WorldWideScience

Sample records for occupied defect states

  1. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  2. Point defect states in Sb-doped germanium

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Neil S., E-mail: neilp@mit.edu; Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Agarwal, Anuradha [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Kimerling, Lionel C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  3. Estimate of the area occupied by reforestation programs in Rio de Janeiro state

    Directory of Open Access Journals (Sweden)

    Hugo Barbosa Amorim

    2012-03-01

    Full Text Available This study was based on a preliminary survey and inventory of existing reforestation programs in Rio de Janeiro state, through geoprocessing techniques and collection of field data. The reforested area was found to occupy 18,426.96 ha, which amounts to 0.42% of the territory of the state. Much of reforestation programs consists of eucalyptus (98%, followed by pine plantations (0.8%, and the remainder is distributed among 10 other species. The Médio Paraíba region was found to contribute the most to the reforested area of the state (46.6%. The estimated volume of eucalyptus timber was nearly two million cubic meters. This study helped crystallize the ongoing perception among those militating in the forestry sector of Rio de Janeiro state that the planted area and stock of reforestation timber is still incipient in the state.

  4. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  5. Occupied and unoccupied electronic states on vicinal Si(111) surfaces decorated with monoatomic gold chains; Besetzte und unbesetzte elektronische Zustaende vizinaler Si(111)-Oberflaechen mit atomaren Goldketten

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Kerstin

    2012-07-12

    In this work, the occupied and unoccupied electronic states of vicinal Si(111)-Au surfaces were investigated. The research focused on amending the experimental electronic band structure by two-photon photoemission and laser-based photoemission and bringing it in line with theoretical band structure calculations. This work dealt with the Si(553)-Au, the Si(111)-(5x2)-Au and the Si(557)-Au surface. Angle-resolved UV-photoelectron spectroscopy gave access to the occupied part of the band structure and thus to the energetic position, the dispersion and the symmetry of the occupied states. Bichromatic two-photon photoemission, however, revealed information about the energetics and, in addition, about the dynamics of unoccupied states on a femtosecond timescale. Notably, the selective polarization of the laser pulses allowed for distinguishing and classifying many of the states with respect to their symmetry. All three surfaces exhibited both surface and bulk states in the occupied part of the band structure. They could be clearly identified and separated from surface contributions by means of tight-binding calculations of the bulk band structure of silicon and by comparison to each other. An added similarity of these surfaces are the one-dimensional Rashba-split gold states, which definitely show dispersion along the chains but not perpendicular to them. All surfaces exhibit states which can easily be assigned to the gold chains. Additional features, however, cannot be attributed clearly to the characteristics of the complex surface reconstruction in all cases. An assignment to surface states was only successfully accomplished for Si(553)-Au. The primary emphasis of this photoemission study was on the Si(553)-Au surface, which shows the smallest defect density in comparison to the other surfaces and hence exhibits the sharpest peaks in the experimental spectra. In accordance with ab-initio band structure calculations this surface also displays, in addition to one

  6. Thermophysical spectroscopy of defect states in silicon

    International Nuclear Information System (INIS)

    Igamberdyev, Kh.T.; Mamadalimov, A.T.; Khabibullaev, P.K.

    1989-01-01

    The present work deals with analyzing the possibilities of using the non-traditional thermophysical methods to study a defect structure in silicon. For this purpose, the temperature dependences of thermophysical properties of defect silicon are investigated. A number of new, earlier unknown physical phenomena in silicon are obtained, and their interpretation has enabled one to establish the main physical mechanisms of formation of deep defect states in silicon

  7. Occupied and unoccupied electronic structure of Na doped MoS{sub 2}(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Komesu, Takashi; Zhang, Xin; Dowben, P. A. [Department of Physics and Astronomy, Theodore Jorgensen Hall, 855 N 16th St., University of Nebraska, Lincoln, Nebraska 68588-0299 (United States); Le, Duy; Rahman, Talat S. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States); Ma, Quan; Bartels, Ludwig [Department of Chemistry and the Materials Science and Engineering Program, University of California - Riverside, Riverside, California 92521 (United States); Schwier, Eike F.; Iwasawa, Hideaki; Shimada, Kenya [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Kojima, Yohei; Zheng, Mingtian [Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan)

    2014-12-15

    The influence of sodium on the band structure of MoS{sub 2}(0001) and the comparison of the experimental band dispersion with density functional theory show excellent agreement for the occupied states (angle-resolved photoemission) and qualitative agreement for the unoccupied states (inverse photoemission spectroscopy). Na-adsorption leads to charge transfer to the MoS{sub 2} surface causing an effect similar to n-type doping of a semiconductor. The MoS{sub 2} occupied valence band structure shifts rigidly to greater binding with little change in the occupied state dispersion. Likewise, the unoccupied states shift downward, approaching the Fermi level, yet the amount of the shift for the unoccupied states is greater than that of the occupied states, effectively causing a narrowing of the MoS{sub 2} bandgap.

  8. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    Science.gov (United States)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  9. Supported rhodium catalysts for ammonia-borane hydrolysis. Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liangbing; Li, Hongliang; Zhang, Wenbo; Zhao, Xiao; Qiu, Jianxiang; Li, Aowen; Zheng, Xusheng; Zeng, Jie [Hefei National Lab. for Physical Sciences at the Microscale, Key Lab. of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei, Anhui(China); Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui (China); Hu, Zhenpeng [School of Physics, Nankai University, Tianjin (China); Si, Rui [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China)

    2017-04-18

    Supported metal nanocrystals have exhibited remarkable catalytic performance in hydrogen generation reactions, which is influenced and even determined by their supports. Accordingly, it is of fundamental importance to determine the direct relationship between catalytic performance and metal-support interactions. Herein, we provide a quantitative profile for exploring metal-support interactions by considering the highest occupied state in single-atom catalysts. The catalyst studied consisted of isolated Rh atoms dispersed on the surface of VO{sub 2} nanorods. It was observed that the activation energy of ammonia-borane hydrolysis changed when the substrate underwent a phase transition. Mechanistic studies indicate that the catalytic performance depended directly on the highest occupied state of the single Rh atoms, which was determined by the band structure of the substrates. Other metal catalysts, even with non-noble metals, that exhibited significant catalytic activity towards NH{sub 3}BH{sub 3} hydrolysis were rationally designed by adjusting their highest occupied states. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Ground-state energies and highest occupied eigenvalues of atoms in exchange-only density-functional theory

    Science.gov (United States)

    Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht

    1989-11-01

    The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].

  11. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  12. Partly occupied Wannier functions: Construction and applications

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    We have developed a practical scheme to construct partly occupied, maximally localized Wannier functions (WFs) for a wide range of systems. We explain and demonstrate how the inclusion of selected unoccupied states in the definition of the WFs can improve both their localization and symmetry...

  13. Movements in Parties: OccupyPD

    Directory of Open Access Journals (Sweden)

    Donatella della Porta

    2015-03-01

    Full Text Available When the United States activists called for people to Occupy#everywhere, it is unlikely they were thinking of the headquarters of the Italian centre-left party. Parties and movements are often considered to be worlds apart. In reality, parties have been relevant players in movement politics, and movements have influenced parties, often through the double militancy of many of their members. OccupyPD testifies to a continuous fluidity at the movement-party border, but also to a blockage in the party’s interactions with society that started long before the economic crisis but drastically accelerated with it. In this paper we present the OccupyPD Movement as a case of interaction between party politics and social movement politics, and in particular between the base membership of a centre-left party and the broader anti-austerity movement that diffused from the US to Europe adopting similar forms of actions and claims. Second, by locating it within the context of the economic and democratic crisis that erupted in 2007, we understand its emergence as a reaction towards politics in times of crisis of responsibility, by which we mean a drastic drop in the capacity of the government to respond to citizens’ requests. To fulfil this double aim, we bridge social movement studies with research on party change, institutional trust and democratic theory, looking at some political effects of the economic crisis in terms of a specific form of legitimacy crisis, as well as citizens’ responses to it, with a particular focus on the political meaning of recent anti-austerity protests. In this analysis, we refer to both quantitative and qualitative data from secondary liter-ature and original in-depth interviews carried out with a sample of OccupyPD activists.

  14. Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States

    Science.gov (United States)

    Liu, Zhao; Möller, Gunnar; Bergholtz, Emil J.

    2017-09-01

    We investigate extrinsic wormholelike twist defects that effectively increase the genus of space in lattice versions of multicomponent fractional quantum Hall systems. Although the original band structure is distorted by these defects, leading to localized midgap states, we find that a new lowest flat band representing a higher genus system can be engineered by tuning local single-particle potentials. Remarkably, once local many-body interactions in this new band are switched on, we identify various Abelian and non-Abelian fractional quantum Hall states, whose ground-state degeneracy increases with the number of defects, i.e, with the genus of space. This sensitivity of topological degeneracy to defects provides a "proof of concept" demonstration that genons, predicted by topological field theory as exotic non-Abelian defects tied to a varying topology of space, do exist in realistic microscopic models. Specifically, our results indicate that genons could be created in the laboratory by combining the physics of artificial gauge fields in cold atom systems with already existing holographic beam shaping methods for creating twist defects.

  15. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  16. Stress and Strain State Analysis of Defective Pipeline Portion

    Science.gov (United States)

    Burkov, P. V.; Burkova, S. P.; Knaub, S. A.

    2015-09-01

    The paper presents computer simulation results of the pipeline having defects in a welded joint. Autodesk Inventor software is used for simulation of the stress and strain state of the pipeline. Places of the possible failure and stress concentrators are predicted on the defective portion of the pipeline.

  17. Construction in Occupied Spaces

    Directory of Open Access Journals (Sweden)

    Ward Andrew E.

    2017-06-01

    Full Text Available Conducting construction activities in occupied environments presents a great challenge due to the additional logistical requirements and the presence of the building occupants. The aim of this research is to gather and evaluate the means and methods to successfully plan, manage, and execute construction activities in occupied spaces in an effort to provide consolidated industry tools and strategies for maintaining a schedule and minimizing the impact on the occupants. The methodology of the research utilizes an exploratory approach to gather qualitative data. The data was collected through interviews with industry professionals to identify industry best practices. The semi-structured interviews provided a platform for the documents, lessons learned, and the techniques and strategies used for occupied construction by the construction industry. The information obtained in the interview process identified six themes that are critical to achieving and maintaining quality in occupied construction. These themes of the schedule, cost, customer satisfaction, planning, fire/life safety and utilities, and contractor management are reviewed in detail, and the paper discusses how to manage each element. The analysis and extracted management techniques, procedures and strategies can be used by the construction industry for future projects by focusing on the critical aspects of occupied construction and the manner in which to succeed with it.

  18. Construction in Occupied Spaces

    Science.gov (United States)

    Ward, Andrew E.; Azhar, Salman; Khalfan, Malik

    2017-06-01

    Conducting construction activities in occupied environments presents a great challenge due to the additional logistical requirements and the presence of the building occupants. The aim of this research is to gather and evaluate the means and methods to successfully plan, manage, and execute construction activities in occupied spaces in an effort to provide consolidated industry tools and strategies for maintaining a schedule and minimizing the impact on the occupants. The methodology of the research utilizes an exploratory approach to gather qualitative data. The data was collected through interviews with industry professionals to identify industry best practices. The semi-structured interviews provided a platform for the documents, lessons learned, and the techniques and strategies used for occupied construction by the construction industry. The information obtained in the interview process identified six themes that are critical to achieving and maintaining quality in occupied construction. These themes of the schedule, cost, customer satisfaction, planning, fire/life safety and utilities, and contractor management are reviewed in detail, and the paper discusses how to manage each element. The analysis and extracted management techniques, procedures and strategies can be used by the construction industry for future projects by focusing on the critical aspects of occupied construction and the manner in which to succeed with it.

  19. Modeling charged defects inside density functional theory band gaps

    International Nuclear Information System (INIS)

    Schultz, Peter A.; Edwards, Arthur H.

    2014-01-01

    Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem

  20. Extraction of the defect density of states in microcrystalline silicon from experimental results and simulation studies

    International Nuclear Information System (INIS)

    Tibermacine, T.; Ledra, M.; Ouhabab, N.; Merazga, A.

    2015-01-01

    The constant photocurrent method in the ac-mode (ac-CPM) is used to determine the defect density of states (DOS) in hydrogenated microcrystalline silicon (μc-Si:H) prepared by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD). The absorption coefficient spectrum (ac-α(hv)), is measured under ac-CPM conditions at 60 Hz. The measured ac-α(hv) is converted by the CPM spectroscopy into a DOS distribution covering a portion in the lower energy range of occupied states. We have found that the density of valence band-tail states falls exponentially towards the gap with a typical band-tail width of 63 meV. Independently, computer simulations of the ac-CPM are developed using a DOS model that is consistent with the measured ac-α(hv) in the present work and a previously measured transient photocurrent (TPC) for the same material. The DOS distribution model suggested by the measurements in the lower and in the upper part of the energy-gap, as well as by the numerical modelling in the middle part of the energy-gap, coincide reasonably well with the real DOS distribution in hydrogenated microcrystalline silicon because the computed ac-α(hv) is found to agree satisfactorily with the measured ac-α(hv). (paper)

  1. Spin helical states and spin transport of the line defect in silicene lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou; Chen, Dong-Hai; Wang, Rui-Qiang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui, E-mail: ykbai@semi.ac.cn [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-02-06

    We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin helical states localized beside the defect line: spin-up electrons flow forward on one side near the line defect and move backward on the other side, and vice versa for spin-down electrons. When the system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-flipped scattering when they transport along the line defect than in the bulk. An electric gate above the line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable waveguide. - Highlights: • Band structure of silicene with a line defect. • Spin helical states around the line defect and their probability distribution features. • Spin transport along the line defect and that in the bulk silicene.

  2. Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes

    Science.gov (United States)

    Qi, Bingkun; Zhang, Lingxuan; Ge, Li

    2018-03-01

    We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.

  3. The Occupiers and the Occupied: A Nexus of Memories

    Directory of Open Access Journals (Sweden)

    Christine de Matos

    2006-12-01

    Full Text Available This paper explores the ‘different, but still possibly significant, status’ of the memories of Australians who occupied Hiroshima Prefecture with the British Commonwealth Occupation Force (BCOF from 1946 to 1952 and the Japanese who lived under Australian occupation.

  4. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  5. A harmonic transition state theory model for defect initiation in crystals

    International Nuclear Information System (INIS)

    Delph, T J; Cao, P; Park, H S; Zimmerman, J A

    2013-01-01

    We outline here a model for the initiation of defects in crystals based upon harmonic transition state theory (hTST). This model combines a previously developed model for zero-temperature defect initiation with a multi-dimensional hTST model that is capable of accurately predicting the effects of temperature and loading rate upon defect initiation. The model has several features that set it apart from previous efforts along these lines, most notably a straightforward method of determining the energy barrier between adjacent equilibrium states that does not depend upon a priori information concerning the nature of the defect. We apply the model to two examples, triaxial stretching of a perfect fcc crystal and nanoindentation of a gold substrate. Very good agreement is found between the predictions of the model and independent molecular dynamics (MD) simulations. Among other things, the model predicts a strong dependence of the defect initiation behavior upon the loading parameter. A very attractive feature of this model is that it is valid for arbitrarily slow loading rates, in particular loading rates achievable in the laboratory, and suffers from none of the limitations in this regard inherent in MD simulations. (paper)

  6. Quantum information processing using designed defect states in

    DEFF Research Database (Denmark)

    Pedersen, Jesper; Flindt, Christian; Mortensen, Niels Asger

    2007-01-01

    We propose a new physical implementation of spin qubits for quantum information processing, namely defect states in antidot lattices de¯ned in the two-dimensional electron gas at a semiconductor heterostructure. Calculations of the band structure of the periodic antidot lattice are presented...

  7. Theoretical studies of defects in insulators within the framework of the local density approximation

    International Nuclear Information System (INIS)

    Pederson, M.R.; Klein, B.M.

    1989-01-01

    The muffin-tin Green's function method and a linear combination of atomic orbitals cluster method for defect studies are discussed. These methods have been used to carry out calculations on F-like centers in MgO, CaO and LiF. Although the local density approximation leads to qualitatively correct information pertaining to the occupied states, in addition to the usual perfect-crystal band gap problem, the unoccupied defect levels are found to lie above the onset of the conducting band, in disagreement with the experimental measurements. Results using two methods for incorporating many-electron corrections into an LDA-like computational algorithm are discussed. These methods are the 'scissor-operator' approach to the band gap problem, and the self-interaction-correction (SIC) framework for improving the local spin density approximation. SIC results for the defect excitation spectra are in very good agreement with experiment. This method, when fully developed, should give an excellent ab initio description of defects in insulators. (author) 29 refs., 3 figs., 1 tab

  8. Sensitivity of on-resistance and threshold voltage to buffer-related deep level defects in AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Armstrong, Andrew M; Allerman, Andrew A; Baca, Albert G; Sanchez, Carlos A

    2013-01-01

    The influence of deep levels defects located in highly resistive GaN:C buffers on the on-resistance (R ON ) and threshold voltage (V th ) of AlGaN/GaN high electron mobility transistors (HEMTs) power devices was studied by a combined photocapacitance deep level optical spectroscopy (C-DLOS) and photoconductance deep level optical spectroscopy (G-DLOS) methodology as a function of electrical stress. Two carbon-related deep levels at 1.8 and 2.85 eV below the conduction band energy minimum were identified from C-DLOS measurements under the gate electrode. It was found that buffer-related defects under the gate shifted V th positively by approximately 10%, corresponding to a net areal density of occupied defects of 8 × 10 12 cm −2 . The effect of on-state drain stress and off-state gate stress on buffer deep level occupancy and R ON was also investigated via G-DLOS. It was found that the same carbon-related deep levels observed under the gate were also active in the access region. Off-state gate stress produced significantly more trapping and degradation of R ON (∼140%) compared to on-state drain stress (∼75%). Greater sensitivity of R ON to gate stress was explained by a more sharply peaked lateral distribution of occupied deep levels between the gate and drain compared to drain stress. The overall greater sensitivity of R ON compared to V th to buffer defects suggests that electron trapping is significantly greater in the access region compared to under the gate, likely due to the larger electric fields in the latter region. (invited paper)

  9. BIRTH DEFECTS IN FOUR U.S. WHEAT-PRODUCING STATES

    Science.gov (United States)

    Birth Defects in Four U.S. Wheat - Producing StatesDina M. Schreinemachers, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711Wheat agriculture in Mi...

  10. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.

    Science.gov (United States)

    Chekmarev, Sergei F

    2013-03-01

    The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of

  11. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik

    2013-01-01

    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...

  12. Electronic structure and STM images simulation of defects on hBN/ black-phosphorene heterostructures: A theoretical study

    Science.gov (United States)

    Ospina, D. A.; Cisternas, E.; Duque, C. A.; Correa, J. D.

    2018-03-01

    By first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials.

  13. Charge transfer of edge states in zigzag silicene nanoribbons with Stone–Wales defects from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Xie [College of Mathematics and Statistics, Chongqing University, Chongqing 401331 (China); School of Mathematics and Statistic, Chongqing University of Technology, Chongqing 400054 (China); Rui, Wang, E-mail: rcwang@cqu.edu.cn [Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Shaofeng, Wang [Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044 (China); Xiaozhi, Wu, E-mail: xiaozhiwu@cqu.edu.cn [Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044 (China)

    2016-10-15

    Highlights: • The properties of SW defects in silicene and ZSNRs are obtained. • The SW defects at the edge of ZSNRs induce a sizable gap. • The charge transfer of edge states is resulted from SW defects in ZSNRS. - Abstract: Stone–Wales (SW) defects are favorably existed in graphene-like materials with honeycomb lattice structure and potentially employed to change the electronic properties in band engineering. In this paper, we investigate structural and electronic properties of SW defects in silicene sheet and its nanoribbons as a function of their concentration using the methods of periodic boundary conditions with first-principles calculations. We first calculate the formation energy, structural properties, and electronic band structures of SW defects in silicene sheet, with dependence on the concentration of SW defects. Our results show a good agreement with available values from the previous first-principles calculations. The energetics, structural aspects, and electronic properties of SW defects with dependence on defect concentration and location in edge-hydrogenated zigzag silicene nanoribbons are obtained. For all calculated concentrations, the SW defects prefer to locate at the edge due to the lower formation energy. The SW defects at the center of silicene nanoribbons slightly influence on the electronic properties, whereas the SW defects at the edge of silicene nanoribbons split the degenerate edge states and induce a sizable gap, which depends on the concentration of defects. It is worth to find that the SW defects produce a perturbation repulsive potential, which leads the decomposed charge of edge states at the side with defect to transfer to the other side without defect.

  14. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  15. Macro-defect free cements. State of art

    International Nuclear Information System (INIS)

    Holanda, J.N.F.; Povoa, G.E.A.M.; Souza, G.P.; Pinatti, D.G.

    1998-01-01

    The purpose of this work is to prevent a state of art about macro-defect-free cement pastes (MDF cement ) of high mechanical strength. This new type of cement paste is obtained through addition of a water-soluble polymer, followed by intense shear mixing and application of low compacting pressure. It is presented fundamental aspects related to the processing of this MDF paste, as well as its main properties and applications are discussed. (author)

  16. Defect states in microcrystalline silicon probed by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Merdzhanova, T.; Carius, R.; Klein, S.; Finger, F.; Dimova-Malinovska, D.

    2006-01-01

    Photoluminescence (PL) spectroscopy is used to investigate defects and localized band tail states within the band gap of hydrogenated microcrystalline silicon (μc-Si:H) prepared by plasma enhanced chemical vapor deposition (PECVD) and hot wire chemical vapor deposition (HWCVD). The effect of the substrate temperature (T S ), which influences mainly the defect density, and silane concentration (SC), as Key parameter to control the microstructure of the material were varied. In high quality μc-Si:H films (T S = 185-200 deg. C) a PL band ('μc'-Si-band) is observed at ∼ 0.9-1.05 eV which is attributed to radiative recombination via localized band tail states in the microcrystalline phase. In μc-Si:H films prepared at higher T S (> 300 deg. C), an additional PL band at ∼ 0.7 eV with a width of ∼ 0.17 eV is found for both PECVD and HWCVD material. This band maintains its position at ∼ 0.7 eV with increasing SC in contrast to the observed shift of the 'μc'-Si-band to higher energies. Studies of the temperature dependences of the PL peak energy and intensity for the two bands show: (i) the PL band at 0.7 eV remains unaffected upon increasing temperature, while the 'μc'-Si-band shifts to lower energies (ii) a much weaker quenching for the 0.7 eV band compared to the 'μc'-Si-band. It was also found that the PL band at 0.7 eV exhibits a slightly stronger temperature dependence of the PL intensity compared to 'defect' band at 0.9 eV in a-Si:H suggesting similar recombination transition via deeper trap states. Due to a similar PL properties of the emission band previously observed in Czochralski-grown silicon (Cz-Si), the 0.7 eV band in μc-Si:H is assigned tentatively to defect-related transitions in the crystalline phase

  17. "SAFEGUARDING THE INTERESTS OF THE STATE" FROM DEFECTIVE DELINQUENT GIRLS.

    Science.gov (United States)

    Sohasky, Kate E

    2016-01-01

    The 1911 mental classification, "defective delinquent," was created as a temporary legal-medical category in order to identify a peculiar class of delinquent girls in a specific institutional setting. The defective delinquent's alleged slight mental defect, combined with her appearance of normalcy, rendered her a "dangerous" and "incurable" citizen. At the intersection of institutional history and the history of ideas, this article explores the largely overlooked role of borderline mental classifications of near-normalcy in the medicalization of intelligence and criminality during the first third of the twentieth-century United States. Borderline classifications served as mechanisms of control over women's bodies through the criminalization of their minds, and the advent of psychometric tests legitimated and facilitated the spread of this classification beyond its original and intended context. The borderline case of the defective delinquent girl demonstrates the significance of marginal mental classifications to the policing of bodies through the medicalization of intellect. © 2015 Wiley Periodicals, Inc.

  18. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiqi, E-mail: WQHuang2001@yahoo.com [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Huang Zhongmei; Miao Xinjiang; Cai Chenlan; Liu Jiaxin; Lue Quan [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Liu Shirong, E-mail: Shirong@yahoo.com [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China); Qin Chaojian [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China)

    2012-01-15

    In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal is used to select model in the nano-laser. The experimental demonstration is reported in which the peaks of stimulated emission at about 600 nm and 700 nm were observed on the Si QD prepared in oxygen after annealing which improves the stimulated emission. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.

  19. How social media matter: Repression and the diffusion of the Occupy Wall Street movement.

    Science.gov (United States)

    Suh, Chan S; Vasi, Ion Bogdan; Chang, Paul Y

    2017-07-01

    This study explores the role played by social media in reshaping the repression-mobilization relationship. Drawing on the case of the Occupy Wall Street movement, we examine the impact of Facebook and Twitter on the spatial diffusion of protests during a period of heightened state repression. Results from event history analyses suggest that the effects of repression on protest diffusion are contingent on the presence of social media accounts supporting the movement. We find that state repression at earlier protest sites encouraged activists to create Facebook and Twitter accounts in their own cities, which then served as important vehicles for the initiation of new Occupy protests. Moreover, results suggest that repression incidents can directly facilitate future protests in cities that already have Occupy Facebook accounts. This study highlights the potential of social media to both mediate and moderate the influence of repression on the diffusion of contemporary movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The digital evolution of occupy wall street.

    Directory of Open Access Journals (Sweden)

    Michael D Conover

    Full Text Available We examine the temporal evolution of digital communication activity relating to the American anti-capitalist movement Occupy Wall Street. Using a high-volume sample from the microblogging site Twitter, we investigate changes in Occupy participant engagement, interests, and social connectivity over a fifteen month period starting three months prior to the movement's first protest action. The results of this analysis indicate that, on Twitter, the Occupy movement tended to elicit participation from a set of highly interconnected users with pre-existing interests in domestic politics and foreign social movements. These users, while highly vocal in the months immediately following the birth of the movement, appear to have lost interest in Occupy related communication over the remainder of the study period.

  1. The digital evolution of occupy wall street.

    Science.gov (United States)

    Conover, Michael D; Ferrara, Emilio; Menczer, Filippo; Flammini, Alessandro

    2013-01-01

    We examine the temporal evolution of digital communication activity relating to the American anti-capitalist movement Occupy Wall Street. Using a high-volume sample from the microblogging site Twitter, we investigate changes in Occupy participant engagement, interests, and social connectivity over a fifteen month period starting three months prior to the movement's first protest action. The results of this analysis indicate that, on Twitter, the Occupy movement tended to elicit participation from a set of highly interconnected users with pre-existing interests in domestic politics and foreign social movements. These users, while highly vocal in the months immediately following the birth of the movement, appear to have lost interest in Occupy related communication over the remainder of the study period.

  2. 49 CFR 218.80 - Movement of occupied camp cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of occupied camp cars. 218.80 Section 218... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Protection of Occupied Camp Cars § 218.80 Movement of occupied camp cars. Occupied cars may not be humped or flat switched unless coupled to...

  3. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.

  4. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1997-01-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies

  5. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    Science.gov (United States)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  6. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    Science.gov (United States)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  7. Composition Related Electrical Active Defect States of InGaAs and GaAsN

    Directory of Open Access Journals (Sweden)

    Arpad Kosa

    2017-01-01

    Full Text Available This paper discusses results of electrically active defect states - deep energy level analysis in InGaAs and GaAsN undoped semiconductor structures grown for solar cell applications. Main attention is focused on composition and growth condition dependent impurities and the investigation of their possible origins. For this purpose a widely utilized spectroscopy method, Deep Level Transient Fourier Spectroscopy, was utilized. The most significant responses of each sample labelled as InG2, InG3 and NG1, NG2 were discussed in detail and confirmed by simulations and literature data. The presence of a possible dual conduction type and dual state defect complex, dependent on the In/N composition, is reported. Beneficial characteristics of specific indium and nitrogen concentrations capable of eliminating or reducing certain point defects and dislocations are stated.

  8. Birth Defects

    Science.gov (United States)

    A birth defect is a problem that happens while a baby is developing in the mother's body. Most birth defects happen during the first 3 months of ... in the United States is born with a birth defect. A birth defect may affect how the ...

  9. The Gas-Surface Interaction of a Human-Occupied Spacecraft with a Near-Earth Object

    Science.gov (United States)

    Farrell, W. M.; Hurley, D. M.; Poston, M. J.; Zimmerman, M. I.; Orlando, T. M.; Hibbitts, C. A.; Killen, R. M.

    2016-01-01

    NASA's asteroid redirect mission (ARM) will feature an encounter of the human-occupied Orion spacecraft with a portion of a near- Earth asteroid (NEA) previously placed in orbit about the Moon by a capture spacecraft. Applying a shuttle analog, we suggest that the Orion spacecraft should have a dominant local water exosphere, and that molecules from this exosphere can adsorb onto the NEA. The amount of adsorbed water is a function of the defect content of the NEA surface, with retention of shuttle-like water levels on the asteroid at 10(exp 15) H2O's/m2 for space weathered regolith at T approximately 300 K.

  10. 24 CFR 990.140 - Occupied dwelling units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Occupied dwelling units. 990.140 Section 990.140 Housing and Urban Development Regulations Relating to Housing and Urban Development... Eligible Unit Months § 990.140 Occupied dwelling units. A PHA is eligible to receive operating subsidy for...

  11. Defects in Cu(In,Ga)Se{sub 2} chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing; Gunawan, Oki; Copel, Matthew; Reuter, Kathleen B; Chey, S Jay; Mitzi, David B [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Deline, Vaughn R [IBM Almaden Resesarch Center, San Jose, CA (United States)

    2011-10-15

    Understanding defects in Cu(In,Ga)(Se,S){sub 2} (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga){sub Cu}) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current-voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga){sub Cu} defects on device PV performance is also established. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Pattern and Management of acquired Facial defects in Imo State ...

    African Journals Online (AJOL)

    Imo State University Teaching Hospital Orlu, has the bulk of its patients drawn from neigbouring rural communities and are mainly of a low socioeconomic group. They therefore tend to present late with relatively complicated pathologies. This article looks at the pattern, aetiology and management approach for facial defects ...

  13. An Analysis of Overstory Tree Canopy Cover in Sites Occupied by Native and Introduced Cottontails in the Northeastern United States with Recommendations for Habitat Management for New England Cottontail.

    Directory of Open Access Journals (Sweden)

    Bill Buffum

    Full Text Available The New England cottontail (Sylvilagus transitionalis is a high conservation priority in the Northeastern United States and has been listed as a candidate species under the Endangered Species Act. Loss of early successional habitat is the most common explanation for the decline of the species, which is considered to require habitat with dense low vegetation and limited overstory tree canopy. Federal and state wildlife agencies actively encourage landowners to create this habitat type by clearcutting blocks of forest. However, there are recent indications that the species also occupies sites with moderate overstory tree canopy cover. This is important because many landowners have negative views about clearcutting and are more willing to adopt silvicultural approaches that retain some overstory trees. Furthermore, it is possible that clearcuts with no overstory canopy cover may attract the eastern cottontail (S. floridanus, an introduced species with an expanding range. The objective of our study was to provide guidance for future efforts to create habitat that would be more favorable for New England cottontail than eastern cottontail in areas where the two species are sympatric. We analyzed canopy cover at 336 cottontail locations in five states using maximum entropy modelling and other statistical methods. We found that New England cottontail occupied sites with a mean overstory tree canopy cover of 58% (SE±1.36, and was less likely than eastern cottontail to occupy sites with lower overstory canopy cover and more likely to occupy sites with higher overstory canopy cover. Our findings suggest that silvicultural approaches that retain some overstory canopy cover may be appropriate for creating habitat for New England cottontail. We believe that our results will help inform critical management decisions for the conservation of New England cottontail, and that our methodology can be applied to analyses of habitat use of other critical wildlife

  14. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography

    Science.gov (United States)

    Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting

    2018-05-01

    Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.

  15. Defect engineering: design tools for solid state electrochemical devices

    International Nuclear Information System (INIS)

    Tuller, Harry L.

    2003-01-01

    The interest in solid state electrochemical devices including sensors, fuel cells, batteries, oxygen permeation membranes, etc. has grown rapidly in recent years. Many of the same figures of merit apply to these different applications, the key ones being ionic conduction in solid electrolytes, mixed ionic-electronic conduction (MIEC) in electrodes and permeation membranes, and gas-solid reaction kinetics in sensors and fuel cells. Optimization of device performance often relies on the careful understanding and control of both ionic and electronic defects in the materials that make up the key device components. To date, most materials in use have been discovered serendipitously. A key focus of this paper is on the tools available to scientists and engineers to practice 'defect engineering' for the purpose of optimizing the performance of such materials. Dopants, controlled structural disorder, and interfaces are examined in relation to increasing the conductivity of solid electrolytes. The creation of defect bands is demonstrated as a means for introducing high levels of electronic conductivity into a solid electrolyte for the purpose of creating a mixed conductor and thereby a monolithic fuel cell structure. Dopants are also examined as a means of reducing losses in a high temperature resonant sensor platform. The control of microstructure, down to the nano-scale, is shown capable of inverting the predominant ionic to an electronic charge carrier and thereby markedly modifying electrical properties. Electrochemical bias and light are also discussed in terms of creating defects locally thereby providing means for micromachining a broad range of materials with precise dimensional control, low residual stress and controlled etch rates

  16. Study of indium-defect interactions in diamond using 2-D CEEC

    CERN Document Server

    Storbeck, E J; Wahl, U; Connell, S H; Sellschop, J P Friedel

    2000-01-01

    Channeling has, since its inception, proven to be a valuable tool in locating the geometric position of atoms in the crystal lattice. Allied with powerful theoretical models, it can yield detailed information on the positions that these impurities occupy. $^{111}$In, a radioactive isotope with a conveniently short half-life, is an often-used probe of heavy-atom doping of materials. Previous work has centred on the lattice location of $^{111}$In implanted in type IIa diamond. Theoretical calculations on this `pure' system have also recently been made. We have performed the first studies of $^{111}$In implanted into various carefully selected, defect-rich diamond systems and obtained fractions for the sites occupied. The defect systems investigated include nitrogen in various configurations, boron, hydrogen and vacancies. The use of two-dimensional conversion-electron emission channeling (CEEC) has enabled the system to be studied in greater detail than with conventional one-dimensional CEEC. Coupled with the a...

  17. Numerical modeling of mechanical behavior of multilayered composite plates with defects under static loading

    Science.gov (United States)

    Korepanov, V. V.; Serovaev, G. S.

    2017-06-01

    Evaluation of the mechanical state of a structure or its components in the process of operation based on detection of internal damages (damage detection) becomes especially important in such rapidly developing spheres of production as machine building, aerospace industry, etc. One of the most important features of these industries is the application of new types of materials among which polymer based composite materials occupy a significant position. Hence, they must have sufficient operational rigidity and strength. However, defects of various kinds may arise during the manufacture. Delamination is the most common defect in structures made from composite materials and represents a phenomenon that involves the complex fracture of layers and interlayer compounds. Among the reasons of delamination occurrence are: disposition of anti-adhesive lubricants, films; insufficient content of binder, high content of volatile elements; violation of the molding regime; poor quality of anti-adhesive coating on the surface of the tooling. One of the effective methods for analyzing the influence of defects is numerical simulation. With the help of numerical methods, it is possible to track the evolution of various parameters when the defect size and quantity change. In the paper, a multilayered plate of an equally resistant carbon fiber reinforced plastic was considered, with a thickness of each layer equal to 0.2 mm. Various static loading cases are studied: uniaxial tension, three and four-point bending. For each type of loading, a numerical calculation of the stress-strain state was performed for healthy and delaminated plates, with different number and size of the defects. Contact interaction between adjacent surfaces in the zone of delamination was taken into account.

  18. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Su Xiaoxing; Wang Yuesheng

    2010-01-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  19. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-09-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  20. Occupy: A New Pedagogy of Space and Time?

    Science.gov (United States)

    Neary, Mike; Amsler, Sarah

    2012-01-01

    This paper forms the first part of a project of inquiry to understand the theoretical and practical potentials of Occupy through the recent wave of occupations that have emerged in response to the politics of austerity and precarity around the world. We do this as educators who are seeking to "occupy" spaces of higher education inside and outside…

  1. Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals

    Science.gov (United States)

    Zhan, Peng; Xie, Zheng; Li, Zhengcao; Wang, Weipeng; Zhang, Zhengjun; Li, Zhuoxin; Cheng, Guodong; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2013-02-01

    We clarified, in this Letter, that in un-doped ZnO single crystals after thermal annealing in flowing argon, the defects-induced room-temperature ferromagnetism was originated from the surface defects and specifically, from singly occupied oxygen vacancies denoted as F+, by the optical and electrical properties measurements as well as positron annihilation analysis. In addition, a positive linear relationship was observed between the ferromagnetism and the F+ concentration, which is in support with the above clarification.

  2. FCJ-197 Entanglements with Media and Technologies in the Occupy Movement

    Directory of Open Access Journals (Sweden)

    Megan Boler

    2015-06-01

    Full Text Available This essay explores the paradox of activists using corporate-owned platforms—the ‘master’s tools’ (Lorde, 1984—in the context of the Occupy Wall Street movement. Grounded in findings from interviews with 30 women activists from eight North American Occupy sites, this essay reveals the frictions that result from the entangled paradox between philosophies embedded within technologies and activists’ philosophies. We document entanglements between corporate platforms and radical democratic ideals, and subsequent frictions between activists’ ideals and more pragmatic, DIY practices. We also investigate frictions between aspirations of openness, and the realities of surveillance and infiltration by the police state. We examine entanglements through the theoretical lenses of ‘connective labor’ (Boler et al, 2014, ‘veillance’ (Mann, 2004, and the ‘master’s tools’ (Lorde, 1984, and lay the groundwork for ‘queering the binary of individuals and groups’ (Barad, 2012 and recognising the non-linear, dynamic relations of social movements.

  3. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State.

    Science.gov (United States)

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Inborn defects of the tricarboxylic acid (TCA) cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH), pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  4. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

    Directory of Open Access Journals (Sweden)

    Simone Cardaci

    2012-01-01

    Full Text Available Inborn defects of the tricarboxylic acid (TCA cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH, fumarate hydratase (FH, and isocitrate dehydrogenase (IDH, pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  5. Occupy: New Pedagogy of Space and Time?

    Directory of Open Access Journals (Sweden)

    Sarah Amsler

    2015-12-01

    Full Text Available This paper forms the first part of a project of inquiry to understand the theoretical and practical potentials of Occupy through the recent wave of occupations that have emerged in response to the politics of austerity and precarity around the world. We do this as educators who are seeking to ‘occupy’ spaces of higher education inside and outside of the institutions in which we work. Occupy points to the centrality of space and time as practical concepts through which it is possible to reconfigure revolutionary activity. By dealing with the concept (Occupy at this fundamental level of space and time through a critical engagement with Henri Lefebvre’s notion of ‘a new pedagogy of space and time’, we hope to open spaces for further revolutionary transformation by extending a critique of the politics of space and time into the institutions and idea of education itself. Lefebvre considers the ‘pedagogy of space and time’ as a basis for a new form of ‘counter-space’. He suggests that ‘deviant or diverted spaces, though initially subordinate, show distinct evidence of a true productive capacity’ (2008: 383, and in doing so reveal the breaking points of everyday life and the ways in which it might be appropriated as exuberant spaces full of enjoyment and hope. In the Production of Space, he identifies the space of leisure as a site within which such a resistance might be contemplated and activated. In our work we replace the principle of leisure with the concept of Occupy. We consider here how attempts to occupy the university curriculum, not as a programme of education but as the production of critical knowledge, may also constitute ‘a new pedagogy of space and time’. We will describe this occupation of higher education with reference to two projects with which we are involved Student as Producer and the Social Science Centre, the former at the University of Lincoln, and the latter across the city of Lincoln.

  6. Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals

    Science.gov (United States)

    Aldén, M.; Johansson, B.; Skriver, H. L.

    1995-02-01

    The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green's-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify the occupied and unoccupied 4f energy level shifts as the surface segregation energy of a 4fn-1 and 4fn+1 impurity atom, respectively, in a 4fn host metal. The calculations include both initial- and final-state effects and give values that are considerably lower than those measured on polycrystalline samples as well as those found in previous initial-state model calculations. The present theory agrees well with very recent high-resolution, single-crystal film measurements for Gd, Tb, Dy, Ho, Er, Tm, and Lu. We furthermore utilize the unique possibility offered by the lanthanide metals to clarify the roles played by the initial and the different final states of the core-excitation process, permitted by the fact that the so-called initial-state effect is identical upon 4f removal and 4f addition. Surface energy and work function calculations are also reported.

  7. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    Science.gov (United States)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  8. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, M., E-mail: kamada@cc.saga-u.ac.jp; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K. [Synchrotron Light Application Center, Saga University, Honjo 1, Saga 840-8502 (Japan)

    2016-04-15

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L{sub 23} and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  9. Studies of defects and defect agglomerates by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1997-01-01

    A brief introduction to positron annihilation spectroscopy (PAS), and in particular lo its use for defect studies in metals is given. Positrons injected into a metal may become trapped in defects such as vacancies, vacancy clusters, voids, bubbles and dislocations and subsequently annihilate from...... the trapped state iri the defect. The annihilation characteristics (e.g., the lifetime of the positron) can be measured and provide information about the nature of the defect (e.g., size, density, morphology). The technique is sensitive to both defect size (in the range from monovacancies up to cavities...

  10. Defect-dependent elasticity: Nanoindentation as a probe of stress state

    International Nuclear Information System (INIS)

    Jarausch, K. F.; Kiely, J. D.; Houston, J. E.; Russell, P. E.

    2000-01-01

    Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2x) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films. (c) 2000 Materials Research Society

  11. Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals

    DEFF Research Database (Denmark)

    Aldén, Magnus; Johansson, Börje; Skriver, Hans Lomholt

    1995-01-01

    The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green’s-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify...... the occupied and unoccupied 4f energy level shifts as the surface segregation energy of a 4fn-1 and 4fn+1 impurity atom, respectively, in a 4fn host metal. The calculations include both initial- and final-state effects and give values that are considerably lower than those measured on polycrystalline samples...... as well as those found in previous initial-state model calculations. The present theory agrees well with very recent high-resolution, single-crystal film measurements for Gd, Tb, Dy, Ho, Er, Tm, and Lu. We furthermore utilize the unique possibility offered by the lanthanide metals to clarify the roles...

  12. Forces and electronic transport in a contact formed by a graphene tip and a defective MoS2 monolayer: a theoretical study

    Science.gov (United States)

    di Felice, D.; Dappe, Y. J.; González, C.

    2018-06-01

    A theoretical study of a graphene-like tip used in atomic force microscopy (AFM) is presented. Based on first principles simulations, we proved the low reactivity of this kind of tip, using a MoS2 monolayer as the testing sample. Our simulations show that the tip–MoS2 interaction is mediated through weak van der Waals forces. Even on the defective monolayer, the interaction is reduced by one order of magnitude with respect to the values obtained using a highly reactive metallic tip. On the pristine monolayer, the S atoms were imaged for large distances together with the substitutional defects which should be observed as brighter spots in non-contact AFM measurements. This result is in contradiction with previous simulations performed with Cu or Si tips where the metallic defects were imaged for much larger distances than the S atoms. For shorter distances, the Mo sites will be brighter even though a vacancy is formed. On the other hand, the largest conductance value is obtained over the defect formed by two Mo atoms occupying a S divacancy when the half-occupied p y -states of the graphene-like tip find a better coupling with d-orbitals of the highest substitutional atom. Due to the weak interaction, no conductance plateau is formed in any of the sites. A great advantage of this tip lies in the absence of atomic transfer between the tip and the sample leading to a more stable AFM measurement. Finally, and as previously shown, we confirm the atomic resolution in a scanning tunneling microscopy simulation using this graphene-based tip.

  13. Creation and annealing of metastable defect states in CH3NH3PbI3 at low temperatures

    Science.gov (United States)

    Lang, F.; Shargaieva, O.; Brus, V. V.; Rappich, J.; Nickel, N. H.

    2018-02-01

    Methylammonium lead iodide (CH3NH3PbI3), an organic-inorganic perovskite widely used for optoelectronic applications, is known to dissociate under illumination with light at photon energies around 2.7 eV and higher. Here, we show that photo-induced dissociation is not limited to ambient temperatures but can be observed even at 5 K. The photo-induced dissociation of N-H bonds results in the formation of metastable states. Photoluminescence (PL) measurements reveal the formation of defect states that are located 100 meV within the bandgap. This is accompanied by a quenching of the band-to-band PL by one order of magnitude. Defect generation is reversible and annealing at 30 K recovers the band-to-band PL, while the light-induced defect states disappear concurrently.

  14. Defect states and charge trapping characteristics of HfO2 films for high performance nonvolatile memory applications

    International Nuclear Information System (INIS)

    Zhang, Y.; Shao, Y. Y.; Lu, X. B.; Zeng, M.; Zhang, Z.; Gao, X. S.; Zhang, X. J.; Liu, J.-M.; Dai, J. Y.

    2014-01-01

    In this work, we present significant charge trapping memory effects of the metal-hafnium oxide-SiO 2 -Si (MHOS) structure. The devices based on 800 °C annealed HfO 2 film exhibit a large memory window of ∼5.1 V under ±10 V sweeping voltages and excellent charge retention properties with only small charge loss of ∼2.6% after more than 10 4  s retention. The outstanding memory characteristics are attributed to the high density of deep defect states in HfO 2 films. We investigated the defect states in the HfO 2 films by photoluminescence and photoluminescence excitation measurements and found that the defect states distributed in deep energy levels ranging from 1.1 eV to 2.9 eV below the conduction band. Our work provides further insights for the charge trapping mechanisms of the HfO 2 based MHOS devices.

  15. In-situ determination of electronic surface and volume defect density of amorphous silicon (a-Si:H) and silicon alloys

    International Nuclear Information System (INIS)

    Siebke, F.

    1992-07-01

    The density of localized gap states in the bulk and in the near-surface region of amorphous hydrogenated silicon (a-Si:H) was measured for non oxidized undoped, B-doped and P-doped samples as well as for films with low carbon (C) and germanium (Ge) content. Also the influence of light soaking on the bulk and surface density of states was investigated. The samples were prepared by rf glow discharge in an UHV-system at substrate temperatures between 100degC and 400degC and transferred to the analysis chamber by a vacuum lock. We combined the constant photocurrent method (CPM) and the total-yield photoelectron spectroscopy (TY) to obtain in-situ information about the defect densities. While the first method yields information about the density of states in the bulk, the other method obtains the density of occupied states in the near-surface region. The mean information depth of the TY-measurements is limited by the escape lenght of photoelectrons and can be estimated to 5 nm. In addition to the defect density the position of the Fermi energy was determined for the bulk by dark conductivity measurements and at the surface using a calibrated Kelvin probe. (orig.)

  16. Effects of in-cascade defect clustering on near-term defect evolution

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.

  17. Heterolytic dissociative adsorption state of dihydrogen favored by interfacial defects

    Science.gov (United States)

    Song, Zhenjun; Hu, Hanshi; Xu, Hu; Li, Yong; Cheng, Peng; Zhao, Bin

    2018-03-01

    The atomic-scale insight into dihydrogen on MgO(001) surface deposited on molybdenum substrate with interfacial defects was investigated in detail by employing density functional methods Here we report novel dissociative adsorption behaviors of single hydrogen molecule on the usually inert oxide surfaces, with consideration of two types of dissociation schemes. The heterolytic dissociation state -Mg(H)-O(H)- of dihydrogen is impossible to obtain on neighboring O-Mg sites of perfect bulk MgO(001) terraces. Unusually, the hydrogen molecule can form heterolytic fragmentation states on metal supported MgO(001) films with very low activation barrier (0.398 eV), and the heterolytic dissociation state is much more favorable than homolytic dissociation state both energetically and kinetically in all cases. Electronic properties and bonding attribution of adsorbates and the oxide-metal hybrid structure are revealed by analyzing density of states, differential charge densities, orbital interaction and electron localization function. The characteristic changes to the property and activity of magnesia (001) can have potential application in catalytic reactions.

  18. Periorbital cyst with bone defect in a dog

    International Nuclear Information System (INIS)

    Ito, K.; Asano, K.; Urano, T.; Ogiwara, N.; Seki, M.; Kato, Y.; Sasaki, Y.; Teshima, K.; Kutara, K.; Edamura, K.; Shibuya, H.; Tanaka, S.

    2006-01-01

    A 4-year-old female Miniature Dachshund was referred with a chief complaint of right periorbital swelling that had not responded to antibiotic therapy. Ultrasonography and fine-needle aspiration revealed that the periorbital lesion had a cystic structure without any inflammatory or neoplastic cells. Computed tomography (CT) showed that the cyst occupied a defect in the periorbital maxillary, lacrimal, and frontal bones and had invaded the nasal cavity. The lesion was histologically suspected by incisional biopsy as an epithelial cyst

  19. Collection, use, and protection of population-based birth defects surveillance data in the united states.

    Science.gov (United States)

    Mai, Cara T; Law, David J; Mason, Craig A; McDowell, Bradley D; Meyer, Robert E; Musa, Debra

    2007-12-01

    Birth defects surveillance systems collect population-based birth defects data from multiple sources to track trends in prevalence, identify risk factors, refer affected families to services, and evaluate prevention efforts. Strong state and federal public health and legal mandates are in place to govern the collection and use of these data. Despite the prima facie appeal of "opt-in" and similar strategies to those who view data collection as a threat to privacy, the use of these strategies in lieu of population-based surveillance can severely limit the ability of public health agencies to accurately access the health status of a group within a defined geographical area. With the need for population-based data central to their mission, birth defects programs around the country take their data stewardship role seriously, recognizing both moral and legal obligations to protect the data by employing numerous safeguards. Birth defects surveillance systems are shaped by the needs of the community they are designed to serve, with the goal of preventing birth defects or alleviating the burdens associated with them. (c) 2007 Wiley-Liss, Inc.

  20. Insight into point defects and impurities in titanium from first principles

    Science.gov (United States)

    Nayak, Sanjeev K.; Hung, Cain J.; Sharma, Vinit; Alpay, S. Pamir; Dongare, Avinash M.; Brindley, William J.; Hebert, Rainer J.

    2018-03-01

    Titanium alloys find extensive use in the aerospace and biomedical industries due to a unique combination of strength, density, and corrosion resistance. Decades of mostly experimental research has led to a large body of knowledge of the processing-microstructure-properties linkages. But much of the existing understanding of point defects that play a significant role in the mechanical properties of titanium is based on semi-empirical rules. In this work, we present the results of a detailed self-consistent first-principles study that was developed to determine formation energies of intrinsic point defects including vacancies, self-interstitials, and extrinsic point defects, such as, interstitial and substitutional impurities/dopants. We find that most elements, regardless of size, prefer substitutional positions, but highly electronegative elements, such as C, N, O, F, S, and Cl, some of which are common impurities in Ti, occupy interstitial positions.

  1. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  2. Gamma-induced defect production in ZrO2-Y2O3 crystals with different defectiveness

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Amonov, M.Z.; Rakov, A.F.

    2002-01-01

    Full text: The defectiveness degree of ZrO 2 -Y 2 O 3 crystals depends on stabilizer concentration. The work is aimed at study gamma-induced defect production in crystals with different concentration of stabilizer and defects generated by neutron irradiation. Absorption spectra were measured with Specord M-40. It was found, that after gamma-irradiation of as-grown crystals up to some dose the intensity of absorption band at 420 nm reaches the maximum level of saturation. The dose of saturation depends of the concentration of stabilizer. It means that gamma-radiation does not produce any additional defects of structure. The oxygen vacancies existing in as-grown crystals are filled by the radiation induced electrons. Since the number of oxygen vacancies depends on the stabilizer concentration, then all these vacancies can be occupied by electrons at different gamma-doses. In crystals pre-irradiated with different neutron fluences followed by gamma-irradiation, the intensity of absorption bands at 420 and 530 nm increases in two stages. The gamma-dose of the second stage beginning decreases as the neutron fluence grows. The first stage of the absorption increase is due to developing of vacancies existing in as-grown crystals. The second stage is caused by generation of additional vacancies as the result of non-radiative exciton decay near the existing structure damages. The decrease of the gamma-dose, when the second stage of vacancy accumulation begins, results from the neutron induced structure damage degree

  3. Criterion 1: Conservation of biological diversity - Indicator 8: The number of forest dependent species that occupy a small portion of their former range

    Science.gov (United States)

    Curtis H. Flather; Carolyn Hull Sieg; Michael S. Knowles; Jason McNees

    2003-01-01

    This indicator measures the portion of a species' historical distribution that is currently occupied as a surrogate measure of genetic diversity. Based on data for 1,642 terrestrial animals associated with forests, most species (88 percent) were found to fully occupy their historic range - at least as measured by coarse state-level occurrence patterns. Of the 193...

  4. Convergence of Ground and Excited State Properties of Divacancy Defects in 4H-SiC with Computational Cell Size

    Science.gov (United States)

    2018-03-01

    SiC with Computational Cell Size by Ariana Beste and DeCarlos E Taylor Approved for public release; distribution is unlimited...Laboratory Convergence of Ground and Excited State Properties of Divacancy Defects in 4H-SiC with Computational Cell Size by Ariana Beste...Ground and Excited State Properties of Divacancy Defects in 4H-SiC with Computational Cell Size 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  5. 26 CFR 1.803-5 - Real estate owned and occupied.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Real estate owned and occupied. 1.803-5 Section... (CONTINUED) INCOME TAXES Life Insurance Companies § 1.803-5 Real estate owned and occupied. The amount allowable as a deduction for taxes, expenses, and depreciation upon or with respect to any real estate owned...

  6. Erasing the Material Base of Occupy Wall Street: When Soft Means Fail

    Directory of Open Access Journals (Sweden)

    Christopher Leary

    2015-12-01

    Full Text Available When Occupy Wall Street proved able to reach mass circulation in 2011, it registered as a threat to the status quo in the United States, where corporate entities with close relation to government normally control the flow of discourse. The Occupy encampments, therefore, were intolerable, not merely an annoyance that could be ignored or ridiculed. Once Occupy’s anti-corporate rhetoric had spread widely, the mainstream media took steps to derail the mass appeal of Occupy’s oppositional discourse through accusations of incoherence and indecency. However, such “soft” means of organizing consent from the public were very weak in 2011 because of the 2008 economic collapse which had been provoked by Wall Street. With instruments of soft persuasion weak, the dominant group turned to instruments of hard persuasion — arrests, harassments, beatings, random grabs, and finally the orchestrated assault carried out on November 15th, an operation that saw the media censored and sequestered, at night, in the dark, with no filmed images, and all subway stations and street access blocked.

  7. Birth Defects in Newborns: Spina Bifida Index at Rio Grande Do Norte State in Brazil

    Directory of Open Access Journals (Sweden)

    Arnaldo CM Junior

    2014-08-01

    Conclusion: Northeast region is the one that has the major incidence of SB in Brazil country, but RN state has a number lower than others states from its region. It was made an update about therapeutic options to minimize the morbidity and mortality in newborn with SB congenital defects. [J Interdiscipl Histopathol 2014; 2(4.000: 217-223

  8. Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy

    International Nuclear Information System (INIS)

    Lau, W.S.; Leong, L.L.; Han, Taejoon; Sandler, Nathan P.

    2003-01-01

    Defect state D (0.8 eV) was experimentally detected in Ta 2 O 5 capacitors with ultrathin (physical thickness 2 O 5 films using zero-bias thermally stimulated current spectroscopy and correlated with leakage current. Defect state D can be more efficiently suppressed by using N 2 O rapid thermal annealing (RTA) instead of using O 2 RTA for postdeposition annealing and by using TiN instead of Al for top electrode. We believe that defect D is probably the first ionization level of the oxygen vacancy deep double donor. Other important defects are Si/O-vacancy complex single donors and C/O-vacancy complex single donors

  9. Transitional Justice: A Conceptual and Normative Framework for Combating Terrorism in Occupied Territories

    OpenAIRE

    QUESADA ALCALA, Carmen; ZAKERIAN, Mehdi

    2010-01-01

    Product of workshop No. 2 at the 10th MRM 2009 Transitional justice generally refers to a range of approaches, judicial and non-judicial, that States may use to build the transition from violence and repression to societal stability and peace. The term “transitional justice” has recently received ever greater attention with respect to the Occupied Territories, especially in relation to terrorism and its consequences. The purpose of this paper is to establish a normative and ...

  10. An Evaluation of Industrial Facilities Defects in Selected Industrial Estates in Lagos State, Nigeria

    Directory of Open Access Journals (Sweden)

    Oseghale, G.E.

    2014-01-01

    Full Text Available The study appraised the state of industrial facilities in selected industrial estates established between 1957 and 1981 in Lagos State by examining the nature and causes of facilities’ defects in the selected industrial estates. The buildings sampled were load bearing sandcrete block wall (1%, concrete framed structure (83% and steel framed structure (16%. Data were sourced using structured questionnaire administered on the staff of maintenance department of 35 building materials and plastic manufacturing industries purposively selected and located in 18 industrial estates. Data obtained were analyzed using descriptive statistic. The study found the structural elements of the buildings, i.e. foundations, beams, walls, and floors satisfactory. Using the mean response analysis, the result showed that the most severe factors responsible for industrial facilities’ defects were combined effects of geo-climatic factors (2.35, combined effects of biological agencies (2.15, corrosion (1.98, and physical aggression on the facilities (1.71.

  11. Combination of Nasolabial V-Y Advancement Flap and Glabellar Subcutaneous Pedicled Flap for Reconstruction of Medial Canthal Defect

    Directory of Open Access Journals (Sweden)

    Hiromichi Matsuda

    2014-02-01

    Full Text Available A 77-year-old woman presented with a 1-year history of a right medial canthal tumor, which was histopathologically diagnosed as a basal cell carcinoma. After removal of the tumor with a 4-mm safety margin, the defect occupied the areas superior and inferior to the medial canthal tendon. We first reconstructed the lower part of the defect using a nasolabial V-Y advancement flap to make an elliptic defect in the upper part. We then created a glabellar subcutaneous pedicled flap to match the residual upper elliptic defect with the major axis set along a relaxed skin tension line. The pedicled glabellar flap was passed through a subcutaneous tunnel to the upper residual defect. At 6 months postoperatively, the patient showed no tumor recurrence and a good cosmetic outcome.

  12. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    Directory of Open Access Journals (Sweden)

    Soleyman Majidi

    Full Text Available In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone–Wales (SW defects in SnC nanosheets by using density-functional theory (DFT. We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV. Keywords: SnC nanosheets, Density-functional theory, First-principles calculations, Electronic density of states, Band gap

  13. First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material

    Science.gov (United States)

    Duan, H.; Dong, Y. Z.; Huang, Y.; Hu, Y. H.; Chen, X. S.

    2016-01-01

    Electronic structures of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material are investigated using first-principles calculations. Si vacancies are too high in energy to play any role in the persistent luminescence of Sr2MgSi2O7 phosphor. Mg vacancies form easier than Sr vacancies as a result of strain relief. Among all the vacancies, O1 vacancies stand out as a likely candidate because they are the most favorable in energy and introduce an empty triply degenerate state just below the CBM and a fully-occupied singlet state at ~1 eV above the VBM, constituting in this case effective hole trap level and electron trap levels, respectively. Mg vacancies are unlikely to explain the persistent luminescence because of its too shallow electron trap level but they may compensate the hole trap associated with O1 vacancies. We yield consistent evidence for the defect physics of these vacancy defects on the basis of the equilibrium properties of Sr2MgSi2O7, total-energy calculations, and electronic structures. The persistent luminescence mechanism of Sr2MgSi2O7:Eu2+, Dy3+ phosphor is also discussed based on our results for O1 vacancies trap center. Our results provide a guide to more refined experiments to control intrinsic traps, whereby probing synthetic strategies toward new improved phosphors.

  14. Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography

    Science.gov (United States)

    Grozdanov, Sašo; Poovuttikul, Napat

    2018-05-01

    In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.

  15. Finding possible transition states of defects in silicon-carbide and alpha-iron using the dimer method

    CERN Document Server

    Gao Fei; Weber, W J; Corrales, L R; Jonsson, H

    2003-01-01

    Energetic primary recoil atoms from ion implantation or fast neutron irradiation produce isolated point defects and clusters of both vacancies and interstitials. The migration energies and mechanisms for these defects are crucial to successful multiscale modeling of microstructural evolution during ion-implantation, thermal annealing, or under irradiation over long periods of time. The dimer method is employed to search for possible transition states of interstitials and small interstitial clusters in SiC and alpha-Fe. The method uses only the first derivatives of the potential energy to find saddle points without knowledge of the final state of the transition. In SiC, the possible migration pathway for the C interstitial is found to consist of the first neighbor jump via a Si site or second neighbor jump, but the relative probability for the second neighbor jump is very low. In alpha-Fe, the possible transition states are studied as a function of interstitial cluster size, and the lowest energy barriers corr...

  16. Attitudes toward the health of men that regularly occupy in a trainer hall.

    Directory of Open Access Journals (Sweden)

    Adamchhuk Ja.

    2012-02-01

    Full Text Available It is accepted to consider that by motivation for people that practice in a trainer hall is an improvement of health and original appearance. The aim of this research was to determine whether there is training by part of forming of positive attitude toward the health of men-sportsmen-amateurs that occupy in a trainer hall. In research took part 100 men that engage in the power training in one of three trainer halls of Warsaw. Investigational divided by two groups: 50 persons that occupy in a trainer hall more than one year, but no more than 3 years (group A and 50 persons that practice more than 3 (group B. It is well-proven that training positively influences on the emotional state of men. It was discovered at the same time, that than greater experience of sportsman-amateur, the considerably more often he used additions (including by a stimulant. There was no medical control in both groups. Positive influence of the power training shows that they can be the important element of prophylaxis and physiotherapy.

  17. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Directory of Open Access Journals (Sweden)

    Sung Heo

    2015-07-01

    Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  18. 24 CFR 983.351 - PHA payment to owner for occupied unit.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT PROJECT-BASED VOUCHER (PBV) PROGRAM Payment to Owner § 983.351 PHA payment to owner for occupied unit. (a) When payments are made. (1) During the term of the HAP contract, the PHA shall... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false PHA payment to owner for occupied...

  19. 25 CFR 91.7 - Permits to occupy land for dwelling purposes.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Permits to occupy land for dwelling purposes. 91.7... INDIAN VILLAGES, OSAGE RESERVATION, OKLAHOMA § 91.7 Permits to occupy land for dwelling purposes. The issuance of permits for the use of land for dwelling purposes within any village reserve described in § 91...

  20. Sonographic findings of space occupying lesions in liver

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In One; Choi, B I; Kim, J W [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1982-12-15

    Gray scale ultrasonography is used with increasing frequency for the detection and characterization of hepatic space occupying lesions. Authors analyzed sonographic findings of 73 cases of hepatic space occupying lesions,which had been confirmed histologically or diagnosed clinically. The results were summarized as follows: 1. Most common sonographic pattern of hepatic neoplasms was well-defined increased echogenic mass. No significant sonographic difference was noted between primary and metastatic tumor. Splenomegaly and distortion of hepatic echoes favored hepatocellular carcinoma, and multiplicity favored metastatic tumor. 2. Most common sonographic pattern of hepatic abscess was well-defined decreased echogenecity or echoless cystic lesion containing fine low level echoes with posterior enhancement. 3. Hepatic cyst showed sharply defined echoless cystic lesion with strong posterior enhancement

  1. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  2. Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation

    Science.gov (United States)

    Sajid, A.; Reimers, Jeffrey R.; Ford, Michael J.

    2018-02-01

    Key properties of nine possible defect sites in hexagonal boron nitride (h-BN), VN,VN -1,CN,VNO2 B,VNNB,VNCB,VBCN,VBCNS iN , and VNCBS iB , are predicted using density-functional theory and are corrected by applying results from high-level ab initio calculations. Observed h-BN electron-paramagnetic resonance signals at 22.4, 20.83, and 352.70 MHz are assigned to VN,CN, and VNO2 B , respectively, while the observed photoemission at 1.95 eV is assigned to VNCB . Detailed consideration of the available excited states, allowed spin-orbit couplings, zero-field splitting, and optical transitions is made for the two related defects VNCB and VBCN . VNCB is proposed for realizing long-lived quantum memory in h-BN. VBCN is predicted to have a triplet ground state, implying that spin initialization by optical means is feasible and suitable optical excitations are identified, making this defect of interest for possible quantum-qubit operations.

  3. Intrinsic defects and spectral characteristics of SrZrO3 perovskite

    Science.gov (United States)

    Li, Zhenzhang; Duan, He; Jin, Yahong; Zhang, Shaoan; Lv, Yang; Xu, Qinfang; Hu, Yihua

    2018-04-01

    First-principles calculations and experiment analysis were performed to study the internal relation between seven types of intrinsic defects and the persistent luminescence in SrZrO3 host material. The calculation shows that rich zirconium defects have the low energy cost and thus are easy to form. Zr vacancies are too high energy to play any role in defect which is related luminescence phenomenon of SrZrO3 phosphor. However, oxygen vacancies stand out as a likely candidate, because it can yield two carrier reservoirs: a fully-occupied singlet electron's reservoir which lies above the valence band maximum, and an empty triply degenerate hole's reservoir which is just below the conduction band minimum. Sr vacancies are not directly relevant to the persistent luminescence due to its too shallow electron trap level. The characteristics of these defects are fully explained by the equilibrium properties of SrZrO3. An experimental study of the thermoluminescence glow for these defects is conducted and the calculation is consistent with the experimental results. A mechanism of the persistent luminescence for SrZrO3:Pr3+, Eu3+ is explained according to oxygen vacancies trap center. Findings of this study may serve as theoretical references for controlling intrinsic traps by more refined experiments.

  4. Implications of defect clusters formed in cascades on free defect generation and microstructural development

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1992-12-01

    A large fraction of the defects produced by irradiation with energetic neutrons or heavy ions originates in cascades. Not only increased recombination of vacancy and interstitial defects but also significant clustering of like defects occur. Both processes reduce the number of point defects available for long range migration. Consequences of defect clustering in cascades will be discussed in a semi-quantitative form with the aid of calculations using a very simplified model: Quasi-steady-state distributions of immobile vacancy and/or interstitial clusters develop which, in turn, can become significant sinks for mobile defects, and, therefore reduce their lifetime. Although cluster sinks will cause segregation and, potentially, precipitation of second phases due to local changes of composition, the finite lifetime of clusters will not lead to lasting, local compositional changes. A transition from highly dense interstitial and vacancy cluster distributions to the void swelling regime occurs when the thermal evaporation of vacancies from small vacancy clusters becomes significant at higher temperatures. Unequal clustering of vacancies and interstitials leads to an imbalance of their fluxes of in the matrix and, hence, to unequal contributions to atom transport by interstitials and by vacancies even in the quasi-steady state approximation

  5. Quantum computing with defects.

    Science.gov (United States)

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  6. Social identity formation during the emergence of the Occupy movement

    OpenAIRE

    Smith, Laura G. E.; Gavin, Jeffrey; Sharp, Elise

    2015-01-01

    The Occupy movement made a series of local ‘sit-ins’ in cities across the world in response to financial and political injustices. Prior to the movement’s emergence, the Internet provided a transnational forum for people across the world to discuss their opinions and coalesce about the financial and political context. Here, we analyze 5,343 posts on the ‘#OccupyWallStreet’ Facebook event page to identify linguistic markers of shared social identity formation.Results suggest that discussants f...

  7. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  8. Alternative occupied volume integrity (OVI) tests and analyses.

    Science.gov (United States)

    2013-10-01

    FRA, supported by the Volpe Center, conducted research on alternative methods of evaluating occupied volume integrity (OVI) in passenger railcars. Guided by this research, an alternative methodology for evaluating OVI that ensures an equivalent or gr...

  9. Detection of defect states responsible for leakage current in ultrathin tantalum pentoxide (Ta2O5) films by zero-bias thermally stimulated current spectroscopy

    International Nuclear Information System (INIS)

    Lau, W.S.; Zhong, L.; Lee, A.; See, C.H.; Han, T.; Sandler, N.P.; Chong, T.C.

    1997-01-01

    Defect states responsible for leakage current in ultrathin (physical thickness 2 O 5 ) films were measured with a novel zero-bias thermally stimulated current technique. It was found that defect states A, whose activation energy was estimated to be about 0.2 eV, can be more efficiently suppressed by using N 2 O rapid thermal annealing (RTA) instead of using O 2 RTA for postdeposition annealing. The leakage current was also smaller for samples with N 2 O RTA than those with O 2 RTA for postdeposition annealing. Hence, defect states A are quite likely to be important in causing leakage current. copyright 1997 American Institute of Physics

  10. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  11. Occupy Education: Living and Learning Sustainability. Global Studies in Education. Volume 22

    Science.gov (United States)

    Evans, Tina Lynn

    2012-01-01

    "Occupy Education" is motivated by the sustainability crisis and energized by the drive for social justice that inspired the Occupy movement. Situated within the struggle for sustainability taking place amid looming resource shortages, climate change, economic instability, and ecological breakdown, the book is a timely contribution to community…

  12. Fragmentation of Fast Josephson Vortices and Breakdown of Ordered States by Moving Topological Defects.

    Science.gov (United States)

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.

  13. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  14. Positron annihilation spectroscopy in defects of semiconductors

    International Nuclear Information System (INIS)

    Fujinami, Masanori

    2002-01-01

    Interaction of positron and defects, application to research of defects of semiconductor and defects on the surface of semiconductor are explained. Cz (Czochralski)-Si single crystal with 10 18 cm -3 impurity oxygen was introduced defects by electron irradiation and the positron lifetime was measured at 90K after annealing. The defect size and recovery temperature were determined by the lifetime measurement. The distribution of defects in the depth direction is shown by S-E curve. The chemical state analysis is possible by CBS (Coincidence Doppler Broadening) spectra. The application to silicon-implanted (100 keV, 2x10 15 cm -2 ) silicon and oxygen-implanted (180 keV, 2x10 15 cm -2 ) silicon are stated. On the oxygen-implanted silicon, the main product was V2 after implantation, V 6 O 2 at 600degC and V 10 O 6 at 800degC. (S.Y.)

  15. Electronic states of zigzag graphene nanoribbons with edges reconstructed with topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Pincak, R., E-mail: pincak@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Kosice (Slovakia); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Smotlacha, J., E-mail: smota@centrum.cz [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 110 00 Prague (Czech Republic); Osipov, V.A., E-mail: osipov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2015-10-15

    The energy spectrum and electronic density of states (DOS) of zigzag graphene nanoribbons with edges reconstructed with topological defects are investigated within the tight-binding method. In case of the Stone–Wales zz(57) edge the low-energy spectrum is markedly changed in comparison to the pristine zz edge. We found that the electronic DOS at the Fermi level is different from zero at any width of graphene nanoribbons. In contrast, for ribbons with heptagons only at one side and pentagons at another one the energy gap at the Fermi level is open and the DOS is equal to zero. The reason is the influence of uncompensated topological charges on the localized edge states, which are topological in nature. This behavior is similar to that found for the structured external electric potentials along the edges.

  16. Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects

    International Nuclear Information System (INIS)

    Hazama, Hirofumi; Matsubara, Masato; Asahi, Ryoji; Takeuchi, Tsunehiro

    2011-01-01

    We have synthesized off-stoichiometric Ti-Ni-Sn half-Heusler thermoelectrics in order to investigate the relation between randomly distributed defects and thermoelectric properties. A small change in the composition of Ti-Ni-Sn causes a remarkable change in the thermal conductivity. An excess content of Ni realizes a low thermal conductivity of 2.93 W/mK at room temperature while keeping a high power factor. The low thermal conductivity originates in the defects generated by an excess content of Ni. To investigate the detailed defect structure, we have performed first-principles calculations and compared with x ray photoemission spectroscopy measurement. Based on these analyses, we conclude that the excess Ni atoms randomly occupy the vacant sites in the half-Heusler structure, which play as phonon scattering centers, resulting in significant improvement of the figure of merit without any substitutions of expensive heavy elements, such as Zr and Hf.

  17. Lattice defects in semiconducting Hg/1-x/Cd/x/Te alloys. I - Defect structure of undoped and copper doped Hg/0.8/Cd/0.2/Te. II - Defect structure of indium-doped Hg/0.8/Cd/0.2/Te

    Science.gov (United States)

    Vydyanath, H. R.

    1981-01-01

    Hall effect and mobility measurements were conducted on undoped Hg(0.8)Cd(0.2)Te crystals which were quenched to room temperature after being subjected to equilibration at temperatures ranging from 400 to 655 C in various Hg atmospheres. The variation of the hole concentration in the cooled crystals at 77 K as a function of Hg's partial pressure at the equilibration temperature, together with a comparison of the hole mobility in the undoped samples with that in copper-doped ones, yields a defect model for the undoped crystals according to which they are intrinsic at the equilibration temperatures and the native acceptor defects are doubly ionized. In the second part of this paper, the effects of indium doping are considered. The concentration of electrons obtained in the cooled crystals was found to be lower than the intrinsic carrier concentration at the equilibration temperatures. A defect model is proposed according to which most of the indium is incorporated as In2Te3(s) dissolved in the crystal, with only a small fraction of indium acting as single donors occupying Hg lattice sites.

  18. The effect of Ga vacancies on the defect and magnetic properties of Mn-doped GaN

    International Nuclear Information System (INIS)

    Kang, Joongoo; Chang, K. J.

    2007-01-01

    We perform first-principles theoretical calculations to investigate the effect of the presence of Ga vacancy on the defect and magnetic properties of Mn-doped GaN. When a Ga vacancy (V Ga ) is introduced to the Mn ions occupying the Ga lattice sites, a charge transfer occurs from the Mn d band to the acceptor levels of V Ga , and strong Mn-N bonds are formed between the Mn ion and the N atoms in the neighborhood of V Ga . The charge transfer and chemical bonding effects significantly affect the defect and magnetic properties of Mn-doped GaN. In a Mn-V Ga complex, which consists of a Ga vacancy and one Mn ion, the dangling bond orbital of the N atom involved in the Mn-N bond is electrically deactivated, and the remaining dangling bond orbitals of V Ga lead to the shallowness of the defect level. When a Ga vacancy forms a complex with two Mn ions located at a distance of about 6 A, which corresponds to the percolation length in determining the Curie temperature in diluted Mn-doped GaN, the Mn d band is broadened and the density of states at the Fermi level is reduced due to two strong Mn-N bonds. Although the broadening and depopulation of the Mn d band weaken the ferromagnetic stability between the Mn ions, the ferromagnetism is still maintained because of the lack of antiferromagnetic superexchange interactions at the percolation length

  19. Defective pyrite (100) surface: An ab initio study

    International Nuclear Information System (INIS)

    Stirling, Andras; Bernasconi, Marco; Parrinello, Michele

    2007-01-01

    The structural and electronic properties of sulfur monomeric defects at the FeS 2 (100) surface have been studied by periodic density-functional calculations. We have shown that for a monomeric sulfur bound to an originally fivefold coordinated surface Fe site, the defect core features a triplet electronic ground state with unpaired spins localized on the exposed Fe-S unit. At this site, the iron and sulfur ions have oxidation states +4 and -2, respectively. This defect can be seen as produced via heterolytic bond breaking of the S-S sulfur dimer followed by a Fe-S redox reaction. The calculated sulfur 2p core-level shifts of the monomeric defects are in good agreement with experimental photoemission spectra, which allow a compelling assignment of the different spectroscopic features. The effect of water on the stability of the defective surface has also been studied, and it has been shown that the triplet state is stable against the wetting of the surface. The most important implications of the presence of the monomeric sulfur defect on the reactivity are also discussed

  20. Complex neurological investigations of space-occupying lesions in the spinal canal

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, H; Besel, R; Schumann, E; Usbeck, W

    1981-03-01

    Problems of early diagnosis of space-occupying intraspinal lesions are discussed in relation to 335 patients on whom surgery had been carried out. Advances in neuroradiological methods are considered. The development of new contrast media has resulted in a reduction of the risk of invasive procedures and this should lead to diagnosis of space-occupying spinal lesions at a very early stage. It is now possible to diagnose small tumours before they cause compression of the cord or of nerve roots.

  1. Distributions of owner-occupiers' housing wealth, debt and interest expenditure ratios as financial soundness indicators

    DEFF Research Database (Denmark)

    Lunde, Jens

    The Danish housing market boomed from 1993 to the end of 2006. The house price increases from 2003 to 2006 were especially dramatic and cannot be explained satisfactorily by `fundamentals'. Moreover, the owner-occupiers are highly indebted; Denmark is the nation with the highest household debt....../GDP, highest total liabilities/net wealth and highest mortgage debt/net non-financial wealth ratios among 15 OECD countries. Obviously, an analysis of the financial soundness of owner-occupiers is topical in order to analyse financial stability in society. The financial soundness of Danish owner......-occupier families is analysed using relevant financial indicators for the owner-occupiers' capital structure and interest payments. Tax statistics for the owner-occupier families are used here. In a financial soundness perspective macro data are of limited importance as they express total and average changes...

  2. Point defects in crystalline zircon (zirconium silicate), ZrSiO4: electron paramagnetic resonance studies

    Science.gov (United States)

    Tennant, W. C.; Claridge, R. F. C.; Walsby, C. J.; Lees, N. S.

    This article outlines the present state of knowledge of paramagnetic defects in crystalline zircon as obtained mainly, but not exclusively, from electron paramagnetic resonance (EPR) studies in crystalline zircon (zirconium silicate, ZrSiO4). The emphasis is on single-crystal studies where, in principle, unambiguous analysis is possible. Firstly, the crystallography of zircon is presented. Secondly, the relationships between available crystal-site symmetries and the symmetries of observed paramagnetic species in zircon, and how these observations lead to unambiguous assignments of point-group symmetries for particular paramagnetic species are detailed. Next, spin-Hamiltonian (SH) analysis is discussed with emphasis on the symmetry relationships that necessarily exist amongst the Laue classes of the crystal sites in zircon, the paramagnetic species occupying those sites and the SH itself. The final sections of the article then survey the results of EPR studies on zircon over the period 1960-2002.

  3. Defect luminescence and lattice strain in Mn{sup 2+} doped ZnGa{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, K.; Abhilash, K.P. [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Christopher Selvin, P., E-mail: pcsphyngmc@rediffmail.com [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Kadam, R.M. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-06-15

    Undoped and Mn{sup 2+} doped ZnGa{sub 2}O{sub 4} phosphors were prepared by solution combustion method and characterized by XRD, SEM, luminescence and electron paramagnetic resonance (EPR) techniques. Based on XRD results, it is inferred that, strain in ZnGa{sub 2}O{sub 4} host lattice increases with incorporation of Mn{sup 2+} ions in the lattice. Mn{sup 2+} doping at concentration levels investigated, lead to significant reduction in the defect emission and this has been attributed to the formation of higher oxidation states of Mn ions in the lattice. Electron Paramagnetic Resonance studies confirmed that majority of Mn ions exist as Mn{sup 2+} species and they occupy tetrahedral Zn{sup 2+} site in ZnGa{sub 2}O{sub 4} lattice with an average hyperfine coupling constant, A{sub iso}∼82 G.

  4. Stochastic dynamics of penetrable rods in one dimension: occupied volume and spatial order.

    Science.gov (United States)

    Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto

    2013-06-28

    The occupied volume of a penetrable hard rod (HR) system in one dimension is probed through the use of molecular dynamics simulations. In these dynamical simulations, collisions between penetrable rods are governed by a stochastic penetration algorithm (SPA), which allows for rods to either interpenetrate with a probability δ, or collide elastically otherwise. The limiting values of this parameter, δ = 0 and δ = 1, correspond to the HR and the ideal limits, respectively. At intermediate values, 0 exclusive and independent events is observed, making prediction of the occupied volume nontrivial. At high hard core volume fractions φ0, the occupied volume expression derived by Rikvold and Stell [J. Chem. Phys. 82, 1014 (1985)] for permeable systems does not accurately predict the occupied volume measured from the SPA simulations. Multi-body effects contribute significantly to the pair correlation function g2(r) and the simplification by Rikvold and Stell that g2(r) = δ in the penetrative region is observed to be inaccurate for the SPA model. We find that an integral over the penetrative region of g2(r) is the principal quantity that describes the particle overlap ratios corresponding to the observed penetration probabilities. Analytic formulas are developed to predict the occupied volume of mixed systems and agreement is observed between these theoretical predictions and the results measured from simulation.

  5. Application of microwave ablation in treatment of solid space-occupying lesions in the liver

    Directory of Open Access Journals (Sweden)

    DU Lei

    2017-10-01

    Full Text Available With the development of science and technology, many therapies for hepatic space-occupying lesions have emerged, such as surgical operation, chemotherapy, intervention, and biological therapy. In recent years, microwave technique for the treatment of hepatic space-occupying lesions has attracted more and more attention because of its small trauma, low expense, marked clinical effect, and few complications. This article reviews the advances in the application of microwave in the treatment of liver cancer, hepatic hemangioma, hepatic alveolar echinococcosis, and other benign hepatic space-occupying lesions.

  6. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  7. Positron annihilation spectroscopy in defects of semiconductors

    CERN Document Server

    Fujinami, M

    2002-01-01

    Interaction of positron and defects, application to research of defects of semiconductor and defects on the surface of semiconductor are explained. Cz (Czochralski)-Si single crystal with 10 sup 1 sup 8 cm sup - sup 3 impurity oxygen was introduced defects by electron irradiation and the positron lifetime was measured at 90K after annealing. The defect size and recovery temperature were determined by the lifetime measurement. The distribution of defects in the depth direction is shown by S-E curve. The chemical state analysis is possible by CBS (Coincidence Doppler Broadening) spectra. The application to silicon-implanted (100 keV, 2x10 sup 1 sup 5 cm sup - sup 2) silicon and oxygen-implanted (180 keV, 2x10 sup 1 sup 5 cm sup - sup 2) silicon are stated. On the oxygen-implanted silicon, the main product was V2 after implantation, V sub 6 O sub 2 at 600degC and V sub 1 sub 0 O sub 6 at 800degC. (S.Y.)

  8. First-Principles Investigations of Defects in Minerals

    Science.gov (United States)

    Verma, Ashok K.

    2011-07-01

    The ideal crystal has an infinite 3-dimensional repetition of identical units which may be atoms or molecules. But real crystals are limited in size and they have disorder in stacking which as called defects. Basically three types of defects exist in solids: 1) point defects, 2) line defects, and 3) surface defects. Common point defects are vacant lattice sites, interstitial atoms and impurities and these are known to influence strongly many solid-state transport properties such as diffusion, electrical conduction, creep, etc. In thermal equilibrium point defects concentrations are determined by their formation enthalpies and their movement by their migration barriers. Line and surface defects are though absent from the ideal crystal in thermal equilibrium due to higher energy costs but they are invariably present in all real crystals. Line defects include edge-, screw- and mixed-dislocations and their presence is essential in explaining the mechanical strength and deformation of real crystals. Surface defects may arise at the boundary between two grains, or small crystals, within a larger crystal. A wide variety of grain boundaries can form in a polycrystal depending on factors such growth conditions and thermal treatment. In this talk we will present our first-principles density functional theory based defect studies of SiO2 polymorphs (stishovite, CaCl2-, α-PbO2-, and pyrite-type), Mg2SiO4 polymorphs (forsterite, wadsleyite and ringwoodite) and MgO [1-3]. Briefly, several native point defects including vacancies, interstitials, and their complexes were studied in silica polymorphs upto 200 GPa. Their values increase by a factor of 2 over the entire pressure range studied with large differences in some cases between different phases. The Schottky defects are energetically most favorable at zero pressure whereas O-Frenkel pairs become systematically more favorable at pressures higher than 20 GPa. The geometric and electronic structures of defects and migrating

  9. Toward Intelligent Software Defect Detection

    Science.gov (United States)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  10. Emerging economic viability of grid defection in a northern climate using solar hybrid systems

    International Nuclear Information System (INIS)

    Kantamneni, Abhilash; Winkler, Richelle; Gauchia, Lucia; Pearce, Joshua M.

    2016-01-01

    High demand for photovoltaic (PV), battery, and small-scale combined heat and power (CHP) technologies are driving a virtuous cycle of technological improvements and cost reductions in off-grid electric systems that increasingly compete with the grid market. Using a case study in the Upper Peninsula of Michigan, this paper quantifies the economic viability of off-grid PV+battery+CHP adoption and evaluates potential implications for grid-based utility models. The analysis shows that already some households could save money by switching to a solar hybrid off-grid system in comparison to the effective electric rates they are currently paying. Across the region by 2020, 92% of seasonal households and ~75% of year-round households are projected to meet electricity demands with lower costs. Furthermore, ~65% of all Upper Peninsula single-family owner-occupied households will both meet grid parity and be able to afford the systems by 2020. The results imply that economic circumstances could spur a positive feedback loop whereby grid electricity prices continue to rise and increasing numbers of customers choose alternatives (sometimes referred to as a “utility death spiral”), particularly in areas with relatively high electric utility rates. Utility companies and policy makers must take the potential for grid defection seriously when evaluating energy supply strategies. - Highlights: •Quantifies the economic viability of off-grid hybrid photovoltaic (PV) systems. •PV is backed up with batteries and combined heat and power (CHP). •Case study in Michigan by household size (energy demand) and income. •By 2020, majority of single-family owner-occupied households can defect. •To prevent mass-scale grid defection policies needed for grid-tied PV systems.

  11. Identifying open-volume defects in doped and undoped perovskite-type LaCoO3, PbTiO3, and BaTiO3

    International Nuclear Information System (INIS)

    Ghosh, Vinita J.; Nielsen, Bent; Friessnegg, Thomas

    2000-01-01

    Dopants, vacancies, and impurity-vacancy clusters have a substantial impact on the properties of perovskite-type metal oxides (general formula ABO 3 ). In order to determine synthesis and processing conditions that optimize the desirable properties of these materials a careful study of these defects is required. It is essential to identify the defects and to map the defect densities. Positron annihilation spectroscopy has often been used to identify vacancy-type defects. Calculations of the positron lifetime and Doppler-broadened profiles of the positron-electron annihilation radiation in undoped and doped LaCoO 3 , PbTiO 3 , and BaTiO 3 are reported, and compared with available experimental data. The results show that these positron techniques are excellent for studying open-volume defects, vacancy-impurity complexes, and for identifying the sublattice occupied by the dopants. (c) 2000 The American Physical Society

  12. Micromagnetic simulation of exploratory magnetic logic device with missing corner defect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokuo, E-mail: yangxk0123@163.com; Cai, Li; Zhang, Bin; Cui, Huanqing; Zhang, Mingliang

    2015-11-15

    Magnetic film nanostructures are attractive components of nonvolatile magnetoresistive memories and nanomagnet logic circuits. Recently, we studied switching properties (i.e., null logic preserving) of rectangle shape nanomagnet subjected to fabrication imperfections. Specifically, we presented typical missing corner material-related imperfections and adopted an isosceles triangle to model this defect for nanomagnets. Micromagnetic simulation shows that this kind of imperfections modeling method agrees well with previous experimental observations. Using the proposed defect modeling scheme, we investigate in detail the switching characteristics of different defective stand-alone and coupled nanomagnets. The results suggest that the state transition of defective nanomagnet element highly depends on defect type and device’s aspect ratio, and the defect type B{sub d} needs the largest coercive field, while the defect type D requires the largest null field for switching. These findings can provide key technical parameters and guides for nanomagnet logic circuit design. - Highlights: • We have modeled missing corner defect issue for nanomagnet logic device. • The logic state of defective NML element highly depends on defect type and AR. • The NML device with defect type B{sub d} needs the largest coercive field to reverse state. • The defect type D in the NML devices requires the largest null field to switch.

  13. Electronic structure properties of deep defects in hBN

    Science.gov (United States)

    Dev, Pratibha; Prdm Collaboration

    In recent years, the search for room-temperature solid-state qubit (quantum bit) candidates has revived interest in the study of deep-defect centers in semiconductors. The charged NV-center in diamond is the best known amongst these defects. However, as a host material, diamond poses several challenges and so, increasingly, there is an interest in exploring deep defects in alternative semiconductors such as hBN. The layered structure of hBN makes it a scalable platform for quantum applications, as there is a greater potential for controlling the location of the deep defect in the 2D-matrix through careful experiments. Using density functional theory-based methods, we have studied the electronic and structural properties of several deep defects in hBN. Native defects within hBN layers are shown to have high spin ground states that should survive even at room temperature, making them interesting solid-state qubit candidates in a 2D matrix. Partnership for Reduced Dimensional Material (PRDM) is part of the NSF sponsored Partnerships for Research and Education in Materials (PREM).

  14. A Rab-centric perspective of bacterial pathogen-occupied vacuoles.

    Science.gov (United States)

    Sherwood, Racquel Kim; Roy, Craig R

    2013-09-11

    The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    Science.gov (United States)

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  16. 24 CFR 81.17 - Affordability-Income level definitions-family size and income known (owner-occupied units, actual...

    Science.gov (United States)

    2010-04-01

    ... definitions-family size and income known (owner-occupied units, actual tenants, and prospective tenants). 81...—Income level definitions—family size and income known (owner-occupied units, actual tenants, and...-income families, where the unit is owner-occupied or, for rental housing, family size and income...

  17. Defect Tolerance to Intolerance in the Vacancy-Ordered Double Perovskite Semiconductors Cs 2 SnI 6 and Cs 2 TeI 6

    Energy Technology Data Exchange (ETDEWEB)

    Maughan, Annalise E.; Ganose, Alex M.; Bordelon, Mitchell M.; Miller, Elisa M.; Scanlon, David O.; Neilson, James R.

    2016-07-13

    Vacancy-ordered double perovskites of the general formula, A2BX6, are a family of perovskite derivatives composed of a face-centered lattice of nearly isolated [BX6] units with A-site cations occupying the cuboctahedral voids. Despite the presence of isolated octahedral units, the close-packed iodide lattice provides significant electronic dispersion, such that Cs2SnI6 has recently been explored for applications in photovoltaic devices. To elucidate the structure-property relationships of these materials, we have synthesized the solid solution Cs2Sn1-xTexI6. However, even though tellurium substitution increases electronic dispersion via closer I-I contact distances, the substitution experimentally yields insulating behavior from a significant decrease in carrier concentration and mobility. Density functional calculations of native defects in Cs2SnI6 reveal that iodine vacancies exhibit a low enthalpy of formation and the defect energy level is a shallow donor to the conduction band, rendering the material tolerant to these defect states. The increased covalency of Te-I bonding renders the formation of iodine vacancy states unfavorable, and is responsible for the reduction in conductivity upon Te substitution. Additionally, Cs2TeI6 is intolerant to the formation of these defects, as the defect level occurs deep within the band gap and thus localizes potential mobile charge carriers. In these vacancy-ordered double perovskites, the close-packed lattice of iodine provides significant electronic dispersion, while the interaction of the B- and X-site ions dictates the properties as they pertain to electronic structure and defect tolerance. This simplified perspective -- based on extensive experimental and theoretical analysis -- provides a platform from which to understand structure-property relationships in functional perovskite halides.

  18. Phosphorous–vacancy–oxygen defects in silicon

    KAUST Repository

    Wang, Hao

    2013-07-30

    Electronic structure calculations employing the hybrid functional approach are used to gain fundamental insight in the interaction of phosphorous with oxygen interstitials and vacancies in silicon. It recently has been proposed, based on a binding energy analysis, that phosphorous–vacancy–oxygen defects may form. In the present study we investigate the stability of this defect as a function of the Fermi energy for the possible charge states. Spin polarization is found to be essential for the charge neutral defect.

  19. Influence of defects on the effective electrical conductivity of a monolayer produced by random sequential adsorption of linear k-mers onto a square lattice

    Science.gov (United States)

    Tarasevich, Yuri Yu.; Laptev, Valeri V.; Goltseva, Valeria A.; Lebovka, Nikolai I.

    2017-07-01

    The effect of defects on the behaviour of electrical conductivity, σ, in a monolayer produced by the random sequential adsorption of linear k-mers (particles occupying k adjacent sites) onto a square lattice is studied by means of a Monte Carlo simulation. The k-mers are deposited on the substrate until a jamming state is reached. The presence of defects in the lattice (impurities) and of defects in the k-mers with concentrations of dl and dk, respectively, is assumed. The defects in the lattice are distributed randomly before deposition and these lattice sites are forbidden for the deposition of k-mers. The defects of the k-mers are distributed randomly on the deposited k-mers. The sites filled with k-mers have high electrical conductivity, σk, whereas the empty sites, and the sites filled by either types of defect have a low electrical conductivity, σl, i.e., a high-contrast, σk /σl ≫ 1, is assumed. We examined isotropic (both the possible x and y orientations of a particle are equiprobable) and anisotropic (all particles are aligned along one given direction, y) deposition. To calculate the effective electrical conductivity, the monolayer was presented as a random resistor network and the Frank-Lobb algorithm was used. The effects of the concentrations of defects dl and dk on the electrical conductivity for the values of k =2n, where n = 1 , 2 , … , 5, were studied. Increase of both the dl and dk parameters values resulted in decreases in the value of σ and the suppression of percolation. Moreover, for anisotropic deposition the electrical conductivity along the y direction was noticeably larger than in the perpendicular direction, x. Phase diagrams in the (dl ,dk)-plane for different values of k were obtained.

  20. A correlation between the defect states and yellow luminescence in AlGaN/GaN heterostructures

    Science.gov (United States)

    Jana, Dipankar; Sharma, T. K.

    2017-07-01

    AlGaN/GaN heterostructures are investigated by performing complementary spectroscopic measurements under novel experimental configurations. Distinct features related to the band edge of AlGaN and GaN layers are clearly observed in surface photovoltage spectroscopy (SPS) spectra. A few more SPS features, which are associated with defects in GaN, are also identified by performing the pump-probe SPS measurements. SPS results are strongly corroborated by the complementary photoluminescence and photoluminescence excitation (PLE) measurements. A correlation between the defect assisted SPS features and yellow luminescence (YL) peak is established by performing pump-probe SPS and PLE measurements. It is found that CN-ON donor complex is responsible for the generation of YL peak in our sample. Further, the deep trap states are found to be present throughout the entire GaN epilayer. It is also noticed that the deep trap states lying at the GaN/Fe-GaN interface make a strong contribution to the YL feature. A phenomenological model is proposed to explain the intensity dependence of the YL feature and the corresponding SPS features in a pump-probe configuration, where a reasonable agreement between the numerical simulations and experimental results is achieved.

  1. Defect formation energy for charge states of CdMnTe

    International Nuclear Information System (INIS)

    Mehrabova, M.A.; Orujov, H.S.; Hasanli, R.N.

    2014-01-01

    Full text : Cd 1 -xMn x Te semimagnetic semiconductors are promising materials for X-ray and gamma-detectors, solar cells, optic insulators and etc. For obtaining high-sensitive and radiation-resistant materials, as well as creation of devices based on them it is necessary to know the mechanism of defect formation in semimagnetic conductors. Defects in semiconductors not only influence on electrical and optic properties of these materials, but also display their interesting physical properties

  2. Embodied Protest in Occupy London

    DEFF Research Database (Denmark)

    Costas, Jana; Reinecke, Juliane

    In this paper we discuss the relation of embodied protest and public space in Occupy London. We draw on Agamben’s notion of the homo sacer – the excluded included life embodied by the figure of the homeless, refugee and so forth – to analyze how in protest camps embodied protest relates...... with the general public and media. Particularly, tensions became manifest as the homines sacri of the homeless people joined the camp. We discuss the implications of Agamben’s biopolitical insights for the relation of resistance, public space and community building in protest movements....... sacri – “bare life” challenging sovereign power. Yet, we also show how protesters struggled to navigate tensions between representing such “bare life” of the homo sacer and the biopolitical body. This lead not only to various difficulties in building protest community but also in the interactions...

  3. Embedded defects

    International Nuclear Information System (INIS)

    Barriola, M.; Vachaspati, T.; Bucher, M.

    1994-01-01

    We give a prescription for embedding classical solutions and, in particular, topological defects in field theories which are invariant under symmetry groups that are not necessarily simple. After providing examples of embedded defects in field theories based on simple groups, we consider the electroweak model and show that it contains the Z string and a one-parameter family of strings called the W(α) string. It is argued that although the members of this family are gauge equivalent when considered in isolation, each member becomes physically distinct when multistring configurations are considered. We then turn to the issue of stability of embedded defects and demonstrate the instability of a large class of such solutions in the absence of bound states or condensates. The Z string is shown to be unstable for all values of the Higgs boson mass when θ W =π/4. W strings are also shown to be unstable for a large range of parameters. Embedded monopoles suffer from the Brandt-Neri-Coleman instability. Finally, we connect the electroweak string solutions to the sphaleron

  4. Stability of defects in monolayer MoS_2 and their interaction with O_2 molecule: A first-principles study

    International Nuclear Information System (INIS)

    Zhao, B.; Shang, C.; Qi, N.; Chen, Z.Y.; Chen, Z.Q.

    2017-01-01

    Highlights: • Defects can exist steadily in monolayer MoS_2 and break surface chemical inertness. • Activated surfaces are beneficial to the adsorption of O_2 through the introduction of defect levels. • Adsorbed O_2 on defective surface can dissociate with low activation energy barrier. • Defective system may be a potential substrate to design MoS_2-based gas sensor or catalysts. - Abstract: The stability of various defects in monolayer MoS_2, as well as their interactions with free O_2 molecules were investigated by density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. The defects including S vacancy (monosulfur and disulfue vacancies), antisite defect (Mo_S) and external Mo atom can exist steadily in monolayer MoS_2, and introduce defect levels in these defective systems, which breaks the surface chemical inertness and significantly enhances the adsorption capacity for free O_2. The adsorption energy calculations and electronic properties analysis suggest that there is a strong interaction between O_2 molecule and defective system. The adsorbed O_2 on the defective surface can dissociate with a lower activation energy barrier, which produce two active oxygen atoms. Especially, two Mo atoms can occupy one Mo lattice site, and adsorbed O_2 on the top of the Mo atom can then dissociate directly with the lowest activation energy barrier. Hence, our work may provide useful information to design MoS_2-based gas sensor or catalysts.

  5. Ferromagnetically coupled local moments along an extended line defect in graphene

    Science.gov (United States)

    White, Carter T.; Vasudevan, Smitha; Gunlycke, Daniel

    2011-03-01

    Recently an extended line defect was observed composed of octagonal and pentagonal carbon rings embedded in a graphene sheet [Nat. Nanotech. 5, 326 (2010)]. We report results of studies we have made of this defect using both first-principles and semi-empirical methods. Two types of boundary-localized states arising from the defect are identified. The first (second) type has eigenstates with wavefunctions that are anti- symmetric (symmetric) with respect to a mirror plane that is perpendicular to the graphene sheet and passes through the line defect center line. The boundary-localized anti-symmetric states are shown to be intimately connected to the zigzag edge states of semi-infinite graphene. They exhibit little dispersion along the defect line and lie close to the Fermi level giving rise to a spontaneous spin polarization along the defect once electron-electron interactions are included at the level of a mean field approximation to a Hubbard Model. Within this approach, symmetry requires that the principal moments couple ferromagnetically both along and across the line defect leading to approximately 2/3 more up than down spin electrons per defect repeat unit. This work was supported by ONR, directly and through NRL.

  6. Defect detection module

    International Nuclear Information System (INIS)

    Ernwein, R.; Westermann, G.

    1986-01-01

    The ''defect detector'' module is aimed at exceptional event or state recording. Foreseen for voltage presence monitoring on high supply voltage module of drift chambers, its characteristics can also show up the vanishing of supply voltage and take in account transitory fast signals [fr

  7. Relativistic atomic matrix elements of rq for arbitrary states in the quantum-defect approximation

    International Nuclear Information System (INIS)

    Owono Owono, L.C.; Owona Angue, M.L.C.; Kwato Njock, M.G.; Oumarou, B.

    2004-01-01

    Recurrence relations used in the calculation of matrix elements of r q for arbitrary q and states of the relativistic one-electron atom with a point-like ionic core are obtained with Dirac and quasirelativistic effective radial Hamiltonians. The phenomenological and supersymmetry-inspired quantum-defect approaches introduced in previous works to model the electron-core interactions are employed. The formulas worked out on the basis of a hypervirial inspired method may be viewed as a generalization to off-diagonal cases of our recently reported results on the evaluation of expectation values of r q

  8. Controlling defects and secondary phases of CZTS by surfactant Potassium

    Science.gov (United States)

    Zhu, Junyi; Zhang, Yiou; Tse, Kinfai; Xiao, Xudong

    Cu2ZnSnS4 (CZTS) is a promising photovoltaic absorber material with earth abundant and nontoxic elements. However, the detrimental native defects and secondary phases of CSTS will largely reduce the energy conversion efficiencies. To understand the origin of these problems during the growth of CZTS, we investigated the kinetic processes on CZTS (-1-1-2) surface, using first principles calculations. A surface Zn atom was found to occupy the subsurface Cu site easily due to a low reaction barrier, which may lead to a high ZnCu concentration and a secondary phase of ZnS. These n-type defects may create deep electron traps near the interface and become detrimental to device performance. To reduce the population of ZnCu and the secondary phase, we propose to use K as a surfactant to alter surface kinetic processes. Improvements on crystal quality and device performance based on this surfactant are consistent with early experimental observations. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding at CUHK.

  9. Defect spectroscopy of single ZnO microwires

    Science.gov (United States)

    Villafuerte, M.; Ferreyra, J. M.; Zapata, C.; Barzola-Quiquia, J.; Iikawa, F.; Esquinazi, P.; Heluani, S. P.; de Lima, M. M.; Cantarero, A.

    2014-04-01

    The point defects of single ZnO microwires grown by carbothermal reduction were studied by microphotoluminescence, photoresistance excitation spectra, and resistance as a function of the temperature. We found the deep level defect density profile along the microwire showing that the concentration of defects decreases from the base to the tip of the microwires and this effect correlates with a band gap narrowing. The results show a characteristic deep defect levels inside the gap at 0.88 eV from the top of the VB. The resistance as a function of the temperature shows defect levels next to the bottom of the CB at 110 meV and a mean defect concentration of 4 × 1018 cm-3. This combination of techniques allows us to study the band gap values and defects states inside the gap in single ZnO microwires and opens the possibility to be used as a defect spectroscopy method.

  10. Defect Proliferation in Active Nematic Suspensions

    Science.gov (United States)

    Mishra, Prashant; Bowick, Mark J.; Giomi, Luca; Marchetti, M. Cristina

    2014-03-01

    The rich structure of equilibrium nematic suspensions, with their characteristic disclination defects, is modified when active forces come into play. The uniform nematic state is known to be unstable to splay (extensile) or bend (contractile) deformations above a critical activity. At even higher activity the flow becomes oscillatory and eventually turbulent. Using hydrodynamics, we classify the active flow regimes as functions of activity and order parameter friction for both contractile and extensile systems. The turbulent regime is marked by a non-zero steady state density of mobile defect pairs. The defect density itself scales with an ``active Ericksen number,'' defined as the ratio of the rate at which activity is injected into the system to the relaxation rate of orientational deformations. The work at Syracuse University was supported by the NSF on grant DMR-1004789 and by the Syracuse Soft Matter Program.

  11. Communicating Protest Movements: The Case of Occupy

    Directory of Open Access Journals (Sweden)

    Anastasia Kavada

    2015-02-01

    Full Text Available How do you communicate a protest movement? And how do communication practices shape its character and power relations?  Based on a view of communication as constitutive of protest movements, this talk considers these questions as two sides of the same coin. The focus lies on the Occupy movement and particularly on its use of digital media. Characterised by a belief in direct participation and a rejection of central leadership, Occupy emerged through a bottom-up process of organizing that spanned different platforms and physical places, from Facebook pages to public squares. The process of constructing the collective involved the creation of communication sites and foundational texts, and their interlinking. This process was influenced by the rules, affordances and proprietary character of media platforms and physical spaces, as well as the diverse cultures and strategies of the activists using them. A closer look at this process sheds light on the power relations within the movement and particularly on five sources of communication power. These range from the power to create communication sites and texts to the power to access or link them together. The picture that emerges is complex, revealing a movement with both centralizing and decentralizing dynamics. Ultimately, it was the balance between these opposing dynamics that determined both the emergence of the movement and its decline. Acknowledgement: This contribution is the podcast of a talk Anastasia Kavada gave in the Communication and Media Research Institute (CAMRI's Research Seminar Series on February 25, 2015, at the University of Westminster.

  12. Altering graphene line defect properties using chemistry

    Science.gov (United States)

    Vasudevan, Smitha; White, Carter; Gunlycke, Daniel

    2012-02-01

    First-principles calculations are presented of a fundamental topological line defect in graphene that was observed and reported in Nature Nanotech. 5, 326 (2010). These calculations show that atoms and smaller molecules can bind covalently to the surface in the vicinity of the graphene line defect. It is also shown that the chemistry at the line defect has a strong effect on its electronic and magnetic properties, e.g. the ferromagnetically aligned moments along the line defect can be quenched by some adsorbates. The strong effect of the adsorbates on the line defect properties can be understood by examining how these adsorbates affect the boundary-localized states in the vicinity of the Fermi level. We also expect that the line defect chemistry will significantly affect the scattering properties of incident low-energy particles approaching it from graphene.

  13. Surgical Decompression for Space-Occupying Cerebral Infarction: Outcomes at 3 Years in the Randomized HAMLET Trial

    NARCIS (Netherlands)

    Geurts, Marjolein; van der Worp, H. Bart; Kappelle, L. Jaap; Amelink, C. Johan; Algra, Ale; Hofmeijer, Jeannette

    2013-01-01

    Background and Purpose—We assessed whether the effects of surgical decompression for space-occupying hemispheric infarction, observed at 1 year, are sustained at 3 years. Methods—Patients with space-occupying hemispheric infarction, who were enrolled in the Hemicraniectomy After Middle cerebral

  14. Theory of Defects in Semiconductors

    CERN Document Server

    Drabold, David A

    2007-01-01

    Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.

  15. The calculated modelling of a local thinning of a pipe fragment subjected to erosive-corrosive wear to definition of a stress state of construction at the defect zone

    International Nuclear Information System (INIS)

    Shugajlo, O.P.; Krits'kij, V.B.; Lugovoj, P.Z.

    2005-01-01

    The models of a defect-thinning of pipes fragment as an ellipse, elliptic paraboloid and elliptic cone are developed in order to analyze their impact on a stress state of a construction at the defect zone

  16. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}.

    Science.gov (United States)

    Zhou, R; Hirata, M; Wu, T; Vinograd, I; Mayaffre, H; Krämer, S; Horvatić, M; Berthier, C; Reyes, A P; Kuhns, P L; Liang, R; Hardy, W N; Bonn, D A; Julien, M-H

    2017-01-06

    We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

  17. Characterization of point defects in monolayer arsenene

    Science.gov (United States)

    Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence

    2018-06-01

    Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.

  18. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  19. Midgap states and band gap modification in defective graphene/h-BN heterostructures

    NARCIS (Netherlands)

    Sachs, B.; Wehling, T.O.; Katsnelson, M.I.; Lichtenstein, A.I.

    2016-01-01

    The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied using a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in h-BN, such as carbon impurities and antisite

  20. Defects and defect processes in nonmetallic solids

    CERN Document Server

    Hayes, W

    2004-01-01

    This extensive survey covers defects in nonmetals, emphasizing point defects and point-defect processes. It encompasses electronic, vibrational, and optical properties of defective solids, plus dislocations and grain boundaries. 1985 edition.

  1. 26 CFR 1.822-6 - Real estate owned and occupied.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) INCOME TAXES Mutual Insurance Companies (other Than Life and Certain Marine Insurance Companies and Other Than Fire Or Flood Insurance Companies Which Operate on Basis of Perpetual Policies Or... and occupied in whole or in part by a mutual insurance company subject to the tax imposed by section...

  2. 26 CFR 1.822-9 - Real estate owned and occupied.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) INCOME TAXES Mutual Insurance Companies (other Than Life and Certain Marine Insurance Companies and Other Than Fire Or Flood Insurance Companies Which Operate on Basis of Perpetual Policies Or... and occupied in whole or in part by a mutual insurance company subject to the tax imposed by section...

  3. First-principles engineering of charged defects for two-dimensional quantum technologies

    Science.gov (United States)

    Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan

    2017-12-01

    Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.

  4. The role of diffusion measurements in the study of crystal lattice defects

    Energy Technology Data Exchange (ETDEWEB)

    Kidson, G V

    1965-07-15

    Measurements of atomic mobility in solids are frequently of direct interest to those concerned with the design, development and utilization of materials in engineering. Increasing attention, however, is currently devoted to an under standing of such properties in terms of the occurrence and nature of point and line defects in the crystals. This paper reviews some recent diffusion studies conducted at C.R,N.L. that provide, in addition to data of interest in nuclear technology, a means of gaining some insight into the more fundamental nature of the lattice defects occurring in the materials. The systems discussed are (i) self diffusion in the high temperature phase of pure zirconium (ii) solute diffusion in lead and (iii) interdiffusion of aluminum and zirconium The unusual and at present incompletely understood results described in (i) are briefly reviewed. Evidence is given to suggest that diffusion occurs either through a dense dislocation network produced as a result of a martensitic phase transformation, or, alternatively, by excess vacancies introduced into the crystal by impurities. In (ii) the extraordinarily rapid diffusion of noble metal solutes in high purity lead single crystals will be discussed n terms of the state of solution of the solute atoms. It will be shown that their diffusion behaviour can be understood by assuming that a fraction f{sub i} of the dissolved solute atoms occupy interstitial sites, The measured diffusion coefficient D{sub m} is related to the interstitial diffusion coefficient by D{sub m} = f{sub i} D{sub i}. In (iii) the formation and rapid growth of single intermetallic compound ZrAl{sub 3} in the diffusion zone formed between pure zirconium and pure aluminum is described and the diffusion mechanism is interpreted in terms of the structure of the compound lattice. The results indicate that ZrAl{sub 3} forms a defect lattice, leading to the relatively rapid migration of aluminum atoms. (author)

  5. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    trace concentration (of the order of one part per million). However, owing to the heavy burden of the quantum-mechanical electronic structure calculations, which grow very rapidly with the number of electrons, the present day simulations do not easily exceed a few hundred atoms nowadays. This induces effective defect concentrations of the order of one percent which are very far from the diluted defects observed in the experiments. The extrapolation of high concentrations to low concentrations is difficult because defects in semiconductors often bear a net electric charge which induces long-range interactions between the spuriously interacting charged defects. The first part of my work presents the techniques available in this area, improvements in the techniques and some understanding of these spurious interactions. The second topic addressed in this memoir focuses on improving the electronic structure of defects in semiconductors and insulators. Defects in these materials introduce discrete electronic levels within the band gap of the pristine bulk material. These electronic levels correspond to the electrons involved in the defect states. Their wave function is more or less localized around the defect region and the filling of the state may also vary with the thermodynamic conditions (Fermi level). These levels inside the band gap govern the modification of the properties of electronic and optical transport. Unfortunately the standard ab initio approaches, in the context of Density Functional Theory (DFT), are unable to get the correct band gaps of semiconductors and insulators. This is why many defect properties cannot be predicted with certainty within these approaches. This second part demonstrates how the introduction of the many-body perturbation theory in the so-called GW approximation solves the problem of band gaps and thus allows one to obtain more reliable defect properties. Of course, the field of ab initio electronic structure for defects is far from being

  6. 26 CFR 1.822-2 - Real estate owned and occupied.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) INCOME TAXES Mutual Insurance Companies (other Than Life and Certain Marine Insurance Companies and Other Than Fire Or Flood Insurance Companies Which Operate on Basis of Perpetual Policies Or... estate owned and occupied in whole or in part by a mutual insurance company subject to the tax imposed by...

  7. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects

    KAUST Repository

    Zhang, Zhenkui

    2014-01-01

    We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a coupling between partially filled defect states. By taking into account the electronic correlations, we find an additional splitting of the defect states in Zn vacancies and thus the possibility of gaining energy by preferential filling of hole states, establishing ferromagnetism between spin polarized S 3p holes. We demonstrate a crucial role of neutral S vacancies in promoting ferromagnetism between positively charged S vacancies. S dangling bonds on the nanoparticle surface also induce ferromagnetism. This journal is

  8. Errors associated with moose-hunter counts of occupied beaver Castor fiber lodges in Norway

    OpenAIRE

    Parker, Howard; Rosell, Frank; Gustavsen, Per Øyvind

    2002-01-01

    In Norway, Sweden and Finland moose Alces alces hunting teams are often employed to survey occupied beaver (Castor fiber and C. canadensis) lodges while hunting. Results may be used to estimate population density or trend, or for issuing harvest permits. Despite the method's increasing popularity, the errors involved have never been identified. In this study we 1) compare hunting-team counts of occupied lodges with total counts, 2) identify the sources of error between counts and 3) evaluate ...

  9. On the relationship between rutile/anatase ratio and the nature of defect states in sub-100 nm TiO2 nanostructures: experimental insights

    KAUST Repository

    Soliman, Moamen M.

    2018-02-02

    Black TiO2 is being widely investigated due to its superior optical activity and potential applications in photocatalytic hydrogen generation. Herein, the limitations of the hydrogenation process of TiO2 nanostructures are unraveled by exploiting the fundamental tradeoffs affecting the overall efficiency of the water splitting process. To control the nature and concentration of defect states, different reduction rates are applied to sub-100 nm TiO2 nanotubes, chosen primarily for their superiority over their long counterparts. X-Ray Photoelectron Spectroscopy disclosed changes in the stoichiometry of TiO2 with the reduction rate. UV-vis and Raman spectra showed that high reduction rates promote the formation of the rutile phase in TiO2, which is inactive towards water splitting. Furthermore, electrochemical analysis revealed that such high rates induce a higher concentration of localized electronic defect states that hinder the water splitting performance. Finally, incident photon-to-current conversion efficiency (IPCE) highlighted the optimum reduction rate that attains a relatively lower defect concentration as well as lower rutile content, thereby achieving the highest conversion efficiency.

  10. Muon beams, used for studying the solid state

    International Nuclear Information System (INIS)

    Cox, S.F.J.; Stoneham, A.M.

    1992-01-01

    The positive muon provides a remarkable spectroscopic probe of the solid state. Implanted in virtually any material, its spin polarisation may be monitored to define the sites it occupies in lattices or molecules and to report on local structure and dynamics. Wide ranging applications in solid state science are illustrated in this article by examples in magnetics, chemistry and quantum diffusion. Primarily, the muon is a sensitive microscopic magnetometer: this elementary particle has spin 1/2 and a magnetic moment about three times that of the proton. The frequencies of its resonance or precession signals provide a direct and accurate measurement of local magnetic or hyperfine fields. Its relaxation functions characterise the distribution in space or the fluctuation in time of these fields. The muon is rarely a passive probe, however, since it represents a defect carrying unit positive charge. In fact its interactions with the local environment are commonly the main focus of interest; studies of this most fundamental of defects have eliminated complacency in several areas. The interactions, chemical and elastic, are essentially identical with those of the proton, so that their study is invaluable in situations where hydrogen cannot be detected by conventional spectroscopies. Alternatively, when muon and proton behaviour may be compared, the comparison reveals a variety of kinetic and dynamic isotope effects: the muon has about one ninth the proton mass. This order of magnitude ratio greatly facilitates identification of specifically quantum effects, ie those including zero point energy or tunnelling. (author)

  11. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.

    Directory of Open Access Journals (Sweden)

    Michael A Lodato

    Full Text Available SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs and multipotent neural progenitor cells (NPCs; however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1 in ESCs, the related POU family member BRN2 (Pou3f2 co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.

  12. Stability of defects in monolayer MoS{sub 2} and their interaction with O{sub 2} molecule: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China); Shang, C. [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074 (China); Qi, N. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China); Chen, Z.Y. [School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100 (China); Chen, Z.Q., E-mail: chenzq@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China)

    2017-08-01

    Highlights: • Defects can exist steadily in monolayer MoS{sub 2} and break surface chemical inertness. • Activated surfaces are beneficial to the adsorption of O{sub 2} through the introduction of defect levels. • Adsorbed O{sub 2} on defective surface can dissociate with low activation energy barrier. • Defective system may be a potential substrate to design MoS{sub 2}-based gas sensor or catalysts. - Abstract: The stability of various defects in monolayer MoS{sub 2}, as well as their interactions with free O{sub 2} molecules were investigated by density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. The defects including S vacancy (monosulfur and disulfue vacancies), antisite defect (Mo{sub S}) and external Mo atom can exist steadily in monolayer MoS{sub 2}, and introduce defect levels in these defective systems, which breaks the surface chemical inertness and significantly enhances the adsorption capacity for free O{sub 2}. The adsorption energy calculations and electronic properties analysis suggest that there is a strong interaction between O{sub 2} molecule and defective system. The adsorbed O{sub 2} on the defective surface can dissociate with a lower activation energy barrier, which produce two active oxygen atoms. Especially, two Mo atoms can occupy one Mo lattice site, and adsorbed O{sub 2} on the top of the Mo atom can then dissociate directly with the lowest activation energy barrier. Hence, our work may provide useful information to design MoS{sub 2}-based gas sensor or catalysts.

  13. Improved Arousal and Motor Function Using Zolpidem in a Patient With Space-Occupying Intracranial Lesions: A Case Report.

    Science.gov (United States)

    Bomalaski, Martin Nicholas; Smith, Sean Robinson

    2017-08-01

    Patients with disorders of consciousness (DOC) have profound functional limitations with few treatment options for improving arousal and quality of life. Zolpidem is a nonbenzodiazepine hypnotic used to treat insomnia that has also been observed to paradoxically improve arousal in those with DOC, such as the vegetative or minimally conscious states. Little information exists on its use in patients with DOC who have intracranial space-occupying lesions. We present a case of a 24-year-old man in a minimally conscious state due to central nervous system lymphoma who was observed to have increased arousal and improved motor function after the administration of zolpidem. V. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Electronic transport of bilayer graphene with asymmetry line defects

    International Nuclear Information System (INIS)

    Zhao Xiao-Ming; Chen Chan; Liang Ying; Kou Su-Peng; Wu Ya-Jie

    2016-01-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer–Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. (paper)

  15. Music in Nazi-Occupied Poland between 1939 and 1945

    OpenAIRE

    Naliwajek-Mazurek Katarzyna

    2016-01-01

    The paper is a survey of research on music in territories of occupied Poland conducted by the author in recent years, as well as a review of selected existing literature on this topic. A case study illustrates a principal thesis of this essay according to which music was used by the German Nazis in the General Government as a key elements of propaganda and in appropriation of conquered territories as both physical and symbolic spaces.

  16. Intrinsic Defects and H Doping in WO3

    KAUST Repository

    Zhu, Jiajie

    2017-01-18

    WO3 is widely used as industrial catalyst. Intrinsic and/or extrinsic defects can tune the electronic properties and extend applications to gas sensors and optoelectonics. However, H doping is a challenge to WO3, the relevant mechanisms being hardly understood. In this context, we investigate intrinsic defects and H doping by density functional theory and experiments. Formation energies are calculated to determine the lowest energy defect states. O vacancies turn out to be stable in O-poor environment, in agreement with X-ray photoelectron spectroscopy, and O-H bond formation of H interstitial defects is predicted and confirmed by Fourier transform infrared spectroscopy.

  17. Disparate relatives: Life histories vary more in genera occupying intermediate environments

    NARCIS (Netherlands)

    Hermant, M.; Hennion, F.; Bartish, I.V.; Yguel, B.; Prinzing, A.

    2012-01-01

    Species within clades are commonly assumed to share similar life history traits, but within a given region some clades show much greater variability in traits than others. Are variable clades older, allowing more time for trait diversification? Or do they occupy particular environments, providing a

  18. Production of freely-migrating defects during irradiation

    International Nuclear Information System (INIS)

    Rehn, L.E.; Okamoto, P.R.

    1986-09-01

    During irradiation at elevated temperatures, vacancy and interstitial defects that escape can produce several different types of microstructural changes. Hence the production rate of freely-migrating defects must be known as a function of irradiating particle species and energy before quantitative correlations can be made between microstructural changes. Our fundamental knowledge of freely-migrating defect production has increased substantially in recent years. Critical experimental findings that led to the improved understanding are reviewed in this paper. A strong similarity is found for the dependence of freely-migrating defect production on primary recoil energy as measured in a variety of metals and alloys by different authors. The efficiency for producing freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the efficiency for creating stable defects at liquid helium temperatures. The stronger decrease can be understood in terms of additional intracascade recombination that results from the nonrandom distribution of defects existing in the primary damage state for high primary recoil energies. Although the existing data base is limited to fcc materials, the strong similarity in the reported investigations suggests that the same dependence of freely-migrating defect production on primary recoil energy may be characteristic of a wide variety of other alloy systems as well. 52 refs., 4 figs

  19. Socio-economic background and prevalence of visual defects ...

    African Journals Online (AJOL)

    The thrust of this study is to examine the socio-economic background and prevalence of visual defects among students in public and private secondary schools in Calabar municipality in Cross River State. The main objective of the study is to screen for and present information on the prevalence of visual defects amongst the ...

  20. Simulating Interface Growth and Defect Generation in CZT – Simulation State of the Art and Known Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gao, Fei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lin, Guang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bylaska, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zabaras, Nicholas [Cornell Univ., Ithaca, NY (United States)

    2012-11-01

    This one-year, study topic project will survey and investigate the known state-of-the-art of modeling and simulation methods suitable for performing fine-scale, fully 3-D modeling, of the growth of CZT crystals at the melt-solid interface, and correlating physical growth and post-growth conditions with generation and incorporation of defects into the solid CZT crystal. In the course of this study, this project will also identify the critical gaps in our knowledge of modeling and simulation techniques in terms of what would be needed to be developed in order to perform accurate physical simulations of defect generation in melt-grown CZT. The transformational nature of this study will be, for the first time, an investigation of modeling and simulation methods for describing microstructural evolution during crystal growth and the identification of the critical gaps in our knowledge of such methods, which is recognized as having tremendous scientific impacts for future model developments in a wide variety of materials science areas.

  1. Music in Nazi-Occupied Poland between 1939 and 1945

    Directory of Open Access Journals (Sweden)

    Naliwajek-Mazurek Katarzyna

    2016-12-01

    Full Text Available The paper is a survey of research on music in territories of occupied Poland conducted by the author in recent years, as well as a review of selected existing literature on this topic. A case study illustrates a principal thesis of this essay according to which music was used by the German Nazis in the General Government as a key elements of propaganda and in appropriation of conquered territories as both physical and symbolic spaces.

  2. VV and VO2 defects in silicon studied with hybrid density functional theory

    KAUST Repository

    Christopoulos, Stavros Richard G

    2014-12-07

    The formation of VO (A-center), VV and VO2 defects in irradiated Czochralski-grown silicon (Si) is of technological importance. Recent theoretical studies have examined the formation and charge states of the A-center in detail. Here we use density functional theory employing hybrid functionals to analyze the formation of VV and VO2 defects. The formation energy as a function of the Fermi energy is calculated for all possible charge states. For the VV and VO2 defects double negatively charged and neutral states dominate, respectively.

  3. Superexcited states of molecules

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Takagi, Hidekazu.

    1990-01-01

    The report addresses the nature and major features of molecule's superexcited states, focusing on their involvement in dynamic processes. It also outlines the quantum defect theory which allows various processes involving these states to be treated in a unified way. The Rydberg state has close relation with an ionized state with a positive energy. The quantum defect theory interprets such relation. Specifically, the report first describes the quantum defect theory focusing on its basic principle. The multi-channel quantum defect theory is then outlined centering on how to describe a Rydberg-type superexcited state. Description of a dissociative double-electron excited state is also discussed. The quantum defect theory is based on the fact that the physics of the motion of a Rydberg electron vary with the region in the electron's coordinate space. Finally, various molecular processes that involve a superexcited state are addressed focusing on autoionization, photoionization, dissociative recombination and bonding ionization of diatomic molecules. (N.K.)

  4. Evolution of Defect Structures and Deep Subgap States during Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors

    Science.gov (United States)

    Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki

    2018-01-01

    We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.

  5. Trust the process: community health psychology after Occupy.

    Science.gov (United States)

    Cornish, Flora; Montenegro, Cristian; van Reisen, Kirsten; Zaka, Flavia; Sevitt, James

    2014-01-01

    This article argues that community health psychology's core strategy of 'community mobilisation' is in need of renewal and proposes a new way of conceptualising community health action. Taking the Occupy movement as an example, we critique modernist understandings of community mobilisation, which are based on instrumental action in the service of a predetermined goal. Aiming to re-invigorate the 'process' tradition of community health psychology, we explore possibilities of an open-ended, anti-hierarchical and inclusive mode of community action, which we label 'trusting the process'. The gains to be made are unpredictable, but we suggest that the risk is worth taking.

  6. Critical current, pinning and resistive state of superconducting single-crystal niobium with different types of defect structure

    International Nuclear Information System (INIS)

    Sokolenko, V.I.; Starodubov, Ya.D.

    2005-01-01

    Critical current pinning and resistive state of single crystal niobium of texture orientation are studied for different structural states obtained by rolling at 20 K by 42% and polishing the surface layers. It is found that the heterogeneous structures typical of the strained sample even after its thinning down to approx 10% display a lower current-carrying capability due to an increase of the thermomagnetic instability within the fragmented structure sections in the near-surface layers. For a homogeneous defect structure of the sample core with the density of equilibrium distributed dislocations of 1.3 centre dot 10 11 cm -2 , a correlation between the normal current density and the critical current density in the resistive state is found, in agreement with the concepts of flux creep due to the scatter of local values of J c

  7. Stochastic annealing simulations of defect interactions among subcascades

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.

    1997-04-01

    The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performed on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.

  8. An Inherited Platelet Function Defect in Basset Hounds

    Science.gov (United States)

    Johnstone, I. B.; Lotz, F.

    1979-01-01

    An inherited platelet function defect occurring in a family of basset hounds has been described. The trait is transmitted as an autosomal characteristic and appears to be expressed clinically only in the homozygous state. The characteristics of this platelet defect include: 1) marked bleeding tendencies and prolonged skin bleeding times in either male or female dogs. 2) normal blood coagulation mechanism. 3) adequate numbers of circulating platelets which appear morphologically normal by light microscopy. 4) normal whole blood clot retraction. 5) deficient in vivo platelet consumption and in vitro platelet retention in glass bead columns. 6) defective ADP-induced platelet aggregation in homozygotes, apparently normal ADP response in heterozygotes, and defective collagen-induced platelet aggregation in both. PMID:509382

  9. Reconstruction of Bile Duct Injury and Defect with the Round Ligament.

    Science.gov (United States)

    Dokmak, Safi; Aussilhou, Béatrice; Ragot, Emilia; Tantardini, Camille; Cauchy, François; Ponsot, Philippe; Belghiti, Jacques; Sauvanet, Alain; Soubrane, Olivier

    2017-09-01

    Lateral injury of the bile duct can occur after cholecystectomy, bile duct dissection, or exploration. If direct repair is not possible, conversion to bilioenteric anastomosis can be needed with the risk of long-term bile duct infections and associated complications. We developed a new surgical technique which consist of reconstructing the bile duct with the round ligament. The vascularized round ligament is completely mobilized until its origin and used for lateral reconstruction of the bile duct to cover the defect. T tube was inserted and removed after few months. Patency of the bile duct was assessed by cholangiography, the liver function test and magnetic resonance imaging (MRI). Two patients aged 33 and 59 years old underwent lateral reconstruction of the bile duct for defects secondary to choledocotomy for stone extraction or during dissection for Mirizzi syndrome. The defects measured 2 and 3 cm and occupied half of the bile duct circumference. The postoperative course was marked by low output biliary fistula resolved spontaneously. In one patient, the T tube was removed at 3 months after surgery and MRI at 9 months showed strictly normal aspect of the bile duct with normal liver function test. The second patient is going very well 2 months after surgery and the T tube is closed. Lateral reconstruction of the bile duct can be safely achieved with the vascularized round ligament. We will extend our indications to tubular reconstruction.

  10. Vacancy formation in MoO3: hybrid density functional theory and photoemission experiments

    KAUST Repository

    Salawu, Omotayo Akande

    2016-09-29

    Molybdenum oxide (MoO3) is an important material that is being considered for numerous technological applications, including catalysis and electrochromism. In the present study, we apply hybrid density functional theory to investigate O and Mo vacancies in the orthorhombic phase. We determine the vacancy formation energies of different defect sites as functions of the electron chemical potential, addressing different charge states. In addition, we investigate the consequences of defects for the material properties. Ultraviolet photoemission spectroscopy is employed to study the valence band of stoichiometric and O defective MoO3. We show that O vacancies result in occupied in-gap states.

  11. Vacancy formation in MoO3: hybrid density functional theory and photoemission experiments

    KAUST Repository

    Salawu, Omotayo Akande; Chroneos, Alexander; Vasilopoulou, Maria; Kennou, Stella; Schwingenschlö gl, Udo

    2016-01-01

    Molybdenum oxide (MoO3) is an important material that is being considered for numerous technological applications, including catalysis and electrochromism. In the present study, we apply hybrid density functional theory to investigate O and Mo vacancies in the orthorhombic phase. We determine the vacancy formation energies of different defect sites as functions of the electron chemical potential, addressing different charge states. In addition, we investigate the consequences of defects for the material properties. Ultraviolet photoemission spectroscopy is employed to study the valence band of stoichiometric and O defective MoO3. We show that O vacancies result in occupied in-gap states.

  12. Defect formation and magnetic properties of Co-doped GaN crystal and nanowire

    International Nuclear Information System (INIS)

    Shi, Li-Bin; Liu, Jing-Jing; Fei, Ying

    2013-01-01

    Theoretical calculation based on density functional theory (DFT) and generalized gradient approximation (GGA) has been carried out in studying defect formation and magnetic properties of Co doped GaN crystal and nanowire (NW). Co does not exhibit site preference in GaN crystal. However, Co occupies preferably surface sites in GaN NW. Transition level of the defect is also investigated in GaN crystal. We also find that Co Ga (S) in NW does not produce spin polarization and Co Ga (B) produces spontaneous spin polarization. Ferromagnetic (FM) and antiferromagnetic (AFM) couplings are analyzed by six different configurations. The results show that AFM coupling is more stable than FM coupling for Co doped GaN crystal. It is also found from Co doped GaN NW calculation that the system remains FM stability for majority of the configurations. Magnetic properties in Co doped GaN crystal can be mediated by N and Ga vacancies. The FM and AFM stability can be explained by Co 3d energy level coupling

  13. A study of the electrical properties of defects in silicon

    International Nuclear Information System (INIS)

    Blood, A.M.

    1998-01-01

    This work contains the most comprehensive qualitative and quantitative electron beam induced current (EBIC) study of recombination at contaminated defects in silicon. It is also a rigorous quantitative investigation of the effect of hydrogen on individual transition metal contaminated defects. In addition, the recombination behaviour exhibited by point and extended defects has been investigated using EBIC and deep level transient spectroscopy (DLTS). As a result of these measurements, techniques for the preparation of transition metal contaminated specimens have been refined. Successful hydrogen passivation of copper, nickel and iron contaminated silicon specimens containing oxidation-induced stacking faults has been achieved in two experimental systems. It is found that hydrogen passivates those states that are deepest in the semiconductor band gap in preference to those that are shallow. Furthermore, it has been concluded that during hydrogen passivation treatment, even at low temperatures, unwanted metallic impurities can be introduced. Three types of recombination behaviour have been identified from the defects-studied in this work and they are discussed with relevance to present recombination models. An investigation of the recombination behaviour of defects that lie in the depletion region and in the specimen bulk has concluded that the recombination type observed is independent of the depth of the defect. Evidence for the presence of compound defects showing mixed recombination behaviour type is presented. In conclusion, it is postulated that the transition metal impurities introduce a 'band of states' with a range of energies rather than a single energy state. This proposal is provided as an explanation for the recombination types found in this work and the effect of the hydrogen passivation. This work is placed in context of previous investigations into the behaviour of dislocations in silicon in the presence of transition metals, and the ability of

  14. Ionization-induced rearrangement of defects in silicon

    International Nuclear Information System (INIS)

    Vinetskij, V.L.; Manojlo, M.A.; Matvijchuk, A.S.; Strikha, V.I.; Kholodar', G.A.

    1988-01-01

    Ionizing factor effect on defect rearrangement in silicon including centers with deep local electron levels in the p-n-transition region is considered. Deep center parameters were determined using non-steady-state capacity spectroscopy of deep levels (NCDLS) method. NCDLS spectrum measurement was performed using source p + -n - diodes and after their irradiation with 15 keV energy electrons or laser pulses. It is ascertained that in silicon samples containing point defect clusters defect rearrangement under ionizing factor effect takes place, i.e. deep level spectra are changed. This mechanism is efficient in case of silicon irradiation with subthreshold energy photons and electrons and can cause degradation of silicon semiconducting structures

  15. Electronic and magnetic properties of MoS2 nanoribbons with sulfur line vacancy defects

    International Nuclear Information System (INIS)

    Han, Yang; Zhou, Jian; Dong, Jinming

    2015-01-01

    Highlights: • We performed DFT calculations on Sulfur line defects embedded MoS 2 . • The defects induced bond strains are larger in the zigzag (ZZ) edge ones. • The ZZ ones are metals, having two degenerate ground states FM and AFM. • The armchair ones are nonmagnetic semiconductors. • The defects can induce some defect states in the electronic structures. - Abstract: Motivated by the recent experimental result that single sulfur vacancies in monolayer MoS 2 are mobile under the electron beam and easily agglomerate into the sulfur line vacancy defects [Physical Review B 88, 035301(2013)] , the structural, electronic and magnetic properties of one dimensional zigzag (ZZ) and armchair (AC) edge MoS 2 nanoribbons with single or double staggered sulfur line vacancy defects (hereafter, abbreviated as SV or DV, respectively), parallel to their edges, have been investigated systematically by density functional theory calculations. It is very interesting to find that the bond strains induced by the sulfur line vacancy defect can cause a much larger out-of plane distortions in the ZZ edge MoS 2 nanoribbon than in the AC edge counterpart. Besides, the defective ZZ edge MoS 2 nanoribbons with SV or DV are both metals, having their two respective degenerate ground states with the same energy, among which one is ferromagnetic (FM “ + +”) and the other is antiferromagnetic (AFM “ + −”). But the AC edge MoS 2 nanoribbons with SV or DV are both nonmagnetic semiconductors, having very different gap values. Finally, the sulfur line vacancy defects would induce some defect states in the electronic structures of the defective MoS 2 nanoribbons. All these important results could provide a new route of tuning the electronic properties of MoS 2 nanoribbons and its derivatives for their promising applications in nanoelectronics and optoelectronics

  16. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO2-δ Films.

    Science.gov (United States)

    Cortie, David L; Khaydukov, Yury; Keller, Thomas; Sprouster, David J; Hughes, Jacob S; Sullivan, James P; Wang, Xiaolin L; Le Brun, Anton P; Bertinshaw, Joel; Callori, Sara J; Aughterson, Robert; James, Michael; Evans, Peter J; Triani, Gerry; Klose, Frank

    2017-03-15

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0 , with a minor fraction of Co 2+ . The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co 0 , which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  17. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO_2_-_δ Films

    International Nuclear Information System (INIS)

    Cortie, David L.; Khaydukov, Yury; Max Planck Society, Garching

    2017-01-01

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO_2_-_δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ_B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO_2_-_δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co"0, with a minor fraction of Co"2"+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund’s rules for Co"0, which is unusual because the transition metal’s magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  18. Ab initio simulation study of defect assisted Zener tunneling in GaAs diode

    Science.gov (United States)

    Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Jiang, Xiang-Wei

    2017-06-01

    The band to band tunneling of defective GaAs nano-junction is studied by using the non-equilibrium Green's function formalism with density functional theory. Aiming at performance improvement, two types of defect-induced transport behaviors are reported in this work. By examining the partial density of states of the system, we find the substitutional defect OAs that locates in the middle of tunneling region will introduce band-gap states, which can be used as stepping stones to increase the tunneling current nearly 3 times higher at large bias voltage (Vb≥0.3V). Another type of defects SeAs and VGa (Ga vacancy) create donor and acceptor states at the edge of conduction band (CB) and valence band (VB)respectively, which can change the band bending of the junction as well as increase the tunneling field obtaining a 1.5 times higher ON current. This provides an effective defect engineering approach for next generation TFET device design.

  19. Investigation of defect equilibria in YBa2Cu3Ox by a solid state electrochemical method

    International Nuclear Information System (INIS)

    Porat, O.; Riess, I.; Tuller, H.L.

    1992-01-01

    The partial pressure of oxygen, P(O 2 ), in equilibrium with YBa 2 Cu 3 O x was determined as a function of oxygen composition, x, and temperature, T in the range 6.35>x>5.97 and 1120>T>825 K. A solid state electrochemical method was used allowing for accurate control of composition by Coulometric titration and determination of P(O 2 ) by open circuit EMF measurements. Decomposition of YBa 2 Cu 3 O x was found to occur at x values as high as 6.1. Evidence for additional possible phase transitions for x>6.1 are discussed. Three relevant defect models are considered in detail and fitted to these and other data. The outcome of this analysis is a model that is consistent with all the available data and assumes that the dominant defects are neutral oxygen interstitials, O i * and that the concentration of charged defects is small compared to [O i * ]. The hole concentration, p, follows a P(O 2 ) 1/2 dependence over a significant range of x. The relative change in the position of the Fermi energy upon reduction from x=6.35 to x=6.1 is 0.2 eV. The partial molar enthalpy of oxygen in YBa 2 Cu 3 O 6.1 with respect to pure oxygen is 179 kJ/mol. It is suggested that the chemical and tracer diffusion coefficient are independent of the diffusivity determined from conductivity. Information concerning the thermodynamic factor and the enthalpy of oxidation is presented. (orig.)

  20. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence

    DEFF Research Database (Denmark)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels

    2016-01-01

    Background: The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac...... defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge...... in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Case presentation: Our first case was a white girl...

  1. Surface defects characterization in a quantum wire by coherent phonons scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rabia, M. S. [Laboratoire de Mécanique des Structures et Energétique, Faculté du Génie de la Construction, Université. Mammeri de Tizi-Ouzou, BP 17 RP Hasnaoua II, Tizi-Ouzou 15000, Algérie m2msr@yahoo.fr (Algeria)

    2015-03-30

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.

  2. Surface defects characterization in a quantum wire by coherent phonons scattering

    International Nuclear Information System (INIS)

    Rabia, M. S.

    2015-01-01

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices

  3. Phase Defects as a Measure of Disorder in Traveling-Wave Convection

    International Nuclear Information System (INIS)

    La Porta, A.; Surko, C.M.

    1996-01-01

    Spatiotemporal disorder is studied in traveling-wave convection in an ethanol-water mixture. A technique for calculating the complex order parameter of the pattern is described, and the identification of phase defects is demonstrated. Point defects, domain boundaries, and standing wave patterns are shown to produce unique defect structures. The transition from a disordered state to a more ordered pattern is described in terms of the dynamics of defects and their statistics. copyright 1996 The American Physical Society

  4. Extracting software static defect models using data mining

    Directory of Open Access Journals (Sweden)

    Ahmed H. Yousef

    2015-03-01

    Full Text Available Large software projects are subject to quality risks of having defective modules that will cause failures during the software execution. Several software repositories contain source code of large projects that are composed of many modules. These software repositories include data for the software metrics of these modules and the defective state of each module. In this paper, a data mining approach is used to show the attributes that predict the defective state of software modules. Software solution architecture is proposed to convert the extracted knowledge into data mining models that can be integrated with the current software project metrics and bugs data in order to enhance the prediction. The results show better prediction capabilities when all the algorithms are combined using weighted votes. When only one individual algorithm is used, Naïve Bayes algorithm has the best results, then the Neural Network and the Decision Trees algorithms.

  5. Birth Defects in the Newborn Population: Race and Ethnicity

    Directory of Open Access Journals (Sweden)

    Alexander C. Egbe

    2015-06-01

    Conclusion: This is a comprehensive description of racial differences in the risk of birth defects in the United States. Observed racial differences in the risk of birth defects may be related to genetic susceptibilities, to cultural or social differences that could modify exposures, or to the many potential combinations between susceptibilities and exposures.

  6. Identification of biochemical features of defective Coffea arabica L. beans.

    Science.gov (United States)

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  7. Metastable defect response in CZTSSe from admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se)4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the device measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.

  8. Electronic and magnetic properties of MoS{sub 2} nanoribbons with sulfur line vacancy defects

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang [Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhou, Jian [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Dong, Jinming, E-mail: jdong@nju.edu.cn [Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-08-15

    Highlights: • We performed DFT calculations on Sulfur line defects embedded MoS{sub 2}. • The defects induced bond strains are larger in the zigzag (ZZ) edge ones. • The ZZ ones are metals, having two degenerate ground states FM and AFM. • The armchair ones are nonmagnetic semiconductors. • The defects can induce some defect states in the electronic structures. - Abstract: Motivated by the recent experimental result that single sulfur vacancies in monolayer MoS{sub 2} are mobile under the electron beam and easily agglomerate into the sulfur line vacancy defects [Physical Review B 88, 035301(2013)] , the structural, electronic and magnetic properties of one dimensional zigzag (ZZ) and armchair (AC) edge MoS{sub 2} nanoribbons with single or double staggered sulfur line vacancy defects (hereafter, abbreviated as SV or DV, respectively), parallel to their edges, have been investigated systematically by density functional theory calculations. It is very interesting to find that the bond strains induced by the sulfur line vacancy defect can cause a much larger out-of plane distortions in the ZZ edge MoS{sub 2} nanoribbon than in the AC edge counterpart. Besides, the defective ZZ edge MoS{sub 2} nanoribbons with SV or DV are both metals, having their two respective degenerate ground states with the same energy, among which one is ferromagnetic (FM “ + +”) and the other is antiferromagnetic (AFM “ + −”). But the AC edge MoS{sub 2} nanoribbons with SV or DV are both nonmagnetic semiconductors, having very different gap values. Finally, the sulfur line vacancy defects would induce some defect states in the electronic structures of the defective MoS{sub 2} nanoribbons. All these important results could provide a new route of tuning the electronic properties of MoS{sub 2} nanoribbons and its derivatives for their promising applications in nanoelectronics and optoelectronics.

  9. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes

    DEFF Research Database (Denmark)

    Thorson, James T.; Rindorf, Anna; Gao, Jin

    2016-01-01

    among taxa and regions. The average relationship is weak but significant (0.6% increase in area for a 10% increase in abundance), whereas only a small proportion of species–region combinations show a negative relationship (i.e. shrinking area when abundance increases). Approximately one...... for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea......The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution...

  10. Structural defects in monocrystalline silicon: from radiation ones to growing and technological

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Pavlyuchenko, M.N.; Dzhamanbalin, K.K.

    2001-01-01

    The systematical review of properties and conditions of radiation structures in monocrystalline silicon including own defects (elementary and complex, disordered fields) as well as defect-impurity formations is presented. The most typical examples of principle effects influence of known defects on radiation-induced processes (phase transformations, diffusion and heteration and others are considered. Experimental facts and models of silicon radiation amorphization have been analyzed in comparison of state of the radiation amorphization radiation problem of metals and alloys. The up-to-date status of the problem of the radiation defects physics are discussed, including end-of-range -, n+-, rod-like- defects. The phenomenon self-organization in crystals with defects has been considered. The examples of directed using radiation defects merged in independent trend - defects engineering - are given

  11. Defect States in InP/InGaAs/InP Heterostructures by Current-Voltage Characteristics and Deep Level Transient Spectroscopy.

    Science.gov (United States)

    Vu, Thi Kim Oanh; Lee, Kyoung Su; Lee, Sang Jun; Kim, Eun Kyu

    2018-09-01

    We studied defect states in In0.53Ga0.47As/InP heterojunctions with interface control by group V atoms during metalorganic chemical vapor (MOCVD) deposition. From deep level transient spectroscopy (DLTS) measurements, two defects with activation energies of 0.28 eV (E1) and 0.15 eV (E2) below the conduction band edge, were observed. The defect density of E1 for In0.53Ga0.47As/InP heterojunctions with an addition of As and P atoms was about 1.5 times higher than that of the heterojunction added P atom only. From the temperature dependence of current- voltage characteristics, the thermal activation energies of In0.53Ga0.47As/InP of heterojunctions were estimated to be 0.27 and 0.25 eV, respectively. It appeared that the reverse light current for In0.53Ga0.47As/InP heterojunction added P atom increased only by illumination of a 940 nm-LED light source. These results imply that only the P addition at the interface can enhance the quality of InGaAs/InP heterojunction.

  12. On the meaning of sink capture efficiency and sink strength for point defects

    International Nuclear Information System (INIS)

    Mansur, L.K.; Wolfer, W.G.

    1982-01-01

    The concepts of sink capture efficiency and sink strength for point defects are central to the theory of point defect reactions in materials undergoing irradiation. Two fundamentally different definitions of the capture efficiency are in current use. The essential difference can be stated simply. The conventional meaning denotes a measure of the loss rate of point defects to sinks per unit mean point defect concentration. A second definition of capture efficiency, introduced recently, gives a measure of the point defect loss rate without normalization to the mean point defect concentration. The relationship between the two capture efficiencies is here derived. By stating the relationship we hope to eliminate confusion caused by comparisons of the two types of capture efficiencies at face value and to provide a method of obtaining one from the other. Internally consistent usage of either of the capture efficiencies leads to the same results for the calculation of measuable quantities, as is required physically. (orig.)

  13. International conference on defects in insulating crystals

    International Nuclear Information System (INIS)

    1977-01-01

    Short summaries of conference papers are presented. Some of the conference topics included transport properties, defect levels, superionic conductors, radiation effects, John-Teller effect, electron-lattice interactions, and relaxed excited states

  14. Characterization of lacunar defects by positrons annihilation

    International Nuclear Information System (INIS)

    Barthe, M.F.; Corbel, C.; Blondiaux, G.

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spectrum: evolution with the concentration of defects); 3 - measurement of annihilation characteristics with two gamma photons (lifetime spectroscopy with the β + 22 Na isotope, spectroscopy of Doppler enlargement of the annihilation line); 4 - determination of the free volume of defects inside or at the surface of materials (annihilation signature in lacunar defects, lacuna, lacunar clusters and cavities, acceptors nature in semiconductors: ionic or lacunar, interface defects, precipitates in alloys); 5 - conclusions. (J.S.)

  15. Socializing space and politicizing financial innovation/destruction: some observations on Occupy Wall Street Socialisation de l’espace et politisation de l’innovation/destruction financière : quelques réflexions sur le mouvement “Occupy Wall Street”

    Directory of Open Access Journals (Sweden)

    Manuel B. Aalbers

    2012-12-01

    Full Text Available This short paper discusses two issues related to the Occupy Wall Street movement. First, a local urban political geography is presented in which Liberty Plaza is not the accidental place of Occupy Wall Street but a deliberate one, not only because it is located between the towers of global capital, but also because it constitutes a so-called “privately owned public space” (POPS. Second, a global financial political geography is presented in which I argue that the imprecise demands of Occupy Wall Street are a result not so much of the heterogeneous base of the movement but of the still largely unknown and “under-understood” nature of finance.Ce court article est consacré à deux problèmes liés au mouvement “Occupy Wall Street”. En premier lieu, nous présentons une géographie politique urbaine au niveau local dans laquelle le choix de la Plaza Liberty n’est pas accidentel mais bien délibéré, non seulement en raison de sa localisation entre les tours du capital global mais également parce que cette place représente un “espace public aux mains du privé”. Dans un second temps, nous proposons une géographie politique de la finance globale, où nous défendons l’idée que les revendications assez floues du mouvement “Occupy Wall Street” résultent non pas tant du caractère hétérogène de sa base mais plutôt de la nature même de la finance, encore largement inconnue et “sous-comprise”.

  16. Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Wrasse, E. O. [Instituto de Física, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil and Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Venezuela, P. [Instituto de Física, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Baierle, R. J., E-mail: rbaierle@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)

    2014-11-14

    First principles investigations, within the spin-polarized density functional theory, are performed to study energetic stability and electronic properties of point defects (vacancies and antisites) in PbSe and PbTe: bulk and nanowire (NW). Our results show that the energetic stability of these defects is ruled by relaxation process. These defects have lower formation energies in the nanowire structures as compared to the bulk, being more stable in the surface of the NWs. We also show that in the bulk system only one charge state is stable, otherwise, due to the larger band gaps, more than one charge state may be stable in the NWs. In addition, we have investigated how the presence of intrinsic defects affects the electronic properties of bulk and NW systems. Vacancies give rise to new electronic states near to the edges of the valence and conduction bands while the energetic position of the electronic states from antisites depends on the charge state, being localized inside the band gap or near the edges of the valence or conduction bands. We discuss how these changes in the electronic properties due to intrinsic defects may affect the thermoelectric properties of PbSe and PbTe NWs.

  17. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    Science.gov (United States)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state

  18. International conference on defects in insulating crystals

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Short summaries of conference papers are presented. Some of the conference topics included transport properties, defect levels, superionic conductors, radiation effects, John-Teller effect, electron-lattice interactions, and relaxed excited states. (SDF)

  19. Pattern and Management of acquired Facial defects in Imo State ...

    African Journals Online (AJOL)

    Alasia Datonye

    the pattern, aetiology and management approach for facial defects in our centre and highlights the challenges faced in managing these patients. Method: A review of clinical records of consecutive patients ..... sleeves and trousers or long skirts. They should wear hats with broad rims, limit their outdoor activities out in the sun.

  20. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States

    Directory of Open Access Journals (Sweden)

    N. F. Taylor

    2011-12-01

    Full Text Available We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA. This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12% of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88% did not posses multiple possible states. In continuous measurements during the winter, 49% of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65% occupied the more hydrated state; 35% occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5 composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  1. Structural Defects in Donor-Acceptor Blends: Influence on the Performance of Organic Solar Cells

    Science.gov (United States)

    Sergeeva, Natalia; Ullbrich, Sascha; Hofacker, Andreas; Koerner, Christian; Leo, Karl

    2018-02-01

    Defects play an important role in the performance of organic solar cells. The investigation of trap states and their origin can provide ways to further improve their performance. Here, we investigate defects in a system composed of the small-molecule oligothiophene derivative DCV5T-Me blended with C60 , which shows power conversion efficiencies above 8% when used in a solar cell. From a reconstruction of the density of trap states by impedance spectroscopy, we obtain a Gaussian distribution of trap states with Et=470 meV below the electron transport level, Nt=8 ×1014 cm-3 , and σt=41 meV . From Voc vs illumination intensity and open-circuit corrected charge carrier extraction measurements, we find that these defects lead to trap-assisted recombination. Moreover, drift-diffusion simulations show that the trap states decrease the fill factor by 10%. By conducting degradation measurements and varying the blend ratio, we find that the observed trap states are structural defects in the C60 phase due to the distortion of the natural morphology induced by the mixing.

  2. Characterization of point defects in CdTe by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, M. R. M. [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt); Kanda, G. S.; Keeble, D. J., E-mail: d.j.keeble@dundee.ac.uk [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Abdel-Hady, E. E. [Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt)

    2016-06-13

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  3. Defect mediated optical properties in ZnAl2O4 phosphor

    Science.gov (United States)

    Pathak, Nimai; Saxena, Suryansh; Kadam, R. M.

    2018-04-01

    The present work describes defect mediated optical properties in ZnAl2O4 phosphor material, synthesized through sol-gel combustion method, which has potential to be used both as a blue emitting phosphor material as well as white emitting, depending upon the annealing temperature during the synthesis procedure. Various defect centers such as anionic vacancy, cationic vacancy, antisite defects etc. create different electronic states inside the band gap, which are responsible for the multicolour emission. The interesting colour tunable emission characteristics can be linked with the various defect centers and their changes upon annealing.

  4. Chiral filtration-induced spin/valley polarization in silicene line defects

    Science.gov (United States)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  5. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S

    2015-12-14

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  6. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S; Roqan, Iman S.

    2015-01-01

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  7. French approach on the definition of reference defects to be considered for fracture mechanics analyses at design state

    Energy Technology Data Exchange (ETDEWEB)

    Grandemange, J M; Pellissier-Tanon, A [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1988-12-31

    This document describes the french approach for verifying fracture resistance of PWR primary components. Three reference defects have been defined, namely the envelope defect, the exceptional defect and the conventional defect. It appears that a precise estimation of the available margins may be obtained by analyzing a set of reference defects representative of the flaws likely to exist in the components. (TEC). 5 refs.

  8. Measurement of air velocity in animal occupied zones using an ultrasonic anemometer

    NARCIS (Netherlands)

    Wagenberg, van A.V.; Leeuw, de M.T.J.

    2003-01-01

    The air velocity in the animal occupied zone (AOZ) of a pig facility influences the thermal comfort of pigs and is affected by the ventilation system in the building. Little is known about the relationship between the air velocity in the AOZ and the ventilation system design. This article describes

  9. Passivation of defect states in Si and Si/SiO2 interface states by cyanide treatment: improvement of characteristics of pin-junction amorphous Si and crystalline Si-based metal-oxide-semiconductor junction solar cells

    International Nuclear Information System (INIS)

    Fujiwara, N.; Fujinaga, T.; Niinobe, D.; Maida, O.; Takahashi, M.; Kobayashi, H.

    2003-01-01

    Defect states in Si can be passivated by cyanide treatment which simply involves immersion of Si materials in KCN solutions, followed by rinse. When the cyanide treatment is applied to pin-junction amorphous Si [a-Si] solar cells, the initial conversion efficiency increases. When the crown-ether cyanide treatment using a KCN solution of xylene containing 18-crown-6 is performed on i-a-Si films, decreases in the photo- and dark current densities with the irradiation time are prevented. The cyanide treatment can also passivate interface states present at Si/SiO 2 interfaces, leading to an increase in the conversion efficiency of 2 / Si (100)> solar cells.. Si-CN bonds formed by the reaction of defect states with cyanide ions have a high bond energy of about 4.5 eV and hence heat treatment at 800 0 C does not rupture the bonds, making thermal stability of the cyanide treatment.. When the cyanide treatment is applied to ultrathin SiO 2 /Si structure, the leakage current density is markedly decreased (Authors)

  10. Light-induced defects in hybrid lead halide perovskite

    Science.gov (United States)

    Sharia, Onise; Schneider, William

    One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.

  11. On-line defected fuel monitoring using GFP data

    International Nuclear Information System (INIS)

    Livingstone, S.; Lewis, B.J.

    2008-01-01

    This paper describes the initial development of an on-line defected fuel diagnostic tool. The tool is based on coolant activity, and uses a quantitative and qualitative approach from existing mechanistic fission product release models, and also empirical rules based on commercial and experimental experience. The model departs from the usual methodology of analyzing steady-state fission product coolant activities, and instead uses steady-state fission product release rates calculated from the transient coolant activity data. An example of real-time defected fuel analysis work is presented using a prototype of this tool with station data. The model is in an early developmental stage, and this paper demonstrates the promising potential of this technique. (author)

  12. Method of storing radioactive rare gas. [gas occupies spaces in the zeolite crystal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, H; Miharada, H; Takiguchi, Y; Kanazawa, T; Soya, M

    1975-05-15

    A method is provided to prevent dispersion of radioactive rare gas atoms by sealing them in a pressurised state within zeolite and thereby confining them in position within the zeolite crystal lattice. Radioactive rare gas is separated from exhaust gas and concentrated by using a low temperature adsorption means or liquefaction distillation means and necessary accessory means, and then it is temporarily stored in a gas holder. When a predetermined quantity of storage is reached, the gas is led to a sealing tank containing zeolite heated to 300 to 400/sup 0/C and held at 3,000 to 4,000 atmospheres, and under this condition radioactive rare gas is brought to occupy the spaces in the zeolite crystal lattice. After equilibrium pressure is reached by the pressure in the tank at that temperature, the gas is cooled in the pressurised state down to room temperature. Subsequently, the rare gas remaining in the tank and duct is recovered by a withdrawal pump into the gas holder. Thereafter, the zeolite with radioactive rare gas sealed in it is taken out from the tank and sealed within a long period storage container, which is then housed in a predetermined place for storage.

  13. Discerning urban spiritualities: Tahrir Square, Occupy Wall Street and the idols of global market capitalism

    Directory of Open Access Journals (Sweden)

    Calvyn C. du Toit

    2015-03-01

    Full Text Available Discernment might be said to be a process of searching for meaning in the light of an (un articulated Absolute. This search takes place in the tension between the private and public spheres of life, mostly mitigated by a community. Intermediate communities, such as churches or social movements, construct symbolic spirituality systems for its adherers to search for meaning in the light of an (unarticulated Absolute. The urban events of Occupy Wall Street and Tahrir Square also step into the tension between the public and private spheres of life, creating a (temporary symbolic spirituality system for its adherers. These events were attempts to construct alternatives to the meta-narrative of global market capitalism. As events attempting to symbolise an urban spirituality, Tahrir Square and Occupy Wall Street dissipated rapidly, effecting rather little change at the heart of global market capitalism. This article theorises a possible reason for these urban spiritualities� dissipation, namely an overlap with global market capitalism�s idols of instant gratification and technology.Interdisciplinary Implications: Viewing Occupy Walls Street and Tahrir Square as symbolic systems of spirituality further strengthens theological urban discourse whilst adding weight to viewing mass movements as spiritualities attempting discernment.

  14. Dynamic properties of interstitial carbon and carbon-carbon pair defects in silicon

    International Nuclear Information System (INIS)

    Leary, P.; Jones, R.; Oeberg, S.; Torres, V.J.

    1997-01-01

    Interstitial carbon, C i , defects in Si exhibit a number of unexplained features. The C i defect in the neutral charge state gives rise to two almost degenerate vibrational modes at 920 and 931 cm -1 whose 2:1 absorption intensity ratio naturally suggests a trigonal defect in conflict with uniaxial stress measurements. The dicarbon, C s -C i , defect is bistable, and the energy difference between its A and B forms is surprisingly small even though the bonding is very different. In the B form appropriate to the neutral charge state, a silicon interstitial is believed to be located near a bond-centered site between two C s atoms. This must give rise to vibrational modes which involve the motion of both C atoms in apparent conflict with the results of photoluminescence experiments. We use an ab initio local density functional cluster method, AIMPRO, to calculate the structure and vibrational modes of these defects and find that the ratio of the absorption intensities of the local modes of C i is in reasonable agreement with experiment even though the structure of the defect is not trigonal. We also show that modes in the vicinity of those detected by photoluminescence for the B form of the dicarbon center involve independent movements of the two C atoms. Finally, the trends in the relative energies of the A and B forms in three charge states are investigated. copyright 1996 The American Physical Society

  15. Understanding and Calibrating Density-Functional-Theory Calculations Describing the Energy and Spectroscopy of Defect Sites in Hexagonal Boron Nitride.

    Science.gov (United States)

    Reimers, Jeffrey R; Sajid, A; Kobayashi, Rika; Ford, Michael J

    2018-03-13

    Defect states in 2-D materials present many possible uses but both experimental and computational characterization of their spectroscopic properties is difficult. We provide and compare results from 13 DFT and ab initio computational methods for up to 25 excited states of a paradigm system, the V N C B defect in hexagonal boron nitride (h-BN). Studied include: (i) potentially catastrophic effects for computational methods arising from the multireference nature of the closed-shell and open-shell states of the defect, which intrinsically involves broken chemical bonds, (ii) differing results from DFT and time-dependent DFT (TDDFT) calculations, (iii) comparison of cluster models to periodic-slab models of the defect, (iv) the starkly differing effects of nuclear relaxation on the various electronic states that control the widths of photoabsorption and photoemission spectra as broken bonds try to heal, (v) the effect of zero-point energy and entropy on free-energy differences, (vi) defect-localized and conduction/valence-band transition natures, and (vii) strategies needed to ensure that the lowest-energy state of a defect can be computationally identified. Averaged state-energy differences of 0.3 eV are found between CCSD(T) and MRCI energies, with thermal effects on free energies sometimes also being of this order. However, DFT-based methods can perform very poorly. Simple generalized-gradient functionals like PBE fail at the most basic level and should never be applied to defect states. Hybrid functionals like HSE06 work very well for excitations within the triplet manifold of the defect, with an accuracy equivalent to or perhaps exceeding the accuracy of the ab initio methods used. However, HSE06 underestimates triplet-state energies by on average of 0.7 eV compared to closed-shell singlet states, while open-shell singlet states are predicted to be too low in energy by 1.0 eV. This leads to misassignment of the ground state of the V N C B defect. Long

  16. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems.

  17. Lithium niobate. Defects, photorefraction and ferroelectric switching

    Energy Technology Data Exchange (ETDEWEB)

    Volk, Tatyana [Russian Academy of Sciences, Inst. for Crystallography, Moscow (Russian Federation); Woehlecke, Manfred [Osnabrueck Univ. (Germany). Fachbereich Physik

    2008-07-01

    The book presents the current state of studies of point defects, both intrinsic and extrinsic (impurities, radiation centers, etc.), in LiNbO{sub 3}. The contribution of intrinsic defects to photoinduced charge transport, i.e. to the photorefraction, is explained. The photorefractive and optical properties of LiNbO{sub 3} crystals with different stoichiometry and of those doped with so-called ''optical-damage resistant'' impurities controlling the intrinsic defect structure are described in detail. Applications included are to the problem of non-erasable recording of photorefractive holograms in LiNbO{sub 3} and the current situation of studies in the ferroelectric switching and domain structure of LiNbO{sub 3}, as well as the creation of periodically-poled structures for the optical frequency conversion. (orig.)

  18. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    Science.gov (United States)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  19. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations

    Science.gov (United States)

    Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu

    2018-04-01

    Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).

  20. Decelerating defects and non-ergodic critical behaviour in a unidirectionally coupled map lattice

    International Nuclear Information System (INIS)

    Ashwin, Peter; Sturman, Rob

    2003-01-01

    We examine a coupled map lattice (CML) consisting of an infinite chain of logistic maps coupled in one direction by inhibitory coupling. We find that for sufficiently strong coupling strength there are dynamical states with 'decelerating defects', where defects between stable patterns (with chaotic temporal evolution and average spatial period two) slow down but never stop. These defects annihilate each other when they meet. We show for certain states that this leads to a lack of convergence (non-ergodicity) of averages taken from observables in the system and conjecture that this is typical for the system

  1. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    International Nuclear Information System (INIS)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions

  2. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions. (FS)

  3. Anisotropic Magnus Force in Type-II Superconductors with Planar Defects

    Science.gov (United States)

    Monroy, Ricardo Vega; Gomez, Eliceo Cortés

    2015-02-01

    The effect of planar defects on the Magnus force in type-II superconductors is studied. It is shown that the deformation of the vortex due to the presence of a planar defect leads to a local decrease in the mean free path of electrons in the vortex. This effect reduces the effective Magnus coefficient in normal direction to the planar defect, leading to an anisotropic regime of the Hall effect. The presented developments here can qualitatively explain experimental observations of the anisotropic Hall effect in high- T c superconductors in the mixed state.

  4. Boron-substitution and defects in B2-type AlNi compound: Site-preference and influence on structural, thermodynamic and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Capaz, Rodrigo B. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); ElMassalami, M., E-mail: massalam@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Terrazos, L.A. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB 58175-000 (Brazil); Elhadi, M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Takeya, H. [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Ghivelder, L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2016-06-05

    Using a combination of theoretical (first-principles total-energy and electronic structure calculations) as well as experimental (structural, thermodynamics) techniques, we systematically investigated the influence of B incorporation on the structural, electronic and thermodynamic properties of a series of technologically-important B-containing AlNi matrix. Special attention was paid to calculating the energy cost of placing B at various sites within the cubic unit cell. The most energetically favorable defects were identified to be, depending on initial stoichiometry, substitutional B at Al site (B{sub Al}), Ni vacancy (V{sub Ni}), or Ni antisite (Ni{sub Al}). We show that the induced variation in the lattice parameters can be correlated with the type and concentration of the involved defects: e.g. the surge of V{sub Ni} defects leads to a stronger lattice-parameter reduction, that of Ni{sub Al} ones to a relatively weaker reduction while that of B{sub Al} defects to a much weaker influence. Both electronic band structure calculations as well as thermodynamics measurements indicate that the 3d bands of Ni are fully occupied and magnetically unpolarized and that the resulting N(E{sub F}) is very small: all studied compounds are normal conductors with no trace of superconductivity or magnetic polarization.

  5. Positron annihilation studies of vacancy-type defects and room temperature ferromagnetism in chemically synthesized Li-doped ZnO nanocrystals

    International Nuclear Information System (INIS)

    Ghosh, S.; Khan, Gobinda Gopal; Mandal, K.; Thapa, Samudrajit; Nambissan, P.M.G.

    2014-01-01

    Highlights: • Evidence of zinc vacancy-induced intrinsic ferromagnetism in Li-doped ZnO. • Modification of defects and properties through alkali metal substitution. • Study of defect-modification using positron annihilation spectroscopy. • New way to prepare ZnO-based magnetic semiconductor for spintronic applications. -- Abstract: In this article, we have investigated the effects of Li incorporation on the lattice defects and room-temperature d 0 ferromagnetic behaviour in ZnO nanocrystals by correlating X-ray photoelectron, photoluminescence and positron annihilation spectroscopic study in details. It is found that at low doping level ( 1+ is an effective substituent of Zn site, but it prefers to occupy the interstitial positions when Li-doping exceeds 7 at.% resulting in lattice expansion and increase of particle sizes. The pristine ZnO nanocrystals exhibit ferromagnetic behaviour which is further enhanced significantly after few percentage of Li-doping in ZnO. The magnitude of both saturation magnetizations (M S ) as well as the Curie temperature (T C ) are found to increase considerably up to Li concentration of 10 at.% and then started to decrease on further Li-doping. The gradual enhancement of Zn vacancy (V Zn ) defects in ZnO nanocrystals due to Li substitution as confirmed from photoluminescence and positron annihilation spectroscopy measurements might be responsible to induce paramagnetic moments within ZnO host. The ferromagnetic exchange interaction between the localised moments of V Zn defects can be mediated though the holes arising due to Li-substitutional (Li Zn ) acceptor defects within ZnO. Hence, Li doping in ZnO favours in stabilizing considerable V Zn defects and thus helps to sustain long-range high-T C ferromagnetism in ZnO which can be a promising material in future spintronics

  6. Positron annihilation studies of vacancy-type defects and room temperature ferromagnetism in chemically synthesized Li-doped ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S., E-mail: sghoshphysics@gmail.com [S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Khan, Gobinda Gopal [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700098 (India); Mandal, K. [S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Thapa, Samudrajit; Nambissan, P.M.G. [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700098 (India); Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064 (India)

    2014-03-25

    Highlights: • Evidence of zinc vacancy-induced intrinsic ferromagnetism in Li-doped ZnO. • Modification of defects and properties through alkali metal substitution. • Study of defect-modification using positron annihilation spectroscopy. • New way to prepare ZnO-based magnetic semiconductor for spintronic applications. -- Abstract: In this article, we have investigated the effects of Li incorporation on the lattice defects and room-temperature d{sup 0} ferromagnetic behaviour in ZnO nanocrystals by correlating X-ray photoelectron, photoluminescence and positron annihilation spectroscopic study in details. It is found that at low doping level (<7 at.%), Li{sup 1+} is an effective substituent of Zn site, but it prefers to occupy the interstitial positions when Li-doping exceeds 7 at.% resulting in lattice expansion and increase of particle sizes. The pristine ZnO nanocrystals exhibit ferromagnetic behaviour which is further enhanced significantly after few percentage of Li-doping in ZnO. The magnitude of both saturation magnetizations (M{sub S}) as well as the Curie temperature (T{sub C}) are found to increase considerably up to Li concentration of 10 at.% and then started to decrease on further Li-doping. The gradual enhancement of Zn vacancy (V{sub Zn}) defects in ZnO nanocrystals due to Li substitution as confirmed from photoluminescence and positron annihilation spectroscopy measurements might be responsible to induce paramagnetic moments within ZnO host. The ferromagnetic exchange interaction between the localised moments of V{sub Zn} defects can be mediated though the holes arising due to Li-substitutional (Li{sub Zn}) acceptor defects within ZnO. Hence, Li doping in ZnO favours in stabilizing considerable V{sub Zn} defects and thus helps to sustain long-range high-T{sub C} ferromagnetism in ZnO which can be a promising material in future spintronics.

  7. Occupy Wall Street: From Representation to Post-Representation

    Directory of Open Access Journals (Sweden)

    Simon Tormey

    2012-03-01

    Full Text Available Trying to assess something as recent and dynamic as Occupy Wall Street (OWS presents problems for political analysts. There is always a danger that by the time one has written in judgement the event-movement will have morphed into something quite different. For this reason alone we need to be careful about offering too definitive a judgment on what it represents, about what we think is new in the phenomenon as well as what we think presents linkages to the past. On the one hand, OWS is still in the process of becoming-something . On the other hand, though, we can see the outline of more or less familiar characteristics that might help orientate us towards something that is being greeted as a new departure.

  8. 7 CFR 51.1564 - External defects.

    Science.gov (United States)

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States...) in the aggregate. Artificial Coloring When unsightly or when concealing any defect causing damage or... the surface area of the potato When its severity causes a wrinkling of the skin over more than 50...

  9. Influence of point defects on the near edge structure of hexagonal boron nitride

    Science.gov (United States)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  10. Synthesis and characterization of ZnGa2O4 particles prepared by solid state reaction

    International Nuclear Information System (INIS)

    Can, Musa Mutlu; Hassnain Jaffari, G.; Aksoy, Seda; Shah, S. Ismat; Fırat, Tezer

    2013-01-01

    Highlights: ► Synthesis of ZnGa 2 O 4 particles produced from metallic Zn and Ga particles. ► The structural comparison of spinel and partially inverse spinel structure in ZnGa 2 O 4 . ► The Ga atoms occupied 13% of tetrahedral site in ZnGa 2 O 4 . ► The band gap, calculated from climate point of UV–visible, was found as 4.6 ± 0.1 eV. ► The optical analyses were shown defective ZnO structure in ZnGa 2 O 4 . - Abstract: We employed solid state reaction technique to synthesize ZnGa 2 O 4 particles, produced in steps of mixing/milling the ingredients in H 2 O following thermal treating under 1200 °C. We compare spinel and partially inverse spinel structure in ZnGa 2 O 4 particles using Rietveld refinement. Crystal structure of ZnGa 2 O 4 particles was identified with two structural phases; normal spinel structure and partially inverse spinel structure using Rietveld refinement. It is found that the partially inverse spinel structures occupy nearly 13% and the rest is normal spinel structure. The obtained X-ray diffraction data show that lattice constant and the position of Oxygen atoms remain almost constant in both structures. The characterization of the particles was also improved using X-ray photoelectron spectroscopy and Fourier transforms infrared spectroscopy measurements. The optical analyses were done with UV–visible spectroscopy. The band gap, calculated from climate point of UV–visible data, was found as 4.6 ± 0.1 eV. Despite no unexpected compound (such as ZnO and Ga 2 O 3 ) in the structure, the optical analyses were shown defective ZnO structure in ZnGa 2 O 4 .

  11. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  12. Random defect lines in conformal minimal models

    International Nuclear Information System (INIS)

    Jeng, M.; Ludwig, A.W.W.

    2001-01-01

    We analyze the effect of adding quenched disorder along a defect line in the 2D conformal minimal models using replicas. The disorder is realized by a random applied magnetic field in the Ising model, by fluctuations in the ferromagnetic bond coupling in the tricritical Ising model and tricritical three-state Potts model (the phi 12 operator), etc. We find that for the Ising model, the defect renormalizes to two decoupled half-planes without disorder, but that for all other models, the defect renormalizes to a disorder-dominated fixed point. Its critical properties are studied with an expansion in ε∝1/m for the mth Virasoro minimal model. The decay exponents X N =((N)/(2))1-((9(3N-4))/(4(m+1) 2 ))+O((3)/(m+1)) 3 of the Nth moment of the two-point function of phi 12 along the defect are obtained to 2-loop order, exhibiting multifractal behavior. This leads to a typical decay exponent X typ =((1)/(2))1+((9)/((m+1) 2 ))+O((3)/(m+1)) 3 . One-point functions are seen to have a non-self-averaging amplitude. The boundary entropy is larger than that of the pure system by order 1/m 3 . As a byproduct of our calculations, we also obtain to 2-loop order the exponent X-tilde N =N1-((2)/(9π 2 ))(3N-4)(q-2) 2 +O(q-2) 3 of the Nth moment of the energy operator in the q-state Potts model with bulk bond disorder

  13. Characterization of defects in metals by positron-annihilation spectroscopy

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1981-10-01

    The application of positron-annihilation spectroscopy (PAS) to the characterization and study of defects in metals has grown rapidly and increasingly useful in recent years. Owing to the ability of the positron to annihilate from a variety of defect-trapped states in metals, PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon our knowledge regarding lattice defect properties in metals. This has been especially true for vacancy defets, as a result of the positron's affinity for lower-than-average electron-density regions in the metal. The physical basis for the positron annihilation techniques is presented in this paper; and the experimental techniques, lifetime, Doppler broadening, and angular correlation, are briefly described and compared with respect to the information that can be obtained from each of them. A number of examples of the application of PAS to the characterization of atomic defects and their agglomerates are presented. The particular examples, chosen from the areas of equilibrium vacancy formation and atomic-defect recovery, were selected with a view toward elucidating the particular advantages of PAS over more traditional defect-characterization techniques. Limitations of PAS are also pointed out. 98 references

  14. Defect formation in heavily doped Si upon irradiation

    International Nuclear Information System (INIS)

    Gubskaya, V.I.; Kuchinskii, P.V.; Lomako, V.M.

    1981-01-01

    The rates of the carrier removal and radiation defect introduction into n- and p-Si in the concentration range of 10 14 to 10 17 cm -3 upon 7-MeV-electron irradiation have been studied. The spectrum of the vacancy-type defects, defining the carrier removal rate in lightly doped crystals has been found. With doping level increase the carrier removal rate grows irrespective of conductivity type, and at n 0 , p 0 > 10 17 cm -3 is close to the total displacement number. At the same time a decrease in the introduction rate of the known vacancy-type defects is observed. x It is shown that a considerable growth of the carrier removal rate is defined neither by introduction of shallow compensating centers, nor by change in the primary defect charge state. It is suggested that at high doping impurity concentrations compensation in Si is due to the introduction of complexes doping impurity-interstitial or (impurity atom-interstitial) + vacancy, which give deep levels. (author)

  15. Diffusive, Structural, Optical, and Electrical Properties of Defects in Semiconductors

    CERN Multimedia

    Wagner, F E

    2002-01-01

    Electronic properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photoluminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect, that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness", the present approach is to use radioactive isotopes as a tracer. Moreover, the recoil energies involved in $\\beta$ and $\\gamma$-decays can be used to create intrinsic isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. The understanding and the co...

  16. On genealogy of defect electron states in semiconductor materials

    International Nuclear Information System (INIS)

    Makhmudov, A.Sh.

    1984-01-01

    Main factors of formation of defect electron structure in semiconductors are considered. It is concluded on the basis of analysis of papers published earlier that it is necessary to take account of two factors: long- and short-range orders i.e. the nature of the atom interaction with the several nearest neighbours as well as crystal periodicity, correctly formulated boundary conditions. One of possible wayes of the given task realization is the combination of a traditional scheme of the solid body theory- the Green function method and the semiempirical quantum-chemical method of equivalent orbitales

  17. Irradiation of amorphous metallic alloys: defect production and local order evolution

    International Nuclear Information System (INIS)

    Hillairet, J.; Balanzat, E.; Audouard, A.; Jousset, J.C.

    1983-06-01

    This paper deals with the problem of the nature and dynamic characteristics of the ''defects'' which are produced in metallic glasses as a result of irradiation with fast particles. It discusses also the modifications in the state of local order and other structural changes brought by the creation and migration of these defects [fr

  18. Time-domain vibrational study on defects in ion-irradiated crystal

    International Nuclear Information System (INIS)

    Kitajima, M.

    2003-01-01

    We have studied the effects of point defects on coherent phonons in ion-implanted bismuth and graphite. Ultrafast dynamics of coherent phonons and photo-generated carriers in the femtosecond time-domain have been investigated by means of pump-probe reflectivity measurements. Point defects are introduced by irradiating graphite with 5 keV He + ions. For Bi the dephasing rate of the A 1g phonon increases linearly with increasing ion dose, which is explained by the additional dephasing process of the coherent phonon originated from scattering of phonons by the defects. For graphite, introduction of the defects enhances the carrier relaxation by opening a decay channel via vacancy-states, which competes efficiently with carrier-phonon scattering. The coherent acoustic phonon relaxation is also accelerated due to an additional scattering by defects. The linear fluence-dependence of the decay rate is understood as scattering of propagating acoustic phonon by single vacancies. (author)

  19. Finite volume form factors in the presence of integrable defects

    International Nuclear Information System (INIS)

    Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.

    2014-01-01

    We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found

  20. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, A., E-mail: annette.pietzsch@helmholtz-berlin.de [Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Nisar, J. [Pakistan Atomic Energy Commission (PAEC), P.O. Box 2151, Islamabad (Pakistan); Jämstorp, E. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Gråsjö, J. [Department of Pharmacy, Uppsala University, Box 580, 75123 Uppsala (Sweden); Århammar, C. [Coromant R& D, S-126 80 Stockholm (Sweden); Ahuja, R.; Rubensson, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2015-07-15

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed.

  1. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    International Nuclear Information System (INIS)

    Pietzsch, A.; Nisar, J.; Jämstorp, E.; Gråsjö, J.; Århammar, C.; Ahuja, R.; Rubensson, J.-E.

    2015-01-01

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed

  2. Atomic scale simulations of hydrogen implantation defects in hydrogen implanted silicon - smart Cut technology

    International Nuclear Information System (INIS)

    Bilteanu, L.

    2010-12-01

    The topic of this thesis is related to the implantation step of the SmartCut TM technology. This technology uses hydrogen in order to transfer silicon layers on insulating substrates. The transfer is performed through a fracture induced by the formation of bidimensional defects well known in literature as 'platelets'. More exactly, we have studied within this thesis work the defects appearing in the post implant state and the evolution of the implantation damage towards a state dominated by platelets. The study is organised into two parts: in the first part we present the results obtained by atomic scale simulations while in the second part we present an infrared spectroscopy study of the evolution of defects concentrations after annealing at different temperatures. The atomic scale simulations have been performed within the density functional theory and they allowed us to compute the formation energies and the migration and recombination barriers. The defects included in our study are: the atomic and diatomic interstitials, the hydrogenated vacancies and multi-vacancies and the several platelets models. The obtained energies allowed us to build a stability hierarchy for these types of defects. This scheme has been confronted with some infrared analysis on hydrogen implanted silicon samples (37 keV) in a sub-dose regime which does not allow usually the formation of platelets during the implantation step. The analysis of the infrared data allowed the detailed description of the defects concentration based on the behaviour of peaks corresponding to the respective defects during annealing. The comparison between these evolutions and the energy scheme obtained previously allowed the validation of an evolution scenario of defects towards the platelet state. (author)

  3. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  4. Occupied and unoccupied orbitals of C{sub 60} and C{sub 70} probed with C 1s emission and absorption

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Terminello, L.J.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The aim of this work is to characterize the orbital structure of the fullerenes, and to pursue its evolution from a cluster to the infinite solid. For obtaining a complete picture of the electronic structure the authors compare a variety of experimental techniques, i.e. photoemission and core level emission for occupied orbitals and inverse photoemission and core level absorption for unoccupied orbitals. Their experimental results focus on optical probes involving the C 1s core level, i.e. absorption via transitions from the C 1s level into unoccupied {pi}* and {sigma}* orbitals and emission involving transitions from occupied orbitals into a C 1s hole. Due to the simplicity of the C 1s level there exist clear selection rules. For example, only transitions to and from orbitals with p-character are dipole-allowed. These results on the p-projected density of states are compared with inverse photoemission and photoemission results, where the selection rules are less definitive. In addition, a first-principles quasiparticle calculation of the density of states is used to assign the orbital features. The spectra from C{sub 60} and C{sub 70} are still far from their infinite analog, i.e., graphite, which is also measured with the same techniques. In order to determine the effect of electron transfer onto C{sub 60}, as in superconducting alkali fullerides, the authors are studying resonant emission of C{sub 60}. An electron is placed in the lowest unoccupied molecular orbital (LUMO) by optical absorption from the C 1s level and the C 1s emission detected in the presence of this spectator electron.

  5. Optical properties of a defective one-dimensional photonic crystal containing graphene nanaolayers

    International Nuclear Information System (INIS)

    Entezar, S. Roshan; Saleki, Z.; Madani, A.

    2015-01-01

    The transmission properties of a defective one-dimensional photonic crystal containing graphene nanolayers have been investigated using the transfer matrix method. It is shown that two kinds of the defect modes can be found in the band gaps of the structure. One kind is the traditional defect mode which is created in the Bragg gaps of the structure and is due to the breaking of the periodicity of the dielectric lattice. The other one is created in the graphene induced band gap. Such a defect mode which we call it the graphene induced defect mode is due to the breaking of the periodicity of the graphene lattice. However, our investigations reveal that only in the case of wide defect layers one can obtain the graphene induced defect modes. The effects of many parameters such as the incident angle, the state of polarization and the chemical potential of the graphene nanolayers on the properties of the graphene induced defect modes are discussed. Moreover, the possibility of external control of the graphene induced defect modes using a gate voltage is shown.

  6. Defect engineering in 1D Ti-W oxide nanotube arrays and their correlated photoelectrochemical performance.

    Science.gov (United States)

    Abdelhafiz, Ali A; Ganzoury, Mohamed A; Amer, Ahmad W; Faiad, Azza A; Khalifa, Ahmed M; AlQaradawi, Siham Y; El-Sayed, Mostafa A; Alamgir, Faisal M; Allam, Nageh K

    2018-04-18

    Understanding the nature of interfacial defects of materials is a critical undertaking for the design of high-performance hybrid electrodes for photocatalysis applications. Theoretical and computational endeavors to achieve this have touched boundaries far ahead of their experimental counterparts. However, to achieve any industrial benefit out of such studies, experimental validation needs to be systematically undertaken. In this sense, we present herein experimental insights into the synergistic relationship between the lattice position and oxidation state of tungsten ions inside a TiO2 lattice, and the respective nature of the created defect states. Consequently, a roadmap to tune the defect states in anodically-fabricated, ultrathin-walled W-doped TiO2 nanotubes is proposed. Annealing the nanotubes in different gas streams enabled the engineering of defects in such structures, as confirmed by XRD and XPS measurements. While annealing under hydrogen stream resulted in the formation of abundant Wn+ (n < 6) ions at the interstitial sites of the TiO2 lattice, oxygen- and air-annealing induced W6+ ions at substitutional sites. EIS and Mott-Schottky analyses indicated the formation of deep-natured trap states in the hydrogen-annealed samples, and predominantly shallow donating defect states in the oxygen- and air-annealed samples. Consequently, the photocatalytic performance of the latter was significantly higher than those of the hydrogen-annealed counterparts. Upon increasing the W content, photoelectrochemical performance deteriorated due to the formation of WO3 crystallites that hindered charge transfer through the photoanode, as evident from the structural and chemical characterization. To this end, this study validates the previous theoretical predictions on the detrimental effect of interstitial W ions. In addition, it sheds light on the importance of defect states and their nature for tuning the photoelectrochemical performance of the investigated materials.

  7. Understanding defect distributions in polythiophenes via comparison of regioregular and regiorandom species

    Energy Technology Data Exchange (ETDEWEB)

    Muntasir, Tanvir, E-mail: tanvir@iastate.edu, E-mail: sumitc@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Chaudhary, Sumit, E-mail: tanvir@iastate.edu, E-mail: sumitc@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-11-28

    Organic photovoltaics (OPVs) are regarded as promising for solar-electric conversion with steadily improving power conversion efficiencies. For further progress, it is crucial to understand and mitigate defect states (traps) residing in the band-gap of OPV materials. In this work, using capacitance measurements, we analyzed two major bands in the density of states (DOS) energy spectra of defects in poly(3-hexylthiophene) (P3HT); regio-regular and regio-random species of P3HT were compared to elucidate the role of morphological disorder. To accurately interpret the obtained DOS profile, trap emission prefactors and activation energy were extracted from temperature dependent capacitance-frequency measurements, while doping, Fermi energy, built-in voltage, and energy levels of the defects were extracted from capacitance-voltage measurements. We identified that the lower energy band—misinterpreted in literature as a defect distribution—stems from free carrier response. The higher energy defect distribution band for regio-random P3HT was an order of magnitude higher than region-regular P3HT, thus stemming from morphological disorder. Impedance spectroscopy was also employed for further comparison of the two P3HT species.

  8. Understanding defect distributions in polythiophenes via comparison of regioregular and regiorandom species

    International Nuclear Information System (INIS)

    Muntasir, Tanvir; Chaudhary, Sumit

    2015-01-01

    Organic photovoltaics (OPVs) are regarded as promising for solar-electric conversion with steadily improving power conversion efficiencies. For further progress, it is crucial to understand and mitigate defect states (traps) residing in the band-gap of OPV materials. In this work, using capacitance measurements, we analyzed two major bands in the density of states (DOS) energy spectra of defects in poly(3-hexylthiophene) (P3HT); regio-regular and regio-random species of P3HT were compared to elucidate the role of morphological disorder. To accurately interpret the obtained DOS profile, trap emission prefactors and activation energy were extracted from temperature dependent capacitance-frequency measurements, while doping, Fermi energy, built-in voltage, and energy levels of the defects were extracted from capacitance-voltage measurements. We identified that the lower energy band—misinterpreted in literature as a defect distribution—stems from free carrier response. The higher energy defect distribution band for regio-random P3HT was an order of magnitude higher than region-regular P3HT, thus stemming from morphological disorder. Impedance spectroscopy was also employed for further comparison of the two P3HT species

  9. DFT+U study of defects in bulk rutile TiO2

    DEFF Research Database (Denmark)

    Stausholm-Møller, Jess; Kristoffersen, Henrik Høgh; Hinnemann, Berit

    2010-01-01

    phase of bulk titanium dioxide. We find that by applying a sufficiently large value for the Hubbard-U parameter of the Ti 3d states, the excess electrons localize spatially at the Ti sites and appear as states in the band gap. At U = 2.5 eV, the position in energy of these gap states are in fair...... is that regardless of which structural defect is the origin of the gap states, at U = 2.5 eV, these states are found to have their mean energies within a few hundredths of an eV from 0.94 eV below the conduction band minimum.......We present a systematic study of electronic gap states in defected titania using our implementation of the Hubbard-U approximation in the grid-based projector-augmented wave density functional theory code, GPAW. The defects considered are Ti interstitials, O vacancies, and H dopants in the rutile...

  10. Fuel defect detection, localization and removal in Bruce Power units 3 through 8

    International Nuclear Information System (INIS)

    Stone, R.; Armstrong, J.; Iglesias, F.; Oduntan, R.; Lewis, B.

    2005-01-01

    Fuel element defects are occurring in Bruce 'A' and Bruce 'B' Units. A root-cause investigation is ongoing, however, a solution is not yet in-hand. Fuel defect management efforts have been undertaken, therefore, in the interim. Fuel defect management tools are in-place for all Bruce Units. These tools can be categorized as analysis-based or operations-based. Analysis-based tools include computer codes used primarily for fuel defect characterization, while operations-based tools include Unit-specific delayed-neutron ('DN') monitoring systems and gaseous fission product ('GFP') monitoring systems. Operations-based tools are used for fuel defect detection, localization and removal activities. Fuel and Physics staff use defect detection, localization and removal methodologies and guidelines to disposition fuel defects. Methodologies are 'standardized' or 'routine' procedures for implementing analysis-based and operations-based tools to disposition fuel defects during Unit start-up operation and during operation at high steady-state power levels. Guidelines at present serve to supplement fuel defect management methodologies during Unit power raise. (author)

  11. A Mott-like State of Molecules

    International Nuclear Information System (INIS)

    Duerr, S.; Volz, T.; Syassen, N.; Bauer, D. M.; Hansis, E.; Rempe, G.

    2006-01-01

    We prepare a quantum state where each site of an optical lattice is occupied by exactly one molecule. This is the same quantum state as in a Mott insulator of molecules in the limit of negligible tunneling. Unlike previous Mott insulators, our system consists of molecules which can collide inelastically. In the absence of the optical lattice these collisions would lead to fast loss of the molecules from the sample. To prepare the state, we start from a Mott insulator of atomic 87Rb with a central region, where each lattice site is occupied by exactly two atoms. We then associate molecules using a Feshbach resonance. Remaining atoms can be removed using blast light. Our method does not rely on the molecule-molecule interaction properties and is therefore applicable to many systems

  12. Dirichlet topological defects

    International Nuclear Information System (INIS)

    Carroll, S.M.; Trodden, M.

    1998-01-01

    We propose a class of field theories featuring solitonic solutions in which topological defects can end when they intersect other defects of equal or higher dimensionality. Such configurations may be termed open-quotes Dirichlet topological defects,close quotes in analogy with the D-branes of string theory. Our discussion focuses on defects in scalar field theories with either gauge or global symmetries, in 3+1 dimensions; the types of defects considered include walls ending on walls, strings on walls, and strings on strings. copyright 1998 The American Physical Society

  13. Multiple-level defect species evaluation from average carrier decay

    Science.gov (United States)

    Debuf, Didier

    2003-10-01

    An expression for the average decay is determined by solving the the carrier continuity equations, which include terms for multiple defect recombination. This expression is the decay measured by techniques such as the contactless photoconductance decay method, which determines the average or volume integrated decay. Implicit in the above is the requirement for good surface passivation such that only bulk properties are observed. A proposed experimental configuration is given to achieve the intended goal of an assessment of the type of defect in an n-type Czochralski-grown silicon semiconductor with an unusually high relative lifetime. The high lifetime is explained in terms of a ground excited state multiple-level defect system. Also, minority carrier trapping is investigated.

  14. Dark matter from decaying topological defects

    International Nuclear Information System (INIS)

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M.

    2014-01-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits

  15. Ab initio study of native defects in SnO under strain

    KAUST Repository

    Bianchi Granato, Danilo

    2014-04-01

    Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behaviour of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are less stable under tension and more stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge states. It turns out that the most stable defect under compression is the +1 charged O vacancy in an Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from a p-type into either an n-type or an undoped semiconductor. Copyright © EPLA, 2014.

  16. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  17. The pinning property of Bi-2212 single crystals with columnar defects

    International Nuclear Information System (INIS)

    Okamura, Kazunori; Kiuchi, Masaru; Otabe, Edmund Soji; Yasuda, Takashi; Matsushita, Teruo; Okayasu, Satoru

    2004-01-01

    It is qualitatively understood that the condensation energy density in oxide superconductors, which is one of the essential parameters for determining their pinning strength, becomes large with increasing dimensionality of the superconductor. However, the condensation energy density has not yet been evaluated quantitatively. Its value can be estimated from the elementary pinning force of a known defect. Columnar defects created by heavy ion irradiation are candidates for being such defects. That is, the size and number density of columnar defects can be given. In addition, it is known that two-dimensional vortices like those in Bi-2212 are forced into three-dimensional states by these defects in a magnetic field parallel to the defects. Thus, the condensation energy density can be estimated from the pinning property of the columnar defects even for two-dimensional superconductors. A similar analysis was performed also for three-dimensional Y-123. A discussion is given of the relationship between the condensation energy density and the anisotropy parameter estimated from measurements of anisotropic resistivity and peak field

  18. Intrinsic defects in silicon carbide for spin-based quantum applications

    International Nuclear Information System (INIS)

    Vladimir Dyakonov

    2014-01-01

    We present a set of experiments demonstrating a high potential of atomic-scale defects in SiC for various spin-based applications, including quantum information processing and photonics. In particular, we show that defect spn qubits in SiC can be addressed, manipulated and selectively read out by means of the double radio-optical resonance. The situation reminds the one in the atomic spectroscopy, where the atoms have their individual extremely sharp optical and RF resonance fingerprints. We also generate inverse population in some intrinsic defects, resulting in stimulated microwave emission at RT. This is a crucial step towards implementation of highly-integrable solid-state masers and extraordinarily sensitive microwave detectors. As an application example, we incorporate intrinsic defects in LED structures and show that they can be electrically driven at room temperature. (author)

  19. Defects in electron irradiated vitreous SiO2 probed by positron annihiliation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao; Itoh, Hisayoshi

    1994-01-01

    Defects in 3 MeV electron irradiated vitreous SiO 2 (v-SiO 2 ) were probed by the positron annihilation technique. For unirradiated v-SiO 2 specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author)

  20. Defect forces, defect couples and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-07-01

    In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr

  1. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  2. Combining DFT, Cluster Expansions, and KMC to Model Point Defects in Alloys

    Science.gov (United States)

    Modine, N. A.; Wright, A. F.; Lee, S. R.; Foiles, S. M.; Battaile, C. C.; Thomas, J. C.; van der Ven, A.

    In an alloy, defect energies are sensitive to the occupations of nearby atomic sites, which leads to a distribution of defect properties. When radiation-induced defects diffuse from their initially non-equilibrium locations, this distribution becomes time-dependent. The defects can become trapped in energetically favorable regions of the alloy leading to a diffusion rate that slows dramatically with time. Density Functional Theory (DFT) allows the accurate determination of ground state and transition state energies for a defect in a particular alloy environment but requires thousands of processing hours for each such calculation. Kinetic Monte-Carlo (KMC) can be used to model defect diffusion and the changing distribution of defect properties but requires energy evaluations for millions of local environments. We have used the Cluster Expansion (CE) formalism to ``glue'' together these seemingly incompatible methods. The occupation of each alloy site is represented by an Ising-like variable, and products of these variables are used to expand quantities of interest. Once a CE is fit to a training set of DFT energies, it allows very rapid evaluation of the energy for an arbitrary configuration, while maintaining the accuracy of the underlying DFT calculations. These energy evaluations are then used to drive our KMC simulations. We will demonstrate the application of our DFT/MC/KMC approach to model thermal and carrier-induced diffusion of intrinsic point defects in III-V alloys. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE.

  3. Thermal equilibrium defects in anthracene probed by positron annihilation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Tachibana, Masaru; Shimizu, Mikio; Satoh, Masaaki; Kojima, Kenichi; Ishibashi, Shoji; Kawano, Takao.

    1996-01-01

    Defects in anthracene were investigated by the positron annihilation technique. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured in the temperature range between 305 K and 516 K. The lifetime of positrons annihilated from the delocalized state was determined to be 0.306 ns around room temperature. Below the melting point, the observed temperature dependence of the line shape parameter S was explained assuming the formation energy of thermal equilibrium defects was 1 eV. Above the melting point, the pick-off annihilation of ortho-positronium in open spaces was observed, where the size of these spaces was estimated to be 0.2 nm 3 . The annihilation of positrons from the self-trapped state was also discussed. (author)

  4. Thermal equilibrium defects in anthracene probed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Tachibana, Masaru; Shimizu, Mikio; Satoh, Masaaki; Kojima, Kenichi; Ishibashi, Shoji; Kawano, Takao

    1996-06-01

    Defects in anthracene were investigated by the positron annihilation technique. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured in the temperature range between 305 K and 516 K. The lifetime of positrons annihilated from the delocalized state was determined to be 0.306 ns around room temperature. Below the melting point, the observed temperature dependence of the line shape parameter S was explained assuming the formation energy of thermal equilibrium defects was 1 eV. Above the melting point, the pick-off annihilation of ortho-positronium in open spaces was observed, where the size of these spaces was estimated to be 0.2 nm{sup 3}. The annihilation of positrons from the self-trapped state was also discussed. (author)

  5. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Science.gov (United States)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Field-ion microscope studies of the defect structure of the primary state of damage of irradiated metals

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1975-01-01

    A review is presented of field ion microscope applications in studies of point defect distribution in irradiated metals. FIM results on the primary state of radiation damage in neutron and ion-irradiated iridium and tungsten, at both room-temperature and 78 0 K, showed that it consists of: (1) isolated vacancies; (2) depleted zones; (3) compact vacancy clusters of voids; and (4) dislocation loops. The fraction of vacancies stored in the dislocation loops represented a small fraction of the total vacancy concentration; in the case of tungsten it was approximately 10 percent. These FIM observations provide a simple explanation of the low yield-factor, determined by transmission electron microscopy, for a number of ion-irradiated metals

  7. Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing

    Science.gov (United States)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2015-03-01

    Directed self-assembly of block copolymers (BCPs) is a process that has received great interest in the field of nanomanufacturing in the past decade, and great strides towards forming high quality aligned patterns have been made. But state of the art methods still yield defectivities orders of magnitude higher than is necessary in semi-conductor fabrication even though free energy calculations suggest that equilibrium defectivities are much lower than is necessary for economic semi-conductor fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the transition state was reached so that the overall rate changed only slightly. The energy barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations show no change in rate associated with the energy barrier below χN ~ 50, and then show an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free interface or the BCP-underlayer interface where the increased A-B contact area associated with the transition state will be minimized, while the infinitely thick films must start healing in the bulk where the A-B contact area is increased. It is also found that cooperative chain movement is required for the defect to start healing.

  8. Globally symmetric topological phase: from anyonic symmetry to twist defect

    International Nuclear Information System (INIS)

    Teo, Jeffrey C Y

    2016-01-01

    Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases. (topical review)

  9. A first principles study of native defects in alpha-quartz

    CERN Document Server

    Roma, G

    2003-01-01

    We present a study of several neutral and charged oxygen and silicon defects in alpha-quartz. We performed plane waves pseudopotential calculations in the framework of density functional theory in the local density approximation. We will show the structures that we obtained for vacancies and interstitials in several charge states and the corresponding formation energies. We discuss the reciprocal dependence of formation energies of charged defects (and thus concentrations) and the electron chemical potential on each other and we determine the latter by iterative self-consistent solution of the equation imposing charge neutrality. Results on defect concentrations, their dependence on oxygen partial pressure, and self-doping effects are presented.

  10. Computed tomography on a defective CANDU fuel pencil end cap

    International Nuclear Information System (INIS)

    Lupton, L.R.

    1985-09-01

    Five tomographic slices through a defective end cap from a CANDU fuel pencil have been generated using a Co-60 source and a first generation translate-rotate tomography scanner. An anomaly in the density distribution that is believed to have resulted from the defect has been observed. However, with the 0.30 mm spatial resolution used, it has not been possible to state unequivocally whether the change in density is caused by a defect in the weld or a statistical anomaly in the data. It is concluded that a microtomography system, with a spatial resolution in the range of 0.1 mm, could detect the flaw

  11. Radiographic assessment of welding connections defectiveness, state of art in Poland

    International Nuclear Information System (INIS)

    Swiatkowski, R.

    1995-01-01

    The assessment of welding connections defectiveness according to Polish regulations has been performed. The European regulations in interested matter and their relationships to Polish ones have been shown. The differences have been pointed out and discussed from the view point of law adaptation process preceding joining of Poland with the European Community. 12 refs, 7 figs, 2 tabs

  12. Occupy Wall Street, the Global Crisis, and Antisystemic Movements

    Directory of Open Access Journals (Sweden)

    Thomas Reifer

    2015-08-01

    Full Text Available The ancient discussion about the purposes of wealth and the conflict between oligarchy- rule of the rich - and democracy- the rule of the demos/the people comes to the fore once again within the current systemic crisis, from the Arab Spring to the Occupy protests, to the Arab Fall. Even as counterrevolution and growing regional and global turbulence - political, economic and military - appear to be triumphing over the new wave of democratic revolutions and rebellions, at least in the Arab world, with the threat of regional and global conflagration all too real, the underlying structural causes reality of a militarized capitalist world-system in deep crisis will ensure continued waves of antisystemic protests for years to come.

  13. Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study

    International Nuclear Information System (INIS)

    Mao Zhongquan; Chen Xi; Zhan Xiaozhi

    2012-01-01

    The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet (FM)/antiferromagnet (AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications. (paper)

  14. Theory of defect interactions in metals

    International Nuclear Information System (INIS)

    Thetford, Roger.

    1989-09-01

    The state relaxation program DEVIL has been updated to use N-body Finnis-Sinclair potentials. Initial calculations of self-interstitial and monovacancy formation energies confirm that the modified program is working correctly. An extra repulsive pair potential (constructed to leave the original fitting unaltered) overcomes some deficiencies in the published Finnis-Sinclair potentials. The modified potentials are used to calculate interstitial energies and relaxation in the b.c.c. transition metals vanadium, niobium, tantalum, molybdenum and tungsten. Further adaptation enables DEVIL to model dislocations running parallel to any lattice vector. Periodic boundary conditions are applied in the direction of the dislocation line, giving an infinite straight dislocation. The energies per unit length of two different dislocations are compared with experiment. A study of migration of point defects in the perfect lattice provides information on the mobility of interstitials and vacancies. The total energy needed to form and migrate an interstitial is compared with that required for a vacancy. The interaction between point defects and dislocations is studied in detail. Binding energies for both self-interstitials and monovacancies at edge dislocations are calculated for the five metals. Formation energies of the point defects in the neighbourhood of the edge dislocation are calculated for niobium, and the extend of the regions from which the defects are spontaneously absorbed are found. (author)

  15. Electron scattering in graphene by defects in underlying h-BN layer: First-principles transport calculations

    Science.gov (United States)

    Kaneko, Tomoaki; Ohno, Takahisa

    2018-03-01

    We investigate the electronic structure and the transport properties of graphene adsorbed onto h-BN with carbon impurities or atomic vacancies using density functional theory and the non-equilibrium Green's function method. We find that the transport properties are degraded due to carrier doping and scattering off of localized defect states in h-BN. When graphene is doped by introducing defects in h-BN, the transmission spectra become asymmetric owing to the reduction of the electronic density of states, which contributes significantly to the degradation of graphene transport properties as compared with the effect of defect levels.

  16. Surgical decompression for space-occupying cerebral infarction: outcomes at 3 years in the randomized HAMLET trial.

    Science.gov (United States)

    Geurts, Marjolein; van der Worp, H Bart; Kappelle, L Jaap; Amelink, G Johan; Algra, Ale; Hofmeijer, Jeannette

    2013-09-01

    We assessed whether the effects of surgical decompression for space-occupying hemispheric infarction, observed at 1 year, are sustained at 3 years. Patients with space-occupying hemispheric infarction, who were enrolled in the Hemicraniectomy After Middle cerebral artery infarction with Life-threatening Edema Trial within 4 days after stroke onset, were followed up at 3 years. Outcome measures included functional outcome (modified Rankin Scale), death, quality of life, and place of residence. Poor functional outcome was defined as modified Rankin Scale >3. Of 64 included patients, 32 were randomized to decompressive surgery and 32 to best medical treatment. Just as at 1 year, surgery had no effect on the risk of poor functional outcome at 3 years (absolute risk reduction, 1%; 95% confidence interval, -21 to 22), but it reduced case fatality (absolute risk reduction, 37%; 95% confidence interval, 14-60). Sixteen surgically treated patients and 8 controls lived at home (absolute risk reduction, 27%; 95% confidence interval, 4-50). Quality of life improved between 1 and 3 years in patients treated with surgery. In patients with space-occupying hemispheric infarction, the effects of decompressive surgery on case fatality and functional outcome observed at 1 year are sustained at 3 years. http://www.controlled-trials.com. Unique identifier: ISRCTN94237756.

  17. Muon spin rotation studies of defect states in solids: the story of anomalous muonium

    International Nuclear Information System (INIS)

    Estle, T.L.

    1983-01-01

    Muon spin rotation (μSR) is a powerful technique to study magnetic phenomena, light interstitial diffusion, and hydrogenic chemistry. However it has been applied in several other areas of science where its applicability was not immediately apparent. One of these is the study of an unusual muonic defect, anomalous muonium, produced when μ + stops in semiconducting crystals. The study of anomalous muonium and the process of inferring its structure are described. For this defect, μSR has learned far more than have efforts to study the analogous hydrogenic center

  18. Importance of packing in spiral defect chaos

    Indian Academy of Sciences (India)

    We develop two measures to characterize the geometry of patterns exhibited by the state of spiral defect chaos, a weakly turbulent regime of Rayleigh-Bénard convection. These describe the packing of contiguous stripes within the pattern by quantifying their length and nearest-neighbor distributions. The distributions ...

  19. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  20. Unbalanced atrioventricular septal defect: definition and decision making.

    Science.gov (United States)

    Overman, David M; Baffa, Jeanne M; Cohen, Meryl S; Mertens, Luc; Gremmels, David B; Jegatheeswaram, Anusha; McCrindle, Brian W; Blackstone, Eugene H; Morell, Victor O; Caldarone, Christopher; Williams, William G; Pizarro, Christian

    2010-04-01

    Unbalanced atrioventricular septal defect is an uncommon lesion with widely varying anatomic manifestations. When unbalance is severe, diagnosis and treatment is straightforward, directed toward single-ventricle palliation. Milder forms, however, pose a challenge to current diagnostic and therapeutic approaches. The transition from anatomies that are capable of sustaining biventricular physiology to those that cannot is obscure, resulting in uneven application of surgical strategy and excess mortality. Imprecise assessments of ventricular competence have dominated clinical decision making in this regard. Malalignment of the atrioventricular junction and its attendant derangement of inflow physiology is a critical factor in determining the feasibility of biventricular repair in the setting of unbalanced atrioventricular septal defect. The atrioventricular valve index accurately identifies unbalanced atrioventricular septal defect and also brings into focus a zone of transition from anatomies that can support a biventricular end state and those that cannot.

  1. Investigation of the growth defects in strontium titanate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N A; Landar, S V; Podus, L P [Khar' kovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1981-02-01

    Investigation results of characteristics and reasons for formation of macroscopic growth defects in SrTiO/sub 3/ monocrystals grown up by Wernail method are presented. It is shown that blue colour occurring in the specimen volume is caused by shortage of oxygen during growing which results in transition of some ions from tetravalent to trivalent state. The defect of another type is characterized by increased content of Fe and Ni oxides.

  2. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  3. Birth defects and genetic disorders among Arab Americans--Michigan, 1992-2003.

    Science.gov (United States)

    Yanni, Emad A; Copeland, Glenn; Olney, Richard S

    2010-06-01

    Birth defects and genetic disorders are leading causes of infant morbidity and mortality in many countries. Population-based data on birth defects among Arab-American children have not been documented previously. Michigan has the second largest Arab-American community in the United States after California. Using data from the Michigan Birth Defects Registry (MBDR), which includes information on parents' country of birth and ancestry, birth prevalences were estimated in offspring of Michigan women of Arab ancestry for 21 major categories of birth defects and 12 congenital endocrine, metabolic, and hereditary disorders. Compared with other non-Hispanic white children in Michigan, Arab-American children had similar or lower birth prevalences of the selected types of structural birth defects, with higher rates of certain hereditary blood disorders and three categories of metabolic disorders. These estimates are important for planning preconception and antenatal health care, genetic counseling, and clinical care for Arab Americans.

  4. CD and defect improvement challenges for immersion processes

    Science.gov (United States)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  5. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  6. Italian Troops on USSR occupied Territories in 1941−1945

    Directory of Open Access Journals (Sweden)

    Игорь Игоревич Баринов

    2011-12-01

    Full Text Available The article studies the activities of Italian allied troops of Nazi Germany in the occupied during the Great Patriotic War of 1941-1945 of the USSR Soviet territories. The material contained in the article allows to compare the Italian occupation administration policy and its features as well as its involvement in war crimes on Soviet territory. This article also gives a possibility to trace the organizing role of Germany in terms of organization of the occupation regime on the Soviet territory and its relations with its allies and satellites on the Eastern Front. The work is based primarily on unexplored archival documents.

  7. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    Science.gov (United States)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  8. Electronic transport of bilayer graphene with asymmetry line defects

    Science.gov (United States)

    Zhao, Xiao-Ming; Wu, Ya-Jie; Chen, Chan; Liang, Ying; Kou, Su-Peng

    2016-11-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11504285, and 11404090), the Specialized Research Fund for the Doctoral Program of Higher Education, China, the Fundamental Research Funds for the Central Universities, China, the Scientific Research Program Fund of the Shaanxi Provincial Education Department, China (Grant No. 15JK1363), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China.

  9. Defects in silicon effect on device performance and relationship to crystal growth conditions

    Science.gov (United States)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  10. Extended Two-Channel Kondo Phase of a Rotational Quantum Defect in a Fermi Gas

    International Nuclear Information System (INIS)

    Chuo, E Fuh; Ballmann, K; Kroha, J; Borda, L

    2014-01-01

    We show by numerical renormalization group calculations that a quantum defect with a two-dimensional rotational degree of freedom, immersed in a bath of fermionic particles with angular momentum scattering, exhibits an extended 2CK phase without fine-tuning of parameters. It is stabilized by a correlation effect which causes the states with angular momentum m=±1 to be the lowest energy states of the defect. This level crossing with the noninteracting m = 0 ground state is signaled by a plateau in the temperature-dependent impurity entropy at S(T) = k_B ln 2, before the 2CK ground state value S(0) = k_B In √2 is reached.

  11. Defect-Induced Luminescence of a Self-Activated Borophosphate Phosphor

    Science.gov (United States)

    Han, Bing; Liu, Beibei; Dai, Yazhou; Zhang, Jie

    2018-05-01

    A self-activated borophosphate phosphor Ba3BPO7 was prepared via typical solid-state reaction in thermal-carbon reduction atmosphere. The structural and luminescence properties were investigated using x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. Upon excitation with ultraviolet (UV) light, the as-prepared phosphor shows bright greenish-yellow emission with a microsecond-level fluorescence lifetime, which could result from the oxygen vacancies produced in the process of solid-state synthesis. The possible luminescence mechanism is proposed. Through the introduction of defects in the host, this work realizes visible luminescence in a pure borophosphate compound that does not contain any rare earth or transition metal activators, so it is helpful to develop defect-related luminescent materials in view of energy conservation and environmental protection for sustainable development.

  12. Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation.

    Science.gov (United States)

    Polking, Mark J; Dibos, Alan M; de Leon, Nathalie P; Park, Hongkun

    2018-01-01

    Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  14. HSIP New Mexico State Government Buildings

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset includes buildings occupied by the headquarters of cabinet level state government executive departments, legislative offices buildings outside of the...

  15. Experimental study of the strain state at the area of a surface defect in a steel cylindrical shell subjected to internal pressure

    OpenAIRE

    Бесчетников, Д. А.

    2014-01-01

    Experimental research of stress-strain state at the area of local volumetric surface defects of the pipeline systems is an important goal because results of the measurements are necessary for increasing of effectiveness of existing repair technologies using fiber reinforcement polymer composite materials. In this work the description of experiment carried out by the author is presented with statement of results. The experiment was devoted to strain gauging of a steel cylindrical shell with vo...

  16. The European Union Counteraction To Israel's Settlement Policy In The Occupied Arab Territories: Myths And Realities

    Directory of Open Access Journals (Sweden)

    Alexander V. Krylov

    2014-01-01

    Full Text Available More than 50 years the European Union member states (the European Economic Community up to 1993 maintain a special relations with Israel particularly in the trade sphere. Only in 2014 the export of Israeli products to Europe increased by 3%, amounting in absolute terms to a third of total exports of Israel. At the same time, the position of the EU with regard to the Palestinian-Israeli conflict is clearly contrary to the real character of the mutual economic, scientific and technical cooperation. After the failure in 2001 of the Palestinian-Israeli negotiations aimed to reach a «Final-Status Agreement» in accordance with the Oslo Accords, the European Union made several attempts to limit the European market penetration of the Israeli products originating from the occupied territories (the West Bank, Gaza Strip, East Jerusalem and the Golan Heights. However, as can be seen from the contents of the article, there is no consensus between the EU member states with regard to the Israeli settlement policy. The study argues that all the decisions made so far in the European Union to limit Israeli export or reduce crediting of programs for scientific and technical cooperation used to be of declarative or vague character.

  17. Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2014-01-01

    Making semiconductors ferromagnetic has been a long dream. One approach is to dope semiconductors with transition metals (TM). TM ions act as local moments and they couple with free carriers to develop collective magnetism. However, there are no fundamental reasons against the possibility of local moment formation from localized sp states. Recently, ferromagnetism was observed in nonmagnetically doped, but defective semiconductors or insulators including ZnO and TiO 2 . This kind of observation challenges the conventional understanding of ferromagnetism. Often the defect-induced ferromagnetism has been observed in samples prepared under non-optimized condition, i.e. by accident or by mistake. Therefore, in this field theory goes much ahead of experimental investigation. To understand the mechanism of the defect-induced ferromagnetism, one needs a better controlled method to create defects in the crystalline materials. As a nonequilibrium and reproducible approach of inducing defects, ion irradiation provides such a possibility. Energetic ions displace atoms from their equilibrium lattice sites, thus creating mainly vacancies, interstitials or antisites. The amount and the distribution of defects can be controlled by the ion fluence and energy. By ion irradiation, we have generated defect-induced ferromagnetism in ZnO, TiO 2 and SiC. In this short review, we also summarize some results by other groups using energetic ions to introduce defects, and thereby magnetism in various materials. Ion irradiation combined with proper characterizations of defects could allow us to clarify the local magnetic moments and the coupling mechanism in defective semiconductors. Otherwise we may have to build a new paradigm to understand the defect-induced ferromagnetism

  18. Utility of Capture-Recapture Methodology to Estimate Prevalence of Congenital Heart Defects Among Adolescents in 11 New York State Counties: 2008 to 2010.

    Science.gov (United States)

    Akkaya-Hocagil, Tugba; Hsu, Wan-Hsiang; Sommerhalter, Kristin; McGarry, Claire; Van Zutphen, Alissa

    2017-11-01

    Congenital heart defects (CHDs) are the most common birth defects in the United States, and the population of individuals living with CHDs is growing. Though CHD prevalence in infancy has been well characterized, better prevalence estimates among children and adolescents in the United States are still needed. We used capture-recapture methods to estimate CHD prevalence among adolescents residing in 11 New York counties. The three data sources used for analysis included Statewide Planning and Research Cooperative System (SPARCS) hospital inpatient records, SPARCS outpatient records, and medical records provided by seven pediatric congenital cardiac clinics from 2008 to 2010. Bayesian log-linear models were fit using the R package Conting to account for dataset dependencies and heterogeneous catchability. A total of 2537 adolescent CHD cases were captured in our three data sources. Forty-four cases were identified in all data sources, 283 cases were identified in two of three data sources, and 2210 cases were identified in a single data source. The final model yielded an estimated total adolescent CHD population of 3845, indicating that 66% of the cases in the catchment area were identified in the case-identifying data sources. Based on 2010 Census estimates, we estimated adolescent CHD prevalence as 6.4 CHD cases per 1000 adolescents (95% confidence interval: 6.2-6.6). We used capture-recapture methodology with a population-based surveillance system in New York to estimate CHD prevalence among adolescents. Future research incorporating additional data sources may improve prevalence estimates in this population. Birth Defects Research 109:1423-1429, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Defect properties of CuCrO2: A density functional theory calculation

    International Nuclear Information System (INIS)

    Fang Zhi-Jie; Zhu Ji-Zhen; Zhou Jiang; Mo Man

    2012-01-01

    Using the first-principles methods, we study the formation energetics properties of intrinsic defects, and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO 2 . Intrinsic defects, some typical acceptor-type, and donor-type extrinsic defects in their relevant charge state are considered. By systematically calculating the formation energies and transition energy, the results of calculation show that, V Cu , O i , and O Cu are the relevant intrinsic defects in CuCrO 2 ; among these intrinsic defects, V Cu is the most efficient acceptor in CuCrO 2 . It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO 2 because of their deep transition energy level. For all the acceptor-type extrinsic defects, substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO 2 . Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO 2 . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. The study of defects in metallic alloys by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Romero, R.; Salgueiro, W.; Somoza, A.

    1990-01-01

    Positron annihilation spectroscopy (PAS) has become in a very useful non destructive testing to the study of condensed matter. Specially, in the last two decades, with the advent of solid state detectors and high-resolution time spectrometers. The basic information obtained with PAS in solid-state physics is on electronic structure in free defect materials. However, positron annihilation techniques (lifetime, angular correlation and Doppler broadening) have been succesfully applied to study crystal lattice defects with lower-than-average electron density, such as vacancies, small vacancy clusters, etc.. In this sense, information about: vacancy formation and migration energies, dislocations, grain boundaries, solid-solid phase transformation and radiation damage was obtained. In this work the application of the positron lifetime technique to study the thermal effects on a fine-grained superplastic Al-Ca-Zn alloy and the quenched-in defects in monocrystals of β Cu-Zn-Al alloy for several quenching temperatures is shown. (Author) [es

  1. The fractal character of radiation defects aggregation in crystals

    International Nuclear Information System (INIS)

    Akylbekov, A.; Akimbekov, E.; Baktybekov, K.; Vasil'eva, I.

    2002-01-01

    In processes of self-organization, which characterize open systems, the source of ordering is a non-equilibrium. One of the samples of ordering system is radiation-stimulated aggregation of defects in solids. In real work the analysis of criterions of ordering defects structures in solid, which is continuously irradiate at low temperature is presented. The method of cellular automata used in simulation of irradiation. It allowed us to imitate processes of defects formation and recombination. The simulation realized on the surfaces up to 1000x1000 units with initial concentration of defects C n (the power of dose) 0.1-1 %. The number of iterations N (duration of irradiation) mounted to 10 6 cycles. The single centers, which are the sources of formation aggregates, survive in the result of probabilistic nature of formation and recombination genetic pairs of defects and with strictly fixed radius of recombination (the minimum inter anionic distance). For determination the character of same type defects distribution the potential of their interaction depending of defects type and reciprocal distance is calculated. For more detailed study of processes, proceeding in cells with certain sizes of aggregates, the time dependence of potential interaction is constructed. It is shown, that on primary stage the potential is negative, then it increase and approach the saturation in positive area. The minimum of interaction potential corresponds to state of physical chaos in system. Its increasing occurs with formation of same type defects aggregates. Further transition to saturation and 'undulating' character of curves explains by formation and destruction aggregates. The data indicated that - these processes occur simultaneously in cells with different sizes. It allows us to assume that the radiation defects aggregation have a fractal nature

  2. Quantum transport in defective phosphorene nanoribbons: Effects of atomic vacancies

    Science.gov (United States)

    Li, L. L.; Peeters, F. M.

    2018-02-01

    Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.

  3. P-N defect in GaNP studied by optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Chen, W.M.; Thinh, N.Q.; Vorona, I.P.; Buyanova, I.A.; Xin, H.P.; Tu, C.W.

    2003-01-01

    We provide experimental evidence for an intrinsic defect in GaNP from optically detected magnetic resonance (ODMR). This defect is identified as a P-N complex, exhibiting hyperfine structure due to interactions with a nuclear spin I=((1)/(2)) of one P atom and also a nuclear spin I=1 due to one N atom. The introduction of the defect is assisted by the incorporation of N within the studied N composition range of up to 3.1%, under non-equilibrium growth conditions during gas-source molecular beam epitaxy. The corresponding ODMR spectrum was found to be isotropic, suggesting an A 1 symmetry of the defect state. The localization of the electron wave function at the P-N defect in GaNP is found to be even stronger than that for the isolated P Ga antisite in its parent binary compound GaP

  4. Role of dynamic CT perfusion study in evaluating various intracranial space-occupying lesions

    International Nuclear Information System (INIS)

    Kamble, Ravindra B; Jayakumar, Peruvumba N; Shivashankar, Ravishankar

    2015-01-01

    Differentiating intracranial mass lesions on CT scan is challenging. The purpose of our study was to determine the perfusion parameters in various intracranial space-occupying lesions (ICSOL), differentiate benign and malignant lesions, and differentiate between grades of gliomas. We performed CT perfusion (CTP) in 64 patients, with age ranging from 17 to 68 years, having space-occupying lesions in brain and calculated relative cerebral blood flow (rCBF) and relative cerebral blood volume (rCBV). We found significantly lower perfusion in low-grade gliomas as compared to high-grade tumors, lymphoma, and metastases. Similarly in infective lesions, TWT and abscesses showed significantly lower perfusion compared to TOT. In ring enhancing lesions, capsule of TWT showed significantly lower perfusion as compared to abscesses, TOT, and metastases. Thus, in conclusion, infective lesions can be differentiated from tumors like lymphomas, high-grade gliomas, or metastases based on perfusion parameters. The cut off value of rCBV 1.64 can be used to differentiate between low grade and high grade gliomas. However, depending only on perfusion parameters, differentiation between the tumors like lymphomas, high-grade gliomas, and metastases may not be possible

  5. Role of dynamic CT perfusion study in evaluating various intracranial space-occupying lesions

    Directory of Open Access Journals (Sweden)

    Ravindra B Kamble

    2015-01-01

    Full Text Available Aims: Differentiating intracranial mass lesions on CT scan is challenging. The purpose of our study was to determine the perfusion parameters in various intracranial space-occupying lesions (ICSOL, differentiate benign and malignant lesions, and differentiate between grades of gliomas. Materials and Methods: We performed CT perfusion (CTP in 64 patients, with age ranging from 17 to 68 years, having space-occupying lesions in brain and calculated relative cerebral blood flow (rCBF and relative cerebral blood volume (rCBV. Results: We found significantly lower perfusion in low-grade gliomas as compared to high-grade tumors, lymphoma, and metastases. Similarly in infective lesions, TWT and abscesses showed significantly lower perfusion compared to TOT. In ring enhancing lesions, capsule of TWT showed significantly lower perfusion as compared to abscesses, TOT, and metastases. Conclusion: Thus, in conclusion, infective lesions can be differentiated from tumors like lymphomas, high-grade gliomas, or metastases based on perfusion parameters. The cut off value of rCBV 1.64 can be used to differentiate between low grade and high grade gliomas. However, depending only on perfusion parameters, differentiation between the tumors like lymphomas, high-grade gliomas, and metastases may not be possible.

  6. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    Science.gov (United States)

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  7. Feasibility of identifying families for genetic studies of birth defects using the National Health Interview Survey

    Directory of Open Access Journals (Sweden)

    Nolan Vikki G

    2004-05-01

    Full Text Available Abstract Background The purpose of this study was to determine whether the National Health Interview Survey is a useful source to identify informative families for genetic studies of birth defects. Methods The 1994/1995 National Health Interview Survey (NHIS was used to identify households where individuals with two or more birth defects reside. Four groups of households were identified: 1 single non-familial (one individual with one birth defect; 2 single familial (more than one individual with one birth defect; 3 multiple non-familial (one individual with more than one birth defect, and 4 multiple familial (more than one individual with more than one birth defect. The March 2000 U.S. Census on households was used to estimate the total number of households in which there are individuals with birth defects. Results Of a total of 28,094 households and surveyed about birth defects and impairments, 1,083 single non-familial, 55 multiple non-familial, 54 single familial, and 8 multiple familial households were identified. Based on the 2000 U.S. census, it is estimated that there are 4,472,385 households where at least one person has one birth defect in the United States and in 234,846 of them there are at least two affected individuals. Western states had the highest prevalence rates. Conclusions Population-based methods, such as the NHIS, are modestly useful to identify the number and the regions where candidate families for genetic studies of birth defects reside. Clinic based studies and birth defects surveillance systems that collect family history offer better probability of ascertainment.

  8. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Ritschl, P.; Hajek, P.C.; Pechmann, U.

    1989-01-01

    Sixteen patients with fibrous metaphyseal defects were examined with both plain radiography and magnetic resonance (MR) imaging. Depending on the age of the fibrous metaphyseal defects, characteristic radiomorphologic changes were found which correlated well with MR images. Following intravenous Gadolinium-DTPA injection, fibrous metaphyseal defects invariably exhibited a hyperintense border and signal enhancement. (orig./GDG)

  9. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence: two case reports and a review of the literature.

    Science.gov (United States)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels; Petersen, Michael B

    2016-12-21

    The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Our first case was a white girl delivered by caesarean section at 37 weeks of gestation; our second case was a white girl born at a gestational age of 40 weeks. A co-occurrence of vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome was diagnosed in both cases. We performed a systematic literature search in PubMed ((VACTERL) OR (VATER)) AND ((MRKH) OR (Mayer-Rokitansky-Küster-Hauser) OR (mullerian agenesis) OR (mullerian aplasia) OR (MURCS)) without limitations. A similar search was performed in Embase and the Cochrane library. We added two cases from our local center. All cases (n = 9) presented with anal atresia and renal defect. Vertebral defects were present in eight patients. Rectovestibular fistula was confirmed in seven patients. Along with the uterovaginal agenesis, fallopian tube aplasia appeared in five of nine cases and in two cases ovarian involvement also existed. The co-occurrence of the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal

  10. The Limits of Decolonization: American Occupiers and the “Korean Problem” in Japan, 1945-1948

    Directory of Open Access Journals (Sweden)

    Matthew R. Augustine

    2017-02-01

    Full Text Available Korean and Japanese officials have never engaged in direct negotiations to reach a postcolonial settlement, unlike what followed the breakup of many European colonies. Instead, the problem of how to dissolve Japanese colonialism was indirectly addressed by external mediators; namely, US occupation administrations in Korea and Japan after World War II. Examining the history of third-party decolonization must therefore take into consideration how this process was initially mediated between the new American occupiers in the region. In order to understand how decolonization was compromised in part by evolving and competing American occupation policies, this article examines three interrelated issues that greatly affected Koreans in occupied Japan who found themselves displaced by the sudden collapse of the Japanese empire: repatriation, restitution, and nationality. The extent to which American occupation authorities in Korea and Japan jointly engaged in each of these critical issues vividly illustrates the limits of decolonization.

  11. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    Science.gov (United States)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  12. Tuning optical properties of opal photonic crystals by structural defects engineering

    Science.gov (United States)

    di Stasio, F.; Cucini, M.; Berti, L.; Comoretto, D.; Abbotto, A.; Bellotto, L.; Manfredi, N.; Marinzi, C.

    2009-06-01

    We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 mm doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T) and photoluminescence spectroscopy (PL) Evidence of defect states were observed in T and R spectra which allow the light to propagate for selected frequencies within the pseudogap (stop band).

  13. Maternal obesity and congenital heart defects: a population-based study123

    Science.gov (United States)

    Mills, James L; Troendle, James; Conley, Mary R; Carter, Tonia; Druschel, Charlotte M

    2010-01-01

    Background: Obesity affects almost one-third of pregnant women and causes many complications, including neural tube defects. It is not clear whether the risk of congenital heart defects, the most common malformations, is also increased. Objective: This study was conducted to determine whether obesity is associated with an increased risk of congenital heart defects. Design: A population-based, nested, case-control study was conducted in infants born with congenital heart defects and unaffected controls from the cohort of all births (n = 1,536,828) between 1993 and 2003 in New York State, excluding New York City. The type of congenital heart defect, maternal body mass index (BMI; in kg/m2), and other risk factors were obtained from the Congenital Malformations Registry and vital records. Mothers of 7392 congenital heart defect cases and 56,304 unaffected controls were studied. Results: All obese women (BMI ≥ 30) were significantly more likely than normal-weight women (BMI: 19–24.9) to have children with a congenital heart defect [odds ratio (OR): 1.15; 95% CI: 1.07, 1.23; P heart defects with increasing maternal obesity (P heart syndrome, aortic stenosis, pulmonic stenosis, and tetralogy of Fallot. Conclusions: Obese, but not overweight, women are at significantly increased risk of bearing children with a range of congenital heart defects, and the risk increases with increasing BMI. Weight reduction as a way to reduce risk should be investigated. PMID:20375192

  14. Defect detection based on extreme edge of defective region histogram

    Directory of Open Access Journals (Sweden)

    Zouhir Wakaf

    2018-01-01

    Full Text Available Automatic thresholding has been used by many applications in image processing and pattern recognition systems. Specific attention was given during inspection for quality control purposes in various industries like steel processing and textile manufacturing. Automatic thresholding problem has been addressed well by the commonly used Otsu method, which provides suitable results for thresholding images based on a histogram of bimodal distribution. However, the Otsu method fails when the histogram is unimodal or close to unimodal. Defects have different shapes and sizes, ranging from very small to large. The gray-level distributions of the image histogram can vary between unimodal and multimodal. Furthermore, Otsu-revised methods, like the valley-emphasis method and the background histogram mode extents, which overcome the drawbacks of the Otsu method, require preprocessing steps and fail to use the general threshold for multimodal defects. This study proposes a new automatic thresholding algorithm based on the acquisition of the defective region histogram and the selection of its extreme edge as the threshold value to segment all defective objects in the foreground from the image background. To evaluate the proposed defect-detection method, common standard images for experimentation were used. Experimental results of the proposed method show that the proposed method outperforms the current methods in terms of defect detection.

  15. Defects in electron irradiated vitreous SiO[sub 2] probed by positron annihiliation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro (Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science); Kawano, Takao (Tsukuba Univ., Ibaraki (Japan). Radioisotope Centre); Itoh, Hisayoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1994-10-10

    Defects in 3 MeV electron irradiated vitreous SiO[sub 2] (v-SiO[sub 2]) were probed by the positron annihilation technique. For unirradiated v-SiO[sub 2] specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author).

  16. Electrical characterization of copper related defect reactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, T. [Centre National de la Recherche Scientifique, 67 - Strasbourg (France). Lab. PHASE; Istratov, A.A.; Flink, C.; Weber, E.R. [Department of Material Science and Mineral Engineering, University of California at Berkeley, 577 Evans Hall, Berkeley, CA 94720 (United States)

    1999-02-12

    Defect reactions involving interstitial copper impurities (Cu{sub i}) in silicon are reviewed. The influence of the Coulomb interaction between positively charged copper and negatively charged defects, such as acceptor states of transition metals and lattice defects, on the complex formation rate is discussed in detail. The diffusivity of interstitial copper and the dissociation kinetics of copper-acceptor pairs are studied using the recently introduced transient ion drift (TID) method. TID results reveal that most interstitial copper impurities remain dissolved immediately after the quench and form pairs with shallow acceptors. It is shown that in moderately and heavily doped silicon the diffusivity of copper is trap limited, while in low B-doped silicon the interstitial copper-acceptor pairing is weak enough to allow the assessment of the copper intrinsic diffusion coefficient. The intrinsic diffusion barrier is estimated to be 0.18{+-}0.01 eV. It is concluded that the Coulomb potential used in previous publications underestimated considerably the acceptor-copper interaction. In light of these results, a general discussion on Cu related defect reactions is given. (orig.) 44 refs.

  17. Electronic properties of graphene with single vacancy and Stone-Wales defects

    International Nuclear Information System (INIS)

    Zaminpayma, Esmaeil; Razavi, Mohsen Emami; Nayebi, Payman

    2017-01-01

    Highlights: • The electronic properties of graphene device with single vacancy (SV) and Stone-Wales (SW) defect have been studied. • The first principles calculations have been performed based on self-consistent charge density functional tight-binding. • The density of state, current voltage curves of pure graphene and graphene with SV and SW defects have been investigated. • Transmission spectrum of pristine graphene device and graphene with SV and SW defects has been examined. - Abstract: The first principles calculations have been performed based on self-consistent charge density functional tight-binding in order to examine the electronic properties of graphene with single vacancy (SV) and Stone-Wales (SW) defects. We have optimized structures of pristine graphene and graphene with SV and SW defects. The bond lengths, current-voltage curve and transmission probability have been calculated. We found that the bond length for relaxed graphene is 1.43 Å while for graphene with SV and SW defects the bond lengths are 1.41 Å and 1.33 Å, respectively. For the SV defect, the arrangement of atoms with three nearest neighbors indicates sp_2 bonding. While for SW defect, the arrangement of atoms suggests nearly sp bonding. From the current-voltage curve for graphene with defects we have determined that the behavior of the I–V curves is nonlinear. It is also found that the SV and SW defects cause to decrease the current compared to the pristine graphene case. Furthermore, the single vacancy defect reduces the current more than the Stone-Wales defect. Moreover, we observed that by increasing the voltage from zero to 1 V new peaks near Fermi level in the transmission probability curves have been created.

  18. Electronic properties of graphene with single vacancy and Stone-Wales defects

    Energy Technology Data Exchange (ETDEWEB)

    Zaminpayma, Esmaeil [Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Razavi, Mohsen Emami, E-mail: razavi246@gmail.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of)

    2017-08-31

    Highlights: • The electronic properties of graphene device with single vacancy (SV) and Stone-Wales (SW) defect have been studied. • The first principles calculations have been performed based on self-consistent charge density functional tight-binding. • The density of state, current voltage curves of pure graphene and graphene with SV and SW defects have been investigated. • Transmission spectrum of pristine graphene device and graphene with SV and SW defects has been examined. - Abstract: The first principles calculations have been performed based on self-consistent charge density functional tight-binding in order to examine the electronic properties of graphene with single vacancy (SV) and Stone-Wales (SW) defects. We have optimized structures of pristine graphene and graphene with SV and SW defects. The bond lengths, current-voltage curve and transmission probability have been calculated. We found that the bond length for relaxed graphene is 1.43 Å while for graphene with SV and SW defects the bond lengths are 1.41 Å and 1.33 Å, respectively. For the SV defect, the arrangement of atoms with three nearest neighbors indicates sp{sub 2} bonding. While for SW defect, the arrangement of atoms suggests nearly sp bonding. From the current-voltage curve for graphene with defects we have determined that the behavior of the I–V curves is nonlinear. It is also found that the SV and SW defects cause to decrease the current compared to the pristine graphene case. Furthermore, the single vacancy defect reduces the current more than the Stone-Wales defect. Moreover, we observed that by increasing the voltage from zero to 1 V new peaks near Fermi level in the transmission probability curves have been created.

  19. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  20. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    Science.gov (United States)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  1. Multichannel quantum defect and reduced R-matrix

    International Nuclear Information System (INIS)

    Hategan, C.; Ionescu, R.A.; Cutoiu, D.; Gugiu, M.

    2002-01-01

    The collision of an electron with the atomic electronic core or the scattering of a nucleon on the atomic nucleus, usually, result into multiparticle excitations producing a resonance of a compound system, followed by its decay in reaction channels. Both in the electron-atom collisions and in nucleon-nucleus reactions, these multichannel resonances are described by poles of all R-Matrix elements. The resonances originating in single particle states, either in electron-atom collision or in nucleon-nucleus scattering, are approached in quite different descriptions. For example, the single-particle resonance in nuclear scattering is described, in R-Matrix Theory, by a perturbative method due to Bloch. The original single-nucleon state overlaps the actual states of the nucleus, resulting into a micro-giant description of the single particle resonance. The spectroscopic aspects of the single particle state, mixed with actual nuclear states, are subject of nucleon (or single particle) Strength Function. The electron, involving single particle Rydberg state in an atomic collision, 'avoids' its wave function mixing with that of inner multielectron core, because it is spatially far-away located from that core. This process is usually described by the Multichannel Quantum Defect Theory (MQDT). In the electron-atom scattering rather the effect of inner multielectron core on Rydberg electrons is studied by means of a global parameter, historically called 'Quantum Defect'. Both these types of resonances have in common the preserving of the single-particle wave function in a complex system with multiparticle excitations. In this work one approaches description of single-particle (electron or nucleon) resonance in a multichannel system. The single particle multichannel resonances are not longer described by a R-Matrix pole (specific for resonances originating in multiparticle excitations) but rather by a natural method for incorporating a single particle state in R-Matrix Theory

  2. Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network

    NARCIS (Netherlands)

    Chen, Junwen; Liu, Zhigang; Wang, H.; Nunez Vicencio, Alfredo; Han, Zhiwei

    2018-01-01

    The excitation and vibration triggered by the long-term operation of railway vehicles inevitably result in defective states of catenary support devices. With the massive construction of high-speed electrified railways, automatic defect detection of diverse and plentiful fasteners on the catenary

  3. The role of the anionic and cationic pt sites in the adsorption site preference of water and ethanol on defected Pt4/Pt(111) substrates: A density functional theory investigation within the D3 van der waals corrections

    Science.gov (United States)

    Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.

    2018-01-01

    Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the

  4. SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, Joseph

    1962-12-15

    The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)

  5. Direct Participation in and Indirect Exposure to the Occupy Central Movement and Depressive Symptoms: A Longitudinal Study of Hong Kong Adults.

    Science.gov (United States)

    Ni, Michael Y; Li, Tom K; Pang, Herbert; Chan, Brandford H Y; Yuan, Betty Y; Kawachi, Ichiro; Schooling, C Mary; Leung, Gabriel M

    2016-11-01

    Despite the extensive history of social movements around the world, the evolution of population mental health before, during, and after a social movement remains sparsely documented. We sought to assess over time the prevalence of depressive symptoms during and after the Occupy Central movement in Hong Kong and to examine the associations of direct and indirect exposures to Occupy Central with depressive symptoms. We longitudinally administered interviews to 909 adults who were randomly sampled from the population-representative FAMILY Cohort at 6 time points from March 2009 to March 2015: twice each before, during, and after the Occupy Central protests. The Patient Health Questionnaire-9 was used to assess depressive symptoms and probable major depression (defined as Patient Health Questionnaire-9 score ≥10). The absolute prevalence of probable major depression increased by 7% after Occupy Central, regardless of personal involvement in the protests. Higher levels of depressive symptoms were associated with online and social media exposure to protest-related news (incidence rate ratio (IRR) = 1.28, 95% confidence interval (CI): 1.06, 1.55) and more frequent Facebook use (IRR = 1.38, 95% CI: 1.12, 1.71). Higher levels of intrafamilial sociopolitical conflict was associated with more depressive symptoms (IRR = 1.05, 95% CI: 1.01, 1.09). The Occupy Central protests resulted in substantial and sustained psychological distress in the community. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Modelling Defects Acceptors And Determination Of Electric Model From The Nyquist Plot And Bode In Thin Film CIGS

    Directory of Open Access Journals (Sweden)

    Demba Diallo

    2015-08-01

    Full Text Available Abstract The performance of the chalcopyrite material CuInGaSe2 CIGS used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. Multivalent defects e.g. double acceptors or simple acceptor are important immaterial used in solar cell production in general and in chalcopyrite materials in particular. We used the thin film solar cell simulation software SCAPS to enable the simulation of multivalent defects with up to five different charge states.Algorithms enabled us to simulate an arbitrary number of possible states of load. The presented solution method avoids numerical inaccuracies caused by the subtraction of two almost equal numbers. This new modelling facility is afterwards used to investigate the consequences of the multivalent character of defects for the simulation of chalcopyrite based CIGS. The capacitance increase with the evolution of the number of defects C- f curves have found to have defect dependence.

  7. Theory of quasiparticle surface states in semiconductor surfaces

    International Nuclear Information System (INIS)

    Hybertsen, M.S.; Louie, S.G.

    1988-01-01

    A first-principles theory of the quasiparticle surface-state energies on semiconductor surfaces is developed. The surface properties are calculated using a repeated-slab geometry. Many-body effects due to the electron-electron interaction are represented by the electron self-energy operator including the full surface Green's function and local fields and dynamical screening effects in the Coulomb interaction. Calculated surface-state energies for the prototypical Si(111):As and Ge(111):As surfaces are presented. The calculated energies and dispersions for the occupied surface states (resonances) are in excellent agreement with recent angle-resolved photoemission data. Predictions are made for the position of empty surface states on both surfaces which may be experimentally accessible. The resulting surface state gap at Gamma-bar for Si(111):As agrees with recent scanning-tunneling-spectroscopy measurements. Comparison of the present results to eigenvalues from the local-density-functional calculation reveals substantial corrections for the gaps between empty and occupied surface states. This correction is found to depend on the character of the surface states involved

  8. Radiation defects in electron-irradiated InP crystals

    International Nuclear Information System (INIS)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P.

    1982-01-01

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed. (author)

  9. Radiation defects in electron-irradiated InP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P. (AN Ukrainskoj SSR, Kiev. Inst. Yadernykh Issledovanij)

    1982-06-16

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed.

  10. Defect properties of Sb- and Bi-doped CuInSe{sub 2}: The effect of the deep lone-pair s states

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sang; Yang, Ji-Hui; Ramanathan, Kannan; Wei, Su-Huai, E-mail: Suhuai.Wei@nrel.gov [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2014-12-15

    Bi or Sb doping has been used to make better material properties of polycrystalline Cu{sub 2}(In,Ga)Se{sub 2} as solar cell absorbers, including the experimentally observed improved electrical properties. However, the mechanism is still not clear. Using first-principles method, we investigate the stability and electronic structure of Bi- and Sb-related defects in CuInSe{sub 2} and study their effects on the doping efficiency. Contrary to previous thinking that Bi or Sb substituted on the anion site, we find that under anion-rich conditions, the impurities can substitute on cation sites and are isovalent to In because of the formation of the impurity lone pair s states. When the impurities substitute for Cu, the defects act as shallow double donors and help remove the deep In{sub Cu} level, thus resulting in the improved carrier life time. On the other hand, under anion-poor conditions, impurities at the Se site create amphoteric deep levels that are detrimental to the device performance.

  11. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  12. Defective aluminium nitride nanotubes: a new way for spintronics? A density functional study

    International Nuclear Information System (INIS)

    Simeoni, M; Santucci, S; Picozzi, S; Delley, B

    2006-01-01

    The structural and electronic properties (in terms of Mulliken charges, density of states and band structures) of pristine and defective (10,0) AlN nanotubes have been calculated within density functional theory. The results show that, in several defective tubes, a spontaneous spin-polarization arises, due to the presence of spin-split flat bands close to the Fermi level, with a strong localization of the corresponding electronic states and of the magnetic moments. The highest positive spin-magnetization (3 μ B per cell) is found for the vacancy in the Al site, while the other magnetic tubes (the vacancy in N, C and O substitutional for N and Al, respectively) show a magnetization of only 1 μ B per cell. The spontaneous magnetization of some defective tubes might open the way to their use for spintronic applications

  13. Deformation behaviour induced by point defects near a Cu(0 0 1) surface

    International Nuclear Information System (INIS)

    Said-Ettaoussi, M.; Jimenez-Saez, J.C.; Perez-Martin, A.M.C.; Jimenez-Rodriguez, J.J.

    2004-01-01

    In order to attain a satisfactory understanding of many of the properties of metallic surfaces, it is necessary to take into account the distorting effect of self-interstitials and vacancies. The present work is focused on the study of the behaviour of neighbouring atoms around point defects. The conjugate gradient method with an empiric many-body potential has been used to study the point defect-surface interaction. Point defects have been generated at several depths under a Cu(0 0 1) surface and then the whole system driven to the minimum energy state. The displacement field has been obtained in the vicinity to the defect. An energetic analysis is also carried out calculating formation and migration energies

  14. Defect study of Zn-doped p-type gallium antimonide using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ling, C. C.; Fung, S.; Beling, C. D.; Huimin, Weng

    2001-01-01

    Defects in p-type Zn-doped liquid-encapsulated Czochralski--grown GaSb were studied by the positron lifetime technique. The lifetime measurements were performed on the as-grown sample at temperature varying from 15 K to 297 K. A positron trapping center having a characteristic lifetime of 317 ps was identified as the neutral V Ga -related defect. Its concentration in the as-grown sample was found to be in the range of 10 17 --10 18 cm -3 . At an annealing temperature of 300 o C, the V Ga -related defect began annealing out and a new defect capable of trapping positrons was formed. This newly formed defect, having a lifetime value of 379 ps, is attributed to a vacancy--Zn-defect complex. This defect started annealing out at a temperature of 580 o C. A positron shallow trap having binding energy and concentration of 75 meV and 10 18 cm -3 , respectively, was also observed in the as-grown sample. This shallow trap is attributed to positrons forming hydrogenlike Rydberg states with the ionized dopant acceptor Zn

  15. Coarse-grained molecular dynamics modeling of the kinetics of lamellar block copolymer defect annealing

    Science.gov (United States)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2016-01-01

    State-of-the-art block copolymer (BCP)-directed self-assembly (DSA) methods still yield defect densities orders of magnitude higher than is necessary in semiconductor fabrication despite free-energy calculations that suggest equilibrium defect densities are much lower than is necessary for economic fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that bulk simulations yield an exponential drop in defect heal rate above χN˜30. Thin films show no change in rate associated with the energy barrier below χN˜50, significantly higher than the χN values found previously for self-consistent field theory studies that neglect fluctuations. Above χN˜50, the simulations show an increase in energy barrier scaling with 1/2 to 1/3 of the bulk systems. This is because thin films always begin healing at the free interface or the BCP-underlayer interface, where the increased A-B contact area associated with the transition state is minimized, while the infinitely thick films cannot begin healing at an interface.

  16. [Secondary male hypogonadism induced by sellar space-occupying lesion: Clinical analysis of 22 cases].

    Science.gov (United States)

    Lu, Hong-Lei; Wang, Tao; Xu, Hao; Chen, Li-Ping; Rao, Ke; Yang, Jun; Yuan, Hui-Xing; Liu, Ji-Hong

    2016-08-01

    To analyze the clinical characteristics of secondary male hypogonadism induced by sellar space-occupying lesion, explore its pathogenesis, and improve its diagnosis and treatment. We retrospectively analyzed the clinical data about 22 cases of secondary male hypogonadism induced by sellar space-occupying lesion, reviewed related literature, and investigated the clinical manifestation, etiological factors, and treatment methods of the disease. Hypogonadism developed in 10 of the patients before surgery and radiotherapy (group A) and in the other 12 after it (group B). The patients received endocrine therapy with Andriol (n=7) or hCG (n=15). The average diameter of the sellar space-occupying lesions was significantly longer in group A than in B ([2.35±0.71] vs [1.83±0.36] cm, P<0.05) and the incidence rate of prolactinomas was markedly higher in the former than in the latter group (60% vs 0, P<0.01). The levels of lutein hormone (LH), follicle stimulating hormone (FSH) and testosterone (T) were remarkably decreased in group B after surgery and radiotherapy (P<0.01). Compared with the parameters obtained before endocrine therapy, all the patients showed significant increases after intervention with Andriol or hCG in the T level ([0.78±0.40] vs [2.71±0.70] ng/ml with Andriol; [0.93±0.44] vs [3.07±0.67] ng/ml with hCG) and IIEF-5 score (5.00±2.61 vs 14.50±3.62 with Andriol; 5.36±1.82 vs 15.07±3.27 with hCG) (all P<0.01). The testis volume increased and pubic hair began to grow in those with hypoevolutism. The patients treated with hCG showed a significantly increased testis volume (P<0.01) and sperm was detected in 7 of them, whose baseline testis volume was markedly larger than those that failed to produce sperm ([11.5±2.3] vs [7.5±2.3] ml, P<0.01). Those treated with Andriol exhibited no significant difference in the testis volume before and after intervention and produced no sperm, either. Hypothyroidism might be attributed

  17. Interface state generation after hole injection

    International Nuclear Information System (INIS)

    Zhao, C. Z.; Zhang, J. F.; Groeseneken, G.; Degraeve, R.; Ellis, J. N.; Beech, C. D.

    2001-01-01

    After terminating electrical stresses, the generation of interface states can continue. Our previous work in this area indicates that the interface state generation following hole injection originates from a defect. These defects are inactive in a fresh device, but can be excited by hole injection and then converted into interface states under a positive gate bias after hole injection. There is little information available on these defects. This article investigates how they are formed and attempts to explain why they are sensitive to processing conditions. Roles played by hydrogen and trapped holes will be clarified. A detailed comparison between the interface state generation after hole injection in air and that in forming gas is carried out. Our results show that there are two independent processes for the generation: one is caused by H 2 cracking and the other is not. The rate limiting process for the interface state generation after hole injection is discussed and the relation between the defects responsible for this generation and hole traps is explored. [copyright] 2001 American Institute of Physics

  18. Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering

    Science.gov (United States)

    Abdullah, S. A.; Sahdan, M. Z.; Nafarizal, N.; Saim, H.; Bakri, A. S.; Cik Rohaida, C. H.; Adriyanto, F.; Sari, Y.

    2018-04-01

    This paper highlights the defect levels using photoluminescence spectroscopy of TiO2 thin films. The TiO2 were deposited by Magnetron Sputtering system with 200, 300, 400, and 500 °C substrate temperature on microscope glass substrate. The PL result shows profound effect of various substrate temperatures to defect levels of oxygen vacancies and Ti3+ at titanium interstitial site. Increasing temperature would minimize the oxygen vacancy defect, however Ti3+ shows otherwise. Green region of PL consist of trapped hole for oxygen vacancy, while red region of PL is trapped electron associated to structural defect Ti3+. Green PL is dominant peak at temperature 200 °C, indicating that oxygen vacancy is the main defect at this temperature. However, PL peak shows slightly same value for others samples indicating that the temperature did not give high influence to other level of defect after 200 °C.

  19. Facts about Birth Defects

    Science.gov (United States)

    ... label> Information For… Media Policy Makers Facts about Birth Defects Language: English (US) Español (Spanish) Recommend on ... having a baby born without a birth defect. Birth Defects Are Common Every 4 ½ minutes, a ...

  20. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    Science.gov (United States)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  1. Structural and optical investigations of oxygen defects in zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Sahai, Anshuman; Goswami, Navendu

    2015-01-01

    ZnO nanoparticles (NPs) were prepared implementing chemical precipitation method. Structural and optical characterizations of synthesized ZnO NPs were thoroughly probed applying X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), UV- Visible absorption and fluorescence (FL) spectroscopy. The XRD and TEM analyses revealed hexagonal wurtzite phase with 25-30 nm size. EDX analysis indicated oxygen (O) rich composition of nanoparticles. In accordance with EDX, XPS analysis verifies O i rich stoichiometry of prepared NPs. Furthermore, concurrence of lattice oxygen (O L ), interstitial oxygen (O i ) and oxygen vacancy (V O ) in ZnO NPs was demonstrated through XPS analysis. Size quantization of nanoparticles is evident by blue shift of UV-Visible absorption energy. The FL spectroscopic investigations ascertain the existence of several discrete and defect states and radiative transitions occurring therein. Display of visible emission from oxygen defect states and most importantly, excess of O i defects in prepared ZnO nanoparticles, was well established through FL study

  2. From occupying to inhabiting - a change in conceptualising comfort

    International Nuclear Information System (INIS)

    Jaffari, Svenja D; Matthews, Ben

    2009-01-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what comfort is for ordinary people

  3. From occupying to inhabiting - a change in conceptualising comfort

    Science.gov (United States)

    Jaffari, Svenja D.; Matthews, Ben

    2009-11-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what comfort is for ordinary people

  4. Prevention of congenital defects induced by prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Sheehan, Megan M.; Karunamuni, Ganga; Pedersen, Cameron J.; Gu, Shi; Doughman, Yong Qiu; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Nearly 2 million women in the United States alone are at risk for an alcohol-exposed pregnancy, including more than 600,000 who binge drink. Even low levels of prenatal alcohol exposure (PAE) can lead to a variety of birth defects, including craniofacial and neurodevelopmental defects, as well as increased risk of miscarriages and stillbirths. Studies have also shown an interaction between drinking while pregnant and an increase in congenital heart defects (CHD), including atrioventricular septal defects and other malformations. We have previously established a quail model of PAE, modeling a single binge drinking episode in the third week of a woman's pregnancy. Using optical coherence tomography (OCT), we quantified intraventricular septum thickness, great vessel diameters, and atrioventricular valve volumes. Early-stage ethanol-exposed embryos had smaller cardiac cushions (valve precursors) and increased retrograde flow, while late-stage embryos presented with gross head/body defects, and exhibited smaller atrio-ventricular (AV) valves, interventricular septum, and aortic vessels. We previously showed that supplementation with the methyl donor betaine reduced gross defects, improved survival rates, and prevented cardiac defects. Here we show that these preventative effects are also observed with folate (another methyl donor) supplementation. Folate also appears to normalize retrograde flow levels which are elevated by ethanol exposure. Finally, preliminary findings have shown that glutathione, a crucial antioxidant, is noticeably effective at improving survival rates and minimizing gross defects in ethanol-exposed embryos. Current investigations will examine the impact of glutathione supplementation on PAE-related CHDs.

  5. Ab initio theory of the N2V defect in diamond for quantum memory implementation

    Science.gov (United States)

    Udvarhelyi, Péter; Thiering, Gergő; Londero, Elisa; Gali, Adam

    2017-10-01

    The N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical parameters, we propose to realize a long-living quantum memory by N2V defect, i.e., H 3 color center in diamond.

  6. A graphical automated detection system to locate hardwood log surface defects using high-resolution three-dimensional laser scan data

    Science.gov (United States)

    Liya Thomas; R. Edward. Thomas

    2011-01-01

    We have developed an automated defect detection system and a state-of-the-art Graphic User Interface (GUI) for hardwood logs. The algorithm identifies defects at least 0.5 inch high and at least 3 inches in diameter on barked hardwood log and stem surfaces. To summarize defect features and to build a knowledge base, hundreds of defects were measured, photographed, and...

  7. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  8. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  9. Fermi surface contours obtained from scanning tunneling microscope images around surface point defects

    International Nuclear Information System (INIS)

    Khotkevych-Sanina, N V; Kolesnichenko, Yu A; Van Ruitenbeek, J M

    2013-01-01

    We present a theoretical analysis of the standing wave patterns in scanning tunneling microscope (STM) images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects. (paper)

  10. Genital and Urinary Tract Defects

    Science.gov (United States)

    ... conditions > Genital and urinary tract defects Genital and urinary tract defects E-mail to a friend Please fill ... and extra fluids. What problems can genital and urinary tract defects cause? Genital and urinary tract defects affect ...

  11. The real defect and its nondestructive characterization

    International Nuclear Information System (INIS)

    Licht, H.

    1982-01-01

    Nondestructive test techniques to evaluate defect severity and component degradation are typically based on transmission of energy into the material to be inspected. The capabilities of such techniques are controlled by physical phenomena which generally do not coincide with inspection requirements. This paper reviews several recent developments (mainly in ultrasonic and eddy current testing) which highlight the state of the art

  12. Influence of irradiation on defects creation in pin diode structure

    International Nuclear Information System (INIS)

    Sopko, V.; Dammer, J.; Sopko, B.; Chren, D.

    2012-01-01

    In this paper the manufacture of type S1 PIN diodes and radiation defect induce by fast neutrons were studied. A shift from VV"- to VV (neutral) is observed in neutron irradiated diodes. From the results obtained, an explanation that clearly offers itself is that the nature of the defects produced by irradiation of material exhibiting N type conductivity is different from those for type P material. Given that the experiments were conducted with the same material, i.e., the dopant present in the material remained unchanged, it can be stated that simply by changing the type of conductivity with increasing dose, a different kind of defects is produced, having different activation energies in the forbidden band. All these results are consistent with the ongoing RD 50 experiments at CERN.

  13. Electrons in feldspar I: On the wavefunction of electrons trapped at simple lattice defects

    DEFF Research Database (Denmark)

    Poolton, H.R.J.; Wallinga, J.; Murray, A.S.

    2002-01-01

    The purpose of this article is to make an initial consideration of the physical properties of electrons trapped at classic hydrogenic lattice defects in feldspar. We are particularly interested to determine the radial extent of the electron wavefunctions in the ground and excited states. It is sh......The purpose of this article is to make an initial consideration of the physical properties of electrons trapped at classic hydrogenic lattice defects in feldspar. We are particularly interested to determine the radial extent of the electron wavefunctions in the ground and excited states...

  14. Population-Based Surveillance of Birth Defects Potentially Related to Zika Virus Infection - 15 States and U.S. Territories, 2016.

    Science.gov (United States)

    Delaney, Augustina; Mai, Cara; Smoots, Ashley; Cragan, Janet; Ellington, Sascha; Langlois, Peter; Breidenbach, Rebecca; Fornoff, Jane; Dunn, Julie; Yazdy, Mahsa; Scotto-Rosato, Nancy; Sweatlock, Joseph; Fox, Deborah; Palacios, Jessica; Forestieri, Nina; Leedom, Vinita; Smiley, Mary; Nance, Amy; Lake-Burger, Heather; Romitti, Paul; Fall, Carrie; Prado, Miguel Valencia; Barton, Jerusha; Bryan, J Michael; Arias, William; Brown, Samara Viner; Kimura, Jonathan; Mann, Sylvia; Martin, Brennan; Orantes, Lucia; Taylor, Amber; Nahabedian, John; Akosa, Amanda; Song, Ziwei; Martin, Stacey; Ramlal, Roshan; Shapiro-Mendoza, Carrie; Isenburg, Jennifer; Moore, Cynthia A; Gilboa, Suzanne; Honein, Margaret A

    2018-01-26

    Zika virus infection during pregnancy can cause serious birth defects, including microcephaly and brain abnormalities (1). Population-based birth defects surveillance systems are critical to monitor all infants and fetuses with birth defects potentially related to Zika virus infection, regardless of known exposure or laboratory evidence of Zika virus infection during pregnancy. CDC analyzed data from 15 U.S. jurisdictions conducting population-based surveillance for birth defects potentially related to Zika virus infection.* Jurisdictions were stratified into the following three groups: those with 1) documented local transmission of Zika virus during 2016; 2) one or more cases of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents; and 3) less than one case of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents. A total of 2,962 infants and fetuses (3.0 per 1,000 live births; 95% confidence interval [CI] = 2.9-3.2) (2) met the case definition. † In areas with local transmission there was a non-statistically significant increase in total birth defects potentially related to Zika virus infection from 2.8 cases per 1,000 live births in the first half of 2016 to 3.0 cases in the second half (p = 0.10). However, when neural tube defects and other early brain malformations (NTDs) § were excluded, the prevalence of birth defects strongly linked to congenital Zika virus infection increased significantly, from 2.0 cases per 1,000 live births in the first half of 2016 to 2.4 cases in the second half, an increase of 29 more cases than expected (p = 0.009). These findings underscore the importance of surveillance for birth defects potentially related to Zika virus infection and the need for continued monitoring in areas at risk for Zika.

  15. Point defects and defect clusters examined on the basis of some fundamental experiments

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1975-01-01

    On progressing from the centre of the defect to the surface the theoretical approach to a point defect passes from electronic theories to elastic theory. Experiments by which the point defect can be observed fall into two categories. Those which detect long-range effects: measurement of dimensional variations in the sample; measurement of the mean crystal parameter variation; elastic X-ray scattering near the nodes of the reciprocal lattice (Huang scattering). Those which detect more local effects: low-temperature resistivity measurement; positron capture and annihilation; local scattering far from the reciprocal lattice nodes. Experiments involving both short and long-range effects can always be found. This is the case for example with the dechanneling of α particles by defects. Certain of the experimental methods quoted above apply also to the study of point defect clusters. These methods are illustrated by some of their most striking results which over the last twenty years have refined our knowledge of point defects and defect clusters: length and crystal parameter measurements; diffuse X-ray scattering; low-temperature resistivity measurements; ion emission microscopy; electron microscopy; elastoresistivity [fr

  16. Birth Defects (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Birth Defects KidsHealth / For Parents / Birth Defects What's in ... Prevented? Print en español Anomalías congénitas What Are Birth Defects? While still in the womb, some babies ...

  17. Defect of the Eyelids.

    Science.gov (United States)

    Lu, Guanning Nina; Pelton, Ron W; Humphrey, Clinton D; Kriet, John David

    2017-08-01

    Eyelid defects disrupt the complex natural form and function of the eyelids and present a surgical challenge. Detailed knowledge of eyelid anatomy is essential in evaluating a defect and composing a reconstructive plan. Numerous reconstructive techniques have been described, including primary closure, grafting, and a variety of local flaps. This article describes an updated reconstructive ladder for eyelid defects that can be used in various permutations to solve most eyelid defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Defects in ZnO, CdTe, and Si: Optical, structural, and electrical characterization

    CERN Multimedia

    Deicher, M; Kronenberg, J; Johnston, K; Roder, J; Byrne, D J

    Electronic and optical properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photo-luminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness" radioactive isotopes are used as a tracer. Moreover, the recoil energies involved in ${\\beta}$- and ${\\gamma}$-decays can be used to create intrinsic, isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. These techniques will be used to...

  19. Recovery of Frenkel defects in fcc metals

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Miller, M.G.

    1976-01-01

    Because of the production of Frenkel defects occurs most readily along specific crystallographic directions in fcc structures, the recovery mechanism by which annihilation occurs should also be related to the same crystallographic orientations. The recovery path of a diffusing interstitial requires the formation of a temporary metastable state as a close-pair Frenkel defect prior to annihilation. A theoretical treatment of this scheme for interstitial-vacancy recombination shows that during the Isub(D) diffusion there is an experimentally measurable difference if the recovery forms a Isub(B) or a Isub(C) close-pair configuration in aluminum. Experimental results are given which show a difference from the theoretical predictions, and it is concluded that the assumed analytical function describing the interstitial-vacancy distribution created by a 0.4 MeV electron irradiation should be modified. (author)

  20. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  1. Defect production in Ar irradiated graphene membranes under different initial applied strains

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Asencio, J., E-mail: jesusmartinez@ua.es [Dept. Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-036090 (Spain); Ruestes, C.J.; Bringa, E. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina); Caturla, M.J. [Dept. Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-036090 (Spain)

    2017-02-15

    Highlights: • Defects in graphene membranes are formed due to 140 eV Ar ions irradiation using MD. • Different initial strains are applied, which influence the type and number of defects. • Mono-vacancies, di-vacancies and tri-vacancies production behaves linearly with dose. • The total number of defects under compression is slightly higher than under tension. - Abstract: Irradiation with low energy Ar ions of graphene membranes gives rise to changes in the mechanical properties of this material. These changes have been associated to the production of defects, mostly isolated vacancies. However, the initial state of the graphene membrane can also affect its mechanical response. Using molecular dynamics simulations we have studied defect production in graphene membranes irradiated with 140 eV Ar ions up to a dose of 0.075 × 10{sup 14} ions/cm{sup 2} and different initial strains, from −0.25% (compressive strain) to 0.25% (tensile strain). For all strains, the number of defects increases linearly with dose with a defect production of about 80% (80 defects every 100 ions). Defects are mostly single vacancies and di-vacancies, although some higher order clusters are also observed. Two different types of di-vacancies have been identified, the most common one being two vacancies at first nearest neighbours distance. Differences in the total number of defects with the applied strain are observed which is related to the production of a higher number of di-vacancies under compressive strain compared to tensile strain. We attribute this effect to the larger out-of-plane deformations of compressed samples that could favor the production of defects in closer proximity to others.

  2. Formation of topological defects

    International Nuclear Information System (INIS)

    Vachaspati, T.

    1991-01-01

    We consider the formation of point and line topological defects (monopoles and strings) from a general point of view by allowing the probability of formation of a defect to vary. To investigate the statistical properties of the defects at formation we give qualitative arguments that are independent of any particular model in which such defects occur. These arguments are substantiated by numerical results in the case of strings and for monopoles in two dimensions. We find that the network of strings at formation undergoes a transition at a certain critical density below which there are no infinite strings and the closed-string (loop) distribution is exponentially suppressed at large lengths. The results are contrasted with the results of statistical arguments applied to a box of strings in dynamical equilibrium. We argue that if point defects were to form with smaller probability, the distance between monopoles and antimonopoles would decrease while the monopole-to-monopole distance would increase. We find that monopoles are always paired with antimonopoles but the pairing becomes clean only when the number density of defects is small. A similar reasoning would also apply to other defects

  3. Photographic guide of selected external defect indicators and associated internal defects in sugar maple

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for sugar maple. Eleven types of external...

  4. Photographic guide of selected external defect indicators and associated internal defects in yellow-poplar

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow-poplar. Twelve types of external...

  5. Photographic guide of selected external defect indicators and associated internal defects in yellow birch

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow birch. Eleven types of external...

  6. Defects induced ferromagnetism in Mn doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Neogi, S.K. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, Kolkata 700009 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India)

    2011-02-15

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 {sup o}C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other ({approx}32{+-}4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 {mu}{sub B}/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: 2 at% Mn doped ZnO samples are single phase. All the samples exhibit ferromagnetism at room temperature. Correlation between saturation magnetization and positron annihilation lifetime established.

  7. Defects induced ferromagnetism in Mn doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Neogi, S.K.; Sarkar, A.; Mukadam, M.D.; Yusuf, S.M.; Banerjee, A.; Bandyopadhyay, S.

    2011-01-01

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 o C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (∼32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μ B /Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: → 2 at% Mn doped ZnO samples are single phase. → All the samples exhibit ferromagnetism at room temperature. → Correlation between saturation magnetization and positron annihilation lifetime established.

  8. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  9. Wheat and Cotton Harvests in Territory Occupied by the Islamic State

    Science.gov (United States)

    Simmons, Alexander

    The United Nations High Commissioner for Human Rights (UNHCR) estimates that the ongoing internecine conflicts in northern Iraq and Syria have displaced 13.6 million civilians. Withdrawal of Syrian government institutions and personnel from northern governorates has permitted the establishment and proliferation of several armed groups, most notably the Islamic State of Iraq and al-Sham (ISIL/ISIS). Multiple theaters of armed engagement between these militias and government forces have arrested vital societal functions at all scales in both nations. This humanitarian crisis is framed by near total collapse of 21st century civic infrastructure; including food systems, education, economic productivity, government services and internet activity. Syrian and Iraqi agricultural systems are particularly threatened. Both nations manage agricultural regions watered by the Euphrates River. The regions are widely irrigated and vulnerable to unskilled management. Local instability prohibits field study of farm abandonment along the Syrian and Iraq Euphrates. This research uses remotely sensed imagery to quantitatively assess annual growth and senescence of crops in northeastern Syria and Western Iraq. Vegetative indices are computed to identify within-year trends and test for deviations away from observed multi-year means. Climatic and precipitation data are paired with remotely sensing methodologies to capture causal relationships unrelated to conflict. Spectral signatures are used to classify crop types and land cover within 30x30 meter spatial resolution Landsat data. Data from 1999, 2004, 2006, 2013, 2014 and 2015 is presented to assess predicted agricultural losses associated with political destabilization.

  10. Entanglement entropy in integrable field theories with line defects II. Non-topological defect

    Science.gov (United States)

    Jiang, Yunfeng

    2017-08-01

    This is the second part of two papers where we study the effect of integrable line defects on bipartite entanglement entropy in integrable field theories. In this paper, we consider non-topological line defects in Ising field theory. We derive an infinite series expression for the entanglement entropy and show that both the UV and IR limits of the bulk entanglement entropy are modified by the line defect. In the UV limit, we give an infinite series expression for the coefficient in front of the logarithmic divergence and the exact defect g-function. By tuning the defect to be purely transmissive and reflective, we recover correctly the entanglement entropy of the bulk and with integrable boundary respectively.

  11. Multi-quantum spin resonances of intrinsic defects in silicon carbide

    International Nuclear Information System (INIS)

    Georgy Astakhov

    2014-01-01

    We report the observation of multi-quantum microwave absorption and emission, induced by the optical excitation of silicon vacancy related defects in silicon carbide (SiC). In particular, we observed two-quantum transitions from +3/2 to -1/2 and from -3/2 to +1/2 spin sublevels, unambiguously indicating the spin S = 3/2 ground state. Our findings may have implications for a broad range of quantum applications. On one hand, a single silicon vacancy defect is a potential source of indistinguishable microwave photon pairs due to the two-quantum emission process. On the other hand, the two-quantum absorption can be used generate a population inversion, which is a prerequisite to fabricate solid-state maser and quantum microwave amplifier. This opens a new platform cavity quantum electrodynamics experiments and quantum information processing on a single chip. (author)

  12. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  13. Compact Models for Defect Diffusivity in Semiconductor Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Lee, Stephen R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Department; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Department

    2017-09-01

    Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE

  14. Active Thermography for the Detection of Defects in Powder Metallurgy Compacts

    International Nuclear Information System (INIS)

    Benzerrouk, Souheil; Ludwig, Reinhold; Apelian, Diran

    2007-01-01

    Active thermography is an established NDE technique that has become the method of choice in many industrial applications which require non-contact access to the parts under test. Unfortunately, when conducting on-line infrared (IR) inspection of powder metallic compacts, complications can arise due the generally low emissivity of metals and the thermally noisy environment typically encountered in manufacturing plants. In this paper we present results of an investigation that explores the suitability of active IR imaging of powder metallurgy compacts for the detection of surface and sub-surface defects in the pre-sinter state and in an on-line manufacturing setting to ensure complete quality assurance. Additional off-line tests can be carried out for statistical quality analyses. In this research, the IR imaging of sub-surface defects is based on a transient instrumentation approach that relies on an electric control system which synchronizes and monitors the thermal response due to an electrically generated heat source. Preliminary testing reveals that this newly developed pulsed thermography system can be employed for the detection of subsurface defects in green-state parts. Practical measurements agree well with theoretical predictions. The inspection approach being developed can be used for the testing of green-state compacts as they exit the compaction press at speeds of up to 1,000 parts per hour

  15. Quantum control of topological defects in magnetic systems

    Science.gov (United States)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  16. Radiation effects and defects in lithium borate crystals

    Science.gov (United States)

    Ogorodnikov, Igor N.; Poryvay, Nikita E.; Pustovarov, Vladimir A.

    2010-11-01

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB3O5 (LBO), Li2B4O7 (LTB) and Li6Gd(BO3)3 (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li0 trapped-electron centers. At 290 K, the Li0 centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  17. Natural defects and defects created by ionic implantation in zinc tellurium

    International Nuclear Information System (INIS)

    Roche, J.P.; Dupuy, M.; Pfister, J.C.

    1977-01-01

    Various defects have been studied in ZnTe crystals by transmission electron microscope and by scanning electron microscope in cathodo-luminescence mode: grain boundaries, sub-grain boundaries, twins. Ionic implants of boron (100 keV - 2x10 14 and 10 15 ions cm -2 ) were made on these crystals followed by isochrone annealing (30 minutes) of zinc under partial pressure at 550, 650 and 750 0 C. The nature of the defects was determined by transmission electron microscope: these are interstitial loops (b=1/3 ) the size of which varies between 20 A (non-annealed sample) and 180A (annealed at 750 0 C). The transmission electron microscope was also used to make concentration profiles of defects depending on depth. It is found that for the same implant (2x10 14 ions.cm -2 ), the defect peak moves towards the exterior of the crystal as the annealing temperature rises (400 - 1000 and 7000 A for the three annealings). These results are explained from a model which allows for the coalescence of defects and considers the surface of the sample as being the principal source of vacancies. During the annealings, the migration of vacancies brings about the gradual annihilation of the implant defects. The adjustment of certain calculation parameters on the computer result in giving 2 eV as energy value for the formation of vacancies [fr

  18. Clinical study on temporal lobe epilepsy in childhood caused by temporal lobe space occupying lesions

    International Nuclear Information System (INIS)

    Matsuura, Mariko; Oguni, Hirokazu; Funatsuka, Makoto; Osawa, Makiko; Yamane, Fumitaka; Hori, Tomokatsu; Shimizu, Hiroyuki

    2008-01-01

    We studied the clinicoelectrical and neuroimaging features of 11 patients with symptomatic temporal lobe epilepsy (TLE) caused by temporal lobe space occupying lesions (SOLs), and compared its characteristics with those of 19 mesial TLE (MTLE) patients. Brain MRI demonstrated SOLs in the mesiotemporal lobe in 9, and laterotemporal lobe in the remaining 2 patients. Ten of the 11 patients successfully underwent surgery, which revealed tumors in 7 and focal cortical dysplasia in 3 patients. Comparisons of the clinical features between those with space occupying TLE (SOTLE) and MTLE showed that both conditions shared the same clinical seizure manifestations such as gastric uprising sensation or ictal fear and a favorable response to surgery. However, the patients with SOTLE had fewer febrile convulsion, and more frequent seizure recurrences as well as TLE EEG discharges and associations of the monophasic clinical course than those with MTLE. In addition, the MRI findings were characterized by unilateral hippocampal atrophy in MTLE and expanding or SOLs in the SOTLE group. Children with complex partial seizures of suspected temporal lobe origin should undergo extensive neuroimaging evaluation. (author)

  19. Modeling the relationships among internal defect features and external Appalachian hardwood log defect indicators

    Science.gov (United States)

    R. Edward. Thomas

    2009-01-01

    As a hardwood tree grows and develops, surface defects such as branch stubs and wounds are overgrown. Evidence of these defects remain on the log surface for decades and in many instances for the life of the tree. As the tree grows the defect is encapsulated or grown over by new wood. During this process the appearance of the defect in the tree's bark changes. The...

  20. Ability of multiaxial fatigue criteria accounting for stress gradient effect for surface defective material

    Directory of Open Access Journals (Sweden)

    Niamchaona Wichian

    2018-01-01

    Full Text Available New high strength steels are widely used nowadays in many industrial areas as in automotive industry. These steels are more resistant and provide higher fatigue limits than latter ones but they are also more sensible to small defects. Natural defects that outcome from metallurgy (as shrinkage, inclusion, void are not considered in this study. We focus on small manufacturing defects such as cutting edge defects generated by punching or other surface defects due to stamping. These defects are harmful on the material fatigue behaviour due to high stress concentration at defects root. They also generate stress gradient that is beneficial from the fatigue strength point of view. This study focusses on the stress gradient (it does not account for the size effect from cylindrical defect on specimen edge. Practically a normal stress gradient is added in multiaxial fatigue criteria formulation. Both critical plane approach and integral approach are involved in the present study. This gradient is calculated from stress states at defects root by using FEM. Criteria fatigue function at N cycles is used to assess the material fatigue strength. Obviously multiaxial fatigue criteria accounting for stress gradient give more precise fatigue functions than criteria that do not consider the gradient influence.

  1. AFM studies of a new type of radiation defect on mica surfaces caused by highly charged ion impact

    International Nuclear Information System (INIS)

    Ruehlicke, C.; Briere, M.A.; Schneider, D.

    1994-01-01

    Radiation induced defects on mica caused by the impact of slow very highly charged ions (SVHCI) have been investigated with an atomic force microscope (AFM). Freshly cleaved surfaces of different types of muscovite were irradiated with SVHCI extracted from the LLNL electron beam ion trap (EBIT) at velocities of ca. 2 keV/amu. Atomic force microscopy of the surface reveals the formation of blisterlike defects associated with single ion impact. The determined defect volume which appears to increase linearly with the incident charge state and exhibits a threshold incident charge state has been determined using the AFM. These results indicate that target atoms are subjected to mutual electrostatic repulsion due to ionization through potential electron emission upon approach of the ion. If the repulsion leads to permanent atomic displacement, surface defects are formed

  2. Automatic classification of blank substrate defects

    Science.gov (United States)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  3. Optical density of states in ultradilute GaAsN alloy: Coexistence of free excitons and impurity band of localized and delocalized states

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, Sumi; Pal, Bipul; Bansal, Bhavtosh, E-mail: bhavtosh@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia 741252, West Bengal (India); Das, Sanat K.; Dhar, Sunanda [Department of Electronic Science, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2014-07-14

    Optically active states in liquid phase epitaxy-grown ultra-dilute GaAsN are studied. The feature-rich low temperature photoluminescence spectrum has contributions from excitonic band states of the GaAsN alloy, and two types of defect states—localized and extended. The degree of delocalization for extended states both within the conduction and defect bands, characterized by the electron temperature, is found to be similar. The degree of localization in the defect band is analyzed by the strength of the phonon replicas. Stronger emission from these localized states is attributed to their giant oscillator strength.

  4. Defect production due to quenching through a multicritical point

    International Nuclear Information System (INIS)

    Divakaran, Uma; Mukherjee, Victor; Dutta, Amit; Sen, Diptiman

    2009-01-01

    We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/τ, where τ is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble–Zurek scaling form n∼1/τ dν/(zν+1) , where d is the spatial dimension, and ν and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n∼1/τ d/(2z 2 ) , where the exponent z 2 determines the behavior of the off-diagonal term of the 2 × 2 Landau–Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point

  5. Electron-spin-resonance study of radiation-induced paramagnetic defects in oxides grown on (100) silicon substrates

    International Nuclear Information System (INIS)

    Kim, Y.Y.; Lenahan, P.M.

    1988-01-01

    We have used electron-spin resonance to investigate radiation-induced point defects in Si/SiO 2 structures with (100) silicon substrates. We find that the radiation-induced point defects are quite similar to defects generated in Si/SiO 2 structures grown on (111) silicon substrates. In both cases, an oxygen-deficient silicon center, the E' defect, appears to be responsible for trapped positive charge. In both cases trivalent silicon (P/sub b/ centers) defects are primarily responsible for radiation-induced interface states. In earlier electron-spin-resonance studies of unirradiated (100) substrate capacitors two types of P/sub b/ centers were observed; in oxides prepared in three different ways only one of these centers, the P/sub b/ 0 defect, is generated in large numbers by ionizing radiation

  6. Holographic Chern-Simons defects

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-01-01

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  7. Point defects in hexagonal germanium carbide monolayer: A first-principles calculation

    International Nuclear Information System (INIS)

    Ersan, Fatih; Gökçe, Aytaç Gürhan; Aktürk, Ethem

    2016-01-01

    Highlights: • Semiconductor GeC turns into metal by introducing a carbon vacancy. • Semiconductor GeC becomes half-metal by a single Ge vacancy. • Band gap value of GeC system can be tuned in the range of 0.308–1.738 eV by antisite or Stone–Wales defects. - Abstract: On the basis of first-principles plane-wave calculations, we investigated the electronic and magnetic properties of various point defects including single Ge and C vacancies, Ge + C divacancy, Ge↔C antisites and the Stone–Wales (SW) defects in a GeC monolayer. We found that various periodic vacancy defects in GeC single layer give rise to crucial effects on the electronic and magnetic properties. The band gaps of GeC monolayer vary significantly from 0.308 eV to 1.738 eV due to the presence of antisites and Stone–Wales defects. While nonmagnetic ground state of semiconducting GeC turns into metal by introducing a carbon vacancy, it becomes half-metal by a single Ge vacancy with high magnetization (4 μ_B) value per supercell. All the vacancy types have zero net magnetic moments, except single Ge vacancy.

  8. Point defects in hexagonal germanium carbide monolayer: A first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökçe, Aytaç Gürhan [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-12-15

    Highlights: • Semiconductor GeC turns into metal by introducing a carbon vacancy. • Semiconductor GeC becomes half-metal by a single Ge vacancy. • Band gap value of GeC system can be tuned in the range of 0.308–1.738 eV by antisite or Stone–Wales defects. - Abstract: On the basis of first-principles plane-wave calculations, we investigated the electronic and magnetic properties of various point defects including single Ge and C vacancies, Ge + C divacancy, Ge↔C antisites and the Stone–Wales (SW) defects in a GeC monolayer. We found that various periodic vacancy defects in GeC single layer give rise to crucial effects on the electronic and magnetic properties. The band gaps of GeC monolayer vary significantly from 0.308 eV to 1.738 eV due to the presence of antisites and Stone–Wales defects. While nonmagnetic ground state of semiconducting GeC turns into metal by introducing a carbon vacancy, it becomes half-metal by a single Ge vacancy with high magnetization (4 μ{sub B}) value per supercell. All the vacancy types have zero net magnetic moments, except single Ge vacancy.

  9. Influence of defects on diamond detection properties

    International Nuclear Information System (INIS)

    Tromson, Dominique

    2000-01-01

    This work focuses on the study of the influence of defects on the detection properties of diamond. Devices are fabricated using natural as well as synthetic diamond samples grown using the plasma enhanced chemical vapour deposition (CVD). Optical studies with infrared and Raman spectrometry are used to characterise the material properties as well as thermoluminescence and thermally stimulated current measurements. These thermally stimulated analyses reveal the presence of several trapping levels with emission temperatures below or near room temperature as well as an important level near 550 K. The influence of these defects on the alpha and X-ray detector responses is studied as a function of the initial state of the detectors (thermal treatment, irradiation) and of the measurement conditions (time, temperature). The results show a significant correlation between the charged state of traps, namely filled or empty and the response of the detectors. It appears that filling and emptying the traps respectively enhances the sensitivity and stability of detection devices to be used at room temperature and decreases the detection properties at higher temperature. Localised measurements are also used to study the spatial inhomogeneity of natural and CVD diamond samples from the 2D mapping of the detector responses. Non uniformity are attributed to a non-isotropic distribution of defects in natural diamonds. By comparing the detector responses to the topographical map of CVD samples a correlation appears between grains and grain boundaries with the variation of the detector sensitivity. Devices fabricated for detection applications with CVD samples are presented and namely for the monitoring and profiling of synchrotron beams as well as dose rate measurements in harsh environments. (author) [fr

  10. First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001) - β2(2x4)

    Science.gov (United States)

    Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko

    2018-06-01

    We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.

  11. Media Spectacle, Insurrection and the Crisis of Neoliberalism from the Arab Uprisings to Occupy Everywhere!

    Science.gov (United States)

    Kellner, Douglas

    2013-01-01

    I argue that 2011 witnessed a series of challenges to neoliberalism on a global scale perhaps not seen since the political upheavals of 1968, and that media spectacle provided the form of a series of global insurgences from the North African Arab Uprisings to the Occupy movements. Crises of neoliberalism also generated movements in Italy, Spain,…

  12. [Medical waste management in healthcare centres in the occupied Palestinian territory].

    Science.gov (United States)

    Al-Khatib, Issam A

    2007-01-01

    Medical waste management in primary and secondary healthcare centres in the occupied Palestinian territory was assessed. The overall monthly quantity of solid healthcare waste was estimated to be 512.6 tons. Only 10.8% of the centres completely segregated the different kinds of healthcare waste and only 15.7% treated their medical waste. In the centres that treated waste, open burning was the main method of treatment. The results indicate that Palestinians are exposed to health and environmental risks because of improper disposal of medical waste and steps are needed to improve the situation through the establishment and enforcement of laws, provision of the necessary infrastructure for proper waste management and training of healthcare workers and cleaners.

  13. Brown colour in natural diamond and interaction between the brown related and other colour-inducing defects

    International Nuclear Information System (INIS)

    Fisher, D; Sibley, S J; Kelly, C J

    2009-01-01

    Absorption spectroscopy results on a range of type II diamonds are presented which enable the electronic states associated with them to be mapped out. High pressure, high temperature treatment of brown type IIa diamonds has enabled an activation energy for the removal of the brown colour of 8.0 ± 0.3 eV to be determined and this is consistent with expectations associated with the currently accepted vacancy cluster model for the defect. Theoretical calculations suggest that this defect will generate partially filled gap states about 1 eV above the valence band. Data on the photochromic behaviour of bands producing pink colour and their relation to brown colour are presented; these suggest that the pink bands are produced from two independent transitions with ground states close to each other just below the middle of the band gap. Compensation of neutral boron by charge transfer from states associated with brown colour is demonstrated via the correlated increase in neutral boron and decrease in brown colour on high pressure, high temperature treatment to remove the defects causing the brown colour.

  14. 31phosphorus spectroscopy of space-occupying lesions of the salivary glands. Clinic results and differential diagnosis

    International Nuclear Information System (INIS)

    Vogl, T.J.; Dadashi, A.; Jassoy, A.; Becker, C.; Reimann, V.; Lissner, J.

    1993-01-01

    In a prospective study, 15 normals and 20 patients with space-occupying lesions of the salivary glands were examined by MRT images and by in vivo 31 phosphorus spectroscopy. The spectra of malignant tumours showed a significant increase in concentration of phosphomonoesters, phosphodiesters and inorganic phosphates when compared with normals. In addition there was an enormous reduction in creatine phosphates. Increased pH values and marked increase in concentration of inorganic phosphates correlated with poorly vascularised necrotic tumour segments. Concentrations of ATP and PCr were similar to normal muscle tissue. High concentrations of PME and PDE correlated directly with the proliferation of tumour cells and were an important marker for the bioenergy and phospholipid metabolism of the growing tumour. Standardised in vivo 31 phosphorus spectroscopy of space-occupying lesions of the salivary glands provides noninvasive prognostic information on the type and behaviour of the lesion and is complementary to clinical and histological findings. (orig.) [de

  15. Pairs of chalcogen impurities in silicon

    International Nuclear Information System (INIS)

    Paula Junior, H.F. de.

    1988-01-01

    The electronic structure of complex defects in silicon involving oxygen and sulfur (O-O, S-O and S-S), occupying different positions in the host crystal is studied. It is shown that the many-electron effects (via configuration interaction) are important to describe the correct ground state. The orbital base set is obtained through the LCAO-MO-INDO/S method. (author) [pt

  16. Characterization of lacunar defects by positrons annihilation

    CERN Document Server

    Barthe, M F; Blondiaux, G

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spec...

  17. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  18. Systematic magnetization measurements on single crystalline Bi2Sr2CaCu2O8+δ with columnar defects

    International Nuclear Information System (INIS)

    Kimura, Kazuhiro; Koshida, Ryo; Kwok, W.K.; Crabtree, G.W.; Okayasu, Satoru; Sataka, Masao; Kazumata, Yukio; Kadowaki, Kazuo

    1999-01-01

    The authors have performed systematic magnetization measurements on single crystalline Bi 2 Sr 2 CaCu 2 O 8+δ with columnar defects of B Φ = 0.005 to 1 T by using a SQUID magnetometer. Magnetization hysteresis curves of the pristine sample show a weak irreversible behavior in the vortex liquid state, suggesting the existence of the new vortex state in the vortex liquid state. This weak irreversible region persists systematically in the samples with columnar defects even up to B Φ = 1 T. It is shown that the weak hysteresis of magnetization is sensitive to the disorder level of the sample and shifts systematically to higher temperature and field region with increasing the number of columnar defects. This behavior clearly indicates that effective pinning mechanism exists even in the vortex liquid state and generates a finite critical current

  19. CNEN-NN 6.04 standard adaptation in Brazil for industrial radiographic work in occupied areas or public roads

    International Nuclear Information System (INIS)

    Teixeira, P.B.; Aquino, J.O. de; Souza, L.A. de

    1996-01-01

    The industrial radiographic work that uses mobile equipment in Brazil must be in compliance with the National Commission of Nuclear Energy (CNEN) Regulation CNEN-NN 6.04. It states that every works that employs radiographic equipment in occupied areas or public roads requires a specific radiation protection procedure. This procedure must be approved by the CNEN at least fifteen days before starting the job. It is not always possible to the users to get their licensing work at time, because the industrial radiography jobs need immediate actions. Furthermore, the CNEN-NN 6.04 Regulation does not specify what type of information the procedures should involve, so that some important information had been often missed, causing a delaying in the licensing procedures. The corrective and preventive actions taken by the CNEN to optimize this kind of jobs and to overcome bureaucratic difficulties are described. A standard radiation protection procedure is also presented. (authors). 2 refs., 2 tabs

  20. Defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Ibrahim Ahmad; Ab Razak Hamzah; Wan Saffiey Wan Abdullah

    2008-08-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 kWatt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with ThermofitTMPro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔΤ m ax and the time of its appearance, τ m ax (ΔΤ). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔΤ m ax), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defects are at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (Author)

  1. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2001-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species

  2. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Science.gov (United States)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  3. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2004-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species. (author)

  4. Theory of defects in Si and Ge: Past, present and recent developments

    International Nuclear Information System (INIS)

    Estreicher, S.K.; Backlund, D.; Gibbons, T.M.

    2010-01-01

    Over the past few decades, considerable progress has been achieved in the theoretical predictions of a wide range of properties of defects in semiconductors. In addition to structures, energetics, spin and charge densities, theory now routinely predicts accurate vibrational properties of defects, and thus connects to the optical characterization of light impurities. However, the positions of gap levels have yet to be predicted with systemically reliable accuracy. Today, supercells much larger than in the past are being used to describe defect centers from first principles. Systems large enough to study the dynamics of extended defects can be handled near the first-principles level. This paper contains a brief review of the key developments that have rendered theory quantitatively useful to experimentalists and an overview of the current 'state-of-the-art' and ongoing developments. Some of the remaining challenges are discussed, with examples in Si and Ge.

  5. Investigation of defects in Cu(In,Ga)S{sub 2} and Cu(In,Ga)Se{sub 2} solar cells by space charge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riediger, Julia; Ohland, Joerg; Knipper, Martin; Parisi, Juergen; Riedel, Ingo [Thin Film Photovoltaics, Energy- and Semiconductor Research Laboratory, University of Oldenburg, D-26111 Oldenburg (Germany); Meeder, Alexander [Soltecture GmbH, 12487 Berlin (Germany)

    2012-07-01

    If deep defect states in the absorber of a solar cell act as recombination centers, they may limit the carrier lifetime and thus the open circuit voltage. This is related to the defect's activation energy and spatial position. In this study the defect landscape of chalcopyrite thin film solar cells with varied absorber composition was investigated by space charge spectroscopy. The absorber layer in Cu(In,Ga)S{sub 2} samples arises from rapid thermal process (RTP) in sulfur vapor while Cu(In,Ga)Se{sub 2} absorbers were processed via co-evaporation of the constituents. Several defect states were found by deep level spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). With the knowledge of the defect activation energies we derived the spatial defect concentrations from (illuminated) capacitance-voltage (CV) measurements and discuss the results for both material systems. To identify the often discussed ''N1'' defect, the measurements were repeated after annealing and changes in the defect spectra were evaluated.

  6. Photoluminescence as a tool for characterizing point defects in semiconductors

    Science.gov (United States)

    Reshchikov, Michael

    2012-02-01

    Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.

  7. Ab-initio study of magnetism behavior in TiO{sub 2} semiconductor with structural defects

    Energy Technology Data Exchange (ETDEWEB)

    Zarhri, Z., E-mail: z.zarhri@gmail.com; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-15

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa–Kohn–Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO{sub 2} such as Titanium interstitial (Ti{sub i}), Titanium anti-sites (Ti{sub o}), Titanium vacancies (V{sub Ti}), Oxygen interstitial (O{sub i}), Oxygen anti-sites (O{sub Ti}) and oxygen vacancies (V{sub o}). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material. - Highlights: • Green function technique is used to study disordered systems. • We used DFT to study electronic structure of TiO{sub 2} perturbed by defects. • TiO{sub 2} with titanium antisite defect posesses a magnetic behavior. • The transition temperature is computed using the Mean Field Approximation.

  8. Quantitative determination of charge transfer parameters of photorefractive BaTiO3:Rh from EPR-based defect studies

    International Nuclear Information System (INIS)

    Veber, C; Meyer, M; Schirmer, O F; Kaczmarek, M

    2003-01-01

    Optical absorption bands can be used as fingerprints of defects and their charge states in insulators and semiconductors. On the basis of the photochromicity usually shown by such materials, a method is introduced by which the optical bands are assigned to the defects and their charge states. It is based on simultaneous measurements of the light-induced changes of the optical absorption and of the corresponding EPR signals. Moreover, indirectly optical bands of EPR-silent defects can also be labelled in this way, strongly widening the scope of EPR based defect studies. We apply this method to the infrared-sensitive photorefractive system BaTiO 3 :Rh, where illumination leads to recharging among the valence states Rh 5+ , Rh 4+ and Rh 3+ . The values of all parameters governing the charge transfers responsible are inferred from the magnitude of the absorption bands, the absolute determination of their absorption cross-sections and the kinetics of the absorption changes under illumination. In contrast to previous investigations, these parameters are deduced independently of photorefractive measurements

  9. On the investigation of electronic defect states in ZnO thin films by space charge spectroscopy with optical excitation

    Science.gov (United States)

    Schmidt, Matthias; Wenckstern, Holger von; Pickenhain, Rainer; Grundmann, Marius

    2012-09-01

    Electronic defect states in a n-type conducting zinc oxide thin film sample were investigated by means of space charge spectroscopy focussing on levels in the midgap region as well as on hole traps. To overcome the experimental difficulties arising from the wide bandgap and the lack of p-type conduction, optical excitation was employed to measure the emission of trapped charge carriers from these levels. Therefore - besides deep-level transient spectroscopy measurements - photo-capacitance, optically chopped photo-current, minority carrier transient spectroscopy, and optical capacitance-voltage experiments were conducted. In doing so, a midgap level labelled T4, and hole traps labelled TH1 and TH2 were detected. In the case of T4 and TH1 the photo-ionisation cross-section spectra were determined.

  10. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Han, Hakseung; Goldberg, Kenneth; Mochi, Iacopp; Gullikson, Eric M.

    2009-08-01

    Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

  11. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Xiaoling [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Liwei [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China); Zheng, Yisong, E-mail: zhengys@jlu.edu.cn [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China)

    2016-04-22

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized. - Highlights: • The TI helical state moves to nanoribbon edge in a gated ZENR-BG. • The gapless modes of LD-BG at the two line defects are not equal to each other. • The Kramers pairs are still valley polarized in a gated LD-BG.

  12. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    Science.gov (United States)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  13. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  14. Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond

    DEFF Research Database (Denmark)

    Radko, Ilya; Boll, Mads; Israelsen, Niels Møller

    2016-01-01

    -implanted NV defects in a single-crystal bulk diamond. Using a spherical metallic mirror with a large radius of curvature compared to the optical spot size, we perform calibrated modifications of the local density of states around NV defects and observe the change of their total decay rate, which is further...... used for IQE quantification. We also show that at the excitation wavelength of 532 nm, photo-induced relaxation cannot be neglected even at moderate excitation powers well below the saturation level. For NV defects shallow implanted 4.5 ± 1 and 8 ± 2 nm below the diamond surface, we determine...

  15. Laterality defects in the national birth defects prevention study 1998-2007 birth prevalence and descriptive epidemiology

    Science.gov (United States)

    Little is known epidemiologically about laterality defects. Using data from the National Birth Defects Prevention Study (NBDPS), a large multi-site case-control study of birth defects, we analyzed prevalence and selected characteristics in children born with laterality defects born from 1998 to 2007...

  16. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  17. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk

  18. Coping with unobservable and mis-classified states in capture-recapture studies

    Directory of Open Access Journals (Sweden)

    Kendall, W. L.

    2004-01-01

    Full Text Available Multistate mark-recapture methods provide an excellent conceptual framework for considering estimation in studies of marked animals. Traditional methods include the assumptions that (1 each state an animal occupies is observable, and (2 state is assigned correctly at each point in time. Failure of either of these assumptions can lead to biased estimates of demographic parameters. I review design and analysis options for minimizing or eliminating these biases. Unobservable states can be adjusted for by including them in the state space of the statistical model, with zero capture probability, and incorporating the robust design, or observing animals in the unobservable state through telemetry, tag recoveries, or incidental observations. Mis¿classification can be adjusted for by auxiliary data or incorporating the robust design, in order to estimate the probability of detecting the state an animal occupies. For both unobservable and mis-classified states, the key feature of the robust design is the assumption that the state of the animal is static for at least two sampling occasions

  19. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    Science.gov (United States)

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  20. From occupying to inhabiting - a change in conceptualising comfort

    Energy Technology Data Exchange (ETDEWEB)

    Jaffari, Svenja D; Matthews, Ben, E-mail: svenja@mci.sdu.d, E-mail: matthews@mci.sdu.d [SPIRE Center for Participatory Innovation Research, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Soenderborg, DK (Denmark)

    2009-11-01

    The concept of 'comfort' has been influential in shaping aspects of our built environment. For the construction industry, comfort is predominantly understood in terms of the balance between an ideal human physiological state and a finite number of measurable environmental parameters that can be controlled (temperature, humidity, air quality, daylighting, noise). It is such a notion of comfort that has informed the establishment of universally applied comfort standards and guidelines for the built environment. When buildings rigidly conform to these standards, they consume vast quantities of energy and are responsible for higher levels of GHG emissions. Recent researchers have challenged such instrumental definitions of comfort on moral and environmental grounds. In this paper, we address this issue from two different standpoints: one empirical, one related to the design of technology. Empirically, we present an analysis of ethnographic field material that has examined how, in what circumstances, and at what times ordinary users employ energy-intensive indoor climate technologies in their daily lives. We argue that when comfort is viewed as an achievement, rather than as a reified and static ideal homeostasis between humans and their environmental conditions, it becomes easier to appreciate the extent to which comfort is, for ordinary people, personally idiosyncratic, culturally relative, socially influenced and highly dependent on temporality, sequence and activity. With respect to design, we introduce a set of provocative designed prototypes that embody alternative conceptions of 'comfort' than those to which the building industry typically subscribes. Our discussion has critical implications for the types of technologies that result from a 'comfort standards' conception. Firstly, we show that comfort is not simply a homeostatic equilibrium-such a view is overly narrow, inflexible and ultimately an inaccurate conception of what

  1. In-Situ Photoexcitation-Induced Suppression of Point Defect Generation in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Cho, C.R.; Rozgonyi, G.A.; Yarykin, N.; Zuhr, R.A.

    1999-01-01

    The formation of vacancy-related defects in n-type silicon has been studied immediately after implantation of He, Si, or Ge ions at 85 K using in-situ DLTS. A-center concentrations in He-implanted samples reach a maximum immediately after implantation, whereas, with Si or Ge ion implanted samples they continuously increase during subsequent anneals. It is proposed that defect clusters, which emit vacancies during anneals, are generated in the collision cascades of Si or Ge ions. An illumination-induced suppression of A-center formation is seen immediately after implantation of He ions at 85 K. This effect is also observed with Si or Ge ions, but only after annealing. The suppression of vacancy complex formation via photoexcitation is believed to occur due to an enhanced recombination of defects during ion implantation, and results in reduced number of vacancies remaining in the defect clusters. In p-type silicon, a reduction in K-center formation and an enhanced migration of defects are concurrently observed in the illuminated sample implanted with Si ions. These observations are consistent with a model where the injection of excess carriers modifies the defect charge state and impacts their diffusion

  2. Betaine supplementation reduces congenital defects after prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Sheehan, Megan M.; Ma, Pei; Peterson, Lindsy M.; Linask, Kersti K.; Jenkins, Michael W.; Rollins, Andrew M.; Watanabe, Michiko

    2016-03-01

    Over 500,000 women per year in the United States drink during pregnancy, and 1 in 5 of this population also binge drink. As high as 20-50% of live-born children with prenatal alcohol exposure (PAE) present with congenital heart defects including outflow and valvuloseptal anomalies that can be life-threatening. Previously we established a model of PAE (modeling a single binge drinking episode) in the avian embryo and used optical coherence tomography (OCT) imaging to assay early-stage cardiac function/structure and late-stage cardiac defects. At early stages, alcohol/ethanol-exposed embryos had smaller cardiac cushions and increased retrograde flow. At late stages, they presented with gross morphological defects in the head and chest wall, and also exhibited smaller or abnormal atrio-ventricular (AV) valves, thinner interventricular septae (IVS), and smaller vessel diameters for the aortic trunk branches. In other animal models, the methyl donor betaine (found naturally in many foods such as wheat bran, quinoa, beets and spinach) ameliorates neurobehavioral deficits associated with PAE but the effects on heart structure are unknown. In our model of PAE, betaine supplementation led to a reduction in gross structural defects and appeared to protect against certain types of cardiac defects such as ventricular septal defects and abnormal AV valvular morphology. Furthermore, vessel diameters, IVS thicknesses and mural AV leaflet volumes were normalized while the septal AV leaflet volume was increased. These findings highlight the importance of betaine and potentially methylation levels in the prevention of PAE-related birth defects which could have significant implications for public health.

  3. Magnetic signature of surface defects at nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Vollmers, Nora Jenny; Gerstmann, Uwe; Schmidt, Wolf Gero [Theoretische Physik, Universitaet Paderborn (Germany)

    2011-07-01

    The n-type doping of diamond has been a long-standing issue, which recently gained attention in the context of nanodiamonds. Attempts of doping with nitrogen failed to result in the Electron paramagnetic Resonance (EPR) fingerprints expected from bulk material. Instead, the nanodiamond signals show a much larger deviation from the free-electron g-value and are believed to be related to intrinsic, carbon inherited defects. However, the absence of the bulk-like EPR spectra does not mean that nitrogen is not incorporated at all. The N atoms could be built in predominantly at or at least close to the surfaces yielding EPR spectra, very different from those measured in the bulk. In this work, we elucidate the situation by investigating the magnetic signature of paramagnetic defects in the nanodiamonds. We use the gauge-including projector augmented plane wave (GI-PAW) approach to calculate the hyperfine splittings and the elements of the electronic g-tensor. Taking the C(100) surface as a first model system, a possible contribution of nitrogen is discussed by comparing EPR parameters for different N incorporation depths: Incorporated directly at the surface, N gives rise to surface states similar to intrinsic carbon dangling bond-like states. Otherwise N is able to introduce surface conductivity as demonstrated by calculated effective mass tensors.

  4. Study of point defects in pure iron by means of electrical resistivity

    International Nuclear Information System (INIS)

    Minier-Cassayre, C.

    1965-04-01

    In the first part of this work, after having reviewed the production, observation and the annealing of point defects In metals, we resume the present state of research. In the second part, we explain the techniques we have employed to produce point defects at low temperatures: irradiation, quenching and cold-work; and go on to the study of their migration and annealing. The experimental results obtained for pure iron and for iron containing certain impurities are presented in the third part. In the fourth part we suggest a model which explains the different stages of annealing observed, and their properties. We then compare the energies of interaction between point defects with the values deduced from the theory of elasticity. (author) [fr

  5. Identification of nickel-vacancy defects by combining experimental and ab initio simulated photocurrent spectra

    Science.gov (United States)

    Londero, E.; Bourgeois, E.; Nesladek, M.; Gali, A.

    2018-06-01

    There is a continuous search for solid state spin qubits operating at room temperature with excitation in the infrared communication bandwidth. Recently, we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin state of nitrogen-vacancy (NV) centers in diamond, a technique which is promising for applications in quantum information technology. By measuring the photoionization spectra on a diamond crystal, we found two ionization thresholds of unknown origin. On the same sample we also observed absorption and photoluminescence signatures that were identified in the literature as Ni-associated defects. We performed ab initio calculations of the photoionization cross section of the nickel split-vacancy complex (NiV) and N-related defects in their relevant charge states and fitted the concentration of these defects to the measured photocurrent spectrum, which led to a surprising match between experimental and calculated spectra. This study enabled us to identify the two unknown ionization thresholds with the two acceptor levels of NiV. Because the excitation of NiV is in the infrared, the photocurrent detected from the paramagnetic NiV color centers is a promising way towards the design of electrically readout qubits.

  6. Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations

    International Nuclear Information System (INIS)

    Nerikar, Pankaj; Watanabe, Taku; Tulenko, James S.; Phillpot, Simon R.; Sinnott, Susan B.

    2009-01-01

    The stability range of intrinsic point defects in uranium dioxide is determined as a function of temperature, oxygen partial pressure, and non-stoichiometry. The computational approach integrates high accuracy ab initio electronic-structure calculations and thermodynamic analysis supported by experimental data. In particular, the density functional theory calculations are performed at the level of the spin polarized, generalized gradient approximation and includes the Hubbard U term; as a result they predict the correct anti-ferromagnetic insulating ground state of uranium oxide. The thermodynamic calculations enable the effects of system temperature and partial pressure of oxygen on defect formation energy to be determined. The predicted equilibrium properties and defect formation energies for neutral defect complexes match trends in the experimental literature quite well. In contrast, the predicted values for charged complexes are lower than the measured values. The calculations predict that the formation of oxygen interstitials becomes increasingly difficult as higher temperatures and reducing conditions are approached

  7. Defects and their inspectability by UT in current heavy section steels for nuclear power plant

    International Nuclear Information System (INIS)

    Onodera, S.; Ohkubo, Y.; Takeya, M.; Wataya, M.

    1983-01-01

    The ultrasonic examination (UT, hereinafter) techniques and their equipment have been improved in search of the defects in steels and structures for nuclear power plant components, while the acceptance standards of the defects became continually more stringent in a ''sword and armour'' race. Consequently, the steel making technique had to respond in minimizing the possible defects in steels with successful results in the past two decades. The conventional UT procedures cover basically the following categories of function. 1) Detection and location of defects. 2) Sizing of defects. 3) Characterization of defects. 4) Structure and residual stress effects in ultrasonic field. With proper considerations to the configuration of the steels under examination, the inspectability of the possible defects is further to be optimized. However, the final evaluation has often to be left to the discretion of a competent NDE engineer, well experienced in UT and knowledgeable in steel making. It is therefore the intention of the present paper to review the states-of-the-art of the defects found in the current heavy section steels for primary and secondary components of nuclear power plant, manufactured by the authors' plant. Typical defects, detectable size of them and inspectability of them are discussed

  8. Classification of defects in honeycomb composite structure of helicopter rotor blades

    International Nuclear Information System (INIS)

    Balasko, M.; Svab, E.; Molnar, Gy.; Veres, I.

    2005-01-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected

  9. Classification of defects in honeycomb composite structure of helicopter rotor blades

    Science.gov (United States)

    Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.

    2005-04-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.

  10. 48 CFR 1615.407-1 - Rate reduction for defective pricing or defective cost or pricing data.

    Science.gov (United States)

    2010-10-01

    ... defective pricing or defective cost or pricing data. 1615.407-1 Section 1615.407-1 Federal Acquisition... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1615.407-1 Rate reduction for defective pricing or defective cost or pricing data. The clause set forth in section 1652.215-70...

  11. 48 CFR 1652.215-70 - Rate Reduction for Defective Pricing or Defective Cost or Pricing Data.

    Science.gov (United States)

    2010-10-01

    ... Defective Pricing or Defective Cost or Pricing Data. 1652.215-70 Section 1652.215-70 Federal Acquisition... CLAUSES AND FORMS CONTRACT CLAUSES Texts of FEHBP Clauses 1652.215-70 Rate Reduction for Defective Pricing or Defective Cost or Pricing Data. As prescribed in 1615.407-1, the following clause shall be...

  12. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  13. Point defects in platinum

    International Nuclear Information System (INIS)

    Piercy, G.R.

    1960-01-01

    An investigation was made of the mobility and types of point defect introduced in platinum by deformation in liquid nitrogen, quenching into water from 1600 o C, or reactor irradiation at 50 o C. In all cases the activation energy for motion of the defect was determined from measurements of electrical resistivity. Measurements of density, hardness, and x-ray line broadening were also made there applicable. These experiments indicated that the principal defects remaining in platinum after irradiation were single vacant lattice sites and after quenching were pairs of vacant lattice sites. Those present after deformation In liquid nitrogen were single vacant lattice sites and another type of defect, perhaps interstitial atoms. (author)

  14. Carbon related defects in irradiated silicon revisited

    KAUST Repository

    Wang, H.

    2014-05-09

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci (SiI), Ci O i, Ci Cs, and Ci Oi (SiI) with respect to the Fermi energy for all possible charge states. The Ci (SiL) 2+ state dominates in almost the whole Fermi energy range. The unpaired electron in the Ci O i + state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the Ci Cs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the Ci Oi (SiL) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.

  15. Carbon related defects in irradiated silicon revisited

    KAUST Repository

    Wang, H.; Chroneos, A.; Londos, C.A.; Sgourou, E.N.; Schwingenschlö gl, Udo

    2014-01-01

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci (SiI), Ci O i, Ci Cs, and Ci Oi (SiI) with respect to the Fermi energy for all possible charge states. The Ci (SiL) 2+ state dominates in almost the whole Fermi energy range. The unpaired electron in the Ci O i + state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the Ci Cs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the Ci Oi (SiL) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.

  16. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Role of interfacial defect creation-annihilation processes at grain boundaries on the diffusional creep of polycrystalline alumina

    International Nuclear Information System (INIS)

    Ikuma, Y.; Gordon, R.S.

    1981-01-01

    It is generally assumed in the diffusional creep of a polycrystalline solid that grain boundaries act as perfect sources and sinks for lattice defects. However, if this assumption is not valid, then diffusional creep can become rate limited by interfacial defect reactions at grain boundaries. Steady state diffusional creep data will be presented at 1450 to 1500 0 C for polycrystalline alumina doped with Ti and a Mg-Ti co-dopant, which are consistent with interfacial controlled kinetics over an intermediate grain size range. A new type of creep deformation map will be presented which reveals the range of grain sizes and impurity concentrations over which interfacial defect creation and/or annihilation processes are important in the steady state creep of polycrystalline alumina

  18. Neutron scattering from a substitutional mass defect

    International Nuclear Information System (INIS)

    Williams, R.D.; Lovesey, S.W.

    1985-06-01

    The dynamic structure factor is calculated for a low concentration of light mass scatterers substituted in a cubic crystal matrix. A new numerical method for the exact calculation is demonstrated. A local density of states for the low momentum transfer limit, and the shifts and widths of the oscillator peaks in the high momentum transfer limit are derived. The limitations of an approximation which decouples the defect from the lattice is discussed. (author)

  19. Occupy Wall Street? Position-Blindness in the New Leftist Revolution

    Directory of Open Access Journals (Sweden)

    Agnes Gagyi

    2012-03-01

    Full Text Available The following I write as an Eastern European sociologist and activist, departing from the basic question of how local movements in my region might connect with Occupy Wall Street (OWS. By this time, it is evident that OWS has made an indelible mark on present-day discussions on globalisation and world order. Immanuel Wallerstein (2011, for example, has spoken directly of an ongoing transformation in world economy, asking whether the present crisis in the dominant model of capitalism-cum-democracy will be resolved through a shift towards a less democratic and more unequal system, or whether global social movements might help bring about a more equal and democratic social order. Keeping in sight the controversial lessons of the alter-globalism movement in Eastern Europe, I will argue that certain characteristics of the OWS movementthemselves pose an obstacle to the development of a truly global social movement

  20. Evolution of two-dimensional soap froth with a single defect

    International Nuclear Information System (INIS)

    Levitan, B.

    1994-01-01

    The temporal evolution of two-dimensional soap froth, starting from a particle initial state, is studied. The initial state is a hexagonal array of bubbles in which a single defect is introduced. A cluster of transformed bubbles grows; the time dependence of the number of bubbles in this cluster in investigated and the distribution of the topological classes in the evolving part of the system is calculated. The distribution appears to approach a fixed limiting one, which differs from that obtained for the usual scaling state of the froth

  1. Radiation effects and defects in lithium borate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikov, Igor N; Poryvay, Nikita E; Pustovarov, Vladimir A, E-mail: igor.ogorodnikov@bk.ru [Ural Federal University, Mira Street, 19, Ekaterinburg 620002 (Russian Federation)

    2010-11-15

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB{sub 3}O{sub 5} (LBO), Li{sub 2}B{sub 4}O{sub 7} (LTB) and Li{sub 6}Gd(BO{sub 3}){sub 3} (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li{sup 0} trapped-electron centers. At 290 K, the Li{sup 0} centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  2. Optoelectronics and defect levels in hydroxyapatite by first-principles

    Science.gov (United States)

    Avakyan, Leon A.; Paramonova, Ekaterina V.; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S.; Bugaev, Lusegen A.

    2018-04-01

    Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.

  3. Defect complexes and thermoluminescence in lithium fluoride. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    McKeever, S.W.S. (Oklahoma State Univ., Stillwater (USA). Dept. of Physics)

    1984-01-01

    X-ray induced luminescence measurements indicate that the emission wavelength is dependent upon the aggregation state of Mg within the LiF lattice. This suggests a close association between Mg and Ti within a defect complex. Pulse annealing measurements indicate that peak 5 may be due to the dissociation of trimers, followed by charge release.

  4. Correlation between impurities, defects and cell performance in semicrystalline silicon

    International Nuclear Information System (INIS)

    Doolittle, W.A.; Rohatgi, A.

    1990-01-01

    This paper reports that an in-depth analysis of Solarex CDS semicrystalline silicon has been performed and correlations between the efficiency and impurities, and defects present in the material have been made. Comparisons were made between cell performance and variations in interstitial oxygen, substitutional carbon, grain size, etch pit density, and trap location as a function of position in the ingot. The oxygen concentration was found to decrease with increasing distance from the bottom of the ingot while the carbon concentration as well as average grain size was found to increase. The best cell performance was obtained on wafers with minimum oxygen and maximum carbon (top). No correlation was found between etch pit density and cell performance. DLTS and JVT measurements revealed that samples with higher oxygen content (bottom) gave lower cell performance due to a large number of distributed states, possibly due to extended defects like oxygen precipitates. Low oxygen samples (top) showed predominately discrete states, improved cell performance and a doping dependent average trap density

  5. Effect of potential barrier growth of auto-localized excitons decay on radiation defects in AHC at low lattice symmetry

    International Nuclear Information System (INIS)

    Shunkeev, K.; Sagimbaeva, Sh.; Shunkeev, S.

    2007-01-01

    Effect of auto-localized excitons (ALE) luminescence strengthening is conditioned by two mechanisms: either decrease of potential barrier divided of quasi-free states and auto-localized states or decrease of emission-less channel effectiveness of exciton decay on primary radiation defects. In considered range (80 K) all excitons are only in auto-localized state. Therefore a realization of the first mechanism is improbable, For instant, in KI crystal at 80-100 K luminescence of free exciton is completely putting out, and ALE luminescence has maximal intensity. It is known that in the temperature range when ALE luminescence putting out is beginning an effectiveness of radiation defects is beginning to grow. This effect is related with predominating at that time emission-less exciton decay on radiation defects (F-H pairs). Experimentally by luminescence spectroscopy method activation energy of temperature putting out of ALE in AHC under uniaxial deformation. It is revealed, that increase of activation energy value has observed in a number of crystals: KBr→NaCl→KI→Na Br→CsBr→RbI. It is concluded, that effect of ALE intensity building-up and decrease of effectiveness of radiation defect formation are interpreted by growth of potential barrier of ALE decay into radiation defects under low symmetry of AHC lattice of low-temperature uniaxial deformation

  6. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E{sub c}) and at 415 K (0.9 below E{sub c}); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E{sub c} known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E{sub c} is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  7. A boomerang-shaped reduction in interlayer phase coherence in Bi2Sr2CaCu208+y with splayed columnar defects

    International Nuclear Information System (INIS)

    Kato, T; Shibauchi, T; Matsuda, Y; Thompson, J R; Krusin-Elbaum, L

    2009-01-01

    We present evidence for entangled solid vortex matter in a glassy state in a layered superconductor Bi 2 Sr 2 CaCu 2 O 8+y containing randomly splayed linear defects. The interlayer phase coherence(IPC)-probed by the Josephson plasma resonance-is enhanced at high temperatures, reflecting the recoupling of vortex liquid by the defects. At low temperatures in the vortex solid state, the interlayer coherence follows a boomerang-shaped reentrant temperature path with an unusual low field decrease in coherence, indicative of meandering vortices. This behavior suggests strongly suppressed IPC in this system, which may be explained by the vortex entanglement induced by the columnar defects in the 'splayed-glass' state.

  8. On the influence of extrinsic point defects on irradiation-induced point-defect distributions in silicon

    International Nuclear Information System (INIS)

    Vanhellemont, J.; Romano-Rodriguez, A.

    1994-01-01

    A semi-quantitative model describing the influence of interfaces and stress fields on {113}-defect generation in silicon during 1-MeV electron irradiation, is further developed to take into account also the role of extrinsic point defects. It is shown that the observed distribution of {113}-defects in high-flux electron-irradiated silicon and its dependence on irradiation temperature and dopant concentration can be understood by taking into account not only the influence of the surfaces and interfaces as sinks for intrinsic point defects but also the thermal stability of the bulk sinks for intrinsic point defects. In heavily doped silicon the bulk sinks are related with pairing reactions of the dopant atoms with the generated intrinsic point defects or related with enhanced recombination of vacancies and self-interstitials at extrinsic point defects. The obtained theoretical results are correlated with published experimental data on boron-and phosphorus-doped silicon and are illustrated with observations obtained by irradiating cross-section transmission electron microscopy samples of wafer with highly doped surface layers. (orig.)

  9. Critical defect size assessment in pipelines on a nuclear power plant

    Directory of Open Access Journals (Sweden)

    Dimova Galya

    2018-01-01

    Full Text Available In many energy industry structures, pipeline systems are subject to the impact of mechanical forces, moments of forces and fluid flows of high pressure and temperature. These load factors cause defects in the pipeline metal. As the years of operation increase, defects may occur and grow, which may lead to the destruction of pipeline walls. Special measures have been planned and implemented to ensure the safe operation of high-energy facilities. This study focused on pipelines and nozzles of nuclear power plant equipment with bimetal welded joints on which the size of critical defects was assessed. The base of assessment covers material properties, temperature and stress fields, fracture mechanics calculations. This study involves developing of finite element models and implementing simulations on them in order to obtain temperature fields and determine the stress-strain state of the component.

  10. Simulations of defect spin qubits in piezoelectric semiconductors

    Science.gov (United States)

    Seo, Hosung

    In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.

  11. A tungsten-rhenium interatomic potential for point defect studies

    Science.gov (United States)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  12. Entanglement across extended random defects in the XX spin chain

    Science.gov (United States)

    Juhász, Róbert

    2017-08-01

    We study the half-chain entanglement entropy in the ground state of the spin-1/2 XX chain across an extended random defect, where the strength of disorder decays with the distance from the interface algebraically as Δ_l∼ l-κ . In the whole regime κ≥slant 0 , the average entanglement entropy is found to increase logarithmically with the system size L as S_L≃\\frac{c_eff(κ)}{6}\\ln L+const , where the effective central charge c_eff(κ) depends on κ. In the regime κ<1/2 , where the extended defect is a relevant perturbation, the strong-disorder renormalization group method gives c_eff(κ)=(1-2κ)\\ln2 , while, in the regime κ≥slant 1/2 , where the extended defect is irrelevant in the bulk, numerical results indicate a non-zero effective central charge, which increases with κ. The variation of c_eff(κ) is thus found to be non-monotonic and discontinuous at κ=1/2 .

  13. Congenital Heart Defects and CCHD

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Congenital heart defects and ... in congenital heart defects. You have a family history of congenital heart ... syndrome or VCF. After birth Your baby may be tested for CCHD as ...

  14. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  15. Stability of Ptn cluster on free/defective graphene: A first-principles study

    Science.gov (United States)

    Yang, G. M.; Fan, X. F.; Shi, S.; Huang, H. H.; Zheng, W. T.

    2017-01-01

    With first-principles methods, we investigate the stability of isolated Ptn clusters from Sutton-Chen model and close-packed model, and their adsorption on defected graphene. The single-vacancy in graphene is found to enhance obviously the adsorption energy of Pt cluster on graphene due to the introduction of localized states near Fermi level. It is found that the close-packed model is more stable than Sutton-Chen model for the adsorption of Ptn cluster on single-vacancy graphene, except the magic number n = 13. The cluster Pt13 may be the richest one for small Pt clusters on defected graphene due to the strong adsorption on single-vacancy. The larger cluster adsorbed on defected graphene is predicted with the close-packed crystal structure. The charge is found to transfer from the Pt atom/cluster to graphene with the charge accumulation at the interface and the charge polarization on Pt cluster. The strong interaction between Pt cluster and single vacancy can anchor effectively the Pt nanoparticles on graphene and is also expected that the new states introduced near Fermi level can enhance the catalytic characteristic of Pt cluster.

  16. The use of phase sequence image sets to reconstruct the total volume occupied by a mobile lung tumor

    International Nuclear Information System (INIS)

    Gagne, Isabelle M.; Robinson, Don M.; Halperin, Ross; Roa, Wilson

    2005-01-01

    The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs

  17. Varying stiffness and load distributions in defective ball bearings: Analytical formulation and application to defect size estimation

    Science.gov (United States)

    Petersen, Dick; Howard, Carl; Prime, Zebb

    2015-02-01

    This paper presents an analytical formulation of the load distribution and varying effective stiffness of a ball bearing assembly with a raceway defect of varying size, subjected to static loading in the radial, axial and rotational degrees of freedom. The analytical formulation is used to study the effect of the size of the defect on the load distribution and varying stiffness of the bearing assembly. The study considers a square-shaped outer raceway defect centered in the load zone and the bearing is loaded in the radial and axial directions while the moment loads are zero. Analysis of the load distributions shows that as the defect size increases, defect-free raceway sections are subjected to increased static loading when one or more balls completely or partly destress when positioned in the defect zone. The stiffness variations that occur when balls pass through the defect zone are significantly larger and change more rapidly at the defect entrance and exit than the stiffness variations that occur for the defect-free bearing case. These larger, more rapid stiffness variations generate parametric excitations which produce the low frequency defect entrance and exit events typically observed in the vibration response of a bearing with a square-shaped raceway defect. Analysis of the stiffness variations further shows that as the defect size increases, the mean radial stiffness decreases in the loaded radial and axial directions and increases in the unloaded radial direction. The effects of such stiffness changes on the low frequency entrance and exit events in the vibration response are simulated with a multi-body nonlinear dynamic model. Previous work used the time difference between the low frequency entrance event and the high frequency exit event to estimate the size of the defect. However, these previous defect size estimation techniques cannot distinguish between defects that differ in size by an integer number of the ball angular spacing, and a third feature

  18. Virtual standards of vibration-based defects diagnostics in railway industry

    Directory of Open Access Journals (Sweden)

    Vladimir TETTER

    2009-01-01

    Full Text Available The issues related to testing the functionality stated by producers of vibration-based diagnostic equipment have been considered. The introduction of virtual standards of defects found in bearing and geared assemblies of rolling stock is offered. The variants of virtual standards realization have been considered.

  19. Stability of Ptn cluster on free/defective graphene: A first-principles study

    International Nuclear Information System (INIS)

    Yang, G.M.; Fan, X.F.; Shi, S.; Huang, H.H.; Zheng, W.T.

    2017-01-01

    Highlights: • The single-vacancy can enhance obviously the adsorption of Pt cluster on graphene. • Pt clusters on defected graphene prefer to adopt the close-packed model, except Pt 13 . • The contact way of Pt n clusters on single-vacancy changes with the size increasing. - Abstract: With first-principles methods, we investigate the stability of isolated Pt n clusters from Sutton-Chen model and close-packed model, and their adsorption on defected graphene. The single-vacancy in graphene is found to enhance obviously the adsorption energy of Pt cluster on graphene due to the introduction of localized states near Fermi level. It is found that the close-packed model is more stable than Sutton-Chen model for the adsorption of Pt n cluster on single-vacancy graphene, except the magic number n = 13. The cluster Pt 13 may be the richest one for small Pt clusters on defected graphene due to the strong adsorption on single-vacancy. The larger cluster adsorbed on defected graphene is predicted with the close-packed crystal structure. The charge is found to transfer from the Pt atom/cluster to graphene with the charge accumulation at the interface and the charge polarization on Pt cluster. The strong interaction between Pt cluster and single vacancy can anchor effectively the Pt nanoparticles on graphene and is also expected that the new states introduced near Fermi level can enhance the catalytic characteristic of Pt cluster.

  20. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    Science.gov (United States)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; Yu, Guodong; Canning, Andrew; Haranczyk, Maciej; Asta, Mark; Hautier, Geoffroy

    2018-05-01

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.

  1. Computer simulation of defect cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Eiichi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    In order to elucidate individual element process of various defects and defect clusters of used materials under irradiation environments, interatomic potential with reliability was investigated. And for comparison with experimental results, it is often required to adopt the temperature effect and to investigate in details mechanism of one dimensional motion of micro conversion loop and so forth using the molecular dynamic (MD) method. Furthermore, temperature effect is also supposed for stable structure of defects and defect clusters, and many problems relating to alloy element are also remained. And, simulation on photon life at the defects and defect clusters thought to be important under comparison with equipment can also be supposed an improvement of effectiveness due to relation to theses products. In this paper, some topics in such flow was extracted to explain them. In particular, future important problems will be potential preparation of alloy, structure, dynamic behavior and limited temperature of intralattice atomic cluster. (G.K.)

  2. A study of defects in diamond

    International Nuclear Information System (INIS)

    Hunt, D.C.

    1999-01-01

    irradiation at 100K), in conjunction with previous measurements, shows that it arises from the neutral -split self-interstitial. This is the first observation of a self-interstitial in type IV material. This shows the self-interstitial is not mobile in type IIa diamond under normal conditions (i.e. without the irradiation) until the annealing temperature of 700K. A new EPR defect, created during electron irradiation at 100K, has been investigated and labelled O3. It has a triplet ground state, S=1, and C 2 symmetry - with a rotation axis. Analysis of the 13 C hyperfine couplings by a simple molecular orbital calculation shows that 76% of the unpaired electronic wavefunction is localized in two non-bonding 2p orbitals, on different carbon atoms separated by ∼3.2(5)A. An EPR investigation of defects in a suite of nitrogen-doped CVD diamond films has shown that single substitutional donor nitrogen and the H1 defect, increase linearly with the nitrogen gas content in the feed stock for atomic nitrogen to carbon ratios (N:C) up to 0.4; the region where the growth rate is also increasing. For higher nitrogen:carbon (N:C) ratios the growth rate falls, and the quality of the films deteriorates substantially as the amount of non-diamond carbon in the film increases. (author)

  3. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  4. Congenital platelet function defects

    Science.gov (United States)

    ... pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... Congenital platelet function defects are bleeding disorders that cause reduced platelet function. Most of the time, people with these disorders have ...

  5. Prevention of congenital defects induced by prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Sheehan, Megan M.; Karunamuni, Ganga; Pedersen, Cameron J.; Gu, Shi; Doughman, Yong Qiu; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Over 500,000 women per year in the United States drink during pregnancy, and 1 in 5 of this population also binge drink. Up to 40% of live-born children with prenatal alcohol exposure (PAE) present with congenital heart defects (CHDs) including life-threatening outflow and valvuloseptal anomalies. Previously we established a PAE model in the avian embryo and used optical coherence tomography (OCT) imaging to assay looping-stage (early) cardiac function/structure and septation-stage (late) cardiac defects. Early-stage ethanol-exposed embryos had smaller cardiac cushions (valve precursors) and increased retrograde flow, while late-stage embryos presented with gross head/body defects, and exhibited smaller atrio-ventricular (AV) valves, interventricular septae, and aortic vessels. However, supplementation with the methyl donor betaine reduced gross defects, prevented cardiac defects such as ventricular septal defects and abnormal AV valves, and normalized cardiac parameters. Immunofluorescent staining for 5-methylcytosine in transverse embryo sections also revealed that DNA methylation levels were reduced by ethanol but normalized by co-administration of betaine. Furthermore, supplementation with folate, another methyl donor, in the PAE model appeared to normalize retrograde flow levels which are typically elevated by ethanol exposure. Studies are underway to correlate retrograde flow numbers for folate with associated cushion volumes. Finally, preliminary findings have revealed that glutathione, a key endogenous antioxidant which also regulates methyl group donation, is particularly effective in improving alcohol-impacted survival and gross defect rates. Current investigations will determine whether glutathione has any positive effect on PAE-related CHDs. Our studies could have significant implications for public health, especially related to prenatal nutrition recommendations.

  6. Metallography of defects

    International Nuclear Information System (INIS)

    Borisova, E.A.; Bochvar, G.A.; Brun, M.Ya.

    1980-01-01

    Different types of defects of metallurgical, technological and exploitation origin in intermediate and final products of titanium alloys, are considered. The examples of metallic and nonmetallic inclusions, chemical homogeneity, different grains, bands, cracks, places of searing, porosity are given; methods of detecting the above defects are described. The methods of metallography, X-ray spectral analysis, measuring microhardness are used

  7. Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations

    International Nuclear Information System (INIS)

    He, J.; Behera, R.K.; Finnis, M.W.; Li, X.; Dickey, E.C.; Phillpot, S.R.; Sinnott, S.B.

    2007-01-01

    A computational approach that integrates ab initio electronic structure and thermodynamic calculations is used to determine point defect stability in rutile TiO 2 over a range of temperatures, oxygen partial pressures and stoichiometries. Both donors (titanium interstitials and oxygen vacancies) and acceptors (titanium vacancies) are predicted to have shallow defect transition levels in the electronic-structure calculations. The resulting defect formation energies for all possible charge states are then used in thermodynamic calculations to predict the influence of temperature and oxygen partial pressure on the relative stabilities of the point defects. Their ordering is found to be the same as temperature increases and oxygen partial pressure decreases: titanium vacancy → oxygen vacancy → titanium interstitial. The charges on these defects, however, are quite sensitive to the Fermi level. Finally, the combined formation energies of point defect complexes, including Schottky, Frenkel and anti-Frenkel defects, are predicted to limit the further formation of point defects

  8. Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells

    International Nuclear Information System (INIS)

    Cheng, Zimeng; Delahoy, Alan E.; Su, Zhaoqian; Chin, Ken K.

    2014-01-01

    A model consisting of Shockley Read Hall (SRH) recombination under steady state conditions of constant photon injection is proposed in this work to study the steady state minority carrier lifetime in CdS/CdTe thin film solar cells. The SRH recombination rate versus optical injection level is analytically approximated in the junction and neutral regions. In the neutral region, it is found that the recombination rate through certain defect levels has one constant value under lower optical injection conditions and another constant value under higher optical injection conditions with the transition occurring at a critical optical injection level. By simultaneously solving the equations of charge neutrality, charge conservation and SRH recombination in the neutral region, it is found that the compensation of doping and the reduction of minority carrier lifetime by donors in the p-type semiconductor can each be remedied by optical injection. It is also demonstrated that this optical-dependent SRH recombination is significant in large bandgap thin films. The measured minority carrier diffusion length in a CdS/CdTe solar cells, as determined from the steady-state photo-generated carrier collection efficiency, shows the predicted transition of minority carrier lifetime versus optical injection level. A numerical fitting of the indirectly-measured minority carrier lifetime by assuming the minority carrier mobility gives a non-intuitive picture of the p–n junction with a low free hole concentration but a narrow depletion region width. - Highlights: • Minority carrier lifetimes under different optical injections are solved. • Simplifications of Shockley–Read–Hall recombination equation are discussed. • The compensation of donor can be remedied with optical injection. • The recombination efficiency of donor can be remedied with optical injection. • The minority carrier lifetime transition under illumination was experimentally observed

  9. Defects in quasi-one dimensional oxide conductors: K0.3MoO3

    International Nuclear Information System (INIS)

    Smith, K.E.; Breuer, K.; Goldberg, D.; Greenblatt, M.; McCarroll, W.; Hulbert, S.L.

    1995-01-01

    The electronic structure of the prototypical quasi-one dimensional (ID) conductor K 0.3 MoO 3 has been studied using high resolution photoemission spectroscopy. In particular, the electronic structure of defects was investigated in order to understand the mechanism for charge density wave pinning and destruction of the Peierls transition. Defects were found to radically alter the electronic structure close to the Fermi level (E F ), thus strongly modifying the structure of the Fermi surface. While a low emission intensity at E F has been interpreted as evidence for a Luttinger liquid ground state in a 1D metal, the authors show that non-stoichiometric surfaces lead to similar effects. The nature of the ground state is discussed in the context of these results

  10. Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects

    Science.gov (United States)

    Deng, Yuanchen; Ge, Hao; Tian, Yuan; Lu, Minghui; Jing, Yun

    2017-11-01

    This article reports on the experimental realization of a flow-free, pseudospin-based acoustic topological insulator designed using the strategy of zone folding. Robust sound one-way propagation is demonstrated with the presence of non-spin-mixing defects. On the other hand, it is shown that spin-mixing defects, which break the geometric symmetry and therefore the pseudo-time-reversal symmetry, can open up nontrivial band gaps within the edge state frequency band, and their width can be tailored by the extent of the defect. This provides a possible route for realizing tunable acoustic topological insulators.

  11. Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO

    Science.gov (United States)

    Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.

    2018-05-01

    The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.

  12. The effect of Bi{sub In} hetero-antisite defects in In{sub 1–x}PBi{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyuan [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Yang, Chuanghua [School of Physics and Telecommunication Engineering, Shanxi University of Technology (SNUT), Hanzhong 723001, Shaanxi (China); Liang, Dan [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Zhang, Chunfang [Beijing Computational Science Research Center, Beijing 100094 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2016-07-25

    Bi{sub In} hetero-antisite defects in InP:Bi alloy is performed by using first-principle calculations. It is found that the hetero-antisite defect Bi{sub In} is energetically easier than Bi{sub P}. This Bi{sub In} defect is a deep level donor, and the related defect band is introduced by the sp-hybridization mainly between the 6s state of Bi{sub In} and 3p states of the nearest P atoms. The band gap of InP:Bi alloy increases slightly with the increase of Bi compositions, and the relative position of the defect level remains almost unchanged. These results represent that hetero-antisite defect Bi{sub In} does not contribute to the reduction of the band gap of InP:Bi alloy. The calculations of optical properties show that hetero-antisite defect Bi{sub In} can contribute to the red shift phenomena observed in experiment as the Bi composition increases. In addition, the interaction of two Bi{sub In} atoms can result in the split of the impurity band and cause a strong absorption in near-infrared region, indicating it can be a potential candidate for optoelectronics application. - Highlights: • The effects of Bi{sub In} hetero-antisite defects in InP:Bi alloy are studied. • The appearance and origin of Bi{sub In} related impurity band are discovered. • Bi{sub In} defects can contribute to the red shift phenomena observed in experiment. • A strong absorption in near-infrared region caused by two Bi{sub In} atoms is found.

  13. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    Science.gov (United States)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  14. Recombination via point defects and their complexes in solar silicon

    Energy Technology Data Exchange (ETDEWEB)

    Peaker, A.R.; Markevich, V.P.; Hamilton, B. [Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Parada, G.; Dudas, A.; Pap, A. [Semilab, 2 Prielle Kornelia Str, 1117 Budapest (Hungary); Don, E. [Semimetrics, PO Box 36, Kings Langley, Herts WD4 9WB (United Kingdom); Lim, B.; Schmidt, J. [Institute for Solar Energy Research (ISFH) Hamlen, 31860 Emmerthal (Germany); Yu, L.; Yoon, Y.; Rozgonyi, G. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States)

    2012-10-15

    Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically <10{sup 10} cm{sup -3}). Consequently, in integrated circuit technologies using such material, electrically active inadvertent impurities and structural defects are rarely detectable. The quest for cheap photovoltaic cells has led to the use of less pure silicon, multi-crystalline material, and low cost processing for solar applications. Cells made in this way have significant extrinsic recombination mechanisms. In this paper we review recombination involving defects and impurities in single crystal and in multi-crystalline solar silicon. Our main techniques for this work are recombination lifetime mapping measurements using microwave detected photoconductivity decay and variants of deep level transient spectroscopy (DLTS). In particular, we use Laplace DLTS to distinguish between isolated point defects, small precipitate complexes and decorated extended defects. We compare the behavior of some common metallic contaminants in solar silicon in relation to their effect on carrier lifetime and cell efficiency. Finally, we consider the role of hydrogen passivation in relation to transition metal contaminants, grain boundaries and dislocations. We conclude that recombination via point defects can be significant but in most multi-crystalline material the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Defect engineering of SrTiO3 thin films for resistive switching applications

    International Nuclear Information System (INIS)

    Wicklein, Sebastian

    2013-01-01

    As a matter of fact, the importance of (transition) metal oxides for modern applications in the field of energy and information technology (IT) for e.g. novel energy storage systems and solid state electronic devices is increasing. Previous studies discovered the importance of defects in an oxide for their functionality and emphasized the impact of stoichiometry on the oxide performance. A new field of interest of the memory technology sector is the so-called resistive switching phenomena where a voltage stimulus causes a thin oxide (≤10 nm) to change its resistance state from a high resistance state to a low resistance state and back. So called resistive RAM (ReRAM or RRAM) are deemed to be the future replacement (2015) for contemporary FLASH memory technology due to its extremely low energy consumption, its very fast read/write time (ns) and its possible node size 3 was used as an oxide model material and was deposited by pulsed laser deposition (PLD) onto doped and undoped SrTiO 3 single crystals to investigate the formation of defects as a function of the process parameters. By combining structural and chemical thin film analysis with detailed PLD plume diagnostics and modeling of the laser plume dynamics, it was possible to elucidate the different physical mechanisms determining the stoichiometry of SrTiO 3 during PLD. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O 2 background gas. It is shown that the SrTiO 3 system reacts to a non-stoichiometry with the systematic incorporation of titanium and strontium vacancies which could be detected by positron annihilation lifetime spectroscopy. The role of extrinsic dopands such as Fe is shown to have more complicated effects on the SrTiO 3 system than portrayed by theoretical considerations. The effect of defects on the resistive

  16. Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation

    Science.gov (United States)

    Chen, Z. Q.; Betsuyaku, K.; Kawasuso, A.

    2008-03-01

    Vacancy defects in ZnO induced by electron irradiation were characterized by the Doppler broadening of annihilation radiation measurements together with the local density approximation calculations. Zinc vacancies (VZn) are responsible for positron trapping in the as-irradiated state. These are annealed out below 200°C . The further annealing at 400°C results in the formation of secondary defects attributed to the complexes composed of zinc vacancies and zinc antisites (VZn-ZnO) .

  17. Peripheral blood values in workers occupied in the petrochemical production

    Directory of Open Access Journals (Sweden)

    G.G. Badamshina

    2015-06-01

    Full Text Available The study is devoted to solution of the problems of the early changes detection in a body on the stages, when only the conditions for the pathology formation were created. The analysis of peripheral blood in the workers, occupied in petrochemical production, allowed us to diagnose the changes that testify the body defenses’ decrease that occurs under exposure to chemicals. It is shown that in the initial period of exposure to harmful substances the body's reaction to a toxic irritant contain both specific and nonspecific components. The first working years is characterized by the reduction of the number of red blood cells and hemoglobin. Over the next years the gradual stabilization is presented, and then the moderate and persistent increase in red blood indices occur, what indicate on the adaptive nature of the condition. It was established, that in dependence of the tropism, mechanism of action and the hazard class of hazardous substances, the diverse hematological changes in the body workers are revealed.

  18. Electronic structure and electron dynamics at Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Max-Born-Institut, Berlin (Germany); Kutschera, M.; Schmidt, R.; Orth, C.; Fauster, T. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Rohlfing, M. [International University Bremen, School of Engineering and Science, P.O. Box 750 561, Bremen (Germany)

    2005-02-01

    The electronic structure and electron dynamics at a Si(100) surface is studied by two-photon photoemission (2PPE). At 90 K the occupied D{sub up} dangling-bond state is located 150{+-}50 meV below the valence-band maximum (VBM) at the center of the surface Brillouin zone anti {gamma} and exhibits an effective hole mass of (0.5{+-}0.15)m{sub e}. The unoccupied D{sub down} band has a local minimum at anti {gamma} at 650{+-}50 meV above the VBM and shows strong dispersion along the dimer rows of the c(4 x 2) reconstructed surface. At 300 K the D{sub down} position shifts comparable to the Si conduction-band minimum by 40 meV to lower energies but the dispersion of the dangling-bond states is independent of temperature. The surface band bending for p-doped silicon is less than 30 meV, while acceptor-type defects cause significant and preparation-dependent band bending on n-doped samples. 2PPE spectra of Si(100) are dominated by interband transitions between the occupied and unoccupied surface states and emission out of transiently and permanently charged surface defects. Including electron-hole interaction in many-body calculations of the quasi-particle band structure leads us to assign a dangling-bond split-off state to a quasi-one-dimensional surface exciton with a binding energy of 130 meV. Electrons resonantly excited to the unoccupied D{sub down} dangling-bond band with an excess energy of about 350 meV need 1.5{+-}0.2 ps to scatter via phonon emission to the band bottom at anti {gamma} and relax within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds. (orig.)

  19. A proposed defect tracking model for classifying the inserted defect reports to enhance software quality control.

    Science.gov (United States)

    Sultan, Torky; Khedr, Ayman E; Sayed, Mostafa

    2013-01-01

    NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality.

  20. Direct Observation of Radiation Defects: Experiment and Interpretation

    International Nuclear Information System (INIS)

    Dudarev, S.L.

    2012-01-01

    loss of strength of ferritic-martensitic steels at high temperatures. The development of in situ electron microscope techniques was partially stimulated by the application of large-scale molecular dynamics (MD) simulations to modeling mobile defects and clusters of defects (for example, nano-dislocation loops) in iron and other metals. A hypothesis stating that clusters of point defects play a significant part in microstructural evolution of irradiated materials was proposed in 1990s within the framework of the 'production bias' radiation damage model. However, it is only recently that in situ electron microscope observations confirmed the fact that mobile and immobile clusters of point defects form an integral part of the microstructure of an irradiated material. Somewhat surprisingly, interpreting in situ real-time electron microscope observations still remains genuinely problematic. The ten orders of magnitude mismatch between the nanosecond (10''-''9s) time scale accessible to an MD simulation, and the 10-1000 s time scale of a typical in situ electron microscope observation, impedes meaningful quantitative analysis. The need to develop such a model has recently stimulated the development of a novel approach to modeling defect evolution in real time (Langevin dynamics)