Sample records for observation system eos

  1. The Earth Observing System (EOS) nickel-hydrogen battery (United States)

    Bennett, Charles W.


    Information is given in viewgraph form on the Earth Observing System (EOS) nickel hydrogen battery. Information is given on the life evaluation test, cell characteristics, acceptance and characterization tests, and the battery system description.

  2. Mission operations concepts for Earth Observing System (EOS) (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.


    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  3. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System (United States)

    King, M. D. (Editor); Greenstone, R. (Editor)


    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  4. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A2 (EOS/AMSU-A): EOS Software Test Report (United States)


    This document describes the results of the formal qualification test (FQT)/ Demonstration conducted on September 10, and 14, 1998 for the EOS AMSU-A2 instrument. The purpose of the report is to relate the results of the functional performance and interface tests of the software. This is the final submittal of the EOS/AMSU-A Software Test report.

  5. Mission operations update for the restructured Earth Observing System (EOS) mission (United States)

    Kelly, Angelita Castro; Chang, Edward S.


    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  6. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow (United States)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.


    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  7. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS) (United States)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann


    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  8. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences (United States)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.


    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  9. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions (United States)

    Hardison, David; Medina, Johnny; Dell, Greg


    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  10. Earth Observing System (EOS)/ Advanced Microwave Sounding Unit-A (AMSU-A): Special Test Equipment. Software Requirements (United States)

    Schwantje, Robert


    This document defines the functional, performance, and interface requirements for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) Special Test Equipment (STE) software used in the test and integration of the instruments.

  11. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document (United States)


    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  12. Electrical overstress (EOS) devices, circuits and systems

    CERN Document Server

    Voldman, Steven H


    Electrical Overstress (EOS) continues to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics.  This bookteaches the fundamentals of electrical overstress  and how to minimize and mitigate EOS failures. The text provides a clear picture of EOS phenomena, EOS origins, EOS sources, EOS physics, EOS failure mechanisms, and EOS on-chip and system design.  It provides an illuminating insight into the sources of EOS in manufacturing, integration of on-chip, and system level EOS protection networks, followed by examples in spe

  13. It Security and EO Systems (United States)

    Burnett, M.


    One topic that is beginning to influence the systems that support these goals is that of Information Technology (IT) Security. Unsecure systems are vulnerable to increasing attacks and other negative consequences; sponsoring agencies are correspondingly responding with more refined policies and more stringent security requirements. These affect how EO systems can meet the goals of data and service interoperability and harmonization through open access, transformation and visualization services. Contemporary systems, including the vision of a system-of-systems (such as GEOSS, the Global Earth Observation System of Systems), utilize technologies that support a distributed, global, net-centric environment. These types of systems have a high reliance on the open systems, web services, shared infrastructure and data standards. The broader IT industry has developed and used these technologies in their business and mission critical systems for many years. Unfortunately, the IT industry, and their customers have learned the importance of protecting their assets and resources (computing and information) as they have been forced to respond to an ever increasing number and more complex illegitimate “attackers”. This presentation will offer an overview of work done by the CEOS WGISS organization in summarizing security threats, the challenges to responding to them and capturing the current state of the practice within the EO community.

  14. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) (United States)


    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  15. The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS) (United States)

    Tilmes, Curt


    In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and

  16. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan (United States)

    Fay, M.


    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  17. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques (United States)


    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  18. An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments

    Directory of Open Access Journals (Sweden)

    Chuli Hu


    Full Text Available Accurate and fine-grained discovery by diverse Earth observation (EO sensors ensures a comprehensive response to collaborative observation-required emergency tasks. This discovery remains a challenge in an EO sensor web environment. In this study, we propose an EO sensor observation capability metadata model that reuses and extends the existing sensor observation-related metadata standards to enable the accurate and fine-grained discovery of EO sensors. The proposed model is composed of five sub-modules, namely, ObservationBreadth, ObservationDepth, ObservationFrequency, ObservationQuality and ObservationData. The model is applied to different types of EO sensors and is formalized by the Open Geospatial Consortium Sensor Model Language 1.0. The GeosensorQuery prototype retrieves the qualified EO sensors based on the provided geo-event. An actual application to flood emergency observation in the Yangtze River Basin in China is conducted, and the results indicate that sensor inquiry can accurately achieve fine-grained discovery of qualified EO sensors and obtain enriched observation capability information. In summary, the proposed model enables an efficient encoding system that ensures minimum unification to represent the observation capabilities of EO sensors. The model functions as a foundation for the efficient discovery of EO sensors. In addition, the definition and development of this proposed EO sensor observation capability metadata model is a helpful step in extending the Sensor Model Language (SensorML 2.0 Profile for the description of the observation capabilities of EO sensors.

  19. Earth Observation for Biodiversity Assessment (EO-BA)

    CSIR Research Space (South Africa)

    Cho, Moses A


    Full Text Available in the Dukuduku coastal forest Earth Observation for Biodiversity Assessment (EO-BA) MA CHO, P DEBBA, R MATHIEU, A RAMOELO, L NAIDOO, H VAN DEVENTER, O MALAHLELA AND R MAIN CSIR Natural Resources and the Environment, Pretoria, South Africa PO Box 395... Observation for Biodiversity Assessment (EO-BA) programme is designed to enhance biodiversity assessment and conservation through the application of earth observation data, with particular focus on the African continent. MISSION To initiate and develop...

  20. Complementarity of EO and radar systems

    NARCIS (Netherlands)

    Schwering, P.B.W.


    Electro-optics (EO), including infrared, systems have matured in the last decades, allowing for a wider variation of applications. In particular, developments in detector capability and signal processing have resulted in autonomous detection systems as well as surveillance systems for situational

  1. EOS Operations Systems: EDOS Implemented Changes to Reduce Operations Costs (United States)

    Cordier, Guy R.; Gomez-Rosa, Carlos; McLemore, Bruce D.


    The authors describe in this paper the progress achieved to-date with the reengineering of the Earth Observing System (EOS) Data and Operations System (EDOS), the experience gained in the process and the ensuing reduction of ground systems operations costs. The reengineering effort included a major methodology change, applying to an existing schedule driven system, a data-driven system approach.

  2. Probing a steep EoS for dark energy with latest observations (United States)

    Jaber, Mariana; Macorra, Axel de la


    We present a parametrization for the Dark Energy Equation of State "EoS" which has a rich structure, performing a transition at pivotal redshift zT between the present day value w0 to an early time wi =wa +w0 ≡ w(z ≫ 0) with a steepness given in terms of q parameter. The proposed parametrization is w =w0 +wa(z /zT) q /(1 +(z /zT)) q , with w0, wi, q and zT constant parameters. It reduces to the widely used EoS w =w0 +wa(1 - a) for zT = q = 1 . This transition is motivated by scalar field dynamics such as for example quintessence models. We study if a late time transition is favored by BAO measurements combined with local determination of H0 and information from the CMB. We find that our dynamical DE model allows to simultaneously fit H0 from local determinations and Planck CMB measurements, alleviating the tension obtained in a ΛCDM model. We obtain a smaller χ2 in our DE model than in ΛCDM showing that a dynamical DE is preferred with a reduction of 4.8%, 20.2% and 42.8% using BAO + H0, BAO + CMB and BAO + CMB + H0 datasets, respectively. However due to the increased number of free parameters in the EoS information criteria favors ΛCDM over our DE model at this stage. Nevertheless it is crucial to obtain the dynamics of DE from the observational data to show the path for theoretical DE models based on fundamental physics.

  3. A Non-science Major Undergraduate Seminar on the NASA Earth Observing System (EOS): A Student Perspective (United States)

    Weatherford, V. L.; Redemann, J.


    Titled "Observing Climate Change From Space-what tools do we have?", this non-science major freshman seminar at UCLA is the culmination of a year-long interdisciplinary program sponsored by the Institute of the Environment and the College Honors programs at the University. Focusing on the anthropogenic and natural causes of climate change, students study climate forcings and learn about satellite and other technological means of monitoring climate and weather. NASA's Terra satellite is highlighted as one of the most recent and comprehensive monitoring systems put into space and the role of future NASA platforms in the "A-train"-constellation of satellites is discussed. Course material is typically presented in a Power-Point presentation by the instructor, with assigned supplementary reading to stimulate class discussion. In addition to preparing lectures for class presentation, students work on a final term paper and oral presentation which constitutes the majority of their grade. Field trips to the San Gabriel mountains to take atmospheric measurements with handheld sunphotometers and to JPL, Pasadena (CA) to listen to a NASA scientist discuss the MISR instrument aboard the Terra satellite help bring a real-world perspective to the science learned in the classroom. In this paper, we will describe the objectives and structure of this class and present measurement results taken during the field trip to the San Gabriel Mountains. In this context we will discuss the potential relevance of hands-on experience to meeting class objectives and give a student perspective of the overall class experience.

  4. EO system concepts in the littoral (United States)

    Schwering, Piet B. W.; van den Broek, Sebastiaan P.; van Iersel, Miranda


    In recent years, operations executed by naval forces have taken place at many different locations. At present, operations against international terrorism and asymmetric warfare in coastal environments are of major concern. In these scenarios, the threat caused by pirates on-board of small surface targets, such as jetskis and fast inshore attack crafts, is increasing. In the littoral environment, the understanding of its complexity and the efficient use of the limited reaction time, are essential for successful operations. Present-day electro-optical sensor suites, also incorporating Infrared Search and Track systems, can be used for varying tasks as detection, classification and identification. By means of passive electro-optical systems, infrared and visible light sensors, improved situational awareness can be achieved. For long range capability, elevated sensor masts and flying platforms are ideally suited for the surveillance task and improve situational awareness. A primary issue is how to incorporate new electro-optical technology and signal processing into the new sensor concepts, to improve system performance. It is essential to derive accurate information from the high spatial-resolution imagery created by the EO sensors. As electro-optical sensors do not have all-weather capability, the performance degradation in adverse scenarios must be understood, in order to support the operational use of adaptive sensor management techniques. In this paper we discuss the approach taken at TNO in the design and assessment of system concepts for future IRST development. An overview of our maritime programme in future IRST and EO system concepts including signal processing is presented.

  5. Utilizing NASA Earth Observing System (EOS) Data to Determine Ideal Planting Locations for Wetland Tree Species in St. Bernard Parish, Louisiana (United States)

    Reahard, Ross; Arguelles, Maria; Strong, Emma; Ewing, Michael; Kelly, Chelsey


    St. Bernard Parish, in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a combination of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have worked not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for coastal forests. Using NASA EOS, NRCS soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of wetland trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using LIDAR data and classifying existing land cover in the study area from ASTER multispectral satellite data. Low altitude AVIRIS hyperspectral imagery was used to assess the health of vegetation over an area near the intersection of the Mississippi River Gulf Outlet Canal (MRGO) and Bayou la Loutre. Historic extent of coastal forests was mapped using aerial photos from USGS collected between 1952 and 1956. The final products demonstrated the utility of combining NASA EOS with other geospatial data in assessing, monitoring, and restoring of coastal ecosystems in Louisiana. This methodology also provides a useful template for other ecological forecasting and coastal restoration applications.

  6. SensorWeb Evolution Using the Earth Observing One (EO-1) Satellite as a Test Platform (United States)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Ly, Vuong; Handy, Matthew; Chien, Steve; Grossman, Robert; Tran, Daniel


    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, in addition to collecting science data from its instruments, the EO-1 mission has been used as a testbed for a variety of technologies which provide various automation capabilities and which have been used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. This paper provides an overview of the various technologies that were tested and eventually folded into normal operations. As these technologies were folded in, the nature of operations transformed. The SensorWeb software enables easy connectivity for collaboration with sensors, but the side benefit is that it improved the EO-1 operational efficiency. This paper presents the various phases of EO-1 operation over the past 12 years and also presents operational efficiency gains demonstrated by some metrics.

  7. Recent observational constraints on EoS parameters of a class of ...

    Indian Academy of Sciences (India)

    P Thakur


    Jul 20, 2017 ... The background test data comprise observed Hubble data, baryon acoustic oscillation data, cosmic ... Cosmology; dark energy; dark matter; large-scale structures. ... The paper is presented as follows: In §2, relevant field.

  8. Effects of LatticeQCD EoS and Continuous Emission on Some Observables

    International Nuclear Information System (INIS)

    Hama, Y.; Andrade, R.; Grassi, F.; Socolowski, O.; Kodama, T.; Tavares, B.; Padula, S. S.


    Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well ν 2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations

  9. KA-102 Film/EO Standoff System (United States)

    Turpin, Richard T.


    The KA-102 is an in-flight selectable film or electro-optic (EU) visible reconnaissance camera with a real-time data link. The lens is a 66-in., f/4 refractor with a 4° field-of-view. The focal plane is a continuous line array of 10,240 COD elements that opera tes in the pushbroom mode. In the film mode, the camera use standard 5-in.-wide 3414 or 3412 film. The E0 imagery is transmitted up to 500 n.mi. to the ground station over a 75-Mbit/sec )(- band data link via a relay aircraft (see Figure 1). The camera may be controlled from the ground station via an uplink or from the cockpit control panel. The 8-ft-diameter ground tracking antenna is located on high ground and linked to the ground station via a 1-mile-long, two-way fiber optic system. In the ground station the imagery is calibrated and displayed in real time on three crt's. Selected imagery may be stored on disk and enhanced, analyzed, and annotated in near-real-time. The imagery may be enhanced and magnified in real time. Hardcopy frames may be made on 8 x 10-in. Polaroid, 35-1m film, or dry silver paper. All the received image and engineering data is recorded on a high-density tape recorder. The aircraft track is recorded on a map plotter. Ground support equipment (GSE), manuals, spares, and training are included in the system. Falcon 20 aircraft were modified on a subcontract to Dynelectron--Ft. Worth.

  10. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission (United States)

    Folta, David; Quinn, David


    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these

  11. Tactical EO/IE System for Ground Forces (United States)


    this thesis is based on these ideas. We will give the guidelines to a project manager or to a beginner in EW research about EO/IR system acquisition...1982 Syria vs Israel Syria: 1 Syria 5+ By Syria: 89 by 96+ Sparrow AIM-9G/L PYTHON Korea: 1 B- Kamchatka 1983 Korea vs USSR 0 0 747(KAL-(07) by AA-3 or

  12. Management approach recommendations. Earth Observatory Satellite system definition study (EOS) (United States)


    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  13. Vapor-liquid, liquid-liquid and vapor-liquid-liquid equilibrium of binary and multicomponent systems with MEG modeling with the CPA EoS and an EoS/G(E) model

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht


    The cubic-plus-association (CPA) EoS is applied to multicomponent multiphase equilibria of systems containing MEG as a hydrate inhibitor. It is shown that the model provides very satisfactory prediction of the phase behavior for the systems tested. A more conventional engineering model for handling...

  14. Promoting Strategic STEM Education Outreach Programming Using a Systems-Based STEM-EO Model (United States)

    Ward, Annmarie R.


    In this paper a STEM Education Outreach (STEM-EO) Model for promoting strategic university outreach programming at Penn State University to the benefit of university, school district and community stakeholders is described. The model considers STEM-EO as a complex system involving overarching learning goals addressed within four outreach domains…

  15. Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems

    DEFF Research Database (Denmark)

    Varzandeh, Farhad; Stenby, Erling Halfdan; Yan, Wei


    Accurate description of thermodynamic properties of natural gas systems is of great significance in the oil and gas industry. For this application, non-cubic equations of state (EoSs) are advantageous due to their better density and compressibility description. Among the non-cubic models, GERG-2008...... is a new wide-range EoS for natural gases and other mixtures of 21 natural gas components. It is considered as a standard reference equation suitable for natural gas applications where highly accurate thermodynamic properties are required. Soave's modification of Benedict-Webb-Rubin (Soave-BWR) Eo......S is another model that despite its empirical nature, provides accurate density description even around the critical point. It is much simpler than GERG-2008 and easier to handle and generalize to reservoir oil fluids. This study presents a comprehensive comparison between GERG-2008 and other cubic (SRK and PR...

  16. Research topics on EO systems for maritime platforms

    NARCIS (Netherlands)

    Dijk, J.; Bijl, P.; Broek, S.P. van den; Eijk, A.M.J. van


    Our world is constantly changing, and this has its effect on worldwide military operations. For example, there is a change from conventional warfare into a domain that contains asymmetric threats as well. The availability of high-quality imaging information from Electro-Optical (EO) sensors is of

  17. Enhanced EOS photovoltaic power system capability with InP solar cells (United States)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.


    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  18. Earth observing system - Concepts and implementation strategy (United States)

    Hartle, R. E.


    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  19. Relativistic nuclear collisions from the EOS experiment at the Bevalac: collective observables and multifragmentation

    International Nuclear Information System (INIS)

    Insolia, A.


    The EOS Collaborations has completed an exclusive study of relativistic heavy ion collisions at the Bevalac using a variety of projectile, target and beam energy combinations. We report here results on directed sidewards flow in Au+Au between 0.25 AGeV and 1.2 AGeV, using a standard in-plane transverse momentum analysis. We also report on projectile fragmentation of Au in C at 1 AGeV. An analysis of fluctuations and critical exponents for small systems seems to support the idea that the multifragmentation regime is associated with a liquid gas phase transition in nuclear matter. (authors)

  20. System testing software deployments using Docker and Kubernetes in gitlab CI: EOS + CTA use case

    CERN Document Server

    CERN. Geneva


    It needs to be seamlessly integrated with `EOS`, which has become the de facto disk storage system at CERN. `CTA` and `EOS` integration requires parallel development of features in both software that needs to be **synchronized and systematically tested** on a specific distributed development infrastructure for each commit in the code base. This presentation describes the full gitlab continuous integration work flow that builds, tests, deploys and run system tests of the full software stack in docker containers on our specific kubernetes infrastructure.

  1. Electrostatic Discharge (ESD and Electrical Overstress (EOS: The state of the art in components to systems

    Directory of Open Access Journals (Sweden)

    Steven H. Voldman


    Full Text Available Electrostatic Discharge (ESD, Electrical Overstress (EOS and electromagnetic compatibility (EMC continue to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics. The range of concern for components include semiconductor components, magnetic recording industry, MEMs, and for products from disk drives, cell phones, notebooks, tablets, laptops, and desktop computers. The objective of this lecture is to address the state of the art of electrostatic discharge (ESD and electrical overstress (EOS in today’s electronic components and systems. The tutorial provides a clear picture of ESD, EOS and EMC phenomena, sources, physics, failure mechanisms, testing and qualification of components and systems. The conclusion of this talk is that ESD and EOS continue to be a concern in technologies from micro-electronics to nano-structures, and will remain a reliability and quality issue in the future.

  2. Prospective study of irradiation and magnification on a pelvic imaging: EOS system versus conventional radiography

    International Nuclear Information System (INIS)

    Demoulin, Loic


    The pelvic x-ray is essential for the orthopedic practise. Recently, EOS system has been developed with technology to limit irradiation and theoretically not create magnification. The objective of this study was to evaluate the EOS system realizing a pelvic x-ray. All patients who underwent hip replacement between September 2014 and April 2015 have benefited pelvis radiograph with the 2 techniques, after surgery. The size of the head was measured with both techniques and compared to the established size. Irradiation of each technique was listed. A correlation study was carried out with the body mass index (BMI) of the patient. Irradiation was significantly greater with conventional radiography than with the EOS system: PDS of conventional radiography = 15.0 (10.5; 25.2) against the EOS system PDS = 8.2 (7.1; 9.7), p ≤0.0001. It was found a significant correlation between BMI and irradiation, particularly with conventional radiography. About expansion, the EOS system not create any except in 4 cases, unlike the conventional radiograph. The EOS system significantly decreases irradiation in all patients, compared to the conventional radiography, and it do not create magnification when realizing a pelvic x-ray, even in overweight patients [fr

  3. Land, Atmosphere Near Real-time Capability for EOS (LANCE) AMSR2 Data System (United States)

    Smith, D. K.; Harrison, S.; Lin, H.; Flynn, S.; Nair, M.; Conover, H.; Graves, S. J.


    The Land, Atmosphere Near real-time Capability for EOS (LANCE) system was initiated to ensure the availability of NASA satellite data products to those partners who have grown to rely upon near real-time (NRT) data for their decision support systems. The LANCE Advanced Microwave Scanning Radiometer-EOS (AMSR-E) system was able to address the needs of the NRT community in areas such as weather prediction and forecasting, monitoring of natural hazards, disaster relief, agriculture, and homeland security for nearly one year before the instrument failed in 2011. The timely launch of Global Change Observation Mission -Water 1 (GCOM-W1) and the AMSR2 instrument by the Japanese Aerospace Exploration Agency (JAXA) in 2012 was very important to continue the time series of AMSR instruments. The LANCE element for AMSR2 was able to leverage the LANCE AMSR-E system architecture, using modified AMSR-E standard product algorithms in order to make preliminary data products available to NRT users before US AMSR2 standard product algorithms were available. This presentation will describe the five AMSR2 NRT product suites available from LANCE - Sea Ice, Snow, Rain/Ocean, and Soil Moisture. We will also discuss future plans for LANCE AMSR2.

  4. The long periodicity phase (LPP) controversy part I: The influence of a natural-like ratio of the CER[EOS] analogue [EOS]-br in a CER[NP]/[AP] based stratum corneum modelling system: A neutron diffraction study. (United States)

    Schmitt, Thomas; Lange, Stefan; Sonnenberger, Stefan; Dobner, Bodo; Demé, Bruno; Langner, Andreas; Neubert, Reinhard H H


    This study used neutron diffraction to investigate a ceramide-[NP] C24/[AP] C24 /[EOS]-br C30/cholesterol/lignoceric acid (0.6: 0.3: 0.1: 0.7: 1) based stratum corneum modelling system. By adding specifically deuterated ceramides-[NP]-D 3 , [AP]-D 3 , and [EOS]-br-D 3 , detailed information on the lamellar and the nanostructure of the system was obtained. For the short periodicity phase a natural-like lamellar repeat distance of 5.47 ± 0.02 nm was observed, similar to the [NP]/[AP] base system without the [EOS]-br. Unlike in this system the ceramides here were slightly tilted, hinting towards a slightly less natural arrangement. Due to the deuteration it was possible to observe that the long ceramide chains were overlapping in the lamellar mid-plane. This is considered to be an important feature for the natural stratum corneum. Despite the presence of a ceramide [EOS] analogue - able to form a long phase arrangement - no distinct long periodicity phase was formed, despite a slightly higher than natural ω-acyl ceramide ratio of 10 mol%. The deuterated variant of this ceramide determined that the very long ceramide was integrated into the short periodicity phase, spanning multiple layers instead. The - compared to the base system - unchanged repeat distance highlights the stability of this structure. Furthermore, the localisation of the very long ceramide in the short periodicity phase indicates the possibility of a crosslinking effect and thus a multilayer stabilizing role for the ceramide [EOS]. It can be concluded, that additionally to the mere presence of ceramide-[EOS] more complex conditions have to be met in order to form this long phase. This has to be further investigated in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Flexibility analysis in adolescent idiopathic scoliosis on side-bending images using the EOS imaging system. (United States)

    Hirsch, C; Ilharreborde, B; Mazda, K


    Analysis of preoperative flexibility in adolescent idiopathic scoliosis (AIS) is essential to classify the curves, determine their structurality, and select the fusion levels during preoperative planning. Side-bending x-rays are the gold standard for the analysis of preoperative flexibility. The objective of this study was to examine the feasibility and performance of side-bending images taken in the standing position using the EOS imaging system. All patients who underwent preoperative assessment between April 2012 and January 2013 for AIS were prospectively included in the study. The work-up included standing AP and lateral EOS x-rays of the spine, standard side-bending x-rays in the supine position, and standing bending x-rays in the EOS booth. The irradiation dose was measured for each of the tests. Two-dimensional reducibility of the Cobb angle was measured on both types of bending x-rays. The results were based on the 50 patients in the study. No significant difference was demonstrated for reducibility of the Cobb angle between the standing side-bending images with the EOS imaging system and those in the supine position for all types of Lenke deformation. The irradiation dose was five times lower during the EOS bending imaging. The standing side-bending images in the EOS device contributed the same results as the supine images, with five times less irradiation. They should therefore be used in clinical routine. 2. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. HDF-EOS Dump Tools (United States)

    Prasad, U.; Rahabi, A.


    The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The

  7. Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot (United States)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Handy, Matthew; Policelli, Fritz; Katjizeu, McCloud; Van Langenhove, Guido; Aube, Guy; Saulnier, Jean-Francois; Sohlberg, Rob; hide


    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. Disasters are the perfect arena to use SensorWebs. One SensorWeb pilot project that has been active since 2009 is the Namibia Early Flood Warning SensorWeb pilot project. The Pilot Project was established under the auspices of the Namibian Ministry of Agriculture Water and Forestry (MAWF)/Department of Water Affairs, the Committee on Earth Observing Satellites (CEOS)/Working Group on Information Systems and Services (WGISS) and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort began by identifying and prototyping technologies which enabled the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management. This was followed by an international collaboration to build small portions of the identified system which was prototyped during that past few years during the flood seasons which occurred in the February through May timeframe of 2010 and 2011 with further prototyping to occur in 2012. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team also began to examine the socioeconomic component to determine the impact of the SensorWeb technology and how best to assist in the infusion of this technology in lesser affluent areas with low levels of basic

  8. Information management challenges of the EOS Data and Information System (United States)

    Mcdonald, Kenneth R.; Blake, Deborah J.


    An overview of the current information management concepts that are embodied in the plans for the Earth Observing System Data and Information System (EOSDIS) is presented, and some of the technology development and application areas that are envisioned to be particularly challenging are introduced. The Information Management System (IMS) is the EOSDIS element that provides the primary interface between the science users and the data products and services of EOSDIS. The goals of IMS are to define a clear and complete set of functional requirements and to apply innovative methods and technologies to satisfy them. The information management functions are described in detail, and some applicable technolgies are discussed. Some of the general issues affecting the successful development and operation of the information management element are addressed.

  9. Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Yussuf, Mustafe A.; Kontogeorgis, Georgios


    + water. These data are satisfactorily correlated (binaries) and predicted (ternaries) using Cubic Plus Association (CPA) equation of state (EoS). CPA is also applied to binary LLE of aromatic hydrocarbon + water and VLE of methane + methanol. Finally the distribution of water and inhibitors (methanol...... and MEG) in various phases is modeled using CPA. The hydrocarbon phase consists of mixture-1 (methane, ethane, n-butane) or mixture-2 (methane, ethane, propane, n-butane, n-heptane, toluene and n-decane). CPA can satisfactorily predict the water content in the gas phase of the multicomponent systems...

  10. The EOS imaging system: Workflow and radiation dose in scoliosis examinations

    DEFF Research Database (Denmark)

    Mussmann, Bo; Torfing, Trine; Jespersen, Stig

    Introduction The EOS imaging system is a biplane slot beam scanner capable of full body scans at low radiation dose and without geometrical distortion. It was implemented in our department primo 2012 and all scoliosis examinations are now performed in EOS. The system offers improved possibility...... to measure rotation of individual vertebrae and vertebral curves can be assessed in 3D. Leg length Discrepancy measurements are performed in one exposure without geometrical distortion and no stitching. Full body scans for sagittal balance are also performed with the equipment after spine surgery. Purpose...... The purpose of the study was to evaluate workflow defined as scheduled time pr. examination and radiation dose in scoliosis examinations in EOS compared to conventional x-ray evaluation. Materials and Methods: The Dose Area Product (DAP) was measured with a dosimeter and a comparison between conventional X...

  11. Support of an Active Science Project by a Large Information System: Lessons for the EOS Era (United States)

    Angelici, Gary L.; Skiles, J. W.; Popovici, Lidia Z.


    The ability of large information systems to support the changing data requirements of active science projects is being tested in a NASA collaborative study. This paper briefly profiles both the active science project and the large information system involved in this effort and offers some observations about the effectiveness of the project support. This is followed by lessons that are important for those participating in large information systems that need to support active science projects or that make available the valuable data produced by these projects. We learned in this work that it is difficult for a large information system focused on long term data management to satisfy the requirements of an on-going science project. For example, in order to provide the best service, it is important for all information system staff to keep focused on the needs and constraints of the scientists in the development of appropriate services. If the lessons learned in this and other science support experiences are not applied by those involved with large information systems of the EOS (Earth Observing System) era, then the final data products produced by future science projects may not be robust or of high quality, thereby making the conduct of the project science less efficacious and reducing the value of these unique suites of data for future research.

  12. An evaluation of the EOS X-ray imaging system in pelvimetry

    International Nuclear Information System (INIS)

    Sigmann, M.H.; Runge, M.; Peyron, C.; Delabrousse, E.; Riethmuller, D.; Aubry, S.


    Objectives: To demonstrate the reliability of the EOS imaging system in measuring the internal diameters of the bony pelvis. Materials and methods: A prospective study comparing the results of the pelvimetry of 18 dry pelvises carried out on the EOS imaging system to measurements taken manually and using the two current gold standard CT methods. Pelvi-metric measurements of each pelvic bone were obtained using four methods and compared: direct manual measurements, spiral and sequential CT pelvimetry, and 2D-3D low-dose bi-planar X-rays. The various obstetric diameters were measured to the millimetre and compared. Results: There was no significant difference in the different diameters assessed, with the exception of the inter-spinous diameter. There was a highly significant correlation (P < 0.001) between the values measured manually and by EOS for the Magnin index (Pearson = 0.98), the obstetric conjugate diameter (Pearson = 0.99), and the median transverse diameter (Pearson = 0.87). Conclusion: The EOS imaging system allows for an ex vivo determination of the obstetrical diameters that is reliable enough to estimate obstetric prognosis, producing comparable measurements to CT. In view of concerns about protection from radiation, this low-dose imaging technique could become, after in vivo prospective validation, the new gold standard for pelvimetry and therefore a good alternative to CT. (authors)

  13. An Autonomous Data Reduction Pipeline for Wide Angle EO Systems (United States)

    Privett, G.; George, S.; Feline, W.; Ash, A.; Routledge, G.

    The UK’s National Space and Security Policy states that the identification of potential on-orbit collisions and re-entry warning over the UK is of high importance, and is driving requirements for indigenous Space Situational Awareness (SSA) systems. To meet these requirements options are being examined, including the creation of a distributed network of simple, low cost commercial–off-the-shelf electro-optical sensors to support survey work and catalogue maintenance. This paper outlines work at Dstl examining whether data obtained using readily-deployable equipment could significantly enhance UK SSA capability and support cross-cueing between multiple deployed systems. To effectively exploit data from this distributed sensor architecture, a data handling system is required to autonomously detect satellite trails in a manner that pragmatically handles highly variable target intensities, periodicity and rates of apparent motion. The processing and collection strategies must be tailored to specific mission sets to ensure effective detections of platforms as diverse as stable geostationary satellites and low altitude CubeSats. Data captured during the Automated Transfer Vehicle-5 (ATV-5) de-orbit trial and images captured of a rocket body break up and a deployed deorbit sail have been employed to inform the development of a prototype processing pipeline for autonomous on-site processing. The approach taken employs tools such as Astrometry.Net and DAOPHOT from the astronomical community, together with image processing and orbit determination software developed inhouse by Dstl. Interim results from the automated analysis of data collected from wide angle sensors are described, together with the current perceived limitations of the proposed system and our plans for future development.

  14. Evaluation of software based redundancy algorithms for the EOS storage system at CERN

    International Nuclear Information System (INIS)

    Peters, Andreas-Joachim; Sindrilaru, Elvin Alin; Zigann, Philipp


    EOS is a new disk based storage system used in production at CERN since autumn 2011. It is implemented using the plug-in architecture of the XRootD software framework and allows remote file access via XRootD protocol or POSIX-like file access via FUSE mounting. EOS was designed to fulfill specific requirements of disk storage scalability and IO scheduling performance for LHC analysis use cases. This is achieved by following a strategy of decoupling disk and tape storage as individual storage systems. A key point of the EOS design is to provide high availability and redundancy of files via a software implementation which uses disk-only storage systems without hardware RAID arrays. All this is aimed at reducing the overall cost of the system and also simplifying the operational procedures. This paper presents the advantages and disadvantages of redundancy by hardware (most classical storage installations) in comparison to redundancy by software. The latter is implemented in the EOS system and achieves its goal by spawning data and parity stripes via remote file access over nodes. The gain in redundancy and reliability comes with a trade-off in the following areas: • Increased complexity of the network connectivity • CPU intensive parity computations during file creation and recovery • Performance loss through remote disk coupling An evaluation and performance figures of several redundancy algorithms are presented for dual parity RAID and Reed-Solomon codecs. Moreover, the characteristics and applicability of these algorithms are discussed in the context of reliable data storage systems.

  15. An interpretation of the behavior of EoS/GE models for asymmetric systems

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Panayiotis, Vlamos


    or zero pressure or at other conditions (system's pressure, constant volume packing fraction). In a number of publications over the last years, the achievements and the shortcomings of the various EoS/G(E) models have been presented via phase equilibrium calculations. This short communication provides...... an explanation of several literature EoSIGE models, especially those based on zero-reference pressure (PSRK, MHV1, MHV2), in the prediction of phase equilibria for asymmetric systems as well as an interpretation of the LCVM and kappa-MHV1 models which provide an empirical - yet as shown here theoretically...... justified - solution to these problems. (C) 2000 Elsevier Science Ltd. All rights reserved....

  16. Online sequential condition prediction method of natural circulation systems based on EOS-ELM and phase space reconstruction

    International Nuclear Information System (INIS)

    Chen, Hanying; Gao, Puzhen; Tan, Sichao; Tang, Jiguo; Yuan, Hongsheng


    Highlights: •An online condition prediction method for natural circulation systems in NPP was proposed based on EOS-ELM. •The proposed online prediction method was validated using experimental data. •The training speed of the proposed method is significantly fast. •The proposed method can achieve good accuracy in wide parameter range. -- Abstract: Natural circulation design is widely used in the passive safety systems of advanced nuclear power reactors. The irregular and chaotic flow oscillations are often observed in boiling natural circulation systems so it is difficult for operators to monitor and predict the condition of these systems. An online condition forecasting method for natural circulation system is proposed in this study as an assisting technique for plant operators. The proposed prediction approach was developed based on Ensemble of Online Sequential Extreme Learning Machine (EOS-ELM) and phase space reconstruction. Online Sequential Extreme Learning Machine (OS-ELM) is an online sequential learning neural network algorithm and EOS-ELM is the ensemble method of it. The proposed condition prediction method can be initiated by a small chunk of monitoring data and it can be updated by newly arrived data at very fast speed during the online prediction. Simulation experiments were conducted on the data of two natural circulation loops to validate the performance of the proposed method. The simulation results show that the proposed predication model can successfully recognize different types of flow oscillations and accurately forecast the trend of monitored plant variables. The influence of the number of hidden nodes and neural network inputs on prediction performance was studied and the proposed model can achieve good accuracy in a wide parameter range. Moreover, the comparison results show that the proposed condition prediction method has much faster online learning speed and better prediction accuracy than conventional neural network model.

  17. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites" (United States)

    Ungar, S.


    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more

  18. Utilizing Free and Open Source Software to access, view and compare in situ observations, EO products and model output data (United States)

    Vines, Aleksander; Hamre, Torill; Lygre, Kjetil


    The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. A main task has been to set up a data delivery and monitoring core service following the open and free data access policy implemented in the Global Monitoring for the Environment and Security (GMES) programme. The aim is to ensure open and free access to historical plankton data, new data (EO products and in situ measurements), model data (including estimates of simulation error) and biological, environmental and climatic indicators to a range of stakeholders, such as scientists, policy makers and environmental managers. To this end, we have developed a geo-spatial database of both historical and new in situ physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic, and organized related satellite-derived quantities and model forecasts in a joint geo-spatial repository. For easy access to these data, we have implemented a web-based GIS (Geographical Information Systems) where observed, derived and forcasted parameters can be searched, displayed, compared and exported. Model forecasts can also be uploaded dynamically to the system, to allow modelers to quickly compare their results with available in situ and satellite observations. We have implemented the web-based GIS(Geographical Information Systems) system based on free and open source technologies: Thredds Data Server, ncWMS, GeoServer, OpenLayers, PostGIS, Liferay, Apache Tomcat, PRTree, NetCDF-Java, json-simple, Geotoolkit, Highcharts, GeoExt, MapFish, FileSaver, jQuery, jstree and qUnit. We also wanted to used open standards to communicate between the different services and we use WMS, WFS, netCDF, GML, OPeNDAP, JSON, and SLD. The main advantage we got from using FOSS was that we did not have to invent the wheel all over again, but could use

  19. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems (United States)

    Williams, John W.; Potter, Gary E.


    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  20. A web portal for accessing, viewing and comparing in situ observations, EO products and model output data (United States)

    Vines, Aleksander; Hamre, Torill; Lygre, Kjetil


    The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. A main task has been to set up a data delivery and monitoring core service following the open and free data access policy implemented in the Global Monitoring for the Environment and Security (GMES) programme. A key feature of the system is its ability to compare data from different datasets, including an option to upload one's own netCDF files. The user can for example search in an in situ database for different variables (like temperature, salinity, different elements, light, specific plankton types or rate measurements) with different criteria (bounding box, date/time, depth, Longhurst region, cruise/transect) and compare the data with model data. The user can choose model data or Earth observation data from a list, or upload his/her own netCDF files to use in the comparison. The data can be visualized on a map, as graphs and plots (e.g. time series and property-property plots), or downloaded in various formats. The aim is to ensure open and free access to historical plankton data, new data (EO products and in situ measurements), model data (including estimates of simulation error) and biological, environmental and climatic indicators to a range of stakeholders, such as scientists, policy makers and environmental managers. We have implemented a web-based GIS(Geographical Information Systems) system and want to demonstrate the use of this. The tool is designed for a wide range of users: Novice users, who want a simple way to be able to get basic information about the current state of the marine planktonic ecosystem by utilizing predefined queries and comparisons with models. Intermediate level users who want to explore the database on their own and customize the prefedined setups. Advanced users who want to perform complex queries and

  1. Earth Observing System, Conclusions and Recommendations (United States)


    The following Earth Observing Systems (E.O.S.) recommendations were suggested: (1) a program must be initiated to ensure that present time series of Earth science data are maintained and continued. (2) A data system that provides easy, integrated, and complete access to past, present, and future data must be developed as soon as possible. (3) A long term research effort must be sustained to study and understand these time series of Earth observations. (4) The E.O.S. should be established as an information system to carry out those aspects of the above recommendations which go beyond existing and currently planned activities. (5) The scientific direction of the E.O.S. should be established and continued through an international scientific steering committee.

  2. A Preliminary Review on Economies of Scale (EOS Towards Industrialized Building System (IBS Manufacturer

    Directory of Open Access Journals (Sweden)

    Tajul Ariffin Syazwana


    Full Text Available Industrialized Building System (IBS is a potential technology to improve productivity of construction industry. Controlled production and minimum generation of construction waste are some of the benefits that can be achieved by replacing conventional construction with IBS. In business, IBS is giving a huge opportunity for manufacturer and supplier to expand their business while contributing to construction development. However, bad strategies will put the company in high risk due to higher initial capital for machines and equipment. Therefore, strategic planning for company’s growth, profit maximization, and enhancement of productivity is undeniable to ensure the success of business in construction industry. This preliminary paper is exploring associated factors that affect Economy of Scale (EOS and their relationships in catalyzing the IBS manufacturer especially precast concrete as the scope of study to continue their business in the construction industry. Thus, a framework of EOS is proposed to assist IBS manufacturers to ensure their company’s growth and stability, competitiveness in term of monopoly or an oligopoly, increasing productivity, leading constant returns to scale, and finally increasing the firm’s efficiency. The refined EOS’s conceptual framework is an important turning point to support the development of decision making tools for IBS manufacturer towards their stability and survival in this highly competitive industry.

  3. EOS developments (United States)

    Sindrilaru, Elvin A.; Peters, Andreas J.; Adde, Geoffray M.; Duellmann, Dirk


    CERN has been developing and operating EOS as a disk storage solution successfully for over 6 years. The CERN deployment provides 135 PB and stores 1.2 billion replicas distributed over two computer centres. Deployment includes four LHC instances, a shared instance for smaller experiments and since last year an instance for individual user data as well. The user instance represents the backbone of the CERNBOX service for file sharing. New use cases like synchronisation and sharing, the planned migration to reduce AFS usage at CERN and the continuous growth has brought EOS to new challenges. Recent developments include the integration and evaluation of various technologies to do the transition from a single active in-memory namespace to a scale-out implementation distributed over many meta-data servers. The new architecture aims to separate the data from the application logic and user interface code, thus providing flexibility and scalability to the namespace component. Another important goal is to provide EOS as a CERN-wide mounted filesystem with strong authentication making it a single storage repository accessible via various services and front- ends (/eos initiative). This required new developments in the security infrastructure of the EOS FUSE implementation. Furthermore, there were a series of improvements targeting the end-user experience like tighter consistency and latency optimisations. In collaboration with Seagate as Openlab partner, EOS has a complete integration of OpenKinetic object drive cluster as a high-throughput, high-availability, low-cost storage solution. This contribution will discuss these three main development projects and present new performance metrics.

  4. The first observation of EO transitions from negative parity states in even-even nucleus 160Dy

    International Nuclear Information System (INIS)

    Grigoriev, E.P.


    In even-even deformed nuclei up to now EO-transitions were found only between the states of the same spin belonging to Κ π = O + rotational bands. There is no forbidenness for EO-transitions between states belonging to bands with any other quantum number Κ provided both initial and final states have the same J π Κ values. EO-transitions may depopulate odd-parity states. In odd nuclei β-vibrational states are identified by transition with EO-components. Here transitions also proceed between states with the same J π K numbers. Even-even nuclide 160 Dy is the first nucleus where the EO-transitions between odd-parity states have been found

  5. Global and Seasonal Distributions of CHOCHO and HCHO Observed by the Ozone Monitoring Instrument on EOS Aura (United States)

    Kurosu, T. P.; Fu, T.; Volkamer, R.; Millet, D. B.; Chance, K.


    Over the two years since its launch in July 2004, the Ozone Monitoring Instrument (OMI) on EOS Aura has demonstrated the capability to routinely monitor the volatile organic compounds (VOCs) formaldehyde (HCHO) and glyoxal (CHOCHO). OMI's daily global coverage and spatial resolution as high as 13x24 km provides a unique data set of these molecules for the study of air quality from space. We present the first study of global seasonal distributions of CHOCHO from space, derived from a year of OMI observations. CHOCHO distributions are compared to simultaneous retrievals of HCHO from OMI, providing a first indication of seasonally resolved ratios of these VOCs on a global scale. Satellite retrievals are compared to global simulations of HCHO and CHOCHO, based on current knowledge of sources and sinks, using the GEOS-Chem global chemistry and transport model. Formaldehyde is both directly emitted and also produced from the oxidation of many VOCs, notably biogenic isoprene, and is removed by photolysis and oxidation. Precursors of glyoxal include isoprene, monoterpenes, and aromatics from anthropogenic, biogenic, and biomass burning emissions; it is removed by photolysis, oxidation by OH, dry/wet deposition, and aerosol uptake. As a case study, satellite observations will also be compared to ground-based measurements taken during the Pearl River Delta 2006 field campaign near Guangzhou, China, where high glyoxal concentrations are frequently observed from space.

  6. Occupational and patient exposure as well as image quality for full spine examinations with the EOS imaging system

    International Nuclear Information System (INIS)

    Damet, J.; Fournier, P.; Monnin, P.; Sans-Merce, M.; Verdun, F. R.; Baechler, S.; Ceroni, D.; Zand, T.


    Purpose: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. Methods: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). Results: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. Conclusions: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems

  7. Occupational and patient exposure as well as image quality for full spine examinations with the EOS imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Damet, J., E-mail:; Fournier, P.; Monnin, P.; Sans-Merce, M.; Verdun, F. R.; Baechler, S. [Institute of Radiation Physics, Lausanne University Hospital, Lausanne 1007 (Switzerland); Ceroni, D. [Department of Paediatrics, Division of paediatric orthopaedic, University Hospitals of Geneva, Geneva 1205 (Switzerland); Zand, T. [Department of Radiology, Division of paediatric radiology, University Hospitals of Geneva, Geneva 1205 (Switzerland)


    Purpose: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. Methods: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). Results: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. Conclusions: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems.

  8. The Earth Observing System Terra Mission (United States)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)


    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  9. Building EOS capability for Malaysia - the options (United States)

    Subari, M. D.; Hassan, A.


    Earth observation satellite (EOS) is currently a major tool to monitor earth dynamics and increase human understanding of earth surface process. Since the early 80s, Malaysia has been using EOS images for various applications, such as weather forecasting, land use mapping, agriculture, environment monitoring and others. Until now, all EOS images were obtained from foreign satellite systems. Realising on the strategic need of having its own capability, Malaysia embarked into EOS development programs in the early 90s. Starting with TiungSAT-1, a micro-satellite carrying small camera, then followed by RazakSAT, a small satellite carrying 2.5 m panchromatic (PAN) medium-aperture-camera, the current satellite program development, the RazakSAT-2, designed to carry a 1.0 m high resolution PAN and 4.0m multi-spectral camera, would become a strategic initiative of the government in developing and accelerating the nation's capability in the area of satellite technology and its application. Would this effort continue until all needs of the remote sensing community being fulfilled by its own EOS? This paper will analyze the intention of the Malaysian government through its National Space Policy and other related policy documents, and proposes some policy options on this. Key factors to be considered are specific data need of the EOS community, data availability and the more subjective political motivations such as national pride.

  10. EOS: A project to investigate the design and construction of real-time distributed Embedded Operating Systems (United States)

    Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince


    Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.

  11. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery

    Directory of Open Access Journals (Sweden)

    Shu Tian


    Full Text Available The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a VidEo-Based Intelligent Recognitionand Decision (VEBIRD system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VEBIRD comprises a robust eye (iris detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VEBIRD’s effectiveness.

  12. Data processing and in-flight calibration systems for OMI-EOS-Aura (United States)

    van den Oord, G. H. J.; Dobber, M.; van de Vegte, J.; van der Neut, I.; Som de Cerff, W.; Rozemeijer, N. C.; Schenkelaars, V.; ter Linden, M.


    The OMI instrument that flies on the EOS Aura mission was launched in July 2004. OMI is a UV-VIS imaging spectrometer that measures in the 270 - 500 nm wavelength range. OMI provides daily global coverage with high spatial resolution. Every orbit of 100 minutes OMI generates about 0.5 GB of Level 0 data and 1.2 GB of Level 1 data. About half of the Level 1 data consists of in-flight calibration measurements. These data rates make it necessary to automate the process of in-flight calibration. For that purpose two facilities have been developed at KNMI in the Netherlands: the OMI Dutch Processing System (ODPS) and the Trend Monitoring and In-flight Calibration Facility (TMCF). A description of these systems is provided with emphasis on the use for radiometric, spectral and detector calibration and characterization. With the advance of detector technology and the need for higher spatial resolution, data rates will become even higher for future missions. To make effective use of automated systems like the TMCF, it is of paramount importance to integrate the instrument operations concept, the information contained in the Level 1 (meta-)data products and the inflight calibration software and system databases. In this way a robust but also flexible end-to-end system can be developed that serves the needs of the calibration staff, the scientific data users and the processing staff. The way this has been implemented for OMI may serve as an example of a cost-effective and user friendly solution for future missions. The basic system requirements for in-flight calibration are discussed and examples are given how these requirements have been implemented for OMI. Special attention is paid to the aspect of supporting the Level 0 - 1 processing with timely and accurate calibration constants.

  13. Earth Observation System Flight Dynamics System Covariance Realism (United States)

    Zaidi, Waqar H.; Tracewell, David


    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  14. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 2: Data management system configuration (United States)


    The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.

  15. ASY-EOS experiment at GSI

    Directory of Open Access Journals (Sweden)

    Kezzar K.


    Full Text Available The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich Heavy-Ion at intermediate energies has been recently proposed as an observable sensitive to the strength of the symmetry term in the nuclear equation of state (EOS at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.

  16. Radiometric cross-calibration of EO-1 ALI with L7 ETM+ and Terra MODIS sensors using near-simultaneous desert observations (United States)

    Chander, Gyanesh; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong


    The Earth Observing-1 (EO-1) satellite was launched on November 21, 2000, as part of a one-year technology demonstration mission. The mission was extended because of the value it continued to add to the scientific community. EO-1 has now been operational for more than a decade, providing both multispectral and hyperspectral measurements. As part of the EO-1 mission, the Advanced Land Imager (ALI) sensor demonstrates a potential technological direction for the next generation of Landsat sensors. To evaluate the ALI sensor capabilities as a precursor to the Operational Land Imager (OLI) onboard the Landsat Data Continuity Mission (LDCM, or Landsat 8 after launch), its measured top-of-atmosphere (TOA) reflectances were compared to the well-calibrated Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors in the reflective solar bands (RSB). These three satellites operate in a near-polar, sun-synchronous orbit 705 km above the Earth's surface. EO-1 was designed to fly one minute behind L7 and approximately 30 minutes in front of Terra. In this configuration, all the three sensors can view near-identical ground targets with similar atmospheric, solar, and viewing conditions. However, because of the differences in the relative spectral response (RSR), the measured physical quantities can be significantly different while observing the same target. The cross-calibration of ALI with ETM+ and MODIS was performed using near-simultaneous surface observations based on image statistics from areas observed by these sensors over four desert sites (Libya 4, Mauritania 2, Arabia 1, and Sudan 1). The differences in the measured TOA reflectances due to RSR mismatches were compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of each sensor. For this study, the spectral profile of the target comes from the near-simultaneous EO-1

  17. UrtheCast: The System of Systems for Dynamic EO Monitoring Content

    International Nuclear Information System (INIS)

    Spyropoulos, N.


    UrtheCast is a multinational industrial initiative that tasks, downloads, processes and commercially exploits a medium resolution multispectral sensor and high-resolution wide area motion colorful video camera. UrtheCast's Earth Observation imaging system includes a pair of multispectral color cameras installed on the ISS. The High-Resolution Camera (HRC-Iris) is mounted on a pointing platform and captures 1 m-class high-definition (HD), full color motion imagery of areas measuring approximately 5.5x3.6 km 2 . The nadir pointing, push-broom Medium- Resolution Camera (MRC-Theia) produces a continuous ribbon of 4-channel, multispectral 6 m-class imagery. The acquired data are downlinked to a global network of antennas and backhauled to the UrtheCast cloud-based processing system and dissemination services. The resulting imagery and video are streamed in near-real time to the UrtheCast web platform or delivered to customers as special order products. UrtheCast daily MRC collection capability is ∼29 million km 2 while the HRC capacity is envisaged to generate approximately 2.5 terabytes of data per day, the equivalent of about 270 full resolution ∼90 second movies. The UrtheCast new Generation cameras include a dual Optical sensor (video and pushbroom focal planes) and dual-band (X and L) Synthetic Aperture Radar payload. Video will be of half-metre colour (0.40 m after super-imposition) and push-broom will be 1 m of 6-band multispectral. SAR payload will simultaneously record in both L and X bands, with the L-band in full quad pole (HH, HV, VH, VV, at 5 m) and the X-band in single pole (HH or VV, at 1.5 m or at <1 m in spotlight mode). The new system will be installed at NASA's Node 3 segment in late 2016. ISS is flying at 400 km, orbiting the earth 15 times/day and covering areas fallen into a geographic zone from 51.5 degrees north to 51.5 degrees south. (author)

  18. Scaling the EOS namespace

    CERN Document Server

    Peters, Andreas J; Bitzes, Georgios


    EOS is the distributed storage system being developed at CERN with the aim of fulfilling a wide range of data storage needs, ranging from physics data to user home directories. Being in production since 2011, EOS currently manages around 224 petabytes of disk space and 1.4 billion files across several instances. Even though individual EOS instances routinely manage hundreds of disk servers, users access the contents through a single, unified namespace which is exposed by the head node (MGM), and contains the metadata of all files stored on that instance. The legacy implementation keeps the entire namespace in-memory. Modifications are appended to a persistent, on-disk changelog; this way, the in-memory contents can be reconstructed after every reboot by replaying the changelog. While this solution has proven reliable and effective, we are quickly approaching the limits of its scalability. In this paper, we present our new implementation which is currently in testing. We have designed and implemented QuarkD...

  19. The EOS 2D/3D X-ray imaging system: A cost-effectiveness analysis quantifying the health benefits from reduced radiation exposure

    International Nuclear Information System (INIS)

    Faria, Rita; McKenna, Claire; Wade, Ros; Yang, Huiqin; Woolacott, Nerys; Sculpher, Mark


    Objectives: To evaluate the cost-effectiveness of the EOS ® 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. Materials and methods: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Threshold analysis was used to quantify the additional health benefits required, over and above those associated with radiation-induced cancers, for EOS ® to be considered cost-effective. Results: Standard X-ray is associated with a maximum health loss of 0.001 QALYs, approximately 0.4 of a day in full health, while the loss with EOS ® is a maximum of 0.00015 QALYs, or 0.05 of a day in full health. On a per patient basis, EOS ® is more expensive than standard X-ray by between £10.66 and £224.74 depending on the assumptions employed. The results suggest that EOS ® is not cost-effective for any indication. Health benefits over and above those obtained from lower radiation would need to double for EOS to be considered cost-effective. Conclusion: No evidence currently exists on whether there are health benefits associated with imaging improvements from the use of EOS ® . The health benefits from radiation dose reductions are very small. Unless EOS ® can generate additional health benefits as a consequence of the nature and quality of the image, comparative patient throughput with X-ray will be the major determinant of cost-effectiveness

  20. The EOS 2D/3D X-ray imaging system: A cost-effectiveness analysis quantifying the health benefits from reduced radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rita, E-mail: [Centre for Health Economics, University of York, York (United Kingdom); McKenna, Claire [Centre for Health Economics, University of York, York (United Kingdom); Wade, Ros; Yang, Huiqin; Woolacott, Nerys [Centre for Reviews and Dissemination, University of York, York (United Kingdom); Sculpher, Mark [Centre for Health Economics, University of York, York (United Kingdom)


    Objectives: To evaluate the cost-effectiveness of the EOS{sup ®} 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. Materials and methods: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Threshold analysis was used to quantify the additional health benefits required, over and above those associated with radiation-induced cancers, for EOS{sup ®} to be considered cost-effective. Results: Standard X-ray is associated with a maximum health loss of 0.001 QALYs, approximately 0.4 of a day in full health, while the loss with EOS{sup ®} is a maximum of 0.00015 QALYs, or 0.05 of a day in full health. On a per patient basis, EOS{sup ®} is more expensive than standard X-ray by between £10.66 and £224.74 depending on the assumptions employed. The results suggest that EOS{sup ®} is not cost-effective for any indication. Health benefits over and above those obtained from lower radiation would need to double for EOS to be considered cost-effective. Conclusion: No evidence currently exists on whether there are health benefits associated with imaging improvements from the use of EOS{sup ®}. The health benefits from radiation dose reductions are very small. Unless EOS{sup ®} can generate additional health benefits as a consequence of the nature and quality of the image, comparative patient throughput with X-ray will be the major determinant of cost-effectiveness.

  1. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts (United States)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric


    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  2. Eos Chaos Rocks (United States)


    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region. Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  3. EOS Terra Validation Program (United States)

    Starr, David


    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra

  4. Modelling (vapour + liquid) and (vapour + liquid + liquid) equilibria of {water (H2O) + methanol (MeOH) + dimethyl ether (DME) + carbon dioxide (CO2)} quaternary system using the Peng-Robinson EoS with Wong-Sandler mixing rule

    International Nuclear Information System (INIS)

    Ye Kongmeng; Freund, Hannsjoerg; Sundmacher, Kai


    Highlights: → Phase behaviour modelling of H 2 O-MeOH-DME under pressurized CO 2 (anti-solvent) using PRWS. → PRWS-UNIFAC-PSRK has better performance than PRWS-UNIFAC-Lby in general. → Reliable to extend the VLE and VLLE phase behaviour from binary to multicomponent systems. → Successful prediction of the VLE and VLLE of binary, ternary, and quaternary systems. → Potential to apply the model for designing new DME separation process. - Abstract: The (vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) binary data from literature were correlated using the Peng-Robinson (PR) equation of state (EoS) with the Wong-Sandler mixing rule (WS). Two group contribution activity models were used in the PRWS: UNIFAC-PSRK and UNIFAC-Lby. The systems were successfully extrapolated from the binary systems to ternary and quaternary systems. Results indicate that the PRWS-UNIFAC-PSRK generally displays a better performance than the PRWS-UNIFAC-Lby.

  5. Building EOS capability for Malaysia – the options

    International Nuclear Information System (INIS)

    Subari, M D; Hassan, A


    Earth observation satellite (EOS) is currently a major tool to monitor earth dynamics and increase human understanding of earth surface process. Since the early 80s, Malaysia has been using EOS images for various applications, such as weather forecasting, land use mapping, agriculture, environment monitoring and others. Until now, all EOS images were obtained from foreign satellite systems. Realising on the strategic need of having its own capability, Malaysia embarked into EOS development programs in the early 90s. Starting with TiungSAT-1, a micro-satellite carrying small camera, then followed by RazakSAT, a small satellite carrying 2.5 m panchromatic (PAN) medium-aperture-camera, the current satellite program development, the RazakSAT-2, designed to carry a 1.0 m high resolution PAN and 4.0m multi-spectral camera, would become a strategic initiative of the government in developing and accelerating the nation's capability in the area of satellite technology and its application. Would this effort continue until all needs of the remote sensing community being fulfilled by its own EOS? This paper will analyze the intention of the Malaysian government through its National Space Policy and other related policy documents, and proposes some policy options on this. Key factors to be considered are specific data need of the EOS community, data availability and the more subjective political motivations such as national pride

  6. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht


    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....

  7. A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations (United States)

    Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.


    The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.

  8. Laser illumination and EO systems for covert surveillance from NIR to SWIR and beyond (United States)

    Dvinelis, Edgaras; Žukauskas, Tomas; Kaušylas, Mindaugas; Vizbaras, Augustinas; Vizbaras, Kristijonas; Vizbaras, Dominykas


    One of the most important factor of success in battlefield is the ability to remain undetected by the opposing forces while also having an ability to detect all possible threats. Illumination and pointing systems working in NIR and SWIR bands are presented. Wavelengths up to 1100 nm can be registered by newest generation image intensifier tubes, CCD and EMCCD sensors. Image intensifier tubes of generation III or older are only limited up to wavelength of 900 nm [1]. Longer wavelengths of 1550 nm and 1625 nm are designed to be used with SWIR electro-optical systems and they cannot be detected by any standard night vision system. Long range SWIR illuminators and pointers have beam divergences down to 1 mrad and optical powers up to 1.5 W. Due to lower atmospheric scattering SWIR illuminators and pointers can be used at extremely long distances up to 10s of km and even further during heavy weather conditions. Longer wavelengths of 2100 nm and 2450 nm are also presented, this spectrum band is of great interest for direct infrared countermeasure (DIRCM) applications. State-of-the-art SWIR and LWIR electro-optical systems are presented. Sensitive InGaAs sensors coupled with "fast" (low F/#) optical lenses can provide complete night vision, detection of all NIR and SWIR laser lines, penetration through smoke, dust and fog. Finally beyond-state-of-the-art uncooled micro-bolometer LWIR systems are presented featuring ultra-high sensor sensitivities of 20 mK.

  9. Leaf area index retrieval using Hyperion EO-1 data-based vegetation indices in Himalayan forest system (United States)

    Singh, Dharmendra; Singh, Sarnam


    Present Study is being taken to retrieve Leaf Area Indexn(LAI) in Himalayan forest system using vegetation indices developed from Hyperion EO-1 hyperspectral data. Hemispherical photograph were captured in the month of March and April, 2012 at 40 locations, covering moist tropical Sal forest, subtropical Bauhinia and pine forest and temperate Oak forest and analysed using an open source GLA software. LAI in the study region was ranging in between 0.076 m2/m2 to 6.00 m2/m2. These LAI values were used to develop spectral models with the FLAASH corrected Hyperion measurements.Normalized difference vegetation index (NDVI) was used taking spectral reflectance values of all the possible combinations of 170 atmospherically corrected channels. The R2 was ranging from lowest 0.0 to highest 0.837 for the band combinations of spectral region 640 nm and 670 nm. The spectral model obtained was, spectral reflectance (y) = 0.02x LAI(x) - 0.0407.


    Directory of Open Access Journals (Sweden)

    Cristina Dinu


    Full Text Available The European Drinking Water Directive (98/83/EC, transposed in Romanian Legislation as Low 458/2002, amended by Low 311/2004, imposes the limit of concentration for metallic elements in water intended for human consumption. The toxic metals arsenic and selenium are among these elements and the limit value is 10 μg/L. In the paper there are presented the working conditions for determination of As and Se from drinking water using modern techniques based on the fl ow injection-hydride generation with the inductively coupled plasma atomic emission spectrometry (FIAS-ICP-EOS. The analyses were performed on Optima 5300 DV Perkin Elmer equipment with FIAS 400 Flow Injection System, Perkin Elmer type. For the hydride generation two types of solution were used: 10% (v/v HCl as a carrier solution and 0.2 % NaBH4 in 0.05%NaOH solution as a reducing agent [1]. The treatment step of the samples and standard solutions consisted in reducing with mixed solutions of KI and ascorbic acid in acidic condition (HCl for As and only with HCl and high temperature for Se [2,3]. The paper contains the characteristic parameters of the methods, such as: low detection limit, quantifi cation limit, repeatability, precision, recovery, which were evaluated using Certifi ed Reference Materials for each element.

  11. Observing farming systems

    DEFF Research Database (Denmark)

    Noe, Egon; Alrøe, Hugo Fjelsted


    of analysis from individual farmers to communication and social relations. This is where Luhmann’s social systems theory can offer new insights. Firstly, it can help observe and understand the operational closure and system logic of a farming system and how this closure is produced and reproduced. Secondly...

  12. Enhanced Algorithms for EO/IR Electronic Stabilization, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets (United States)

    Tartakovsky, A.; Brown, A.; Brown, J.

    The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud

  13. A new imaging 2D and 3D for musculo-skeletal physiology and pathology with low radiation dose and standing position: the EOS system; Une nouvelle imagerie osteo-articulaire basse dose en position debout: le systeme EOS

    Energy Technology Data Exchange (ETDEWEB)

    Dubousset, J. [Academie Nationale de Medecine, et Hopital Saint Vincent de Paul, Service de Chirurgie Orthopedique, 75 - Paris (France); Charpak, G.; Dorion, I. [Biospace, Instruments, 75 - Paris (France); Skalli, W.; Lavaste, F. [Ecole Nationale Superieure des Arts et Metiers, 75 - Paris (France); Deguise, J. [Laboratoire de Recherche en Imagerie Orthopedique, Montreal (Canada); Kalifa, G.; Ferey, S. [Hopital Saint Vincent de Paul, Service de Radiologie, 75 - Paris (France)


    Very precise combined work between multidisciplinary partners (radiation engineers in physics, engineers in bio-mechanics, medical radiologists and orthopedic pediatric surgeons) lead to the concept and development of a new low dose radiation device named EOS. This device allows 3 main advantages: (1) thanks to the invention of Georges Charpak (Nobel Price 1992) who designed gaseous detectors for X-rays, the reduction of dose necessary to obtain a good image of skeletal system was 8 to 10 times less for 2D imaging, compared to the dose necessary to obtain a 3D reconstruction from CT scan cuts the reduction factor was 800 to 1000. (2) The accuracy of 3D reconstruction obtained is as good as a 3D reconstruction from CT scan cuts. (3) The patient in addition get its imaging in standing functional position thank to the X-rays obtained from head to feet simultaneously AP and lateral. This is a big advantage compared to CT scan used only in lying position. From this simultaneous AP and lateral X-rays of the whole body thanks to the 3D bone external envelop technique, the engineers in bio-mechanics allowed to obtain 3D reconstruction of every level of osteo-articular system in standing position with an acceptable period of time (15 to 30 minutes). This (in spite of the evolution of standing MRI) allows more precise bone reconstruction in orthopedics especially at the level of spine, lower limbs, etc. In addition the fact to study the entire skeleton in standing functional position instead of small segmented studies given by CT scan in lying position produce a real improvement as well for physiology as for pathology of bone and joints disorders and especially for spinal pathology. (author)

  14. Satellite Observations of Tropospheric BrO over Salt Lakes and Northern High Latitudes from EOS/OMI and SNPP/OMPS (United States)

    Kurosu, T. P.; Stutz, J.; Brockway, N.; Saiz-Lopez, A.; Suleiman, R. M.; Natraj, V.; Jaross, G.; Seftor, C. J.


    We present observations of tropospheric bromine monoxide (BrO) derived from two satellite instruments: the Ozone Monitoring Instrument (OMI) on EOS-Aura, and the Nadir Mapper component of the Ozone Mapping and Profiler Suite (OMPS) on Suomi/NPP. BrO observations from OMPS constitute a new and experimental measurement that we first report on here and compare with the standard BrO data product from OMI. BrO is a halogen oxide present mostly in the lower stratosphere, where it catalytically destroys ozone with about 25 times the efficiency of ClO. BrO also has a tropospheric component, where it is released from sea surfaces, at the interface of ocean water and sea ice in the polar spring, in volcanic plumes, and in the vicinity of salt lakes. Tropospheric BrO has been linked to mercury (Hg) deposition through BrO-induced conversion of gaseous Hg to reactive Hg, which is then deposited on the surface and enters the food chain, ultimately affecting human health. As part of NASA's Aura Science Team, we are developing an OMI Tropospheric BrO data product that provides a unique global data set on BrO spatial and vertical distribution in the troposphere and stratosphere. Information of this kind is currently unavailable from any of the past and present bromine-monitoring instruments. In this presentation, we focus on multi-year time series of BrO released from a range of salt lakes - the Rann of Kutch, Salar de Uyuni, the Aral Sea, and others. We quantify the amount of bromine released from the lakes and investigate the possibility of lake desiccation monitoring based on independent BrO observations. The quality and limits of OMI and OMPS tropospheric BrO observations is investigated by comparison with ground-based MAX-DOAS observations over central Greenland.

  15. Longline Observer Data System (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LODS, the Hawaii Longline Observer Data System, is a complete suite of tools designed to collect, process, and manage quality fisheries data and information. Guided...

  16. NASA's Earth Observing System Data and Information System - EOSDIS (United States)

    Ramapriyan, Hampapuram K.


    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  17. ASI-Volcanic Risk System (SRV): a pilot project to develop EO data processing modules and products for volcanic activity monitoring, first results. (United States)

    Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.


    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that

  18. Development of a user-friendly system for image processing of electron microscopy by integrating a web browser and PIONE with Eos. (United States)

    Tsukamoto, Takafumi; Yasunaga, Takuo


    Eos (Extensible object-oriented system) is one of the powerful applications for image processing of electron micrographs. In usual cases, Eos works with only character user interfaces (CUI) under the operating systems (OS) such as OS-X or Linux, not user-friendly. Thus, users of Eos need to be expert at image processing of electron micrographs, and have a little knowledge of computer science, as well. However, all the persons who require Eos does not an expert for CUI. Thus we extended Eos to a web system independent of OS with graphical user interfaces (GUI) by integrating web browser.Advantage to use web browser is not only to extend Eos with GUI, but also extend Eos to work under distributed computational environment. Using Ajax (Asynchronous JavaScript and XML) technology, we implemented more comfortable user-interface on web browser. Eos has more than 400 commands related to image processing for electron microscopy, and the usage of each command is different from each other. Since the beginning of development, Eos has managed their user-interface by using the interface definition file of "OptionControlFile" written in CSV (Comma-Separated Value) format, i.e., Each command has "OptionControlFile", which notes information for interface and its usage generation. Developed GUI system called "Zephyr" (Zone for Easy Processing of HYpermedia Resources) also accessed "OptionControlFIle" and produced a web user-interface automatically, because its mechanism is mature and convenient,The basic actions of client side system was implemented properly and can supply auto-generation of web-form, which has functions of execution, image preview, file-uploading to a web server. Thus the system can execute Eos commands with unique options for each commands, and process image analysis. There remain problems of image file format for visualization and workspace for analysis: The image file format information is useful to check whether the input/output file is correct and we also

  19. EOS MLS Lessons Learned: Design Ideas for Safer and Lower Cost Operations (United States)

    Miller, Dominick


    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is a complex instrument with a front end computer and 32 subsystem computers. MLS is one of four instruments on NASA's EOS Aura spacecraft With almost 8 years in orbit, MLS has a few lessons learned which can be applied during the design phase of future instruments to effect better longevity, more robust operations and a significant cost benefit during operations phase.

  20. "New Space Explosion" and Earth Observing System Capabilities (United States)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.


    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  1. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector (United States)

    Di, L.; Sun, Z.; Zhang, C.


    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment

  2. Three-dimensional assessment of the intervertebral kinematics after Mobi-C total disc replacement at the cervical spine in vivo using the EOS stereoradiography system. (United States)

    Rousseau, Marc-Antoine; Laporte, Sébastien; Dufour, Thierry; Steib, Jean-Paul; Lazennec, Jean-Yves; Skalli, Wafa


    Because 3-dimensional computed tomography and magnetic resonance imaging analysis of the spinal architecture is done with the patient in the supine position, stereoradiography may be more clinically relevant for the measurement of the relative displacements of the cervical vertebrae in vivo in the upright position. The innovative EOS stereoradiography system was used for measuring the relative angular displacements of the cervical vertebrae in a limited population to determine its feasibility. The precision and accuracy of the method were investigated. In 9 patients with 16 Mobi-C prostheses (LDR Medical, Troyes, France) and 12 healthy subjects, EOS stereoradiography of the lower cervical spine (C3-7) was performed in the neutral upright position of the neck, flexion, extension, left and right lateral bending, and left and right axial rotation. The angular displacements were measured from the neutral position to every other posture. The random error was studied in terms of reproducibility. In addition, an in vitro protocol was performed in 6 specimens to investigate accuracy. The reproducibility and the accuracy variables varied similarly between 1.2° and 3.2° depending on the axis and direction of rotation under consideration. The Mobi-C group showed less mobility than the control group, whereas the pattern of coupling was similar. Overall, the feasibility of dynamic EOS stereoradiography was shown. The prosthesis replicates the pattern of motion of the normal cervical spine.

  3. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan


    non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... for the four models. For PVT prediction, the non-cubic models show advantages in some high pressure high temperature (HPHT) fluids but no clear advantages in general, indicating the necessity for further improvement of the characterization procedure....

  4. The use of EOS for studies of atmospheric physics

    Energy Technology Data Exchange (ETDEWEB)

    Gille, J G; Visconti, G [eds.


    Attention is paid to the atmosphere and how the understanding of its behavior could be facilitated by the observations and modeling of these interacting processes planned within the framework of the EOS (Earth Observing System) program. The Enrico Fermi School on which the book is based, was organized in such a way that general introductory lectures were followed by reviews of the planned EOS instruments and observational strategy to study specific components and processes in the earth atmosphere system. The contents are divided into four parts. Part 1 is an overview of the EOS concept and provides a general introduction to earth system science. Part 2 deals with the troposphere and includes a comprehensive introduction to the problems of tropospheric chemistry. The more traditional view of the troposphere as the stage for dynamics and meteorology is also dealt with. The climate system is discussed in detail in part 3, and includes the most important advances made in recent years in understanding some of these processes which have come from satellite observations. The final part deals with the middle atmosphere. The interest in ozone has made this region of the atmosphere the most closely studied in the last few years, in an attempt to establish how much of the changes in its composition may be attributable to natural variability and how much to anthropogenic influence

  5. Understanding Interdependencies between Heterogeneous Earth Observation Systems When Applied to Federal Objectives (United States)

    Gallo, J.; Sylak-Glassman, E.


    We will present a method for assessing interdependencies between heterogeneous Earth observation (EO) systems when applied to key Federal objectives. Using data from the National Earth Observation Assessment (EOA), we present a case study that examines the frequency that measurements from each of the Landsat 8 sensors are used in conjunction with heterogeneous measurements from other Earth observation sensors to develop data and information products. This EOA data allows us to map the most frequent interactions between Landsat measurements and measurements from other sensors, identify high-impact data and information products where these interdependencies occur, and identify where these combined measurements contribute most to meeting a key Federal objective within one of the 13 Societal Benefit Areas used in the EOA study. Using a value-tree framework to trace the application of data from EO systems to weighted key Federal objectives within the EOA study, we are able to estimate relative contribution of individual EO systems to meeting those objectives, as well as the interdependencies between measurements from all EO systems within the EOA study. The analysis relies on a modified Delphi method to elicit relative levels of reliance on individual measurements from EO systems, including combinations of measurements, from subject matter experts. This results in the identification of a representative portfolio of all EO systems used to meet key Federal objectives. Understanding the interdependencies among a heterogeneous set of measurements that modify the impact of any one individual measurement on meeting a key Federal objective, especially if the measurements originate from multiple agencies or state/local/tribal, international, academic, and commercial sources, can impact agency decision-making regarding mission requirements and inform understanding of user needs.

  6. 3D-modeling of the spine using EOS imaging system: Inter-reader reproducibility and reliability.

    Directory of Open Access Journals (Sweden)

    Johannes Rehm

    Full Text Available To retrospectively assess the interreader reproducibility and reliability of EOS 3D full spine reconstructions in patients with adolescent idiopathic scoliosis (AIS.73 patients with mean age of 17 years and a moderate AIS (median Cobb Angle 18.2° obtained low-dose standing biplanar radiographs with EOS. Two independent readers performed "full spine" 3D reconstructions of the spine with the "full-spine" method adjusting the bone contour of every thoracic and lumbar vertebra (Th1-L5. Interreader reproducibility was assessed regarding rotation of every single vertebra in the coronal (i.e. frontal, sagittal (i.e. lateral, and axial plane, T1/T12 kyphosis, T4/T12 kyphosis, L1/L5 lordosis, L1/S1 lordosis and pelvic parameters. Radiation exposure, scan-time and 3D reconstruction time were recorded.Interclass correlation (ICC ranged between 0.83 and 0.98 for frontal vertebral rotation, between 0.94 and 0.99 for lateral vertebral rotation and between 0.51 and 0.88 for axial vertebral rotation. ICC was 0.92 for T1/T12 kyphosis, 0.95 for T4/T12 kyphosis, 0.90 for L1/L5 lordosis, 0.85 for L1/S1 lordosis, 0.97 for pelvic incidence, 0.96 for sacral slope, 0.98 for sagittal pelvic tilt and 0.94 for lateral pelvic tilt. The mean time for reconstruction was 14.9 minutes (reader 1: 14.6 minutes, reader 2: 15.2 minutes, p<0.0001. The mean total absorbed dose was 593.4μGy ±212.3 per patient.EOS "full spine" 3D angle measurement of vertebral rotation proved to be reliable and was performed in an acceptable reconstruction time. Interreader reproducibility of axial rotation was limited to some degree in the upper and middle thoracic spine due the obtuse angulation of the pedicles and the processi spinosi in the frontal view somewhat complicating their delineation.

  7. EOS Inoovation Photo's

    International Nuclear Information System (INIS)


    What did four years of energy innovation bring the Netherlands? Which are the main lessons learned and what are the best opportunities for the market? The Energy Research Strategy programme (EOS) gave the answers to these questions for various topics in the form of images by means of so-called I nnovation Photos' on Biomass, Built Environment, Industrial Energy Efficiency, Smart Grids, Heat, Offshore Wind, and Solar PV. [nl

  8. OBSCAN Observer Scanning System (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program deployed on commercial fishing vessels. After the data...

  9. SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform (United States)

    Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio


    SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.

  10. The ASY-EOS Experiment at GSI

    Directory of Open Access Journals (Sweden)

    Russotto P.


    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. In the ASY-EOS experiment at the GSI laboratory, flows of neutrons and light charged particles were measured for 197Au+197Au collisions at 400 MeV/nucleon. Flow results obtained for the Au+Au system, in comparison with predictions of the UrQMD transport model, confirm the moderately soft to linear density dependence of the symmetry energy deduced from the earlier FOPI-LAND data.

  11. Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns

    NARCIS (Netherlands)

    Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Hudman, R.C.; Froidevaux, L.; Livesey, N.J.; Levelt, P.F.; Thompson, A.M.; Tarasick, D.W.; Stübi, R.; Andersen, S.B.; Yela, M.; König-Langlo, G.; Schmidlin, F.J.; Witte, J.C.


    Retrievals from the Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) on EOS-Aura were included in the Goddard Earth Observing System version 4 (GEOS-4) ozone data assimilation system. The distribution and daily to seasonal evolution of ozone in the stratosphere and troposphere

  12. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed (United States)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.


    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  13. Hot super-dense compact object with particular EoS (United States)

    Tito, E. P.; Pavlov, V. I.


    We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.

  14. Attempt to find optimal selections of EO systems for good results of imaging in real environment surveillance process (United States)

    Borcan, Octavia; Ursu, Danut; Marin, Constantin; Toma, Alexandru; Beldiceanu, Anca


    In this paper, the authors try to determine a procedure for the best choice in selecting one or other type of sensors as a function of the object under observation, background and environmental conditions. In surveillance activities related with different missions and scenarios occurred in day and/or night time, the proper choice and use of video surveillance sensors is of huge importance. Starting from specific scenarios of surveillance, as for example the surveillance of the sky to detect drones, or surveillance of the ground area to detect some manmade objects or intruders, this paper approaches the problem of the image appearance in VIS, SWIR and LWIR spectral ranges, using different passive technologies of surveillance. Relevant images are comparative presented in relation with some theoretical quantifications made through mathematical models or through software simulations. Starting from a few targets and backgrounds with known spectral reflectivity or emissivity, the contrast was used to show its influence on the signal strength reaching the surface of the video detector (imager) in similar environment conditions. Finally, the authors seek certain characteristics of the electro-optical system itself that can influence most the strength and quality of the optical signal with respect to influences on observation distances of the target. The possibility of using an active technology instead of a passive one, by introducing a pulsed laser illuminator, is also analyzed. The use of some polarizing filters is also considered but in this stage only in laboratory conditions, in order to improve the observability of an object in some special environmental circumstances.

  15. Semantics-enabled knowledge management for global Earth observation system of systems (United States)

    King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.


    The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.

  16. Mission Status for Earth Science Constellation MOWG Meeting at KSC: EOS Aura (United States)

    Fisher, Dominic


    This will be presented at the Earth Science Constellation Mission Operations Working Group (MOWG) meeting at KSC (Kennedy Space Center) in December 2017 to discus EOS (Earth Observing System) Aura status. Reviewed and approved by Eric Moyer, ESMO (Earth Sciences Mission Operations) Deputy Project Manager.

  17. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations (United States)

    King, M. D.


    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  18. EOS Data Products Latency and Reprocessing Evaluation (United States)

    Ramapriyan, H. K.; Wanchoo, L.


    NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) program has been processing, archiving, and distributing EOS data since the launch of Terra platform in 1999. The EOSDIS Distributed Active Archive Centers (DAACs) and Science-Investigator-led Processing Systems (SIPSs) are generating over 5000 unique products with a daily average volume of 1.7 Petabytes. Initially EOSDIS had requirements to make process data products within 24 hours of receiving all inputs needed for generating them. Thus, generally, the latency would be slightly over 24 and 48 hours after satellite data acquisition, respectively, for Level 1 and Level 2 products. Due to budgetary constraints these requirements were relaxed, with the requirement being to avoid a growing backlog of unprocessed data. However, the data providers have been generating these products in as timely a manner as possible. The reduction in costs of computing hardware has helped considerably. It is of interest to analyze the actual latencies achieved over the past several years in processing and inserting the data products into the EOSDIS archives for the users to support various scientific studies such as land processes, oceanography, hydrology, atmospheric science, cryospheric science, etc. The instrument science teams have continuously evaluated the data products since the launches of EOS satellites and improved the science algorithms to provide high quality products. Data providers have periodically reprocessed the previously acquired data with these improved algorithms. The reprocessing campaigns run for an extended time period in parallel with forward processing, since all data starting from the beginning of the mission need to be reprocessed. Each reprocessing activity involves more data than the previous reprocessing. The historical record of the reprocessing times would be of interest to future missions, especially those involving large volumes of data and/or computational loads due to

  19. Processing EOS MLS Level-2 Data (United States)

    Snyder, W. Van; Wu, Dong; Read, William; Jiang, Jonathan; Wagner, Paul; Livesey, Nathaniel; Schwartz, Michael; Filipiak, Mark; Pumphrey, Hugh; Shippony, Zvi


    A computer program performs level-2 processing of thermal-microwave-radiance data from observations of the limb of the Earth by the Earth Observing System (EOS) Microwave Limb Sounder (MLS). The purpose of the processing is to estimate the composition and temperature of the atmosphere versus altitude from .8 to .90 km. "Level-2" as used here is a specialists f term signifying both vertical profiles of geophysical parameters along the measurement track of the instrument and processing performed by this or other software to generate such profiles. Designed to be flexible, the program is controlled via a configuration file that defines all aspects of processing, including contents of state and measurement vectors, configurations of forward models, measurement and calibration data to be read, and the manner of inverting the models to obtain the desired estimates. The program can operate in a parallel form in which one instance of the program acts a master, coordinating the work of multiple slave instances on a cluster of computers, each slave operating on a portion of the data. Optionally, the configuration file can be made to instruct the software to produce files of simulated radiances based on state vectors formed from sets of geophysical data-product files taken as input.

  20. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim


    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  1. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS) (United States)

    Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.


    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.

  2. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System (United States)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.


    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  3. Strange particle measurements from the EOS TPC

    International Nuclear Information System (INIS)

    Justice, M.


    A high statistics sample of Λ's produced in 2 GeV/nucleon 5 8Ni + nat Cu collisions has been obtained with the EOS Time Projection Chamber at the Bevalac. The coverage of the EOS TPC is essentially 100% for y > y cm and extends down to P T = 0 where interesting effects such as collective radial expansion may be important. In addition, the detection of a majority of the charged particles in the TPC, along with the presence of directed flow for protons and heavier fragments at this beam energy, allows for the correlation of A production with respect to the event reaction plane. Our preliminary analysis indicates the first observation of a sidewards flow signature for A's. Comparisons with the cascade code ARC are made

  4. Maximizing the use of EO products: how to leverage the potential of open geospatial service architectures (United States)

    Usländer, Thomas


    The demand for the rapid provision of EO products with well-defined characteristics in terms of temporal, spatial, image-specific and thematic criteria is increasing. Examples are products to support near real-time damage assessment after a natural disaster event, e.g. an earthquake. However, beyond the organizational and economic questions, there are technological and systemic barriers to enable a comfortable search, order, delivery or even combination of EO products. Most portals of space agencies and EO product providers require sophisticated satellite and product knowledge and, even worse, are all different and not interoperable. This paper gives an overview about the use cases and the architectural solutions that aim at an open and flexible EO mission infrastructure with application-oriented user interfaces and well-defined service interfaces based upon open standards. It presents corresponding international initiatives such as INSPIRE (Infrastructure for Spatial Information in the European Community), GMES (Global Monitoring for Environment and Security), GEOSS (Global Earth Observation System of Systems) and HMA (Heterogeneous Missions Accessibility) and their associated infrastructure approaches. The paper presents a corresponding analysis and design methodology and two examples how such architectures are already successfully used in early warning systems for geo-hazards and toolsets for environmentallyinduced health risks. Finally, the paper concludes with an outlook how these ideas relate to the vision of the Future Internet.

  5. HDF-EOS Web Server (United States)

    Ullman, Richard; Bane, Bob; Yang, Jingli


    A shell script has been written as a means of automatically making HDF-EOS-formatted data sets available via the World Wide Web. ("HDF-EOS" and variants thereof are defined in the first of the two immediately preceding articles.) The shell script chains together some software tools developed by the Data Usability Group at Goddard Space Flight Center to perform the following actions: Extract metadata in Object Definition Language (ODL) from an HDF-EOS file, Convert the metadata from ODL to Extensible Markup Language (XML), Reformat the XML metadata into human-readable Hypertext Markup Language (HTML), Publish the HTML metadata and the original HDF-EOS file to a Web server and an Open-source Project for a Network Data Access Protocol (OPeN-DAP) server computer, and Reformat the XML metadata and submit the resulting file to the EOS Clearinghouse, which is a Web-based metadata clearinghouse that facilitates searching for, and exchange of, Earth-Science data.

  6. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Kass, Steve; Huber, Silvia


    The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper under the TIGER......-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA) and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed...... to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements...

  7. NeMO-Net & Fluid Lensing: The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment Using Fluid Lensing Augmentation of NASA EOS Data (United States)

    Chirayath, Ved


    We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with

  8. A watershed model to integrate EO data (United States)

    Jauch, Eduardo; Chambel-Leitao, Pedro; Carina, Almeida; Brito, David; Cherif, Ines; Alexandridis, Thomas; Neves, Ramiro


    MOHID LAND is a open source watershed model developed by MARETEC and is part of the MOHID Framework. It integrates four mediums (or compartments): porous media, surface, rivers and atmosphere. The movement of water between these mediums are based on mass and momentum balance equations. The atmosphere medium is not explicity simulated. Instead, it's used as boundary condition to the model through meteorological properties: precipitation, solar radiation, wind speed/direction, relative humidity and air temperature. The surface medium includes the overland runoff and vegetation growth processes and is simulated using a 2D grid. The porous media includes both the unsaturated (soil) and saturated zones (aquifer) and is simulated using a 3D grid. The river flow is simulated through a 1D drainage network. All these mediums are linked through evapotranspiration and flow exchanges (infiltration, river-soil growndwater flow, surface-river overland flow). Besides the water movement, it is also possible to simulate water quality processes and solute/sediment transport. Model setup include the definition of the geometry and the properties of each one of its compartments. After the setup of the model, the only continuous input data that MOHID LAND requires are the atmosphere properties (boundary conditions) that can be provided as timeseries or spacial data. MOHID LAND has been adapted the last 4 years under FP7 and ESA projects to integrate Earth Observation (EO) data, both variable in time and in space. EO data can be used to calibrate/validate or as input/assimilation data to the model. The currently EO data used include LULC (Land Use Land Cover) maps, LAI (Leaf Area Index) maps, EVTP (Evapotranspiration) maps and SWC (Soil Water Content) maps. Model results are improved by the EO data, but the advantage of this integration is that the model can still run without the EO data. This means that model do not stop due to unavailability of EO data and can run on a forecast mode

  9. Bridging EO Research, Operations and Collaborative Learning (United States)

    Scarth, Peter


    Building flexible and responsive processing and delivery systems is key to getting EO information used by researchers, policy agents and the public. There are typically three distinct processes we tackle to get product uptake: undertake research, operationalise the validated research, and deliver information and garner feedback in an appropriate way. In many cases however, the gaps between these process elements are large and lead to poor outcomes. Good research may be "lost" and not adopted, there may be resistance to uptake by government or NGOs of significantly better operational products based on EO data, and lack of accessibility means that there is no use of interactive science outputs to improve cross disciplinary science or to start a dialog with citizens. So one of the the most important tasks, if we wish to have broad uptake of EO information and accelerate further research, is to link these processes together in a formal but flexible way. One of the ways to operationalize research output is by building a platform that can take research code and scale it across much larger areas. In remote sensing, this is typically a system that has access to current and historical corrected imagery with a processing pipeline built over the top. To reduce the demand on high level scientific programmers and allowing cross disciplinary researchers to hack and play and refine, this pipeline needs to be easy to use, collaborative and link to existing tools to encourage code experimentation and reuse. It is also critical to have efficient, tight integration with information delivery and extension components so that the science relevant to your user is available quickly and efficiently. The rapid expansion of open data licensing has helped this process, but building top-down web portals and tools without flexibility and regard for end user needs has limited the use of EO information in many areas. This research reports on the operalization of a scale independent time series

  10. On Application of Non-cubic EoS to Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    Compositional reservoir simulation uses almost exclusively cubic equations of state (EoS) such as the SRK EoS and the PR EoS. This is in contrast with process simulation in the downstream industry where more recent and advanced thermodynamic models are quickly adopted. Many of these models are non-cubic...... EoS, such as the PC-SAFT EoS. A major reason for the use of the conventional cubic EoS in reservoir simulation is the concern over computation time. Flash computation is the most time consuming part in compositional reservoir simulation, and the extra complexity of the non-cubic EoS may significantly...... increase the time consumption. In addition to this, the non-cubic EoS also needs a C7+ characterization. The main advantage of the non-cubic EoS is that it provides for a more accurate descrition of fluid properties, and it is therefore of interest to investigate the computational aspects of using...

  11. Spanish Earth Observation Satellite System (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.


    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  12. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. (United States)

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás


    reconstructions and automatic measurements were performed two times by each examiner. Means comparison t test, Pearson bivariate correlation analysis, reliability analysis by intraclass correlation coefficients for intraobserver reproducibility and interrater reliability were performed using SPSS v16.0 software (IBM Corp., Armonk, NY, USA). No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this article. In comparison with manual 2D methods, only small and nonsignificant differences were detectable in sterEOS 3D-based curvature data. Intraobserver reliability was excellent for both methods, and interrater reproducibility was consistently higher for sterEOS 3D methods that was found to be unaffected by the magnitude of coronal curves or sagittal plane deviations. This is the first clinical report on EOS 2D/3D system (EOS Imaging, Paris, France) and its sterEOS 3D software, documenting an excellent capability for accurate, reliable, and reproducible spinal curvature measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Terrestrial remote sensing science and algorithms planned for EOS/MODIS (United States)

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen


    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  14. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Structural Math Model - A1 (United States)

    Ely, W.


    This report presents the description for the NASTRAN finite element for the AMSU-A1 module. The purpose of this report is to document the NASTRAN bulk data deck, transmitted under separate cover. The structural Math Model is to be used by the spacecraft contractor for dynamic loads analysis.

  15. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A


    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  16. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    Directory of Open Access Journals (Sweden)

    Radoslaw Guzinski


    Full Text Available The Water Observation and Information System (WOIS is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO data. The WOIS has been developed by, among others, the authors of this paper under the TIGER-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological modeling and flood forecasting and mapping. For each monitoring task, step-by-step workflows were developed, which can either be adjusted by the user or largely automatized to feed into existing data streams and reporting schemes. The WOIS enables African water authorities to fully exploit the increasing EO capacity offered by current and upcoming generations of satellites, including the Sentinel missions.

  17. INTAROS: Development of an integrated Arctic observation system under Horizon 2020 (United States)

    Beszczynska-Möller, Agnieszka; Sandven, Stein; Sagen, Hanne


    INTAROS is a research and innovation action funded under the H2020-BG-09 call for the five-year period 2016-2021. INTAROS will develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation (EO) data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. EO data will therefore be integrated into iAOS based on existing products and databases. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing Arctic observing systems and contribute with innovative solutions to fill some of the critical gaps in the selected networks. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote, including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. Multidisciplinary data integrated under INTAROS will contribute to better understanding of interactions and coupling in the complex Arctic ice-ocean-land-atmosphere system. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism

  18. OBPRELIM Observer Preliminary Data System (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program and Industry Funded Scallop Program deployed on...

  19. Sustained lasing of HHG-seeded FEL by using EOS-based timing control

    International Nuclear Information System (INIS)

    Watanabe, Takahiro; Okayasu, Yuichi; Togashi, Tadashi; Hara, Toru; Tomizawa, Hiromitsu; Matsubara, Shinichi; Aoyama, Makoto; Yamakawa, Koichi; Iwasaki, Atsushi; Ohwada, Shigeki; Sato, Takahiro; Yamauchi, Kaoru; Otake, Yuji; Ohshima, Takashi; Ogawa, Kanade; Togawa, Kazuaki; Tanaka, Takashi; Takahashi, Eiji; Midorikawa, Katsumi; Yabashi, Makina; Tanaka, Hitoshi; Ishikawa, Tetsuya


    High-harmonic-generation (HHG) based seeded FEL experiments were demonstrated at SCSS, SPring-8. Seeded FEL has advantageous features against SASE such that there is no intrinsic nature of shot-noise fluctuation and output FEL pulses are in principle fully coherent in both transverse and longitudinal axes. In practical user experiments, however, an overlap between electron bunches and seed laser pulses in six-dimensional phase space needs to be precisely maintained for securing the stable lasing. Otherwise, the overlap could be quickly lost and the lasing is no more sustained. For the stable lasing, we have developed an EO (electro-optic) based timing control system, which enables to observe a timing drift between electron bunches and laser pulses, and compensate for it. Experimental results of the seeded FEL with and without the EO timing control are compared, and the effectiveness of the timing system is discussed. (author)

  20. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences (United States)

    Kaufman, Yoram


    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  1. Global EOS: exploring the 300-ms-latency region (United States)

    Mascetti, L.; Jericho, D.; Hsu, C.-Y.


    EOS, the CERN open-source distributed disk storage system, provides the highperformance storage solution for HEP analysis and the back-end for various work-flows. Recently EOS became the back-end of CERNBox, the cloud synchronisation service for CERN users. EOS can be used to take advantage of wide-area distributed installations: for the last few years CERN EOS uses a common deployment across two computer centres (Geneva-Meyrin and Budapest-Wigner) about 1,000 km apart (∼20-ms latency) with about 200 PB of disk (JBOD). In late 2015, the CERN-IT Storage group and AARNET (Australia) set-up a challenging R&D project: a single EOS instance between CERN and AARNET with more than 300ms latency (16,500 km apart). This paper will report about the success in deploy and run a distributed storage system between Europe (Geneva, Budapest), Australia (Melbourne) and later in Asia (ASGC Taipei), allowing different type of data placement and data access across these four sites.

  2. The Earth Observing System AM Spacecraft - Thermal Control Subsystem (United States)

    Chalmers, D.; Fredley, J.; Scott, C.


    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  3. What We Have Learned with 16 Years of EO-1 Hyperion (United States)

    Ungar, S.


    The Earth Observing-One (EO-1) satellite, launched in November of 2000, will complete its sixteenth and final year of operation at the end of calendar year 2016. Observations from the Hyperion Imaging Spectrometer on board EO-1 have contributed to hundreds of papers in refereed journals, conference proceeds and other presentations. The EO-1 Hyperion imaging spectrometer is the first and longest operating instrument that provides visible to shortwave infrared science-grade data from orbit. Hyperion has been used to study a variety of natural and anthropogenic phenomena including hazards and catastrophes, agricultural health and productivity, ecological disturbance/development, and land use/land cover change. As an example, Hyperion has been used in hazard and catastrophe studies to monitor and assess effects of tsunamis, earthquakes, volcanic eruptions, mudslides, tornadoes, hurricanes, wild-fires (natural and human ignited), oil spills, and the aftermath of world trade center bombing. This presentation summarizes the current status of EO-1 Hyperion in terms of key scientific findings to date and presents future plans for exploiting the upward of 90,000 scenes expected to be archived at USGS EROS by the end of the mission. Hyperion serves as the heritage orbital spectrometer for future global platforms, including the proposed NASA Hyperspectral Infrared Imager (HyspIRI) and the forthcoming German satellite, EnMAP. A key EO-1 mission goal was to evaluate the ability of satellite high spectral resolution imaging to characterize terrestrial surface state and processes at 30 m resolution. Researchers engaged in NASA's Terrestrial Ecology, Carbon Science, Land Use Change and other programs using the EO-1 Hyperion imaging spectrometer have achieved results with accuracies far exceeding those reached with the current spaceborne fleet of multispectral sensors. Hyperion data provide several advantages over data from multispectral satellite systems: they inherently provide

  4. System Identification with Quantized Observations

    CERN Document Server

    Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong


    This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,

  5. Web Monitoring of EOS Front-End Ground Operations, Science Downlinks and Level 0 Processing (United States)

    Cordier, Guy R.; Wilkinson, Chris; McLemore, Bruce


    This paper addresses the efforts undertaken and the technology deployed to aggregate and distribute the metadata characterizing the real-time operations associated with NASA Earth Observing Systems (EOS) high-rate front-end systems and the science data collected at multiple ground stations and forwarded to the Goddard Space Flight Center for level 0 processing. Station operators, mission project management personnel, spacecraft flight operations personnel and data end-users for various EOS missions can retrieve the information at any time from any location having access to the internet. The users are distributed and the EOS systems are distributed but the centralized metadata accessed via an external web server provide an effective global and detailed view of the enterprise-wide events as they are happening. The data-driven architecture and the implementation of applied middleware technology, open source database, open source monitoring tools, and external web server converge nicely to fulfill the various needs of the enterprise. The timeliness and content of the information provided are key to making timely and correct decisions which reduce project risk and enhance overall customer satisfaction. The authors discuss security measures employed to limit access of data to authorized users only.

  6. Limited Range Sesame EOS for Ta

    Energy Technology Data Exchange (ETDEWEB)

    Greeff, Carl William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crockett, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rudin, Sven Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burakovsky, Leonid [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A new Sesame EOS table for Ta has been released for testing. It is a limited range table covering T ≤ 26, 000 K and ρ ≤ 37.53 g/cc. The EOS is based on earlier analysis using DFT phonon calculations to infer the cold pressure from the Hugoniot. The cold curve has been extended into compression using new DFT calculations. The present EOS covers expansion into the gas phase. It is a multi-phase EOS with distinct liquid and solid phases. A cold shear modulus table (431) is included. This is based on an analytic interpolation of DFT calculations.

  7. EOS MLS Level 1B Data Processing, Version 2.2 (United States)

    Perun, Vincent; Jarnot, Robert; Pickett, Herbert; Cofield, Richard; Schwartz, Michael; Wagner, Paul


    A computer program performs level- 1B processing (the term 1B is explained below) of data from observations of the limb of the Earth by the Earth Observing System (EOS) Microwave Limb Sounder (MLS), which is an instrument aboard the Aura spacecraft. This software accepts, as input, the raw EOS MLS scientific and engineering data and the Aura spacecraft ephemeris and attitude data. Its output consists of calibrated instrument radiances and associated engineering and diagnostic data. [This software is one of several computer programs, denoted product generation executives (PGEs), for processing EOS MLS data. Starting from level 0 (representing the aforementioned raw data, the PGEs and their data products are denoted by alphanumeric labels (e.g., 1B and 2) that signify the successive stages of processing.] At the time of this reporting, this software is at version 2.2 and incorporates improvements over a prior version that make the code more robust, improve calibration, provide more diagnostic outputs, improve the interface with the Level 2 PGE, and effect a 15-percent reduction in file sizes by use of data compression.

  8. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development (United States)

    Ouma, Yashon O.


    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  9. Report of the EOS oceans panel to the payload panel (United States)

    Abbott, Mark R.; Freilich, Michael H.


    The atmosphere and the ocean are the two great fluids of the earth system. Changes in the coupling of these two fluids will have a profound impact on the Earth's climate and biogeochemical systems. Although changes in atmospheric composition and dynamics are the usual focus of global climate models, it is apparent that the ocean plays a critical role in modulating the magnitude and rate of these changes. The ocean is responsible for nearly half of the poleward heat flux as well as for a significant portion of the uptake of atmospheric carbon dioxide. However, the processes governing the flux of materials and energy between the ocean atmosphere are poorly understood. Such processes include not only physical and chemical dynamics, but also biological processes which act to modify the chemical composition of the ocean as well as the trapping of solar energy as heat in the upper water column. Thus it is essential that the ocean be studied as a complete system of physical, chemical, and biological processes. Overlapping measurements must be made for at least 10-15 years to resolve critical low frequency fluctuations. The present EOS plan relies heavily on non-EOS entities to provide critical data sets for ocean studies. Although such partnerships are usually beneficial, there are risks that must be considered in terms of data coverage, quality, resolution, and availability. A simple replacement of an EOS sensor with a non-EOS sensor based on the fact that they both measure the same quantities will not guarantee that critical measurements will be made to address IPCC priorities in the area of ocean processes. EOS must continue to pursue appropriate methods to ensure that such partner — provided measurements meet scientific requirements. Such methods are analogous to contigencies applied in the area of schedules, cost, and performance for instrument projects. EOS must foster strong ties between US scientists and their foreign counterparts, in order to develop

  10. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data (United States)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.


    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  11. Big Data challenges and solutions in building the Global Earth Observation System of Systems (GEOSS) (United States)

    Mazzetti, Paolo; Nativi, Stefano; Santoro, Mattia; Boldrini, Enrico


    The Group on Earth Observation (GEO) is a voluntary partnership of governments and international organizations launched in response to calls for action by the 2002 World Summit on Sustainable Development and by the G8 (Group of Eight) leading industrialized countries. These high-level meetings recognized that international collaboration is essential for exploiting the growing potential of Earth observations to support decision making in an increasingly complex and environmentally stressed world. To this aim is constructing the Global Earth Observation System of Systems (GEOSS) on the basis of a 10-Year Implementation Plan for the period 2005 to 2015 when it will become operational. As a large-scale integrated system handling large datasets as those provided by Earth Observation, GEOSS needs to face several challenges related to big data handling and big data infrastructures management. Referring to the traditional multiple Vs characteristics of Big Data (volume, variety, velocity, veracity and visualization) it is evident how most of them can be found in data handled by GEOSS. In particular, concerning Volume, Earth Observation already generates a large amount of data which can be estimated in the range of Petabytes (1015 bytes), with Exabytes (1018) already targeted. Moreover, the challenge is related not only to the data size, but also to the large amount of datasets (not necessarily having a big size) that systems need to manage. Variety is the other main challenge since datasets coming from different sensors, processed for different use-cases are published with highly heterogeneous metadata and data models, through different service interfaces. Innovative multidisciplinary applications need to access and use those datasets in a harmonized way. Moreover Earth Observation data are growing in size and variety at an exceptionally fast rate and new technologies and applications, including crowdsourcing, will even increase data volume and variety in the next future

  12. Converting from XML to HDF-EOS (United States)

    Ullman, Richard; Bane, Bob; Yang, Jingli


    A computer program recreates an HDF-EOS file from an Extensible Markup Language (XML) representation of the contents of that file. This program is one of two programs written to enable testing of the schemas described in the immediately preceding article to determine whether the schemas capture all details of HDF-EOS files.

  13. The Chelyabinsk superbolide: a fragment of asteroid 2011 EO40? (United States)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.


    Bright fireballs or bolides are caused by meteoroids entering the Earth's atmosphere at high speed. Some have a cometary origin, a few may have originated within the Venus-Earth-Mars region as a result of massive impacts in the remote past but a relevant fraction is likely the result of the break-up of asteroids. Disrupted asteroids produce clusters of fragments or asteroid families and meteoroid streams. Linking a bolide to a certain asteroid family may help to understand its origin and pre-impact dynamical evolution. On 2013 February 15, a superbolide was observed in the skies near Chelyabinsk, Russia. Such a meteor could be the result of the decay of an asteroid and here we explore this possibility applying a multistep approach. First, we use available data and Monte Carlo optimization (validated using 2008 TC3 as template) to obtain a robust solution for the pre-impact orbit of the Chelyabinsk impactor (a = 1.62 au, e = 0.53, i = 3.82°, Ω = 326.41° and ω = 109.44°). Then, we use this most probable orbit and numerical analysis to single out candidates for membership in, what we call, the Chelyabinsk asteroid family. Finally, we perform N-body simulations to either confirm or reject any dynamical connection between candidates and impactor. We find reliable statistical evidence on the existence of the Chelyabinsk cluster. It appears to include multiple small asteroids and two relatively large members: 2007 BD7 and 2011 EO40. The most probable parent body for the Chelyabinsk superbolide is 2011 EO40. The orbits of these objects are quite perturbed as they experience close encounters not only with the Earth-Moon system but also with Venus, Mars and Ceres. Under such conditions, the cluster cannot be older than about 20-40 kyr.

  14. EOS Aqua: Mission Status at the Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) Meeting at the Kennedy Space Center (KSC) (United States)

    Guit, Bill


    This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  15. Status of the Multi-Angle SpectroRadiometer Instrument for EOS- AM1 and Its Application to Remote Sensing of Aerosols (United States)

    Diner, D. J.; Abdou, W. A.; Bruegge, C. J.; Conel, J. E.; Kahn, R. A.; Martonchik, J. V.; Paradise, S. R.; West, R. A.


    The Multi-Angle Imaging SpectroRadiometer (MISR) is being developed at JPL for the AM1 spacecraft in the Earth Observing System (EOS) series. This paper reports on the progress of instrument fabrication and testing, and it discusses the strategy to use the instrument for studying tropospheric aerosols.

  16. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE) (United States)

    Davies, D.; Murphy, K. J.; Michael, K.


    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  17. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.


    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  18. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program (United States)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul


    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  19. A Global Capacity Building Vision for Societal Applications of Earth Observing Systems and Data: Key Questions and Recommendations (United States)

    Hossain, Faisal; Serrat-Capdevila, Aleix; Granger, Stephanie; Thomas, Amy; Saah, David; Ganz, David; Mugo, Robinson; Murthy, M. S. R.; Ramos, Victor Hugo; Kirschbaum, Dalia; hide


    Capacity building using Earth observing (EO) systems and data (i.e., from orbital and nonorbital platforms) to enable societal applications includes the network of human, nonhuman, technical, nontechnical, hardware, and software dimensions that are necessary to successfully cross the valley [of death; see NRC (2001)] between science and research (port of departure) and societal application (port of arrival). In many parts of the world (especially where ground-based measurements are scarce or insufficient), applications of EO data still struggle for longevity or continuity for a variety of reasons, foremost among them being the lack of resilient capacity. An organization is said to have resilient capacity when it can retain and continue to build capacity in the face of unexpected shocks or stresses. Stresses can include intermittent power and limited Internet bandwidth, constant need for education on ever-increasing complexity of EO systems and data, communication challenges between the ports of departure and arrival (especially across time zones), and financial limitations and instability. Shocks may also include extreme events such as disasters and losing key staff with technical and institutional knowledge.

  20. Satellite Observation Systems for Polar Climate Change Studies (United States)

    Comiso, Josefino C.


    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  1. A Collaboration in Support of LBA Science and Data Exchange: Beija-flor and EOS-WEBSTER (United States)

    Schloss, A. L.; Gentry, M. J.; Keller, M.; Rhyne, T.; Moore, B.


    The University of New Hampshire (UNH) has developed a Web-based tool that makes data, information, products, and services concerning terrestrial ecological and hydrological processes available to the Earth Science community. Our WEB-based System for Terrestrial Ecosystem Research (EOS-WEBSTER) provides a GIS-oriented interface to select, subset, reformat and download three main types of data: selected NASA Earth Observing System (EOS) remotely sensed data products, results from a suite of ecosystem and hydrological models, and geographic reference data. The Large Scale Biosphere-Atmosphere Experiment in Amazonia Project (LBA) has implemented a search engine, Beija-flor, that provides a centralized access point to data sets acquired for and produced by LBA researchers. The metadata in the Beija-flor index describe the content of the data sets and contain links to data distributed around the world. The query system returns a list of data sets that meet the search criteria of the user. A common problem when a user of a system like Beija-flor wants data products located within another system is that users are required to re-specify information, such as spatial coordinates, in the other system. This poster describes methodology by which Beija-flor generates a unique URL containing the requested search parameters and passes the information to EOS-WEBSTER, thus making the interactive services and large diverse data holdings in EOS-WEBSTER directly available to Beija-flor users. This "Calling Card" is used by EOS-WEBSTER to generate on-demand custom products tailored to each Beija-flor request. Through a collaborative effort, we have demonstrated the ability to integrate project-specific search engines such as Beija-flor with the products and services of large data systems such as EOS-WEBSTER, to provide very specific information products with a minimal amount of additional programming. This methodology has the potential to greatly facilitate research data exchange by

  2. Data Curation for the Exploitation of Large Earth Observation Products Databases - The MEA system (United States)

    Mantovani, Simone; Natali, Stefano; Barboni, Damiano; Cavicchi, Mario; Della Vecchia, Andrea


    National Space Agencies under the umbrella of the European Space Agency are performing a strong activity to handle and provide solutions to Big Data and related knowledge (metadata, software tools and services) management and exploitation. The continuously increasing amount of long-term and of historic data in EO facilities in the form of online datasets and archives, the incoming satellite observation platforms that will generate an impressive amount of new data and the new EU approach on the data distribution policy make necessary to address technologies for the long-term management of these data sets, including their consolidation, preservation, distribution, continuation and curation across multiple missions. The management of long EO data time series of continuing or historic missions - with more than 20 years of data available already today - requires technical solutions and technologies which differ considerably from the ones exploited by existing systems. Several tools, both open source and commercial, are already providing technologies to handle data and metadata preparation, access and visualization via OGC standard interfaces. This study aims at describing the Multi-sensor Evolution Analysis (MEA) system and the Data Curation concept as approached and implemented within the ASIM and EarthServer projects, funded by the European Space Agency and the European Commission, respectively.

  3. Rigorous theoretical constraint on constant negative EoS parameter [Formula: see text] and its effect for the late Universe. (United States)

    Burgazli, Alvina; Eingorn, Maxim; Zhuk, Alexander

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.

  4. EO2HEAVEN: mitigating environmental health risks

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J


    Full Text Available EO2HEAVEN has the primary objective to contribute to a better understanding of the complex relationships between environmental changes and their impact on human health. To achieve this, the project followed a multidisciplinary and user...

  5. Integrating new Storage Technologies into EOS

    CERN Document Server

    Peters, Andreas J; Rocha, Joaquim; Lensing, Paul


    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D; and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issu...

  6. Integrating new Storage Technologies into EOS (United States)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul


    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  7. A Generic Framework for Using Multi-Dimensional Earth Observation Data in GIS

    Directory of Open Access Journals (Sweden)

    Yunfeng Jiang


    Full Text Available Earth Observation (EO data are critical for many Geographic Information System (GIS-based decision support systems to provide factual information. However, it is challenging for GIS to understand traditional EO data formats (e.g., Hierarchical Data Format (HDF given the different contents and formats in the two domains. To address this gap between EO data and GIS, the barriers and strategies of integrating various types of EO data with GIS are explored, especially with the popular Geospatial Data Abstraction Library (GDAL that is used by many GISs to access EO data. The research investigates four key technical aspects: (i designing a generic plug-in framework for consuming different types of EO data; (ii implementing the framework to fix the errors in GIS when using GDAL to understand EO data; and (iii developing extension for commercial and open source GIS (i.e., ArcGIS and QGIS to demonstrate the usability of the proposed framework and its implementation in GDAL. A series of EO data products collected from NASA’s Atmospheric Scientific Data Center (ASDC are used in the tests and the results prove the proposed framework is efficient to solve different problems in interpreting EO data without compromising their original content.

  8. Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project (United States)

    Ireland, Gareth; North, Matthew R.; Petropoulos, George P.; Srivastava, Prashant K.; Hodges, Crona


    Acquiring accurate information on the spatio-temporal variability of soil moisture content (SM) and evapotranspiration (ET) is of key importance to extend our understanding of the Earth system's physical processes, and is also required in a wide range of multi-disciplinary research studies and applications. The utility and applicability of Earth Observation (EO) technology provides an economically feasible solution to derive continuous spatio-temporal estimates of key parameters characterising land surface interactions, including ET as well as SM. Such information is of key value to practitioners, decision makers and scientists alike. The PREMIER-EO project recently funded by High Performance Computing Wales (HPCW) is a research initiative directed towards the development of a better understanding of EO technology's present ability to derive operational estimations of surface fluxes and SM. Moreover, the project aims at addressing knowledge gaps related to the operational estimation of such parameters, and thus contribute towards current ongoing global efforts towards enhancing the accuracy of those products. In this presentation we introduce the PREMIER-EO project, providing a detailed overview of the research aims and objectives for the 1 year duration of the project's implementation. Subsequently, we make available the initial results of the work carried out herein, in particular, related to an all-inclusive and robust evaluation of the accuracy of existing operational products of ET and SM from different ecosystems globally. The research outcomes of this project, once completed, will provide an important contribution towards addressing the knowledge gaps related to the operational estimation of ET and SM. This project results will also support efforts ongoing globally towards the operational development of related products using technologically advanced EO instruments which were launched recently or planned be launched in the next 1-2 years. Key Words: PREMIER-EO

  9. Sensorless magnetically levitated system with reduced observer

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, T [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany); Henneberger, G [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany); Ress, C [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany)


    The present paper describes the use of a reduced observer for a hybrid excited magnetic levitation system. The latter is part of a contactless and energy saving driven conveyance system. Thereby one has to select the working point of the system in such a way, that the force due to the weight of the vehicle including its load will be compensated only by the permanent magnets. The linearized model is observable even if only the current in the coils is measured. Therefore it seems reasonable to evaluate the other variables of the state vector by an observer. Thus the sensors for the airgap can be omitted. Using an observer has another advantage as well. It will tune the airgap automatically to the value which is necessary in order to operate the system in the most energy saving way. The whole design was simulated. (orig.)

  10. Earth Observing System Covariance Realism Updates (United States)

    Ojeda Romero, Juan A.; Miguel, Fred


    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  11. Improvement of seismic observation systems in JOYO

    International Nuclear Information System (INIS)

    Sumino, Kozo; Suto, Masayoshi; Tanaka, Akihiro


    In the experimental fast reactor 'Joyo' in order to perform the seismic observation in and around the building block and ground, SMAC type seismographs had continuously been used for about 38 years. However, this equipment aged, and the 2011 off the Pacific Coast of Tohoku Earthquake on Mach 11, 2011 increased the importance of seismic data of the reactor facilities from the viewpoint of earthquake-proof safety. For these reasons, Joyo updated the system to the seismic observation system reflecting the latest technology/information, while keeping consistency with the observation data of the former seismographs (SMAC type seismograph). This updating improved various problems on the former observation seismographs. In addition, the installation of now observation points in the locations that are important in seismic safety evaluation expanded the data, and further improved the reliability of the seismic observation and evaluation on 'Joyo'. (A.O.)

  12. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)


    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  13. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)


    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  14. Gamma ray observations of the solar system (United States)


    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  15. Starck Ta PTW strength model recommendation for use with SESAME 93524 EoS

    Energy Technology Data Exchange (ETDEWEB)

    Sjue, Sky K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prime, Michael Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The purpose of this document is to provide a calibration of the Preston-Tonks- Wallace (PTW) strength model for use with the new SESAME equation of state (EoS) 93524. The calibration data included in this t spans temperatures from 198 K to 673 K and strain rates from 0.001/s to 3200/s.

  16. Experimental data and thermodynamic modeling of ternary aqueous biphasic systems of EO/PO polymers–Na2SO4–H2O

    NARCIS (Netherlands)

    Milosevic, M.; Staal, K.J.J.; Schuur, Boelo; de Haan, A.B.


    Liquid–liquid extraction using thermoresponsive polymers as solvents in aqueous two phase systems followed by induced phase separation to recover the polymers is a potential technology for water–salt separations. Here we report for seven polymers on their ternary systems containing water, sodium

  17. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael


    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  18. Earth Observations for Geohazards: Present and Future Challenges

    Directory of Open Access Journals (Sweden)

    Roberto Tomás


    Full Text Available Earth Observations (EO encompasses different types of sensors (e.g., Synthetic Aperture Radar, Laser Imaging Detection and Ranging, Optical and multispectral and platforms (e.g., satellites, aircraft, and Unmanned Aerial Vehicles and enables us to monitor and model geohazards over regions at different scales in which ground observations may not be possible due to physical and/or political constraints. EO can provide high spatial, temporal and spectral resolution, stereo-mapping and all-weather-imaging capabilities, but not by a single satellite at a time. Improved satellite and sensor technologies, increased frequency of satellite measurements, and easier access and interpretation of EO data have all contributed to the increased demand for satellite EO data. EO, combined with complementary terrestrial observations and with physical models, have been widely used to monitor geohazards, revolutionizing our understanding of how the Earth system works. This Special Issue presents a collection of scientific contributions focusing on innovative EO methods and applications for monitoring and modeling geohazards, consisting of four Sections: (1 earthquake hazards; (2 landslide hazards; (3 land subsidence hazards; and (4 new EO techniques and services.

  19. Observation of SASE in LEBRA FEL system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. E-mail:; Hayakawa, K.; Sato, I.; Hayakawa, Y.; Yokoyama, K


    A large enhancement of spontaneous undulator radiation has been observed during FEL lasing experiments at LEBRA. The enhancement has been observed only with the detector for the infrared fundamental radiation. The detector output signal showed spikes during the electron beam pulse, yet no apparent enhancement was observed with a CCD camera monitoring the visible harmonic radiations. An enhancement factor greater than 10 has been obtained with a 2.4 m long undulator with a completely detuned FEL optical cavity length and depends strongly on the parameters of the linac RF system. This implies that the SASE operation is possible even with a conventional electron beam by achieving suitable bunch compression.

  20. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.


    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  1. TRICLOBS portable triband color lowlight observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.


    We present the design and first test results of the TRICLOBS (TRI-band Color Low-light OBServation) system The TRICLOBS is an all-day all-weather surveillance and navigation tool. Its sensor suite consists of two digital image intensifiers (Photonis ICU's) and an uncooled longwave infrared

  2. EOforge: Generic Open Framework for Earth Observation Data Processing Systems

    National Research Council Canada - National Science Library

    Gomez, Celestino; Gonzalez, Luis M; Prieto, Jose


    .... User community requiring EO data is growing from scientific users to a broader community where environmental national and cross boundary agencies, national and local civil security authorities...

  3. NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution (United States)

    Ramapriyan, H. K.


    NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a

  4. NASA's Earth Observing Data and Information System (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.


    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  5. Canadian Vehicle Protection Program (EO considerations) (United States)


    Leopard 2 • Protection of the vehicle and their occupants was always considered on top of the priority list. • Currently, industry can provide...arge s 19 High Power Laser Characterization Laboratory 20 Conclusion • EO technologies are evolving extremely fast and cost/size/ weight is going down

  6. Data links for the EOS TPC

    International Nuclear Information System (INIS)

    Bieser, F.; Jones, R.; McParland, C.


    This paper reports on the design and performance of high speed data links and slower configuration control links used between the EOS TPC detector and the data processing electronics. Data rates of 5 MBytes/link are maintained over 30m with optical isolation. Pedestal subtraction, hit detection, and data reordering are performed online

  7. Data links for the EOS TPC

    International Nuclear Information System (INIS)

    Bieser, F.; Jones, R.; McParland, C.


    We report on the design and performance of high speed data links and slower configuration control links used between the EOS TPC detector and the data processing electronics. Data rates of 5MBytes/s/link are maintained over 30m with optical isolation. Pedestal subtraction, hit detection, and data reordering are performed online. 3 refs., 1 fig

  8. NASA: Changes to the scope, schedule, and estimated cost of the Earth Observing System. Report to the Chair, Government Activities and Transportation Subcommittee, Committee on Government Operations, House of Representatives

    International Nuclear Information System (INIS)


    Congress funded the Earth Observing System (EOS) as a new NASA program beginning in fiscal year 1991. NASA proposed to launch about 30 types of earth observing instruments beginning in 1998. These instruments were intended to improve satellite data about the earth and to provide new data to support interdisciplinary studies of the earth. EOS is seen by NASA as the first step toward a future period of space-based scientific observation of the earth. The program is directly linked to the objectives of the U.S. Global Change Research Program and international efforts to observe and study the earth. The U.S. Global Change Research Program, which is funded by 11 agencies, is an attempt to achieve these objectives and to improve predictions of climate and other forms of global change. Within that program, EOS is intended to significantly improve scientists' abilities to model, and thereby predict, broad natural relationships among the sea, land, and atmosphere; to observe how water, carbon, and other substances move on the planet or are affected by variations in the sun's radiation; and to assess the impact of human activities on the earth's climate. Ultimately, EOS is to help determine the extent to which human activities are affecting the earth's environment and to provide policymakers with the information they will need to preserve the earth

  9. Global Mercury Observation System (GMOS) surface observation data. (United States)

    U.S. Environmental Protection Agency — GMOS global surface elemental mercury (Hg0) observations from 2013 & 2014. This dataset is associated with the following publication: Sprovieri, F., N. Pirrone,...

  10. The Earth Observation Data for Habitat Monitoring (EODHaM) system (United States)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola


    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.


    Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.


    Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.

  12. Observed benefits from product configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Haug, Anders; Mortensen, Niels Henrik


    This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... affected by the use of product configu-ration systems e.g. increased sales, decrease in the number of SKU's, improved ability to introduce new products, and cost reductions.......This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... processes, on-time delivery of the specifica-tions, and resource consumption for making specifications, quality of specifications, optimization of products and services, and other observations. The purpose of the study is partly to identify specific impacts observed from implementing product configuration...

  13. Earth Observing System precursor data sets (United States)

    Mah, Grant R.; Eidenshink, Jeff C.; Sheffield, K. W.; Myers, Jeffrey S.


    The Land Processes Distributed Active Archive Center (DAAC) is archiving and processing precursor data from airborne and spaceborne instruments such as the thermal infrared multispectral scanner (TIMS), the NS-001 and thematic mapper simulators (TMS), and the advanced very high resolution radiometer (AVHRR). The instrument data are being used to construct data sets that simulate the spectral and spatial characteristics of the advanced spaceborne thermal emission and reflection radiometer (ASTER) and the moderate resolution imaging spectrometer (MODIS) flight instruments scheduled to be flown on the EOS-AM spacecraft. Ames Research Center has developed and is flying a MODIS airborne simulator (MAS), which provides coverage in both MODIS and ASTER bands. A simulation of an ASTER data set over Death Valley, California has been constructed using a combination of TMS and TIMS data, along with existing digital elevation models that were used to develop the topographic information. MODIS data sets are being simulated by using MAS for full-band site coverage at high resolution and AVHRR for global coverage at 1 km resolution.

  14. The Australian Integrated Marine Observing System (United States)

    Proctor, R.; Meyers, G.; Roughan, M.; Operators, I.


    The Integrated Marine Observing System (IMOS) is a 92M project established with 50M from the National Collaborative Research Infrastructure Strategy (NCRIS) and co-investments from 10 operators including Universities and government agencies (see below). It is a nationally distributed set of equipment established and maintained at sea, oceanographic data and information services that collectively will contribute to meeting the needs of marine research in both open oceans and over the continental shelf around Australia. In particular, if sustained in the long term, it will permit identification and management of climate change in the marine environment, an area of research that is as yet almost a blank page, studies relevant to conservation of marine biodiversity and research on the role of the oceans in the climate system. While as an NCRIS project IMOS is intended to support research, the data streams are also useful for many societal, environmental and economic applications, such as management of offshore industries, safety at sea, management of marine ecosystems and fisheries and tourism. The infrastructure also contributes to Australia's commitments to international programs of ocean observing and international conventions, such as the 1982 Law of the Sea Convention that established the Australian Exclusive Economic Zone, the United Nations Framework Convention on Climate Change, the Global Ocean Observing System and the intergovernmental coordinating activity Global Earth Observation System of Systems. IMOS is made up of nine national facilities that collect data, using different components of infrastructure and instruments, and two facilities that manage and provide access to data and enhanced data products, one for in situ data and a second for remotely sensed satellite data. The observing facilities include three for the open (bluewater) ocean (Argo Australia, Enhanced Ships of Opportunity and Southern Ocean Time Series), three facilities for coastal

  15. Susquehanna River Basin Hydrologic Observing System (SRBHOS) (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.


    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  16. NASA's Earth Observing Data and Information System (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.


    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  17. EO System Concepts in the Littoral

    NARCIS (Netherlands)

    Schwering, P.B.W.; Broek, S.P. van den; Iersel, M. van


    In recent years, operations executed by naval forces have taken place at many different locations. At present, operations against international terrorism and asymmetric warfare in coastal environments are of major concern. In these scenarios, the threat caused by pirates on-board of small surface

  18. Penn State Radar Systems: Implementation and Observations (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.


    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  19. EOS suspension test for the assessment of spinal flexibility in adolescent idiopathic scoliosis. (United States)

    Hirsch, Caroline; Ilharreborde, Brice; Mazda, Keyvan


    The assessment of spinal flexibility is essential for the planning of adolescent idiopathic scoliosis (AIS) surgery. Various radiographic methods have been used but none of them has shown any superiority. The new low-dose stereography system EOS (EOS imaging, Paris, France) captures whole body images in a single scan without vertical distortion. EOS is now used in routine clinical use for AIS follow-up. The aim of this study was to prospectively evaluate the feasibility and the reproducibility of a new suspension test during the EOS imaging for the assessment of spinal flexibility in AIS. Fifty AIS patients scheduled for surgery were prospectively included. For each patient, a standard EOS radiograph was obtained, then a suspension test in the EOS and a classic traction test on the cotrel frame were performed. The examinations were compared in terms of radiation exposure, tolerance, mean traction force, and Cobb angle reduction for each curve. Axial and sagittal reductions during suspension were analyzed on three-dimensional EOS reconstructions. The tolerance of the suspension test was lower than the traction test but it was less operator dependent. Radiation exposure was 7 times lower during the suspension test. Cobb angle reductions achieved in the proximal and main curves by the two tests were similar. The traction test achieved greater reduction of the distal curve. Flexibility in the axial plane and in the sagittal plane was analyzed with the suspension test. The reduction in apical rotation was not correlated with the reduction in Cobb angle. The EOS suspension test can be used for the assessment of spinal flexibility in AIS. It gives a global vision of the deformity with new flexibility indices in the axial and sagittal planes.

  20. Eos and the Youth: A Case of Inverted Roles in Rape (United States)

    Dipla, Anthi

    This article examines scenes of Eos pursuing/abducting youths on 5th-century Athenian vases. Eos, the personification of Dawn, is the only woman assuming the role of a pursuer in rape. The theme strangely becomes very popular with vase painters to a degree comparable to ephebes pursuing a woman. The iconography of the scenes is systematically analysed and evaluated. All theories explaining the popularity of the theme from its presumable use as a parable for death are considered. Eos is moreover compared to other winged figures in pursuit that are popular in the same period, especially Sphinx and Eros. Conversely, it is illustrated how Eos' pursuits of youths are thoroughly coined on the same model as ephebe rape scenes. These may have been so popular because they expressed prevalent social notions about how women, like animals,would need subduing/taming by the ephebe, future citizen hunters, before they could assume their appropriate place in society. With Eos the hunter becomes the prey of a wild woman, who has transgressed the control limits set by the social system. Eos is promoted as the ultimate model of what a woman should not be.

  1. Applications of SSAFT EOS for determination of the solubilities of ...

    African Journals Online (AJOL)

    Applications of SSAFT EOS for determination of the solubilities of solid compounds in supercritical CO 2 . ... Using statistical thermodynamics such as Simplified SAFT equation of state (SSAFTEoS) for estimating phase equilibrium and fluid properties of different materials have been used widely. SSAFT EoS has been ...

  2. Observed ices in the Solar System (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.


    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  3. The ASY-EOS experiment at GSI: Constraining the symmetry energy at supra-saturation densities

    Directory of Open Access Journals (Sweden)

    Russotto P.


    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. In the ASY-EOS experiment at the GSI laboratory, flows of neutrons and light charged particles were measured for 197Au+197Au, 96Zr+96Zr and 96Ru+96Ru collisions at 400 MeV/nucleon with the Large Area Neutron Detector LAND as part of a setup with several additional detection systems used for the event characterization. Flow results obtained for the Au+Au system, in comparison with predictions of the UrQMD transport model, confirm the moderately soft to linear density dependence of the symmetry energy deduced from the earlier FOPI-LAND data.

  4. The NOAA Satellite Observing System Architecture Study (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David


    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  5. Observing Arctic Ecology using Networked Infomechanical Systems (United States)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.


    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  6. Conference on Earth Observation and Information Systems

    CERN Document Server

    Morley, Lawrence


    The NATO Science Committee and its subsidiary Programme Panels provide support for Advanced Research Institutes (ARI) in various fields. The idea is to bring together scientists of a chosen field with the hope that they will achieve a consensus on research direc­ tions for the future, and make recommendations for the benefit of a wider scientific community. Attendance is therefore limited to those whose experience and expertise make the conclusions significant and acceptable to the wider community. Participants are selected on the basis of substantial track records in research or in the synthesis of research results to serve mankind. The proposal for a one-week ARIon Earth Observation and In­ formation Systems was initiated by the NATO Special Programme Panel on Systems Science (SPPOSS). In approving the ARI, the senior NATO Science Committee identified the subject as one of universal impor­ tance, requiring a broad perspective on the development of opera­ tional systems based on successful experimental s...

  7. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd


    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  8. Land and Atmosphere Near-Real-Time Capability for Earth Observing System (United States)

    Murphy, Kevin J.


    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  9. OMPS Near Real-time Products Available Through NASA LANCE (Land Atmosphere Near Real-time Capability for EOS) (United States)

    Warnock, A.; Durbin, P. B.; Cechini, M. F.; Masuoka, E.


    Near real-time (NRT) images from the NASA Ozone Mapping and Profiler Suite (OMPS) for sulfur dioxide, total column ozone and aerosol index products are now available through NASA's online Land Atmosphere Near real-time Capability for EOS (LANCE) system. Color palettes, image dimensions and data ranges have been aligned with the corresponding OMI products, allowing for direct comparison of OMPS NRT images with OMI NRT images already available in NASA Worldview. The images are delivered to LANCE within hours of satellite observation. LANCE NRT imagery can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS).

  10. Mands for Information Using "How" Under EO-Absent and EO-Present Conditions. (United States)

    Shillingsburg, M Alice; Bowen, Crystal N; Valentino, Amber L


    The present study replicates and extends previous research on teaching "How?" mands for information to children with autism. The experimental preparation involved mand training in the context of completing preferred activities and included training and testing under conditions when the establishing operation (EO) was present and absent. Results show that two children with autism acquired mands for information using How? only in situations where information was valuable (i.e., the EO was present); they then consistently made use of the information provided in activity completion. Generalization to novel, untaught situations was assessed.

  11. A European Collaborative EO Summer School for the Education of Undergraduate and Masters Level Students- FORMAT-EO (United States)

    Graves, Rosemarie; Remedios, John; Tramutoli, Valerio; Gil, Artur; Cuca, Branka


    An Erasmus intensive programme has been successfully funded to run a Europe-lead summer school in Earth Observation for the years 2013 and 2014. The summer school, FORMAT-EO (FORmation of Multi-disciplinary Approaches to Training in Earth Observation) has been proposed and implemented by a consortium of eight partner institutions from five European countries. The consortium was facilitated through the NEREUS network. In the summer of 2013, 21 students from seven European institutions took part in the two week intensive course which involved a total of 28 teachers from six institutions. Students were from a variety of backgrounds including aeronautical engineering MSc students and PhD students in the areas of marine biology, earthquake engineering and measurement of trace gases in the atmosphere. The aims of FORMAT-EO were: To give students exposure to the wider applications of Earth Observation To highlight the interdisciplinary, collaborative and international nature of Earth Observation To offer an intensive course to better equip students with specialist skills required for a career in this field To provide expert advice on the development of careers in the EO market Partners were invited not only to recruit students for the course but to also teach at the school based on their specific area of expertise. This approach to the teaching provided a timetable which was wide-ranging and covered topics from EU policies for Earth Observation to fire detection from space and an introduction to interaction between radiation and matter. An important aspect of the course was the interactive nature of much of the teaching. A topic was introduced to the students through a lecture followed by an interactive tutorial providing students with hands-on experience of working with EO data and specialist software. The final days of the summer school were spent on group project work which required students to use all of the skills that they acquired during the course to challenge a

  12. Earth Observing Data System Data and Information System (EOSDIS) Overview (United States)

    Klene, Stephan


    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  13. MMA-EoS: A Computational Framework for Mineralogical Thermodynamics (United States)

    Chust, T. C.; Steinle-Neumann, G.; Dolejš, D.; Schuberth, B. S. A.; Bunge, H.-P.


    We present a newly developed software framework, MMA-EoS, that evaluates phase equilibria and thermodynamic properties of multicomponent systems by Gibbs energy minimization, with application to mantle petrology. The code is versatile in terms of the equation-of-state and mixing properties and allows for the computation of properties of single phases, solution phases, and multiphase aggregates. Currently, the open program distribution contains equation-of-state formulations widely used, that is, Caloric-Murnaghan, Caloric-Modified-Tait, and Birch-Murnaghan-Mie-Grüneisen-Debye models, with published databases included. Through its modular design and easily scripted database, MMA-EoS can readily be extended with new formulations of equations-of-state and changes or extensions to thermodynamic data sets. We demonstrate the application of the program by reproducing and comparing physical properties of mantle phases and assemblages with previously published work and experimental data, successively increasing complexity, up to computing phase equilibria of six-component compositions. Chemically complex systems allow us to trace the budget of minor chemical components in order to explore whether they lead to the formation of new phases or extend stability fields of existing ones. Self-consistently computed thermophysical properties for a homogeneous mantle and a mechanical mixture of slab lithologies show no discernible differences that require a heterogeneous mantle structure as has been suggested previously. Such examples illustrate how thermodynamics of mantle mineralogy can advance the study of Earth's interior.

  14. EO-1 analysis applicable to coastal characterization (United States)

    Burke, Hsiao-hua K.; Misra, Bijoy; Hsu, Su May; Griffin, Michael K.; Upham, Carolyn; Farrar, Kris


    The EO-1 satellite is part of NASA's New Millennium Program (NMP). It consists of three imaging sensors: the multi-spectral Advanced Land Imager (ALI), Hyperion and Atmospheric Corrector. Hyperion provides a high-resolution hyperspectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 micron) with a 30 m resolution. The instrument images a 7.5 km by 100 km land area per image. Hyperion is currently the only space-borne HSI data source since the launch of EO-1 in late 2000. The discussion begins with the unique capability of hyperspectral sensing to coastal characterization: (1) most ocean feature algorithms are semi-empirical retrievals and HSI has all spectral bands to provide legacy with previous sensors and to explore new information, (2) coastal features are more complex than those of deep ocean that coupled effects are best resolved with HSI, and (3) with contiguous spectral coverage, atmospheric compensation can be done with more accuracy and confidence, especially since atmospheric aerosol effects are the most pronounced in the visible region where coastal feature lie. EO-1 data from Chesapeake Bay from 19 February 2002 are analyzed. In this presentation, it is first illustrated that hyperspectral data inherently provide more information for feature extraction than multispectral data despite Hyperion has lower SNR than ALI. Chlorophyll retrievals are also shown. The results compare favorably with data from other sources. The analysis illustrates the potential value of Hyperion (and HSI in general) data to coastal characterization. Future measurement requirements (air borne and space borne) are also discussed.

  15. The ASY-EOS experiment at GSI: investigating symmetry energy at supra-saturation densities

    Directory of Open Access Journals (Sweden)

    Russotto P.


    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy-ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. The results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model simulations favoured a moderately soft symmetry term, but suffer from a considerable statistical uncertainty. These results have been confirmed by an independent analysis based on the Tübingen QMD simulations. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration. The present status of the data analysis is reported

  16. Share Your Opinion With Other Eos Readers (United States)

    Narasimhan, T. N.


    Earlier this year, Robert Kitchen (Eos, 87(24), 235, 2006) drew attention to declining interest in Earth science education in public schools. The reason for a lack of interest in teaching Earth sciences in public schools may involve more than just the attitudes of parents who may wish for their children a better preparation for advanced placement courses later on. Part of the problem may lie with our present mind-set that technology can solve all the world's problems, from poverty, to better health, and to prosperity.

  17. Breaking the EOS-gravity degeneracy with masses and pulsating frequencies of neutron stars

    International Nuclear Information System (INIS)

    Lin, Weikang; Li, Bao-An; Chen, Lie-Wen; Wen, De-Hua; Xu, Jun


    A thorough understanding of many astrophysical phenomena associated with compact objects requires reliable knowledge about both the equation of state (EOS) of super-dense nuclear matter and the theory of strong-field gravity simultaneously because of the EOS-gravity degeneracy. Currently, variations of the neutron star (NS) mass–radius correlation from using alternative gravity theories are much larger than those from changing the NS matter EOS within known constraints. At least two independent observables are required to break the EOS-gravity degeneracy. Using model EOSs for hybrid stars and a Yukawa-type non-Newtonian gravity, we investigate both the mass–radius correlation and pulsating frequencies of NSs. While the maximum mass of NSs increases, the frequencies of the f, p 1 , p 2 , and w I pulsating modes are found to decrease with the increasing strength of the Yukawa-type non-Newtonian gravity, providing a useful reference for future determination simultaneously of both the strong-field gravity and the supranuclear EOS by combining data of x-ray and gravitational wave emissions of NSs. (paper)

  18. Guidance, navigation, and control subsystem for the EOS-AM spacecraft (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John


    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  19. New RADIOM algorithm using inverse EOS (United States)

    Busquet, Michel; Sokolov, Igor; Klapisch, Marcel


    The RADIOM model, [1-2], allows one to implement non-LTE atomic physics with a very low extra CPU cost. Although originally heuristic, RADIOM has been physically justified [3] and some accounting for auto-ionization has been included [2]. RADIOM defines an ionization temperature Tz derived from electronic density and actual electronic temperature Te. LTE databases are then queried for properties at Tz and NLTE values are derived from them. Some hydro-codes (like FAST at NRL, Ramis' MULTI, or the CRASH code at U.Mich) use inverse EOS starting from the total internal energy Etot and returning the temperature. In the NLTE case, inverse EOS requires to solve implicit relations between Te, Tz, and Etot. We shall describe these relations and an efficient solver successively implemented in some of our codes. [4pt] [1] M. Busquet, Radiation dependent ionization model for laser-created plasmas, Ph. Fluids B 5, 4191 (1993).[0pt] [2] M. Busquet, D. Colombant, M. Klapisch, D. Fyfe, J. Gardner. Improvements to the RADIOM non-LTE model, HEDP 5, 270 (2009).[0pt] [3] M.Busquet, Onset of pseudo-thermal equilibrium within configurations and super-configurations, JQSRT 99, 131 (2006)

  20. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans (United States)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben


    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  1. End-of-life (EoL) mobile phone management in Hong Kong households. (United States)

    Deng, Wen-Jing; Giesy, John P; So, C S; Zheng, Hai-Long


    A questionnaire survey and interviews were conducted in households and end-of-life (EoL) mobile phone business centres in Hong Kong. Widespread Internet use, combined with the rapid evolution of modern social networks, has resulted in the more rapid obsolescence of mobile phones, and thus a tremendous increase in the number of obsolete phones. In 2013, the volume of EoL mobile phones generated in Hong Kong totalled at least 330 tonnes, and the amount is rising. Approximately 80% of electronic waste is exported to Africa and developing countries such as mainland China or Pakistan for recycling. However, the material flow of the large number of obsolete phones generated by the territory's households remains unclear. Hence, the flow of EoL mobile phones in those households was analysed, with the average lifespan of a mobile phone in Hong Kong found to be just under two years (nearly 23 months). Most EoL mobile phones are transferred to mainland China for disposal. Current recycling methods are neither environmentally friendly nor sustainable, with serious implications for the environment and human health. The results of this analysis provide useful information for planning the collection system and facilities needed in Hong Kong and mainland China to better manage EoL mobile phones in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Using MERRA Gridded Innovation for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities (United States)

    da Silva, A.; Redder, C. R.


    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum

  3. Heterogeneous access and processing of EO-Data on a Cloud based Infrastructure delivering operational Products (United States)

    Niggemann, F.; Appel, F.; Bach, H.; de la Mar, J.; Schirpke, B.; Dutting, K.; Rucker, G.; Leimbach, D.


    To address the challenges of effective data handling faced by Small and Medium Sized Enterprises (SMEs) a cloud-based infrastructure for accessing and processing of Earth Observation(EO)-data has been developed within the project APPS4GMES( To gain homogenous multi mission data access an Input Data Portal (IDP) been implemented on this infrastructure. The IDP consists of an Open Geospatial Consortium (OGC) conformant catalogue, a consolidation module for format conversion and an OGC-conformant ordering framework. Metadata of various EO-sources and with different standards is harvested and transferred to an OGC conformant Earth Observation Product standard and inserted into the catalogue by a Metadata Harvester. The IDP can be accessed for search and ordering of the harvested datasets by the services implemented on the cloud infrastructure. Different land-surface services have been realised by the project partners, using the implemented IDP and cloud infrastructure. Results of these are customer ready products, as well as pre-products (e.g. atmospheric corrected EO data), serving as a basis for other services. Within the IDP an automated access to ESA's Sentinel-1 Scientific Data Hub has been implemented. Searching and downloading of the SAR data can be performed in an automated way. With the implementation of the Sentinel-1 Toolbox and own software, for processing of the datasets for further use, for example for Vista's snow monitoring, delivering input for the flood forecast services, can also be performed in an automated way. For performance tests of the cloud environment a sophisticated model based atmospheric correction and pre-classification service has been implemented. Tests conducted an automated synchronised processing of one entire Landsat 8 (LS-8) coverage for Germany and performance comparisons to standard desktop systems. Results of these tests, showing a performance improvement by the factor of six, proved the high flexibility and

  4. NOAA Observing System Integrated Analysis (NOSIA): development and support to the NOAA Satellite Observing System Architecture (United States)

    Reining, R. C.; Cantrell, L. E., Jr.; Helms, D.; LaJoie, M.; Pratt, A. S.; Ries, V.; Taylor, J.; Yuen-Murphy, M. A.


    There is a deep relationship between NOSIA-II and the Federal Earth Observation Assessment (EOA) efforts (EOA 2012 and 2016) chartered under the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, co-chaired by the White House Office of Science and Technology Policy, NASA, NOAA, and USGS. NOSIA-1, which was conducted with a limited scope internal to NOAA in 2010, developed the methodology and toolset that was adopted for EOA 2012, and NOAA staffed the team that conducted the data collection, modeling, and analysis effort for EOA 2012. EOA 2012 was the first-ever integrated analysis of the relative impact of 379 observing systems and data sources contributing to the key objectives identified for 13 Societal Benefit Areas (SBA) including Weather, Climate, Disasters, Oceans and Coastal Resources, and Water Resources. This effort culminated in the first National Plan for Civil Earth Observations. NOAA conducted NOSIA-II starting in 2012 to extend the NOSIA methodology across all of NOAA's Mission Service Areas, covering a representative sample (over 1000) of NOAA's products and services. The detailed information from NOSIA-II is being integrated into EOA 2016 to underpin a broad array of Key Products, Services, and (science) Objectives (KPSO) identified by the inter-agency SBA teams. EOA 2016 is expected to provide substantially greater insight into the cross-agency impacts of observing systems contributing to a wide array of KPSOs, and by extension, to societal benefits flowing from these public-facing products. NOSIA-II is being adopted by NOAA as a corporate decision-analysis and support capability to inform leadership decisions on its integrated observing systems portfolio. Application examples include assessing the agency-wide impacts of planned decommissioning of ships and aircraft in NOAA's fleet, and the relative cost-effectiveness of alternative space-based architectures in the post-GOES-R and JPSS era

  5. AFSC/FMA/Observer Logistics System (OLS) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alaska groundfish fisheries observers have been monitoring domestic groundfish fishing activities in the U.S. Exclusive Economic Zone (EEZ) off Alaska for over...

  6. Power system observability with minimum phasor measurement ...

    African Journals Online (AJOL)


    Due to the high cost of having a PMU at each node, some of the studies performed in ..... through the process of expanding, which makes the observational topologies, ...... FACTS controllers”, International Journal of Engineering, Science and ...

  7. Terra - the Earth Observing System flagship observatory (United States)

    Thome, K. J.


    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  8. The Global Emergency Observation and Warning System (United States)

    Bukley, Angelia P.; Mulqueen, John A.


    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  9. Pacific Islands Region Observer Program System (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This system integrates the longline debriefing steps and procedures for Hawaii and American Samoa into one tool to standardize and streamline the debriefing process....

  10. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)


    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  11. Supernova constraints on neutrino oscillation and EoS for proto-neutron star (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.


    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  12. Analytic EoS and PTW strength model recommendation for Starck Ta

    Energy Technology Data Exchange (ETDEWEB)

    Sjue, Sky K. [Los Alamos National Laboratory; Prime, Michael Bruce [Los Alamos National Laboratory


    The purpose of this document is to provide an analytic EoS and PTW strength model for Starck Ta that can be consistently used between different platforms and simulations at three labs. This should provide a consistent basis for comparison of the results of calculations, but not the best implementation for matching a wide variety of experimental data. Another version using SESAME tables should follow, which will provide a better physical representation over a broader range of conditions. The data sets available at the time only include one Hopkinson bar at a strain rate of 1800/s; a broader range of high-rate calibration data would be preferred. The resulting fit gives the PTW parameter p = 0. To avoid numerical issues, p = 0:001 has been used in FLAG. The PTW parameters that apply above the maximum strain rate in the data use the values from the original publication.

  13. SU-E-I-15: Comparison of Radiation Dose for Radiography and EOS in Adolescent Scoliosis Patients

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, B; Walz-Flannigan, A [Mayo Clinic, Rochester, MN (United States)


    Purpose: To estimate patient radiation dose for whole spine imaging using EOS, a new biplanar slot-scanning radiographic system and compare with standard scoliosis radiography. Methods: The EOS imaging system (EOS Imaging, Paris, France) consists of two orthogonal x-ray fan beams which simultaneously acquire frontal and lateral projection images of a standing patient. The patient entrance skin air kerma was measured for each projection image using manufacturer-recommended exposure parameters for spine imaging. Organ and effective doses were estimated using a commercially-available Monte Carlo simulation program (PCXMC, STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland) for a 15 year old mathematical phantom model. These results were compared to organ and effective dose estimated for scoliosis radiography using computed radiography (CR) with standard exposure parameters obtained from a survey of pediatric radiographic projections. Results: The entrance skin air kerma for EOS was found to be 0.18 mGy and 0.33 mGy for posterior-anterior (PA) and lateral projections, respectively. This compares to 0.76 mGy and 1.4 mGy for CR, PA and lateral projections. Effective dose for EOS (PA and lateral projections combined) is 0.19 mSv compared to 0.51 mSv for CR. Conclusion: The EOS slot-scanning radiographic system allows for reduced patient radiation dose in scoliosis patients as compared to standard CR radiography.

  14. Application of the PFV EoS correlation to excess molar volumes of (1-ethyl-3-methylimidazolium ethylsulfate + alkanols) at different temperatures

    International Nuclear Information System (INIS)

    Deenadayalu, N.; Sen, S.; Sibiya, P.N.


    The experimental densities for the binary systems of an ionic liquid and an alkanol {1-ethyl-3-methylimidazolium ethylsulfate [EMIM] + [EtSO 4 ] - + methanol or 1-propanol or 2-propanol} were determined at T = (298.15, 303.15, and 313.15) K. The excess molar volumes for the above systems were then calculated from the experimental density values for each temperature. The Redlich-Kister smoothing polynomial was used to fit the experimental results and the partial molar volumes were determined from the Redlich-Kister coefficients. For all the systems studied, the excess molar volume results were negative over the entire composition range for all the temperatures. The excess molar volumes were correlated with the pentic four parameter virial (PFV) equation of state (EoS) model

  15. Eos a Universal Verifiable and Coercion Resistant Voting Protocol

    DEFF Research Database (Denmark)

    Patachi, Stefan; Schürmann, Carsten


    Authority. Eos uses two mixing phases with the goal to break the connection between the voter and vote, not to preserve vote privacy (which is given already) but to guarantee coercion resistance by making it (nearly) impossible for a coercer to follow their vote through the bulletin board. Eos...

  16. Adaptive Sliding Mode Observer for a Class of Systems


    D.Elleuch; T.Damak


    In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown tha...

  17. A Reference Implementation of the OGC CSW EO Standard for the ESA HMA-T project (United States)

    Bigagli, Lorenzo; Boldrini, Enrico; Papeschi, Fabrizio; Vitale, Fabrizio


    This work was developed in the context of the ESA Heterogeneous Missions Accessibility (HMA) project, whose main objective is to involve the stakeholders, namely National space agencies, satellite or mission owners and operators, in an harmonization and standardization process of their ground segment services and related interfaces. Among HMA objectives was the specification, conformance testing, and experimentation of two Extension Packages (EPs) of the ebRIM Application Profile (AP) of the OGC Catalog Service for the Web (CSW) specification: the Earth Observation Products (EO) EP (OGC 06-131) and the Cataloguing of ISO Metadata (CIM) EP (OGC 07-038). Our contributions have included the development and deployment of Reference Implementations (RIs) for both the above specifications, and their integration with the ESA Service Support Environment (SSE). The RIs are based on the GI-cat framework, an implementation of a distributed catalog service, able to query disparate Earth and Space Science data sources (e.g. OGC Web Services, Unidata THREDDS) and to expose several standard interfaces for data discovery (e.g. OGC CSW ISO AP). Following our initial planning, the GI-cat framework has been extended in order to expose the CSW.ebRIM-CIM and CSW.ebRIM-EO interfaces, and to distribute queries to CSW.ebRIM-CIM and CSW.ebRIM-EO data sources. We expected that a mapping strategy would suffice for accommodating CIM, but this proved to be unpractical during implementation. Hence, a model extension strategy was eventually implemented for both the CIM and EO EPs, and the GI-cat federal model was enhanced in order to support the underlying ebRIM AP. This work has provided us with new insights into the different data models for geospatial data, and the technologies for their implementation. The extension is used by suitable CIM and EO profilers (front-end mediator components) and accessors (back-end mediator components), that relate ISO 19115 concepts to EO and CIM ones. Moreover


    International Nuclear Information System (INIS)

    Dittmann, J. A.; Close, L. M.; Scuderi, L. J.; Morris, M. D.


    We present here observations of the transit of WASP-10b on 2009 October 14 UT taken from the University of Arizona's 1.55 m Kuiper telescope on Mount Bigelow. Conditions were photometric and accuracies of 2.0 mmag rms were obtained throughout the transit. We have found that the ratio of the planet to host star radii is in agreement with the measurements of Christian et al. instead of the refinements of Johnson et al., suggesting that WASP-10b is indeed inflated beyond what is expected from theoretical modeling. We find no evidence for large (>20 s) transit timing variations in WASP-10b's orbit from the ephemeris of Christian et al. and Johnson et al.

  19. Using dCache in Archiving Systems oriented to Earth Observation (United States)

    Garcia Gil, I.; Perez Moreno, R.; Perez Navarro, O.; Platania, V.; Ozerov, D.; Leone, R.


    The object of LAST activity (Long term data Archive Study on new Technologies) is to perform an independent study on best practices and assessment of different archiving technologies mature for operation in the short and mid-term time frame, or available in the long-term with emphasis on technologies better suited to satisfy the requirements of ESA, LTDP and other European and Canadian EO partners in terms of digital information preservation and data accessibility and exploitation. During the last phase of the project, a testing of several archiving solutions has been performed in order to evaluate their suitability. In particular, dCache, aimed to provide a file system tree view of the data repository exchanging this data with backend (tertiary) Storage Systems as well as space management, pool attraction, dataset replication, hot spot determination and recovery from disk or node failures. Connected to a tertiary storage system, dCache simulates unlimited direct access storage space. Data exchanges to and from the underlying HSM are performed automatically and invisibly to the user Dcache was created to solve the requirements of big computer centers and universities with big amounts of data, putting their efforts together and founding EMI (European Middleware Initiative). At the moment being, Dcache is mature enough to be implemented, being used by several research centers of relevance (e.g. LHC storing up to 50TB/day). This solution has been not used so far in Earth Observation and the results of the study are summarized in this article, focusing on the capacities over a simulated environment to get in line with the ESA requirements for a geographically distributed storage. The challenge of a geographically distributed storage system can be summarized as the way to provide a maximum quality for storage and dissemination services with the minimum cost.


    Directory of Open Access Journals (Sweden)

    I. A. El-Magd


    Full Text Available Egypt was one of the first developing countries in Africa that used earth observation and remote sensing in various applications since 1970s. It has grown up in the last decades to build its own capacity in space science and technology that ended up by launching earth observation satellites. At the same time Egypt continued to develop the capacity in EO applications and contribute to the national development plans. In this domain NARSS, the governmental research institute that lead the EO and space applications has completed many research and development projects in EO applications in mineral resources exploration, coastal and marine resources, air quality, water resources management, food security, etc. This was via operational projects with the stakeholders and users to ensure sustainability and operation of the services. For example, NARSS has developed an operational system to monitor the national crop rice using EO information that capable to provide the actual land planted with rice and predict the yield. The system has enabled to provide recommendations for other plots of land that suitable for rice plantation. In the area of environmental hazards, many projects on the flash floods and the vulnerability to flash flood hazards were developed providing decision makers with vulnerability maps and Atlases on national level. Further details on the EO activities and future plans at NARSS, Egypt will be presented in this paper.

  1. EO Domain Specific Knowledge Enabled Services (KES-B) (United States)

    Varas, J.; Busto, J.; Torguet, R.


    This paper recovers and describes a number of major statements with respect to the vision, mission and technological approaches of the Technological Research Project (TRP) "EO Domain Specific Knowledge Enabled Services" (project acronym KES-B), which is currently under development at the European Space Research Institute (ESRIN) under contract "16397/02/I- SB". Resulting from the on-going R&D activities, the KES-B project aims are to demonstrate with a prototype system the feasibility of the application of innovative knowledge-based technologies to provide services for easy, scheduled and controlled exploitation of EO resources (e.g.: data, algorithms, procedures, storage, processors, ...), to automate the generation of products, and to support users in easily identifying and accessing the required information or products by using their own vocabulary, domain knowledge and preferences. The ultimate goals of KES-B are summarized in the provision of the two main types of KES services: 1st the Search service (also referred to as Product Exploitation or Information Retrieval; and 2nd the Production service (also referred to as Information Extraction), with the strategic advantage that they are enabled by Knowledge consolidated (formalized) within the system. The KES-B system technical solution approach is driven by a strong commitment for the adoption of industry (XML-based) language standards, aiming to have an interoperable, scalable and flexible operational prototype. In that sense, the Search KES services builds on the basis of the adoption of consolidated and/or emergent W3C semantic-web standards. Remarkably the languages/models Dublin Core (DC), Universal Resource Identifier (URI), Resource Description Framework (RDF) and Ontology Web Language (OWL), and COTS like Protege [1] and JENA [2] are being integrated in the system as building bricks for the construction of the KES based Search services. On the other hand, the Production KES services builds on top of

  2. Eosinophilic Esophagitis (EoE: an emerging disease in childhood - Review of diagnostic and management strategies

    Directory of Open Access Journals (Sweden)

    Jorge Amil Dias


    Full Text Available Eosinophilic esophagitis (EoE is a chronic immune/antigen mediated inflammatory disease of the esophagus. It comprises a separate entity of increasing incidence and prevalence in children and adults. The disease is characterized by histological evidence of dense esophageal tissue eosinophilia in the presence of a variety of upper GI symptoms including vomiting, dysphagia, food impaction and odynophagia. Cornerstone of treatment is dietary intervention and/or the off-label use of swallowed topical corticosteroids. New drug therapies are under investigation. In this review we focus on the diagnostic approach and the currently available treatment strategies. Keywords: Eosinophilic esophagitis, oral viscous budesonide, fluticasone propionate, oral steroids, amino acid-based formula, empiric elimination diet, targeted elimination dietKey points:1.A trial with antisecretory medication is necessary to exclude GERD and PPI-responsive esophageal eosinophilia and to fulfil the diagnostic criteria of EoE. 2.Elimination diet and/or off-label use of topical corticosteroids are effective measures for treating EoE. 3.Elimination diet is the first line treatment in atopic children. 4.Systemic corticosteroids are reserved for patients with severe disease requiring immediate relief, or when other treatments have failed. 5.Cromolyn sodium (sodium cromoglycate and leukotriene receptor antagonists, are not currently recommended for treating EoE, due to lack of solid evidence of benefit.6.Immunosuppressive drugs and biologics have shown some value but effect has been limited and therefore not yet recommended as standard therapy.

  3. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges. (United States)

    Jensen, Michael A; Davis, Ronald W


    There is a growing demand for sustainable methods in research and development, where instead of hazardous chemicals, an aqueous medium is chosen to perform biological reactions. In this Perspective, we examine the history and current methodology of using enzymes to generate artificial single-stranded DNA. By using traditional solid-phase phosphoramidite chemistry as a metric, we also explore criteria for the method of template-independent enzymatic oligonucleotide synthesis (TiEOS). As its key component, we delve into the biology of one of the most enigmatic enzymes, terminal deoxynucleotidyl transferase (TdT). As TdT is found to exponentially increase antigen receptor diversity in the vertebrate immune system by adding nucleotides in a template-free manner, researchers have exploited this function as an alternative to the phosphoramidite synthesis method. Though TdT is currently the preferred enzyme for TiEOS, its random nucleotide incorporation presents a barrier in synthesis automation. Taking a closer look at the TiEOS cycle, particularly the coupling step, we find it is comprised of additions > n+1 and deletions. By tapping into the physical and biochemical properties of TdT, we strive to further elucidate its mercurial behavior and offer ways to better optimize TiEOS for production-grade oligonucleotide synthesis.

  4. Gap analysis of the European Earth Observation Networks (United States)

    Closa, Guillem; Serral, Ivette; Maso, Joan


    Earth Observations (EO) are fundamental to enhance the scientific understanding of the current status of the Earth. Nowadays, there are a lot of EO services that provide large volume of data, and the number of datasets available for different geosciences areas is increasing by the day. Despite this coverage, a glance of the European EO networks reveals that there are still some issues that are not being met; some gaps in specific themes or some thematic overlaps between different networks. This situation requires a clarification process of the actual status of the EO European networks in order to set priorities and propose future actions that will improve the European EO networks. The aim of this work is to detect the existing gaps and overlapping problems among the European EO networks. The analytical process has been done by studying the availability and the completeness of the Essential Variables (EV) data captured by the European EO networks. The concept of EVs considers that there are a number of parameters that are essential to characterize the state and trends of a system without losing significant information. This work generated a database of the existing gaps in the European EO network based on the initial GAIA-CLIM project data structure. For each theme the missing or incomplete data about each EV was indentified. Then, if incomplete, the gap was described by adding its type (geographical extent, vertical extent, temporal extent, spatial resolution, etc), the cost, the remedy, the feasibility, the impact and the priority, among others. Gaps in EO are identified following the ConnectinGEO methodology structured in 5 threads; identification of observation requirements, incorporation of international research programs material, consultation process within the current EO actors, GEOSS Discovery and Access Broker analysis, and industry-driven challenges implementation. Concretely, the presented work focuses on the second thread, which is based on

  5. XML DTD and Schemas for HDF-EOS (United States)

    Ullman, Richard; Yang, Jingli


    An Extensible Markup Language (XML) document type definition (DTD) standard for the structure and contents of HDF-EOS files and their contents, and an equivalent standard in the form of schemas, have been developed.

  6. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    International Nuclear Information System (INIS)

    Zhu Xinying; Zhang Xizhen; Zhang Hongbo; Kong Deqing; Qu Huipeng


    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time. (research papers)

  7. Energy Referencing in LANL HE-EOS Codes

    Energy Technology Data Exchange (ETDEWEB)

    Leiding, Jeffery Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Here, We briefly describe the choice of energy referencing in LANL's HE-EOS codes, HEOS and MAGPIE. Understanding this is essential to comparing energies produced by different EOS codes, as well as to the correct calculation of shock Hugoniots of HEs and other materials. In all equations after (3) throughout this report, all energies, enthalpies and volumes are assumed to be molar quantities.

  8. EOS7R: Radionuclide transport for TOUGH2

    International Nuclear Information System (INIS)

    Oldenburg, C.M.; Pruess, K.


    EOS7R provides radionuclide transport capability for TOUGH2. EOS7R extends the EOS7 module (water, brine, and optional air) to model water, brine, parent component, daughter component, and optional air and heat. The radionuclide components follow a first-order decay law, and may adsorb onto the solid grains. Volatilization of the decaying components is modeled by Henry's Law. The decaying components are normally referred to as radionuclides, but they may in fact by any trace components that decay, adsorb, and volatilize. The decay process need not be radioactive decay, but could be any process that follows a first-order decay law, such as biodegradation. EOS7R includes molecular diffusion for all components in gaseous and aqueous phases using a simplified binary diffusion model. When EOS7R is used with standard TOUGH2, transport occurs by advection and molecular diffusion in all phases. When EOS7R is coupled with the dispersion module T2DM, one obtains T2DMR, the radionuclide transport version of T2DM. T2DMR models advection, diffusion, and hydrodynamic dispersion in rectangular two-dimensional regions. Modeling of radionuclide transport requires input parameters specifying the half-life for first-order decay, distribution coefficients for each rock type for adsorption, and inverse Henry's constants for volatilization. Options can be specified in the input file to model decay in inactive grid blocks and to read from standard EOS7 INCON files. The authors present a number of example problems to demonstrate application and accuracy of TOUGH2/EOS7R. One-dimensional simulation results agree well with analytical solutions. For a two-dimensional salt-dome flow problem, the final distribution of daughter radionuclide component is complicated by the presence of weak recirculation caused by density effects due to salinity

  9. Steps Toward an EOS-Era Aerosol Type Climatology (United States)

    Kahn, Ralph A.


    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered.

  10. Emerging technology becomes an opportunity for EOS (United States)

    Fargion, Giulietta S.; Harberts, Robert; Masek, Jeffrey G.


    During the last decade, we have seen an explosive growth in our ability to collect and generate data. When implemented, NASA's Earth observing system data information system (EOSDIS) will receive about 50 gigabytes of remotely sensed image data per hour. This will generate an urgent need for new techniques and tools that can automatically and intelligently assist in transforming this abundance of data into useful knowledge. Some emerging technologies that address these challenges include data mining and knowledge discovery in databases (KDD). The most basic data mining application is a content-based search (examples include finding images of particular meteorological phenomena or identifying data that have been previously mined or interpreted). In order that these technologies be effectively exploited for EOSDIS development, a better understanding of data mining and the requirements for using this technology is necessary. The authors are currently undertaking a project exploring the requirements and options of content-based search and data mining for use on EOSDIS. The scope of the project is to develop a prototype with which to investigate user interface concepts, requirements, and designs relevant for EOSDIS core system (ECS) subsystem utilizing these techniques. The goal is to identify a generic handling of these functions. This prototype will help identify opportunities which the earth science community and EOSDIS can use to meet the challenges of collecting, searching, retrieving, and interacting with abundant data resources in highly productive ways.

  11. An exponential observer for the generalized Rossler chaotic system

    International Nuclear Information System (INIS)

    Sun, Y.-J.


    In this paper, the generalized Rossler chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a state observer for the generalized Rossler chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be arbitrarily pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.

  12. A simple observer of the generalized Chen chaotic systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.


    In this paper, the generalized Chen chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Chen chaotic system is proposed to guarantee the global exponential stability of the resulting error system. Furthermore, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is provided to illustrate the use of the main result.

  13. A simple observer design of the generalized Lorenz chaotic systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.


    In this Letter, the generalized Lorenz chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Lorenz chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is given to show the effectiveness of the obtained result.

  14. Future Perspective and Long-Term Strategy of the Indian EO Programme (United States)

    Rao, Mukund; Jayaraman, V.; Sridhara Murthi, K. R.; Kasturirangan, K.

    EO technology development will continue to have profound effects on spatial information activities, as we are seeing it today - the changing demand of GIS technology to understanding processes around us and its representation as maps. In the longer term, information needs will drive further RS and GIS technological developments - creating stringent demands for technology solutions for spatial data capture, integration and representation. The emergence of Spatial Business from the highly volatile and dynamic synergy of information, technology and access will see a truly Spatial Society. EO will have a major impact on day-to-day life of nations, communities and even an individual. It will become the One-stop source for information - spatial information at that - thus enabling not only development oriented activities but also Business GIS, quality research and Info-savvy communities. Internationally, there will be a mix of Government and Commercial satellites vying to provide information services to a wide variety of users. EO satellites are also becoming smaller, efficient and less costlier. Almost 5-6 commercial systems will orbit around the Earth in the foreseeable future to generate massive, seamless archives of high-resolution panchromatic and multispectral images - almost reducing the need for aerial surveys for photography and mapping. Reaching resolution of cm level and covering narrower and more spectral bands, the trend is to IMAGE the Earth in its entirety and organize Image Infrastructures. The race will be to imaginatively capture the market with the fullest archive of the globe and cater to any imaging demand of users. One will also see efficient satellite operations that will enable imaging any part of the globe with minimum turn-around time - reaching concepts of IMAGING ON DEMAND. The need of the hour is looking forward now towards how the EO technology can adapt itself to the changing scenario and the steps to be taken to sustain use of EO data it in

  15. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan


    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  16. Opacplot2: Enabling tabulated EoS and opacity compatibility for HEDLP simulations with the FLASH code (United States)

    Laune, Jordan; Tzeferacos, Petros; Feister, Scott; Fatenejad, Milad; Yurchak, Roman; Flocke, Norbert; Weide, Klaus; Lamb, Donald


    Thermodynamic and opacity properties of materials are necessary to accurately simulate laser-driven laboratory experiments. Such data are compiled in tabular format since the thermodynamic range that needs to be covered cannot be described with one single theoretical model. Moreover, tabulated data can be made available prior to runtime, reducing both compute cost and code complexity. This approach is employed by the FLASH code. Equation of state (EoS) and opacity data comes in various formats, matrix-layouts, and file-structures. We discuss recent developments on opacplot2, an open-source Python module that manipulates tabulated EoS and opacity data. We present software that builds upon opacplot2 and enables easy-to-use conversion of different table formats into the IONMIX format, the native tabular input used by FLASH. Our work enables FLASH users to take advantage of a wider range of accurate EoS and opacity tables in simulating HELP experiments at the National Laser User Facilities.

  17. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality (United States)

    Acikmese, Ahmet Behcet; Corless, Martin


    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  18. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)


    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  19. 76 FR 70927 - USACE's Plan for Retrospective Review Under E.O. 13563 (United States)


    ... for Retrospective Review Under E.O. 13563 AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Notice of...'' (E.O.), issued on January 18, 2011, directs Federal agencies to review existing significant... they are a significant rule warranting review pursuant to E.O. 13563. The E.O. further directs each...

  20. Expanding NASA's Land, Atmosphere Near Real-Time Capability for EOS (LANCE) (United States)

    Davies, Diane; Michael, Karen; Masuoka, Ed; Ye, Gang; Schmaltz, Jeffrey; Harrison, Sherry; Ziskin, Daniel; Durbin, Phil B; Protack, Steve; Rinsland, Pamela Livingstone; hide


    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time data and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere), the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood, and Black Marble products. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year.

  1. Comments on Current Space Systems Observing the Climate (United States)

    Fisk, L. A.


    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  2. EoR imaging with the SKA: the challenge of foreground removal (United States)

    Bonaldi, Anna


    21-cm observations of the Cosmic dawn (CD) and Epoch of Reionization (EoR) are one of the high priority science objectives for SKA Low. One of the most difficult aspects of the 21-cm measurement is the presence of foreground emission, due to our Galaxy and extragalactic sources, which is about four orders of magnitude brighter than the cosmological signal. While end-to-end simulations are being produced to investigate in details the foreground subtraction strategy, it is useful to complement this thorough but time-consuming approach with simpler, quicker ways to evaluate performance and identify possible critical steps. In this work, I present a forecast method, based on Bonaldi et al. (2015), Bonaldi & Ricciardi (2011), to understand the level of residual contamination after a component separation step, and its impact on our ability to investigate CD and EoR.

  3. 21SSD: a new public 21-cm EoR database (United States)

    Eames, Evan; Semelin, Benoît


    With current efforts inching closer to detecting the 21-cm signal from the Epoch of Reionization (EoR), proper preparation will require publicly available simulated models of the various forms the signal could take. In this work we present a database of such models, available at The models are created with a fully-coupled radiative hydrodynamic simulation (LICORICE), and are created at high resolution (10243). We also begin to analyse and explore the possible 21-cm EoR signals (with Power Spectra and Pixel Distribution Functions), and study the effects of thermal noise on our ability to recover the signal out to high redshifts. Finally, we begin to explore the concepts of `distance' between different models, which represents a crucial step towards optimising parameter space sampling, training neural networks, and finally extracting parameter values from observations.

  4. Observing System Simulation Experiments for Fun and Profit (United States)

    Prive, Nikki C.


    Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed

  5. Observing the Earth from afar with NASA's Worldview (United States)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.


    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  6. Designing the Climate Observing System of the Future (United States)

    Weatherhead, Elizabeth C.; Wielicki, Bruce A.; Ramaswamy, V.; Abbott, Mark; Ackerman, Thomas P.; Atlas, Robert; Brasseur, Guy; Bruhwiler, Lori; Busalacchi, Antonio J.; Butler, James H.; Clack, Christopher T. M.; Cooke, Roger; Cucurull, Lidia; Davis, Sean M.; English, Jason M.; Fahey, David W.; Fine, Steven S.; Lazo, Jeffrey K.; Liang, Shunlin; Loeb, Norman G.; Rignot, Eric; Soden, Brian; Stanitski, Diane; Stephens, Graeme; Tapley, Byron D.; Thompson, Anne M.; Trenberth, Kevin E.; Wuebbles, Donald


    Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs.

  7. Using Combined Marine Spatial Planning Tools and Observing System Experiments to define Gaps in the Emerging European Ocean Observing System. (United States)

    Nolan, G.; Pinardi, N.; Vukicevic, T.; Le Traon, P. Y.; Fernandez, V.


    Ocean observations are critical to providing accurate ocean forecasts that support operational decision making in European open and coastal seas. Observations are available in many forms from Fixed platforms e.g. Moored Buoys and tide gauges, underway measurements from Ferrybox systems, High Frequency radars and more recently from underwater Gliders and profiling floats. Observing System Simulation Experiments have been conducted to examine the relative contribution of each type of platform to an improvement in our ability to accurately forecast the future state of the ocean with HF radar and Gliders showing particular promise in improving model skill. There is considerable demand for ecosystem products and services from today's ocean observing system and biogeochemical observations are still relatively sparse particularly in coastal and shelf seas. There is a need to widen the techniques used to assess the fitness for purpose and gaps in the ocean observing system. As well as Observing System Simulation Experiments that quantify the effect of observations on the overall model skill we present a gap analysis based on (1) Examining where high model skill is required based on a marine spatial planning analysis of European seas i.e where does activity take place that requires more accurate forecasts? and (2) assessing gaps based on the capacity of the observing system to answer key societal challenges e.g. site suitability for aquaculture and ocean energy, oil spill response and contextual oceanographic products for fisheries and ecosystems. The broad based analysis will inform the development of the proposed European Ocean Observing System as a contribution to the Global Ocean Observing System (GOOS).

  8. Chaotic Secure Communication Systems with an Adaptive State Observer

    Directory of Open Access Journals (Sweden)

    Wei-Der Chang


    Full Text Available This paper develops a new digital communication scheme based on using a unified chaotic system and an adaptive state observer. The proposed communication system basically consists of five important elements: signal modulation, chaotic encryption, adaptive state observer, chaotic decryption, and signal demodulation. A sequence of digital signals will be delivered from the transmitter to the receiver through a public channel. It is rather reasonable that if the number of signals delivered on the public channel is fewer, then the security of such communication system is more guaranteed. Therefore, in order to achieve this purpose, a state observer will be designed and its function is to estimate full system states only by using the system output signals. In this way, the signals delivered on the public channel can be reduced mostly. According to these estimated state signals, the original digital sequences are then retrieved completely. Finally, experiment results are provided to verify the applicability of the proposed communication system.

  9. Modification of Peng Robinson EOS for modelling (vapour + liquid) equilibria with electrolyte solutions

    International Nuclear Information System (INIS)

    Baseri, Hadi; Lotfollahi, Mohammad Nader


    Highlights: → Extended PR-EOS was presented for VLE of H 2 O/Salt/CO 2 systems at high pressure. → The proposed EPR-EOS is based upon contributions to the Helmholtz energy. → Born, Margules, and Debye-Huckel or mean spherical approximation terms were used. → Two different mixing rules Panagiotopoulos and Reid and Kwak and Mansoori (KM) were used. → A combination of KM mixing rule with DH term results more accurate VLE results. - Abstract: A modification of the extended Peng-Robinson equation of state (PR-EOS) is presented to describe the (vapour + liquid) equilibria of systems containing water and salts. The modification employs three additional terms including a Born term, a Margules term and two terms separately used for estimation of the long-range electrostatic interactions (the Debye-Huckel (DH) or the mean spherical approximation (MSA) terms). Effects of two mixing rules, first, the Panagiotopoulos and Reid mixing rule (PR) and, second, the Kwak and Mansoori mixing rule (KM), on the final values of VLE calculations are also investigated. The results show that the KM mixing rule is more appropriate than the PR mixing rule. The proposed equation of state is used to calculate the (vapour + liquid) equilibrium (VLE) of the systems containing (water + sodium sulphate + carbon dioxide) and (water + sodium chloride + carbon dioxide) at high pressure. The comparison of calculated results with the experimental data shows that a combination of KM mixing rule with the DH term results a more accurate VLE values.

  10. Exponential 6 parameterization for the JCZ3-EOS

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.; Hobbs, M.L.; Baer, M.R.


    A database has been created for use with the Jacobs-Cowperthwaite-Zwisler-3 equation-of-state (JCZ3-EOS) to determine thermochemical equilibrium for detonation and expansion states of energetic materials. The JCZ3-EOS uses the exponential 6 intermolecular potential function to describe interactions between molecules. All product species are characterized by r*, the radius of the minimum pair potential energy, and {var_epsilon}/k, the well depth energy normalized by Boltzmann`s constant. These parameters constitute the JCZS (S for Sandia) EOS database describing 750 gases (including all the gases in the JANNAF tables), and have been obtained by using Lennard-Jones potential parameters, a corresponding states theory, pure liquid shock Hugoniot data, and fit values using an empirical EOS. This database can be used with the CHEETAH 1.40 or CHEETAH 2.0 interface to the TIGER computer program that predicts the equilibrium state of gas- and condensed-phase product species. The large JCZS-EOS database permits intermolecular potential based equilibrium calculations of energetic materials with complex elemental composition.

  11. Observational studies of X-ray binary systems

    International Nuclear Information System (INIS)

    Klis, M. van der.


    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  12. Towards a Comprehensive Dynamic-chemistry Assimilation for Eos-Chem: Plans and Status in NASA's Data Assimilation Office (United States)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.


    In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.

  13. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols (United States)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.


    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  14. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel


    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  15. Estimating the Economic Benefits of Regional Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Wellman, Katharine F; Pelsoci, Thomas; Wieand, Kenneth; Pendleton, Linwood; Kaiser, Mark J; Pulsipher, Allan G; Luger, Michael


    We develop a methodology to estimate the potential economic benefits from new investments in regional coastal ocean observing systems in US waters, and apply this methodology to generate preliminary...

  16. Estimating the Economic Benefits of Regional Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Wellman, Katharine F; Pelsoci, Thomas; Wieand, Kenneth; Pendleton, Linwood; Kaiser, Mark J; Pulsipher, Allan G; Luger, Michael


    ... prediction, offshore energy, power generation, and commercial fishing. Our findings suggest that annual benefits to users from the deployment of ocean observing systems are likely to run in the multiple...

  17. West Coast Observing System (WCOS) Temperature Data, 2004-2011 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  18. Control landscapes for observable preparation with open quantum systems

    International Nuclear Information System (INIS)

    Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin


    A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape

  19. An Observation-based Assessment of Instrument Requirements for a Future Precipitation Process Observing System (United States)

    Nelson, E.; L'Ecuyer, T. S.; Wood, N.; Smalley, M.; Kulie, M.; Hahn, W.


    Global models exhibit substantial biases in the frequency, intensity, duration, and spatial scales of precipitation systems. Much of this uncertainty stems from an inadequate representation of the processes by which water is cycled between the surface and atmosphere and, in particular, those that govern the formation and maintenance of cloud systems and their propensity to form the precipitation. Progress toward improving precipitation process models requires observing systems capable of quantifying the coupling between the ice content, vertical mass fluxes, and precipitation yield of precipitating cloud systems. Spaceborne multi-frequency, Doppler radar offers a unique opportunity to address this need but the effectiveness of such a mission is heavily dependent on its ability to actually observe the processes of interest in the widest possible range of systems. Planning for a next generation precipitation process observing system should, therefore, start with a fundamental evaluation of the trade-offs between sensitivity, resolution, sampling, cost, and the overall potential scientific yield of the mission. Here we provide an initial assessment of the scientific and economic trade-space by evaluating hypothetical spaceborne multi-frequency radars using a combination of current real-world and model-derived synthetic observations. Specifically, we alter the field of view, vertical resolution, and sensitivity of a hypothetical Ka- and W-band radar system and propagate those changes through precipitation detection and intensity retrievals. The results suggest that sampling biases introduced by reducing sensitivity disproportionately affect the light rainfall and frozen precipitation regimes that are critical for warm cloud feedbacks and ice sheet mass balance, respectively. Coarser spatial resolution observations introduce regime-dependent biases in both precipitation occurrence and intensity that depend on cloud regime, with even the sign of the bias varying within a

  20. The Coastal Observing System for Northern and Arctic Seas (COSYNA)


    Baschek, Burkard; Schroeder, Friedhelm; Brix, Holger; Riethmüller, Rolf; Badewien, Thomas H.; Breitbach, Gisbert; Brügge, Bernd; Colijn, Franciscus; Doerffer, Roland; Eschenbach, Christiane; Friedrich, Jana; Fischer, Philipp; Garthe, Stefan; Horstmann, Jochen; Krasemann, Hajo


    The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change. The COSYNA automated observing and modelling system is designed...

  1. Operator symbols in the description of observable-state systems

    International Nuclear Information System (INIS)

    Lassner, G.A.


    For the observable-state system of finite degree of freedom N topological properties of the kernels and symbols belonging to the considered operators are investigated. For the operators of the observable algebra of rho + (delta) kernels and symbols are distributions and for density matrices p they are smooth functions

  2. The wireless networking system of Earthquake precursor mobile field observation (United States)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.


    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  3. Results from the MWA EoR Experiment (United States)

    Webster, Rachel L.; MWA EoR Collaboration


    The MWA EoR is one of a small handful of experiments designed to detect the statistical signal from the Epoch of Reionisation. Each of these experiments has reached a level of maturity, where the challenges, in particular of foreground removal, are being more fully understood. Over the past decade, the MWA EoR Collaboration has developed expertise and an understanding of the elements of the telescope array, the end-to-end pipelines, ionospheric conditions, and and the foreground emissions. Sufficient data has been collected to detect the theoretically predicted EoR signal. Limits have been published regularly, however we still several orders of magnitude from a possible detection. This paper outlines recent progress and indicates directions for future efforts.

  4. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov


    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  5. Interoperable Access to Near Real Time Ocean Observations with the Observing System Monitoring Center (United States)

    O'Brien, K.; Hankin, S.; Mendelssohn, R.; Simons, R.; Smith, B.; Kern, K. J.


    The Observing System Monitoring Center (OSMC), a project funded by the National Oceanic and Atmospheric Administration's Climate Observations Division (COD), exists to join the discrete 'networks' of In Situ ocean observing platforms -- ships, surface floats, profiling floats, tide gauges, etc. - into a single, integrated system. The OSMC is addressing this goal through capabilities in three areas focusing on the needs of specific user groups: 1) it provides real time monitoring of the integrated observing system assets to assist management in optimizing the cost-effectiveness of the system for the assessment of climate variables; 2) it makes the stream of real time data coming from the observing system available to scientific end users into an easy-to-use form; and 3) in the future, it will unify the delayed-mode data from platform-focused data assembly centers into a standards- based distributed system that is readily accessible to interested users from the science and education communities. In this presentation, we will be focusing on the efforts of the OSMC to provide interoperable access to the near real time data stream that is available via the Global Telecommunications System (GTS). This is a very rich data source, and includes data from nearly all of the oceanographic platforms that are actively observing. We will discuss how the data is being served out using a number of widely used 'web services' (including OPeNDAP and SOS) and downloadable file formats (KML, csv, xls, netCDF), so that it can be accessed in web browsers and popular desktop analysis tools. We will also be discussing our use of the Environmental Research Division's Data Access Program (ERDDAP), available from NOAA/NMFS, which has allowed us to achieve our goals of serving the near real time data. From an interoperability perspective, it's important to note that access to the this stream of data is not just for humans, but also for machine-to-machine requests. We'll also delve into how we

  6. Maintenance Effectiveness and Target Observation System and its ERP Interface

    International Nuclear Information System (INIS)

    Soon, Han Seong; Kim, Gi Yong; Seo, Mi Ro; Jeong, Hun Jong; Choi, Kwang Hee; Hong, Sung Yull


    Maintenance effectiveness and target observation system (MENTOS) is a maintenance rule (MR) implementation software for plant personnel to collect, edit, store, and analyze all information required for the MR implementation. Potential users and the developers of MENTOS have decided that MENTOS is implemented in the ERP system of KHNP. This article describes MENTOS briefly and introduces the ERP interface of MENTOS

  7. The GO Cygni system: photoelectric observations and light curves analysis

    International Nuclear Information System (INIS)

    Rovithis, P.; Rovithis-Livaniou, H.; Niarchos, P.G.


    Photoelectric observations, in B and V, of the system GO Cygni obtained during 1985 at the Kryonerion Astronomical Station of the National Observatory of Greece are given. The corresponding light curves (typical β Lyrae) are analysed using Frequency Domain techniques. New photoelectric and absolute elements for the system are given, and its period was found to continue its increasing

  8. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Photometric Observation and Light Curve Analysis of Binary System ER-Orionis ... February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. ... Articles are also visible in Web of Science immediately.

  9. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.


    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  10. Utilizing NASA EOS to Assist in Determining Suitable Planting Locations for Bottomland Hardwood Trees in St. Bernard Parish, Louisiana (United States)

    Reahard, R. R.; Arguelles, M.; Ewing, M.; Kelly, C.; Strong, E.


    St. Bernard Parish, located in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a variety of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have focused not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for restoring coastal forests. Using NASA Earth Observing Systems (EOS), Natural Resource Conservation Service (NRCS) soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of bottomland hardwood trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using Digital Elevation Models derived from LIDAR data, and determining existing land cover in the study area from classified Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from a single low-altitude swath was used to assess the health of vegetation over an area near the Mississippi River Gulf Outlet Canal (MRGO) and Bayou La Loutre. Historic extent of coastal forests was also mapped using aerial photos collected between 1952 and 1956. The final products demonstrated yet another application of NASA EOS in the rebuilding and monitoring of coastal ecosystems in

  11. Adaptation and Mitigation in Agriculture: A Review of Synergies and Tradeoffs and How EO Could Improve Understanding and Outcomes (United States)

    Barbieri, L.; Wollenberg, E.


    We present a review of the published literature on agricultural adaptation and mitigation, and report on the current evidence as to whether changes in agricultural practices meant to achieve mitigation or adaptation goals can be dual purpose: simultaneously reducing greenhouse gas (GHG) emissions and helping to facilitate adaptation. We characterize the spatio-temporal and system trends in how adaptation and mitigation outcomes are being achieved, and report on the current technical and knowledge gaps that exist and where Earth observations (EO) could improve our understanding. Agriculture contributes 12% GHG emissions globally, roughly one third from the developing world. Nearly 70% of the technical mitigation potential in agriculture sector occurs in these countries, however, while the mitigation potential is high, agricultural productivity also relies heavily on climate factors. With climate change, agricultural systems already, and will increasingly, need to adapt to extreme events and variability in temperatures and precipitation. This underscores the importance of implementing agricultural practices that can both reduce GHG emissions and help facilitate adaptation. Until recently, these objectives have been treated separately, but policy makers are increasingly calling for a joint approach to improve synergies, and avoid tradeoffs. There remain many complications in considering a joint approach: lack of clear conceptual frameworks, knowledge gaps in scientific understanding and evidence associated with adaptation and mitigation outcomes, and the abilities and motivations of stakeholders to consider both objectives. We review 56 peer-reviewed publications and present results from an in-depth analysis to answer two major concerns: to what extent is evidence provided for claims of synergistic outcomes, and what uncertainty surrounds this evidence. Our results show that only 21% of studies empirically measured both mitigation and adaptation outcomes, and claims

  12. Accelerating assimilation development for new observing systems using EFSO (United States)

    Lien, Guo-Yuan; Hotta, Daisuke; Kalnay, Eugenia; Miyoshi, Takemasa; Chen, Tse-Chun


    To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.

  13. Observations of Warm Water in Young Solar-System Analogs

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm

    dioxide). The amount of warm water is deduced and its origin is observationally constrained. With both isotopologues observed, the HDO/H2O ratio is deduced. This ratio is then compared to other sources, e.g., comets and the Earth’s ocean, to gain understanding of the origin of the water in our own solar...... system. The emission line fluxes are modeled with radiative transfer tools and compared to other results of water abundances in the same source. The observed water emission, both H18(2 O and HDO is compact for all observed sources and traces the emission on R 150 AU scales or less. In one source...

  14. Weather Observation Systems and Efficiency of Fighting Forest Fires (United States)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.


    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  15. Construction of a patient observation system using KINECTTM

    International Nuclear Information System (INIS)

    Miyaura, Kazunori; Kumazaki, Yu; Kato, Shingo; Fukushima, Chika; Saitoh, Hidetoshi


    Improvement in the positional accuracy of irradiation is expected by capturing patient motion (intra-fractional error) during irradiation. The present study reports the construction of a patient observation system using Microsoft® KINECT TM . By tracking movement, we made it possible to add a depth component to the acquired position coordinates and to display three-axis (X, Y, and Z) movement. Moreover, the developed system can be displayed in a graph which is constructed from the coordinate position at each time interval. Using the developed system, an observer can easily visualize patient movement. When the body phantom was moved a known distance in the X, Y, and Z directions, good coincidence was shown with each axis. We built a patient observation system which captures a patient's motion using KINECT TM .

  16. Internal-time observable of classical relativistic systems

    International Nuclear Information System (INIS)

    Ben-Ya'acov, Uri


    The relativistic framework with its symmetries offers a natural definition for the internal time of classical (non-quantum) physical systems as a Lorentz-invariant observable. The internal-time observable, measuring the system's aging or internal evolution, is identified with the proper time of the system derived from its centre-of-mass (CM) coordinate. For its definition as an observable it is required that the system be symmetric not only under Lorentz-Poincare transformations but also under uniform scaling, with the associated existence of a dilatation function D, and yet that D be a varying-not conserved-quantity. Two alternative definitions are discussed, and it is found that in order to maintain simultaneity of the CM time with the events that define it, it is necessary to split the dilatation function into a CM part and an internal part

  17. Elucidating dark energy with future 21 cm observations at the epoch of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Oyama, Yoshihiko [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Sekiguchi, Toyokazu [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), 193, Munjiro, Yuseoung-gu, Daejeon 34051 (Korea, Republic of); Takahashi, Tomo, E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics, Saga University, 1 Honjo, Saga 840-8502 (Japan)


    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations at the epoch of reionization (06.8∼< z ∼<1) such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  18. The diversity of planetary system architectures: contrasting theory with observations (United States)

    Miguel, Y.; Guilera, O. M.; Brunini, A.


    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the

  19. ASI-Sistema Rischio Vulcanico SRV: a pilot project to develop EO data processing modules and products for volcanic activity monitoring based on Italian Civil Protection Department requirements and needs (United States)

    Buongiorno, Maria Fabrizia; Musacchio, Massimo; Silvestri, Malvina; Spinetti, Claudia; Corradini, Stefano; Lombardo, Valerio; Merucci, Luca; Sansosti, Eugenio; Pugnagli, Sergio; Teggi, Sergio; Pace, Gaetano; Fermi, Marco; Zoffoli, Simona


    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The objective of the project is to develop a pre-operative system based on EO data and ground measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department which requirements and need are well integrated in the GMES Emergency Core Services program. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in "near real time". The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio and Campi Flegrei.

  20. EOS as the present and future solution for data storage at CERN

    CERN Document Server

    Peters, AJ; Adde, G


    EOS is an open source distributed disk storage system in production since 2011 at CERN. Development focus has been on low-latency analysis use cases for LHC(1) and non- LHC experiments and life-cycle management using JBOD(2) hardware for multi PB storage installations. The EOS design implies a split of hot and cold storage and introduced a change of the traditional HSM(3) functionality based workflows at CERN.The 2015 deployment brings storage at CERN to a new scale and foresees to breach 100 PB of disk storage in a distributed environment using tens of thousands of (heterogeneous) hard drives. EOS has brought to CERN major improvements compared to past storage solutions by allowing quick changes in the quality of service of the storage pools. This allows the data centre to quickly meet the changing performance and reliability requirements of the LHC experiments with minimal data movements and dynamic reconfiguration. For example, the software stack has met the specific needs of the dual computing centre set-...

  1. Predicting the future completing models of observed complex systems

    CERN Document Server

    Abarbanel, Henry


    Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and o...

  2. Novel classification system of rib fractures observed in infants. (United States)

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Pinto, Deborrah C; Greeley, Christopher; Donaruma-Kwoh, Marcella; Bista, Bibek


    Rib fractures are considered highly suspicious for nonaccidental injury in the pediatric clinical literature; however, a rib fracture classification system has not been developed. As an aid and impetus for rib fracture research, we developed a concise schema for classifying rib fracture types and fracture location that is applicable to infants. The system defined four fracture types (sternal end, buckle, transverse, and oblique) and four regions of the rib (posterior, posterolateral, anterolateral, and anterior). It was applied to all rib fractures observed during 85 consecutive infant autopsies. Rib fractures were found in 24 (28%) of the cases. A total of 158 rib fractures were identified. The proposed schema was adequate to classify 153 (97%) of the observed fractures. The results indicate that the classification system is sufficiently robust to classify rib fractures typically observed in infants and should be used by researchers investigating infant rib fractures. © 2013 American Academy of Forensic Sciences.

  3. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk


    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as


    Energy Technology Data Exchange (ETDEWEB)

    Becker, Andrew C.; Kundurthy, Praveen; Agol, Eric; Barnes, Rory; Williams, Benjamin F.; Rose, Amy E. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)


    We present transit observations of the WASP-2 exoplanet system by the Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) program. Model fitting to these data allows us to improve measurements of the hot-Jupiter exoplanet WASP-2b and its orbital parameters by a factor of {approx}2 over prior studies; we do not find evidence for transit depth variations. We do find reduced {chi}{sup 2} values greater than 1.0 in the observed minus computed transit times. A sinusoidal fit to the residuals yields a timing semi-amplitude of 32 s and a period of 389 days. However, random rearrangements of the data provide similar quality fits, and we cannot with certainty ascribe the timing variations to mutual exoplanet interactions. This inconclusive result is consistent with the lack of incontrovertible transit timing variations (TTVs) observed in other hot-Jupiter systems. This outcome emphasizes that unique recognition of TTVs requires dense sampling of the libration cycle (e.g., continuous observations from space-based platforms). However, even in systems observed with the Kepler spacecraft, there is a noted lack of transiting companions and TTVs in hot-Jupiter systems. This result is more meaningful, and indicates that hot-Jupiter systems, while they are easily observable from the ground, do not appear to be currently configured in a manner favorable to the detection of TTVs. The future of ground-based TTV studies may reside in resolving secular trends, and/or implementation at extreme quality observing sites to minimize atmospheric red noise.

  5. Solar System Observations with the James Webb Space Telescope


    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre


    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar...

  6. Development of KIAPS Observation Processing Package for Data Assimilation System (United States)

    Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin


    The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.

  7. EOS Aqua: Mission Status at Earth Science Constellation (United States)

    Guit, Bill


    This is an EOS Aqua Mission Status presentation to be given at the MOWG meeting in Albuquerque NM. The topics to discus are: mission summary, spacecraft subsystems summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, and mission summary.

  8. EoW criteria for waste-derived aggregates

    NARCIS (Netherlands)

    Hjelmar, O.; Sloot, van der H.A.; Comans, R.N.J.; Wahlstrom, H.


    Waste-derived aggregates are being considered as possible candidates for development of End-of-Waste (EoW) criteria at European Union (EU) level in accordance with Article 6 (1) of the EU Waste Framework Directive (2008/98/EC) as a means of increasing the recovery of resources from waste. If a

  9. Three phase carbon EOS model with electronic excitation

    International Nuclear Information System (INIS)

    van Thiel, M.; Ree, F.H.; Grover, R.


    A simple and rapid way for computing EOS data of multiphase solids with a liquid phase is described with emphasis on carbon. The method uses a scaling model for the liquid phase and includes a provision for electronic effects. The free energy minimum determines the stable phase

  10. 76 FR 31892 - Retrospective Review Under E.O. 13563 (United States)


    ..., Social Security Online, at . SUPPLEMENTARY INFORMATION: On January 18, 2011... SOCIAL SECURITY ADMINISTRATION 20 CFR Chapter III [Docket No. SSA-2011-0042] Retrospective Review Under E.O. 13563 AGENCY: Social Security Administration. ACTION: Request for information. SUMMARY: In...

  11. Fusion of Radar and EO-sensors for Surveillance

    NARCIS (Netherlands)

    Kester, L.J.H.M.; Theil, A.


    Fusion of radar and EO-sensors is investigated for the purpose of surveillance in littoral waters is. All sensors are considered to be co-located with respect to the distance, typically 1 to 10 km, of the area under surveillance. The sensor suite is a coherent polarimetric radar in combination with

  12. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling


    Broeze, J.; Sluis, van der, S.; Wissink, E.


    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  13. Recent disruption of an asteroid from the Eos family (United States)

    Novaković, B.; Tsirvoulis, G.


    A key difficulty with searching for partially differentiated asteroids arises from the fact that a crust covers the exterior of the body, and, consequently, should hide the melted interior. This motivates an alternative approach of examining members of asteroid families, i.e., fragments of single large bodies, many of which were in the size regime capable of igneous differentiation, that have been disrupted by catastrophic collisions. Such families could provide a stratigraphic cross section across the interior of the parent asteroid [1]. With more than 10,000 known members, the Eos dynamical family is one of the most numerous and earliest recognized asteroid families [2]. Interestingly, the estimated ˜220-km-diameter parent body [3] is well within the size range capable of differentiation. Thus, existing family members should contain fragments of the deep interior. The Eos family has the highest diversity of taxonomic classes than any other known family [4]. Many members are of K spectral type, which is uncommon outside the family, and is similar to the spectra of CV, CK, CO, and CR carbonaceous chondrites [5]. This diversity leads to the suggestion that the Eos parent body was partially differentiated [4,6]. Thus, the Eos family may not only be a remnant of a partially differentiated parent body, but it could be the source of the CV-CK meteorite group. Here we report the discovery of a young subfamily of the Eos asteroid family. It may help understanding the mineralogical nature of the Eos asteroid family and of its parent body. By applying the hierarchical clustering method [7], we find an extremely compact 16-body cluster within the borders of the Eos family. We name the cluster (6733) 1992 EF, after its largest member. The statistical significance of this new cluster is estimated to be above 99%, indicating that its members share a common origin. All members of the cluster are found to be dynamically stable over long timescales. Backward numerical orbital

  14. Mirror neuron system and observational learning: behavioral and neurophysiological evidence. (United States)

    Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel


    Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The gastric H, K-ATPase system also functions as the Na, K-ATPase and Ca-ATPase in altered states [v1; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Tushar Ray


    Full Text Available This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump and/or Ca-ATPase (Ca-pump depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM fraction exhibits a (Ca or Mg-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF, the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.


    International Nuclear Information System (INIS)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M.; Beauvalet, L.; Marchis, F.; Nielsen, E. L.; Vachier, F.


    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured


    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M. [European Southern Observatory, Santiago (Chile); Beauvalet, L. [National Observatory, Rio de Janeiro (Brazil); Marchis, F.; Nielsen, E. L. [Carl Sagan Center at the SETI Institute, Mountain View, CA (United States); Vachier, F., E-mail: [Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris (France)


    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured.

  18. Solar System Observations with the James Webb Space Telescope (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide


    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  19. Observer-Based Robust Control for Hydraulic Velocity Control System

    Directory of Open Access Journals (Sweden)

    Wei Shen


    Full Text Available This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR. Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.


    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S. A.; Aguirre, J. E.; Moore, D. F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Nunhokee, C. D.; Bernardi, G. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa); Pober, J. C. [Department of Physics, Brown University, Providence, RI (United States); Ali, Z. S.; DeBoer, D. R.; Parsons, A. R. [Astronomy Department, University of California, Berkeley, CA (United States); Bradley, R. F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, C. L. [National Radio Astronomy Observatory, Socorro, NM (United States); Gugliucci, N. E. [Saint Anselm College, Manchester, NH (United States); Jacobs, D. C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, P. [National Radio Astronomy Observatory, Charlottesville, VA (United States); MacMahon, D. H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Manley, J. R.; Walbrugh, W. P. [SKA South Africa, Pinelands (South Africa); Stefan, I. I., E-mail: [Cavendish Laboratory, Cambridge (United Kingdom)


    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge ) and spectrally structured 21 cm background emission (the EoR window ). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  1. Eosinophilic Esophagitis in Children and Adolescents with Abdominal Pain: Comparison with EoE-Dysphagia and Functional Abdominal Pain. (United States)

    Gunasekaran, Thirumazhisai; Prabhakar, Gautham; Schwartz, Alan; Gorla, Kiranmai; Gupta, Sandeep; Berman, James


    Aim. Compare EoE-AP with EoE-D for clinical, endoscopy (EGD), histology and outcomes and also with FAP-N. Method. Symptoms, physical findings, EGD, histology, symptom scores, and treatments were recorded for the three groups. Cluster analysis was done. Results. Dysphagia and abdominal pain were different in numbers but not statistically significant between EoE-AP and EoE-D. EGD, linear furrows, white exudates were more in the EoE-D and both combined were significant (p < 0.05). EoE-D, peak and mean eosinophils (p  0.06) and eosinophilic micro abscesses (p  0.001) were higher. Follow-Up. Based on single symptom, EoE-AP had 30% (p  0.25) improvement, EoE-D 86% (p < 0.001) and similar with composite score (p  0.57 and <0.001, resp.). Patients who had follow-up, EGD: 42.8% with EoE-AP and 77.8% with EoE-D, showed single symptom improvement and the eosinophil count fell from 38.5/34.6 (peak and mean) to 31.2/30.4 (p  0.70) and from 43.6/40.8 to 25.2/22.8 (p < 0.001), respectively. FAP-N patients had similar symptom improvement like EoE-D. Cluster Analysis. EoE-AP and FAP-N were similar in clinical features and response to treatment, but EoE-D was distinctly different from EoE-AP and FAP-N. Conclusion. Our study demonstrates that EoE-AP and EoE-D have different histology and outcomes. In addition, EoE-AP has clinical features similar to the FAP-N group.

  2. On the complete system of observables in quantum mechanics (United States)

    de Oliveira, César R.


    This paper contains a series of remarks about the concept of Complete System of Observables (CSO) in quantum mechanics and a discussion of two definitions of CSO, one given by Jauch [Helv. Phys. Acta 33, 711 (1960)] and the other by Prugovecki [Can. J. Phys. 47, 1083 (1968)].

  3. Tourism and Arctic Observation Systems: exploring the relationships

    NARCIS (Netherlands)

    Barre, de la Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, M.A.J.; Liggett, D.; Müller, D.; Pashkevich, A.; Stewart, Emma


    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing

  4. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    Abstract. Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves ...

  5. INVIS : Integrated night vision surveillance and observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Dijk, J.; Son, R. van


    We present the design and first field trial results of the all-day all-weather INVIS Integrated Night Vision surveillance and observation System. The INVIS augments a dynamic three-band false-color nightvision image with synthetic 3D imagery in a real-time display. The night vision sensor suite

  6. The Global Ocean Observing System (GOOS): New developments

    International Nuclear Information System (INIS)

    Summerhayes, C.P.


    GOOS will provide information about the present and future states of seas and oceans and their living resources, and on the role of the oceans in climate change. Among other things, it will include monitoring the extent to which the sea is polluted, and applying models enabling the behaviour of polluted environments to be forecast given a variety of forcing conditions including anthropogenic and natural changes. Implementation has begun through integration of previously separate existing observing systems into a GOOS Initial Observing System, and through the development of Pilot Projects, most notably in the coastal seas of Europe and North-east Asia. Although the present emphasis is on the measurement of physical properties, plans are underway for increasing the observation of chemical and biological parameters. The main biological thrust at present comes through the Global Coral Reef Monitoring Network (GCRMN). Consideration needs to be given to incorporation into the GOOS Initial Observing System of present national, international and global chemical and biological monitoring systems, and the development and implementation of new chemical and biological monitoring subsystems, especially in coastal seas for monitoring the health of those environments. GOOS will offer marine scientists and other users a scheme of continuing measurements on a scale larger in time and space than can be accomplished by individuals for their own applications, and a vastly improved store of basic marine environmental data for a multitude of purposes. For GOOS news see the GOOS Homepage at (author)

  7. Emerging Methods and Systems for Observing Life in the Sea (United States)

    Chavez, F.; Pearlman, J.; Simmons, S. E.


    There is a growing need for observations of life in the sea at time and space scales consistent with those made for physical and chemical parameters. International programs such as the Global Ocean Observing System (GOOS) and Marine Biodiversity Observation Networks (MBON) are making the case for expanded biological observations and working diligently to prioritize essential variables. Here we review past, present and emerging systems and methods for observing life in the sea from the perspective of maintaining continuous observations over long time periods. Methods that rely on ships with instrumentation and over-the-side sample collections will need to be supplemented and eventually replaced with those based from autonomous platforms. Ship-based optical and acoustic instruments are being reduced in size and power for deployment on moorings and autonomous vehicles. In parallel a new generation of low power, improved resolution sensors are being developed. Animal bio-logging is evolving with new, smaller and more sophisticated tags being developed. New genomic methods, capable of assessing multiple trophic levels from a single water sample, are emerging. Autonomous devices for genomic sample collection are being miniaturized and adapted to autonomous vehicles. The required processing schemes and methods for these emerging data collections are being developed in parallel with the instrumentation. An evolving challenge will be the integration of information from these disparate methods given that each provides their own unique view of life in the sea.

  8. A tethered balloon system for observation of atmospheric temperature inversion

    International Nuclear Information System (INIS)

    Hayashi, Takashi; Kakuta, Michio


    In environmental assessment of near-shore nuclear plants, information is often required on the development of internal boundary layer (IBL) and associated fumigation condition. Single tower data is not sufficient to clarify the site-dependent IBL structure that affects the atmospheric diffusion in shoreline-stack-site boundary complex. A tethered balloon system has been developed, which comprises a fixed point kitoon and a car-borne small balloon. The system enables us to measure the detailed time-space distribution of temperature without much man-power. The system and example of field observations with it are described. (author)

  9. Constraints on the symmetry energy from neutron star observations

    International Nuclear Information System (INIS)

    Newton, W G; Gearheart, M; Wen, De-Hua; Li, Bao-An


    The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density L. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict L < 70 MeV.

  10. The RITMARE Ocean Observing System for the Italian Seas (United States)

    Crise, A.


    Among its objectives, the Italian RITMARE Flagship Programme has the aim to produce a prototype of the RITMARE Ocean observing system explicitelly designed to provide a powerful infrastructure to the Italian marine science community, to help implement national and Europen environmental regulations and to contribute to the future European Ocean Observing System. The projects takes advantage of the existing platforms (fixed-point moorings, HF and X-band radars, gliders, satellite products), that constitute the basic components of the system. The structure of the RITMARE Ocean observing system is composed by a permanent component (mooring network, satellite images, HF radars) and relocatable component (gliders, drifters, relocatable infrastructures). The increasing number of available relocatable/expandable platforms allow a much larger flexibility in term of allocation of observations but requires an sampling strategy the can be modified according the scientific and socio-economic priorities. As an example, RITMARE focus is set on an experiment on the South Adriatic Pit convective area and its dynamic interactions with the adjacent Bari Canyon cascading site. (Central Mediterranean Sea). Additional effort is paid to support innovation for sensors (e.g. ship-borne LIDAR, stereo-optic directional wave detection, X-band radar innovative products), operational employment of gliders (e.g. Wave Glider) and new class of operational models. The integration can be obtained at different level: the is expected to be achieved at ICT level by defining standard interfaces (NedCDF, SOS) and catalogs in order to facilitate the discovery, viewing and downloading services of data and products. The implementation of a distributed platform-oriented RT repositories adopt a number of THREDDS web servers that act as endpoints for the RITMARE portal. The final aim is to decouple the platforms from the observations, moving from a set of observation to a suite of Essential Ocean Variables by

  11. Design of coherent quantum observers for linear quantum systems

    International Nuclear Information System (INIS)

    Vuglar, Shanon L; Amini, Hadis


    Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)

  12. Western Eos Chaos on Mars: A Potential Site for Future Landing and Returning Samples (United States)

    Asif Iqbal Kakkassery; Rajesh, V. J.


    Introducing Eos Chaos as a potential area for collecting samples. Eos Chaos contains a number of aqueous minerals. We have detected zoisite — a least reported low-grade metamorphic mineral from this area.

  13. SCHeMA web-based observation data information system (United States)

    Novellino, Antonio; Benedetti, Giacomo; D'Angelo, Paolo; Confalonieri, Fabio; Massa, Francesco; Povero, Paolo; Tercier-Waeber, Marie-Louise


    It is well recognized that the need of sharing ocean data among non-specialized users is constantly increasing. Initiatives that are built upon international standards will contribute to simplify data processing and dissemination, improve user-accessibility also through web browsers, facilitate the sharing of information across the integrated network of ocean observing systems; and ultimately provide a better understanding of the ocean functioning. The SCHeMA (Integrated in Situ Chemical MApping probe) Project is developing an open and modular sensing solution for autonomous in situ high resolution mapping of a wide range of anthropogenic and natural chemical compounds coupled to master bio-physicochemical parameters ( The SCHeMA web system is designed to ensure user-friendly data discovery, access and download as well as interoperability with other projects through a dedicated interface that implements the Global Earth Observation System of Systems - Common Infrastructure (GCI) recommendations and the international Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards. This approach will insure data accessibility in compliance with major European Directives and recommendations. Being modular, the system allows the plug-and-play of commercially available probes as well as new sensor probess under development within the project. The access to the network of monitoring probes is provided via a web-based system interface that, being implemented as a SOS (Sensor Observation Service), is providing standard interoperability and access tosensor observations systems through O&M standard - as well as sensor descriptions - encoded in Sensor Model Language (SensorML). The use of common vocabularies in all metadatabases and data formats, to describe data in an already harmonized and common standard is a prerequisite towards consistency and interoperability. Therefore, the SCHeMA SOS has adopted the SeaVox common vocabularies populated by

  14. Enhancement of observability and protection of smart power system (United States)

    Siddique, Abdul Hasib

    It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.

  15. The symmetry energy at suprasaturation density and the ASY-EOS experiment at GSI

    Directory of Open Access Journals (Sweden)

    De Filippo E.


    Full Text Available The ASY-EOS experiment at GSI laboratory measured the direct and elliptic flow of neutrons and light charged particles in the reaction 197Au+197 Au at 400 A MeV incident energy. The ratio of elliptic flow of neutrons with respect to that of the light charged particles was used as main experimental observable to probe the density dependence of the symmetry energy term of the nuclear equation of state. Results, obtained by comparison of the experimental data with the UrQMD model predictions, strongly support a moderately soft to linear density dependence of the symmetry energy at suprasaturation densities below 2ρ0.

  16. Verifying Embedded Systems using Component-based Runtime Observers

    DEFF Research Database (Denmark)

    Guan, Wei; Marian, Nicolae; Angelov, Christo K.

    against formally specified properties. This paper presents a component-based design method for runtime observers, which are configured from instances of prefabricated reusable components---Predicate Evaluator (PE) and Temporal Evaluator (TE). The PE computes atomic propositions for the TE; the latter...... is a reconfigurable component processing a data structure, representing the state transition diagram of a non-deterministic state machine, i.e. a Buchi automaton derived from a system property specified in Linear Temporal Logic (LTL). Observer components have been implemented using design models and design patterns...

  17. Observability of linear control systems on Lie groups

    International Nuclear Information System (INIS)

    Ayala, V.; Hacibekiroglu, A.K.


    In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs

  18. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad


    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  19. The Global Geodetic Observing System: Recent Activities and Accomplishments (United States)

    Gross, R. S.


    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  20. LBT observations of the HR8799 planetary system (United States)

    Mesa, D.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Esposito, S.; Gratton, R.; Masciadri, E.


    We present here observations of the HR8799 planetary system performed in H and Ks band exploiting the AO system at the Large Binocular Telescope and the PISCES camera. Thanks to the excellent performence of the instrument we were able to detect for the first time the inner known planet of the system (HR8799) in the H band. Precise photometric and astrometric measures have been taken for all the four planets. Further, exploiting ours and previous astrometric results, we were able to put some limits on the planetary orbits of the four planets. The analysis of the dinamical stability of the system seems to show lower planetary masses than the ones adopted until now.


    Ott, William; Rivas, Mauricio A; West, James


    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  2. MIRANDA: The EO-sensor Performance Tool Powered by EOSTAR-PRO - poster (Abstract)

    NARCIS (Netherlands)

    Hammel, S.H.; Tsintikidis, D.; Adonidis, M.; Degache, M.A.C.; Lange, D.J.J. de; Eijk, A.M.J. van


    Over the last decades, considerable efforts have been made to assess the impact of theenvironment on EM and EO propagation. While encouraging progress has been made in the EM domain, few, if any, operational tools are available for the EO domain. As a consequence, no EO operational software,

  3. 77 FR 3211 - USACE's Plan for Retrospective Review Under E.O. 13563 (United States)


    ... for Retrospective Review Under E.O. 13563 AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Extension..., ``Improving Regulation and Regulatory Review'' (E.O.), issued on January 18, 2011, directs federal agencies to... Regulatory mission; thus, USACE believes they are a significant rule warranting review pursuant to E.O. 13563...

  4. Economic Value of an Advanced Climate Observing System (United States)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.


    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  5. An operational, multistate, earth observation data management system (United States)

    Eastwood, L. F., Jr.; Hays, T. R.; Hill, C. T.; Ballard, R. J.; Morgan, R. P.; Crnkovich, G. G.; Gohagan, J. K.; Schaeffer, M. A.


    The purpose of this paper is to investigate a group of potential users of satellite remotely sensed data - state, local, and regional agencies involved in natural resources management. We assess this group's needs in five states and outline alternative data management systems to serve some of those needs. We conclude that an operational Earth Observation Data Management System (EODMS) will be of most use to these user agencies if it provides a full range of information services - from raw data acquisition to interpretation and dissemination of final information products.

  6. Aquapath-Soil: Supporting farmers with hydrologic models and EO data (United States)

    Chambel-Leitao, Pedro; Almeida, Carina; Jauch, Eduardo; Rosado, Hugo; Rocha, António; Leitão, José; Neves, Ramiro


    The AquaPath-Soil service (support to agricultural production) aims to provide support services for irrigation, based on the use of satellite images, hydrological models and meteorological data. Users can observe the project results through the website page ( maps of Leaf Area Index (LAI), and animated maps of Actual Evapotranspiration (ETA) or receive SMS throughout the period with meteorological information and actual evapotranspiration. The service has been tested for a period of 3 years, and presently has about 80 pivot being covered by the service. The farmers evaluated positively the service and the service will continue in 2013. ETA maps are generated by MOHID LAND model and represent the evapotranspiration accumulated weekly throughout the growing period of maize between May and September, using LAI as input. Both this models (SWAT and MOHID LAND) calculate plant growth, actual evapotranspiration and soil moisture by explicitly calculating water balance of the system soil-plant-atmosphere. The information provided in the SMS is obtained through SWAT model running in forecast mode using meteorological data from the previous week and forecasts for the next week. The weather data is from the closest station of each field (precipitation, temperature, relative humidity, wind speed and solar radiation). The weather forecasts are obtained from the MM5 model ( Models and satellite images have been validated during this last three years using field measurements and farmers support. Main challenge of Aquapath-Soil service is the reduction of operational costs, mainly related with satellite acquisition and processing. The recently approved SenSyF FP7 project will implement a framework to obtain this aim. The SenSyF project proposes a complete system for fully automated data acquisition and processing. The SenSyF project provides a specialized Sandbox Service with tools and development/validation platforms where

  7. Dynamic Stochastic Superresolution of sparsely observed turbulent systems

    International Nuclear Information System (INIS)

    Branicki, M.; Majda, A.J.


    Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum

  8. Observation on scintigram of bone tumors by color data system

    International Nuclear Information System (INIS)

    Minami, Kyuman


    The uptake of RI on bone scintigram was converted with a color data system to a color pattern of 12 colors. The color patterns of bone tumors were analysed in comparison them with those in contralateral part of body. The author observed on color patterns of bone scintigrams in 70 cases of bone tumors, of which 28 cases were malignant, 32 benign and 10 giant cell tumors. Differences of color pattern were found relatively low in tumors of the pelvis, whereas they were high in tumors of the limbs and shoulder. In malignant tumors, differences of the color patterns were marked and wide in range. Applying the color data system to bone scintigram, bone tumors could be objectively observed and the method was very helpful for diagnosis of bone tumors. (author)

  9. Linear system identification via backward-time observer models (United States)

    Juang, Jer-Nan; Phan, Minh


    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.


    International Nuclear Information System (INIS)

    Kenworthy, Matthew A.; Meshkat, Tiffany; Quanz, Sascha P.; Meyer, Michael R.; Girard, Julien H.; Kasper, Markus


    We report on a search for low mass companions within 10 AU of the star Fomalhaut, using narrowband observations at 4.05 μm obtained with the Apodizing Phase Plate coronagraph on the VLT/NaCo. Our observations place a model-dependent upper mass limit of 12-20 M jup from 4 to 10 AU, covering the semimajor axis search space between interferometric imaging measurements and other direct imaging non-detections. These observations rule out models where the large semimajor axis for the putative candidate companion Fomalhaut b is explained by dynamical scattering from a more massive companion in the inner stellar system, where such giant planets are thought to form.

  11. Development of the AuScope Australian Earth Observing System (United States)

    Rawling, T.


    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four

  12. IEOOS: the Spanish Institute of Oceanography Observing System (United States)

    Tel, E.; Balbin, R.; Cabanas, J. M.; Garcia, M. J.; Garcia-Martinez, M. C.; Gonzalez-Pola, C.; Lavin, A.; Lopez-Jurado, J. L.; Rodriguez, C.; Ruiz-Villarreal, M.; Sanchez-Leal, R. F.; Vargas-Yanez, M.; Velez-Belchi, P.


    Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO) has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography (OO). Some systems like the tide gauges network has been working for more than 70 years. The IEO standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the IEO Observing System (IEOOS) includes 6 permanent moorings equipped with currentmeters, an open-sea ocean-meteorological buoy offshore Santander and an SST satellital image reception station. It also supports the Spanish contribution to the ARGO international program with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and ADCP onboard the IEO research vessels. The system is completed with the IEO contribution to the RAIA and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands as navigation, resource management, risks management, recreation, etc, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programs Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits following spatio-temporal description of some events, as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  13. Gulf of Mexico Coastal Ocean Observing System: The Gulf Component of the U.S. Integrated Ocean Observing System (United States)

    Bernard, L. J.; Moersdorf, P. F.


    The United States is developing an Integrated Ocean Observing System (IOOS) as the U.S. component of the international Global Ocean Observing System (GOOS). IOOS consists of: (1) a coastal observing system for the U.S. EEZ, estuaries, and Great Lakes; and (2) a contribution to the global component of GOOS focused on climate and maritime services. The coastal component will consist of: (1) a National Backbone of observations and products from our coastal ocean supported by federal agencies; and (2) contributions of Regional Coastal Ocean Observing Systems (RCOOS). The Gulf of Mexico Coastal Ocean Observing System (GCOOS) is one of eleven RCOOS. This paper describes how GCOOS is progressing as a system of systems to carry out data collection, analysis, product generation, dissemination of information, and data archival. These elements are provided by federal, state, and local government agencies, academic institutions, non-government organization, and the private sector. This end-to-end system supports the seven societal goals of the IOOS, as provided by the U.S. Commission on Ocean Policy: detect and forecast oceanic components of climate variability, facilitate safe and efficient marine operations, ensure national security, manage marine resources, preserve and restore healthy marine ecosystems, mitigate natural hazards, and ensure public health. The initial building blocks for GCOOS include continuing in situ observations, satellite products, models, and other information supported by federal and state government, private industry, and academia. GCOOS has compiled an inventory of such activities, together with descriptions, costs, sources of support, and possible out-year budgets. These activities provide information that will have broader use as they are integrated and enhanced. GCOOS has begun that process by several approaches. First, GCOOS has established a web site ( which is a portal to such activities and contains pertinent information

  14. NIRCam Coronagraphic Observations of Disks and Planetary Systems (United States)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team


    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  15. Climate Outreach Using Regional Coastal Ocean Observing System Portals (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.


    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  16. Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data (United States)

    Jedlovec, Gary


    Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and

  17. The EOS and neutrino interactions in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, M; Reddy, S [Dept. of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY (United States)


    The deleptonization and cooling times of a newly born neutron star depend on the equation of state (EOS) and neutrino opacities in dense matter. Through model calculations we show that effects of Pauli blocking and many-body correlations due to strong interactions reduce both the neutral and charged current neutrino cross sections by large factors compared to the case in which these effects are ignored. (orig.)

  18. Studies on EOS of shock-generated argon plasmas

    International Nuclear Information System (INIS)

    Wang Fanhou; Jing Fuqian


    The equation of state for argon plasma, covering the thermodynamic states of 10000-30000 K in temperature and 0.0133-0.166 GPa in pressure, is computed using the Saha model and Debye-Huckel correction. Comparisons of the measured EOS with the calculated ones demonstrate the Saha model and Debye-Huckel correction can be used to well describe the essential behavior of argon plasma under the thermodynamic condition above-mentioned

  19. Spin states of asteroids in the Eos collisional family (United States)

    Hanuš, J.; Delbo', M.; Alí-Lagoa, V.; Bolin, B.; Jedicke, R.; Ďurech, J.; Cibulková, H.; Pravec, P.; Kušnirák, P.; Behrend, R.; Marchis, F.; Antonini, P.; Arnold, L.; Audejean, M.; Bachschmidt, M.; Bernasconi, L.; Brunetto, L.; Casulli, S.; Dymock, R.; Esseiva, N.; Esteban, M.; Gerteis, O.; de Groot, H.; Gully, H.; Hamanowa, Hiroko; Hamanowa, Hiromi; Krafft, P.; Lehký, M.; Manzini, F.; Michelet, J.; Morelle, E.; Oey, J.; Pilcher, F.; Reignier, F.; Roy, R.; Salom, P. A.; Warner, B. D.


    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ∼ 20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.

  20. Parameter identification of chaos system based on unknown parameter observer

    International Nuclear Information System (INIS)

    Wang Shaoming; Luo Haigeng; Yue Chaoyuan; Liao Xiaoxin


    Parameter identification of chaos system based on unknown parameter observer is discussed generally. Based on the work of Guan et al. [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26], the design of unknown parameter observer is improved. The application of the improved approach is extended greatly. The works in some literatures [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26; J.H. Lue, S.C. Zhang, Phys. Lett. A 286 (2001) 148; X.Q. Wu, J.A. Lu, Chaos Solitons Fractals 18 (2003) 721; J. Liu, S.H. Chen, J. Xie, Chaos Solitons Fractals 19 (2004) 533] are only the special cases of our Corollaries 1 and 2. Some observers for Lue system and a new chaos system are designed to test our improved method, and simulations results demonstrate the effectiveness and feasibility of the improved approach

  1. EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, A.M.; Foda, S.G. [Kuwait University, Safat (Kuwait). Petroleum Engineering Dept.


    Currently, two approaches are being used to predict the changes in retrograde gas condensate composition and estimate the pressure depletion behavior of gas condensate reservoirs. The first approach uses the equation of states whereas the second uses empirical correlations. Equations of states (EOS) are poor predictive tools for complex hydrocarbon systems. The EOS needs adjustment against phase behavior data of reservoir fluid of known composition. The empirical correlation does not involve numerous numerical computations but their accuracy is limited. This study presents two general regression neural network (GRNN) models. The first model, GRNNM1, is developed to predict dew point pressure and gas compressibility at dew point using initial composition of numerous samples while the second model, GRNNM2, is developed to predict the changes in well stream effluent composition at any stages of pressure depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition using dew point pressure, gas compressibility at dew point, and reservoir temperature. These models are based on analysis of 142 sample of laboratory studies of constant volume depletion (CVD) for gas condensate systems forming a total of 1082 depletion stages. The database represents a wide range of gas condensate systems obtained worldwide. The performance of the GRNN models has been compared to simulation results of the equation of state. The study shows that the proposed general regression neural network models are accurate, valid, and reliable. These models can be used to forecast CVD data needed for many reservoir engineering calculations in case laboratory data is unavailable. The GRNN models save computer time involved in EOS calculations. The study also show that once these models are properly trained they can be used to cut expenses of frequent sampling and laborious experimental CVD tests required for gas condensate reservoirs. 55 refs., 13 figs., 6 tabs.

  2. Nonlinear observer designs for fuel cell power systems (United States)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS

  3. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor (United States)

    Chander, G.; Meyer, D.J.; Helder, D.L.


    As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.

  4. Sharing Data in the Global Ocean Observing System (Invited) (United States)

    Lindstrom, E. J.; McCurdy, A.; Young, J.; Fischer, A. S.


    We examine the evolution of data sharing in the field of physical oceanography to highlight the challenges now before us. Synoptic global observation of the ocean from space and in situ platforms has significantly matured over the last two decades. In the early 1990’s the community data sharing challenges facing the World Ocean Circulation Experiment (WOCE) largely focused on the behavior of individual scientists. Satellite data sharing depended on the policy of individual agencies. Global data sets were delivered with considerable delay and with enormous personal sacrifice. In the 2000’s the requirements for global data sets and sustained observations from the likes of the U.N. Framework Convention on Climate Change have led to data sharing and cooperation at a grander level. It is more effective and certainly more efficient. The Joint WMO/IOC Technical Commission on Oceanography and Marine Meteorology (JCOMM) provided the means to organize many aspects of data collection and data dissemination globally, for the common good. In response the Committee on Earth Observing Satellites organized Virtual Constellations to enable the assembly and sharing of like kinds of satellite data (e.g., sea surface topography, ocean vector winds, and ocean color). Individuals in physical oceanography have largely adapted to the new rigors of sharing data for the common good, and as a result of this revolution new science has been enabled. Primary obstacles to sharing have shifted from the individual level to the national level. As we enter into the 2010’s the demands for ocean data continue to evolve with an expanded requirement for more real-time reporting and broader disciplinary coverage, to answer key scientific and societal questions. We are also seeing the development of more numerous national contributions to the global observing system. The drivers for the establishment of global ocean observing systems are expanding beyond climate to include biological and

  5. New Directions in the NOAO Observing Proposal System (United States)

    Gasson, David; Bell, Dave

    For the past eight years NOAO has been refining its on-line observing proposal system. Virtually all related processes are now handled electronically. Members of the astronomical community can submit proposals through email, web form, or via the Gemini Phase I Tool. NOAO staff can use the system to do administrative tasks, scheduling, and compilation of various statistics. In addition, all information relevant to the TAC process is made available on-line, including the proposals themselves (in HTML, PDF and PostScript) and technical comments. Grades and TAC comments are entered and edited through web forms, and can be sorted and filtered according to specified criteria. Current developments include a move away from proprietary solutions, toward open standards such as SQL (in the form of the MySQL relational database system), Perl, PHP and XML.

  6. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations (United States)

    McKague, D. S.; Ruf, C. S.


    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  7. The role of serial casting in early-onset scoliosis (EOS). (United States)

    Baulesh, David M; Huh, Jeannie; Judkins, Timothy; Garg, Sumeet; Miller, Nancy H; Erickson, Mark A


    Serial casting has demonstrated efficacy for idiopathic early-onset scoliosis (EOS). Results of casting in nonidiopathic (syndromic and congenital) EOS patients have not previously been well described. A total of 53 patients underwent serial casting for EOS from 2005 to 2010 at a single institution. Deformity was classified as idiopathic or nonidiopathic. Diagnosis, time in cast, number of casts, use of bracing, complications, and outcomes were recorded. Radiographic measures included Cobb angle and thoracic height (T1-T12). Thoracic height velocity was calculated and compared with established norms. A total of 36 patients, 19 idiopathic and 17 nonidiopathic (14 syndromic, 3 congenital), completed cast treatment and had >6-month follow-up and were therefore included. Of those, 17% (6/36) experienced resolution of their deformity, 53% (19/26) are currently in braces, and 31% (11/36) had undergone surgery. Surgery occurred on average at age 5.6 years and was delayed by an average of 2.1 years from time of first cast. A 19% complication was observed. There was no statistical difference in the rate of resolution of deformity between idiopathic (5/19) and nonidiopathic (1/17) patients (P=0.182), although there exists a trend toward greater curve correction in idiopathic patients. Surgery occurred in fewer patients (2/19) in the idiopathic group compared with the nonidiopathic group (9/17) (P=0.006). Significant improvements in Cobb angle was observed in the idiopathic group (12.2 degrees) during casting (P=0.003). Nonidiopathic patients did not maintain the correction gained during casting at the time of final follow-up. T1-T12 height increased across all study patients regardless of etiology during the period of casting at similar velocity to established norms of 1.4 cm/y for this age group. Serial casting offers modest deformity correction in idiopathic deformities compared with nonidiopathic deformities. Thoracic height growth continued throughout the casting period

  8. Earth observation for regional scale environmental and natural resources management (United States)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.


    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  9. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre


    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  10. Participation of the GABAergic system in the anesthetic effect of Lippia alba (Mill.) N.E. Brown essential oil

    Energy Technology Data Exchange (ETDEWEB)

    Heldwein, C.G.; Silva, L.L. [Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Reckziegel, P. [Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Barros, F.M.C. [Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Bürger, M.E.; Baldisserotto, B. [Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Mallmann, C.A. [Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Schmidt, D.; Caron, B.O. [Departamento de Ciências Agronômicas e Ambientais, Universidade Federal de Santa Maria, Campus de Frederico Westphalen, Frederico Westphalen, RS (Brazil); Heinzmann, B.M. [Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)


    The objective of this study was to identify the possible involvement of the GABAergic system in the anesthetic effect of Lippia alba essential oil (EO). We propose a new animal model using silver catfish (Rhamdia quelen) exposed to an anesthetic bath to study the mechanism of action of EO. To observe the induction and potentiation of the anesthetic effect of EO, juvenile silver catfish (9.30 ± 1.85 g; 10.15 ± 0.95 cm; N = 6) were exposed to various concentrations of L. alba EO in the presence or absence of diazepam [an agonist of high-affinity binding sites for benzodiazepinic (BDZ) sites coupled to the GABA{sub A} receptor complex]. In another experiment, fish (N = 6) were initially anesthetized with the EO and then transferred to an anesthetic-free aquarium containing flumazenil (a selective antagonist of binding sites for BDZ coupled to the GABA{sub A} receptor complex) or water to assess recovery time from the anesthesia. In this case, flumazenil was used to observe the involvement of the GABA-BDZ receptor in the EO mechanism of action. The results showed that diazepam potentiates the anesthetic effect of EO at all concentrations tested. Fish exposed to diazepam and EO showed faster recovery from anesthesia when flumazenil was added to the recovery bath (12.0 ± 0.3 and 7.2 ± 0.7, respectively) than those exposed to water (9.2 ± 0.2 and 3.5 ± 0.3, respectively). In conclusion, the results demonstrated the involvement of the GABAergic system in the anesthetic effect of L. alba EO on silver catfish.

  11. Participation of the GABAergic system in the anesthetic effect of Lippia alba (Mill.) N.E. Brown essential oil

    International Nuclear Information System (INIS)

    Heldwein, C.G.; Silva, L.L.; Reckziegel, P.; Barros, F.M.C.; Bürger, M.E.; Baldisserotto, B.; Mallmann, C.A.; Schmidt, D.; Caron, B.O.; Heinzmann, B.M.


    The objective of this study was to identify the possible involvement of the GABAergic system in the anesthetic effect of Lippia alba essential oil (EO). We propose a new animal model using silver catfish (Rhamdia quelen) exposed to an anesthetic bath to study the mechanism of action of EO. To observe the induction and potentiation of the anesthetic effect of EO, juvenile silver catfish (9.30 ± 1.85 g; 10.15 ± 0.95 cm; N = 6) were exposed to various concentrations of L. alba EO in the presence or absence of diazepam [an agonist of high-affinity binding sites for benzodiazepinic (BDZ) sites coupled to the GABA A receptor complex]. In another experiment, fish (N = 6) were initially anesthetized with the EO and then transferred to an anesthetic-free aquarium containing flumazenil (a selective antagonist of binding sites for BDZ coupled to the GABA A receptor complex) or water to assess recovery time from the anesthesia. In this case, flumazenil was used to observe the involvement of the GABA-BDZ receptor in the EO mechanism of action. The results showed that diazepam potentiates the anesthetic effect of EO at all concentrations tested. Fish exposed to diazepam and EO showed faster recovery from anesthesia when flumazenil was added to the recovery bath (12.0 ± 0.3 and 7.2 ± 0.7, respectively) than those exposed to water (9.2 ± 0.2 and 3.5 ± 0.3, respectively). In conclusion, the results demonstrated the involvement of the GABAergic system in the anesthetic effect of L. alba EO on silver catfish

  12. Observations of multiple order parameters in 5f electron systems

    International Nuclear Information System (INIS)

    Blackburn, E.


    In this thesis, multiple order parameters originating in the same electronic system are studied. The multi-k magnetic structures, where more than one propagation wavevector, k, is observed in the same volume, are considered as prototypical models. The effect of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium rock-salts, unexpected elastic diffraction events were observed at positions in reciprocal space where the structure factor should have been zero. These diffraction peaks are identified with correlations between the (orthogonal) magnetic order parameters. The 3-k structure also affects the observed dynamics; the spin-wave fluctuations in uranium dioxide as observed by inelastic neutron polarization analysis can only be explained on the basis of a 3-k structure. In the antiferromagnetic superconductor UPd 2 Al 3 the magnetic order and the super-conducting state coexist, and are apparently generated by the same heavy fermions. The effect of an external magnetic field on both the normal and superconducting states is examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The inelastic neutron response is strongly renormalized on entering the superconducting state, and high-precision measurements of the low-energy transfer part of this response confirm that the superconducting energy gap has the same symmetry as the antiferromagnetic lattice. (author)


    Energy Technology Data Exchange (ETDEWEB)

    McKinley, B.; Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Greenhill, L. J.; Bernardi, G.; De Oliveira-Costa, A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Tingay, S. J.; Gaensler, B. M. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), School of Physics, The University of Sydney, Sydney, NSW (Australia); Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune (India); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Arcus, W.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Barnes, D. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne (Australia); Bunton, J. D. [CSIRO Astronomy and Space Science, Canberra (Australia); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA (United States); Deshpande, A. [Raman Research Institute, Bangalore (India); DeSouza, L. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Goeke, R. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); and others


    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.

  14. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use (United States)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)


    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  15. A tiered observational system for anthropogenic methane emissions (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.


    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  16. GAP: yet another image processing system for solar observations. (United States)

    Keller, C. U.

    GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.


    Energy Technology Data Exchange (ETDEWEB)

    Saint-Hilaire, Pascal; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Couvidat, Sébastien, E-mail: [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)


    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼20% at an altitude of ∼33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 10{sup 14} g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 10{sup 12} cm{sup –3}.

  18. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.


    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  19. Upper wind observing systems used for meteorological operations

    Directory of Open Access Journals (Sweden)

    J. Nash

    Full Text Available Methods of upper wind measurements used in operational meteorology have been reviewed to provide guidance to those developing wind profiler radar systems. The main limitations of the various methods of tracking weather balloons are identified using results from the WMO radiosonde comparisons and additional tests in the United Kingdom. Costs associated with operational balloon measurements are reviewed. The sampling and quality of operational aircraft wind observations are illustrated with examples from the ASDAR system. Measurement errors in horizontal winds are quantified wherever possible. When tracking equipment is functioning correctly, random errors in southerly and westerly wind component measurements from aircraft and weather balloons are usually in the range 0.5-2 m s-1.

  20. Polarimetry of Solar System Objects: Observations vs. Models (United States)

    Yanamandra-Fisher, P. A.


    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and

  1. Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System (United States)

    Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James; hide


    Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.

  2. Building A Collaborative And Distributed E&O Program For EarthScope (United States)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.


    EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.

  3. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery (United States)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.


    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  4. An autonomous drifting buoy system for long term pCO2 observation (United States)

    Nakano, Y.; Fujiki, T.; Wakita, M.; Azetsu-Scott, K.; Watanabe, S.


    Many studies have been carried out around the world to understand what happens to carbon dioxide (CO2) once it is emitted into the atmosphere, and how it relates to long-term climate change. However, the sea surface pCO2 observations on volunteer observation ships and research vessels concentrated in the North Atlantic and North Pacific. To assess the spatial and temporal variations of surface pCO2 in the global ocean, new automated pCO2 sensor which can be used in platform systems such as buoys or moorings is strongly desired. We have been developing the small drifting buoy system (diameter 250-340 mm, length 470 mm, weight 15 kg) for pCO2 measurement, with the support of the Japan EOS Promotion Program (JEPP), the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The objective is to provide simplified, automated measurements of pCO2 over all the world's oceans, an essential factor in understanding how the ocean responds to climate change. The measurement principle for the pCO2 sensor is based on spectrophotometry (e.g. Lefèvre et al., 1993; Degrandpre et al., 1995). The CO2 in the surrounding seawater equilibrates with the indicator solution across the gas permeable membranes. The equilibration process causes a change of pH in the indicator solution, which results in the change of optical absorbance. The pCO2 is calculated from the optical absorbance of the pH indicator solution equilibrated with CO2 in seawater through a gas permeable membrane. In our analytical system, we used an amorphous fluoropolymer tubing form of AF-2400 by DuPontTM for the gas permeable membrane due to its high gas permeability coefficients. The measurement system of the sensor consisted mainly of a LED light source, optical fibers, a CCD detector, and a downsized PC. The measured data were transmitted to the laboratory by satellite communication (Argos system). In the laboratory experiment, we obtained a high response time (less than 2 minutes) and a precision

  5. Observation of bifurcation phenomena in an electron beam plasma system

    International Nuclear Information System (INIS)

    Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.


    When an electron beam is injected into a plasma, unstable waves are excited spontaneously near the electron plasma frequency f pe by the electron beam plasma instability. The experiment on subharmonics in an electron beam plasma system was performed with a glow discharge tube. The bifurcation of unstable waves with the electron plasma frequency f pe and 1/2 f pe was observed using a double-plasma device. Furthermore, the period doubling route to chaos around the ion plasma frequency in an electron beam plasma system was reported. However, the physical mechanism of bifurcation phenomena in an electron beam plasma system has not been clarified so far. We have studied nonlinear behaviors of the electron beam plasma instability. It was found that there are some cases: the fundamental unstable waves and subharmonics of 2 period are excited by the electron beam plasma instability, the fundamental unstable waves and subharmonics of 3 period are excited. In this paper, we measured the energy distribution functions of electrons and the dispersion relation of test waves in order to examine the physical mechanism of bifurcation phenomena in an electron beam plasma system

  6. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action (United States)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  7. Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN (United States)

    Bodine, D. J.; Rasmussen, K. L.


    Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.

  8. The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data (United States)

    Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric


    Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.


    Energy Technology Data Exchange (ETDEWEB)

    Colón, Knicole D.; Gaidos, Eric, E-mail: [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)


    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  10. Expanding NASA's Land, Atmosphere Near real-time Capability for EOS (United States)

    Davies, D.; Michael, K.; Masuoka, E.; Ye, G.; Schmaltz, J. E.; Harrison, S.; Ziskin, D.; Durbin, P. B.; Protack, S.; Rinsland, P. L.; Slayback, D. A.; Policelli, F. S.; Olsina, O.; Fu, G.; Ederer, G. A.; Ding, F.; Braun, J.; Gumley, L.; Prins, E. M.; Davidson, C. C.; Wong, M. M.


    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time products and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere) have been added; the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood product. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year. For more information visit:

  11. EOS MLS Level 1B Data Processing Software. Version 3 (United States)

    Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina


    This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.

  12. Interstellar Explorer Observations of the Solar System's Debris Disks (United States)

    Lisse, C. M.; McNutt, R. L., Jr.; Brandt, P. C.


    Planetesimal belts and debris disks full of dust are known as the "signposts of planet formation" in exosystems. The overall brightness of a disk provides information on the amount of sourcing planetesimal material, while asymmetries in the shape of the disk can be used to search for perturbing planets. The solar system is known to house two such belts, the Asteroid belt and the Kuiper Belt; and at least one debris cloud, the Zodiacal Cloud, sourced by planetisimal collisions and Kuiper Belt comet evaporative sublimation. However these are poorly understood in toto because we live inside of them. E.g., while we know of the two planetesimal belt systems, it is not clear how much, if any, dust is produced from the Kuiper belt since the near-Sun comet contributions dominate near-Earth space. Understanding how much dust is produced in the Kuiper belt would give us a much better idea of the total number of bodies in the belt, especially the smallest ones, and their dynamical collisional state. Even for the close in Zodiacal cloud, questions remain concerning its overall shape and orientation with respect to the ecliptic and invariable planes of the solar system - they aren't explainable from the perturbations caused by the known planets alone. In this paper we explore the possibilities of using an Interstellar Explorer telescope placed at 200 AU from the sun to observe the brightness, shape, and extent of the solar system's debris disk(s). We should be able to measure the entire extent of the inner, near-earth zodiacal cloud; whether it connects smoothly into an outer cloud, or if there is a second outer cloud sourced by the Kuiper belt and isolated by the outer planets, as predicted by Stark & Kuchner (2009, 2010) and Poppe et al. (2012, 2016; Figure 1). VISNIR imagery will inform about the dust cloud's density, while MIR cameras will provide thermal imaging photometry related to the cloud's dust particle size and composition. Observing at high phase angle by looking

  13. Practice Pattern Variation in Pediatric Eosinophilic Esophagitis in the Carolinas EoE Collaborative: A Research Model in Community and Academic Practices. (United States)

    Huang, Kevin Z; Jensen, Elizabeth T; Chen, Hannah X; Landes, Lisa E; McConnell, Kristen A; Almond, M Angie; Johnston, Douglas T; Durban, Raquel; Jobe, Laura; Frost, Carrie; Donnelly, Sarah; Antonio, Brady; Safta, Anca M; Quiros, J Antonio; Markowitz, Jonathan E; Dellon, Evan S


    Differences in the initial management of pediatric eosinophilic esophagitis (EoE) by practice setting have not been well characterized. We aimed to characterize these differences for sites in the Carolinas EoE Collaborative (CEoEC), a multicenter network of academic and community practices. We performed a retrospective cohort study of pediatric EoE patients at five CEoEC sites: University of North Carolina (UNC) Hospital, Charlotte Asthma and Allergy Specialists, Greenville Health Systems, Wake Forest Baptist Medical Center, and the Medical University of South Carolina Hospital. Cases of EoE were defined by consensus guidelines. Data were extracted from electronic medical records. We tested for differences among sites and used a multinomial model (polytomous regression) to assess associations between treatment and site, adjusting on patient factors. We identified 464 children with EoE across the CEoEC sites. The median age was highest at Wake Forest (11.4 years), the median eosinophil count was highest at UNC (69 eos/hpf), and UNC had the most male patients (82%). UNC used topical steroids for initial treatment in 86% of cases, compared with <1% in Greenville ( P < 0.01). Greenville used dietary elimination more frequently than UNC (81% vs 2%, P < 0.01). Differences in treatment approach held after adjusting for potential baseline confounders. There was no significant association between patient factors and initial treatment approach. Significant differences in EoE patient factors and treatment approaches were identified across CEoEC sites and were not explained by patient or practice factors. This suggests that institutional or provider preferences drive initial treatment approaches, and that more data are needed to drive best practice decisions.

  14. Migration to Earth Observation Satellite Product Dissemination System at JAXA (United States)

    Ikehata, Y.; Matsunaga, M.


    JAXA released "G-Portal" as a portal web site for search and deliver data of Earth observation satellites in February 2013. G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 and archives 5.17 million products and 14 million catalogues in total. Users can search those products/catalogues in GUI web search and catalogue interface(CSW/Opensearch). In this fiscal year, we will replace this to "Next G-Portal" and has been doing integration, test and migrations. New G-Portal will treat data of satellites planned to be launched in the future in addition to those handled by G - Portal. At system architecture perspective, G-Portal adopted "cluster system" for its redundancy, so we must replace the servers into those with higher specifications when we improve its performance ("scale up approach"). This requests a lot of cost in every improvement. To avoid this, Next G-Portal adopts "scale out" system: load balancing interfaces, distributed file system, distributed data bases. (We reported in AGU fall meeting 2015(IN23D-1748).) At customer usability perspective, G-Portal provides complicated interface: "step by step" web design, randomly generated URLs, sftp (needs anomaly tcp port). Customers complained about the interfaces and the support team had been tired from answering them. To solve this problem, Next G-Portal adopts simple interfaces: "1 page" web design, RESTful URL, and Normal FTP. (We reported in AGU fall meeting 2016(IN23B-1778).) Furthermore, Next G-Portal must merge GCOM-W data dissemination system to be terminated in the next March as well as the current G-Portal. This might arrise some difficulties, since the current G-Portal and GCOM-W data dissemination systems are quite different from Next G-Portal. The presentation reports the knowledge obtained from the process of merging those systems.

  15. On-orbit test results from the EO-1 Advanced Land Imager (United States)

    Evans, Jenifer B.; Digenis, Constantine J.; Gibbs, Margaret D.; Hearn, David R.; Lencioni, Donald E.; Mendenhall, Jeffrey A.; Welsh, Ralph D.


    The Advanced Land Imager (ALI) is the primary instrument flown on the first Earth Observing mission (EO-1), launched on November 21, 2000. It was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. During the first ninety days on orbit, the instrument performance was evaluated by collecting several Earth scenes and comparing them to identical scenes obtained by Landsat7. In addition, various on-orbit calibration techniques were exercised. This paper will present an overview of the EO-1 mission activities during the first ninety days on-orbit, details of the ALI instrument performance and a comparison with the ground calibration measurements.

  16. Observation of electromagnetically induced Talbot effect in an atomic system (United States)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min


    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  17. Submillimeter and millimeter observations of solar system objects

    International Nuclear Information System (INIS)

    Muhleman, D.O.


    Planetary atmospheres and satellite surfaces are observed with the three element array at Caltech's Owens Valley Radio Observatory, Caltech's submillimeter telescope on Mauna Kea and at the 12-meter telescope at Kitt Peak. Researchers are primarily interested in spectroscopy of the atmospheres of Venus, Mars and Titan and the continuum structure of Saturn Rings, Galilean satellites, Neptune and Uranus. During the last year researchers completed a supersynthesis of the Saturn system at 2.8 mm with spatial resolution of 3 arc sec. They just completed a 4-confuguration synthesis of Venus in the CO absorption line. They hope to recover the wind patterns in the altitude range from 60 to 100 km where winds have never been measured. Two important questions are being investigated: (1) how high in the Venus atmosphere do 4-day winds extend, and (2) can we produce experiment proof (or disproof) of the subsolar-to-anti-solar flow (Dickenson winds) predicted by general circulation models

  18. Measuring progress of the global sea level observing system (United States)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  19. Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery. (United States)

    Ferrero, Emmanuelle; Mazda, Keyvan; Simon, Anne-Laure; Ilharreborde, Brice


    Preoperative planning of scoliosis surgery is essential in the effective treatment of spine pathology. Thus, precontoured rods have been recently developed to avoid iatrogenic sagittal misalignment and rod breakage. Some specific issues exist in adolescent idiopathic scoliosis (AIS), such as a less distal lower instrumented level, a great variability in the location of inflection point (transition from lumbar lordosis to thoracic kyphosis), and sagittal correction is limited by both bone-implant interface. Since 2007, stereoradiographic imaging system is used and allows for 3D reconstructions. Therefore, a software was developed to perform preoperative 3D surgical planning and to provide rod's shape and length. The goal of this preliminary study was to assess the feasibility, reliability, and the clinical relevance of this new software. Retrospective study on 47 AIS patients operated with the same surgical technique: posteromedial translation through posterior approach with lumbar screws and thoracic sublaminar bands. Pre- and postoperatively, 3D reconstructions were performed on stereoradiographic images (EOS system, Paris, France) and compared. Then, the software was used to plan the surgical correction and determine rod's shape and length. Simulated spine and rods were compared to postoperative real 3D reconstructions. 3D reconstructions and planning were performed by an independent observer. 3D simulations were performed on the 47 patients. No difference was found between the simulated model and the postoperative 3D reconstructions in terms of sagittal parameters. Postoperatively, 21% of LL were not within reference values. Postoperative SVA was 20 mm anterior in 2/3 of the cases. Postoperative rods were significantly longer than precontoured rods planned with the software (mean 10 mm). Inflection points were different on the rods used and the planned rods (2.3 levels on average). In this preliminary study, the software based on 3D stereoradiography low

  20. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS) (United States)

    Larson, Jay W.


    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  1. Observer model optimization of a spectral mammography system (United States)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats


    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  2. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system (United States)

    P. Ciais; A. J. Dolman; A. Bombelli; R. Duren; A. Peregon; P. J. Rayner; C. Miller; N. Gobron; G. Kinderman; G. Marland; N. Gruber; F. Chevallier; R. J. Andres; G. Balsamo; L. Bopp; F.-M. Bréon; G. Broquet; R. Dargaville; T. J. Battin; A. Borges; H. Bovensmann; M. Buchwitz; J. Butler; J. G. Canadell; R. B. Cook; R. DeFries; R. Engelen; K. R. Gurney; C. Heinze; M. Heimann; A. Held; M. Henry; B. Law; S. Luyssaert; J. Miller; T. Moriyama; C. Moulin; R. B. Myneni; C. Nussli; M. Obersteiner; D. Ojima; Y. Pan; J.-D. Paris; S. L. Piao; B. Poulter; S. Plummer; S. Quegan; P. Raymond; M. Reichstein; L. Rivier; C. Sabine; D. Schimel; O. Tarasova; R. Valentini; R. Wang; G. van der Werf; D. Wickland; M. Williams; C. Zehner


    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires...

  3. Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited) (United States)

    Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.


    The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model

  4. SENTINEL-2 Services Library - efficient way for exploration and exploitation of EO data (United States)

    Milcinski, Grega; Batic, Matej; Kadunc, Miha; Kolaric, Primoz; Mocnik, Rok; Repse, marko


    With more than 1.5 million scenes available covering over 11 billion sq. kilometers of area and containing half a quadrillion of pixels, Sentinel-2 is becoming one of the most important MSI datasets in the world. However, the vast amount of data makes it difficult to work with. This is certainly an important reason, why the number of Sentinel based applications is not as high as it could be at this point. We will present a Copernicus Award [1] winning service for archiving, processing and distribution of Sentinel data, Sentinel Hub [2]. It makes it easy for anyone to tap into global Sentinel archive and exploit its rich multi-sensor data to observe changes in the land. We will demonstrate, how one is able not just to observe imagery all over the world but also to create its own statistical analysis in a matter of seconds, performing comparison of different sensors through various time segments. The result can be immediately observed in any GIS tool or exported as a raster file for post-processing. All of these actions can be performed on a full, worldwide, S-2 archive (multi-temporal and multi-spectral). To demonstrate the technology, we created a publicly accessible web application, called "Sentinel Playground" [3], which makes it possible to query Sentinel-2 data anywhere in the world, and experts-oriented tool "EO Browser" [4], where it is also possible to observe land changes through longer period by using historical Landsat data as well. [1] [2] [3] [4]

  5. EOS analysis of lower extremity segmental torsion in children and young adults. (United States)

    Gaumétou, E; Quijano, S; Ilharreborde, B; Presedo, A; Thoreux, P; Mazda, K; Skalli, W


    Lower limb torsion varies substantially among healthy children during growth. Values reported in the literature to date have been obtained using semi-quantitative clinical or 2D measurement methods. Quantitative 3D measurement would help determine the physiological range of lower limb torsion. Low-dose stereoradiography with 3D reconstruction provides a good alternative. Its use increases in pediatrics because of radiation minimization. Previous studies have shown accurate and reproducible results of lower limbs reconstruction in adults and children but the torsional parameters haven't been measured yet. The present study reports the values of lower limb segmental torsion and its course during growth in a cohort of healthy children and young adults using the EOS low-dose biplanar X-ray. EOS 3D reconstruction is an accurate and reproducible method to measure the torsional parameters in children. Femoral torsion (FT) and tibial torsion (TT) were studied on 114 volunteers (228 lower limbs) from 6 to 30 years of age divided by age into 5 groups. The EOS™ acquisitions were obtained in subjects standing with their feet offset. Mean FT decreased during growth, passing from 21.6° to 18°, whereas mean TT increased from 26.8° to 34.7°. There was a statistically significant difference between the 2 extreme age groups, but no difference was found between any other age groups. The ICC for intra-observer reproducibility was 0.96 and 0.95 for FT and TT for the first operator, and 0.79 and 0.83 for the second operator respectively. The ICC for inter-observer reproducibility was 0.84 and 0.82 respectively. The course of lower limb segmental torsion observed was consistent with literature reports based upon clinical and 2D measurements. 3D reconstruction of EOS low-dose biplanar imaging appears to be a safe and reliable tool for lower limbs measurements, especially for investigating lower limb segmental torsion in children and adults. Level IV. Copyright © 2013. Published by

  6. A Spatial Data Infrastructure for the Global Mercury Observation System

    Directory of Open Access Journals (Sweden)

    Cinnirella S.


    Full Text Available The Global Mercury Observation System (GMOS Project includes a specific Work Package aimed at developing tools (i.e. databases, catalogs, services to collect GMOS datasets, harvest mercury databases, and offer services like search, view, and download spatial datasets from the GMOS portal ( The system will be developed under the framework of the Infrastructure for Spatial Information in the European Community (INSPIRE Directive and the Directive 2003/4/EC on public access to environmental information, which both aim to make relevant, harmonized, high-quality geographic information available to support the formulation, implementation, monitoring, and evaluation of policies and activities that have a direct or indirect impact on the environment. Three databases have been proposed (on emissions, field data and model results, and each will be equipped with state-of-the-art, open-source software to allow for the highest performance possible. Web-based user-interfaces and prototype applications will be developed to demonstrate the potential of blending different datasets from different servers for environmental assessment studies. Several services (i.e. catalog browsers, WMS and WCS services, web GIS services will be developed to facilitate data integration, data re-use, and data exchange within and beyond the GMOS project. Different types of measurement and model datasets provided by project partners and other sources will be integrated into PostgreSQL-PostGIS, harmonized by creating INSPIRE-compliant metadata and made available to a larger community of stakeholders, policy makers, scientists, and NGOs (as well as to other public and private institutions, as dictated by the Directive 2003/4/EC. Since interoperability is a central concept for the Global Earth Observation System of Systems (GEOSS, the Global Monitoring for Environmental and Security (GMES and the INSPIRE Directive, guidelines developed in these three frameworks will be

  7. Calculation of electromagnetic observables in few-body systems

    International Nuclear Information System (INIS)

    Gibson, B.F.


    An introduction to the calculation of electromagnetic observables in few-body systems is given by studying two examples in the trinucleon system: (1) the elastic electron scattering charge form factor in configuration space and momentum space and (2) the two-body photodisintegration of 3 H leading to a neutron-deuteron final state in a separable potential formalism. In the discussion of charge form factor calculations, a number of related topics are touched upon: the relation of structure in Psi to the properties of simple NN forces, the Faddeev and Schroedinger solution to the harmonic oscillator problem, the Rosenbluth formula for electron scattering from a spin-1/2 nuclear target (e.g., the proton or 3 H), and the charge density operator. Formulae for 3 He and 3 H charge form factors in a central force approximation are given in configuration and momentum space. The physics of these form factors is discussed in light of results from realistic nucleon-nucleon potential model calculations, including the effects of two-pion-exchange three-body force models. Topics covered are the rms charge densities, and the Coulomb energy of 3 He. In the discussion of the 3 H photodisintegration, the Siegert form of the electric dipole operator (in the long wave length limit) is derived as are the separable potential equations which describe the off-shell transition amplitudes which connect nucleon-plus-corrected-pair states. Expressions for the Born amplitudes required to complete the two-body photodisintegration amplitude calculation are given. Numerical results for a model central force problem are discussed and compared with an approximate calculation. Comparisons with 3 H(γ,n)d and 3 He(γ,p)d data are made, and the significant features of the exact theoretical calculation are outlined. 61 refs., 26 figs

  8. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda


    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  9. Mesoscale climate hydrology: Earth Observation System - definition phase

    NARCIS (Netherlands)

    Menenti, M.; Bastiaanssen, W.G.M.


    The use of airborne and space observations to map surface heat fluxes and soil water content at heterogeneous land surfaces was studied. Algorithms to estimate evaporation fluxes with satellite observations were evaluated against measurements. Spatialcorrelation lengths were studied with estimated

  10. Mesoscale climate hydrology: Earth Observation System - definition phase

    NARCIS (Netherlands)

    Menenti, M.; Bastiaanssen, W.G.M.


    The use of airborne and space observations to map surface heat fluxes and soil water content at heterogeneous land surfaces was studied. Algorithms to estimate evaporation fluxes with satellite observations were evaluated against measurements. Spatialcorrelation lengths were studied with estimated

  11. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares (United States)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean


    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  12. In vitro and in vivo evaluation of the indoloquinone EO-9 (NSC 382 459) against human small cell carcinoma of the lung

    DEFF Research Database (Denmark)

    Roed, H; Aabo, K; Vindeløv, L


    As the indoloquinone EO-9 has previously shown activity in several tumor model systems it was evaluated against four human small cell lung cancer cell lines by the clonogenic assay. In two cell lines (Nyh and Tol), exponential dose-response curves were achieved with both 1 h and continuous exposure......, whereas no cell kill was obtained in the other two cell lines (69 and 592) when tested with 1 h incubation up to 0.25 microgram/ml. When the cells were exposed to drug in vitro, flow cytometric DNA analysis showed perturbations in the cell cycle distribution of the most sensitive cell line (Tol......) at a lower EO-9 concentration than in the less sensitive cel line (592). This in vitro predicted difference in EO-9 sensitivity between two of the cell lines (592 and Tol) was confirmed when the cell lines were heterotransplanted to nude mice....

  13. Big Data in the Earth Observing System Data and Information System (United States)

    Lynnes, Chris; Baynes, Katie; McInerney, Mark


    Approaches that are being pursued for the Earth Observing System Data and Information System (EOSDIS) data system to address the challenges of Big Data were presented to the NASA Big Data Task Force. Cloud prototypes are underway to tackle the volume challenge of Big Data. However, advances in computer hardware or cloud won't help (much) with variety. Rather, interoperability standards, conventions, and community engagement are the key to addressing variety.

  14. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems (United States)

    Zappa, C. J.


    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  15. Observing the observers - uncovering the role of values in research assessments of organic food systems

    DEFF Research Database (Denmark)

    Thorsøe, Martin Hermansen; Alrøe, Hugo Fjelsted; Noe, Egon


    Assessing the overall effects of organic food systems is important, but also a challenge because organic food systems cannot be fully assessed from one single research perspective. The aim of our research was to determine the role of values in assessments of organic food systems as a basis...... for discussing the implications of combining multiple perspectives in overall sustainability assessments of the food system. We explored how values were embedded in five research perspectives: (1) food science, (2) discourse analysis, (3) phenomenology, (4) neoclassical welfare economics, and (5) actor......-network theory. Value has various meanings according to different scientific perspectives. A strategy for including and balancing different forms of knowledge in overall assessments of the effects of food systems is needed. Based on the analysis, we recommend four courses of action: (1) elucidate values...

  16. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges (United States)

    Ryan, B. J.


    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  17. Vegetation Earth System Data Record from DSCOVR EPIC Observations (United States)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.


    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  18. The Demonstrator for the European Plate Observing System (EPOS) (United States)

    Hoffmann, T. L.; Euteneuer, F.; Ulbricht, D.; Lauterjung, J.; Bailo, D.; Jeffery, K. G.


    An important outcome of the 4-year Preparatory Phase of the ESFRI project European Plate Observing System (EPOS) was the development and first implementation of the EPOS Demonstrator by the project's ICT Working Group 7. The Demonstrator implements the vertical integration of the three-layer architectural scheme for EPOS, connecting the Integrated Core Services (ICS), Thematic Core Services (TCS) and the National Research Infrastructures (NRI). The demonstrator provides a single GUI with central key discovery and query functionalities, based on already existing services by the seismic, geologic and geodetic communities. More specifically the seismic services of the Demonstrator utilize webservices and APIs for data and discovery of raw seismic data (FDSN webservices by the EIDA Network), events (Geoportal by EMSC) and analytical data products (e.g., hazard maps by EFEHR via OGC WMS). For geologic services, the EPOS Demonstrator accesses OneGeology Europe which serves the community with geologic maps and point information via OGC webservices. The Demonstrator also provides access to raw geodetic data via a newly developed universal tool called GSAC. The Demonstrator itself resembles the future Integrated Core Service (ICS) and provides direct access to the end user. Its core functionality lies in a metadata catalogue, which serves as the central information hub and stores information about all RIs, related persons, projects, financial background and technical access information. The database schema of the catalogue is based on CERIF, which has been slightly adapted. Currently, the portal provides basic query functions as well as cross domain search. [

  19. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier


    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  20. Observing system simulations for small satellite formations estimating bidirectional reflectance (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de


    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  1. Steps Toward an EOS-Era Aerosol Air Mass Type Climatology (United States)

    Kahn, Ralph A.


    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2.

  2. Supporting the Establishment of Climate-Resilient Rural Livelihoods in Mongolia with EO Services (United States)

    Grosso, Nuno; Patinha, Carla; Sainkhuu, Tserendash; Bataa, Mendbayar; Doljinsuren, Nyamdorj


    The work presented here shows the results from the project "Climate-Resilient Rural Livelihoods in Mongolia", included in the EOTAP (Earth Observation for a Transforming Asia Pacific) initiative, a collaboration between the European Space Agency (ESA) and the Asian Development Bank (ADB), developed in cooperation with the Ministry of Food and Agriculture of Mongolia.The EO services developed within this EOTAP project primarily aimed at enriching the existing environmental database maintained by the National Remote Sensing Center (NRSC) in Mongolia and sustaining the collaborative pasture management practices introduced by the teams within the Ministry of Food and Agriculture of Mongolia. The geographic area covered by the EOTAP services is Bayankhongor province, in western Mongolia region, with two main services: drought monitoring at the provincial level for the year 2014 and Land Use/Land Cover (LULC) and changes mapping for three districts of this province (Buutsagaan, Dzag and Khureemaral) for the years 2013, 2014.

  3. The Action Observation System when Observing Hand Actions in Autism and Typical Development. (United States)

    Pokorny, Jennifer J; Hatt, Naomi V; Colombi, Costanza; Vivanti, Giacomo; Rogers, Sally J; Rivera, Susan M


    Social impairments in individuals with autism spectrum disorders (ASD) may be in part due to difficulty perceiving and recognizing the actions of others. Evidence from imitation studies, which involves both observation and execution of an action, suggests differences, in individuals with ASD, between the ability to imitate goal-directed actions involving objects (transitive actions) and the ability to imitate actions that do not involve objects (intransitive actions). In the present study, we examined whether there were differences in how ASD adolescents encoded transitive and intransitive actions compared to typically developing (TD) adolescents, by having participants view videos of a hand reaching across a screen toward an object or to where an object would be while functional magnetic resonance images were collected. Analyses focused on areas within the action observation network (AON), which is activated during the observation of actions performed by others. We hypothesized that the AON would differentiate transitive from intransitive actions only in the ASD group. However, results revealed that object presence modulated activity in the right inferior frontal gyrus and supramarginal gyrus of the TD group, a differentiation that was not seen in the ASD group. Furthermore, there were no significant group differences between the TD and ASD groups in any of the conditions. This suggests that there is not a global deficit of the AON in individuals with ASD while observing transitive and intransitive actions. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Coordinated Regional Benefit Studies of Coastal Ocean Observing Systems

    National Research Council Canada - National Science Library

    Kite-Powell, Hauke L; Colgan, Charles S; Luger, Michael; Wieand, Ken; Pulsipher, Allan; Pendleton, Linwood; Wellman, Katherine; Pelsoci, Tom


    .... The authors will first produce regional "inventories" of ocean observation user sectors, including information about the physical and economic scale of their activities, how products from improved...

  5. Cloud Based Earth Observation Data Exploitation Platforms (United States)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.


    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland

  6. Semantic and syntactic interoperability in online processing of big Earth observation data. (United States)

    Sudmanns, Martin; Tiede, Dirk; Lang, Stefan; Baraldi, Andrea


    The challenge of enabling syntactic and semantic interoperability for comprehensive and reproducible online processing of big Earth observation (EO) data is still unsolved. Supporting both types of interoperability is one of the requirements to efficiently extract valuable information from the large amount of available multi-temporal gridded data sets. The proposed system wraps world models, (semantic interoperability) into OGC Web Processing Services (syntactic interoperability) for semantic online analyses. World models describe spatio-temporal entities and their relationships in a formal way. The proposed system serves as enabler for (1) technical interoperability using a standardised interface to be used by all types of clients and (2) allowing experts from different domains to develop complex analyses together as collaborative effort. Users are connecting the world models online to the data, which are maintained in a centralised storage as 3D spatio-temporal data cubes. It allows also non-experts to extract valuable information from EO data because data management, low-level interactions or specific software issues can be ignored. We discuss the concept of the proposed system, provide a technical implementation example and describe three use cases for extracting changes from EO images and demonstrate the usability also for non-EO, gridded, multi-temporal data sets (CORINE land cover).

  7. EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. (United States)

    Ilharreborde, Brice; Ferrero, Emmanuelle; Alison, Marianne; Mazda, Keyvan


    Imaging plays a key role in adolescent idiopathic scoliosis (AIS) to determine the prognosis and accordingly define the best therapeutic strategy to follow. Conventional radiographs with ionizing radiation have been associated with 1-2 % increased lifetime risk of developing cancer in children, and physicians, therefore, need a sensitive but harmless way to explore patients at risk, according to the "as low as reasonably achievable" concept. The EOS system (EOS imaging, Paris, France) is available in routine clinical use since 2007, and allows 3D reconstructions of the trunk in standing position with significant radiation reduction. With recent technical advances, further dose reduction can be obtained, but at the cost of image quality that might alter the reliability of 3D reconstructions. The aim of the present study was to analyze the reproducibility of a "microdose" protocol, and evaluate its use in clinical practice. 32 consecutive patients followed for AIS were prospectively included. Biplanar radiographs were obtained with the EOS system according to the new microdose protocol. From the microdose images obtained, three experienced operators performed 3D reconstructions, two times for each subject in a random order (total, 192 reconstructions). The intraoperator repeatability and interoperator reproducibility were evaluated, as recommended by the International Organization for Standardization, for the most clinically relevant 3D radiological parameters. The identification of the required anatomical landmarks for the "fast spine" reconstruction process was possible in all cases. None of the patients required a second acquisition for 3D analysis. Mean time for reconstruction was 5 ± 2 min. The intraoperator repeatability was better than interoperator reproducibility for all parameters, with values ranging between 3° and 8° for frontal and sagittal spinal parameters, and between 1° and 8° for pelvic measurements. The agreement was very good for all clinical

  8. Conducting Classroom Observations : Stallings 'Classroom Snapshot' Observation System for an Electronic Tablet


    World Bank Group


    The “Stallings Classroom Snapshot” instrument, technically called the “Stanford Research Institute Classroom Observation System”, was developed by Professor Jane Stallings for research on the efficiency and quality of basic education teachers in the United States in the 1970s. (Stallings, 1977; Stallings and Mohlman, 1988). The Stallings instrument generates robust quantitative data on the interaction of teachers and students in the classroom, with a high degree of inter-rater rel...

  9. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  10. Intelligent Architecture for Enhanced Observability for Active Distribution System

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte


    There is a rapid increase of renewable energy resources (RE) and demand response resources (DRR) in the distribution networks. This is challenging for the reliable and stable operation of the grid. So, to ensure secure, optimized and economical operation in such active distribution grids they need...... for active distribution network which satisfies the need for higher observability reach with less field observation. Improved state estimation with composite load forecasting model is aimed for enhanced observability. This paper also summarizes the application of intelligent architecture in the operation...

  11. Development of a THz spectroscopic imaging system

    International Nuclear Information System (INIS)

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K


    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated

  12. Understanding (Galactic) Foreground Emission: A Road To Success For The LOFAR-EoR Experiment

    NARCIS (Netherlands)

    Jelic, Vibor; Lofar Eor Team, [Unknown

    The LOFAR-EoR experiment will use the innovative technology and capabilities of the radio telescope LOFAR to study the Epoch of Reionization (EoR). However, feeble cosmological radiation is swamped by the prominent foreground emission of our Galaxy and other extragalactic radio sources. This

  13. 44 CFR Appendix A to Part 9 - Decision-making Process for E.O. 11988 (United States)


    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Decision-making Process for E.O. 11988 A Appendix A to Part 9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT..., App. A Appendix A to Part 9—Decision-making Process for E.O. 11988 EC02FE91.074 ...

  14. High patient-parent satisfaction with magnetically controlled growing rod treatment in EOS

    DEFF Research Database (Denmark)

    Skov, Simon Toftgaard; Bünger, Cody

    .8 (range 9-10) in favor of MCGR, considering this method most gentle to their child (0 conventional most gentle, 10 MCGR most gentle). Conclusion: We found a uniform high overall satisfaction, and the parents with experience from other growth instrumentation would choose MCGR again if it was an option...... evolution in distraction based growth instrumentation. MCGR is a new treatment with high initial costs(=implant costs), financing in a public health care system may be a challenge despite reports on cost-benefit. Surgeons and patients/families both seemed pleased with the treatment. Our aim...... was to investigate the stress experienced by the patients and their families, and the patient satisfaction. Methods: A consecutive series of patients receiving MCGR treatment between Sept. 2014 and June 2016 for EOS, receiving 3-month interval distraction. All the patients had prior unsedated MCGR...

  15. Utilizing NASA EOS Data for Fire Management in el Departmento del Valle del Cauco, Colombia (United States)

    Brenton, J. C.; Bledsoe, N.; Alabdouli, K.


    In the last few years, fire incidence in Colombian wild areas has increased, damaging pristine forests into savannas and sterile lands. Fire poses a significant threat to biodiversity, rural communities and established infrastructure. These events issue an urgent need to address this problem. NASA Earth Observing System (EOS) can play a significant role in the monitoring fires and natural disasters. SERVIR, the Regional Visualization and Monitoring Network, constitutes a platform for the observation, forecasting and modeling of environmental processes in Central America. A project called "The GIS for fire management in Guatemala (SIGMA-I)" has been already conducted to address the same problem in another Latin American country, Guatemala. SIGMA-I was developed by the Inter-agency work among the National protected areas council (CONAP), National Forestry Institution (INAB), the National Coordinator for Disaster Reduction / National Forest Fire Prevention and Control System (CONRED/SIPECIF), and the Ministry of the Environment and National Resources (MARN) in Guatemala under the guidance and assistance of SERVIR. With SIGMA-I as an example, we proposed to conduct a similar project for the country of Colombia. First, a pilot study in the area of the watershed of the Cali River, Colombia was conducted to ensure that the data was available and that the maps and models were accurate. The proposed study will investigate the technical resources required: 1.) A fire map with a compilation of ignition data (hot spots) utilizing Fire Information for Resource Management System (FIRMS) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD14 and MYD14 2.) A map of fire scars derived from medium resolution satellite data (ASTER) during the period 2003-2011 for the entire country, and a map of fire scar recurrence and statistics derived from the datasets produced. 3.) A pattern analysis and ignition cause model derived from a matrix of variables

  16. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults...... in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault......-output decoupling is described. It is a new idea based on the solution of the input-output decoupling problem. The idea is to include FDI considerations already during the control design....

  17. Enhancing access and usage of earth observations to support environmental decision making in Eastern and Southern Africa (United States)

    Shukla, S.; Husak, G. J.; Macharia, D.; Peterson, P.; Landsfeld, M. F.; Funk, C.; Flores, A.


    Remote sensing, reanalysis and model based earth observations (EOs) are crucial for environmental decision making, particularly in a region like Eastern and Southern Africa, where ground-based observations are sparse. NASA and the Famine Early Warning System Network (FEWS NET) provide several EOs relevant for monitoring, providing early warning of agroclimatic conditions. Nonetheless, real-time application of those EOs for decision making in the region is still limited. This presentation reports on an ongoing SERVIR-supported Applied Science Team (AST) project that aims to fill that gap by working in close collaboration with Regional Centre for Mapping of Resources for Development (RCMRD), the NASA SERVIR regional hub. The three main avenues being taken to enhance access and usage of EOs in the region are: (1) Transition and implementation of web-based tools to RCMRD to allow easy processing and visualization of EOs (2) Capacity building of personnel from regional and national agroclimate service agencies in using EOs, through training using targeted case studies, and (3) Development of new datasets to meet the specific needs of RCMRD and regional stakeholders. The presentation will report on the initial success, lessons learned, and feedback thus far in this project regarding the implementation of web-based tool and capacity building efforts. It will also briefly describe three new datasets, currently in development, to improve agroclimate monitoring in the region, which are: (1) Satellite infrared and stations based temperature maximum dataset (CHIRTS) (2) NASA's GEOS5 and NCEP's CFSv2 based seasonal scale reference evapotranspiration forecasts and (3) NCEP's GEFS based medium range weather forecasts which are bias-corrected to USGS and UCSB's rainfall monitoring dataset (CHIRPS).

  18. Multi-Planetary Systems: Observations and Models of Dynamical Interactions (United States)

    Lissauer, Jack J.


    More than 600 multi-planet systems are known. The vast majority of these systems have been discovered by NASA's Kepler spacecraft, but dozens were found using the Doppler technique, the first multi-exoplanet system was identified through pulsar timing, and the most massive system has been found using imaging. More than one-third of the 4000+ planet candidates found by NASA's Kepler spacecraft are associated with target stars that have more than one planet candidate, and the large number of such Kepler "multis" tells us that flat multiplanet systems like our Solar System are common. Virtually all of Kepler candidate multis are stable, as tested by numerical integrations that assume a physically motivated mass-radius relationship. Statistical studies performed on these candidate systems reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness. The characteristics of several of the most interesting confirmed multi-exoplanet systems will also be discussed.HR 8799's four massive planets orbit tens of AU from their host star and travel on nearly circular orbits. PSR B1257+12 has three much smaller planets orbiting close to a neutron star. Both represent extremes and show that planet formation is a robust process that produces a diversity of outcomes. Although both exomoons and Trojan (triangle Lagrange point) planets have been searched for, neither has yet been found.

  19. Partial Linearization of Mechanical Systems with Application to Observer Design

    NARCIS (Netherlands)

    Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der


    We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by

  20. Quantifying the non-Gaussianity in the EoR 21-cm signal through bispectrum (United States)

    Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh; Watkinson, Catherine A.; Bharadwaj, Somnath; Mellema, Garrelt


    The epoch of reionization (EoR) 21-cm signal is expected to be highly non-Gaussian in nature and this non-Gaussianity is also expected to evolve with the progressing state of reionization. Therefore the signal will be correlated between different Fourier modes (k). The power spectrum will not be able capture this correlation in the signal. We use a higher order estimator - the bispectrum - to quantify this evolving non-Gaussianity. We study the bispectrum using an ensemble of simulated 21-cm signal and with a large variety of k triangles. We observe two competing sources driving the non-Gaussianity in the signal: fluctuations in the neutral fraction (x_{H I}) field and fluctuations in the matter density field. We find that the non-Gaussian contribution from these two sources varies, depending on the stage of reionization and on which k modes are being studied. We show that the sign of the bispectrum works as a unique marker to identify which among these two components is driving the non-Gaussianity. We propose that the sign change in the bispectrum, when plotted as a function of triangle configuration cos θ and at a certain stage of the EoR can be used as a confirmative test for the detection of the 21-cm signal. We also propose a new consolidated way to visualize the signal evolution (with evolving \\bar{x}_{H I} or redshift), through the trajectories of the signal in a power spectrum and equilateral bispectrum i.e. P(k) - B(k, k, k) space.

  1. Observation-Driven Configuration of Complex Software Systems (United States)

    Sage, Aled


    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  2. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems (United States)

    Xue, Yan; Wen, Caihong; Yang, Xiaosong; Behringer, David; Kumar, Arun; Vecchi, Gabriel; Rosati, Anthony; Gudgel, Rich


    The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004-2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and

  3. Observed tidal braking in the earth/moon/sun system (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.


    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  4. Controllers with Minimal Observation Power (Application to Timed Systems)

    DEFF Research Database (Denmark)

    Bulychev, Petr; Cassez, Franck; David, Alexandre


    We consider the problem of controller synthesis under imper- fect information in a setting where there is a set of available observable predicates equipped with a cost function. The problem that we address is the computation of a subset of predicates sufficient for control and whose cost is minimal...

  5. Observations of ionospheric electric fields above atmospheric weather systems (United States)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.


    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  6. Tuberculoid leprosy masquerading as systemic lupus erythematosus: an interesting observation. (United States)

    Zawar, Vijay; Kumavat, Shrikant; Pawar, Manoj; Desai, Dipti


    Leprosy is a chronic granulomatous infectious multisystem disease that may present with protean manifestations. It mimics many systemic and dermatological disorders. Here we report a case in which an elderly female presented with malar rash, intermittent fever, and arthralgia. Her diagnosis was significantly delayed due to a close clinical resemblance to systemic lupus erythematosus. It is important to be aware of such manifestations of leprosy and improve awareness of it in clinicians to avoid misdiagnosis and delay in treatment.

  7. Parts of the Whole: Observing the State of the System

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace


    Full Text Available This column draws on the approach of statistician J. Edwards Deming to analyze sources and consequences of variation in an education system. Educational systems are not immune from the effects of poor statistical control, which makes it difficult for teachers to teach effectively and for managers such as principals to improve on school performance. It is also argued that the need for statistical control in these areas is in tension, if not outright conflict, with our goals for educating students.

  8. Assessing heat fluxes and water quality trends in subalpine lakes from EO (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Elli, Chiara; Valerio, Giulia; Pilotti, Marco


    Lakes play a fundamental role in providing ecosystem services such as water supplying, hydrological regulation, climate change mitigation, touristic recreation (Schallenberg et al., 2013). Preserving and improving of quality of lakes waters, which is a function of either both natural and human influences, is therefore an important action to be considered. Remote Sensing techniques are spreading as useful instrument for lakes, by integrating classical in situ limnological measurements to frequent and synoptic monitoring capabilities. Within this study, Earth Observation data are exploited for understanding the temporal changes of water quality parameters over a decade, as well as for measuring the surface energy fluxes in recent years in deep clear lakes in the European subalpine ecoregion. According to Pareth et al. (2016), subalpine lakes are showing a clear response to climate change with an increase of 0.017 °C /year of lake surface temperature, whilst the human activities contribute to produce a large impact (agriculture, recreation, industry, fishing and drinking) on these lakes. The investigation is focused on Lake Iseo, which has shown a significant deterioration of water quality conditions since the seventies, and on Lake Garda, the largest Italian lake where EO data have been widely used for many purposes and applications (Giardino et al., 2014). Available ENVISAT-MERIS (2002-2012) and Landsat-8-OLI (2013-on going) imagery has been exploited to produce chlorophyll-a (chl-a) concentration maps, while Landsat-8-TIRS imagery has been used for estimating lake surface temperatures. MERIS images were processed through a neural network (namely the C2R processor, Doerffer et al., 2007), to correct the atmospheric effects and to retrieve water constituents concentration in optically complex deep waters. With regard to L8's images, some atmospheric correctors (e.g. ACOLITE and 6SV) were tested and validated to indentify, for each of the two lakes, the more accurate

  9. An Algorithm For Climate-Quality Atmospheric Profiling Continuity From EOS Aqua To Suomi-NPP (United States)

    Moncet, J. L.


    We will present results from an algorithm that is being developed to produce climate-quality atmospheric profiling earth system data records (ESDRs) for application to hyperspectral sounding instrument data from Suomi-NPP, EOS Aqua, and other spacecraft. The current focus is on data from the S-NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) instruments as well as the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua. The algorithm development at Atmospheric and Environmental Research (AER) has common heritage with the optimal estimation (OE) algorithm operationally processing S-NPP data in the Interface Data Processing Segment (IDPS), but the ESDR algorithm has a flexible, modular software structure to support experimentation and collaboration and has several features adapted to the climate orientation of ESDRs. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. The radiative transfer component uses an enhanced version of optimal spectral sampling (OSS) with updated spectroscopy, treatment of emission that is not in local thermodynamic equilibrium (non-LTE), efficiency gains with "global" optimal sampling over all channels, and support for channel selection. The algorithm is designed for adaptive treatment of clouds, with capability to apply "cloud clearing" or simultaneous cloud parameter retrieval, depending on conditions. We will present retrieval results demonstrating the impact of a new capability to perform the retrievals on sigma or hybrid vertical grid (as opposed to a fixed pressure grid), which particularly affects profile accuracy over land with variable terrain height and with sharp vertical structure near the surface. In addition, we will show impacts of alternative treatments of regularization of the inversion. While OE algorithms typically implement regularization by using background estimates from

  10. New generation lidar systems for eye safe full time observations (United States)

    Spinhirne, James D.


    The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.

  11. Observation and control system of the thermohydraulic assays laboratory

    International Nuclear Information System (INIS)

    Santome, D.; Hualde, R.


    The Thermohydraulic Assays Laboratory (L.E.T.) is an installation whose purpose will be the components testing and the CAREM-25 reactor thermohydraulic processes operation dynamics. This plant is located at Pilcaniyeu, province of Rio Negro. Part of the tests which will be carried out consist in the use of different control strategies. The control of the systems by digital processors (control by software) has been decided to proceed with a maximum flexibility and capacity to make changes in the algorithms. This work describes the design and implementation of a digital control system to command the three circuits of the installation. (Author) [es

  12. EOS MLS Level 2 Data Processing Software Version 3 (United States)

    Livesey, Nathaniel J.; VanSnyder, Livesey W.; Read, William G.; Schwartz, Michael J.; Lambert, Alyn; Santee, Michelle L.; Nguyen, Honghanh T.; Froidevaux, Lucien; wang, Shuhui; Manney, Gloria L.; hide


    This software accepts the EOS MLS calibrated measurements of microwave radiances products and operational meteorological data, and produces a set of estimates of atmospheric temperature and composition. This version has been designed to be as flexible as possible. The software is controlled by a Level 2 Configuration File that controls all aspects of the software: defining the contents of state and measurement vectors, defining the configurations of the various forward models available, reading appropriate a priori spectroscopic and calibration data, performing retrievals, post-processing results, computing diagnostics, and outputting results in appropriate files. In production mode, the software operates in a parallel form, with one instance of the program acting as a master, coordinating the work of multiple slave instances on a cluster of computers, each computing the results for individual chunks of data. In addition, to do conventional retrieval calculations and producing geophysical products, the Level 2 Configuration File can instruct the software to produce files of simulated radiances based on a state vector formed from a set of geophysical product files taken as input. Combining both the retrieval and simulation tasks in a single piece of software makes it far easier to ensure that identical forward model algorithms and parameters are used in both tasks. This also dramatically reduces the complexity of the code maintenance effort.

  13. La edad de las familias Eos, Themis y Koronis (United States)

    Gil-Hutton, R.

    Las familias de asteroides son el producto de la disrupción colisional de objetos destruídos por impactos ocurridos en el cinturón principal. Las colisiones posteriores han modificado los tamaños y las órbitas de los miembros de estas familias, por lo que las distribuciones que vemos hoy en día pueden ser muy diferentes de aquellas producidas inmediatamente después de la fragmentación del objeto original. En esta hipótesis, puede ser difícil reconstruir la evolución colisional de la familia basándose sólo en las actuales distribuciones y puede ser necesario hacer ciertas suposiciones para obtener información sobre las condiciones iniciales. En este trabajo se deriva una estimación de la edad de las familias Eos, Themis y Koronis obtenida de una simulación de la evolución colisional de un cuerpo original teórico para cada familia usando un modelo de distribución para el cinturón propuesto por Gil-Hutton (1996).

  14. Mechanism of growth retardation of the adenocarcinoma EO 771

    International Nuclear Information System (INIS)

    Bassukas, I.D.; Maurer-Schultze, B.


    Growth retardation of tumors has been predominantly described by an increase of the ''cell loss factor'' Φ. However, this cell loss factor alone merely reflects the growth deceleration without giving information on the mechanism that causes growth retardation. In the present study a quantitative analysis of the mechanism causing growth retardation of the adenocarcinoma EO 771 has been carried out by determining separately the components of the cell loss factor Φ, namely the cell production rate and the cell loss rate of the tumor cell population. For this purpose the alteration of the histology of the tumor (proportion of necrotic tumor tissue, tumor cell density) and the proliferative capacity of the tumor cell population as a function of the tumor size was studied by applying morphometric and cell kinetic methods. The results show that growth deceleration is due to a decrease of the cell production rate k p and a simultaneous increase of the cell rate k l . Both processes contribute to about the same extent to the growth deceleration of the tumor cell population. In early tumor growth deceleration is mainly due to a prolongation of the cycle time of the tumor cells, in later phases of tumor growth to an increasing probability of the tumor cells to decycle leading to a decrease of the growth fraction GF and an increase of the cell loss rate k l . (orig.)

  15. ℋ- adaptive observer design and parameter identification for a class of nonlinear fractional-order systems

    KAUST Repository

    Ndoye, Ibrahima; Voos, Holger; Laleg-Kirati, Taous-Meriem; Darouach, Mohamed


    In this paper, an adaptive observer design with parameter identification for a nonlinear system with external perturbations and unknown parameters is proposed. The states of the nonlinear system are estimated by a nonlinear observer and the unknown

  16. Basic technologies of web services framework for research, discovery, and processing the disparate massive Earth observation data from heterogeneous sources (United States)

    Savorskiy, V.; Lupyan, E.; Balashov, I.; Burtsev, M.; Proshin, A.; Tolpin, V.; Ermakov, D.; Chernushich, A.; Panova, O.; Kuznetsov, O.; Vasilyev, V.


    Both development and application of remote sensing involves a considerable expenditure of material and intellectual resources. Therefore, it is important to use high-tech means of distribution of remote sensing data and processing results in order to facilitate access for as much as possible number of researchers. It should be accompanied with creation of capabilities for potentially more thorough and comprehensive, i.e. ultimately deeper, acquisition and complex analysis of information about the state of Earth's natural resources. As well objective need in a higher degree of Earth observation (EO) data assimilation is set by conditions of satellite observations, in which the observed objects are uncontrolled state. Progress in addressing this problem is determined to a large extent by order of the distributed EO information system (IS) functioning. Namely, it is largely dependent on reducing the cost of communication processes (data transfer) between spatially distributed IS nodes and data users. One of the most effective ways to improve the efficiency of data exchange processes is the creation of integrated EO IS optimized for running procedures of distributed data processing. The effective EO IS implementation should be based on specific software architecture.

  17. Observer-Based Fault Estimation and Accomodation for Dynamic Systems

    CERN Document Server

    Zhang, Ke; Shi, Peng


    Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, whi...

  18. Relaxation dynamics of local observables in integrable systems

    NARCIS (Netherlands)

    De Nardis, J.; Piroli, L.; Caux, J.-S.


    We show, using the quench action approach (Caux and Essler 2013 Phys. Rev. Lett. 110 257203), that the whole post-quench time evolution of an integrable system in the thermodynamic limit can be computed with a minimal set of data which are encoded in what we denote the generalized single-particle

  19. Distributed Fuzzy and Stochastic Observers for Nonlinear Systems

    NARCIS (Netherlands)

    Lendek, Z.


    Many problems in decision making, control, and monitoring require that all variables of interest, usually states and parameters of the system, are known at all times. However, in practical situations, not all variables are measurable or they are not measured due to technical or economical reasons.

  20. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation (United States)

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.


    Small unmanned aircraft systems (sUAS, cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  1. Observation of Subdiffusion in a Disordered Interacting System

    International Nuclear Information System (INIS)

    Lucioni, E.; Deissler, B.; Tanzi, L.; Roati, G.; Zaccanti, M.; Inguscio, M.; Modugno, G.; Modugno, M.; Larcher, M.; Dalfovo, F.


    We study the transport dynamics of matter-waves in the presence of disorder and nonlinearity. An atomic Bose-Einstein condensate that is localized in a quasiperiodic lattice in the absence of atom-atom interaction shows instead a slow expansion with a subdiffusive behavior when a controlled repulsive interaction is added. The measured features of the subdiffusion are compared to numerical simulations and a heuristic model. The observations confirm the nature of subdiffusion as interaction-assisted hopping between localized states and highlight a role of the spatial correlation of the disorder.

  2. Taming Big Data Variety in the Earth Observing System Data and Information System (United States)

    Lynnes, Christopher; Walter, Jeff


    Although the volume of the remote sensing data managed by the Earth Observing System Data and Information System is formidable, an oft-overlooked challenge is the variety of data. The diversity in satellite instruments, science disciplines and user communities drives cost as much or more as the data volume. Several strategies are used to tame this variety: data allocation to distinct centers of expertise; a common metadata repository for discovery, data format standards and conventions; and services that further abstract the variations in data.

  3. Open Source Dataturbine (OSDT) Android Sensorpod in Environmental Observing Systems (United States)

    Fountain, T. R.; Shin, P.; Tilak, S.; Trinh, T.; Smith, J.; Kram, S.


    The OSDT Android SensorPod is a custom-designed mobile computing platform for assembling wireless sensor networks for environmental monitoring applications. Funded by an award from the Gordon and Betty Moore Foundation, the OSDT SensorPod represents a significant technological advance in the application of mobile and cloud computing technologies to near-real-time applications in environmental science, natural resources management, and disaster response and recovery. It provides a modular architecture based on open standards and open-source software that allows system developers to align their projects with industry best practices and technology trends, while avoiding commercial vendor lock-in to expensive proprietary software and hardware systems. The integration of mobile and cloud-computing infrastructure represents a disruptive technology in the field of environmental science, since basic assumptions about technology requirements are now open to revision, e.g., the roles of special purpose data loggers and dedicated site infrastructure. The OSDT Android SensorPod was designed with these considerations in mind, and the resulting system exhibits the following characteristics - it is flexible, efficient and robust. The system was developed and tested in the three science applications: 1) a fresh water limnology deployment in Wisconsin, 2) a near coastal marine science deployment at the UCSD Scripps Pier, and 3) a terrestrial ecological deployment in the mountains of Taiwan. As part of a public education and outreach effort, a Facebook page with daily ocean pH measurements from the UCSD Scripps pier was developed. Wireless sensor networks and the virtualization of data and network services is the future of environmental science infrastructure. The OSDT Android SensorPod was designed and developed to harness these new technology developments for environmental monitoring applications.

  4. Ezilla Cloud Service with Cassandra Database for Sensor Observation System


    Kuo-Yang Cheng; Yi-Lun Pan; Chang-Hsing Wu; His-En Yu; Hui-Shan Chen; Weicheng Huang


    The main mission of Ezilla is to provide a friendly interface to access the virtual machine and quickly deploy the high performance computing environment. Ezilla has been developed by Pervasive Computing Team at National Center for High-performance Computing (NCHC). Ezilla integrates the Cloud middleware, virtualization technology, and Web-based Operating System (WebOS) to form a virtual computer in distributed computing environment. In order to upgrade the dataset and sp...

  5. Automated anaesthesia record systems, observations on future trends of development. (United States)

    Heinrichs, W


    The introduction of electronic anaesthesia documentation systems was attempted as early as in 1979, although their efficient application has become reality only in the past few years. Today, documentation technology is offered by most of the monitor manufacturers and new systems are being developed by various working groups. The advantages of the electronic protocol are apparent: Continuous high quality documentation, comparability of data due to the availability of a anaesthesia data bank, reduction of the workload of the anaesthesia staff and availability of new additional information. Disadvantages of the electronic protocol have also been discussed. Typically, by going through the process of entering data on the course of the anaesthetic procedure on the protocol sheet, the information is mentally absorbed and evaluated by the anaesthetist. This mental processing of information may, however, be missing when the data are recorded fully automatically--without active involvement on the part of the anaesthetist. It seems that electronic anaesthesia protocols will be required in the near future. The advantages of accurate documentation and quality control in the presence of careful planning will outweight cost considerations. However, at this time, almost none of the commercially available systems have matured to a point where their purchase can be recommended without reservation. There is still a lack of standards for the subsequent exchange of data and a solution to a number of ergonomic problems still remains to be found.

  6. Establishment and Discontinuance Criteria for Automated Weather Observing Systems (AWOS). (United States)


    supplement the probable cause(s).* Referring back to Figure 20, it is observed that all weat-her cause citations combined from 1975 through 1979 accounted...direction 70 p-rcynt of all arrivals. For the other 30 percent of all arrivals, it i7 r;s-;Lind that the Unicorn is not operating and that no other... vc P. 1W4 ui W Z L C 0e 14 ..t w 0 .- Z) LWWE W>-C" z .. JIL OC I.- -- =Z)- z " -- A tl 0 L- W < uo- z = - e a * w Z0)WI.>Z . - N m =) m " =r P- a3

  7. Towards a regional coastal ocean observing system: An initial design for the Southeast Coastal Ocean Observing Regional Association (United States)

    Seim, H. E.; Fletcher, M.; Mooers, C. N. K.; Nelson, J. R.; Weisberg, R. H.


    A conceptual design for a southeast United States regional coastal ocean observing system (RCOOS) is built upon a partnership between institutions of the region and among elements of the academic, government and private sectors. This design envisions support of a broad range of applications (e.g., marine operations, natural hazards, and ecosystem-based management) through the routine operation of predictive models that utilize the system observations to ensure their validity. A distributed information management system enables information flow, and a centralized information hub serves to aggregate information regionally and distribute it as needed. A variety of observing assets are needed to satisfy model requirements. An initial distribution of assets is proposed that recognizes the physical structure and forcing in the southeast U.S. coastal ocean. In-situ data collection includes moorings, profilers and gliders to provide 3D, time-dependent sampling, HF radar and surface drifters for synoptic sampling of surface currents, and satellite remote sensing of surface ocean properties. Nested model systems are required to properly represent ocean conditions from the outer edge of the EEZ to the watersheds. An effective RCOOS will depend upon a vital "National Backbone" (federally supported) system of in situ and satellite observations, model products, and data management. This dependence highlights the needs for a clear definition of the National Backbone components and a Concept of Operations (CONOPS) that defines the roles, functions and interactions of regional and federal components of the integrated system. A preliminary CONOPS is offered for the Southeast (SE) RCOOS. Thorough system testing is advocated using a combination of application-specific and process-oriented experiments. Estimates of costs and personnel required as initial components of the SE RCOOS are included. Initial thoughts on the Research and Development program required to support the RCOOS are

  8. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  9. Observations on algal populations in an experimental maturation pond system

    CSIR Research Space (South Africa)

    Shillinglaw, SN


    Full Text Available ?) of influent (HTE) and secondary pond. The arrows indicate the beginning of the noled algal concentration declines. 190 Water SA Vol. 3 No. 4 October 1977 intermittent presence of some factor which suppresses algal growth and/or removes algal cells from... the system at a very rapid rate. Another possibility is that an algal growth suppres sor is almost continuously present and only when the suppres sing factor is intermittently ahsent, do the algal concentrations exhihit a peak. Based on the results...

  10. Towards European organisation for integrated greenhouse gas observation system (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel


    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  11. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    International Nuclear Information System (INIS)

    Ciais, P.; Peregon, A.; Chevallier, F.; Bopp, L.; Breon, F.M.; Broquet, G.; Luyssaert, S.; Moulin, C.; Paris, J.D.; Poulter, B.; Rivier, L.; Wang, R.


    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policy makers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO 2 and CH 4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher

  12. An Observed Voting System Based On Biometric Technique

    Directory of Open Access Journals (Sweden)

    B. Devikiruba


    Full Text Available ABSTRACT This article describes a computational framework which can run almost on every computer connected to an IP based network to study biometric techniques. This paper discusses with a system protecting confidential information puts strong security demands on the identification. Biometry provides us with a user-friendly method for this identification and is becoming a competitor for current identification mechanisms. The experimentation section focuses on biometric verification specifically based on fingerprints. This article should be read as a warning to those thinking of using methods of identification without first examine the technical opportunities for compromising mechanisms and the associated legal consequences. The development is based on the java language that easily improves software packages that is useful to test new control techniques.

  13. Observing the stars. Love in the age of systems

    Directory of Open Access Journals (Sweden)

    Kjetil Ansgar Jakobsen


    Full Text Available A number of scholars have demonstrated how the cultural industry involves people in a participatory culture in which users actively construct personal identities. However, the link between a public of mass-mediated entertainment and the private sphere of intimacy and personal identity is a paradox. A consistent theory to clarify that paradox is lacking in the cultural studies literature. I suggest that social systems theory in the Luhmannian tradition may explain in economical terms why the continuous performance and intensification of the paradox of mass-mediated intimacy is a major trait of contemporary culture. Nevertheless, the article does not address normative issues. It is neither an apology for the culture industry, nor a condemnation. The aim is simply to bring one of the most powerful tools of analysis in social theory today to bear on an aspect of modern society which is as important as it is baffling.

  14. Mutual event observations of solar system objects by SRC on Mars Express. Analysis and release of observations (United States)

    Ziese, R.; Willner, K.


    Context. Both Martian moons, Phobos and Deimos, have been observed during several imaging campaigns by the Super Resolution Channel (SRC) on the Mars Express probe. Several tens of images are obtained during mutual event observations - when the Martian moons are both observed or together with another solar system body. These observations provide new opportunities to determine the bodies' positions in their orbits. Aims: A method was sought to automate the observation of the positions of the imaged bodies. Within one image sequence a similarly accurate localization of the objects in all images should be possible. Methods: Shape models of Phobos and Deimos are applied to simulate the appearance of the bodies in the images. Matching the illuminated simulation against the observation provides a reliable determination of the bodies' location within the image. To enhance the matching confidence several corrections need to be applied to the simulation to closely reconstruct the observation. Results: A list of 884 relative positions between the different objects is provided through the Centre de Données astronomiques de Strasbourg (CDS). Tables A.1-A.4 are only available at the CDS via anonymous ftp to ( or via

  15. Systemic lupus erythematosus observations of travel burden: A qualitative inquiry. (United States)

    Williams, Edith M; Ortiz, Kasim; Flournoy-Floyd, Minnjuan; Bruner, Larisa; Kamen, Diane


    Explorations of travel impediments among patients suffering from rheumatic diseases have been very limited. Research has consistently indicated a shortage of rheumatologists, resulting in patients potentially having to travel long distances for care. The purpose of our study was to explore how systemic lupus erythematosus (SLE) patients experience travel issues differentially by race and socio-economic status. We conducted semi-structured interviews and a brief demographic survey with 10 patients diagnosed with SLE. Interview transcripts were coded and analyzed using NVivo Analysis Software to facilitate the reporting of recurrent themes and supporting quotations, and an initial codebook was independently developed by two researchers on the study team and then verified together. Patients described three major areas of concern with respect to travel burden in accessing their rheumatologists: reliance on caregivers; meeting financial priorities; and pain and physical limitations. Our data suggest general traveling challenges interfering with medical appointment compliance for several participants and the importance of socio-economic issues when considering travel issues. This study highlights an important area with implications for adherence to medical appointments and participation in research among patients with SLE. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  16. Rebuilding Afghanistan’s Higher Educational System: Observations from Kabul

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper describes the crucial issues and challenges facing Afghanistan’s universities as they begin the demanding task of rebuilding and restructuring their university system after two decades of war and civil unrest. The setting for this qualitative study is a four-day professional development conference for Afghan university presidents and academic deans sponsored and funded by the United Nations Educational, Scientific and Cultural Organization and the Afghanistan Ministry of Higher Education. Cooperative Studies (an NGO, not-for-profit educational organization located in Kansas City provided a team of academics to Kabul, Afghanistan, to offer professional development workshops. Using the Grounded Theory Methodology as a theoretical framework for this research, data was derived from interactive sessions, questionnaires, informal dialogue, small group sessions and question and answer sessions; the perspectives of the 39 Afghan academic leaders are presented as they describe the problems facing university administrators in their country today. Findings identify these challenges and center on 1 the lack of autonomy; 2 the need for qualified faculty; 3 concerns regarding students’ access and preparation; and 4 concerns about funding and budget issues. Based on these findings, policy suggestions and recommendations are provided.

  17. Observation of CP violation in the B(0) meson system. (United States)

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Zisman, M S; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Hauke, A; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Laplace, S; Lepeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de La Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel De Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yèche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Berger, J P; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Dorser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Hryn'ova, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langennegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Seeman, J T; Serbo, V V; Snyder, S R; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wienands, U; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weidemann, A W; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; DiGirolamo, B; Gamba, D; Smol, A; Zanin, D; Bosisio, L; Della Ricci, G; Lanceri, L; Pompili, A; Poropat, P; Vuagnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Zobernig, H; Kordich, T M; Neal, H


    We present an updated measurement of time-dependent CP-violating asymmetries in neutral B decays with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. This result uses an additional sample of Upsilon(4S) decays collected in 2001, bringing the data available to 32 x 10(6) BB macro pairs. We select events in which one neutral B meson is fully reconstructed in a final state containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to sin2 beta, is derived from the decay time distributions in such events. The result sin2 beta = 0.59+/-0.14(stat)+/-0.05(syst) establishes CP violation in the B(0) meson system. We also determine absolute value of lambda = 0.93+/-0.09(stat)+/-0.03(syst), consistent with no direct CP violation.

  18. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment (United States)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.


    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  19. Asteroids in the Inner Solar System - Observable Properties (United States)

    Tabachnik, S. A.; Evans, N. W.


    This paper presents synthetic observations of long-lived, co-orbiting asteroids of Mercury, Venus, the Earth and Mars. Our sample is constructed by taking the limiting semimajor axes, differential longitudes and inclinations for long-lived stability provided by simulations. The intervals are randomly populated with values to create initial conditions. These orbits are re-simulated to check that they are stable and then re-sampled every 2.5 years for 1 million years. The Mercurian sample contains only horseshoe orbits, the Martian sample only tadpoles. For both Venus and the Earth, the greatest concentration of objects on the sky occurs close to the classical Lagrange points at heliocentric ecliptic longitudes of 60o and 300o. The distributions are broad especially if horseshoes are present in the sample. The full-width half maximum (FWHM) in heliocentric longitude for Venus is 325o and for the Earth is 328o. The mean and most common velocity of these co-orbiting satellites coincides with the mean motion of the parent planet, but again the spread is wide with a FWHM for Venus of 27.8" hr-1 and for the Earth of 21.0" hr-1. For Mars, the greatest concentration on the sky occurs at heliocentric ecliptic latitudes of +/- 12o. The peak of the velocity distribution occurs at 65" hr-1, significantly less than the Martian mean motion, while its FWHM is 32.3" hr-1. The case of Mercury is the hardest of all, as the greatest concentrations occur at heliocentric longitudes of 16.0o and 348.5o and so are different from the classical values. The fluctuating eccentricity of Mercury means that these objects can have velocities exceeding 1000" hr-1, although the most common velocity is 459" hr-1, which is much less than the Mercurian mean motion. A variety of search strategies are discussed, including wide-field CCD imaging, space satellites such as The Global Astrometry Interferometer for Astrophysics (GAIA), ground-based surveys like The Sloan Digital Sky Survey (SDSS), as well as

  20. Asteroids in the inner Solar system - II. Observable properties (United States)

    Evans, N. W.; Tabachnik, S. A.


    This paper presents synthetic observations of long-lived coorbiting asteroids of Mercury, Venus, the Earth and Mars. Our sample is constructed by taking the limiting semimajor axes, differential longitudes and inclinations for long-lived stability provided by simulations. The intervals are randomly populated with values to create initial conditions. These orbits are re-simulated to check that they are stable and then re-sampled every 2.5yr for 1Myr. The Mercurian sample only contains horseshoe orbits, whereas the Martian sample only contains tadpoles. For both Venus and the Earth, the greatest concentration of objects on the sky occurs close to the classical Lagrange points at heliocentric ecliptic longitudes of 60° and 300°. The distributions are broad especially if horseshoes are present in the sample. The FWHM in heliocentric longitude for Venus is 325° and for the Earth is 328°. The mean and most common velocity of these coorbiting satellites coincides with the mean motion of the parent planet, but again the spread is wide with an FWHM of 27.8 and 21.0arcsech-1 for Venus and the Earth, respectively. For Mars, the greatest concentration on the sky occurs at heliocentric ecliptic latitudes of +/-12°. The peak of the velocity distribution occurs at 65arcsech-1, significantly less than the Martian mean motion, while its FWHM is 32.3arcsech-1. The case of Mercury is the hardest of all, as the greatest concentrations occur at heliocentric longitudes of 16.0° and 348.5° and so are different from the classical values. The fluctuating eccentricity of Mercury means that these objects can have velocities exceeding 1000arcsech-1 although the most common velocity is 459arcsech-1, which is much less than the Mercurian mean motion. A variety of search strategies are discussed, including wide-field CCD imaging, space satellites such as the Global Astrometry Interferometer for Astrophysics (GAIA), ground-based surveys like the Sloan Digital Sky Survey (SDSS), as well as

  1. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.


    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  2. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model. (United States)

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof


    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  3. Open and scalable analytics of large Earth observation datasets: From scenes to multidimensional arrays using SciDB and GDAL (United States)

    Appel, Marius; Lahn, Florian; Buytaert, Wouter; Pebesma, Edzer


    Earth observation (EO) datasets are commonly provided as collection of scenes, where individual scenes represent a temporal snapshot and cover a particular region on the Earth's surface. Using these data in complex spatiotemporal modeling becomes difficult as soon as data volumes exceed a certain capacity or analyses include many scenes, which may spatially overlap and may have been recorded at different dates. In order to facilitate analytics on large EO datasets, we combine and extend the geospatial data abstraction library (GDAL) and the array-based data management and analytics system SciDB. We present an approach to automatically convert collections of scenes to multidimensional arrays and use SciDB to scale computationally intensive analytics. We evaluate the approach in three study cases on national scale land use change monitoring with Landsat imagery, global empirical orthogonal function analysis of daily precipitation, and combining historical climate model projections with satellite-based observations. Results indicate that the approach can be used to represent various EO datasets and that analyses in SciDB scale well with available computational resources. To simplify analyses of higher-dimensional datasets as from climate model output, however, a generalization of the GDAL data model might be needed. All parts of this work have been implemented as open-source software and we discuss how this may facilitate open and reproducible EO analyses.

  4. EOS Aura Mission Status at Earth Science Constellation MOWG Meeting @ LASP (Boulder, CO) April 13, 2016 (United States)

    Guit, William J.; Fisher, Dominic


    Presentation reflects EOS Aura mission status, spacecraft subsystems summary, recent and planned activities, inclination adjust maneuvers, propellant usage, orbit maintenance maneuvers, conjunction assessment events, orbital parameters trends and predictions.

  5. EOS Aqua Mission Status at Earth Science Constellation MOWG Meeting @ LASP April 13, 2016 (United States)

    Guit, William J.


    This presentation reflects the EOS Aqua mission status, spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, orbital maintenance maneuvers, conjunction assessment high interest events, ground track error, spacecraft orbital parameters trends and predictions.

  6. Multiscale Observation System for Sea Ice Drift and Deformation (United States)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.


    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when

  7. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools (United States)

    Birk, R. J.; Frederick, M.


    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  8. Integrating EO data for applying the Nexus of water, energy and agriculture to monitor SDG Indicators within transboundary river basins (United States)

    Zalidis, G.; Kavvada, A.; Crisman, T.


    The NEXUS of water, energy and agriculture is widely recognized as an integrated approach for innovative management solutions and actions to protect natural resources. Soil Spectral Libraries (SSL) implement the NEXUS approach by combining Earth Observation (EO) and Geospatial Information (GI) data and tools to extract information on soil attributes rapidly, reliably and cost effectively. NEXUS approach for soil resources at large scales- across landscapes or regions- remains a challenge however, especially for stakeholders, and in regards to promoting the concept, disseminating the methodology, and discussing potential benefits at both local and transboundary river basin levels. The CEOS Data Cube is an excellent tool for collecting, processing and disseminating EO data, and providing `Analysis Ready Data' utilized both as a management tool for policy makers, and a tool boosting economic activity and supporting end-users. Thus, it helps supporting the tracking of, and reporting on, the Sustainable Development Goals (SDGs), and promoting targeted approaches to address specific SDG Indicators. Although several European projects in the Balkan transboundary river basin areas focus on existing/potential ties to specific SDG Indicators under the leadership of i-BEC, data are lacking for some regions, and there is an exigent need for country/region - specific case studies. A case study in Albania, the 3rd for CEOS and the 1st for Europe, will seek to build synergies between different sectors and activities (water, energy, food) and natural resources, while also accounting for ecosystem climate- regulating functions. This will contribute to the global expansion of the Data Cube initiative, while adding high quality datasets in GEOSS. Engagement of EO ecosystem stakeholders, together with National Statistical Offices, regionally and globally, should exploit the networking capacities of multipliers, maximizing the impact and reach of SSL. The H2020 project GEOCRADLE has

  9. A data delivery system for IMOS, the Australian Integrated Marine Observing System (United States)

    Proctor, R.; Roberts, K.; Ward, B. J.


    The Integrated Marine Observing System (IMOS,, an AUD 150 m 7-year project (2007-2013), is a distributed set of equipment and data-information services which, among many applications, collectively contribute to meeting the needs of marine climate research in Australia. The observing system provides data in the open oceans around Australia out to a few thousand kilometres as well as the coastal oceans through 11 facilities which effectively observe and measure the 4-dimensional ocean variability, and the physical and biological response of coastal and shelf seas around Australia. Through a national science rationale IMOS is organized as five regional nodes (Western Australia - WAIMOS, South Australian - SAIMOS, Tasmania - TASIMOS, New SouthWales - NSWIMOS and Queensland - QIMOS) surrounded by an oceanic node (Blue Water and Climate). Operationally IMOS is organized as 11 facilities (Argo Australia, Ships of Opportunity, Southern Ocean Automated Time Series Observations, Australian National Facility for Ocean Gliders, Autonomous Underwater Vehicle Facility, Australian National Mooring Network, Australian Coastal Ocean Radar Network, Australian Acoustic Tagging and Monitoring System, Facility for Automated Intelligent Monitoring of Marine Systems, eMarine Information Infrastructure and Satellite Remote Sensing) delivering data. IMOS data is freely available to the public. The data, a combination of near real-time and delayed mode, are made available to researchers through the electronic Marine Information Infrastructure (eMII). eMII utilises the Australian Academic Research Network (AARNET) to support a distributed database on OPeNDAP/THREDDS servers hosted by regional computing centres. IMOS instruments are described through the OGC Specification SensorML and where-ever possible data is in CF compliant netCDF format. Metadata, conforming to standard ISO 19115, is automatically harvested from the netCDF files and the metadata records catalogued in the

  10. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System ) (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.


    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides,