations in the wet season and lowest in the dry season. This relationship indicates that DBC is mainly mobilized from the upper soil horizons during heavy rainfalls. A significant correlation between DBC concentrations and δ13C-SPE-DOC indicated that most of DBC in the river system originates from C3 plants, i.e. from the historic burning event of the Atlantic rain

  6. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, David [North Carolina State Univ., Raleigh, NC (United States); Osburn, Christopher [North Carolina State Univ., Raleigh, NC (United States); Oberbauer, Steven [Florida Intl Univ., Miami, FL (United States); Oviedo Vargas, Diana [North Carolina State Univ., Raleigh, NC (United States); Dierick, Diego [Florida Intl Univ., Miami, FL (United States)

    2017-03-27

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving discharge of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.

  7. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    International Nuclear Information System (INIS)

    Li Dan.; Jinjun Ji

    2007-01-01

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m 2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  8. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    Science.gov (United States)

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  9. Forest inventory-based estimation of carbon stocks and flux in California forests in 1990.

    Science.gov (United States)

    Jeremy S. Fried; Xiaoping. Zhou

    2008-01-01

    Estimates of forest carbon stores and flux for California circa 1990 were modeled from forest inventory data in support of California’s legislatively mandated greenhouse gas inventory. Reliable estimates of live-tree carbon stores and flux on timberlands outside of national forest could be calculated from periodic inventory data collected in the 1980s and 1990s;...

  10. Partitioning of net carbon dioxide flux measured by automatic transparent chamber

    Science.gov (United States)

    Dyukarev, EA

    2018-03-01

    Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.

  11. Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

    Science.gov (United States)

    Landolfi, A.; Somes, C. J.; Koeve, W.; Zamora, L. M.; Oschlies, A.

    2017-08-01

    There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (˜+5 Tg N y-1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.

  12. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom

    Digital Repository Service at National Institute of Oceanography (India)

    Smetacek, V.; Klaas, C.; Strass, V.H.; Assmy, P.; Montresor, M.; Cisewski, B.; Savoye, N.; Webb, A.; d’Ovidio, F.; Arrieta, J.M.; Bathmann, U.; Bellerby, R.; Berg, G.M.; Croot, P.; Gonzalez, S.; Henjes, J.; Herndl, G.J.; Hoffmann, L.J.; Leach, H.; Losch, M.; Mills, M.M.; Neill, C.; Peeken, I.; Rottgers, R.; Sachs, O.; Sauter, E.; Schmidt, M.M.; Schwarz, J.; Terbruggen, A.; Wolf-Gladrow, D.

    Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately...

  13. Intercomparison of Ocean Color Algorithms for Picophytoplankton Carbon in the Ocean

    Directory of Open Access Journals (Sweden)

    Víctor Martínez-Vicente

    2017-12-01

    Full Text Available The differences among phytoplankton carbon (Cphy predictions from six ocean color algorithms are investigated by comparison with in situ estimates of phytoplankton carbon. The common satellite data used as input for the algorithms is the Ocean Color Climate Change Initiative merged product. The matching in situ data are derived from flow cytometric cell counts and per-cell carbon estimates for different types of pico-phytoplankton. This combination of satellite and in situ data provides a relatively large matching dataset (N > 500, which is independent from most of the algorithms tested and spans almost two orders of magnitude in Cphy. Results show that not a single algorithm outperforms any of the other when using all matching data. Concentrating on the oligotrophic regions (Chlorophyll-a concentration, B, less than 0.15 mg Chl m−3, where flow cytometric analysis captures most of the phytoplankton biomass, reveals significant differences in algorithm performance. The bias ranges from −35 to +150% and unbiased root mean squared difference from 5 to 10 mg C m−3 among algorithms, with chlorophyll-based algorithms performing better than the rest. The backscattering-based algorithms produce different results at the clearest waters and these differences are discussed in terms of the different algorithms used for optical particle backscattering coefficient (bbp retrieval.

  14. Fluxes and burial of particulate organic carbon along the Adriatic mud-wedge (Mediterranean Sea)

    Science.gov (United States)

    Tesi, T.; Langone, L.; Giani, M.; Ravaioli, M.; Miserocchi, S.

    2012-04-01

    Clinoform-shaped deposits are ubiquitous sedimentological bodies of modern continental margins, including both carbonate and silicoclastic platforms. They formed after the attainment of the modern sea level high-stand (mid-late Holocene) when river outlets and shoreline migrated landward. As clinoform-shape deposits are essential building blocks of the infill of sedimentary basins, they are sites of intense organic carbon (OC) deposition and account for a significant fraction of OC burial in the ocean during interglacial periods. In this study, we focused on sigmoid clinoforms that are generally associated with low-energy environments. In particular, we characterized the modern accumulation and burial of OC along the late-Holocene sigmoid in the Western Adriatic Sea (Mediterranean Sea). This sedimentary body consists of a mud wedge recognizable on seismic profiles as a progradational unit lying on top the maximum flooding surface that marks the time of maximum landward shift of the shoreline attained around 5.5 kyr cal BP. In the last two decades, several projects have investigated sediment dynamics and organic geochemistry along the Adriatic mud wedge (e.g., PRISMA, EURODELTA, EuroSTRATAFORM, PASTA, CIPE, VECTOR). All these studies increased our understanding of strata formation and organic matter cycling in this epicontinental margin. The overarching goal of this study was to combine the results gained during these projects with newly acquired data to assess fluxes to seabed and burial efficiency of organic carbon along the uppermost strata of the Adriatic mud-wedge. Our study benefited of an extensive number of radionuclide-based (Pb-210, and Cs-137) sediment accumulation rates and numerous biogeochemical data of surface sediments and sediment cores (organic carbon, total nitrogen, radiocarbon measurements, carbon stable isotopes, and biomarkers). In addition, because the accumulation of river-borne sediment may or may not be linked to a specific source, another

  15. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  16. Modelling the inorganic ocean carbon cycle under past and future climate change

    International Nuclear Information System (INIS)

    Ewan, T.L.

    2004-01-01

    This study used a coupled ocean-atmosphere-sea ice model with an inorganic carbon component to examine the inorganic ocean carbon cycle with particular reference to how climate feedback influences future uptake. In the last 150 years, the increase in atmosphere carbon dioxide (CO 2 ) concentrations have been higher than any time during the Earth's history. Although the oceans are the largest sink for carbon dioxide, it is not know how the ocean carbon cycle will respond to increasing anthropogenic carbon dioxide concentrations in the future. Climate feedbacks could potentially reduce further uptake of carbon by the ocean. In addition to examining past climate transitions, including both abrupt and glacial-interglacial climate transitions, this study also examined the sensitivity of the inorganic carbon cycle to increased atmospheric carbon dioxide. Atmospheric carbon dioxide levels were also projected under a range of global warming scenarios. Most simulations identified a transient weakening of the North Atlantic and increased sea surface temperatures (SST). These positive feedbacks act on the carbon system to reduce uptake. However, the ocean has the capacity to take up 65 to 75 per cent of the anthropogenic carbon dioxide increases. An analysis of climate feedback on future carbon uptake shows that oceans store 7 per cent more carbon when there are no climate feedbacks acting on the system. Sensitivity experiments using the Gent McWilliams parameterization for mixing associated with mesoscale eddies show a further 6 per cent increase in oceanic uptake. Inclusion of sea ice dynamics resulted in a 2 per cent difference in uptake. This study also examined changes in atmospheric carbon dioxide concentration that occur during abrupt climate change events. Changes in ocean circulation and carbon solubility cause significant increases in atmospheric carbon dioxide concentrations when melt water episodes are simulated in both hemispheres. The response of the carbon

  17. Late quaternary fluctuations in carbonate and carbonate ion content in the northern Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.

    -normalized carbonate ion (CO3=*) range from 90 to 125µmol kg-1 in the tropical region of the world oceans with a weight los of 0.3 ± 0.05µg mol -1kg-1 (Broecker and Clark, 201d). Botm water CO3=* concentration bathing the core tops are in the range of 88 to 13 μmolkg-1...

  18. Assessing and Synthesizing the Last Decade of Research on the Major Pools and Fluxes of the Carbon Cycle in the US and North America: An Interagency Governmental Perspective

    Science.gov (United States)

    Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.

    2015-12-01

    The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained

  19. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations

    Science.gov (United States)

    Menviel, L.; Joos, F.

    2012-03-01

    The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.

  20. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. L. Ramage

    2018-03-01

    Full Text Available Retrogressive thaw slumps (RTSs are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1 describe the evolution of RTSs between 1952 and 2011; (2 calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC and dissolved organic carbon (DOC; and (3 estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs and 14 % areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6×106 m3 of material, 53 % of which was ice, and mobilized 145.9×106 kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6×103 m3 yr−1 of material, adding 0.6 % to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean.

  1. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    Drewitt, G.B.

    2002-01-01

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  2. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    Science.gov (United States)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  3. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-05-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  4. Carbon nanotube/carbon nanotube composite AFM probes prepared using ion flux molding

    Science.gov (United States)

    Chesmore, Grace; Roque, Carrollyn; Barber, Richard

    The performance of carbon nanotube-carbon nanotube composite (CNT/CNT composite) atomic force microscopy (AFM) probes is compared to that of conventional Si probes in AFM tapping mode. The ion flux molding (IFM) process, aiming an ion beam at the CNT probe, aligns the tip to a desired angle. The result is a relatively rigid tip that is oriented to offset the cantilever angle. Scans using these probes reveal an improvement in image accuracy over conventional tips, while allowing higher aspect ratio imaging of 3D surface features. Furthermore, the lifetimes of CNT-CNT composite tips are observed to be longer than both conventional tips and those claimed for other CNT technologies. Novel applications include the imaging of embiid silk. Supported by the Clare Boothe Luce Research Scholars Award and Carbon Design Innovations.

  5. Sensitivity of the regional ocean acidification and carbonate system in Puget Sound to ocean and freshwater inputs

    Directory of Open Access Journals (Sweden)

    Laura Bianucci

    2018-03-01

    Full Text Available While ocean acidification was first investigated as a global phenomenon, coastal acidification has received significant attention in recent years, as its impacts have been felt by different socio-economic sectors (e.g., high mortality of shellfish larvae in aquaculture farms. As a region that connects land and ocean, the Salish Sea (consisting of Puget Sound and the Straits of Juan de Fuca and Georgia receives inputs from many different sources (rivers, wastewater treatment plants, industrial waste treatment facilities, etc., making these coastal waters vulnerable to acidification. Moreover, the lowering of pH in the Northeast Pacific Ocean also affects the Salish Sea, as more acidic waters get transported into the bottom waters of the straits and estuaries. Here, we use a numerical ocean model of the Salish Sea to improve our understanding of the carbonate system in Puget Sound; in particular, we studied the sensitivity of carbonate variables (e.g., dissolved inorganic carbon, total alkalinity, pH, saturation state of aragonite to ocean and freshwater inputs. The model is an updated version of our FVCOM-ICM framework, with new carbonate-system and sediment modules. Sensitivity experiments altering concentrations at the open boundaries and freshwater sources indicate that not only ocean conditions entering the Strait of Juan de Fuca, but also the dilution of carbonate variables by freshwater sources, are key drivers of the carbonate system in Puget Sound.

  6. Somewhere beyond the sea? The oceanic - carbon dioxide - reactions

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2014-05-01

    In correlation to climate change and CO2 emission different campaigns highlight the importance of forests and trees to regulate the concentration of carbon dioxide in the earths' atmosphere. Seeing millions of square miles of rainforest cut down every day, this is truly a valid point. Nevertheless, we often tend to forget what scientists like Spokes try to raise awareness for: The oceans - and foremost deep sea sections - resemble the second biggest deposit of carbon dioxide. Here carbon is mainly found in form of carbonate and hydrogen carbonate. The carbonates are needed by corals and other sea organisms to maintain their skeletal structure and thereby to remain vital. To raise awareness for the protection of this fragile ecosystem in schools is part of our approach. Awareness is achieved best through understanding. Therefore, our approach is a hands-on activity that aims at showing students how the carbon dioxide absorption changes in relation to the water temperature - in times of global warming a truly sensitive topic. The students use standard syringes filled with water (25 ml) at different temperatures (i.e. 10°C, 20°C, 40°C). Through a connector students inject carbon dioxide (25ml) into the different samples. After a fixed period of time, students can read of the remaining amount of carbon dioxide in relation to the given water temperature. Just as with every scientific project, students need to closely monitor their experiments and alter their setups (e.g. water temperature or acidity) according to their initial planning. A digital template (Excel-based) supports the analysis of students' experiments. Overview: What: hands-on, minds -on activity using standard syringes to exemplify carbon dioxide absorption in relation to the water temperature (Le Chatelier's principle) For whom: adjustable from German form 11-13 (age: 16-19 years) Time: depending on the prior knowledge 45-60 min. Sources (extract): Spokes, L.: Wie Ozeane CO2 aufnehmen. Environmental

  7. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  8. Crustal tracers in the atmosphere and ocean: Relating their concentrations, fluxes, and ages

    Science.gov (United States)

    Han, Qin

    Crustal tracers are important sources of key limiting nutrients (e.g., iron) in remote ocean regions where they have a large impact on global biogeochemical cycles. However, the atmospheric delivery of bio-available iron to oceans via mineral dust aerosol deposition is poorly constrained. This dissertation aims to improve understanding and model representation of oceanic dust deposition and to provide soluble iron flux maps by testing observations of crustal tracer concentrations and solubilities against predictions from two conceptual solubility models. First, we assemble a database of ocean surface dissolved Al and incorporate Al cycling into the global Biogeochemical Elemental Cycling (BEC) model. The observed Al concentrations show clear basin-scale differences that are useful for constraining dust deposition. The dynamic mixed layer depth and Al residence time in the BEC model significantly improve the simulated dissolved Al field. Some of the remaining model-data discrepancies appear related to the neglect of aerosol size, age, and air mass characteristics in estimating tracer solubility. Next, we develop the Mass-Age Tracking method (MAT) to efficiently and accurately estimate the mass-weighted age of tracers. We apply MAT to four sizes of desert dust aerosol and simulate, for the first time, global distributions of aerosol age in the atmosphere and at deposition. These dust size and age distributions at deposition, together with independent information on air mass acidity, allow us to test two simple yet plausible models for predicting the dissolution of mineral dust iron and aluminum during atmospheric transport. These models represent aerosol solubility as controlled (1) by a diffusive process leaching nutrients from the dust into equilibrium with the liquid water coating or (2) by a process that continually dissolves nutrients in proportion to the particle surface area. The surface-controlled model better captures the spatial pattern of observed

  9. Rethinking CCD's Significance in Estimating Late Neogene Whole Ocean Carbonate Budget

    Science.gov (United States)

    Si, W.; Rosenthal, Y.

    2017-12-01

    The global averaged calcite compensation depth (CCD) record is conventionally used to reconstruct two correlatable parameters of the carbonate system - the alkalinity budget of the ocean and/or the saturation state of the ocean. Accordingly, the available CCD reconstructions have been interpreted to suggest either relative stable (Pearson and Palmer, 2000) or increased alkalinity of the ocean over the past 15 Ma (Tyrrell and Zeebe, 2004; Pälike et al., 2012). However, CCD alone is insufficient to constrain the carbonate system because the weathering flux of alkalinity into the ocean is not only balanced by CaCO3 dissolution on the seafloor but also by the biologic production in the euphotic zone and, the CCD records cannot be readily interpreted as changes in either process. Here, we present evidence of the co-evolution of surface CaCO3 production and deepsea dissolution through the late Neogene. By examining separately the mass accumulation rates (MAR) of coccoliths, planktonic foraminifera, and quantifying dissolution (using a proxy revised from Broecker et al., 1999) in seventeen deepsea cores from multiple depth-transects, we find that 1) MAR of dissolution-resistant coccoliths was substantially higher in the mid Miocene and declining on a global scale towards the present; 2) unlike coccoliths, MAR of planktonic foraminifera, shows no apparent secular trend through that time; 3) the revised dissolution index, shows significantly improved preservation of planktonic foraminiferal shells over that time, particularly at intermediate water depth and exhibits close association between changes in preservation with key climatic events. Our new records have two immediate implications. First, the substantially weakened pelagic biogenic carbonate production from mid Miocene to present alone could account for the improved preservation of deepsea carbonates without calling for a scenario of increased weathering input. Second, with the constrain of global averaged CCD

  10. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  11. NERC's Biogeochemical Ocean Flux Study (North Atlantic Data Set) was collected aboard the RRS DISCOVERY and CHARLES DARWIN in the North Atlantic Ocean from 19890417 to 19910728 (NODC Accession 0000708)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biogeochemical Ocean Flux Study (BOFS) was a Community Research Project of the Marine and Atmospheric Sciences Directorate of the Natural Environment Research...

  12. The Southern Ocean's role in carbon exchange during the last deglaciation.

    Science.gov (United States)

    Burke, Andrea; Robinson, Laura F

    2012-02-03

    Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.

  13. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    International Nuclear Information System (INIS)

    Menawat, A.S.

    1992-01-01

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO 2 . It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO 2 . In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach

  14. Transforming Ocean Observations of the Carbon Budget, Acidification, Hypoxia, Nutrients, and Biological Productivity: a Global Array of Biogeochemical Argo Floats

    Science.gov (United States)

    Talley, L. D.; Johnson, K. S.; Claustre, H.; Boss, E.; Emerson, S. R.; Westberry, T. K.; Sarmiento, J. L.; Mazloff, M. R.; Riser, S.; Russell, J. L.

    2017-12-01

    ), and Indian Ocean (IOBioArgo). As examples, bio-optical sensors are identifying regional anomalies in light attenuation/scattering, with implications for ocean productivity and carbon export; SOCCOM floats show high CO2 outgassing in the Antarctic Circumpolar Current, due to previously unmeasured winter fluxes.

  15. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    Science.gov (United States)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  16. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  17. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  18. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    Science.gov (United States)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  19. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations

    Science.gov (United States)

    Zscheischler, Jakob; Mahecha, Miguel D.; Avitabile, Valerio; Calle, Leonardo; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Ichii, Kazuhito; Jung, Martin; Landschützer, Peter; Laruelle, Goulven G.; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Poulter, Benjamin; Ray, Deepak; Regnier, Pierre; Rödenbeck, Christian; Roman-Cuesta, Rosa M.; Schwalm, Christopher; Tramontana, Gianluca; Tyukavina, Alexandra; Valentini, Riccardo; van der Werf, Guido; West, Tristram O.; Wolf, Julie E.; Reichstein, Markus

    2017-08-01

    Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface-atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr-1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr-1), East Asia (1.6 ± 0.3 PgC yr-1), South Asia (0.3 ± 0

  20. Diffusive component of the vertical flux of particulate organic carbon in the north polar Atlantic

    Directory of Open Access Journals (Sweden)

    Małgorzata Stramska

    2006-12-01

    Full Text Available The diffusive component of the vertical flux of particulate organiccarbon (POC from the surface ocean layer has been estimatedusing a combination of the mixed layer model and ocean colordata from the SeaWiFS satellite. The calculations were carriedout for an example location in the north polar Atlantic centeredat 75°N and 0°E for the time period of 1998-2004.The satellite estimates of surface POC derived using a regional ocean coloralgorithm were applied as an input to the model driven by localsurface heat and momentum fluxes. For each year of the examinedperiod, the diffusive POC flux was estimated at 200-m depth fromApril through December. The highest flux is generally observedin the late fall as a result of increased heat loss and convectionalmixing of surface waters. A relatively high diffusive POC fluxis also observed in early spring, when surface waters are weaklystratified. In addition, the model results demonstrate significantinterannual variability. The highest diffusive POC flux occurredin 1999 (about 4500 mg m-2 over the 9-month period. In 1998 and 2002 the estimated flux was about two orders of magnitudelower. The interannual variability of the diffusive POC fluxis associated with mixed layer dynamics and underscores the importanceof atmospheric forcing for POC export from the surface layerto the ocean's interior.

  1. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    Science.gov (United States)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  2. Lead precipitation fluxes at tropical oceanic sites determined from 210Pb measurements

    International Nuclear Information System (INIS)

    Settle, D.M.; Patterson, C.C.; Turekian, K.K.; Cochran, J.K.

    1982-01-01

    Concentrations of lead, 210 Pb, and 210 Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm 210 Pb in rain were 250--900 for Pigeon Key (assuming 12% adsorption for 210 Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources). The corresponding fluxes of lead to the oceans, based on measured or modeled 210 Pb precipitation fluxes, are about 4 ng Pb/cm 2 y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key

  3. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

    Directory of Open Access Journals (Sweden)

    V. Masson

    2013-07-01

    Full Text Available SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs or in coupled mode (from mesoscale models to numerical weather prediction and climate models. An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy. Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

  4. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

    Science.gov (United States)

    Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; Brousseau, P.; Brun, E.; Calvet, J.-C.; Carrer, D.; Decharme, B.; Delire, C.; Donier, S.; Essaouini, K.; Gibelin, A.-L.; Giordani, H.; Habets, F.; Jidane, M.; Kerdraon, G.; Kourzeneva, E.; Lafaysse, M.; Lafont, S.; Lebeaupin Brossier, C.; Lemonsu, A.; Mahfouf, J.-F.; Marguinaud, P.; Mokhtari, M.; Morin, S.; Pigeon, G.; Salgado, R.; Seity, Y.; Taillefer, F.; Tanguy, G.; Tulet, P.; Vincendon, B.; Vionnet, V.; Voldoire, A.

    2013-07-01

    SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

  5. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air–sea flux

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2016-09-01

    Full Text Available Dimethylsulfide (DMS is a well-known marine trace gas that is emitted from the ocean and subsequently oxidizes to sulfate in the atmosphere. Sulfate aerosols in the atmosphere have direct and indirect effects on the amount of solar radiation reaching the Earth's surface. Thus, as a potential source of sulfate, ocean efflux of DMS needs to be accounted for in climate studies. Seawater concentration of DMS is highly variable in space and time, which in turn leads to high spatial and temporal variability in ocean DMS emissions. Because of sparse sampling (in both space and time, large uncertainties remain regarding ocean DMS concentration. In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1 and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global-mean radiative effect of sulfate is approximately linearly proportional to the global-mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation budget. The effect of the spatial structure, however, generates statistically significant changes in the global-mean concentrations of some aerosol species. The effect of seasonality on the net radiative effect is larger than that of spatial distribution and is significant at global scale.

  6. USGS Arctic Ocean carbon cruise 2010: field activity H-03-10-AR to collect carbon data in the Arctic Ocean, August - September 2010

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Gove, Matthew D.; Knorr, Paul O.; Wynn, Jonathan; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form carbonic acid, a weak, naturally occurring acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  7. USGS Arctic Ocean carbon cruise 2011: field activity H-01-11-AR to collect carbon data in the Arctic Ocean, August - September 2011

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Knorr, Paul O.; Wynn, Jonathan; Lisle, John; Buczkowski, Brian J.; Moore, Barbara; Mayer, Larry; Armstrong, Andrew; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  8. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, E.M.; Fenton, M.; Meredith, M.P.; Clargo, N.M.; Ossebaar, S.; Ducklow, H.W.; Venables, H.J.; De Baar, H.J.W.

    2017-01-01

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium

  9. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, Elizabeth M.; Fenton, Mairi; Meredith, Michael P.; Clargo, Nicola M.; Ossebaar, Sharyn; Ducklow, Hugh W.; Venables, Hugh J.; de Baar, Henricus

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Omega) for two biologically-important

  10. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  11. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

    Science.gov (United States)

    Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren

    2017-08-01

    Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

  12. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  13. LBA-ECO LC-39 Modeled Carbon Flux from Deforestation, Mato Grosso, Brazil: 2000-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains modeled estimates of carbon flux, biomass, and annual burning emissions across the Brazilian state of Mato Grosso from 2000-2006. The model,...

  14. LBA-ECO LC-39 Modeled Carbon Flux from Deforestation, Mato Grosso, Brazil: 2000-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains modeled estimates of carbon flux, biomass, and annual burning emissions across the Brazilian state of Mato Grosso from 2000-2006....

  15. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  16. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, P.; Loeff, M.M.R. van der.; Cassar, N.; Vandromme, P.; d'Ovidio, F.; Stemmann, L.; Rengarajan, R.; Soares, M.A.; Gonzalez, H.E.; Ebersbach, F.; Lampitt, R.S.; Sanders, R.; Barnett, B.A.; Smetacek, V.; Naqvi, S.W.A.

    A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux...

  17. Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux

    Science.gov (United States)

    Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.

    2016-01-01

    Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during eleven surveys spanning the years of 1992-1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 to 0.43 mg CH4 m-2 day-1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m-2 day-1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 to 1.01 to mg CH4 m-2 day-1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr-1 and 0.30 Tg CH4 yr-1 respectively to maximum fluxes of 0.18 Tg CH4 yr-1 and 2.2 Tg CH4 yr-1 respectively. A methane flux of 0.36 Tg CH4 yr-1from the deep Arctic Ocean was estimated using data from 1993-94. The flux can be as much as 2.35 Tg CH4 yr-1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ~560 Tg CH4 yr-1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.

  18. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    Science.gov (United States)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  19. Ecosystem carbon storage and flux in upland/peatland watersheds in northern Minnesota. Chapter 9.

    Science.gov (United States)

    David F. Grigal; Peter C. Bates; Randall K. Kolka

    2011-01-01

    Carbon (C) storage and fluxes (inputs and outputs of C per unit time) are central issues in global change. Spatial patterns of C storage on the landscape, both that in soil and in biomass, are important from an inventory perspective and for understanding the biophysical processes that affect C fluxes. Regional and national estimates of C storage are uncertain because...

  20. Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes

    Science.gov (United States)

    Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca

    2007-01-01

    The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...

  1. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  2. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    OpenAIRE

    Yool, A.; Popova, E. E.; Coward, A. C.; Bernie, D.; Anderson, T. R.

    2013-01-01

    Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2) emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and – via ocean acidification – chemical changes as direct and indirect results of these emissions. Given strong biophysi...

  3. Restricted Inter-ocean Exchange and Attenuated Biological Export Caused Enhanced Carbonate Preservation in the PETM Ocean

    Science.gov (United States)

    Luo, Y.; Boudreau, B. P.; Dickens, G. R.; Sluijs, A.; Middelburg, J. J.

    2015-12-01

    Carbon dioxide (CO2) release during the Paleocene-Eocene Thermal Maximum (PETM, 55.8 Myr BP) acidified the oceans, causing a decrease in calcium carbonate (CaCO3) preservation. During the subsequent recovery from this acidification, the sediment CaCO3 content came to exceed pre-PETM values, known as over-deepening or over-shooting. Past studies claim to explain these trends, but have failed to reproduce quantitatively the time series of CaCO3 preservation. We employ a simple biogeochemical model to recreate the CaCO3 records preserved at Walvis Ridge of the Atlantic Ocean. Replication of the observed changes, both shallowing and the subsequent over-deepening, requires two conditions not previously considered: (1) limited deep-water exchange between the Indo-Atlantic and Pacific oceans and (2) a ~50% reduction in the export of CaCO3 to the deep sea during acidification. Contrary to past theories that attributed over-deepening to increased riverine alkalinity input, we find that over-deepening is an emergent property, generated at constant riverine input when attenuation of CaCO3 export causes an unbalanced alkalinity input to the deep oceans (alkalinization) and the development of deep super-saturation. Restoration of CaCO3 export, particularly in the super-saturated deep Indo-Atlantic ocean, later in the PETM leads to greater accumulation of carbonates, ergo over-shooting, which returns the ocean to pre-PETM conditions over a time scale greater than 200 kyr. While this feedback between carbonate export and the riverine input has not previously been considered, it appears to constitute an important modification of the classic carbonate compensation concept used to explain oceanic response to acidification.

  4. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  5. Comparative CO{sub 2} flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Fumiyoshi (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan); Atmosphere and Ocean Research Inst., Univ. of Tokyo, Tokyo (Japan)), Email: fkondo@aori.u-tokyo.ac.jp; Tsukamoto, Osamu (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan))

    2012-04-15

    Direct comparison of airsea CO{sub 2} fluxes by open-path eddy covariance (OPEC) and closed-path eddy covariance (CPEC) techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO{sub 2} flux by OPEC was larger than the bulk CO{sub 2} flux using the gas transfer velocity estimated by the mass balance technique, while the CO{sub 2} flux by CPEC agreed with the bulk CO{sub 2} flux. We investigated a traditional conflict between the CO{sub 2} flux by the eddy covariance technique and the bulk CO{sub 2} flux, and whether the CO{sub 2} fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO{sub 2} flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO{sub 2} fluctuation over the ocean. Further, the underestimated CO{sub 2} flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H{sub 2}O flux. The CO{sub 2} flux by CPEC agreed with the total CO{sub 2} flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO{sub 2} flux

  6. Comparative CO2 flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Fumiyoshi Kondo

    2012-04-01

    Full Text Available Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC and closed-path eddy covariance (CPEC techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.

  7. Relevance of methodological choices for accounting of land use change carbon fluxes

    Science.gov (United States)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  8. Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2017-12-01

    Full Text Available Accurate estimation of carbon and water fluxes of forest ecosystems is of particular importance for addressing the problems originating from global environmental change, and providing helpful information about carbon and water content for analyzing and diagnosing past and future climate change. The main focus of the current work was to investigate the feasibility of four comparatively new methods, including generalized regression neural network, group method of data handling (GMDH, extreme learning machine and adaptive neuro-fuzzy inference system (ANFIS, for elucidating the carbon and water fluxes in a forest ecosystem. A comparison was made between these models and two widely used data-driven models, artificial neural network (ANN and support vector machine (SVM. All the models were evaluated based on the following statistical indices: coefficient of determination, Nash-Sutcliffe efficiency, root mean square error and mean absolute error. Results indicated that the data-driven models are capable of accounting for most variance in each flux with the limited meteorological variables. The ANN model provided the best estimates for gross primary productivity (GPP and net ecosystem exchange (NEE, while the ANFIS model achieved the best for ecosystem respiration (R, indicating that no single model was consistently superior to others for the carbon flux prediction. In addition, the GMDH model consistently produced somewhat worse results for all the carbon flux and evapotranspiration (ET estimations. On the whole, among the carbon and water fluxes, all the models produced similar highly satisfactory accuracy for GPP, R and ET fluxes, and did a reasonable job of reproducing the eddy covariance NEE. Based on these findings, it was concluded that these advanced models are promising alternatives to ANN and SVM for estimating the terrestrial carbon and water fluxes.

  9. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  10. Fluxes of particulate organic carbon in the East China Sea in summer

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2013-10-01

    Full Text Available To understand carbon cycling in marginal seas better, particulate organic carbon (POC concentrations, POC fluxes and primary production (PP were measured in the East China Sea (ECS in summer 2007. Higher concentrations of POC were observed in the inner shelf, and lower POC values were found in the outer shelf. Similar to POC concentrations, elevated uncorrected POC fluxes (720–7300 mg C m−2 d−1 were found in the inner shelf, and lower POC fluxes (80–150 mg C m−2 d−1 were in the outer shelf, respectively. PP values (~ 340–3380 mg C m−2 d−1 had analogous distribution patterns to POC fluxes, while some of PP values were significantly lower than POC fluxes, suggesting that contributions of resuspended particles to POC fluxes need to be appropriately corrected. A vertical mixing model was used to correct effects of bottom sediment resuspension, and the lowest and highest corrected POC fluxes were in the outer shelf (58 ± 33 mg C m−2 d−1 and the inner shelf (785 ± 438 mg C m−2 d−1, respectively. The corrected POC fluxes (486 to 785 mg C m−2 d−1 in the inner shelf could be the minimum value because we could not exactly distinguish the effect of POC flux from Changjiang influence with turbid waters. The results suggest that 27–93% of the POC flux in the ECS might be from the contribution of resuspension of bottom sediments rather than from the actual biogenic carbon sinking flux. While the vertical mixing model is not a perfect model to solve sediment resuspension because it ignores biological degradation of sinking particles, Changjiang plume (or terrestrial inputs and lateral transport, it makes significant progress in both correcting the resuspension problem and in assessing a reasonable quantitative estimate of POC flux in a marginal sea.

  11. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  12. A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    A. de Kluijver

    2013-03-01

    Full Text Available The effect of CO2 on carbon fluxes (production, consumption, and export in Arctic plankton communities was investigated during the 2010 EPOCA (European project on Ocean Acidification mesocosm study off Ny Ålesund, Svalbard. 13C labelled bicarbonate was added to nine mesocosms with a range in pCO2 (185 to 1420 μatm to follow the transfer of carbon from dissolved inorganic carbon (DIC into phytoplankton, bacterial and zooplankton consumers, and export. A nutrient–phytoplankton–zooplankton–detritus model amended with 13C dynamics was constructed and fitted to the data to quantify uptake rates and carbon fluxes in the plankton community. The plankton community structure was characteristic for a post-bloom situation and retention food web and showed high bacterial production (∼31% of primary production, high abundance of mixotrophic phytoplankton, low mesozooplankton grazing (∼6% of primary production and low export (∼7% of primary production. Zooplankton grazing and export of detritus were sensitive to CO2: grazing decreased and export increased with increasing pCO2. Nutrient addition halfway through the experiment increased the export, but not the production rates. Although mixotrophs showed initially higher production rates with increasing CO2, the overall production of POC (particulate organic carbon after nutrient addition decreased with increasing CO2. Interestingly, and contrary to the low nutrient situation, much more material settled down in the sediment traps at low CO2. The observed CO2 related effects potentially alter future organic carbon flows and export, with possible consequences for the efficiency of the biological pump.

  13. Coral reef sedimentation on Rodrigues and the Western Indian Ocean and its impact on the carbon cycle.

    Science.gov (United States)

    Rees, Siwan A; Opdyke, Bradley N; Wilson, Paul A; Fifield, L Keith

    2005-01-15

    Coral reefs in the southwest Indian Ocean cover an area of ca. 18,530 km2 compared with a global reef area of nearly 300,000 km2. These regions are important as fishing grounds, tourist attractions and as a significant component of the global carbon cycle. The mass of calcium carbonate stored within Holocene neritic sediments is a number that we are only now beginning to quantify with any confidence, in stark contrast to the mass and sedimentation rates associated with pelagic calcium carbonate, which have been relatively well defined for decades. We report new data that demonstrate that the reefs at Rodrigues, like those at Reunion and Mauritius, only reached a mature state (reached sea level) by 2-3 ka: thousands of years later than most of the reefs in the Australasian region. Yet field observations show that the large lagoon at Rodrigues is already completely full of carbonate detritus (typical lagoon depth less than 1 m at low spring tide). The presence of aeolian dunes at Rodrigues indicates periodic exposure of past lagoons throughout the Pleistocene. The absence of elevated Pleistocene reef deposits on the island indicates that the island has not been uplifted. Most Holocene reefs are between 15 and 20 m in thickness and those in the southwest Indian Ocean appear to be consistent with this observation. We support the view that the CO2 flux associated with coral-reef growth acts as a climate change amplifier during deglaciation, adding CO2 to a warming world. southwest Indian Ocean reefs could have added 7-10% to this global flux during the Holocene.

  14. Disturbance and climate effects on carbon stocks and fluxes across western Oregon USA.

    Science.gov (United States)

    B.E. Law; D. Turner; J. Campbell; O.J. Sun; S. Van Tuyl; W.D. Ritts; W.B. Cohen

    2004-01-01

    We used a spatially nested hierarchy of field and remote-sensing observations and a process model, Biome-BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem...

  15. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys

    Science.gov (United States)

    Andrew T. Hudak; Eva K. Strand; Lee A. Vierling; John C. Byrne; Jan U. H. Eitel; Sebastian Martinuzzi; Michael J. Falkowski

    2012-01-01

    Sound forest policy and management decisions to mitigate rising atmospheric CO2 depend upon accurate methodologies to quantify forest carbon pools and fluxes over large tracts of land. LiDAR remote sensing is a rapidly evolving technology for quantifying aboveground biomass and thereby carbon pools; however, little work has evaluated the efficacy of repeat LiDAR...

  16. The "Carbon Data Explorer": Web-Based Space-Time Visualization of Modeled Carbon Fluxes

    Science.gov (United States)

    Billmire, M.; Endsley, K. A.

    2014-12-01

    The visualization of and scientific "sense-making" from large datasets varying in both space and time is a challenge; one that is still being addressed in a number of different fields. The approaches taken thus far are often specific to a given academic field due to the unique questions that arise in different disciplines, however, basic approaches such as geographic maps and time series plots are still widely useful. The proliferation of model estimates of increasing size and resolution further complicates what ought to be a simple workflow: Model some geophysical phenomen(on), obtain results and measure uncertainty, organize and display the data, make comparisons across trials, and share findings. A new tool is in development that is intended to help scientists with the latter parts of that workflow. The tentatively-titled "Carbon Data Explorer" (http://spatial.mtri.org/flux-client/) enables users to access carbon science and related spatio-temporal science datasets over the web. All that is required to access multiple interactive visualizations of carbon science datasets is a compatible web browser and an internet connection. While the application targets atmospheric and climate science datasets, particularly spatio-temporal model estimates of carbon products, the software architecture takes an agnostic approach to the data to be visualized. Any atmospheric, biophysical, or geophysical quanity that varies in space and time, including one or more measures of uncertainty, can be visualized within the application. Within the web application, users have seamless control over a flexible and consistent symbology for map-based visualizations and plots. Where time series data are represented by one or more data "frames" (e.g. a map), users can animate the data. In the "coordinated view," users can make direct comparisons between different frames and different models or model runs, facilitating intermodal comparisons and assessments of spatio-temporal variability. Map

  17. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    Science.gov (United States)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  18. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    Miller, John B.; Tans, Pieter P.; Conway, Thomas J.; White, James W.C.; Vaughn, Bruce W.

    2003-01-01

    The 13 C/ 12 C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13 C and CO 2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO 2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO 2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  19. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    Science.gov (United States)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  20. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    , while there were no discernable drivers of CO2 fluxes in Stordalen, growing season length showed significant controls on net ecosystem exchange (NEE) in Zackenberg and with gross primary production (GPP) and ecosystem respiration (Re) in Daring Lake. This is important considering the recent observations...... compensates for the shorter growing season due to increase snow cover and duration. Other drivers of growing season CO2 fluxes were mainly air temperature, growing degree days and photosynthetic active radiation in a high and a low Arctic tundra ecosystem. Upscaling Arctic tundra NEE based on an acquired...... understanding of the drivers of NEE during this research venture, shows an estimation of reasonable fluxes at three independent sites in low Arctic Alaska. However, this later project is still ongoing and its findings are only preliminary....

  1. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    Science.gov (United States)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  2. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  3. Atmosphere-ocean ozone fluxes during the TexAQS 2006, STRATUS 2006, GOMECC 2007, GasEx 2008, and AMMA 2008 cruises

    NARCIS (Netherlands)

    Helmig, D.; Lang, E.K.; Bariteau, L.; Boylan, P.; Fairall, C.W.; Ganzeveld, L.N.; Hare, J.E.; Hueber, J.; Pallandt, M.

    2012-01-01

    A ship-based eddy covariance ozone flux system was deployed to investigate the magnitude and variability of ozone surface fluxes over the open ocean. The flux experiments were conducted on five cruises on board the NOAA research vessel Ronald Brown during 2006-2008. The cruises covered the Gulf of

  4. Land-Use Influences Carbon Fluxes in Northern Kazakhstan

    Science.gov (United States)

    An understanding of carbon cycling is important to maintain sustainable rangeland ecosystems. Rangelands in the western U.S. are similar to those in Central Asia. We used a combination of meteorological and computer modeling techniques to quantitatively assess carbon loss and gain for four major l...

  5. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Science.gov (United States)

    Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy

    2018-03-01

    During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate

  6. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Directory of Open Access Journals (Sweden)

    M. Ödalen

    2018-03-01

    Full Text Available During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90–100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air–sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment

  7. Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Katsumi; Tokos, Kathy S.; Chikamoto, Megumi O. (Geology and Geophysics, Univ. of Minnesota, MN (United States)), e-mail: katsumi@umn.edu; Ridgwell, Andy (School of Geographical Sciences, Univ. of Bristol, Bristol (United Kingdom))

    2010-10-22

    Understanding the oceanic uptake of carbon from the atmosphere is essential for better constraining the global budget, as well as for predicting the air-borne fraction of CO{sub 2} emissions and thus degree of climate change. Gaining this understanding is difficult, because the 'natural' carbon cycle, the part of the global carbon cycle unaltered by CO{sub 2} emissions, also responds to climate change and ocean acidification. Using a global climate model of intermediate complexity, we assess the evolution of the natural carbon cycle over the next few centuries. We find that physical mechanisms, particularly Atlantic meridional overturning circulation and gas solubility, alter the natural carbon cycle the most and lead to a significant reduction in the overall oceanic carbon uptake. Important biological mechanisms include reduced organic carbon export production due to reduced nutrient supply, increased organic carbon production due to higher temperatures and reduced CaCO{sub 3} production due to increased ocean acidification. A large ensemble of model experiments indicates that the most important source of uncertainty in ocean uptake projections in the near term future are the upper ocean vertical diffusivity and gas exchange coefficient. By year 2300, the model's climate sensitivity replaces these two and becomes the dominant factor as global warming continues

  8. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification

    OpenAIRE

    N. R. Bates; M. I. Orchowska; R. Garley; J. T. Mathis

    2013-01-01

    The Arctic Ocean accounts for only 4% of the global ocean area, but it contributes significantly to the global carbon cycle. Recent observations of seawater CO2-carbonate chemistry in shelf waters of the western Arctic Ocean, primarily in the Chukchi Sea, from 2009 to 2011 indicate that bottom waters are seasonally undersaturated with respect to calcium carbonate (CaCO3) minerals, particularly aragonite. Nearly 40% of sampled bottom waters on the shelf have saturation states...

  9. South African carbon observations: CO2 measurements for land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2017-11-01

    Full Text Available , Mudau AE, Monteiro PMS. South African carbon observations: CO2 measurements for land, atmosphere and ocean. S Afr J Sci. 2017;113(11/12), Art. #a0237, 4 pages. http://dx.doi. org/10.17159/sajs.2017/a0237 Carbon dioxide plays a central role in earth... References 1. Houghton RA. Balancing the global carbon budget. Annu Rev Earth Planet Sci. 2007;35:313–347. https://doi.org/10.1146/annurev. earth.35.031306.140057 2. Denman KL. Climate change, ocean processes and ocean iron fertilization. Mar Ecol Prog Ser...

  10. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves

    Science.gov (United States)

    Yang, Weifeng; Guo, Laodong

    2018-03-01

    Black carbon (BC) has been recognized as a climate forcing and a major component in the global carbon budget. However, studies on BC in the Arctic Ocean remain scarce. We report here variations in the abundance, sources and burial fluxes of sedimentary soot black carbon (soot-BC) in the western Arctic Ocean. The soot-BC contents averaged 1.6 ± 0.3, 0.46 ± 0.04 and 0.56 ± 0.10 mg-C g-1 on the Mackenzie, Chukchi and Bering Shelves, respectively, accounting for 16.6%, 10.2% and 10.4% of the total organic carbon in surface sediment. Temporally, contents of soot-BC remained fairly stable before 1910, but increased rapidly after the 1970s on the Mackenzie Shelf, indicating enhanced source input related to warming. Comparable δ13C signatures of soot-BC (- 24.95‰ to - 24.57‰) to C3 plants pointed to a major biomass source of soot-BC to the Beaufort Sea. Soot-BC showed similar temporal patterns with large fluctuations in the Chukchi/Bering shelf regions, implying the same source terms for soot-BC in these areas. Two events with elevated soot-BC corresponded to a simultaneous increase in biomass combustion and fossil fuel (coal and oil) consumption in Asia. The similar temporal variability in sedimentary soot-BC between the Arctic shelves and Asian lakes and the comparable δ13C values manifested that anthropogenic emission from East Asia was an important source of soot-BC in the western Arctic and subarctic regions. The burial fluxes of soot-BC, estimated from both 137Cs- and 210Pb-derived sedimentation rates, were 2.43 ± 0.42 g-C m-2 yr-1 on the Mackenzie Shelf, representing an efficient soot-BC sink. Soot-BC showed an increase in buried fluxes from 0.56 ± 0.02 g-C m-2 yr-1 during 1963-1986 to 0.88 ± 0.05 g-C m-2 yr-1 after 1986 on the Chukchi Shelf, and from 1.00 ± 0.18 g-C m-2 yr-1 to 2.58 ± 1.70 g-C m-2 yr-1 on the Bering Shelf, which were consistent with recent anthropogenically enhanced BC input observed especially in Asia. Overall, the three Arctic

  11. The Influence of Air-Sea Fluxes on Atmospheric Aerosols During the Summer Monsoon Over the Tropical Indian Ocean

    Science.gov (United States)

    Zavarsky, Alex; Booge, Dennis; Fiehn, Alina; Krüger, Kirstin; Atlas, Elliot; Marandino, Christa

    2018-01-01

    During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m-2 d-1). The directly measured fluxes, as well as computed isoprene and sea spray fluxes, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The fluxes show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.

  12. Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review.

    Science.gov (United States)

    Lees, K J; Quaife, T; Artz, R R E; Khomik, M; Clark, J M

    2018-02-15

    Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    Directory of Open Access Journals (Sweden)

    Marcelo Zeri

    Full Text Available The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010 and a flooding year (2009. The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1 year(-1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  14. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2011-07-01

    Full Text Available The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.

  15. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    Science.gov (United States)

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  16. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    Science.gov (United States)

    Trull, Thomas W.; Passmore, Abraham; Davies, Diana M.; Smit, Tim; Berry, Kate; Tilbrook, Bronte

    2018-01-01

    The Southern Ocean provides a vital service by absorbing about one-sixth of humankind's annual emissions of CO2. This comes with a cost - an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution. To quantify their presence, we used coulometric measurement of particulate inorganic carbonate (PIC) on particles filtered from surface seawater into two size fractions: 50-1000 µm to capture foraminifera (the most important biogenic carbonate-forming zooplankton) and 1-50 µm to capture coccolithophores (the most important biogenic carbonate-forming phytoplankton). Ancillary measurements of biogenic silica (BSi) and particulate organic carbon (POC) provided context, as estimates of the biomass of diatoms (the highest biomass phytoplankton in polar waters) and total microbial biomass, respectively. Results for nine transects from Australia to Antarctica in 2008-2015 showed low levels of PIC compared to Northern Hemisphere polar waters. Coccolithophores slightly exceeded the biomass of diatoms in subantarctic waters, but their abundance decreased more than 30-fold poleward, while diatom abundances increased, so that on a molar basis PIC was only 1 % of BSi in Antarctic waters. This limited importance of coccolithophores in the Southern Ocean is further emphasized in terms of their associated POC, representing less than 1 % of total POC in Antarctic waters and less than 10 % in subantarctic waters. NASA satellite ocean-colour-based PIC estimates were in reasonable agreement with the shipboard results in subantarctic waters but greatly overestimated PIC in Antarctic waters. Contrastingly, the NASA Ocean Biogeochemical Model (NOBM) shows coccolithophores as overly

  17. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    Directory of Open Access Journals (Sweden)

    T. W. Trull

    2018-01-01

    Full Text Available The Southern Ocean provides a vital service by absorbing about one-sixth of humankind's annual emissions of CO2. This comes with a cost – an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution. To quantify their presence, we used coulometric measurement of particulate inorganic carbonate (PIC on particles filtered from surface seawater into two size fractions: 50–1000 µm to capture foraminifera (the most important biogenic carbonate-forming zooplankton and 1–50 µm to capture coccolithophores (the most important biogenic carbonate-forming phytoplankton. Ancillary measurements of biogenic silica (BSi and particulate organic carbon (POC provided context, as estimates of the biomass of diatoms (the highest biomass phytoplankton in polar waters and total microbial biomass, respectively. Results for nine transects from Australia to Antarctica in 2008–2015 showed low levels of PIC compared to Northern Hemisphere polar waters. Coccolithophores slightly exceeded the biomass of diatoms in subantarctic waters, but their abundance decreased more than 30-fold poleward, while diatom abundances increased, so that on a molar basis PIC was only 1 % of BSi in Antarctic waters. This limited importance of coccolithophores in the Southern Ocean is further emphasized in terms of their associated POC, representing less than 1 % of total POC in Antarctic waters and less than 10 % in subantarctic waters. NASA satellite ocean-colour-based PIC estimates were in reasonable agreement with the shipboard results in subantarctic waters but greatly overestimated PIC in Antarctic waters. Contrastingly, the NASA Ocean Biogeochemical Model (NOBM shows

  18. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions

    Directory of Open Access Journals (Sweden)

    M. Stabholz

    2013-02-01

    Full Text Available The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity, currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW–SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION" located at 42°02.5′ N, 4°41′ E, at 2350-m depth, show that open-ocean convection reached mid-water depth (≈ 1000-m depth during winter 2007–2008, and reached the seabed (≈ 2350-m depth during winter 2008–2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008–2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008–2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5%, were abnormally low (≤ 1% during winter 2008–2009 and approached those observed in surface sediments (≈ 0.6%. Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization

  19. Carbon stocks and fluxes in managed peatlands in northern Borneo

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Cook, Sarah; Zin Zawawi, Norliyana; Sii, Longwin; Hill, Timothy; Page, Susan; Whelan, Mick; Evans, Chris; Gauci, Vincent; Chocholek, Melanie; Khoon Kho, Lip

    2017-04-01

    Oil palm is the largest agricultural crop in the tropics and accounts for 13 % of current tropical land area. Patterns of land-atmosphere exchange from oil palm ecosystems therefore have potentially important implications for regional and global C budgets due to the large scale of land conversion. This is particularly true for oil palm plantations on peat because of the large C stocks held by tropical peat soils that are potential sensitivity to human disturbance. Here we report preliminary findings on C stocks and fluxes from a long-term, multi-scale project in Sarawak, Malaysia that aims to quantify the impacts of oil palm conversion on C and greenhouse gas fluxes from oil palm recently established on peat. Land-atmosphere fluxes were determined using a combination of top-down and bottom-up methods (eddy covariance, canopy/stem and soil flux measurements, net primary productivity). Fluvial fluxes were determined by quantifying rates of dissolved and particulate organic C export. Ecosystem C dynamics were determined using the intensive C plot method, which quantified all major C stocks and fluxes, including plant and soil stocks, leaf litterfall, aboveground biomass production, root production, stem/canopy respiration, root-rhizosphere respiration, and heterotrophic soil respiration. Preliminary analysis indicates that vegetative aboveground biomass in these 7 year old plantations was 8.9-11.9 Mg C ha-1, or approximately one-quarter of adjacent secondary forest. Belowground biomass was 5.6-6.5 Mg C ha-1; on par with secondary forests. Soil C stocks in the 0-30 cm depth was 233.1-240.8 Mg C ha-1, or 32-36% greater than soil C stocks in secondary forests at the same depth (176.8 Mg C ha-1). Estimates of vegetative aboveground and belowground net primary productivity were 1.3-1.7 Mg C ha-1 yr-1 and 0.8-0.9 Mg C ha-1 yr-1, respectively. Fruit brunch production was approximately 67 Mg C ha-1over 7 yearsor 9.6 Mg C ha-1 yr-1. Total soil respiration rates were 18 Mg C ha

  20. Land-ocean fluxes in the Paranaguá Bay estuarine system, southern Brazil

    Directory of Open Access Journals (Sweden)

    Eduardo Marone

    2005-12-01

    Full Text Available A worldwide modeling effort has been proposed by the LOICZ (Land-Ocean Interactions in the Coastal Zone Program to foster the acquisition of intercomparable data on land-ocean fluxes in estuaries and continental shelf ecosystems from all continental margins. As part of the South American component of this initiative, we present flux estimates of water, salt, dissolved inorganic phosphorus (DIP, dissolved inorganic nitrogen (DIN and plankton for the estuarine system of Paranaguá Bay, southern Brazil, based on the LOICZ modeling approach and local data obtained during the 1990's. This system is strongly influenced by a seasonal meteorological cycle, represented by the rainy/summer and dry/winter periods. Semi-diurnal tides of up to the 2.7-m range are responsible for the short time-scale dynamics. The model indicated a potential water export to the adjacent coast of up to 7 x 10(6 m³ d-1 in the dry season, and 28 x 10(6 m³ d-1 during the rainy season. The system exhibits seasonal and spatial variations in DIP and DIN fluxes. "DIP amounted to +2.3 x 10(6 mol P yr-1 and "DIN to -2.7 x 10(6 mol N yr-1, suggesting that net production of phosphate and consumption of inorganic nitrogen predominate throughout in the system. Fluxes and therefore export of DIN and eespecially of DIP are higher in the rainy season. Stoichiometric estimates based on the C:N:P ratios of the reacting particulate organic matter (mangrove and plankton detritus suggest that net denitrification predominates all over the bay, with values between -24.3 and -10.6 x 10(6 mol N year-1. Estimated seaward outflows had little effect upon the fate of the phyto- and zooplankton biomass in different sectors of the bay. This is exemplified by the low net export of algal production from the upper to the middle sectors of the estuary.Um esforço global de modelagem foi proposto pelo Programa LOICZ (Land-Ocean Interactions in the Coastal Zone para promover a aquisição de dados compar

  1. Changes in the poleward energy flux by the atmosphere and ocean as a possible cause for ice ages

    Energy Technology Data Exchange (ETDEWEB)

    Newell, R E

    1974-01-01

    It is proposed that the two preferred modes of temperature and circulation of the atmosphere which occurred over the past 100,000 yr correspond to two modes of partitioning of the poleward energy flux between the atmosphere and ocean. At present the ocean carries an appreciable fraction of the transport, for example about three-eighths at 30/sup 0/N. In the cold mode it is suggested that the ocean carries less, and the atmosphere more, than at present. During the formation of the ice, at 50,000 BP, for example, the overall flux is expected to be slightly lower than at present and during melting, at 16,000 BP, slightly higher. The transition between the modes is seen as a natural imbalance in the atmosphere-ocean energy budget with a gradual warming of the ocean during an Ice Age eventually culminating in its termination. At the present the imbalance is thought to correspond to a natural cooling of the ocean, which will lead to the next Ice Age. The magnitude of temperature changes in the polar regions differ between the hemispheres in the same way as present seasonal changes, being larger in the northern than in the southern hemisphere. Overall the atmospheric energy cycle was more intense during the Ice Ages than now. Observational tests are proposed by which predictions from the present arguments may be compared with deductions about the environment of the past. Data used for the present state of the atmospheric general circulation are the latest global data available and contain no known major uncertainties. However, data for the oceanic circulation and energy budget are less well known for the present and almost unknown for the past. Hence the proposed imbalances must be treated as part of a speculative hypothesis, but one which eventually may be subject to observational test as no solar variability is invoked.

  2. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Science.gov (United States)

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  3. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    Science.gov (United States)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.

  4. NOAA Climate Data Record (CDR) of Ocean Heat Fluxes, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  5. Application of Natural Radioisotopes as Tracers of Particulate Organic Carbon Transport, Export and Burial Processes in Chukchi Sea, Arctic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yu; Jianhua, He [Key Lab of Global Change and Marine-Atmosphere Chemistry, State Oceanic Administration, Xiamen (China)

    2013-07-15

    To evaluate the efficiency of the biological pump and carbon sequestration content on the Arctic shelf, estimations of POC export fluxes derived from 234Th/238U disequilibrium and organic carbon burial rate from 210Pbex chronology in sediment core were made during the 3rd Chinese National Arctic Research Expedition (CHINARE-3), Jul 12-Sep 22, 2008. Great deficits of {sup 234}Th to {sup 238}U were observed widely over the Chukchi shelf, with an average {sup 234}Th/{sup 238}U of 0.64{+-}0.28, resulting from intense particle scavenging. The average POC export fluxes in the entire study area, shelf and slope area were 24.9 {+-} 23.3, 29.5 {+-} 23.0 and 2.1 {+-} 0.5 mmol C/m{sup 2}d, respectively, i.e. 21% of the primary production on average was exported to the benthos. An organic carbon burial rate of 517 mmol C/m{sup 2}a were estimated, accounting for 6% of the average primary production. The efficient biological pump led to 11.6{+-}9.0 T g C exported to benthos and 3.4 T g C buried permanently in the sediment per year, accounting for 0.3% of total POC export amount and 2.1% of total organic carbon burial amount of the global ocean. (author)

  6. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    Science.gov (United States)

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-04-01

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  7. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    KAUST Repository

    Chen, Wei

    2018-03-05

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  8. Tracing Carbon Cycling in the Atmosphere and Oceans During the Cretaceous Ocean Anoxic Event 2 (OAE2, 94Ma)

    Science.gov (United States)

    Moran, S. A. M.; Boudinot, F. G.; Dildar, N.; Sepúlveda, J.

    2017-12-01

    We present a high-resolution record of compound-specific stable carbon isotope data from short-chain—aquatic algae—and long-chain n-alkanes—terrestrial plants—preserved in sedimentary sequences from the Smokey Hollow #1 (SH1) core in the Grand Staircase Escalante National Monument in southern Utah. The study area covered by SH1 core was situated at the western margin of the Western Interior Seaway during the Cretaceous Ocean Anoxic Event (OAE2, 94Ma.), and was characterized by high sedimentation rates and enhanced preservation of both marine and terrestrial organic matter. Short- and long-chain n-alkanes were isolated and purified from branched and cyclic aliphatic hydrocarbons using an optimized urea adduction protocol, and δ13Cn-alkane was measured using a Thermo MAT253 GC-C-IR-MS. We use the δ13Cn-alkane from aquatic and terrestrial sources to better understand carbon cycle interactions in the oceanic and atmospheric carbon pools across this event. Our results indicate that the δ13C of terrestrial plants experienced a faster and more pronounced positive carbon isotope excursion compared to marine sources. We will discuss how these results can inform models of carbon cycle interactions between the ocean and the atmosphere during greenhouse climates, and how they can be used to trace possible sources of CO2.

  9. Mangroves, a major source of dissolved organic carbon to the oceans

    Science.gov (United States)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  10. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, J M; Mayol, E.; Hansman, R. L.; Herndl, G. J.; Dittmar, T.; Duarte, Carlos M.

    2015-01-01

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering

  11. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  12. Major role of microbes in carbon fluxes during Austral winter in the Southern Drake Passage.

    Directory of Open Access Journals (Sweden)

    Maura Manganelli

    Full Text Available Carbon cycling in Southern Ocean is a major issue in climate change, hence the need to understand the role of biota in the regulation of carbon fixation and cycling. Southern Ocean is a heterogeneous system, characterized by a strong seasonality, due to long dark winter. Yet, currently little is known about biogeochemical dynamics during this season, particularly in the deeper part of the ocean. We studied bacterial communities and processes in summer and winter cruises in the southern Drake Passage. Here we show that in winter, when the primary production is greatly reduced, Bacteria and Archaea become the major producers of biogenic particles, at the expense of dissolved organic carbon drawdown. Heterotrophic production and chemoautotrophic CO(2 fixation rates were substantial, also in deep water, and bacterial populations were controlled by protists and viruses. A dynamic food web is also consistent with the observed temporal and spatial variations in archaeal and bacterial communities that might exploit various niches. Thus, Southern Ocean microbial loop may substantially maintain a wintertime food web and system respiration at the expense of summer produced DOC as well as regenerate nutrients and iron. Our findings have important implications for Southern Ocean ecosystem functioning and carbon cycle and its manipulation by iron enrichment to achieve net sequestration of atmospheric CO(2.

  13. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as

  14. On the relations between the oceanic uptake of CO2 and its carbon isotopes

    International Nuclear Information System (INIS)

    Heimann, M.; Maier-Reimer, E.

    1994-01-01

    The recent proposals to estimate the oceanic uptake of CO 2 by monitoring the oceanic change in 13 C/ 12 C isotope ratio or the air-sea 13 C/ 12 C isotopic disequilibrium is reviewed. Because the history of atmospheric CO 2 and 13 CO 2 since preindustrial times is almost the same, the oceanic penetration depth of both tracers must be the same. This dynamic constraint permits the establishment of yet a third method to estimate the global ocean uptake of CO 2 from 13 C measurements. Using available observations in conjunction with canonical values for the global carbon cycle parameters the three methods yield inconsistent oceanic CO 2 uptake rates for the time period 1970-1990, ranging from 0 to over 3 GtC year -1 . However, uncertainties in the available carbon cycle data must be taken into account. Using a non-linear estimation procedure, a consistent scenario with an oceanic CO 2 uptake rate of 2.2±0.8 GtC year -1 can be established. The method also permits an investigation of the sensitivities of the different approaches. An analysis of the results of two three-dimensional simulations with the Hamburg Model of the Oceanic Carbon Cycle shows that the 13 C isotope indeed tracks the oceanic penetration of anthropogenic CO 2 . Because of its different time history, bomb produced radiocarbon, as measured at the time of GEOSECS, correlates much less well to excess carbon. (orig.)

  15. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  16. Photochemical mineralization of terrigenous DOC to dissolved inorganic carbon in ocean

    OpenAIRE

    Aarnos, Hanna; Gélinas, Yves; Kasurinen, Ville; Gu, Yufei; Puupponen, Veli-Mikko; Vähätalo, Anssi

    2018-01-01

    When terrigenous dissolved organic carbon (tDOC) rich in chromophoric dissolved organic matter (tCDOM) enters the ocean, solar radiation mineralizes it partially into dissolved inorganic carbon (DIC). This study addresses the amount and the rates of DIC photoproduction from tDOC and the area of ocean required to photomineralize tDOC. We collected water samples from 10 major rivers, mixed them with artificial seawater, and irradiated them with simulated solar radiation to measure DIC photoprod...

  17. Maintenance metabolism and carbon fluxes in Bacillus species

    Directory of Open Access Journals (Sweden)

    Decasper Seraina

    2008-06-01

    Full Text Available Abstract Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence

  18. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to ... The changes in land ... the air quality and climate models. 2. ... soon period of 2011 as a part Cloud Aerosol .... density effects due to heat and water vapour trans-.

  19. Carbon pools and flux in U.S. forest products

    Science.gov (United States)

    Linda S. Heath; Richard A. Birdsey; Clark Row; Andrew J. Plantinga

    1996-01-01

    Increasing recognition that anthropogenic CO2 and other greenhouse gas emissions may effect climate change has prompted research studies on global carbon (C) budgets and international agreements for action. At the United Nations Conference on Environment and Development in 1992, world leaders and citizens gathered and initiated the Framework...

  20. Spatiotemporal variability in carbon exchange fluxes across the Sahel

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Cappelaere, Bernard

    2016-01-01

    for semi-arid ecosystems. We have synthesized data on the land-atmosphere exchange of CO2 measured with the eddy covariance technique from the six existing sites across the Sahel, one of the largest semi-arid regions in the world. The overall aim of the study is to analyse and quantify the spatiotemporal...... variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences...

  1. The biological carbon pump in the ocean: Reviewing model representations and its feedbacks on climate perturbations.

    Science.gov (United States)

    Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie

    2016-04-01

    The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate

  2. Carbon dioxide and methane fluxes from arctic mudboils

    International Nuclear Information System (INIS)

    Wilson, K.S.; Humphreys, E.R.

    2010-01-01

    Carbon-rich ecosystems in the Arctic have large stores of soil carbon. However, small changes in climate have the potential to change the carbon (C) balance. This study examined how changes in ecosystem structure relate to differences in the exchange of greenhouse gases, notably carbon dioxide (CO 2 ) and methane (CH 4 ), between the atmosphere and soil. In particular, it examined low-center mudboils to determine the influence that this distinct form of patterned ground in the Arctic may have on the overall C balance of Tundra ecosystems. The net ecosystem exchange of carbon dioxide (NEE) was measured along with methane efflux along a 35-m transect intersecting two mudboils in a wet sedge fen in Canada's Southern Arctic during the summer of 2008. Mudboil features revealed significant variations in vegetation, soil temperature and thaw depth, and soil organic matter content along this transect. Variations in NEE were attributed to changes in the amount of vascular vegetation, but CO 2 and CH 4 effluxes were similar among the two mudboil and the sedge fen sampling areas. The study showed that vegetation played a key role in limiting temporal variations in CH 4 effluxes through plant mediated transport in both mudboil and sedge fen sampling areas. The negligible vascular plant colonization in one of the mudboils was likely due to more active frost heave processes. Growth and decomposition of cryptogamic organisms along with inflow of dissolved organic C and warmer soil temperatures may have been the cause of the rather high CO 2 and CH 4 efflux in this mudboil area.

  3. The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux – will ocean acidification affect nutrient exchange?

    Directory of Open Access Journals (Sweden)

    S. Widdicombe

    2009-10-01

    Full Text Available Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7 and 2300 (pH 7.3, plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.

  4. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  5. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    Science.gov (United States)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  6. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  7. The causes of alkalinity variations in the global surface ocean

    OpenAIRE

    Fry, Claudia Helen

    2016-01-01

    Human activities have caused the atmospheric concentration of carbon dioxide (CO2) to increase by 120 ppmv from pre-industrial times to 2014. The ocean takes up approximately a quarter of the anthropogenic CO2, causing ocean acidification (OA). Therefore it is necessary to study the ocean carbonate system, including alkalinity, to quantify the flux of CO2 into the ocean and understand OA. Since the 1970s, carbonate system measurements have been undertaken which can be analyzed to quantify the...

  8. Assessment of the sea-ice carbon pump: Insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES

    Directory of Open Access Journals (Sweden)

    Sébastien Moreau

    2016-08-01

    Full Text Available Abstract The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs. Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC and total alkalinity (TA. Here we investigate whether this link is indeed an important feature of the marine carbon cycle misrepresented in ESMs. We use an ocean general circulation model (NEMO-LIM-PISCES with sea-ice and marine carbon cycle components, forced by atmospheric reanalyses, adding a first-order representation of DIC and TA storage and release in/from sea ice. Our results suggest that DIC rejection during sea-ice growth releases several hundred Tg C yr−1 to the surface ocean, of which < 2% is exported to depth, leading to a notable but weak redistribution of DIC towards deep polar basins. Active carbon processes (mainly CaCO3 precipitation but also ice-atmosphere CO2 fluxes and net community production increasing the TA/DIC ratio in sea-ice modified ocean-atmosphere CO2 fluxes by a few Tg C yr−1 in the sea-ice zone, with specific hemispheric effects: DIC content of the Arctic basin decreased but DIC content of the Southern Ocean increased. For the global ocean, DIC content increased by 4 Tg C yr−1 or 2 Pg C after 500 years of model run. The simulated numbers are generally small compared to the present-day global ocean annual CO2 sink (2.6 ± 0.5 Pg C yr−1. However, sea-ice carbon processes seem important at regional scales as they act significantly on DIC redistribution within and outside polar basins. The efficiency of carbon export to depth depends on the representation of surface-subsurface exchanges and their relationship with sea ice, and could differ substantially if a higher resolution or different ocean model were used.

  9. Carbon Monitoring System Flux for Fossil Fuel L4 V1 (CMSFluxFossilfuel) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fossil Fuel. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  10. Seasonal analyses of carbon dioxide and energy fluxes above an oil palm plantation using the eddy covariance method

    Science.gov (United States)

    Ibrahim, Anis; Haniff Harun, Mohd; Yusup, Yusri

    2017-04-01

    A study presents the measurements of carbon dioxide and latent and sensible heat fluxes above a mature oil palm plantation on mineral soil in Keratong, Pahang, Peninsular Malaysia. The sampling campaign was conducted over an 25-month period, from September 2013 to February 2015 and May 2016 to November 2016, using the eddy covariance method. The main aim of this work is to assess carbon dioxide and energy fluxes over this plantation at different time scales, seasonal and diurnal, and determine the effects of season and relevant meteorological parameters on the latter fluxes. Energy balance closure analyses gave a slope between latent and sensible heat fluxes and total incoming energy to be 0.69 with an R2 value of 0.86 and energy balance ratio of 0.80. The averaged net radiation was 108 W m-2. The results show that at the diurnal scale, carbon dioxide, latent and sensible heat fluxes exhibited a clear diurnal trend where carbon dioxide flux was at its minimum - 3.59 μmol m-2 s-1 in the mid-afternoon and maximum in the morning while latent and sensible behaved conversely to the carbon dioxide flux. The average carbon dioxide flux was - 0.37 μmol m-2 s-1. At the seasonal timescale, carbon dioxide fluxes did not show any apparent trend except during the Northeast Monsoon where the highest variability of the monthly means of carbon dioxide occurred.

  11. Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Kock

    2012-03-01

    Full Text Available Sea-to-air and diapycnal fluxes of nitrous oxide (N2O into the mixed layer were determined during three cruises to the upwelling region off Mauritania. Sea-to-air fluxes as well as diapycnal fluxes were elevated close to the shelf break, but elevated sea-to-air fluxes reached further offshore as a result of the offshore transport of upwelled water masses. To calculate a mixed layer budget for N2O we compared the regionally averaged sea-to-air and diapycnal fluxes and estimated the potential contribution of other processes, such as vertical advection and biological N2O production in the mixed layer. Using common parameterizations for the gas transfer velocity, the comparison of the average sea-to-air and diapycnal N2O fluxes indicated that the mean sea-to-air flux is about three to four times larger than the diapycnal flux. Neither vertical and horizontal advection nor biological production were found sufficient to close the mixed layer budget. Instead, the sea-to-air flux, calculated using a parameterization that takes into account the attenuating effect of surfactants on gas exchange, is in the same range as the diapycnal flux. From our observations we conclude that common parameterizations for the gas transfer velocity likely overestimate the air-sea gas exchange within highly productive upwelling zones.

  12. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  13. Whole Watershed Quantification of Net Carbon Fluxes by Erosion and Deposition within the Christina River Basin Critical Zone Observatory

    Science.gov (United States)

    Aufdenkampe, A. K.; Karwan, D. L.; Aalto, R. E.; Marquard, J.; Yoo, K.; Wenell, B.; Chen, C.

    2013-12-01

    We have proposed that the rate at which fresh, carbon-free minerals are delivered to and mix with fresh organic matter determines the rate of carbon preservation at a watershed scale (Aufdenkampe et al. 2011). Although many studies have examined the role of erosion in carbon balances, none consider that fresh carbon and fresh minerals interact. We believe that this mechanism may be a dominant sequestration process in watersheds with strong anthropogenic impacts. Our hypothesis - that the rate of mixing fresh carbon with fresh, carbon-free minerals is a primary control on watershed-scale carbon sequestration - is central to our Christina River Basin Critical Zone Observatory project (CRB-CZO, http://www.udel.edu/czo/). The Christina River Basin spans 1440 km2 from piedmont to Atlantic coastal plain physiographic provinces in the states of Pennsylvania and Delaware, and experienced intensive deforestation and land use beginning in the colonial period of the USA. Here we present a synthesis of multi-disciplinary data from the CRB-CZO on materials as they are transported from sapprolite to topsoils to colluvium to suspended solids to floodplains, wetlands and eventually to the Delaware Bay estuary. At the heart of our analysis is a spatially-integrated, flux-weighted comparison of the organic carbon to mineral surface area ratio (OC/SA) of erosion source materials versus transported and deposited materials. Because source end-members - such as forest topsoils, farmed topsoils, gullied subsoils and stream banks - represent a wide distribution of initial, pre-erosion OC/SA, we quantify source contributions using geochemical sediment fingerprinting approaches (Walling 2005). Analytes used for sediment fingerprinting include: total mineral elemental composition (including rare earth elements), fallout radioisotope activity for common erosion tracers (beryllium-7, beryllium-10, lead-210, cesium-137), particle size distribution and mineral specific surface area, in addition

  14. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  15. The Role of Refractory Dissolved Organic Matter in Ocean Carbon Sequestration

    DEFF Research Database (Denmark)

    Jørgensen, Linda

    The ocean assimilates a large amount of atmospheric CO2 and is potentially a buffer for climate change. A fraction of the assimilated CO2 is incorporated into algal biomass and further converted into refractory dissolved organic matter (DOM). Carbon bound in refractory DOM has the potential...... studies the prokaryotic production and degradation of oceanic refractory DOM and discusses the reasons for the persistent nature of this large DOM fraction. The first two papers investigate the microbial carbon pump, i.e. prokaryotic transfor-mation of organic carbon into refractory DOM. The results show...... DOM compounds in the ocean are rare—possibly too rare to sustain viable uptake and assimilation. Hence, the dilute concentration of individual compounds is a possible explanation for the apparent refractory nature of most DOM in the ocean. Understanding the mechanisms that control the quality...

  16. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    Science.gov (United States)

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  17. How can mountaintop CO2 observations be used to constrain regional carbon fluxes?

    Science.gov (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.

    2017-05-01

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  18. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  19. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation

    NARCIS (Netherlands)

    Pachiadaki, M.G.; Sintes, E.; Bergauer, K.; Brown, J.M.; Record, N.R.; Swan, B.K.; Mathyer, M.E.; Hallam, S.J.; López-Garcìa, P.; Takaki, Y.; Nunoura, T.; Woyke, T.; Herndl, G.J.; Stepanauskas, R.

    2017-01-01

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean’s interior, but the relevant taxa and energy sources remain enigmatic.We show evidence that nitrite-oxidizing bacteria affiliated with the

  20. The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dong L.

    2016-10-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain ˜ 10 % of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for better understanding and

  1. The Open-Ocean Sensible Heat Flux and Its Significance for Arctic Boundary Layer Mixing During Early Fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dongliang

    2016-01-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and

  2. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models

    Directory of Open Access Journals (Sweden)

    M. Vetter

    2008-04-01

    Full Text Available Globally, the year 2003 is associated with one of the largest atmospheric CO2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic. We address the following questions: (1 how large were deviations in the net European carbon flux in 2003 relative to a short-term baseline (1998–2002 and to longer-term variations in annual fluxes (1980 to 2005, (2 which European regions exhibited the largest changes in carbon fluxes during the growing season 2003, and (3 which ecosystem processes controlled the carbon balance anomaly .

    In most models the prominence of 2003 anomaly in carbon fluxes declined with lengthening of the reference period from one year to 16 years. The 2003 anomaly for annual net carbon fluxes ranged between 0.35 and –0.63 Pg C for a reference period of one year and between 0.17 and –0.37 Pg C for a reference period of 16 years for the whole Europe.

    In Western and Central Europe, the anomaly in simulated net ecosystem productivity (NEP over the growing season in 2003 was outside the 1σ variance bound of the carbon flux anomalies for 1980–2005 in all models. The estimated anomaly in net carbon flux ranged between –42 and –158 Tg C for Western Europe and between 24 and –129 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. In contrast, lower than normal temperatures and higher air humidity decreased NEP over Northeastern Europe. While models agree on the sign of changes in

  3. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.

    Science.gov (United States)

    Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C

    2012-08-02

    One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.

  4. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  5. Biogenic silica and organic carbon in sediments from the Pacific sector of the Southern Ocean

    International Nuclear Information System (INIS)

    Giglio, F.; Langone, L.; Morigi, C.; Frignani, M.; Ravaioli, M.

    2002-01-01

    Four cores, collected during the 1995/96 Italian Antarctic cruise and located north and south of the Polar Front, provided both qualitative and quantitative information about changes of the sediment settings driven by climate changes. Biogenic silica and organic carbon flux variations and sedimentological analyses allow us to make inferences about the fluctuation of the Polar Front during the last climate cycles: the records of our cores Anta96-1 and Anta96-16 account for fluctuations of the Polar Front of at least 5 degrees with respect to the present position, with a concomitant movement of the Marginal Ice Zone. The very low accumulation rates at the study sites are probably due to the scarce availability of micronutrients. In the area south of the Polar Front, sediment accumulation, after a decrease, appears constant during the last 250,000 yr. A subdivision in glacial/interglacial stages has been proposed, which permits the identification of the warm stage 11, which is particularly important in the Southern Ocean. (author). 13 refs., 5 figs

  6. Relative linkages of peatland methane and carbon dioxide fluxes with climatic, environmental and ecological parameters and their inter-comparison

    Science.gov (United States)

    Banerjee, Tirtha; Hommeltenberg, Janina; Roy, Avipsa; De Roo, Frederik; Mauder, Matthias

    2016-04-01

    Although methane (CH4) is the second most important greenhouse gas (GHG) after CO2, about 80% of its global production is biogenic (wetlands, enteric fermentation and water disposal from animals) contrary to major anthropogenic sources of most other GHGs. Although on a shorter time scale, global emissions of methane are greater (10 year time frame) or about 80% (20 year time frame) of those of carbon dioxide in terms of their influence on global warming, methane emissions have been studied much less than CO2 emissions. Lakes, reservoirs and wetlands are estimated to contribute about 15-40% to the global methane source budget, which is higher than total oceanic CH4 emission. Half of the world's wetlands are represented by peatlands which cover 3% of the global total land area. Peatlands have a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. Moreover, they are carbon rich, containing twice as much stock as the entire forest biomass of the world (550 Gt carbon). When disturbed, they can become significant sources of greenhouse gas emissions. The organic carbon exposed to air due to various mechanisms can release CH4 or CO2 in the atmosphere. Thus the nature of vegetation cover, radiation environment, wind turbulence, soil characteristics, water table depth etc. are expected to be important forcings that influence the emission of CH4 or CO2 in the shorter time scale. However, long term climate change can also influence these governing factors themselves over a larger time scale, which in turn can influence the wetland GHG emissions. Thus developing a predictive framework and long term source appropriation for wetland CH4 or CO2 warrants an identification of the major environmental forcings on the CH4 or CO2 flux. In the present work, we use a simple and systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy level half-hourly CH4 or CO2 fluxes over a

  7. A Possible Late Paleocene-Early Eocene Ocean Acidification Event Recoded in the Adriatic Carbonate Platform

    Science.gov (United States)

    Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.

  8. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1

    Directory of Open Access Journals (Sweden)

    A. Jahn

    2015-08-01

    Full Text Available Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM, containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  9. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    Science.gov (United States)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2015-08-01

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  10. Evaluating Humidity and Sea Salt Disturbances on CO2 Flux Measurements

    DEFF Research Database (Denmark)

    Nilsson, Erik; Bergström, Hans; Rutgersson, Anna

    2018-01-01

    Global oceans are an important sink of atmospheric carbon dioxide (CO2). Therefore, understanding the air–sea flux of CO2 is a vital part in describing the global carbon balance. Eddy covariance (EC) measurements are often used to study CO2 fluxes from both land and ocean. Values of CO2 are usual...

  11. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

    Science.gov (United States)

    Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.

    1996-01-01

    We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the

  12. Quantifying the Fluxes of Atmospherically Derived Trace Elements in the Arctic Ocean/Ice System using 7Be

    Science.gov (United States)

    Landing, W. M.; Kadko, D. C.; Shelley, R.; Galfond, B.

    2016-02-01

    Aerosol deposition is an important pathway for delivering biologically-essential and anthropogenically-derived trace elements to the Arctic Ocean. Limited field study in the harsh Arctic environment has forced a reliance on poorly constrained models for the atmospheric deposition of trace elements. Here we use the cosmic ray produced radioisotope 7Be to link aerosol concentrations to flux to the Arctic water/ice system. Seawater, ice, snow, melt pond, and aerosol samples were collected during late summer 2011 as part of the RV Polarstern ARK-XXVI/3 campaign. The average 7Be aerosol loading was 0.018 dpm m-3 and we determined an average 7Be flux of 125 dpm m-2 d-1, consistent with results from previous studies in the region. None of the lithogenic aerosol elements showed any significant enrichment above crustal composition, while the pollution-type elements showed varying degrees of enrichment relative to crustal values. In addition to our own measurements, we use two years of continuous aerosol 7Be and trace element data from the Alert (Canada) monitoring site to generate seasonal and annual estimates for the fluxes of 7Be and trace elements to the Arctic water/ice system. Fluxes of 7Be are 30% higher in Winter (Nov-May) than in Summer (Jun-Oct) due to the strong seasonality in aerosol 7Be concentrations. Fluxes of lithogenic elements (Al, Mn, Fe) are 2-3 times higher in Summer, possibly due to local dust sources on Ellesmere Island. Fluxes of V and Pb are strongly correlated and are 2-3 times higher in Winter, while fluxes of Ni, Cu, and Zn are relatively uniform for both seasons.

  13. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    International Nuclear Information System (INIS)

    Yang, Qichun; Zhang, Xuesong

    2016-01-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange

  14. Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands

    Science.gov (United States)

    Zewei Miao; Richard G. Lathrop; Ming Xu; Inga P. La Puma; Kenneth L. Clark; John Hom; Nicholas Skowronski; Steve. Van Tuyl

    2011-01-01

    A major challenge in modeling the carbon dynamics of vegetation communities is the proper parameterization and calibration of eco-physiological variables that are critical determinants of the ecosystem process-based model behavior. In this study, we improved and calibrated a biochemical process-based WxBGC model by using in situ AmeriFlux eddy covariance tower...

  15. Spatial and temporal variations in net carbon flux during HAPEX-Sahel.

    NARCIS (Netherlands)

    Moncrieff, J.B.; Monteny, B.; Verhoef, A.; Friborg, Th.; Elbers, J.; Kabat, P.; DeBruin, H.; Soegaard, H.; Jarvis, P.G.; Taupin, J.D.

    1997-01-01

    Micrometeorological measurements of the surface flux of carbon dioxide were made at a number of spatially separate sites within the HAPEX-Sahel experimental area. Differences in the timing of plant development caused by differences in rainfall (both quantity and frequency) over the experimental area

  16. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    Science.gov (United States)

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  17. Fast nanostructured carbon microparticle synthesis by one-step high-flux plasma processing

    NARCIS (Netherlands)

    Aussems, D. U. B.; Bystrov, K.; Dogan, I.; Arnas, C.; Cabié, M.; Neisius, T.; Rasinski, M.; Zoethout, E.; Lipman, P.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-01-01

    This study demonstrates a fast one-step synthesis method for nanostructured carbon microparticles on graphite samples using high-flux plasma exposure. These structures are considered as potential candidates for energy applications such as Li-ion batteries and supercapacitors. The samples were

  18. Fast nanostructured carbon microparticle synthesis by one-step high-flux plasma processing

    NARCIS (Netherlands)

    Aussems, D.U.B.; Bystrov, K.E.; Doǧan, I.; Arnas, C.; Cabié, M.; Neisius, T.; Rasinski, M.; Lipman, P.J.L.; van de Sanden, M.C.M.; Morgan, T.W.

    This study demonstrates a fast one-step synthesis method for nanostructured carbon microparticles on graphite samples using high-flux plasma exposure. These structures are considered as potential candidates for energy applications such as Li-ion batteries and supercapacitors. The samples were

  19. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Zhang, Xuesong, E-mail: xuesong.zhang@pnnl.gov [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 (United States)

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange.

  20. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    Science.gov (United States)

    B. D. Amiro; A. G. Barr; J. G. Barr; T. A. Black; R. Bracho; al. et.

    2010-01-01

    [1] Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included standreplacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon...

  1. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  2. Potential effects of ocean acidification on Alaskan corals based on calcium carbonate mineralogy composition analysis (NCEI Accession 0157223)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains potential effects of ocean acidification on Alaskan corals based on calcium carbonate mineralogy composition analysis. Effects of...

  3. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  4. Worldwide data on fluxes of 239,240Pu, 238Pu to the oceans

    International Nuclear Information System (INIS)

    Aarkrog, A.

    1987-04-01

    According to measurements (GEOSECS) the world's oceans contain approximately 16 PBq 239,240 Pu, of which one-fourth is in the Atlantic and three-fourths in the Pacific Ocean. The expected inventory (from nuclear weapons testing) in the world's oceans is 12 PBq 239,240 Pu including local fallout at the test sites. In the Irish Sea a local contamination of 0.3 PBq 239,240 Pu from the Sellafield reprocessing plant resides in the sediments. No other sources than fallout and reprocessing add significantly to the 239,240 Pu inventories in the oceans. The discrepancy between measurements and expectations are assumed to be due to an underestimate of the rainfall and dry fallout (seaspray) and thus of the Pu-deposition over the oceans, but may also to some degree be due to inadequate sampling

  5. Magnitude and Uncertainty of Carbon Pools and Fluxes in the US Forests

    Science.gov (United States)

    Harris, N.; Saatchi, S. S.; Fore, A.; Yu, Y.; Woodall, C. W.; Ganguly, S.; Nemani, R. R.; Hagen, S.; Birdsey, R.; Brown, S.; Salas, W.; Johnson, K. D.

    2015-12-01

    Sassan Saatchi1,2, Stephan Hagen3, Christopher Woodall4 , Sangram Ganguly,5 Nancy Harris6, Sandra Brown7, Timothy Pearson7, Alexander Fore1, Yifan Yu1, Rama Nemani5, Gong Zhang5, William Salas4, Roger Cooke81 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2 Institute of Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA3 Applied Geosolutions, 55 Main Street Suit 125, Newmarket, NH 03857, USA4 USDA Forest Service, Northern Research Station, Saint Paul, MN 55108, USA5 NASA Ames Research Center, Moffett Field, CA 94035, USA6 Forests Program, World Resources Institute, Washington, DC, 20002, USA7 Winrock International, Ecosystem Services Unit, Arlington, VA 22202, USA8 Risk Analysis Resources for the Future, Washington DC 20036-1400Assessment of the carbon sinks and sources associated with greenhouse gas (GHG) fluxes across the US forestlands is a priority of the national climate mitigation policy. However, estimates of fluxes from the land sector are less precise compared to other sectors because of the large sources of uncertainty in quantifying the carbon pools, emissions, and removals associated with anthropogenic (land use) and natural changes in the US forestlands. As part of the NASA's Carbon Monitoring System, we developed a methodology based on a combination of ground inventory and space observations to develop spatially refined carbon pools and fluxes including the gross emissions and sequestration of carbon at each 1-ha land unit across the forestlands in the continental United States (CONUS) for the period of 2006-2010. Here, we provide the magnitude and uncertainty of multiple pools and fluxes of the US forestlands and outline the observational requirements to reduce the uncertainties for developing national climate mitigation policies based on the carbon sequestration capacity of the US forest lands. Keywords: forests, carbon pools, greenhouse gas, land use, attribution

  6. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    Science.gov (United States)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  7. An assessment of the inventory of Carbon-14 in the oceans

    International Nuclear Information System (INIS)

    Lassey, K.R.; Manning, M.R.; O'Brien, B.J.

    1987-04-01

    The oceanic inventory for natural 14 C is 19.6x10 29 atoms, an estimate similar to those found by other methods. The 14 C produced from nuclear weapons (1972) is 550x10 26 atoms and 52% was in the oceans. From 1972 to 1985 132x10 26 atoms of bomb 14 C were added. The nuclear power industry produces 0.5x10 26 atoms per year (17% of natural production rate). Most estimates by varying methods indicate an exchange time of carbon from atmosphere to ocean of about seven years or about 22 moles m -2 yr -1 for the surface ocean. The oceanic distribution generally has higher concentrations in low to mid latitudes, and low concentrations in the most southern regions, with the deep ocean retaining levels similar to those before nuclear testing

  8. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  9. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    Science.gov (United States)

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  10. Field measurements of the atmospheric dry deposition fluxes and velocities of polycyclic aromatic hydrocarbons to the global oceans.

    Science.gov (United States)

    González-Gaya, Belén; Zúñiga-Rival, Javier; Ojeda, María-José; Jiménez, Begoña; Dachs, Jordi

    2014-05-20

    The atmospheric dry deposition fluxes of 16 polycyclic aromatic hydrocarbons (PAHs) have been measured, for the first time, in the tropical and subtropical Atlantic, Pacific, and Indian Oceans. Depositional fluxes for fine (0.7-2.7 μm) and coarse (>2.7 μm) aerosol fractions were simultaneously determined with the suspended aerosol phase concentrations, allowing the determination of PAH deposition velocities (vD). PAH dry deposition fluxes (FDD) bound to coarse aerosols were higher than those of fine aerosols for 83% of the measurements. Average FDD for total (fine + coarse) Σ16PAHs (sum of 16 individual PAHs) ranged from 8.33 ng m(-2)d(-1) to 52.38 ng m(-2)d(-1). Mean FDD for coarse aerosol's individual PAHs ranged between 0.13 ng m(-2)d(-1) (Perylene) and 1.96 ng m(-2)d(-1) (Methyl Pyrene), and for the fine aerosol fraction these ranged between 0.06 ng m(-2)d(-1) (Dimethyl Pyrene) and 1.25 ng m(-2)d(-1) (Methyl Chrysene). The estimated deposition velocities went from the highest mean vD for Methyl Chrysene (0.17-13.30 cm s(-1)), followed by Dibenzo(ah)Anthracene (0.29-1.38 cm s(-1)), and other high MW PAHs to minimum values of vD for Dimethyl Pyrene (oceans.

  11. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by interannual variations in recharge

    Science.gov (United States)

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-01-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe ) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three-year study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 g/yr to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 g/yr to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 cm/month to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite’s method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously, with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  12. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by inter-annual variations in recharge

    Science.gov (United States)

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-02-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three years study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite's method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  13. Evidence for Late Permian-Upper Triassic ocean acidification from calcium isotopes in carbonate of the Kamura section in Japan

    Science.gov (United States)

    Ye, F.; Zhao, L., Sr.; Chen, Z. Q.; Wang, X.

    2017-12-01

    Calcium and carbon cycles are tightly related in the ocean, for example, through continental weathering and deposition of carbonate, thus, very important for exploring evolutions of marine environment during the earth history. The end-Permian mass extinction is the biggest biological disaster in the Phanerozoic and there are several studies talking about variations of calcium isotopes across the Permian-Triassic boundary (PTB). However, these studies are all from the Tethys regions (Payne et al., 2010; Hinojosa et al., 2012), while the Panthalassic Ocean is still unknown to people. Moreover, evolutions of the calcium isotopes during the Early to Late Triassic is also poorly studied (Blattler et al., 2012). Here, we studied an Uppermost Permian to Upper Triassic shallow water successions (Kamura section, Southwest Japan) in the Central Panthalassic Ocean. The Kamura section is far away from the continent without any clastic pollution, therefore, could preserved reliable δ44/40Cacarb signals. Conodont zonation and carbonate carbon isotope also provide precious time framework which is necessary for the explaining of the δ44/40Cacarb profile. In Kamura, δ44/40Cacarb and δ13Ccarb both exhibit negative excursions across the PTB, the δ44/40Cacarb value in the end-Permian is 1.0398‰ then abrupt decrease to the minimum value of 0.1524‰. CO2-driven global ocean acidification best explains the coincidence of the δ44/40Cacarb excursion with negative excursions in the δ13Ccarb of carbonates until the Early Smithian(N1a, N1b, N1c, P1, N2, P2). In the Middle and the Late Triassic, the δ44/40 Cacarb average approximately 1.1‰. During the Middle and Late Triassic, strong relationships between δ44/40Cacarb and δ13Ccarb are collapsed, indicating a normal pH values of the seawater in those time. The Siberian Trap volcanism probably played a significant role on the δ44/40Cacarb until the late Early Triassic. After that, δ44/40Cacarb was mostly controlled by carbonate

  14. Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland

    Science.gov (United States)

    Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli

    2018-02-01

    Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.

  15. The ocean quasi-homogeneous layer model and global cycle of carbon dioxide in system of atmosphere-ocean

    Science.gov (United States)

    Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey

    The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0

  16. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  17. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  18. TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.; Cronin, M.F.; Pinsard, F.; Reddy, K.G.

    Convergence Zones. ERA-I and TropFlux display the best agreement with in situ data, with correlations more than 0.93 and rms-differences less than 0.012 Nm sup(-2). TropFlux wind stresses exhibit a small, but consistent improvement (at all timescales and most...

  19. The Seasonal Cycle of Carbon in the Southern Pacific Ocean Observed from Biogeochemical Profiling Floats

    Science.gov (United States)

    Sarmiento, J. L.; Gray, A. R.; Johnson, K. S.; Carter, B.; Riser, S.; Talley, L. D.; Williams, N. L.

    2016-02-01

    The Southern Ocean is thought to play an important role in the ocean-atmosphere exchange of carbon dioxide and the uptake of anthropogenic carbon dioxide. However, the total number of observations of the carbonate system in this region is small and heavily biased towards the summer. Here we present 1.5 years of biogeochemical measurements, including pH, oxygen, and nitrate, collected by 11 autonomous profiling floats deployed in the Pacific sector of the Southern Ocean in April 2014. These floats sampled a variety of oceanographic regimes ranging from the seasonally ice-covered zone to the subtropical gyre. Using an algorithm trained with bottle measurements, alkalinity is estimated from salinity, temperature, and oxygen and then used together with the measured pH to calculate total carbon dioxide and pCO2 in the upper 1500 dbar. The seasonal cycle in the bioge