WorldWideScience

Sample records for oblique plane-wave incidence

  1. Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab

    International Nuclear Information System (INIS)

    Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.

    2010-01-01

    The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth δ a when δ a a >>L, the heating is shown to decay with 1/δ a 3 . The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.

  2. Ionospheric Oblique Incidence Soundings by Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The oblique incidence sweep-frequency ionospheric sounding technique uses the same principle of operation as the vertical incidence sounder. The primary difference...

  3. Energy Relations for Plane Waves Reflected from Moving Media

    DEFF Research Database (Denmark)

    Daly, P.; Gruenberg, Harry

    1967-01-01

    When a plane wave is obliquely incident from vacuum on a semi-infinite moving medium, the energy flow carried by the incident wave, is in general, not carried away by the reflected and transmitted waves. This is only the case when the medium velocity is parallel to its vacuum interface. Otherwise...... there is a net inflow or outflow of electromagnetic energy, which can be accounted for by the change of stored energy in the system, and the work done by the mechanical forces acting on the medium. A detailed energy balance is drawn up for two different media moving normal to their vacuum interfaces: (a...

  4. Thermal self-focusing at oblique incidence

    International Nuclear Information System (INIS)

    Craxton, R.S.; McCrory, R.L.

    1984-03-01

    Thermal self-focusing at oblique incidence has been investigated in two-dimensional line-focus geometry using the Eulerian hydrodynamics simulation code SAGE. The laser beam interacts with a long-scale-length preformed plasma with an expontial density profiele. Questions to be addressed include: (1) What happens when a self-focusing channel reaches the turning point of the incident rays, and (2) Does the unabsorbed light return in the specular direction or back along the channel. A comparison is also made between thermal self-focusing at normal incidence in cylindrical and line-focus geometries: in cylindrical geometry the self-focusing mechanism is enhanced by the relative ease with which plasma may be expelled from a small cylindrical channel

  5. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  6. Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet's principle

    Science.gov (United States)

    Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao

    2013-11-01

    We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences.

  7. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    Science.gov (United States)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  8. A differentiated plane wave: its passage through a slab

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2013-01-01

    Differentiating a monochromatic uniform plane electromagnetic wavefield with respect to its direction produces, from a field that is completely lacking in localized specific features, one that contains a straight vortex-like line, a ‘C-line’ of defined circular polarization. There is also a second separate C-line of opposite handedness; indeed, in a sense, a straight line of every polarization is realized. Because of its primitive construction it is analytically simple to study the passage of a differentiated wave obliquely through a plane interface into a medium of different refractive index, to trace its C-line. This was done in an earlier paper. Here we extend the method to passage through a parallel-sided transparent slab. There are multiple reflections within the slab, as in a Fabry–Pérot interferometer. The exiting wave, as a single differentiated plane wave, has a straight oblique C-line. Inside the slab, and in front of it, there is wave interference. The result is a coiled, helix-like, C-line in front of the slab and another inside it. The two coils wrap around separate hyperboloids of one sheet, like cooling towers. The emerging straight C-line is shifted (with respect to a C-line in a notional undisturbed incident plane wave) both in the plane of incidence and transversely to it, and the second C-line behaves similarly. The analysis is exact and could be extended in a straightforward way to a general stratified medium. (paper)

  9. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  10. Morphological development of coasts at very oblique wave incidence

    DEFF Research Database (Denmark)

    Petersen, Dorthe Pia; Deigaard, Rolf; Fredsøe, Jørgen

    2003-01-01

    This study focuses on one distinct feature to be found on coasts exposed to a very oblique wave incidence, namely an accumulating spit. That is a spit where no retreat of the shoreline is going on along the spit. This requires a monotonically decreasing sediment transport capacity from the updrift...... that such a spit grows without changing its shape i.e. an equilibrium form emerge if the coast is exposed to a constant wave climate. During experiments conducted in a wave tank where a uniform stretch of coast was exposed to waves approaching at a very oblique angle an accumulating spit was formed at the down......-drift end of the coast. The spits approached equilibrium forms when constant wave climates were applied. The sediment transport around the spit has been investigated by two-dimensional models. The characteristic length scale for the equilibrium form depends linearly on the width of the surf zone...

  11. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  12. Plane waves and spacelike infinity

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simon F

    2003-01-01

    In an earlier paper, we showed that the causal boundary of any homogeneous plane wave satisfying the null convergence condition consists of a single null curve. In Einstein-Hilbert gravity, this would include any homogeneous plane wave satisfying the weak null energy condition. For conformally flat plane waves such as the Penrose limit of AdS 5 x S 5 , all spacelike curves that reach infinity also end on this boundary and the completion is Hausdorff. However, the more generic case (including, e.g., the Penrose limits of AdS 4 x S 7 and AdS 7 x S 4 ) is more complicated. In one natural topology, not all spacelike curves have limit points in the causal completion, indicating the need to introduce additional points at 'spacelike infinity' - the endpoints of spacelike curves. We classify the distinct ways in which spacelike curves can approach infinity, finding a two-dimensional set of distinct limits. The dimensionality of the set of points at spacelike infinity is not, however, fixed from this argument. In an alternative topology, the causal completion is already compact, but the completion is non-Hausdorff

  13. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    Science.gov (United States)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  14. Asymmetric diffusion model for oblique-incidence reflectometry

    Institute of Scientific and Technical Information of China (English)

    Yaqin Chen; Liji Cao; Liqun Sun

    2011-01-01

    A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectom-etry. By fitting to this asymmetric diffusion model, the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp') away from the incident point; particularly, μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy. The method is verified by Monte Carlo simulations and experimentally tested on a phantom.%A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectometry.By fitting to this asymmetric diffusion model,the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp')away from the incident point;particularly,μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy.The method is verified by Monte Carlo simulations and experimentally tested on a phantom.Knowledge about the optical properties,including the absorption coefficient (μa) and the reduced scattering coefficient (μ's =μs(1-g)),where μs is the scattering coefficient and g is the anisotropy factor of scattering,of biological tissues plays an important role for optical therapeutic and diagnostic techniques in medicine.

  15. An isodose shift technique for obliquely incident electron beams

    International Nuclear Information System (INIS)

    Ulin, K.; Sternick, E.S.

    1989-01-01

    It is well known that when an electron beam is incident obliquely on the surface of a phantom, the depth dose curve measured normal to the surface is shifted toward the surface. Based on geometrical arguments alone, the depth of the nth isodose line for an electron beam incident at an angle θ should be equal to the product of cos θ and the depth of the nth isodose line at normal incidence. This method, however, ignores the effects of scatter and can lead to significant errors in isodose placement for beams at large angles of incidence. A semi-empirical functional relationship and a table of isodose shift factors have been developed with which one may easily calculate the depth of any isodose line for beams at incident angles of 0 degree to 60 degree. The isodose shift factors are tabulated in terms of beam energy (6--22 MeV) and isodose line (10%--90%) and are shown to be relatively independent of beam size and incident angle for angles <60 degree. Extensive measurements have been made on a Varian Clinac 2500 linear accelerator with a parallel-plate chamber and polystyrene phantom. The dependence of the chamber response on beam angulation has been checked, and the scaling factor of the polystyrene phantom has been determined to be equal to 1.00

  16. Oblique-incidence reflectivity difference application for morphology detection.

    Science.gov (United States)

    Zhan, Honglei; Zhao, Kun; Lü, Huibin; Jin, Kuijuan; Yang, Guozhen; Chen, Xiaohong

    2017-10-20

    Analogous with scanning electron microscopy, we use an oblique-incidence reflectivity difference (OIRD) approach for morphology detection. By scanning the active carbon clusters in a one-dimensional way and the reservoir rocks in a two-dimensional way, the morphology of the samples' surface can be revealed in OIRD signal images. High OIRD signals of active carbon samples refer to the centralized distribution areas of carbon, and the fluctuations are caused by the uneven distribution of carbon pellets. OIRD intensity is proportional to the thickness of materials. In terms of rocks, the trough areas with smaller values refer to the low-lying fields. The areas with relatively large OIRD intensities correspond to the protuberance areas of rocks. Consequently, OIRD is a sensitive yet rapid measure of surface detection in material and petrogeology science.

  17. Obliquely Incident Solitary Wave onto a Vertical Wall

    Science.gov (United States)

    Yeh, Harry

    2012-10-01

    When a solitary wave impinges obliquely onto a reflective vertical wall, it can take the formation of a Mach reflection (a geometrically similar reflection from acoustics). The mathematical theory predicts that the wave at the reflection can amplify not twice, but as high as four times the incident wave amplitude. Nevertheless, this theoretical four-fold amplification has not been verified by numerical or laboratory experiments. We discuss the discrepancies between the theory and the experiments; then, improve the theory with higher-order corrections. The modified theory results in substantial improvement and is now in good agreement with the numerical as well as our laboratory results. Our laboratory experiments indicate that the wave amplitude along the reflective wall can reach 0.91 times the quiescent water depth, which is higher than the maximum of a freely propagating solitary wave. Hence, this maximum runup 0.91 h would be possible even if the amplitude of the incident solitary wave were as small as 0.24 h. This wave behavior could provide an explanation for local variability of tsunami runup as well as for sneaker waves.

  18. Behavior of obliquely incident vector Bessel beams at planar interfaces

    KAUST Repository

    Salem, Mohamed

    2013-01-01

    We investigate the behavior of full-vector electromagnetic Bessel beams obliquely incident at an interface between two electrically different media. We employ a Fourier transform domain representation of Bessel beams to determine their behavior upon reflection and transmission. This transform, which is geometric in nature, consists of elliptical support curves with complex weighting associated with them. The behavior of the scattered field at an interface is highly complex, owing to its full-vector nature; nevertheless, this behavior has a straightforward representation in the transform domain geometry. The analysis shows that the reflected field forms a different vector Bessel beam, but in general, the transmitted field cannot be represented as a Bessel beam. Nevertheless, using this approach, we demonstrate a method to propagate a Bessel beam in the refractive medium by launching a non- Bessel beam at the interface. Several interesting phenomena related to the behavior of Bessel beams are illustrated, such as polarized reflection at Brewster\\'s angle incidence, and the Goos-Hänchen and Imbert-Federov shifts in the case of total reflection. © 2013 Optical Society of America.

  19. Behavior of obliquely incident vector Bessel beams at planar interfaces

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2013-01-01

    We investigate the behavior of full-vector electromagnetic Bessel beams obliquely incident at an interface between two electrically different media. We employ a Fourier transform domain representation of Bessel beams to determine their behavior upon reflection and transmission. This transform, which is geometric in nature, consists of elliptical support curves with complex weighting associated with them. The behavior of the scattered field at an interface is highly complex, owing to its full-vector nature; nevertheless, this behavior has a straightforward representation in the transform domain geometry. The analysis shows that the reflected field forms a different vector Bessel beam, but in general, the transmitted field cannot be represented as a Bessel beam. Nevertheless, using this approach, we demonstrate a method to propagate a Bessel beam in the refractive medium by launching a non- Bessel beam at the interface. Several interesting phenomena related to the behavior of Bessel beams are illustrated, such as polarized reflection at Brewster's angle incidence, and the Goos-Hänchen and Imbert-Federov shifts in the case of total reflection. © 2013 Optical Society of America.

  20. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  1. Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures.

    Science.gov (United States)

    Baida, F I; Belkhir, A

    2009-08-15

    The study of periodic structures illuminated by a normally incident plane wave is a simple task that can be numerically simulated by the finite-difference time-domain (FDTD) method. On the contrary, for off-normal incidence, a widely modified algorithm must be developed in order to bypass the frequency dependence appearing in the periodic boundary conditions. After recently implementing this FDTD algorithm for pure dielectric materials, we here extend it to the study of metallic structures where dispersion can be described by analytical models. The accuracy of our code is demonstrated through comparisons with already-published results in the case of 1D and 3D structures.

  2. Causal inheritance in plane wave quotients

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality

  3. Causal inheritance in plane wave quotients

    Science.gov (United States)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2004-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.

  4. Photoinjector beam quality improvement by shaping the wavefront of a drive laser with oblique incidence

    International Nuclear Information System (INIS)

    He Zhigang; Wang Xiaohui; Jia Qika

    2012-01-01

    To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam, a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun. The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively. A simple way to solve the problems through wavefront shaping was introduced and the beam quality was improved. (authors)

  5. A new GTD slope diffraction coefficient for plane wave illumination of a wedge

    DEFF Research Database (Denmark)

    Lumholt, Michael; Breinbjerg, Olav

    1997-01-01

    Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling...... effect between a transverse magnetic (or transverse electric) incident plane wave and the transverse electric (or transverse magnetic) slope-diffracted field. The coupling effect is not described by the existing GTD slope diffraction coefficient...

  6. Advection endash diffusion past a strip. II. Oblique incidence

    International Nuclear Information System (INIS)

    Knessl, C.; Keller, J.B.

    1997-01-01

    Advection and diffusion of particles past an impenetrable strip is considered when the strip is oblique to the advection or drift velocity. The particle concentration p(x,y) is determined asymptotically for large values of vL/D, where v is the drift velocity, D is the diffusion coefficient, and 2L is the width of the strip. The results complement those of Part I, which treated a strip normal to the drift velocity. copyright 1997 American Institute of Physics

  7. Plane wave limits and T-duality

    International Nuclear Information System (INIS)

    Guven, R.

    2000-04-01

    The Penrose limit is generalized to show that, any leading order solution of the low-energy field equations in any one of the five string theories has a plane wave solution as a limit. This limiting procedure takes into account all the massless fields that may arise and commutes with the T-duality so that any dual solution has again a plane wave limit. The scaling rules used in the limit are unique and stem from the scaling property of the D = 11 supergravity action. Although the leading order dual solutions need not be exact or supersymmetric, their plane wave limits always preserve some portion of the Poincare supersymmetry and solve the relevant field equations in all powers of the string tension parameter. Further properties of the limiting procedure are discussed. (author)

  8. Study of the state of the plasma produced by oblique-incident laser

    International Nuclear Information System (INIS)

    Sheng Jiatian; Zhang Guoping; Liu Wei; Ye Chunfu; Hu Shengyong

    1997-01-01

    The plasma state and the gain region produced by the oblique-incidence laser on Ge target are studied and are compared with that produced by the vertical one. As a result of study, the absorption efficiency of the pumping energy turns far smaller, the plasma state changes remarkable and the gain region becomes much narrower when incident angle is greater than 30 degree

  9. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  10. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  11. Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half-space

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    Full Text Available The problem of reflection and refraction phenomenon due to plane waves incident obliquely at a plane interface between uniform elastic solid half-space and microstretch thermoelastic diffusion solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the microstretch thermoelastic diffusion properties of the media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios have been computed numerically for a particular model. The variations of energy ratios with angle of incidence are shown for thermoelastic diffusion media in the context of Lord-Shulman (L-S (1967 and Green-Lindsay (G-L (1972 theories. The conservation of energy at the interface is verified. Some particular cases are also deduced from the present investigation.

  12. Implementation of the critical points model in a SFM-FDTD code working in oblique incidence

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, M; Belkhir, A; Lamrous, O [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Baida, F I, E-mail: omarlamrous@mail.ummto.dz [Departement d' Optique P.M. Duffieux, Institut FEMTO-ST UMR 6174 CNRS Universite de Franche-Comte, 25030 Besancon Cedex (France)

    2011-06-22

    We describe the implementation of the critical points model in a finite-difference-time-domain code working in oblique incidence and dealing with dispersive media through the split field method. Some tests are presented to validate our code in addition to an application devoted to plasmon resonance of a gold nanoparticles grating.

  13. Reflection of Lamb waves obliquely incident on the free edge of a plate.

    Science.gov (United States)

    Santhanam, Sridhar; Demirli, Ramazan

    2013-01-01

    The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Use of profile and oblique incidence in scintigraphy in the osteo-articular pathology

    International Nuclear Information System (INIS)

    Saidi, L.; Langlet, D.; Fayolle, S.; Benada, A.; Prigent, A.

    1997-01-01

    The focal lesions observed in the osseous scintigraphy are sometimes difficult to interpret, notably, in sportsmen. Due to its high sensitivity this examination allows the diagnosis of small lesions even when these are not detectable by radiography. In exchange, its specificity is low. Sometimes, it is difficult to localize the osseous piece afflicted with high anatomic precision, making use of only the anterior and posterior incidences. We intended to test the profit of profile and oblique (3/4) incidences to specify the topography of afflicted zone and its anatomic relations with the neighbouring structures. The aim of this work is to illustrate by selected examples the use of this complement of imaging. The utilised camera is the DST-XL of SOPHA MEDICAL VISION (SMV) equipped with a UHR-BE collimator placed as closely as possible to the zone to be explored in a patient installed in dorsal decubitus. The acquisition is achieved by means of a 3-phase classical protocol. The activity injected is 8-13 MBq/Kg of 99m Tc-HMDP. The tardy images are effected at around 3 hours after the injection of tracer, with an 128/128 matrix and an acquisition time dependent of the region to be examined. The standard incidences are done on anterior and posterior faces and the complementary incidences in profile and oblique (3/4 anterior) positions. The profile and oblique incidences allowed to correct the diagnostic hypothesis deduced from anterior and posterior incidences. A table is given with the diagnoses obtained from standard incidences and the final diagnoses based on profile and oblique incidences for six types of clinic lesions. The conclusion is drawn that the selected examples are particularly demonstrative of the profit which the profile and oblique incidences brings about in making finer the topographic and sometimes etiological diagnosis. In numerous cases it allowed adopting a more specific therapeutic attitude towards the pathology identified in this way, notably in

  15. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    Science.gov (United States)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  16. Plane wave fast color flow mode imaging

    DEFF Research Database (Denmark)

    Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik

    2006-01-01

    A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... degrees and 75 degrees. Compared to the conventional ultrasound imaging the frame rate is similar to 30 - 60 times higher. The bias, B-est of the velocity profile estimate, based on 8 pulse-echo emissions, is between 3.3% and 6.1% for beam to flow angles between 45 degrees and 75 degrees, and the standard...

  17. Synchrotron-radiation plane-wave topography

    International Nuclear Information System (INIS)

    Riglet, P.; Sauvage, M.; Petroff, J.F.; Epelboin, Y.

    1980-01-01

    A computer program based on the Takagi-Taupin differential equations for X-ray propagation in distorted crystals has been developed in order to simulate dislocation images in the Bragg case. The program is valid both for thin and thick crystals. Simulated images of misfit dislocations formed either in a thin epilayer or in a thick substrate are compared with experimental images obtained by synchrotron-radiation plane-wave topography. The influence of the various strain components on the image features is discussed. (author)

  18. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  19. Blackfolds, plane waves and minimal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-29

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  20. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  1. A ''quadratized'' augmented plane wave method

    International Nuclear Information System (INIS)

    Smrcka, L.

    1982-02-01

    The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)

  2. Microwave Absorption Properties of Co@C Nanofiber Composite for Normal and Oblique Incidence

    Science.gov (United States)

    Zhang, Junming; Wang, Peng; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-05-01

    Co@C nanofibers have been prepared by an electrospinning technique. Uniform morphology of the nanofibers and good dispersion of the magnetic cobalt nanoparticles in the carbon fiber frame were confirmed by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The electromagnetic parameters of a composite absorber composed of Co@C nanofibers/paraffin were measured from 2 GHz to 15 GHz. The electromagnetic wave absorption properties were simulated and investigated in the case of normal and oblique incidence. In the normal case, the absorber achieved absorption performance of - 40 dB at 7.1 GHz. When the angle of incidence was increased to 60°, the absorption effect with reflection loss (RL) exceeding - 10 dB could still be obtained. These results demonstrate that the reported Co@C nanofiber absorber exhibits excellent absorption performance over a wide range of angle of incidence.

  3. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  4. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    . The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase

  5. Sensing of subsurface faults based on an imaging technique for teleseismic waveform data. 2. Feasibility study for application to oblique incidence, multi-event and noise data; Enchi jishin hakei data wo mochiita chika kozo imaging ni yoru chichu danso kenshutsu no kokoromi. 2. Naname nyusha, multi event, noise wo fukumu hakei eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, T; Takenaka, H; Saita, T [Kyushu University, Fukuoka (Japan). Faculty of Science; Suetsugu, D [Building Research Institute, Tokyo (Japan); Furumura, T [Hokkaido University of Education, Sapporo (Japan)

    1996-05-01

    An examination was made on the method in which imaging of subsurface was carried out with teleseismic waveform data for sensing of faults. In the examination, an experiment was done on the sensing of faults with higher precision, by applying oblique incidence as well as perpendicular upward incidence of SH plane waves, and thereby stacking the imaging in plural events. In numerical experiments, 28 observation points were arranged at 500m spaces apart on the surface, and the incident waves were made the SH plane waves having a bell-shaped time function, with incidence made at an angle varied as 0{degree}, +15{degree} and -15{degree} from the lowest layer of a model. In the calculation of the wave motion field, a difference calculus with secondary accuracy was used for both time and space. In addition, data was prepared with a random noise added to a synthesized waveform to be used as observation data. The calculated waveform data were likened to the observation waveform, to which the method for imaging faults was applied. Consequently, it was noted that satisfactory results were obtained compared with the case where faults were sensed by one event alone. 5 refs., 4 figs.

  6. Bandgap characteristics of 2D plasma photonic crystal with oblique incidence: TM case

    International Nuclear Information System (INIS)

    Xie Ying-Tao; Yang Li-Xia

    2011-01-01

    A novel periodic boundary condition (PBC), that is the constant transverse wavenumber (CTW) method, is introduced to solve the time delay in the transverse plane with oblique incidence. Based on the novel PBC, the FDTD/PBC algorithm is proposed to study periodic structure consisting of plasma and vacuum. Then the reflection coefficient for the plasma slab from the FDTD/PBC algorithm is compared with the analytic results to show the validity of our technique. Finally, the reflection coefficients for the plasma photonic crystals are calculated using the FDTD/PBC algorithm to study the variation of bandgap characteristics with the incident angle and the plasma parameters. Thus it has provided the guiding sense for the actual manufacturing plasma photonic crystal. (general)

  7. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.

    Science.gov (United States)

    Frisvad, Jeppe Revall

    2018-04-01

    In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

  8. Detection of the specific binding on protein microarrays by oblique-incidence reflectivity difference method

    International Nuclear Information System (INIS)

    Lu, Heng; Wen, Juan; Wang, Xu; Yuan, Kun; Lu, Huibin; Zhou, Yueliang; Jin, Kuijuan; Yang, Guozhen; Li, Wei; Ruan, Kangcheng

    2010-01-01

    The specific binding between Cy5-labeled goat anti-mouse Immunoglobulin G (IgG) and mouse IgG with a concentration range from 625 to 10 4 µg ml −1 has been detected successfully by the oblique-incidence reflectivity difference (OI-RD) method in each procedure of microarray fabrication. The experimental data prove that the OI-RD method can be employed not only to distinguish the different concentrations in label-free fashion but also to detect the antibody–antigen capture. In addition, the differential treatment of the OI-RD signals can decrease the negative influences of glass slide as the microarray upholder. Therefore the OI-RD technique has promising applications for the label-free and high-throughput detection of protein microarrays

  9. Structured surface reflector design for oblique incidence beam splitter at 610 GHz.

    Science.gov (United States)

    Defrance, F; Casaletti, M; Sarrazin, J; Wiedner, M C; Gibson, H; Gay, G; Lefèvre, R; Delorme, Y

    2016-09-05

    An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measurements confirm a good agreement (within 1%) with computer simulations using Feko, validating the method. The beam splitter at 610 GHz has a measured efficiency of 78% under oblique incidence illumination that ensures a similar intensity between the four reflected beams (variation of about 1%).

  10. Atomic spin resonance in a rubidium beam obliquely incident to a transmission magnetic grating

    International Nuclear Information System (INIS)

    Hatakeyama, A; Goto, K

    2016-01-01

    We studied atomic spin resonance induced by atomic motion in a spatially periodic magnetostatic field. A rubidium atomic beam, with a velocity of about 400 m s −1 , was obliquely incident to a transmission magnetic grating that produced a spatially periodic magnetic field. The magnetic grating was formed by a magnetic thin film on a polyimide substrate that had multiple slits at 150 μm intervals. The atoms experienced field oscillation, depending on their velocity and the field period when passing through the grating, and underwent magnetic resonance. Resonance spectra obtained with a perpendicular magnetization film were in clear contrast to ones obtained with an in-plane magnetization film. The former exhibited resonance peaks at odd multiples of the frequency, determined by the velocity over the period, while the latter had dips at the same frequencies. (paper)

  11. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  12. Can plane wave modes be physical modes in soliton models?

    International Nuclear Information System (INIS)

    Aldabe, F.

    1995-08-01

    I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs

  13. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin; Dai, Wei; Schuster, Gerard T.

    2013-01-01

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity

  14. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2012-01-01

    convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A

  15. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin; Dai, Wei; Huang, Yunsong; Schuster, Gerard T.

    2014-01-01

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition

  16. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  17. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  18. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2013-09-22

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.

  19. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  20. Tunnelling of plane waves through a square barrier

    Energy Technology Data Exchange (ETDEWEB)

    Julve, J [IMAFF, Consejo Superior de Investigaciones CientIficas, Serrano 113 bis, Madrid 28006 (Spain); UrrIes, F J de [Departamento de Fisica, Universidad de Alcala de Henares, Alcala de Henares, Madrid (Spain)], E-mail: julve@imaff.cfmac.csic.es, E-mail: fernando.urries@uah.es

    2008-08-01

    The time evolution of plane waves in the presence of a one-dimensional square quantum barrier is considered. Comparison is made between the cases of an infinite and a cut-off (shutter) initial plane wave. The difference is relevant when the results are applied to the analysis of the tunnelling regime. This work is focused on the analytical calculation of the time-evolved solution and highlights the contribution of the resonant (Gamow) states.

  1. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2014-08-05

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.

  2. The plain truth about forming a plane wave of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G., E-mail: nintsspd@barc.gov.i [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Abbas, Sohrab [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Treimer, Wolfgang [Helmholtz Zentrum Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)

    2011-04-01

    We have attained the first sub-arcsecond collimation of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. Analytical as well numerical computations based on the dynamical diffraction theory, led to the optimised collimator configuration of a silicon {l_brace}1 1 1{r_brace} Bragg prism for 5.26 A neutrons. We fabricated a Bragg prism to these specifications, tested and operated it at the double diffractometer setup in Helmholtz Zentrum Berlin to produce a 0.58 arcsec wide monochromatic neutron beam. With a similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide virgin rocking curve for this ultra-parallel beam. With this nearly plane-wave neutron beam, we have recorded the first ever USANS spectrum in Q{approx}10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability to characterise agglomerates up to 150 {mu}m in size. The super-collimated monochromatic beam has also enabled us to record the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. The transverse coherence length of 175 {mu}m (FWHM) of the ultra-parallel beam derived from the analysis of this pattern, is the greatest achieved to date for A wavelength neutrons.

  3. The influence of the oblique incident X-ray that affected the image quality of the X-ray CCD sensor

    International Nuclear Information System (INIS)

    Suzuki, Yosuke; Matsumoto, Nobue; Morita, Hiroshi; Ohkawa, Hiromitsu

    1998-01-01

    The influence of the oblique incident X-ray that affected the image quality of the X-ray CCD sensor was examined and its correction was investigated. CDR was adopted in this study and evaluated image quality, by measuring MTF. The oblique projection was clinically permissible to about an oblique incident angle of 40 degrees although it exerts an influence on the magnifying power and density. The estimation of the oblique entrance direction and oblique incident angle was possible, by developing an oblique incident correction marker. When an oblique incident angle of θ degrees was measured, a correction is possible, by compressing the image cos (θ) times perpendicular to the rotational axis of CCD sensor. There was small decline of MTF, in the image where a correction for the influence of oblique incidence was made. By observation of the digital subtracted picture of the image after correction of oblique projection and that of normal, the resemblance in the two images indicated that this correction method was reasonable. (author)

  4. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  5. Plane waves and structures in turbulent channel flow

    Science.gov (United States)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  6. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  7. Problems of the orthogonalized plane wave method. 1

    International Nuclear Information System (INIS)

    Farberovich, O.V.; Kurganskii, S.I.; Domashevskaya, E.P.

    1979-01-01

    The main problems of the orthogonalized plane wave method are discussed including (a) consideration of core states; (b) effect of overlap of wave functions of external core states upon the band structure; (c) calculation of d-type states. The modified orthogonal plane wave method (MOPW method) of Deegan and Twose is applied in a general form to solve the problems of the usual OPW method. For the first time the influence on the spectrum of the main parameters of the MOPW method is studied systematically by calculating the electronic energy spectrum in the transition metals Nb and V. (author)

  8. Computational dosimetry in embryos exposed to electromagnetic plane waves over the frequency range of 10 MHz-1.5 GHz

    International Nuclear Information System (INIS)

    Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-01-01

    This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg -1 when the incident power density is at the reference level of ICNIRP guideline for general public environment. (note)

  9. Symmetry consideration in zero loop-area Sagnac interferometry at oblique incidence for detecting magneto-optic Kerr effects.

    Science.gov (United States)

    Zhu, X D

    2017-08-01

    I present a detailed account of a zero loop-area Sagnac interferometer operated at oblique incidence for detecting magneto-optic Kerr effects arising from a magnetized sample. In particular, I describe the symmetry consideration and various optical arrangements available to such an interferometer that enables measurements of magneto-optic effects due to both in-plane and out-of-plane magnetization of the sample with optimizable signal-to-noise ratios.

  10. Technique for measurements of plane waves of uniaxial strain

    International Nuclear Information System (INIS)

    Graham, R.A.

    1977-01-01

    The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed

  11. Plane-wave electronic structure calculations on a parallel supercomputer

    International Nuclear Information System (INIS)

    Nelson, J.S.; Plimpton, S.J.; Sears, M.P.

    1993-01-01

    The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms

  12. An Apparatus for Constructing an Electromagnetic Plane Wave Model

    Science.gov (United States)

    Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William

    2015-01-01

    In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…

  13. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...

  14. A differentiated plane wave as an electromagnetic vortex

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2015-01-01

    Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here. (paper)

  15. A plane-wave final-state theory of ATI

    International Nuclear Information System (INIS)

    Parker, J.S.; Clark, C.W.

    1993-01-01

    A Fermi Golden Rule calculation of ionization cross-sections provides us with the simplest example of a plane-wave final-state theory. In this method the final (unbound) state is modeled as a plane wave, an approximation that generally gives best results in the high energy limit in which the affect of the atomic potential on the final state can be neglected. A cross-section is then calculated from the matrix element connecting the bound initial state with the final state. The idea of generalizing this method to model transitions among unbound states is credited to L.V. Keldysh, and a number of related formalisms have been proposed that are consistent with the general features of experimental data. Here we describe a plane-wave final-state model of ATI that is in the spirit of these theories, but differs significantly in its implementation and predictions. We will present a comparison of the predictions of the plane-wave model with those of a full numerical integration of the time-dependent Schrodinger equation for atomic hydrogen in a radiation field. The theory and the numerical integration give good qualitative agreement in their predictions of photoelectron spectra over about 14 orders of magnitude

  16. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    Science.gov (United States)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  17. Oblique incidence of an electromagnetic wave in a cold inhomogeneous plasma. Introduction to a simplifying Lorentz transformation

    International Nuclear Information System (INIS)

    Bourdier, A.

    1983-03-01

    We present a method which simplifies the investigation of the form of an oblique incident wave on a plasma. The electric field vector of the wave is assumed to be in the plane of incidence. Our method consists in introducing a new frame in which the wave is normally incident. To do so, we use a LORENTZ transformation. This way, we reduce a two-dimensional problem to a one-dimensional one. In the new frame, relativistic terms due to the drift-velocity of the plasma are taken into consideration. The solution we obtain is complementary to GINSBURG's; it is accurate for small angles of incidences. We also describe another resonance taking place at four times the critical density (N 0 = 4 Nsub(c)) [fr

  18. Parallel Multi-Focusing Using Plane Wave Decomposition

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Munk, Peter; Jensen, Jørgen Arendt

    2003-01-01

    of desired 2-D sensitivity functions is specified, for multi-focusing in a number of directions. The field along these directions is decomposed to a sufficiently large (for accurate specification) number of plane waves, which are then back-propagated to all transducer elements. The contributions of all plane...... waves result in one time function per element. The numerical solution is presented and discussed. It contains pulses with a variation in central frequency and time-varying apodization across the aperture (dynamic apodization). The RMS difference between the transmitted field using the calculated pulse...... of the transmitted pulses is based on the directivity spectrum method, a generalization of the angular spectrum method, a generalization of the angular spectrum method, containing no evanescent waves. The underlying theory is based on the Fourier slice theorem, and field reconstruction from projections. First a set...

  19. Quantum scattering beyond the plane-wave approximation

    Science.gov (United States)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  20. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-11-04

    Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.

  1. Scattering on plane waves and the double copy

    Science.gov (United States)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  2. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  3. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    Science.gov (United States)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  4. Path integral for Dirac particle in plane wave field

    International Nuclear Information System (INIS)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  5. Path integral for Dirac particle in plane wave field

    Energy Technology Data Exchange (ETDEWEB)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L. [Mentouri Univ., Constantine (Algeria). Dept. of Physique

    2001-10-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  6. Plane waves and spherical means applied to partial differential equations

    CERN Document Server

    John, Fritz

    2004-01-01

    Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con

  7. Electromagnetic forces and torques in nanoparticles irradiated by plane waves

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.

    2004-01-01

    Optical tweezers and optical lattices are making it possible to control small particles by means of electromagnetic forces and torques. In this context, a method is presented in this work to calculate electromagnetic forces and torques for arbitrarily-shaped objects in the presence of other objects illuminated by a plane wave. The method is based upon an expansion of the electromagnetic field in terms of multipoles around each object, which are in turn used to derive forces and torques analytically. The calculation of multipole coefficients are obtained numerically by means of the boundary element method. Results are presented for both spherical and non-spherical objects

  8. Multiple projection optical diffusion tomography with plane wave illumination

    International Nuclear Information System (INIS)

    Markel, Vadim A; Schotland, John C

    2005-01-01

    We describe a new data collection scheme for optical diffusion tomography in which plane wave illumination is combined with multiple projections in the slab imaging geometry. Multiple projection measurements are performed by rotating the slab around the sample. The advantage of the proposed method is that the measured data are more compatible with the dynamic range of most commonly used detectors. At the same time, multiple projections improve image quality by mutually interchanging the depth and transverse directions, and the scanned (detection) and integrated (illumination) surfaces. Inversion methods are derived for image reconstructions with extremely large data sets. Numerical simulations are performed for fixed and rotated slabs

  9. Tomosynthesis can facilitate accurate measurement of joint space width under the condition of the oblique incidence of X-rays in patients with rheumatoid arthritis.

    Science.gov (United States)

    Ono, Yohei; Kashihara, Rina; Yasojima, Nobutoshi; Kasahara, Hideki; Shimizu, Yuka; Tamura, Kenichi; Tsutsumi, Kaori; Sutherland, Kenneth; Koike, Takao; Kamishima, Tamotsu

    2016-06-01

    Accurate evaluation of joint space width (JSW) is important in the assessment of rheumatoid arthritis (RA). In clinical radiography of bilateral hands, the oblique incidence of X-rays is unavoidable, which may cause perceptional or measurement error of JSW. The objective of this study was to examine whether tomosynthesis, a recently developed modality, can facilitate a more accurate evaluation of JSW than radiography under the condition of oblique incidence of X-rays. We investigated quantitative errors derived from the oblique incidence of X-rays by imaging phantoms simulating various finger joint spaces using radiographs and tomosynthesis images. We then compared the qualitative results of the modified total Sharp score of a total of 320 joints from 20 patients with RA between these modalities. A quantitative error was prominent when the location of the phantom was shifted along the JSW direction. Modified total Sharp scores of tomosynthesis images were significantly higher than those of radiography, that is to say JSW was regarded as narrower in tomosynthesis than in radiography when finger joints were located where the oblique incidence of X-rays is expected in the JSW direction. Tomosynthesis can facilitate accurate evaluation of JSW in finger joints of patients with RA, even with oblique incidence of X-rays. Accurate evaluation of JSW is necessary for the management of patients with RA. Through phantom and clinical studies, we demonstrate that tomosynthesis may achieve more accurate evaluation of JSW.

  10. The geometry of plane waves in spaces of constant curvature

    International Nuclear Information System (INIS)

    Tran, H.V.

    1988-01-01

    We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect

  11. Augmented-plane-wave calculations on small molecules

    International Nuclear Information System (INIS)

    Serena, P.A.; Baratoff, A.; Soler, J.M.

    1993-01-01

    We have performed ab initio calculations on a wide range of small molecules, demonstrating the accuracy and flexibility of an alternative method for calculating the electronic structure of molecules, solids, and surfaces. It is based on the local-density approximation (LDA) for exchange and correlation and the nonlinear augmented-plane-wave method. Very accurate atomic forces are obtained directly. This allows for implementation of Car-Parrinello-like techniques to determine simultaneously the self-consistent electron wave functions and the equilibrium atomic positions within an iterative scheme. We find excellent agreement with the best existing LDA-based calculations and remarkable agreement with experiment for the equilibrium geometries, vibrational frequencies, and dipole moments of a wide variety of molecules, including strongly bound homopolar and polar molecules, hydrogen-bound and electron-deficient molecules, and weakly bound alkali and noble-metal dimers, although binding energies are overestimated

  12. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  13. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin; Meessen, Patrick

    2003-01-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  14. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias; O' Loughlin, Martin; Meessen, Patrick [SISSA/ISAS, Via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: meessen@sissa.it

    2003-09-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  15. On the sound absorption coefficient of porous asphalt pavements for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Bekke, Dirk; Davy, J.; Don, Ch.; McMinn, T.; Dowsett, L.; Broner, N.; Burgess, M.

    2014-01-01

    A rolling tyre will radiate noise in all directions. However, conventional measurement techniques for the sound absorption of surfaces only give the absorption coefficient for normal incidence. In this paper, a measurement technique is described with which it is possible to perform in situ sound

  16. Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence

    International Nuclear Information System (INIS)

    Bludov, Yu V; Peres, N M R; Vasilevskiy, M I

    2013-01-01

    We study the interaction of electromagnetic (EM) radiation with single-layer graphene and a stack of parallel graphene sheets at arbitrary angles of incidence. It is found that the behavior is qualitatively different for transverse magnetic (or p-polarized) and transverse electric (or s-polarized) waves. In particular, the absorbance of single-layer graphene attains a minimum (maximum) for the p (s)-polarization at the angle of total internal reflection when the light comes from a medium with a higher dielectric constant. In the case of equal dielectric constants of the media above and beneath graphene, for grazing incidence graphene is almost 100% transparent to p-polarized waves and acts as a tunable mirror for the s-polarization. These effects are enhanced for a stack of graphene sheets, so the system can work as a broad band polarizer. It is shown further that a periodic stack of graphene layers has the properties of a one-dimensional photonic crystal, with gaps (or stop bands) at certain frequencies. When an incident EM wave is reflected from this photonic crystal, the tunability of the graphene conductivity renders the possibility of controlling the gaps, and the structure can operate as a tunable spectral-selective mirror. (paper)

  17. Reflection and self-sputtering of nickel at oblique angles of ion incidence

    International Nuclear Information System (INIS)

    Hechtl, E.; Eckstein, W.; Roth, J.

    1994-01-01

    Measurement of the erosion yield of a target under ion bombardment using the weight change determines the sum of the sputtering yield and the particle reflection coefficient. The different erosion behavior of a volatile (Kr) and a nonvolatile projectile (Ni) are investigated on a nickel target in the energy range from 60 eV to 10 keV at an incidence angle of 75 . The angular dependence of the erosion yield is studied for 100, 500, and 2500 eV. In comparison with Monte Carlo calculations using the TRIM.SP program it is shown that at low energies ( 1 keV). (orig.)

  18. Initial value problem for colliding gravitational plane waves. III

    International Nuclear Information System (INIS)

    Hauser, I.; Ernst, F.J.

    1990-01-01

    The development of a homogeneous Hilbert problem (HHP) approach to the initial value problem (IVP) for colliding gravitational plane waves with noncollinear polarization that began in two earlier papers [I. Hauser and F. J. Ernst, J. Math. Phys. 30, 872 (1989) and 30, 2322 (1989)] is continued. After formulating the HHP, the description of how one can apply it to generate a new family of solutions of the colliding wave problem that generalizes a three-parameter family constructed by Ernst, Garcia, and Hauser [J. Math. Phys. 29, 681 (1988)] using a double-Harrison transformation is given. Then the proof that the solution of the new HHP indeed solves the IVP that is posed is presented. A matrix Fredholm equation of the second kind that is equivalent to the HHP is also deduced. This will be used in a sequel to complete the proof of existence of solutions of the HHP and the proof that certain assumed differentiability hypotheses are in fact valid

  19. Scattering of electromagnetic plane waves by a buried vertical dike

    Directory of Open Access Journals (Sweden)

    Batista Lurimar S.

    2003-01-01

    Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.

  20. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  1. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  2. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  3. Plane-Wave Characterization of Antennas Close to a Planar Interface

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The plane-wave scattering matrix is used to characterize antennas that are located just above a planar interface that separates two media. The plane-wave transmitting spectrum for the field radiated downwards into the lower medium is expressed directly in terms of the current distribution of the ...

  4. Lectures on strings in flat space and plane waves from N = 4 super Yang Mills

    International Nuclear Information System (INIS)

    Maldacena, J.

    2003-01-01

    In these lecture notes we explain how the string spectrum in flat space and plane waves arises from the large N limit of U(N) N = 4 super Yang Mills. We reproduce the spectrum by summing a subset of the planar Feynman diagrams. We also describe some other aspects of string propagation on plane wave backgrounds. (author)

  5. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence.

    Science.gov (United States)

    Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng

    2018-02-19

    The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.

  6. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  7. Penetration of an ordinary wave into a weakly inhomogeneous magnetoplasma at oblique incidence

    International Nuclear Information System (INIS)

    Preinhaelter, J.

    1973-12-01

    The propagation was studied of high-frequency electromagnetic waves in a plane-stratified weakly inhomogeneous plasma. The density gradient was assumed to be perpendicular to the external magnetic field and the wave vector was not considered to be generally parallel to the plane given by the two former vectors. The analysis shows that an ordinary wave may penetrate the plasma resonance region if the orientation of the vacuum wave vector is appropriately chosen. Analytical expressions for the reflexion and transmission coefficients were obtained and their dependence on the direction cosines of the wave vector of the incident wave was studied. It is also briefly shown that after the transmission through plasma resonance the ordinary wave was transformed into an extraordinary wave and the latter was reflected back to the region of hybrid resonance. In this region the extraordinary wave was fully transformed into the Bernstein modes. (author)

  8. Secondary electron emission anisotropy in oblique incidence of electrons on the (100) Mo

    International Nuclear Information System (INIS)

    Gomoyunova, M.V.; Zaslavskij, S.L.; Pronin, I.I.

    1978-01-01

    Studied was the influence of azimuthal plane of incidence of primary particles with energies of 0.5-1.5 keV on the secondary electron emission of the (100) Mo face at the constant polar angle of 45 deg. The measurements were carried out in vacuum of (2-4)x10 -10 torr by modulation technique. It is shown that anisotropy is peculiar to the secondary electron emission of all energies. The anisotropy of emission has two maxima; the high-energy maximum connected with reflected primary electrons and situated near the elastically reflected electrons and weaker pronounced the low-energy one which is found at energies of 100-200 eV and is conditioned by truly secondary electrons. It is shown that the anisotropy, characterizing secondary electrons responsible for the appearance of structure in spectrum, particularly the Auger electrons and the electrons suffering ionizing energy losses, exceeds the anisotropy of continuous spectrum electrons possessing the same energy. The electron diffraction dynamic theory, based on the conception of the united wave field of electrons, has been used to explain the regularities stated

  9. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    Directory of Open Access Journals (Sweden)

    Jong-In Lee

    2014-01-01

    Full Text Available This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees, and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  10. Dirac particle in a plane wave field and the semi-classical approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bourouaine, S. [Department of Physics, Faculty of Sciences, Mentouri University, Constantine (Algeria)

    2005-04-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  11. Dirac particle in a plane wave field and the semi-classical approximation

    International Nuclear Information System (INIS)

    Bourouaine, S.

    2005-01-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities

    International Nuclear Information System (INIS)

    Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo

    2008-01-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (α max ) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining α max , which is a function of the thickness of the barrier (t E ) and the equilibrium tenth-value layer (TVL e ) of the shielding material for the nominal energy of the beam. It can be seen that α max increases for increasing TVL e (hence, beam energy) and decreases for increasing t E , with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation

  13. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    Science.gov (United States)

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  14. Oblique incidence effects in direct x-ray detectors: A first-order approximation using a physics-based analytical model

    International Nuclear Information System (INIS)

    Badano, Aldo; Freed, Melanie; Fang Yuan

    2011-01-01

    Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 μm for indirect CsI:Tl and 200 μm for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the

  15. Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity

    Directory of Open Access Journals (Sweden)

    Marta Cavagnaro

    2013-01-01

    Full Text Available The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies.

  16. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  17. Diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium

    CSIR Research Space (South Africa)

    Manara, G

    1998-11-01

    Full Text Available The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory...

  18. Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3

    Science.gov (United States)

    Correia, Simão; Figueira, Mário

    2018-03-01

    We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.

  19. The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane.

    Science.gov (United States)

    Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine

    2015-11-01

    Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.

  20. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    Science.gov (United States)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  1. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  2. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2018-01-01

    of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...

  3. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  4. Integral particle reflection coefficient for oblique incidence of photons as universal function in the domain of initial energies up to 300 keV

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2014-01-01

    Full Text Available In this paper we present the results of calculations and analyses of the integral particle reflection coefficient of photons for oblique photon incidence on planar targets, in the domain of initial photon energies from 100 keV to 300 keV. The results are based on the Monte Carlo simulations of the photon reflection from water, concrete, aluminum, iron, and copper materials, performed by the MCNP code. It has been observed that the integral particle reflection coefficient as a function of the ratio of total cross-section of photons and effective atomic number of target material shows universal behavior for all the analyzed shielding materials in the selected energy domain. Analytical formulas for different angles of photon incidence have been proposed, which describe the reflection of photons for all the materials and energies analyzed.

  5. Measurement of track opening contours of oblique incident 4He and 7Li-ions in CR-39: Relevance for calculation of track formation parameters

    International Nuclear Information System (INIS)

    Hermsdorf, D.; Reichelt, U.

    2010-01-01

    Solid State Nuclear Track Detectors (SSNTD) irradiated in realistic radiation fields exhibits after chemical etching very complex track images resulting from different species of particles and their energy spectra and randomly distributed angles of incidence or emission. Reading out such an etched detector surface with a light microscope, quite different track opening contours are observed. Beside the number of tracks, typically their major and minor axes are measured. In this work following problems arising from such experimental situations will be investigated: ·the measurement of track contour parameters for oblique incident 4 He and 7 Li-ions of different energies and angles in CR-39 detectors ·the theoretical description of the angular variation of both axes. ·the possibility to extract physical and spectroscopic information from major and minor track axes. This analysis is based on an intensive experimental program and the comprehensive study of theoretical models available for description of track revealing processes in CR-39.

  6. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  7. An extended Fourier modal method for plane-wave scattering from finite structures

    NARCIS (Netherlands)

    Pisarenco, M.; Maubach, J.M.L.; Setija, I.D.; Mattheij, R.M.M.

    2010-01-01

    This paper extends the area of application of the Fourier modal method from periodic structures to aperiodic ones, in particular for plane-wave illumination at arbitrary angles. This is achieved by placing perfectly matched layers at the lateral sides of the computational domain and reformulating

  8. Measurement Verification of Plane Wave Synthesis Technique Based on Multi-probe MIMO-OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum

    2012-01-01

    Standardization work for MIMO OTA testing methods is currently ongoing, where a multi-probe anechoic chamber based solution is an important candidate. In this paper, the probes located on an OTA ring are used to synthesize a plane wave field in the center of the OTA ring. This paper investigates...

  9. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    Science.gov (United States)

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  10. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time

  11. From plane waves to local Gaussians for the simulation of correlated periodic systems

    International Nuclear Information System (INIS)

    Booth, George H.; Tsatsoulis, Theodoros; Grüneis, Andreas; Chan, Garnet Kin-Lic

    2016-01-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  12. From plane waves to local Gaussians for the simulation of correlated periodic systems

    Energy Technology Data Exchange (ETDEWEB)

    Booth, George H., E-mail: george.booth@kcl.ac.uk [Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Chan, Garnet Kin-Lic [Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  13. The effect of oblique angle of sound incidence, realistic edge conditions, curvature and in-plane panel stresses on the noise reduction characteristics of general aviation type panels

    Science.gov (United States)

    Grosveld, F.; Lameris, J.; Dunn, D.

    1979-01-01

    Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.

  14. Accuracy and Precision of Plane Wave Vector Flow Imaging for Laminar and Complex Flow In Vivo

    DEFF Research Database (Denmark)

    Jensen, Jonas; Traberg, Marie Sand; Villagómez Hoyos, Carlos Armando

    2017-01-01

    In this study, a comparison between velocity fields for a plane wave 2-D vector flow imaging (VFI) method and a computational fluid dynamics (CFD) simulation is made. VFI estimates are obtained from the scan of a flow phantom, which mimics the complex flow conditions in the carotid artery....... Furthermore, the precision of the VFI method is investigated under laminar and complex flow conditions in vivo. The carotid bifurcation of a healthy volunteer was scanned using both fast plane wave ultrasound and magnetic resonance imaging (MRI). The acquired MRI geometry of the bifurcation was used...... difference within 15 %, however, it was 23 % in the external branch. For the in vivo scan, the precision in terms of mean standard deviation (SD) of estimates aligned to the cardiac cycle was highest in the center of the common carotid artery (SD 4.7◦ for angles) and lowest in the external branch and close...

  15. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    Science.gov (United States)

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  16. Photonic band structures solved by a plane-wave-based transfer-matrix method

    International Nuclear Information System (INIS)

    Li Zhiyuan; Lin Lanlan

    2003-01-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method

  17. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Science.gov (United States)

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  18. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Directory of Open Access Journals (Sweden)

    Rab Nawaz

    Full Text Available In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  19. Path integral for spinning particle in the plane wave field: Global and local projections

    International Nuclear Information System (INIS)

    Boudiaf, N.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The Green function related to the problem of a Dirac particle interacting with a plane wave is calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two so-called global and local projections. With the help of the incorporation of two simple identities, it is shown that the contribution to the calculation of the integrals comes essentially from classical solutions projected along the direction of wave propagation. (orig.)

  20. Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Podagatlapalli, G. [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Hamad, Syed [School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Ahamad Mohiddon, Md. [Centre for Nanotechnology University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India); Venugopal Rao, S., E-mail: svrsp@uohyd.ernet.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046 (India)

    2014-06-01

    Highlights: •Effect of non-zero angle of incidence on ps ablation of Ag investigated. •Ag colloids were evaluated by TEM, UV–vis absorption spectra and fs-DFWM. •30° incident angle provided Ag NPs of small size with higher yields. •FESEM, AFM, Raman data revealed the fabrication of Ag nanostructures. •Utility of Ag nanostructures surfaces for multiple SERS studies demonstrated. -- Abstract: Picosecond (ps) laser ablation of silver (Ag) substrate submerged in double distilled water was performed at 800 nm for different angles of incidence of 5°, 15°, 30° and 45°. Prepared colloidal solutions were characterized through transmission electron microscopy, UV absorption spectroscopy to explore their morphologies and surface plasmon resonance (SPR) properties. Third order nonlinear optical (NLO) characterization of colloids was performed using degenerate four wave mixing (DFWM) technique with ∼40 fs laser pulses at 800 nm and the NLO coefficients were obtained. Detailed analysis of the data obtained from colloidal solutions suggested that superior results in terms of yield, sizes of the NPs, SPR peak position were achieved for ablation performed at 30° incident angle. Surface enhanced Raman spectra (SERS) of Rhodamine 6G from nanostructured substrates were investigated using excitation wavelengths of 532 and 785 nm. In both the cases substrates prepared at 30° incident angle exhibited superior enhancement in the Raman signatures with a best enhancement factor achieved being >10{sup 8}. SERS of an explosive molecule 5-amino, 3-nitro, -1H-1,2,4-nitrozole (ANTA) was also demonstrated from these nanostructured substrates. Multiple usage of Ag nanostructures for SERS studies revealed that structures prepared at 30° incident angle provided superior performance amongst all.

  1. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    International Nuclear Information System (INIS)

    Pan, Yan; Dai, Xiaoying; Gironcoli, Stefano de; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-01-01

    Highlights: • Propose three parallel orbital-updating based plane-wave basis methods for electronic structure calculations. • These new methods can avoid the generating of large scale eigenvalue problems and then reduce the computational cost. • These new methods allow for two-level parallelization which is particularly interesting for large scale parallelization. • Numerical experiments show that these new methods are reliable and efficient for large scale calculations on modern supercomputers. - Abstract: Motivated by the recently proposed parallel orbital-updating approach in real space method , we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  2. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    CERN Document Server

    Massobrio, C

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm sup - sup 1). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm sup - sup 1 to -300 cm sup - sup 1. The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and r...

  3. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    International Nuclear Information System (INIS)

    Massobrio, C.; Ruiz, E.

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm -1 ). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm -1 to -300 cm -1 . The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and rationalize the magnetic properties of molecular-based materials. (author)

  4. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    Science.gov (United States)

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  5. 3D computation of the shape of etched tracks in CR-39 for oblique particle incidence and comparison with experimental results

    International Nuclear Information System (INIS)

    Doerschel, B.; Hermsdorf, D.; Reichelt, U.; Starke, S.; Wang, Y.

    2003-01-01

    Computation of the shape of etch pits needs to know the varying track etch rate along the particle trajectories. Experiments with alpha particles and 7 Li ions entering CR-39 detectors under different angles showed that this function is not affected by the inclination of the particle trajectory with respect to the normal on the detector surface. Track formation for oblique particle incidence can, therefore, be simulated using the track etch rates determined for perpendicular incidence. 3D computation of the track shape was performed applying a model recently described in literature. A special program has been written for computing the x,y,z coordinates of points on the etch pit walls. In addition, the etch pit profiles in sagittal sections as well as the contours of the etch pit openings on the detector surface have been determined experimentally. Computed and experimental results were in good agreement confirming the applicability of the 3D computational model in combination with the functions for the depth-dependent track etch rates determined experimentally

  6. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  7. Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction

    International Nuclear Information System (INIS)

    Dorca, M.; Verdaguer, E.

    1997-01-01

    Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)

  8. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique.

    Science.gov (United States)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-15

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  9. Label-Free and Real-Time Monitor of Binding and Dissociation Processes between Protein A and Swine IgG by Oblique-Incidence Reflectivity Difference Method

    International Nuclear Information System (INIS)

    He Li-Ping; Liu Shuang; Dai Jun; Lu Hui-Bin; Jin Kui-Juan; Yang Guo-Zhen; Wu Lin; Liu Guo-Zhen; Wei Han-Fu

    2015-01-01

    Life science has a need for detection methods that are label-free and real-time. In this paper, we have selected staphylococcal protein A (SPA) and swine immunoglobulin G (IgG), and monitor the bindings between SPA and swine IgG with different concentrations, as well as the dissociations of SPA-swine IgG complex in different pH values of phosphate buffer by oblique-incidence reflectivity difference (OIRD) in a label-free and real-time fashion. We obtain the ON and OFF reaction dynamic curves corresponding to the bindings and dissociations of SPA and swine IgG. Through our analysis of the experimental results, we have been able to obtain the damping coefficients and the dissociation time of SPA and swine IgG for different pH values of the phosphate buffer. The results prove that the OIRD technique is a competing method for monitoring the dynamic processes of biomolecule interaction and achieving the quantitative information of reaction kinetics. (general)

  10. Real-Time, Label-Free Detection of Biomolecular Interactions in Sandwich Assays by the Oblique-Incidence Reflectivity Difference Technique

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2014-12-01

    Full Text Available One of the most important goals in proteomics is to detect the real-time kinetics of diverse biomolecular interactions. Fluorescence, which requires extrinsic tags, is a commonly and widely used method because of its high convenience and sensitivity. However, in order to maintain the conformational and functional integrality of biomolecules, label-free detection methods are highly under demand. We have developed the oblique-incidence reflectivity difference (OI-RD technique for label-free, kinetic measurements of protein-biomolecule interactions. Incorporating the total internal refection geometry into the OI-RD technique, we are able to detect as low as 0.1% of a protein monolayer, and this sensitivity is comparable with other label-free techniques such as surface plasmon resonance (SPR. The unique advantage of OI-RD over SPR is no need for dielectric layers. Moreover, using a photodiode array as the detector enables multi-channel detection and also eliminates the over-time signal drift. In this paper, we demonstrate the applicability and feasibility of the OI-RD technique by measuring the kinetics of protein-protein and protein-small molecule interactions in sandwich assays.

  11. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  12. ONETEP: linear-scaling density-functional theory with plane-waves

    International Nuclear Information System (INIS)

    Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C

    2006-01-01

    This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep

  13. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  14. Effect of weak nonlinearities on the plane waves in a plasma stream

    International Nuclear Information System (INIS)

    Seshadri, S.R.

    1976-01-01

    The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)

  15. Quantum mechanics of lattice gas automata: One-particle plane waves and potentials

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1997-01-01

    Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society

  16. Useful Solutions for Plane Wave Diffraction by Dielectric Slabs and Wedges

    Directory of Open Access Journals (Sweden)

    Gianluca Gennarelli

    2012-01-01

    Full Text Available This work presents an overview of available uniform asymptotic physical optics solutions for evaluating the plane wave diffraction by some canonical geometries of large interest: dielectric slabs and wedges. Such solutions are based on a physical optics approximation of the electric and magnetic equivalent surface currents in the involved scattering integrals. The resulting diffraction coefficients are expressed in terms of the geometrical optics response of the considered structure and the standard transition function of the Uniform Geometrical Theory of Diffraction. Numerical tests and comparisons make evident the effectiveness and reliability of the presented solutions.

  17. Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2007-01-01

    Roč. 107, č. 1 (2007), s. 56-62 ISSN 0020-7608 R&D Projects: GA AV ČR IAA100400501; GA AV ČR 1ET400400413 Grant - others:European Science Foundation (EIPAM)(XE) PESC7-20; U.S. National Science Foundation(US) OISE-0532040 Institutional research plan: CEZ:AV0Z40400503 Keywords : two- electron integrals * mixed plane-wave and Gaussian basis sets * Coulomb integrals Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 1.368, year: 2007

  18. Worldline path integrals for a Dirac particle in a weak gravitational plane wave

    International Nuclear Information System (INIS)

    Haouat, S.; Chetouani, L.

    2008-01-01

    The problem of a relativistic spinning particle interacting with a weak gravitational plane wave in (3+1) dimensions is formulated in the frame work of covariant supersymmetric path integrals. The relative Green function is expressed through a functional integral over bosonic trajectories that describe the external motion and fermionic variables that describe the spin degrees of freedom. The (3+1) dimensional problem is reduced to the (1+1) dimensional one by using an identity. Next, the relative propagator is exactly calculated and the wave functions are extracted. (orig.)

  19. Explicit formulas for Neumann coefficients in the plane-wave geometry

    International Nuclear Information System (INIS)

    He Yanghui; Schwarz, John H.; Spradlin, Marcus; Volovich, Anastasia

    2003-01-01

    We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the three-string vertex for type IIB string theory in a plane-wave background, for any value of the mass parameter μ. The derivation involves constructing the inverse of a certain infinite-dimensional matrix, in terms of which the Neumann coefficients previously had been written only implicitly. We derive asymptotic expansions for large μ and find unexpectedly simple results, which are valid to all orders in 1/μ. Using BMN duality, these give predictions for certain gauge theory quantities to all orders in the modified 't Hooft coupling λ ' . A specific example is presented

  20. Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling

    International Nuclear Information System (INIS)

    Fischbacher, Thomas; Klose, Thomas; Plefka, Jan

    2005-01-01

    We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)

  1. Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange

    International Nuclear Information System (INIS)

    Bylaska, Eric J.; Tsemekhman, Kiril L.; Baden, Scott B.; Weare, John H.; Jonsson, Hannes

    2011-01-01

    One of the more persistent failures of conventional density functional theory (DFT) methods has been their failure to yield localized charge states such as polarons, excitons and solitons in solid-state and extended systems. It has been suggested that conventional DFT functionals, which are not self-interaction free, tend to favor delocalized electronic states since self-interaction creates a Coulomb barrier to charge localization. Pragmatic approaches in which the exchange correlation functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g. B3LYP and PBE0) have shown promise in localizing charge states and predicting accurate band gaps and reaction barriers. We have developed a parallel algorithm for implementing exact exchange into pseudopotential plane-wave density functional theory and we have implemented it in the NWChem program package. The technique developed can readily be employed in plane-wave DFT programs. Furthermore, atomic forces and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for which conventional DFT methods do not work well, including calculations for band gaps in oxides and the electronic structure of a charge trapped state in the Fe(II) containing mica, annite.

  2. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    Science.gov (United States)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  3. Optimization of exit-plane waves restored from HRTEM through-focal series

    International Nuclear Information System (INIS)

    Erni, Rolf; Rossell, Marta D.; Nakashima, Philip N.H.

    2010-01-01

    Atomic-resolution transmission electron microscopy has largely benefited from the implementation of aberration correctors in the imaging part of the microscope. Though the dominant geometrical axial aberrations can in principle be corrected or suitably adjusted, the impact of higher-order aberrations, which are mainly due to the implementation of non-round electron optical elements, on the imaging process remains unclear. Based on a semi-empirical criterion, we analyze the impact of residual aperture aberrations on the quality of exit-plane waves that are retrieved from through-focal series recorded using an aberration-corrected and monochromated instrument which was operated at 300 kV and enabled for an information transfer of ∼0.05 nm. We show that the impact of some of the higher-order aberrations in retrieved exit-plane waves can be balanced by a suitable adjustment of symmetry equivalent lower-order aberrations. We find that proper compensation and correction of 1st and 2nd order aberrations is critical, and that the required accuracy is difficult to achieve. This results in an apparent insensitivity towards residual higher-order aberrations. We also investigate the influence of the detector characteristics on the image contrast. We find that correction for the modulation transfer function results in a contrast gain of up to 40%.

  4. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    Science.gov (United States)

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  5. Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure

    International Nuclear Information System (INIS)

    Zhou Guo-Quan

    2011-01-01

    Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Invertible propagator for plane wave illumination of forward-scattering structures.

    Science.gov (United States)

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  7. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...... of the microphone-coupler system in a Boundary Element formulation. In order to obtain a realistic representation of the sound field, viscous losses must be introduced in the model. This paper presents such a model, and the results of the simulations for different combinations of microphones and couplers...

  8. DFT LCAO and plane wave calculations of SrZrO3

    International Nuclear Information System (INIS)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E.; Kotomin, E.A.

    2005-01-01

    The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO 3 phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO 3 phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. DFT LCAO and plane wave calculations of SrZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskiy Prospekt, Stary Peterhof 198504 (Russian Federation); Kotomin, E.A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr. 1, 70569, Stuttgart (Germany)

    2005-02-01

    The results of the density functional (DFT) LCAO and plane wave (PW) calculations of the electronic and structural properties of four known SrZrO{sub 3} phases (Pm3m, I4/mcm, Cmcm and Pbnm) are presented and discussed. The calculated unit cell energies and relative stability of these phases agree well with the experimental sequence of SrZrO{sub 3} phases as the temperature increases. The lattice structure parameters optimized in the PW calculations for all four phases are in good agreement with the experimental neutron diffraction data. The LCAO and PW results for the electronic structure, density of states and chemical bonding in the cubic phase (Pm3m) are discussed in detail and compared with the results of previous PW calculations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis

    Science.gov (United States)

    Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg

    2017-03-01

    We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.

  11. Performance evaluation of compounding and directional beamforming techniques for carotid strain imaging using plane wave transmissions

    DEFF Research Database (Denmark)

    Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando

    2014-01-01

    Carotid strain imaging in 3D is not possible with conventional focused imaging, because the frame rate is too low. Plane wave ultrasound provides sufficiently high frame rates, albeit at t he cost of image quality, especially in the off - axis direction due to the lack of focusing . Multiple...... techniques have been developed to cope with the low off - axis image quality when performing 2D (and in future 3D) motion estimation: cross correlation with directional beamforming (with or without RF (coherent) compounding) and displacement compounding. This study compares the precision of these techniques...... with RF compounding and 2D displacement compounding with θ = ~20 ° per formed equally and best with a relative root - mean - squared error of ~2% with respect to the analytical solution . The mean and standard deviation of the estimated motion direction for 2D displacement compounding with θ = 20 ° was 0...

  12. Integrable open spin chain in Super Yang-Mills and the plane-wave/SYM duality

    International Nuclear Information System (INIS)

    Chen Bin; Wang Xiaojun; Wu Yongshi

    2004-01-01

    We investigate the integrable structures in an N = 2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime. (author)

  13. Simplified description of out-of-plane waves in thin annular elastic plates

    DEFF Research Database (Denmark)

    Zadeh, Maziyar Nesari; Sorokin, Sergey

    2013-01-01

    Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role...... of curvature is assessed for plates with unconstrained edges. Elementary Bernoulli–Euler theory for a beam of rectangular cross-section with the circular shape of its axis is also employed to analyze the wave guide properties of this structure in its out-of-plane deformation. The applicability range...... of the elementary beam theory is validated. The wave finite element method in the formulation of the three-dimensional elasticity theory is used to ensure that the comparison of dispersion diagrams is performed in the frequency range, where the classical thin plate theory is valid. Thus, the paper summarizes...

  14. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang

    2013-07-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.

  15. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines

    International Nuclear Information System (INIS)

    Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang

    2013-01-01

    Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP

  16. Spin effects in nonlinear Compton scattering in a plane-wave laser pulse

    International Nuclear Information System (INIS)

    Boca, Madalina; Dinu, Victor; Florescu, Viorica

    2012-01-01

    We study theoretically the electron angular and energy distribution in the non-linear Compton effect in a finite plane-wave laser pulse. We first present analytical and numerical results for unpolarized electrons (described by a Volkov solution of the Dirac equation), in comparison with those corresponding to a spinless particle (obeying the Klein–Gordon equation). Then, in the spin 1/2 case, we include results for the spin flip probability. The regime in which the spin effects are negligible, i.e. the results for the unpolarized spin 1/2 particle coincide practically with those for the spinless particle, is the same as the regime in which the emitted radiation is well described by classical electrodynamics.

  17. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures

    International Nuclear Information System (INIS)

    Hirata, A; Watanabe, S; Fujiwara, O; Kojima, M; Sasaki, K; Shiozawa, T

    2007-01-01

    This study investigated the temperature elevation in the eye of anatomically based human head models for plane-wave exposures. The finite-difference time-domain method is used for analyzing electromagnetic absorption and temperature elevation. The eyes in the anatomic models have average dimensions and weight. Computational results show that the ratio of maximum temperature in the lens to the eye-average SAR (named 'heating factor for the lens') is almost uniform (0.112-0.147 deg. C kg W -1 ) in the frequency region below 3 GHz. Above 3 GHz, this ratio increases gradually with an increase of frequency, which is attributed to the penetration depth of an electromagnetic wave. Particular attention is paid to the difference in the heating factor for the lens between this study and earlier works. Considering causes clarified in this study, compensated heating factors in all these studies are found to be in good agreement

  18. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming

    DEFF Research Database (Denmark)

    Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo

    2017-01-01

    load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beamto- flow angles from 45 to 90. The TO......-DB method estimates the angle with a bias and standard deviation (SD) less than 2, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2 to 17 and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger...

  19. Accuracy and Precision of a Plane Wave Vector Flow Imaging Method in the Healthy Carotid Artery

    DEFF Research Database (Denmark)

    Jensen, Jonas; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand

    2018-01-01

    The objective of the study described here was to investigate the accuracy and precision of a plane wave 2-D vector flow imaging (VFI) method in laminar and complex blood flow conditions in the healthy carotid artery. The approach was to study (i) the accuracy for complex flow by comparing...... of laminar flow in vivo. The precision in vivo was calculated as the mean standard deviation (SD) of estimates aligned to the heart cycle and was highest in the center of the common carotid artery (SD = 3.6% for velocity magnitudes and 4.5° for angles) and lowest in the external branch and for vortices (SD...... the velocity field from a computational fluid dynamics (CFD) simulation to VFI estimates obtained from the scan of an anthropomorphic flow phantom and from an in vivo scan; (ii) the accuracy for laminar unidirectional flow in vivo by comparing peak systolic velocities from VFI with magnetic resonance...

  20. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  1. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    International Nuclear Information System (INIS)

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed

  2. Propagation of plane waves in a rotating magneto-thermoelastic fiber-reinforced medium under G-N theory

    Directory of Open Access Journals (Sweden)

    Maity N.

    2017-06-01

    Full Text Available The article is concernedwith the possibility of plane wave propagation in a rotating elastic medium under the action of magnetic and thermal fields. The material is assumed to be fibre-reinforced with increased stiffness, strength and load bearing capacity. Green and Nagdhi’s concepts of generalized thermoelastic models II and III have been followed in the governing equations expressed in tensor notation. The effects of various parameters of the applied fields on the plane wave velocity have been shown graphically.

  3. A semi-analytical approach towards plane wave analysis of local resonance metamaterials using a multiscale enriched continuum description

    NARCIS (Netherlands)

    Sridhar, A.; Kouznetsova, V.; Geers, M.G.D.

    2017-01-01

    This work presents a novel multiscale semi-analytical technique for the acoustic plane wave analysis of (negative) dynamic mass density type local resonance metamaterials with complex micro-structural geometry. A two step solution strategy is adopted, in which the unit cell problem at the

  4. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    International Nuclear Information System (INIS)

    Dunnington, Benjamin D.; Schmidt, J. R.

    2015-01-01

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches

  5. ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers

    Science.gov (United States)

    Torrent, Marc

    2014-03-01

    For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization

  6. High Intensity Compton Scattering in a strong plane wave field of general form

    International Nuclear Information System (INIS)

    Hartin, A.; Moortgat-Pick, G.; Hamburg Univ.

    2011-06-01

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  7. Beam Dynamics a Integrated Plane Wave Transformer Photoinjector at S- and X- band

    Science.gov (United States)

    Rosenzweig, J. B.; Ding, X.; Pellegrini, X.; Serafini, L.; Yu, D.

    1997-05-01

    The beam dynamics of an integrated S-band rf photoinjector based on the plane wave transformer concept, proposed as part of an SBIR collaboration between UCLA and DULY Research, are studied. The intial design, which calls for an 11.5 cell structure run at a peak on-axis accelerating field of 60 MV/m, and has a compact solenoid around the intial 2.5 cells, is based on the recently developed theory of emittance compensation(L.Serafini, and J.B. Rosenzweig, submitted to Physical Review E.). It calls for matching the beam onto an envelope which is a generalized Brillouin flow, producing a beam which diminishes in transverse size as the square root of the accelerating beam energy. This condition produces a minimized emittance, which for the S-band case is 1 mm-rad at at charge of 1 nC. This design is also scaled to produce nearly identical performance at X-band, giving an injector appropriate to running an FEL at the SLAC NLCTA. It is noted that these designs are insensitive to rf emittance increase, allowign a choice of injection phase, and the option to compress the emitted pulse.

  8. Four-dimensional parameter estimation of plane waves using swarming intelligence

    International Nuclear Information System (INIS)

    Zaman Fawad; Munir Fahad; Khan Zafar Ullah; Qureshi Ijaz Mansoor

    2014-01-01

    This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte—Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise. (interdisciplinary physics and related areas of science and technology)

  9. An Enhanced Plane Wave Expansion Method to Solve Piezoelectric Phononic Crystal with Resonant Shunting Circuits

    Directory of Open Access Journals (Sweden)

    Ziyang Lian

    2016-01-01

    Full Text Available An enhanced plane wave expansion (PWE method is proposed to solve piezoelectric phononic crystal (PPC connected with resonant shunting circuits (PPC-C, which is named as PWE-PPC-C. The resonant shunting circuits can not only bring about the locally resonant (LR band gap for the PPC-C but also conveniently tune frequency and bandwidth of band gaps through adjusting circuit parameters. However, thus far, more than one-dimensional PPC-C has been studied just by Finite Element method. Compared with other methods, the PWE has great advantages in solving more than one-dimensional PC as well as various lattice types. Nevertheless, the conventional PWE cannot accurately solve coupling between the structure and resonant shunting circuits of the PPC-C since only taking one-way coupling from displacements to electrical parameters into consideration. A two-dimensional PPC-C model of orthorhombic lattice is established to demonstrate the whole solving process of PWE-PPC-C. The PWE-PPC-C method is validated by Transfer Matrix method as well as Finite Element method. The dependence of band gaps on circuit parameters has been investigated in detail by PWE-PPC-C. Its advantage in solving various lattice types is further illustrated by calculating the PPC-C of triangular and hexagonal lattices, respectively.

  10. High Intensity Compton Scattering in a strong plane wave field of general form

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moortgat-Pick, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-06-15

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons, an integration over one of the phase space components and the Fourier transforms of the Volkov phases. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically and numerically. (orig.)

  11. On plane-wave relativistic electrodynamics in plasmas and in vacuum

    International Nuclear Information System (INIS)

    Fiore, Gaetano

    2014-01-01

    We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. In response to this penetration, the electrons are pulled back by the electric force exerted by the ions and the other displaced electrons and may leave the plasma with high energy in the direction opposite to that of propagation of the pulse ‘slingshot effect’ (Fiore G et al 2013 arXiv:1309.1400). (paper)

  12. Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2015-02-01

    The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.

  13. Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum

    Science.gov (United States)

    Engel, Eberhard

    2018-04-01

    Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.

  14. Mobile ultrasound plane wave beamforming on iPhone or iPad using metal-based GPU processing

    OpenAIRE

    Hewener, H.; Tretbar, S.

    2015-01-01

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like Apple iPad for full signal processing of raw data for ultraound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobil...

  15. Magnetism of hexagonal close-packed nickel calculated by full-potential linearized augmented plane wave method

    International Nuclear Information System (INIS)

    Tian, F.; Tian, H.; Whitmore, L.; Ye, L.Y.

    2015-01-01

    The energy dependent on volume of hexagonal close-packed (hcp) nickel with different magnetism is calculated by full-potential linearized augmented plane wave method. Based on the calculation ferromagnetic state is found to be the most stable state. The magnetic moment of hcp Ni is calculated and compared to those calculated by different pseudo-potential methods. Furthermore, it is also compared to that of face-centered cubic (fcc) one with the reason discussed

  16. Magnetoelastic plane waves in rotating media in thermoelasticity of type II (G-N model

    Directory of Open Access Journals (Sweden)

    S. K. Roychoudhuri

    2004-01-01

    Full Text Available A study is made of the propagation of time-harmonic plane waves in an infinite, conducting, thermoelastic solid permeated by a uniform primary external magnetic field when the entire medium is rotating with a uniform angular velocity. The thermoelasticity theory of type II (G-N model (1993 is used to study the propagation of waves. A more general dispersion equation is derived to determine the effects of rotation, thermal parameters, characteristic of the medium, and the external magnetic field. If the primary magnetic field has a transverse component, it is observed that the longitudinal and transverse motions are linked together. For low frequency (χ≪1, χ being the ratio of the wave frequency to some standard frequency ω∗, the rotation and the thermal field have no effect on the phase velocity to the first order of χ and then this corresponds to only one slow wave influenced by the electromagnetic field only. But to the second order of χ, the phase velocity, attenuation coefficient, and the specific energy loss are affected by rotation and depend on the thermal parameters cT, cT being the nondimensional thermal wave speed of G-N theory, and the thermoelastic coupling εT, the electromagnetic parameters εH, and the transverse magnetic field RH. Also for large frequency, rotation and thermal field have no effect on the phase velocity, which is independent of primary magnetic field to the first order of (1/χ (χ≫1, and the specific energy loss is a constant, independent of any field parameter. However, to the second order of (1/χ, rotation does exert influence on both the phase velocity and the attenuation factor, and the specific energy loss is affected by rotation and depends on the thermal parameters cT and εT, electromagnetic parameter εH, and the transverse magnetic field RH, whereas the specific energy loss is independent of any field parameters to the first order of (1/χ.

  17. Inverse scattering of a layered and dispersionless dielectric half-space - 1. reflection data from plane waves at normal incidence

    International Nuclear Information System (INIS)

    Coen, S.

    1981-01-01

    The theory given by Moses and deRidder is modified so that the derivative of the solution of the Gelfand-Levitan integral equation is not required. Based on this modification, a numerical procedure is developed which approximately constructs the dielectric profile of the layered half-space from the impulse response. Moreover, an inverse scattering theory is developed for a Goupillaud-type dielectric medium, and a fast numerical procedure based on the Berryman and Greene algorithm is presented. The performance of the numerical algorithms is examined by applying them to pecise and imprecise artificial impulse response data. 11 refs

  18. Plane-wave and common-translation-factor treatments of He2++H collisions at high velocities

    International Nuclear Information System (INIS)

    Errea, L.F.; Harel, C.; Jouin, H.; Maidagan, J.M.; Mendez, L.; Pons, B.; Riera, A.

    1992-01-01

    We complement previous work that showed that the molecular approach, modified with plane-wave translation factors, is able to reproduce the fall of charge-exchange cross sections in He 2+ +H collisions, by presenting the molecular data, and studying the corresponding mechanism. We test the accuracy of simplifications of the method that have been employed in the literature, and that lead to very simple calculations. We show that the common-translation-factor method is also successful at high nuclear velocities, provided that sufficiently excited states are included in the basis; moreover, it yields a simple picture of the mechanism and a description of ionization processes at high velocities

  19. Density fitting for derivatives of Coulomb integrals in ab initio calculations using mixed Gaussian and plane-wave basis

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2009-01-01

    Roč. 109, č. 620 (2009), s. 1237-1242 ISSN 0020-7608 R&D Projects: GA ČR GA203/07/0070; GA ČR GA202/08/0631; GA AV ČR 1ET400400413; GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : Derivatives of Coulomb integrals * mixed Gaussian and plane-wave basis sets * electron scattering * computer time saving Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2009

  20. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    Science.gov (United States)

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  1. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    Science.gov (United States)

    Kilcrease, D. P.; Brookes, S.

    2013-12-01

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.

  2. Streaming experiment of gamma-ray obliquely incident on concrete shield wall with straight cylindrical ducts and verification of single scattering code

    International Nuclear Information System (INIS)

    Yamaji, Akio; Saito, Tetsuo.

    1988-01-01

    To investigate a proximity effect of ducts on shield performance against γ radiation, an experiment was performed at JRR-4 by entering the γ-ray beam into a concrete shield wall of 100 cm-thickness with 3 or 5 straight cylindrical ducts of radius of 4.45 cm placed in a straight line or crosswise at interval of 8.9 cm. The dose rates were measured using digital dosimeters on a horizontal line 20 cm apart from the rear of the wall with 0, 1, 3 and 5 ducts, and with the incident angles of 0deg, 7deg, 14deg and 20deg, respectively. The dose rate distributions depended on the number of ducts and the incident angle, and the dose rate ratios of with-three-ducts to no-duct distributed within 3.6∼12, 1.3∼5.0 and 1.1∼4.3, for the incident angles of 7deg, 14deg and 20deg, while those of with-single-duct to no-duct within 1.2∼7.1, 1.1∼2.7 and 1.0∼1.9, respectively. The experiment was analyzed using a multigroup single scattering code G33YSN able to deal with the geometry of the ducts exactly. For each incident angle, the calculation agreed with the experiment within a factor of 2. (author)

  3. Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint

    Science.gov (United States)

    Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian

    2017-10-01

    The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.

  4. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  5. Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field

    International Nuclear Information System (INIS)

    Ni Guyan; Yan Li; Yuan Naichang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum–Liu–Tesche (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent. (the physics of elementary particles and fields)

  6. Time-domain analytic Solutions of two-wire transmission line excited by a plane-wave field

    Institute of Scientific and Technical Information of China (English)

    Ni Gu-Yan; Yan Li; Yuan Nai-Chang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain.By the frequency-domain Baum-Liu-Tesche(BLT)equation,the time-domain analytic solutions are obtained and expressed in an infinite geometric series.Moreover,it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval.In other word.the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval.The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform,and the agreement is excellent.

  7. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    Science.gov (United States)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  8. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    Science.gov (United States)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  9. Comparison of additional boundary conditions based on thermoreflectance spectra of the Asub(n=1)-exciton in CdS crystals at oblique incidence

    International Nuclear Information System (INIS)

    Stoessel, W.; Wagner, H.J.

    1978-01-01

    Thermoreflectance spectra of the Asub(n=1)-exciton in CdS are measured at 8 K for angles of incidence of the light ranging from 5 0 to 85 0 , using three different spatial arrangements between the c-axis, the E- and k-vector of light. Additional boundary conditions of Pekar, Ting et al. Agarwal et al. are discussed for the first time in terms of optical constants. The refractive indices for these additional boundary conditions are derived, considering special features of CdS, such as optical anisotropy, exciton symmetry, and effective exciton mass anisotropy. Fitting calculations based on the experimental data show that Pekar's additional boundary condition gives the best agreement between theory and experiment. (author)

  10. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    International Nuclear Information System (INIS)

    Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu

    2015-01-01

    Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator

  11. On the comparsion of the Spherical Wave Expansion-to-Plane Wave Expansion and the Sources Reconstruction Method for Antenna Diagnostics

    DEFF Research Database (Denmark)

    Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando

    2008-01-01

    A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), based...

  12. On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Vazquez, D.E.

    2007-09-13

    This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)

  13. The D-instanton and other supersymmetric D-branes in IIB plane-wave string theory

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Green, Michael B.

    2003-01-01

    A class of D-branes for the type IIB plane-wave background is considered that preserve half the dynamical supersymmetries of the light-cone gauge. The D-branes of this type are the Euclidean (or instantonic) (0,0), (0,4), and (4,0) branes (where (r,s) denotes a brane oriented with r axes in the first four directions transverse to the +, - light-cone, and s axes in the second four directions). Corresponding Lorentzian D-branes are (+,-;0,0), (+,-;0,4), and (+,-;4,0). These are constructed in two ways. The first uses a boundary state formalism which implements appropriate fermionic gluing conditions and the second is based on a direct quantization of the open strings ending on the branes. In distinction to the D-branes considered earlier these have massless world-volume fermions but do not possess kinematical supersymmetries. Cylinder diagrams describing the overlap between a pair of boundary states displaced by some distance are evaluated. The open-string description of this system involves mode frequencies that are, in general, given by irrational solutions to transcendental equations. The closed-string and open-string descriptions are shown to be equivalent by a nontrivial implementation of the S modular transformation. A classical description of the D-instanton (the (0,0) case) in light-cone gauge is also given

  14. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    Science.gov (United States)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  15. On AdS/CFT correspondence beyond SUGRA: plane waves, free CFTs and double-trace deformations

    International Nuclear Information System (INIS)

    Diaz Vazquez, D.E.

    2007-01-01

    This thesis deals with three corners of the AdS/CFT Correspondence that lie one step beyond the classical supergravity (SUGRA) approximation. We first explore the BMN limit of the duality and study, in particular, the behavior of field theoretic propagators in the corresponding Penrose limit. We unravel the semiclassical (WKB-) exactness of the propagators in the resulting plane wave background metric. Then, we address the limit of vanishing coupling of the conformal field theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N) Vector Model duality, the conformal partial wave (CPW) expansion of scalar four-point functions are reorganized to make them suggestive of a bulk interpretation in term of a consistent truncated massless higher spin theory and their corresponding exchange Witten graphs. We also explore the connection to the interacting O(N) Vector Model at its infra-red fixed point, at leading large N. Finally, coming back to the gauge theory, we study the effect of a relevant double-trace deformations of the boundary CFT on the partition function and its dual bulk interpretation. We show how the one-loop computation in the Anti-de Sitter (AdS) space correctly reproduces the partition function and conformal anomaly of the boundary theory. In all, we get a clean test of the duality beyond the classical SUGRA approximation in the AdS bulk and at the corresponding next-to-leading 1/N order of the CFT at the conformal boundary. (orig.)

  16. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    International Nuclear Information System (INIS)

    Bakker, J F; Paulides, M M; Van Rhoon, G C; Christ, A; Kuster, N

    2010-01-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR wb ) and the peak 10 g spatial-averaged SAR (SAR 10g ). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR wb ) and 58% (SAR 10g ) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR wb is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR 10g values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  17. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, J F; Paulides, M M; Van Rhoon, G C [Erasmus MC-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Section Hyperthermia, PO box 5201, NL-3008 AE, Rotterdam (Netherlands); Christ, A; Kuster, N, E-mail: j.bakker@erasmusmc.n [Foundation for Research on Information Technologies in Society (IT' IS) (Switzerland)

    2010-06-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels from the basic restrictions on the induced whole-body-averaged specific absorption rate (SAR{sub wb}) and the peak 10 g spatial-averaged SAR (SAR{sub 10g}). The objective of this study is to assess if the SAR in children remains below the basic restrictions upon exposure at the reference levels. Finite difference time domain (FDTD) modeling was used to calculate the SAR in six children and two adults when exposed to all 12 orthogonal plane wave configurations. A sensitivity study showed an expanded uncertainty of 53% (SAR{sub wb}) and 58% (SAR{sub 10g}) due to variations in simulation settings and tissue properties. In this study, we found that the basic restriction on the SAR{sub wb} is occasionally exceeded for children, up to a maximum of 45% in small children. The maximum SAR{sub 10g} values, usually found at body protrusions, remain under the limit for all scenarios studied. Our results are in good agreement with the literature, suggesting that the recommended ICNIRP reference levels may need fine tuning.

  18. Coupled sandbar patterns and obliquely incident waves

    NARCIS (Netherlands)

    Price, T.D.; Castelle, B.; Ranasinghe, R.; Ruessink, B.G.

    2013-01-01

    In double sandbar systems, the alongshore variability in the inner bar oftenresembles that of the outer bar, suggesting that the outer bar acts as a morphologicaltemplate for the inner bar. Earlier observations have indicated that this resemblance, alsotermed “coupling,” may take several forms. Here

  19. Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Buchman, L.T.

    2002-01-01

    We investigate how the accuracy and stability of numerical relativity simulations of 1D colliding plane waves depends on choices of equation formulations, gauge conditions, boundary conditions, and numerical methods, all in the context of a first-order 3+1 approach to the Einstein equations, with basic variables some combination of first derivatives of the spatial metric and components of the extrinsic curvature tensor. Hyperbolic schemes, specifically variations on schemes proposed by Bona and Masso and Anderson and York, are compared with variations of the Arnowitt-Deser-Misner formulation. Modifications of the three basic schemes include raising one index in the metric derivative and extrinsic curvature variables and adding a multiple of the energy constraint to the extrinsic curvature evolution equations. Redundant variables in the Bona-Masso formulation may be reset frequently or allowed to evolve freely. Gauge conditions which simplify the dynamical structure of the system are imposed during each time step, but the lapse and shift are reset periodically to control the evolution of the spacetime slicing and the longitudinal part of the metric. We show that physically correct boundary conditions, satisfying the energy and momentum constraint equations, generically require the presence of some ingoing eigenmodes of the characteristic matrix. Numerical methods are developed for the hyperbolic systems based on decomposing flux differences into linear combinations of eigenvectors of the characteristic matrix. These methods are shown to be second-order accurate, and in practice second-order convergent, for smooth solutions, even when the eigenvectors and eigenvalues of the characteristic matrix are spatially varying

  20. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

    Science.gov (United States)

    Hutter, Jürg

    2003-03-01

    An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

  1. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides

    International Nuclear Information System (INIS)

    Li Zhiyuan; Ho Kaiming

    2003-01-01

    The plane-wave-based transfer-matrix method (TMM) exhibits a peculiar advantage of being capable of solving eigenmodes involved in an infinite photonic crystal and electromagnetic (EM) wave propagation in finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical framework. In addition, this theoretical approach can achieve much improved numerical convergency in solution of photonic band structures than the conventional plane-wave expansion method. In this paper we employ this TMM in combination with a supercell technique to handle two important kinds of three-dimensional (3D) photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed to investigate structures with or without complete 3D optical confinement. The fact that the EM field components investigated in the TMM are collinear with the symmetric axes of the waveguide brings great convenience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The classification of symmetry involved in the guided modes can help people to better understand the coupling of the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides

  2. The effect of finite-difference time-domain resolution and power-loss computation method on SAR values in plane-wave exposure of Zubal phantom

    International Nuclear Information System (INIS)

    Uusitupa, T M; Ilvonen, S A; Laakso, I M; Nikoskinen, K I

    2008-01-01

    In this paper, the anatomically realistic body model Zubal is exposed to a plane wave. A finite-difference time-domain (FDTD) method is used to obtain field data for specific-absorption-rate (SAR) computation. It is investigated how the FDTD resolution, power-loss computation method and positioning of the material voxels in the FDTD grid affect the SAR results. The results enable one to estimate the effects due to certain fundamental choices made in the SAR simulation

  3. Simulation of angle-resolved photoemission spectra by approximating the final state by a plane wave: From graphene to polycyclic aromatic hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Puschnig, Peter, E-mail: peter.puschnig@uni-graz.at; Lüftner, Daniel

    2015-04-15

    Highlights: • Computational study on angular dependent photoemission spectroscopy. • Graphene and polycyclic aromatic hydrocarbon molecules. • Plane wave final state approximation accounts for experimental findings. - Abstract: We present a computational study on the angular-resolved photoemission spectra (ARPES) from a number of polycyclic aromatic hydrocarbons and graphene. Our theoretical approach is based on ab-initio density functional theory and the one-step model where we greatly simplify the evaluation of the matrix element by assuming a plane wave for the final state. Before comparing our ARPES simulations with available experimental data, we discuss how typical approximations for the exchange-correlation energy affect orbital energies. In particular, we show that by employing a hybrid functional, considerable improvement can be obtained over semi-local functionals in terms of band widths and relative energies of π and σ states. Our ARPES simulations for graphene show that the plane wave final state approximation provides indeed an excellent description when compared to experimental band maps and constant binding energy maps. Furthermore, our ARPES simulations for a number of polycyclic aromatic molecules from the oligo-acene, oligo-phenylene, phen-anthrene families as well as for disc-shaped molecules nicely illustrate the evolution of the electronic structure from molecules with increasing size towards graphene.

  4. Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

    International Nuclear Information System (INIS)

    Michalicek, Gregor

    2015-01-01

    Density functional theory (DFT) is the most widely-used first-principles theory for analyzing, describing and predicting the properties of solids based on the fundamental laws of quantum mechanics. The success of the theory is a consequence of powerful approximations to the unknown exchange and correlation energy of the interacting electrons and of sophisticated electronic structure methods that enable the computation of the density functional equations on a computer. A widely used electronic structure method is the full-potential linearized augmented plane-wave (FLAPW) method, that is considered to be one of the most precise methods of its kind and often referred to as a standard. Challenged by the demand of treating chemically and structurally increasingly more complex solids, in this thesis this method is revisited and extended along two different directions: (i) precision and (ii) efficiency. In the full-potential linearized augmented plane-wave method the space of a solid is partitioned into nearly touching spheres, centered at each atom, and the remaining interstitial region between the spheres. The Kohn-Sham orbitals, which are used to construct the electron density, the essential quantity in DFT, are expanded into a linearized augmented plane-wave basis, which consists of plane waves in the interstitial region and angular momentum dependent radial functions in the spheres. In this thesis it is shown that for certain types of materials, e.g., materials with very broad electron bands or large band gaps, or materials that allow the usage of large space-filling spheres, the variational freedom of the basis in the spheres has to be extended in order to represent the Kohn-Sham orbitals with high precision over a large energy spread. Two kinds of additional radial functions confined to the spheres, so-called local orbitals, are evaluated and found to successfully eliminate this error. A new efficient basis set is developed, named linearized augmented lattice

  5. Generation of an incident focused light pulse in FDTD.

    Science.gov (United States)

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  6. On experimental determination of the random-incidence response of microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2007-01-01

    The random-incidence sensitivity of a microphone is defined as the ratio of the output voltage to the sound pressure that would exist at the position of the acoustic center of the microphone in the absence of the microphone in a sound field with incident plane waves coming from all directions. Th...

  7. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-12-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  8. Plane-Wave Implementation and Performance of à-la-Carte Coulomb-Attenuated Exchange-Correlation Functionals for Predicting Optical Excitation Energies in Some Notorious Cases.

    Science.gov (United States)

    Bircher, Martin P; Rothlisberger, Ursula

    2018-06-12

    Linear-response time-dependent density functional theory (LR-TD-DFT) has become a valuable tool in the calculation of excited states of molecules of various sizes. However, standard generalized-gradient approximation and hybrid exchange-correlation (xc) functionals often fail to correctly predict charge-transfer (CT) excitations with low orbital overlap, thus limiting the scope of the method. The Coulomb-attenuation method (CAM) in the form of the CAM-B3LYP functional has been shown to reliably remedy this problem in many CT systems, making accurate predictions possible. However, in spite of a rather consistent performance across different orbital overlap regimes, some pitfalls remain. Here, we present a fully flexible and adaptable implementation of the CAM for Γ-point calculations within the plane-wave pseudopotential molecular dynamics package CPMD and explore how customized xc functionals can improve the optical spectra of some notorious cases. We find that results obtained using plane waves agree well with those from all-electron calculations employing atom-centered bases, and that it is possible to construct a new Coulomb-attenuated xc functional based on simple considerations. We show that such a functional is able to outperform CAM-B3LYP in some cases, while retaining similar accuracy in systems where CAM-B3LYP performs well.

  9. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    International Nuclear Information System (INIS)

    Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  10. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-04-15

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  11. Quasi-binary incident electron–centre of mass collision in (e, 3e ...

    Indian Academy of Sciences (India)

    These two geometrical modes are such that the quasi-binary collision between the incident electron and centre of mass of the ejected electrons is in the scattering plane. The theoretical formalism has been developed using plane waves,. Le Sech wave function and approximated BBK-type wave function respectively for the.

  12. Quasi-binary incident electron–centre of mass collision in (e, 3e ...

    Indian Academy of Sciences (India)

    These two geometrical modes are such that the quasi-binary collision between the incident electron and centre of mass of the ejected electrons is in the scattering plane. The theoretical formalism has been developed using plane waves, Le Sech wave function and approximated BBK-type wave function respectively for the ...

  13. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    Science.gov (United States)

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  14. Searching for stable Si(n)C(n) clusters: combination of stochastic potential surface search and pseudopotential plane-wave Car-Parinello simulated annealing simulations.

    Science.gov (United States)

    Duan, Xiaofeng F; Burggraf, Larry W; Huang, Lingyu

    2013-07-22

    To find low energy Si(n)C(n) structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each Si(n)C(n) cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to Si(n)C(n) (n = 4-12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each Si(n)C(n) cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  15. Searching for Stable SinCn Clusters: Combination of Stochastic Potential Surface Search and Pseudopotential Plane-Wave Car-Parinello Simulated Annealing Simulations

    Directory of Open Access Journals (Sweden)

    Larry W. Burggraf

    2013-07-01

    Full Text Available To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA. We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12 clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region.

  16. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids

    International Nuclear Information System (INIS)

    Holzwarth, N.A.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y.

    1997-01-01

    The projector augmented-wave (PAW) method was developed by Bloechl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his open-quotes soft pseudopotentialclose quotes formalism and in earlier work by Bloechl in his open-quotes generalized separable potentials,close quotes and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF 2 , fcc Ca, and bcc V. With the exception of CaF 2 , for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms. copyright 1997 The American Physical Society

  17. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  18. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization.

    Science.gov (United States)

    Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico

    2011-03-07

    Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.

  19. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH 3 , CO 2 , formic acid, and benzene

  20. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    Science.gov (United States)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-09-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.

  1. Document segmentation via oblique cuts

    Science.gov (United States)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  2. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations

    DEFF Research Database (Denmark)

    Kamran, Faisal; Andersen, Peter E.

    2015-01-01

    profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical...

  3. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    Science.gov (United States)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  4. Study of obliquely deposited thin cobalt films

    International Nuclear Information System (INIS)

    Szmaja, W.; Kozlowski, W.; Balcerski, J.; Kowalczyk, P.J.; Grobelny, J.; Cichomski, M.

    2010-01-01

    Research highlights: → The paper reports simultaneously on the magnetic domain structure of obliquely deposited thin cobalt films (40 nm and 100 nm thick) and their morphological structure. Such studies are in fact rare (Refs. cited in the paper). → Moreover, to our knowledge, observations of the morphological structure of these films have not yet been carried out simultaneously by transmission electron microscopy (TEM) and atomic force microscopy (AFM). → The films of both thicknesses were found to have uniaxial in-plane magnetic anisotropy. → The magnetic microstructure of the films 40 nm thick was composed of domains running and magnetized predominantly in the direction perpendicular to the incidence plane of the vapor beam. → As the film thickness was changed from 40 nm to 100 nm, the magnetic anisotropy was observed to change from the direction perpendicular to parallel with respect to the incidence plane. → Thanks to the application of TEM and AFM, complementary information on the morphological structure of the films could be obtained. → In comparison with TEM images, AFM images revealed grains larger in size and slightly elongated in the direction perpendicular rather than parallel to the incidence plane. → These experimental findings clearly show that surface diffusion plays an important role in the process of film growth. → For the films 40 nm thick, the alignment of columnar grains in the direction perpendicular to the incidence plane was observed. → This correlates well with the magnetic domain structure of these films. → For the films 100 nm thick, the perpendicular alignment of columnar grains could also be found, although in fact with larger difficulty. → TEM studies showed that the films consisted mainly of the hexagonal close-packed (HCP) crystalline structure, but no preferred crystallographic orientation of the grains could be detected for the films of both thicknesses. → For the films 100 nm thick, the alignment of

  5. Oblique photon expansion of QED structure functions

    International Nuclear Information System (INIS)

    Chahine, C.

    1986-01-01

    In the oblique photon expansion, the collinear part of photon emission is summed up to all orders in perturbation theory. The number of oblique or non-collinear photons is the expansion order. Unlike in perturbation theory, every term of the expansion is both infrared finite and gauge invariant. The zero oblique photon contribution to the electromagnetic structure tensor in QED is computed in detail. The behaviors of the structure functions F1 and F2 are discussed in the soft and ultra-soft limits

  6. Infra Patellar Branch of Saphenous Nerve Injury during Hamstring Graft Harvest: Vertical versus Oblique Incisions.

    Science.gov (United States)

    Joshi, A; Kayasth, N; Shrestha, S; Kc, B R

    2016-09-01

    Autologous hamstring grafts are commonly used for anterior cruciate ligament reconstruction. The injury of infrapatellar branch of saphenous nerve is one of the concerns leading to various pattern of sensory loss in the operated leg. An oblique incision to harvest the graft has been reported to be better than the vertical one.The aim of this study was to compare the incidence, recovery of nerve injury and final outcome in patients with hamstring harvest of vertical or oblique incision. A total of 146 patients who underwent hamstring graft harvest for anterior cruciate ligament reconstruction, were included in the study. They were randomized into two (Vertical and Oblique) groups as per the incisions used. The sensory loss along the Infra Patellar Branch of Saphenous Nerve was documented on 3rd day. Recovery of the nerve injury was monitoredat three, six and 12 months follow-ups. At final follow up Tegner Lysholm score and scale was recorded to compare between two groups. The incidence of infrapatellar branch of saphenous nerve injury was 25% in vertical group and 16.36% in oblique group. Recovery of nerve injury started earlier in oblique group compared to vertical group. The mean TegnerLyshom score was not significantly different in both the groups. Oblique incision to harvest hamstring graft has lesser incidence of infrapatellar branch of saphenous nerve injury, recovers earlier and does not have any adverse effect on final outcome compared to the vertical incision.

  7. Thermal transport in oblique finned microminichannels

    CERN Document Server

    Fan, Yan; Singh, Pawan Kumar; Lee, Yong Jiun

    2015-01-01

    The main aim of this book is to introduce and give an overview of a novel, easy, and highly effective heat transfer augmentation technique for single-phase micro/minichannel heat sink. The specific objectives of the volume are to: Introduce a novel planar oblique fin microchannel and cylindrical oblique fin minichannel heat sink design using passive heat transfer enhancement techniques  Investigate the thermal transport in both planar and cylindrical oblique fin structures through numerical simulation and systematic experimental studies. Evaluate the feasibility of employing the proposed solution in cooling non-uniform heat fluxes and hotspot suppression Conduct the similarity analysis and parametric study to obtain empirical correlations to evaluate the total heat transfer rate of the oblique fin heat sink Investigate the flow mechanism and optimize the dimensions of cylindrical oblique fin heat sink Investigate the influence of edge effect on flow and temperature uniformity in these oblique fin chan...

  8. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  9. Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tokas, R. B., E-mail: tokasstar@gmail.com; Jena, Shuvendu; Thakur, S.; Sahoo, N. K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India); Haque, S. Maidul; Rao, K. Divakar [Photonics & Nanotechnology Section, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam-530012 (India)

    2016-05-23

    In present work, HfO{sub 2} thin films have been deposited at various oblique incidences on Si substrates by electron beam evaporation. These refractory oxide films exhibited anisotropy in refractive index predictably due to special columnar microstructure. Spectroscopic ellipsometry being a powerful tool for optical characterization has been employed to investigate optical anisotropy. It was observed that the film deposited at glancing angle (80°) exhibits the highest optical anisotropy. Further, anisotropy was noticed to decrease with lower values of deposition angles while effective refractive index depicts opposite trend. Variation in refractive index and anisotropy has been explained in light of atomic shadowing during growth of thin films at oblique angles.

  10. Superior oblique luxation and trochlear luxation as new concepts in superior oblique muscle weakening surgery

    NARCIS (Netherlands)

    Mombaerts, I.; Koornneef, L.; Everhard-Halm, Y. S.; Hughes, D. S.; Maillette de Buy Wenniger-Prick, L. J.

    1995-01-01

    We used superior oblique luxation and trochlear luxation as new surgical procedures to treat acquired Brown's syndrome and superior oblique muscle overaction. We studied nine patients (11 eyes) who underwent trochlear surgery between 1988 and 1993. Four patients had acquired Brown's syndrome and

  11. Surgical treatment of superior oblique palsy: Predictors of outcome

    Directory of Open Access Journals (Sweden)

    Pilar Merino Sanz

    2017-01-01

    Full Text Available Purpose: The purpose of this study was to evaluate the incidence and outcome of surgically treated superior oblique palsy (SOP and the factors involved in its resolution. Methods: We performed a retrospective study of 76 patients who underwent surgery for SOP. We recorded data from the physical examination and the number and type of procedures performed. Favorable outcome was defined as resolution of or improvement in torticollis (≤5° and diplopia in primary position (PP and downgaze or as vertical deviation (VD <5 prism diopters (pd in PP and 10 pd in the oblique diagnostic position. Results: Mean age was 33.12 years. Congenital SOP was the most frequent type (65.8%. Mean preoperative VD was 15.89 ± 9.94 pd, decreasing to 3.07 ± 4.36 pd after surgery. Associated horizontal deviation was recorded in 51.32% of cases. The mean number of procedures was 1.37 ± 0.62 (range 1–4, with 69.7% of patients requiring only one procedure. The mean number of muscles operated on was 1.96 ± 1.01 (inferior oblique being the most frequent. A greater reduction in VD after surgery was observed in patients with congenital SOP (P = 0.04. Although none of the factors evaluated influenced surgical outcome, amblyopic patients had a greater risk of reoperation (P = 0.04. A favorable outcome was achieved in 75% of cases. Mean follow-up was 37.08 months. Conclusion: Congenital SOP was twice as frequent as acquired SOP and although surgery was successful in most cases, a greater reduction in VD was obtained in congenital cases. Amblyopia was identified as a risk factor for reoperation.

  12. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    Science.gov (United States)

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (pinternal oblique (pexternal oblique (pinternal oblique (pexternal oblique: pinternal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  14. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    International Nuclear Information System (INIS)

    Tuite, M.J.; Asinger, D.; Orwin, J.F.

    2001-01-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  15. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J; Asinger, D; Orwin, J F [Dept. of Radiology, Univ. of Wisconsin Hospital and Clinics, Madison, WI (United States)

    2001-05-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  16. Estimation of spin contamination error in dissociative adsorption of Au2 onto MgO(0 0 1) surface: First application of approximate spin projection (AP) method to plane wave basis

    Science.gov (United States)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-06-01

    Spin contamination error in the total energy of the Au2/MgO system was estimated using the density functional theory/plane-wave scheme and approximate spin projection methods. This is the first investigation in which the errors in chemical phenomena on a periodic surface are estimated. The spin contamination error of the system was 0.06 eV. This value is smaller than that of the dissociation of Au2 in the gas phase (0.10 eV). This is because of the destabilization of the singlet spin state due to the weakening of the Au-Au interaction caused by the Au-MgO interaction.

  17. Obliquity Modulation of the Incoming Solar Radiation

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  18. A note on oblique water entry

    KAUST Repository

    Moore, M. R.; Howison, S. D.; Ockendon, J. R.; Oliver, J. M.

    2012-01-01

    A minor error in Howison et al. (J. Eng. Math. 48:321-337, 2004) obscured the fact that the points at which the free surface turns over in the solution of the Wagner model for the oblique impact of a two-dimensional body are directly related

  19. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  20. A case of dorsal oblique fingertip amputation.

    Science.gov (United States)

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai's classification is appropriate for guiding treatment.

  1. A case of dorsal oblique fingertip amputation

    OpenAIRE

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    Abstract This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai?s classification is appropriate for guiding treatment.

  2. Orientation Strategies for Aerial Oblique Images

    Science.gov (United States)

    Wiedemann, A.; Moré, J.

    2012-07-01

    Oblique aerial images become more and more distributed to fill the gap between vertical aerial images and mobile mapping systems. Different systems are on the market. For some applications, like texture mapping, precise orientation data are required. One point is the stable interior orientation, which can be achieved by stable camera systems, the other a precise exterior orientation. A sufficient exterior orientation can be achieved by a large effort in direct sensor orientation, whereas minor errors in the angles have a larger effect than in vertical imagery. The more appropriate approach is by determine the precise orientation parameters by photogrammetric methods using an adapted aerial triangulation. Due to the different points of view towards the object the traditional aerotriangulation matching tools fail, as they produce a bunch of blunders and require a lot of manual work to achieve a sufficient solution. In this paper some approaches are discussed and results are presented for the most promising approaches. We describe a single step approach with an aerotriangulation using all available images; a two step approach with an aerotriangulation only of the vertical images plus a mathematical transformation of the oblique images using the oblique cameras excentricity; and finally the extended functional model for a bundle block adjustment considering the mechanical connection between vertical and oblique images. Beside accuracy also other aspects like efficiency and required manual work have to be considered.

  3. Oblique patterned etching of vertical silicon sidewalls

    Science.gov (United States)

    Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.

    2016-04-01

    A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  4. Simple Way of Generating Oblique Impact

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Dvořáková, Pavla; Veselý, Eduard

    2007-01-01

    Roč. 31, č. 2 (2007), s. 28-32 ISSN 0732-8818 Institutional research plan: CEZ:AV0Z20760514 Keywords : oblique impact * exploding wire * holography Subject RIV: JR - Other Machinery Impact factor: 0.400, year: 2007

  5. Plasmas fluxes to surfaces for an oblique magnetic field

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D α , He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ''Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface

  6. Injury risk functions for frontal oblique collisions.

    Science.gov (United States)

    Andricevic, Nino; Junge, Mirko; Krampe, Jonas

    2018-03-09

    The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.

  7. Inferior Oblique Overaction: Anterior Transposition Versus Myectomy.

    Science.gov (United States)

    Rajavi, Zhale; Feizi, Mohadeseh; Behradfar, Narges; Yaseri, Mehdi; Sayanjali, Shima; Motevaseli, Tahmine; Sabbaghi, Hamideh; Faghihi, Mohammad

    2017-07-01

    To compare the efficacy of inferior oblique myectomy and anterior transposition for correcting inferior oblique overaction (IOOA). This retrospective study was conducted on 56 patients with IOOA who had either myectomy or anterior transposition of the inferior oblique muscle from 2010 to 2015. The authors compared preoperative and postoperative inferior oblique muscle function grading (-4 to +4) as the main outcome measure and vertical and horizontal deviation, dissociated vertical deviation (DVD), and A- and V-pattern between the two surgical groups as secondary outcomes. A total of 99 eyes of 56 patients with a mean age of 5.9 ± 6.5 years were included (47 eyes in the myectomy group and 52 eyes in the anterior transposition group). There were no differences in preoperative best corrected visual acuity, amblyopia, spherical equivalent, and primary versus secondary IOOA between the two groups. Both surgical procedures were effective in reducing IOOA and satisfactory results were similar between the two groups: 61.7% and 67.3% in the myectomy and anterior transposition groups, respectively (P = .56). After adjustment for the preoperative DVD, there was no statistically significant difference between the two groups postoperatively. The preoperative hypertropia was 6 to 14 and 6 to 18 prism diopters (PD) in the myectomy and anterior transposition groups, respectively. After surgery, no patient had a vertical deviation greater than 5 PD. Both the inferior oblique myectomy and anterior transposition procedures are effective in reducing IOOA with similar satisfactory results. DVD and hypertropia were also corrected similarly by these two surgical procedures. [J Pediatr Ophthalmol Strabismus. 2017;54(4):232-237.]. Copyright 2017, SLACK Incorporated.

  8. Inferior oblique weakening surgery on ocular torsion in congenital superior oblique palsy

    Directory of Open Access Journals (Sweden)

    Jinho Lee

    2015-06-01

    Full Text Available AIM:To investigate changes in fundus excyclotorsion after inferior oblique myectomy or myotomy.METHODS:The records of 21 patients undergoing strabismus surgery by a single surgeon between 2009 and 2012 were examined. Only patients who had undergone an inferior oblique myectomy or myotomy, with or without horizontal rectus muscle surgery, were evaluated. Digital fundus photographs were obtained, and the angle formed by a horizontal line passing through the optic disc center and a reference line connecting the foveola and optic disc center was measured. Associated clinical factors examined include age at the time of surgery, presence or absence of a head tilt, degree of preoperative vertical deviation, torsional angle, inferior oblique muscle overaction/superior oblique muscle underaction, and surgery laterality. Whether the procedure was performed alone or in combination with a horizontal rectus muscle surgery was also examined.RESULTS:Mean preoperative torsional angle was 12.0±6.4°, which decreased to 6.9±5.7° after surgery (P<0.001, paired t-test. Torsional angle also decreased from 15.1±7.0° to 6.2±4.3° in the myectomy group (P<0.001, paired t-test but there were no significant changes in the myotomy group (P=0.093, Wilcoxon signed rank test. Multivariable linear regression analysis showed that preoperative torsional angle, degree of inferior oblique overaction, and age at surgery independently and significantly affected postoperative torsional angle.CONCLUSION:Mean torsional angle decreased after inferior oblique myectomy. Degree of preoperative torsional angle, inferior oblique overaction, and age at surgery influence postoperative torsional angle.

  9. Comparative study of unilateral versus bilateral inferior oblique recession/anteriorization in unilateral inferior oblique overaction.

    Science.gov (United States)

    Mostafa, Attiat M; Kassem, Rehab R

    2018-05-01

    To compare the effect of, and the rate of subsequent development of iatrogenic antielevation syndrome after, unilateral versus bilateral inferior oblique graded recession-anteriorization to treat unilateral inferior oblique overaction. Thirty-four patients with unilateral inferior oblique overaction were included in a randomized prospective study. Patients were equally divided into 2 groups. Group UNI underwent unilateral, group BI bilateral, inferior oblique graded recession-anteriorization. A successful outcome was defined as orthotropia, or within 2 ∆ of a residual hypertropia, in the absence of signs of antielevation syndrome, residual inferior oblique overaction, V-pattern, dissociated vertical deviation, or ocular torticollis. A successful outcome was achieved in 11 (64.7%) and 13 (76.5%) patients in groups UNI and BI, respectively (p = 0.452). Antielevation syndrome was diagnosed as the cause of surgical failure in 6 (35.3%) and 2 (11.8%) patients, in groups UNI and BI, respectively (p = 0.106). The cause of surgical failure in the other 2 patients in group BI was due to persistence of ocular torticollis and hypertropia in a patient with superior oblique palsy and a residual V-pattern and hypertropia in the other patient. The differences between unilateral and bilateral inferior oblique graded recession-anteriorization are insignificant. Unilateral surgery has a higher tendency for the subsequent development of antielevation syndrome. Bilateral surgery may still become complicated by antielevation syndrome, although at a lower rate. In addition, bilateral surgery had a higher rate of undercorrection. Further studies on a larger sample are encouraged.

  10. Characterization of Oblique Dual Frame Pairs

    DEFF Research Database (Denmark)

    Christensen, Ole; Eldar, Yonina

    2006-01-01

    Given a frame for a subspace W of a Hilbert space H, we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative characteriz...... for the case of shift-invariant spaces with a single generator. The theory is also adapted to the standard frame setting in which the original and dual frames are defined on the same space. Copyright (C) 2006 Hindawi Publishing Corporation. All rights reserved.......Given a frame for a subspace W of a Hilbert space H, we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative...

  11. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  12. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  13. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  14. Normal Incidence for Graded Index Surfaces

    Science.gov (United States)

    Khankhoje, Uday K.; Van Zyl, Jakob

    2011-01-01

    A plane wave is incident normally from vacuum (eta(sub 0) = 1) onto a smooth surface. The substrate has three layers; the top most layer has thickness d(sub 1) and permittivity epsilon(sub 1). The corresponding numbers for the next layer are d(sub 2); epsilon(sub 2), while the third layer which is semi-in nite has index eta(sub 3). The Hallikainen model [1] is used to relate volumetric soil moisture to the permittivity. Here, we consider the relation for the real part of the permittivity for a typical loam soil: acute epsilon(mv) = 2.8571 + 3.9678 x mv + 118:85 x mv(sup 2).

  15. Truncation correction for oblique filtering lines

    International Nuclear Information System (INIS)

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Guenter; Dennerlein, Frank; Noo, Frederic

    2008-01-01

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  16. Double elevator weakening for unilateral congenital superior oblique palsy with ipsilateral superior rectus contracture and lax superior oblique tendon.

    Science.gov (United States)

    Khan, Arif O

    2012-06-01

    In unilateral congenital superior oblique palsy, a large hypertropia is sometimes associated with ipsilateral contracture of the superior rectus muscle and apparent overaction of the contralateral superior oblique. Ipsilateral double elevator weakening is one surgical approach; however, this procedure could compromise supraduction. We report a series of three consecutive patients who underwent ipsilateral superior rectus and inferior oblique recessions for unilateral superior oblique palsy. Intraoperatively, all three patients were found to have a lax ipsilateral superior oblique tendon. Postoperatively, all three patients had satisfactory correction of the hypertropia and abnormal head position with minimal supraduction defect. This procedure seems to be an acceptable initial surgical option for treating congenital superior oblique muscle palsy with ipsilateral contracture of the superior rectus muscle, even when the ipsilateral superior oblique tendon is lax. Copyright © 2012 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  17. Natural Vibration of a Beam with a Breathing Oblique Crack

    Directory of Open Access Journals (Sweden)

    Yijiang Ma

    2017-01-01

    Full Text Available An analytical method is proposed to calculate the natural frequency of a cantilever beam with a breathing oblique crack. A double-linear-springs-model is developed in the modal analysis process to describe the breathing oblique crack, and the breathing behaviour of the oblique crack is objectively simulated. The finite element method (FEM analysis software ABAQUS is used to calculate the geometric correction factors when the cracked plate is subjected to a pure bending moment at different oblique crack angles and relative depths. The Galerkin method is applied to simplify the cracked beam to a single degree of freedom system, allowing the natural frequency of the beam with the breathing oblique crack to be calculated. Compared with the natural frequencies of the breathing oblique cracked beam obtained using the ABAQUS FEM method, the proposed analytical method exhibits a high computational accuracy, with a maximum error of only 4.65%.

  18. A note on oblique water entry

    KAUST Repository

    Moore, M. R.

    2012-10-02

    A minor error in Howison et al. (J. Eng. Math. 48:321-337, 2004) obscured the fact that the points at which the free surface turns over in the solution of the Wagner model for the oblique impact of a two-dimensional body are directly related to the turnover points in the equivalent normal impact problem. This note corrects some of the earlier results given in Howison et al. (J. Eng. Math. 48:321-337, 2004) and discusses the implications for the applicability of the Wagner model. © 2012 Springer Science+Business Media B.V.

  19. Flow and sediment transport across oblique channels

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen

    1998-01-01

    A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...

  20. A computational study on oblique shock wave-turbulent boundary layer interaction

    Science.gov (United States)

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  1. Subwavelength image manipulation through oblique and herringbone layered acoustic systems

    International Nuclear Information System (INIS)

    Li, Chunhui; Jia, Han; Ke, Manzhu; Li, Yixiang; Liu, Zhengyou

    2014-01-01

    In this paper, an oblique and a herringbone layered acoustic structure are experimentally and theoretically demonstrated to manipulate acoustic subwavelength images. An imaging resolution of less than one tenth of a wavelength is achieved with both optimized systems, and lateral image shift has been realized by an oblique layered system. The thicknesses of both the oblique and the herringbone layered acoustic systems are largely reduced through utilizing the oblique or herringbone wave propagation path instead of the vertical wave propagation path in the rectangular layered planar acoustic system. With smaller size and subwavelength image manipulation, the acoustic systems are more favourable for practical application. (paper)

  2. Plane waves in linear homogeneous media. III

    NARCIS (Netherlands)

    Graaf, de J.; Broer, L.J.F.

    1972-01-01

    In this third paper the program outlined in the introduction of the first paper is carried out for the second order propagation equation. We discuss successively a representation of the solution of the initial value problem, mode decomposition, quadratic conservation laws and their classification,

  3. Plane waves in linear homogeneous media. II

    NARCIS (Netherlands)

    Graaf, de J.; Broer, L.J.F.

    1972-01-01

    In this second paper the program outlined in the introduction of the first paper is carried out for the first order propagation equation. We discuss successively a representation of the solution of the initial value problem, mode decomposition, quadratic conservation laws and their classification,

  4. Oblique whistler instability in the earth's foreshock

    International Nuclear Information System (INIS)

    Sentman, D.D.; Thomsen, M.F.; Gary, S.P.; Feldman, W.C.; Hoppe, M.M.

    1983-01-01

    The linear Vlasov stability properties of electron velocity distributions, similar to those observed in the upstream foreshock region in association with obliquely propagating whistler waves at approximately 1 Hz, are studied. These distributions are modeled by a sum of bi-Maxwellians with drift speeds parallel to the magnetic field B. We find such distributions to be stable to modes with wavevectors k parallel to B but unstable to whistler waves propagating obliquely to the magnetic field. The frequencies and wavelengths of these unstable modes agree well with those of whistlers observed upstream of the earth's bow shock. The free energy source driving the instability is a region of positive parallel slope partialf/sub e//partialv/sub parallel/>0 at large pitch angles (about 85 0 ) and intermediate energies (about 20 eV), probably corresponding to the solar wind electrons magnetostatically reflected from the magnetic ramp of the bow shock. The whistlers grow via electromagnetic Landau resonance with this free energy source

  5. Application of three-dimensional CT reconstruction technology on inferior oblique muscle in congenital superior oblique palsy

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-05-01

    Full Text Available AIM: To investigate the viability of the morphology of inferior oblique muscle observed stereoscopically using 3-dimensional CT reconstruction technique. METHODS: This control study included of 29 cases which were clinically diagnosed with monocular congenital superior oblique palsy, examined by dimensional CT. The images of the inferior oblique muscle were reconstructed by Mimics software. 3D digital images on the basis of CT scanning data of the individuals were established. Observing the morphology of binocular inferior oblique muscle by self-controlled design, we compared the maximum transverse diameter of inferior oblique muscle of paralyzed eye with non-paralyzed one. We chose 5% as the significant level.RESULTS: The reconstructed results of 3-dimensional CT scan showed that not all of the inferior oblique abdominal muscle of paralyzed eyes were thinner than that of the non-paralyzed eye in maximum transverse diameter of cross-sectional area. The maximum transverse diameter of inferior oblique muscle was measured. The average maximum transverse diameter of the paralyzed eye was 6.797±1.083mm and the non-paralyzed eye was 6.507±0.848mm. The maximum transverse diameter of inferior oblique muscle of paralyzed eye did not, however, differ significantly from the normal(P>0.05. CONCLUSION: The three-dimensional CT reconstruction technology can be used for preoperative evaluation of the morphology of inferior oblique muscle.

  6. Oblique and lateral impact response of the PMHS thorax.

    Science.gov (United States)

    Shaw, Joshua M; Herriott, Rodney G; McFadden, Joseph D; Donnelly, Bruce R; Bolte, John H

    2006-11-01

    This study characterizes the PMHS thoracic response to blunt impact in oblique and lateral directions. A significant amount of data has been collected from lateral impacts conducted on human cadavers. Substantially less data has been collected from impacts that are anterior of lateral in an oblique direction. In the past, data collected from the handful of oblique impact studies were considered to be similar enough to the data from purely lateral impacts such that the oblique data were combined with data from lateral impacts. Defining the biomechanical response of the PMHS thorax to oblique impact is of great importance in side impact vehicle crashes where the loading is often anterior-oblique in direction. Data in this study was obtained from a chestband placed on the thorax at the level of impact to measure thoracic deflection. Two low energy impacts were conducted on each of seven subjects at 2.5 m/s, with one lateral impact and one oblique impact to opposite sides of each PMHS. Data was normalized using the Mertz-Viano method for a two mass system to allow for inter-subject comparisons. Force versus deflection response corridors were generated for the two impact types using an objective mathematical approach and compared to one another. Results were also compared to existing data for oblique and lateral thoracic impacts. The oblique thoracic response in low speed pendulum impacts was found to be different than the lateral thoracic response, in terms of force and deflection. Specifically, the lateral force was greater than the oblique force, and oblique deflection greater than lateral deflection for equal energy impacts.

  7. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  8. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)

    Science.gov (United States)

    Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.

    2016-01-01

    People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540

  9. The oblique cord of the forearm in man.

    Science.gov (United States)

    Tubbs, R Shane; O'Neil, James T; Key, Christopher D; Zarzour, Jessica G; Fulghum, Sarah B; Kim, Eugenia J; Lyerly, Michael J; Shoja, Mohammadali M; George Salter, E; Jerry Oakes, W

    2007-05-01

    There is minimal and often conflicting data in the literature regarding the oblique cord of the forearm. The current study seeks to elucidate further the anatomy of this structure of the upper extremity. In adult cadavers, the oblique cord was observed for and, when found, measurements were made of it. Ranges of motion were carried out while observation of the oblique cord was made. An oblique cord was found on 52.6% of sides. Gantzer's muscle was found on 55% of sides and, when present, had attachment into the oblique cord on five sides. The oblique cord was present on 13 sides with a Gantzer's muscle. Of the 20 sides with an oblique cord, no Gantzer's muscle was found on 10. The mean length of the oblique cord was 3.4 cm. In the majority of specimens, this cord tapered from proximal to distal. The proximal, middle, and distal widths of this structure had means 9, 7, and 4 mm, respectively. The oblique cord was found to travel approximately 45 degrees from a line drawn through the ulna and more or less traveled perpendicular to the insertion site of the bicipital tendon. This ligament was lax in the neutral position and with pronation became lax in all specimens. The oblique cord progressively became taut with increased supination from the neutral position and was maximally taut with the forearm fully supinated. Tautness of this cord was also found with distal distraction of the radius. Following the transection of the oblique cord, no discernable difference was observed in regard to maximal supination of the forearm or distal distraction of the radius. No obvious instability of the proximal forearm was found following transection of the oblique cord. Functionally, although the oblique cord may resist supination, it is unlikely that this structure affords significant stability to the proximal forearm, as it was often absent, of a very small caliber, and based on our observations, following its transection, the amount of supination of the forearm did not increase

  10. Wafer scale oblique angle plasma etching

    Science.gov (United States)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  11. Characterization of Oblique Dual Frame Pairs

    Directory of Open Access Journals (Sweden)

    Christensen Ole

    2006-01-01

    Full Text Available Given a frame for a subspace of a Hilbert space , we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace . In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative characterization which in some cases can be computationally more efficient. We first treat the case of a general frame on an arbitrary Hilbert space, and then specialize the results to shift-invariant frames with multiple generators. In particular, we present explicit versions of our general conditions for the case of shift-invariant spaces with a single generator. The theory is also adapted to the standard frame setting in which the original and dual frames are defined on the same space.

  12. CALIBRATION PROCEDURES ON OBLIQUE CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna –IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first

  13. Interference effects on guided Cherenkov emission in silicon from perpendicular, oblique, and parallel boundaries

    Science.gov (United States)

    Couillard, M.; Yurtsever, A.; Muller, D. A.

    2010-05-01

    Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p -polarized modes. When the specimen is tilted, s -polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p -polarized modes is also modified. For tilt angles higher than ˜50° , Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.

  14. Interference effects on guided Cherenkov emission in silicon from perpendicular, oblique, and parallel boundaries

    International Nuclear Information System (INIS)

    Couillard, M.; Yurtsever, A.; Muller, D. A.

    2010-01-01

    Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p-polarized modes. When the specimen is tilted, s-polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p-polarized modes is also modified. For tilt angles higher than ∼50 deg. Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO 2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.

  15. Oblique lip-alveolar banding in patients with cleft lip and palate.

    Science.gov (United States)

    Naidoo, S; Bütow, K-W

    2015-04-01

    We report an oblique lip-alveolar band, a rare banding of soft tissue that involves the lip and alveolus, which we have found in five patients with cleft lip and palate (0.2%), compared with an incidence of the Simonartz lip-lip band of 5.7%). To our knowledge this has not been reported previously. In two patients the bands affected the cleft lip and alveolus bilaterally, with or without the palatal cleft, and in three the bands were unilateral cleft lip and alveolus with or without the palatal cleft. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Oblique interaction of a laminar vortex ring with a non-deformable free surface: Vortex reconnection and breakdown

    International Nuclear Information System (INIS)

    Balakrishnan, S K; Thomas, T G; Coleman, G N

    2011-01-01

    Direct Numerical Simulation (DNS) is used to study the interaction of a laminar vortex ring with a non-deformable, free-slip surface at an oblique angle of incidence. The interaction leads to the well-known phenomenon of vortex reconnection. It was found that the reconnection process leads to rapid production of small-scale vortical structures. This phenomenon was found to be related to the kinematics of the reconection process.

  17. Oblique-view mamography: adequacy for screening. Work in progress

    International Nuclear Information System (INIS)

    Muir, B.B.; Kirkpatrick, A.E.; Roberts, M.M.; Duffy, S.W.

    1984-01-01

    Single oblique-view mammography has been recommended for screening purposes. The authors present data indicating that using the oblique view only can allow 11% of cancers to remain undetected. The smallest and potentially curable cancers are most likely to be overlooked in this way; any possible benefit of screening is thereby reduced. Data are also presented to show that 39% of women may require other views, for reasons not necessarily related to cancer detection. It is therefore recommended that all women have four-view mammography (oblique plus craniocaudal views of each breast) at their first screening visit

  18. Radiation transport modelling for the interpretation of oblique ECE measurements

    Directory of Open Access Journals (Sweden)

    Denk Severin S.

    2017-01-01

    Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates.

  19. Magnetoelastic bending and snapping of ferromagnetic plates in oblique magnetic fields

    International Nuclear Information System (INIS)

    Zhou Youhe

    1995-01-01

    Ferritic stainless steel has been considered for structural components such as first walls and blankets of fusion power reactors because the material shows low rates of irradiation swelling. Since it is magnetizable, the magnetoelastic interaction between magnetic field and deformation of the structures in a fusion reactor is so strong that their safety is of concern due to the magnetoelastic bending, buckling and magnetic damping, etc. Basic research of the magnetoelastic characteristics of ferromagnetic plate has been paid special attention by researchers. In this paper, the magnetoelastic bending and snapping are studied for a ferromagnetic plate in an oblique magnetic field. The theoretical model is based on the variational principle where the functional is employed as real total energy in the system including external work. The obtained expression of magnetic force on the plate is the same as that derived from the dipole model when the total magnetic field in the ferromagnetic medium is considered. In order to effectively solve the nonlinearly coupled interaction problem between magnetic field and mechanical deformation, a numerical program combining the finite element method for analyzing the magnetic field with the finite difference technique for finding out the bending deformation of the plate is employed to obtain the solution of magnetoelastic bending of a soft ferromagnetic plate. The numerical calculations are carried out for the typical example of a ferromagnetic cantilevered beam-plate in an oblique magnetic field. From the bending curves, that is the tip deflection versus applied magnetic fields, the critical magnetic field for the magnetoelastic snapping is predicted by the Southwell plot. The theoretical predictions show that the critical magnetic field decreases with the increase in incident angle of the oblique magnetic field. By the effect of incident angle on the magnetic buckling, the discrepancy between theoretical and experimental data can

  20. Camere aeree oblique: sistemi, applicazioni e prospettive future

    Directory of Open Access Journals (Sweden)

    Fabio Remondino

    2014-10-01

    Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. We report an overview of the actual oblique commercial systems and the workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given too.

  1. Climate Dynamics and Hysteresis at Low and High Obliquity

    Science.gov (United States)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  2. Oblique Multi-Camera Systems - Orientation and Dense Matching Issues

    Science.gov (United States)

    Rupnik, E.; Nex, F.; Remondino, F.

    2014-03-01

    The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  3. Magnetic resonance imaging in congenital superior oblique palsy

    International Nuclear Information System (INIS)

    Sato, Miho; Kondo, Nagako; Awaya, Shinobu; Nomura, Hideki; Yagasaki, Teiji.

    1996-01-01

    MRI examinations were carried out on the defined congenital superior oblique palsy in order to distinguish the congenital and acquired palsies. Subjects were 19 patients diagnosed as congenital and their MRI images of 3 or 5 mm-thick coronary slice were taken. The volume of the oblique muscle was calculated from the images and a comparison was made between the diseased and healthy normal sides. The oblique muscle volume at the diseased side was found reduced in most of congenital superior oblique palsy patients. The reduction was observed even at childhood and was thus considered to be a malformation. Further, it is conceivable that the palsy could be caused by the abnormality in the central nervous system as well as by the present anatomical abnormality. (K.H.)

  4. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    Science.gov (United States)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  5. The Oblique Basis Method from an Engineering Point of View

    International Nuclear Information System (INIS)

    Gueorguiev, V G

    2012-01-01

    The oblique basis method is reviewed from engineering point of view related to vibration and control theory. Examples are used to demonstrate and relate the oblique basis in nuclear physics to the equivalent mathematical problems in vibration theory. The mathematical techniques, such as principal coordinates and root locus, used by vibration and control theory engineers are shown to be relevant to the Richardson - Gaudin pairing-like problems in nuclear physics.

  6. Effects of extreme obliquity variations on the habitability of exoplanets.

    Science.gov (United States)

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  7. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  8. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  9. Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall

    Science.gov (United States)

    Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad

    2017-11-01

    We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.

  10. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    Science.gov (United States)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  11. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    Science.gov (United States)

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  12. Assessment Of An Oblique ECE Diagnostic For ITER

    International Nuclear Information System (INIS)

    Taylor, G.; Harvey, R.W.

    2009-01-01

    A systematic disagreement between the electron temperature measured by electron cyclotron emission (TECE) and laser Thomson scattering (TTS), that increases with TECE, is observed in JET and TFTR plasmas, such that TECE ∼1.2 TTS when TECE ∼10 keV. The disagreement is consistent with a non-Maxwellian distortion in the bulk electron momentum distribution. ITER is projected to operate with Te(0) ∼ 20-40 keV so the disagreement between TECE and TTS could be > 50%, with significant physics implications. The GENRAY ray tracing code predicts that a two-view ECE system, with perpendicular and moderately oblique viewing antennas, would be sufficient to reconstruct a two-temperature bulk distribution. If the electron momentum distribution remains Maxwellian the moderately oblique view could still be used to measure Te(R). A viewing dump will not be required for the oblique view and plasma refraction will be minimal. The oblique view has a similar radial resolution to the perpendicular view, but with some reduction in radial coverage. Oblique viewing angles of up to 20 o can be implemented without a major revision to the front end of the existing ITER ECE diagnostic design.

  13. Inferior oblique muscle paresis as a sign of myasthenia gravis.

    Science.gov (United States)

    Almog, Yehoshua; Ben-David, Merav; Nemet, Arie Y

    2016-03-01

    Myasthenia gravis may affect any of the six extra-ocular muscles, masquerading as any type of ocular motor pathology. The frequency of involvement of each muscle is not well established in the medical literature. This study was designed to determine whether a specific muscle or combination of muscles tends to be predominantly affected. This retrospective review included 30 patients with a clinical diagnosis of myasthenia gravis who had extra-ocular muscle involvement with diplopia at presentation. The diagnosis was confirmed by at least one of the following tests: Tensilon test, acetylcholine receptor antibodies, thymoma on chest CT scan, or suggestive electromyography. Frequency of involvement of each muscle in this cohort was inferior oblique 19 (63.3%), lateral rectus nine (30%), superior rectus four (13.3%), inferior rectus six (20%), medial rectus four (13.3%), and superior oblique three (10%). The inferior oblique was involved more often than any other muscle (pmyasthenia gravis can be difficult, because the disease may mimic every pupil-sparing pattern of ocular misalignment. In addition diplopia caused by paresis of the inferior oblique muscle is rarely encountered (other than as a part of oculomotor nerve palsy). Hence, when a patient presents with vertical diplopia resulting from an isolated inferior oblique palsy, myasthenic etiology should be highly suspected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Quick and Affine Invariance Matching Method for Oblique Images

    Directory of Open Access Journals (Sweden)

    XIAO Xiongwu

    2015-04-01

    Full Text Available This paper proposed a quick, affine invariance matching method for oblique images. It calculated the initial affine matrix by making full use of the two estimated camera axis orientation parameters of an oblique image, then recovered the oblique image to a rectified image by doing the inverse affine transform, and left over by the SIFT method. We used the nearest neighbor distance ratio(NNDR, normalized cross correlation(NCC measure constraints and consistency check to get the coarse matches, then used RANSAC method to calculate the fundamental matrix and the homography matrix. And we got the matches that they were interior points when calculating the homography matrix, then calculated the average value of the matches' principal direction differences. During the matching process, we got the initial matching features by the nearest neighbor(NN matching strategy, then used the epipolar constrains, homography constrains, NCC measure constrains and consistency check of the initial matches' principal direction differences with the calculated average value of the interior matches' principal direction differences to eliminate false matches. Experiments conducted on three pairs of typical oblique images demonstrate that our method takes about the same time as SIFT to match a pair of oblique images with a plenty of corresponding points distributed evenly and an extremely low mismatching rate.

  15. Comparative study of the characteristics of Ni films deposited on SiO2/Si(100) by oblique-angle sputtering and conventional sputtering

    International Nuclear Information System (INIS)

    Yu Mingpeng; Qiu Hong; Chen Xiaobai; Wu Ping; Tian Yue

    2008-01-01

    Ni films were deposited on SiO 2 /Si(100) substrates at 300 K and 573 K by oblique-angle sputtering and conventional sputtering. The films deposited at 300 K mainly have a [110] crystalline orientation in the growing direction whereas those deposited at 573 K grow with a [111] crystalline orientation in the growing direction. The film prepared only at 300 K by oblique-angle sputtering grows with a weakly preferential orientation along the incidence direction of the sputtered Ni atoms. All the films grow with thin columnar grains perpendicular to the substrate surface. The grain size of the films sputter-deposited obliquely is larger than that of the films sputter-deposited conventionally. The grain size of the Ni film does not change markedly with the deposition temperature. The film deposited at 573 K by oblique-angle sputtering has the highest saturation magnetization. For the conventional sputtering, the coercivity of the Ni film deposited at 573 K is larger than that of the film deposited at 300 K. However, for the oblique-angle sputtering, the coercivity of the Ni film is independent of the deposition temperature. All the Ni films exhibit an isotropic magnetization characteristic in the film plane

  16. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  17. Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields

    Directory of Open Access Journals (Sweden)

    M. D. Sciffer

    2004-04-01

    Full Text Available Solutions for ultra-low frequency (ULF wave fields in the frequency range 1–100mHz that interact with the Earth's ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect (ISE arises from the generation of an "inductive" rotational current by the induced part of the divergent electric field in the ionosphere which reduces the wave amplitude detected on the ground. The inductive response of the ionosphere is described by Faraday's law and the ISE depends on the horizontal scale size of the ULF disturbance, its frequency and the ionosphere conductivities. The ISE for ULF waves in a vertical background magnetic field is limited in application to high latitudes. In this paper we examine the ISE within the context of oblique background magnetic fields, extending studies of an inductive ionosphere and the associated shielding of ULF waves to lower latitudes. It is found that the dip angle of the background magnetic field has a significant effect on signals detected at the ground. For incident shear Alfvén mode waves and oblique background magnetic fields, the horizontal component of the field-aligned current contributes to the signal detected at the ground. At low latitudes, the ISE is larger at smaller conductivity values compared with high latitudes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; electric fields and currents; wave propagation

  18. Research On The Measure Method Of Oblique Pinhole Parameters

    Directory of Open Access Journals (Sweden)

    Ma Yu-Zhen

    2016-01-01

    Full Text Available There are many special advantages in measuring the diameter of blind and deep holes with a capacitive probe, there are still some challenges for the measurement of a oblique pinhole parameters because the measuring device is inconvenient to stretch into the oblique pinhole exactly. A five-dimensional measurement system was adopted in the paper which included a capacitive sensor probe and a three-coordinate measuring machine to accomplish the measurement for oblique pinholes. With the help of the three-dimensional coordinates measured from the pinhole axis, we put forward a comprehensive method of combining the projection method and the least squares method together for fitting spatial straight line to obtain the optimal equation of the spacial axis. Finally, a reliable and entire measurement system was set up.

  19. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  20. Recent progress of obliquely deposited thin films for industrial applications

    Science.gov (United States)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  1. Pelvic digital subtraction catheter angiography-Are routine oblique projections necessary?

    International Nuclear Information System (INIS)

    Rane, Neil; Imam, Atique; Foley, Peter; Timmons, Grace; Uberoi, Raman

    2011-01-01

    The oblique projection is used widely in imaging of the lower vascular tree. Much of the evidence justifying the oblique projection is anecdotal. This study compares the sensitivity of the anteroposterior (AP) projection alone in lower limb vascular catheter angiography to that combined with the oblique projection. 110 digitally subtracted angiograms were analysed initially on AP and subsequently on oblique views. Oblique imaging increases confidence, demonstrates stenoses not seen on AP and changes the diagnosis. This supports the use of the oblique projection in lower limb vascular interventional imaging.

  2. Oblique lumbar spine radiographs: importance in young patients

    Energy Technology Data Exchange (ETDEWEB)

    Libson, E.; Bloom, R.A.; Dinari, G.; Robin, G.C.

    1984-04-01

    Spondylolysis is a direct precursor of spondylolisthesis and can lead to crippling back pain. Of 1,743 patients surveyed, including 936 who were asymptomatic and 807 with back pain, 165 (including 91 who were asymptomatic and 74 with back pain) had spondylolysis, which was seen only on oblique lumbar views in 20% of cases. Because of the high false-negative rate of AP and lateral views, oblique views are essential in children and young adults. As spondylolysis is rare above L3, radiographs can be limited to L3-S1. Significantly less spondylolysis was seen in persons older than 30 with back pain usually caused by disk degeneration.

  3. Oblique lumbar spine radiographs: importance in young patients

    International Nuclear Information System (INIS)

    Libson, E.; Bloom, R.A.; Dinari, G.; Robin, G.C.

    1984-01-01

    Spondylolysis is a direct precursor of spondylolisthesis and can lead to crippling back pain. Of 1,743 patients surveyed, including 936 who were asymptomatic and 807 with back pain, 165 (including 91 who were asymptomatic and 74 with back pain) had spondylolysis, which was seen only on oblique lumbar views in 20% of cases. Because of the high false-negative rate of AP and lateral views, oblique views are essential in children and young adults. As spondylolysis is rare above L3, radiographs can be limited to L3-S1. Significantly less spondylolysis was seen in persons older than 30 with back pain usually caused by disk degeneration

  4. ACCURACY OF MEASUREMENTS IN OBLIQUE AERIAL IMAGES FOR URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    W. Ostrowski

    2016-10-01

    Full Text Available Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology. To control the accuracy, check points were used (which were also measured with GPS RTK technology. As reference data for the whole study, an area of the city-based map was used

  5. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  6. Inner shell ionization by incident nuclei

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1974-10-01

    The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)

  7. Validity of PEC Approximation for On-Body Propagation

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2016-01-01

    Many articles on on-body propagation assumes that the human body can be approximated by a perfect electric conductor (PEC) instead of the actual constitutive parameters of the human body, which is that of a lossy dielectric. This assumption is investigated in this article through comparison...... of the scattering of a plane wave at oblique incidence by a PEC and a lossy dielectric cylinder. The investigation shows that the validity of the assumption depends on the polarization of the plane wave, the angle of incidence, and the region of interest....

  8. Extended incident-angle dependence formula of sputter yield

    International Nuclear Information System (INIS)

    Ono, T.; Shibata, K.; Muramoto, T.; Kenmotsu, T.; Li Z.; Kawamura, T.

    2006-06-01

    We extend a new semi-empirical formula for incident-angle dependence of normalized sputter yield that includes the contribution to sputter yield from the direct knock-out process that was not considered in the previously proposed one. Three parameters included in the new one are estimated for data calculated with ACAT code for D + ions incident obliquely on C, Fe and W materials in incident-energy regions from several tens of eV to 10 keV. Then, the parameters are expressed with functions of incident energy. The formula with the functions derived well reproduces that using the ACAT data in the whole energy range. (author)

  9. Stereotactic biopsy of cerebellar lesions: straight versus oblique frame positioning.

    Science.gov (United States)

    Quick-Weller, Johanna; Brawanski, Nina; Dinc, Nazife; Behmanesh, Bedjahn; Kammerer, Sara; Dubinski, Daniel; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-10-26

    Biospies of brain lesions with unknown entity are an everyday procedure among many neurosurgical departments. Biopsies can be performed frame-guided or frameless. However, cerebellar lesions are a special entity with a more complex approach. All biopsies in this study were performed stereotactically frame guided. Therefore, only biopsies of cerebellar lesions were included in this study. We compared whether the frame was attached straight versus oblique and we focused on diagnostic yield and complication rate. We evaluated 20 patients who underwent the procedure between 2009 and 2017. Median age was 56.5 years. 12 (60%) Patients showed a left sided lesion, 6 (30%) showed a lesion in the right cerebellum and 2 (10%) patients showed a midline lesion. The stereotactic frame was mounted oblique in 12 (60%) patients and straight in 8 (40%) patients. Postoperative CT scan showed small, clinically silent blood collection in two (10%) of the patients, one (5%) patient showed haemorrhage, which caused a hydrocephalus. He received an external ventricular drain. In both patients with small haemorrhage the frame was positioned straight, while in the patient who showed a larger haemorrhage the frame was mounted oblique. In all patients a final histopathological diagnosis was established. Cerebellar lesions of unknown entity can be accessed transcerebellar either with the stereotactic frame mounted straight or oblique. Also for cerebellar lesions the procedure shows a high diagnostic yield with a low rate of severe complications, which need further treatment.

  10. Analysis of Torque Measurements on Films with Oblique Anistropy

    NARCIS (Netherlands)

    Abelmann, Leon; Kambersky, Vladimir; Lodder, J.C.; Popma, T.J.A.

    1993-01-01

    A measurement method is discussed to determine the magnetic anisotropy energy in a sample without assuming an a priori model for the origins of the anisotropy. The measurement procedure involves torque measurements in five different planes. Since it is especially useful for films with an oblique

  11. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  12. Residual symptoms after surgery for unilateral congenital superior oblique palsy.

    Science.gov (United States)

    Caca, Ihsan; Sahin, Alparslan; Cingu, Abdullah; Ari, Seyhmus; Akbas, Umut

    2012-01-01

    To establish the surgical results and residual symptoms in 48 cases with unilateral congenital superior oblique muscle palsy that had surgical intervention to the vertical muscles alone. Myectomy and concomitant disinsertion of the inferior oblique (IO) muscle was performed in 38 cases and myectomy and concomitant IO disinsertion and recession of the superior rectus muscle in the ipsilateral eye was performed in 10 cases. The preoperative and postoperative vertical deviation values and surgical results were compared. Of the patients who had myectomy and concomitant IO disinsertion, 74% achieved an "excellent" result, 21% a "good" result, and 5% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Of the patients who had myectomy and concomitant inferior oblique disinsertion and ipsilateral superior rectus recession, 50% achieved an "excellent" result, 20% a "good" result, and 30% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Both procedures are effective and successful in patients with superior oblique muscle palsy, but a secondary surgery may be required. Copyright 2012, SLACK Incorporated.

  13. Numerical study of plasma-wall transition in an oblique magnetic field

    International Nuclear Information System (INIS)

    Valsaque, Fabrice; Manfredi, Giovanni

    2001-01-01

    The interaction of a plasma with a fixed wall is investigated numerically. The ions are described by a kinetic model, while the electrons are assumed to be at thermal equilibrium. Finite Debye length effects are taken into account. An Eulerian code is used for the ion dynamics, which enables us to obtain a fine resolution of both position and velocity space. First, we analyse the effect of ionization and collisions, which bring the ion flow to supersonic velocity at the entrance of the Debye sheath (Bohm's criterion). Second, we consider a collisionless sheath with an oblique magnetic field. A magnetic presheath, which has a width of several ion gyroradii, is located between the Debye sheath and the bulk plasma. We perform a systematic numerical study of these sheaths for different incidences of the magnetic field

  14. Oblique Wave-Induced Responses of A VLFS Edged with A Pair of Inclined Perforated Plates

    Science.gov (United States)

    Cheng, Yong; Ji, Chun-yan; Zhai, Gang-jun; Oleg, Gaidai

    2018-03-01

    This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy's law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.

  15. Controlling the anisotropy and domain structure with oblique deposition and substrate rotation

    Directory of Open Access Journals (Sweden)

    N. Chowdhury

    2014-02-01

    Full Text Available Effect of substrate rotation on anisotropy and domain structure for a thin ferromagnetic film has been investigated in this work. For this purpose Co films with 10 nm thickness have been prepared by sputtering with oblique angle of incidence for various substrate rotations. This method of preparation induces a uniaxial anisotropy due to shadow deposition effect. The magnetization reversal is studied by magneto-optic Kerr effect (MOKE based microscope in the longitudinal geometry. The Co films prepared by rotating the substrate with 10 and 20 rpm weakens the anisotropy but does not completely give isotropic films. But this leads to high dispersion in local grain anisotropy resulting in ripple and labyrinth domains. It is observed that the substrate rotation has moderate effect on uniaxial anisotropy but has significant effect on the magnetization reversal process and the domain structure.

  16. Analyzing RCD30 Oblique Performance in a Production Environment

    Science.gov (United States)

    Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.

    2016-06-01

    In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and

  17. ANALYZING RCD30 OBLIQUE PERFORMANCE IN A PRODUCTION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    M. E. Soler

    2016-06-01

    Full Text Available In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial

  18. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  19. Magnetoresistance of oblique angle deposited multilayered Co/Cu nanocolumns measured by a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Morrow, P; Tang, X-T; Parker, T C; Shima, M; Wang, G-C

    2008-01-01

    In this work we present the first magnetoresistance measurements on multilayered vertical Co(∼6 nm)/Cu(∼6 nm) and slanted Co(x nm)/Cu(x nm) (with x∼6, 11, and 16 nm) nanocolumns grown by oblique angle vapour deposition. The measurements are performed at room temperature on the as-deposited nanocolumn samples using a scanning tunnelling microscope to establish electronic contact with a small number of nanocolumns while an electromagnet generates a time varying (0.1 Hz) magnetic field in the plane of the substrate. The samples show a giant magnetoresistance (GMR) response ranging from 0.2 to 2%, with the higher GMR values observed for the thinner layers. For the slanted nanocolumns, we observed anisotropy in the GMR with respect to the relative orientation (parallel or perpendicular) between the incident vapour flux and the magnetic field applied in the substrate plane. We explain the anisotropy by noting that the column axis is the magnetic easy axis, so the magnetization reversal occurs more easily when the magnetic field is applied along the incident flux direction (i.e., nearly along the column axis) than when the field is applied perpendicular to the incident flux direction

  20. Three-dimensional modelling of sound absorption in porous asphalt pavement for oblique incident waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Glorieux, C.

    2015-01-01

    Sound absorption of porous asphalt pavements is an important property when reducing tyre-road noise. A hybrid model has been developed to predict the sound absorption of porous roads. This model is a combination of an analytical analysis of the sound eld and a numerical approach, including both the

  1. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    International Nuclear Information System (INIS)

    Nadrowitz, Roger; Feyerabend, Thomas

    2001-01-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved

  2. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Nadrowitz, Roger; Feyerabend, Thomas [Medical University of Luebeck, Germany, Department of Radiotherapy and Nuclear Medicine, Ratzeburger Allee 160, Luebeck, D-23538 (Germany)

    2001-06-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved.

  3. Structured surface reflector design for oblique incidence beam splitter at 610 GHz

    OpenAIRE

    Defrance , Fabien; Casaletti , Massimiliano; Sarrazin , Julien; Wiedner , Martina; Gibson , Hugh; Gay , Gregory; Lefevre , Roland; Delorme , Yan

    2016-01-01

    International audience; An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measureme...

  4. Modelling absorption in porous asphalt concrete for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Moens, D.; Denayer, H.

    2014-01-01

    A numerical model to predict the sound absorption of porous asphalt has been developed. The approach is a combination between a microstructural approach and a finite element approach. The model used to describe the viscothermal properties of the air inside the pores of the asphalt is the low reduced

  5. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  6. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    Science.gov (United States)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  7. ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Madani

    2012-07-01

    Full Text Available Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm and (50 mm/50 mm were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining

  8. Plane-wave impulse approximation extraction of the neutron magnetic form factor from Quasi-Elastic 3(rvec H)e((rvec e),e(prime)) at Q2 = 0.3 to 0.6 (GeV/c)2

    International Nuclear Information System (INIS)

    Xu, W.; Anderson, B.; Auberbach, L.; Averett, T.; Bertozzi, W.; Black, T.; Calarco, J.; Cardman, L.; Cates, G.D.; Chai, Z.W.; Chen, J.P.; Choi, S.; Chudakov, E.; Churchwell, S.; Corrado, G.S.; Crawford, C.; Dale, D.; Deur, A.; Djawotho, P.; Donnelly, T.W.; Dutta, D.; Finn, J.M.; Gao, H.; Gilman, R.; Glamazdin, A.V.; Glashausser, C.; Gloeckle, Walter; Golak, J.; Gomez, J.; Gorbenko, V.G.; Hansen, J.O.; Hersman, F.W.; Higinbotham, D.W.; Holmes, R.; Howell, C.R.; Hughes, E.; Humensky, B.; Incerti, S.; Jager, C.W. de; Jensen, J.S.; Jiang, X.; Jones, C.E.; Jones, M.; Kahl, R.; Kamada, H.; Kievsky, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Liang, M.; Liyanage, N.; LeRose, J.; Malov, S.; Margaziotis, D.J.; Martin, J.W.; McCormick, K.; McKeown, R. D.; McIlhany, K.; Meziani, Z.E.; Michaels, R.; Miller, G.W.; Mitchell, J.; Nanda, S.; Pace, E.; Pavlin, T.; Petratos, G.G.; Pomatsalyuk, R.I.; Pripstein, D.; Prout, D.; Ransome, R.D.; Roblin, Y.; Rvachev, M.; Saha, A.; Salme, G.; Schnee, M.; Shin, T.; Slifer, K.; Souder, P.A.; Strauch, S.; Suleiman, R.; Sutter, M.; Tipton, B.; Todor, L.; Viviani, M.; Vlahovic, B.; Watson, J.; Williamson, C.F.; Witala, H.; Wojtsekhowski, B.; Xiong, F.; Yeh, J.; Zolnierczuk, P.

    2003-01-01

    A high precision measurement of the transverse spin-dependent asymmetry A T in 3 (rvec H)e((rvec e),e(prime)) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q 2 , between 0.1 and 0.6 (GeV/c) 2 . A T is sensitive to the neutron magnetic form factor, G M n . Values of G M n at Q 2 = 0.1 and 0.2 (GeV/c) 2 , extracted using Faddeev calculations, were reported previously. Here, we report the extraction of G M n for the remaining Q 2 -values in the range from 0.3 to 0.6 (GeV/c) 2 using a Plane-Wave Impulse Approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

  9. Motor mechanisms of vertical fusion in individuals with superior oblique paresis.

    Science.gov (United States)

    Mudgil, Ananth V; Walker, Mark; Steffen, Heimo; Guyton, David L; Zee, David S

    2002-06-01

    We wanted to determine the mechanisms of motor vertical fusion in patients with superior oblique paresis and to correlate these mechanisms with surgical outcomes. Ten patients with superior oblique paresis underwent 3-axis, bilateral, scleral search coil eye movement recordings. Eye movements associated with fusion were analyzed. Six patients had decompensated congenital superior oblique paresis and 4 had acquired superior oblique paresis. All patients with acquired superior oblique paresis relied predominantly on the vertical rectus muscles for motor fusion. Patients with congenital superior oblique paresis were less uniform in their mechanisms for motor fusion: 2 patients used predominantly the oblique muscles, 2 patients used predominantly the vertical recti, and 2 patients used predominantly the superior oblique in the hyperdeviated eye and the superior rectus in the hypodeviated eye. The last 2 patients developed the largest changes in torsional eye alignment relative to changes in vertical eye alignment and were the only patients to develop symptomatic surgical overcorrections. There are 3 different mechanisms for vertical fusion in individuals with superior oblique paresis, with the predominant mechanism being the vertical recti. A subset of patients with superior oblique paresis uses predominantly the superior oblique muscle in the hyperdeviated paretic eye and the superior rectus muscle in the fellow eye for fusion. This results in intorsion of both eyes, causing a large change in torsional alignment. The consequent cyclodisparity, in addition to the existing vertical deviation, may make fusion difficult. The differing patterns of vertical fusional vergence may have implications for surgical treatment.

  10. Oblique Alfvén instabilities driven by compensated currents

    Energy Technology Data Exchange (ETDEWEB)

    Malovichko, P. [Main Astronomical Observatory, NASU, Kyiv (Ukraine); Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-01-10

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  11. Oblique Alfvén instabilities driven by compensated currents

    International Nuclear Information System (INIS)

    Malovichko, P.; Voitenko, Y.; De Keyser, J.

    2014-01-01

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  12. Numerical simulation of hydrodynamic performance of ship under oblique conditions

    Directory of Open Access Journals (Sweden)

    CHEN Zhiming

    2018-02-01

    Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.

  13. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  14. Bursts of electron waves modulated by oblique ion waves

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Experimental evidence is presented which shows small packets of electron plasma waves modulated by large amplitude obliquely propagating non-linear ion plasma waves. Very often the whole system is modulated by an oscillation near the ion gyro frequency or its harmonics. The ion waves seem to be similar to those measured in the current carrying auroral plasma. These results suggest that the generation of ion and electron waves in the auroral plasma may be correlated

  15. 3D MODEL GENERATION USING OBLIQUE IMAGES ACQUIRED BY UAV

    Directory of Open Access Journals (Sweden)

    A. Lingua

    2017-07-01

    Full Text Available In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (including façades and building footprints. Here the acquisition and use of oblique images from a low cost and open source Unmanned Aerial Vehicle (UAV for the 3D high-level-of-detail reconstruction of historical architectures is evaluated. The critical issues of such acquisitions (flight planning strategies, ground control points distribution, etc. are described. Several problems should be considered in the flight planning: best approach to cover the whole object with the minimum time of flight; visibility of vertical structures; occlusions due to the context; acquisition of all the parts of the objects (the closest and the farthest with similar resolution; suitable camera inclination, and so on. In this paper a solution is proposed in order to acquire oblique images with one only flight. The data processing was realized using Structure-from-Motion-based approach for point cloud generation using dense image-matching algorithms implemented in an open source software. The achieved results are analysed considering some check points and some reference LiDAR data. The system was tested for surveying a historical architectonical complex: the “Sacro Mo nte di Varallo Sesia” in north-west of Italy. This study demonstrates that the use of oblique images acquired from a low cost UAV system and processed through an open source software is an effective methodology to survey cultural heritage, characterized by limited accessibility, need for detail and rapidity of the acquisition phase, and often reduced budgets.

  16. Effect of bilateral superior oblique split lengthening on torsion

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2015-01-01

    Full Text Available Introduction: Superior oblique split lengthening (SOSL is done for weakening of superior oblique. It corrects the superior oblique overaction (SOOA and A pattern. Its effect on the torsion of the eye is not known. We present our data on the effect of this particular procedure on torsion. Materials and Methods: We did a study of 16 patients (32 eyes who underwent bilateral SOSL and compared the disc foveal angle (DFA preoperatively and postoperatively. The split lengthening was done from 4 mm to 7 mm depending upon the overaction of superior oblique. Results: The mean age was 15.3 ± 8.4 years. Mean preoperative DFA in the right eye (RE was −3.9° and in the left eye (LE was −2.9°. Mean postoperative DFA in RE was 0.2° and in LE was 0.9°. The mean change in the DFA for RE was 4.1° ± 1.3° and for LE was 3.8° ± 1.2°. All the patients were aligned horizontally within 6 prism diopter and no pattern and no diplopia postoperatively. The A pattern was corrected in all the patient postsurgery. For each mm of surgery, an improvement of 0.8° was seen in the DFA. Conclusion: We report the effect of SOSL on torsion. The SOSL reduces intorsion postsurgery and is, therefore, a valuable procedure in SOOA where both pattern and in torsion needs to be corrected.

  17. The effects of dynamic friction in oblique motorcycle helmet impacts

    Science.gov (United States)

    Bonugli, Enrique

    The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and 'typical' roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface. Roofing shingle was determined to be a more suitable material to simulate 'typical' roadway surfaces however, this may not be ideal for use in a controlled laboratory setting. In a laboratory setting, the author recommends cement as a best-fit material to simulate roadway surface for use in oblique motorcycle helmet impacts since this material displayed characteristics that closely resemble asphalt and is currently used as a roadway construction material.

  18. Arc Motion in an Obliquely Imposed Alternating Magnetic Field

    International Nuclear Information System (INIS)

    Akiho, R; Takeda, K; Sugimoto, M

    2012-01-01

    The arc motion is theoretically investigated under an alternating magnetic field imposed obliquely to the arc. The arc is known to oscillate on a 2-D plane when the alternating magnetic field is imposed perpendicularly to the arc. If the alternating magnetic field is imposed obliquely to the arc, then it is expected that the arc oscillates not on the 2-D plane but in a 3-D space. For this study, 3-D simulation was performed on the motion of the plasma gas under an alternating magnetic field crossing obliquely to the arc. It was also assumed that a stream line of the plasma gas represented the arc profile. The momentum equation for the plasma gas was solved together with the continuity equation. Governing parameters for the gas motion are θ (crossing angle), v 0 (initial velocity of the plasma gas), and λ. Parameter λ is defined as λ = (I a B 0 )/Q 0 . Numerical results are reported under different operating conditions such as magnetic flux densities and the angles between the arc and the magnetic flux. If the crossing angle is larger than 4/π, the arc might be extinguished because of the drastic increase of the arc length.

  19. The Resilience of Kepler Multi-systems to Stellar Obliquity

    Science.gov (United States)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.

  20. Three-Dimensional Simulations of Oblique Asteroid Impacts into Water

    Science.gov (United States)

    Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.

    2016-12-01

    Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.

  1. Oblique Photogrammetry Supporting 3d Urban Reconstruction of Complex Scenarios

    Science.gov (United States)

    Toschi, I.; Ramos, M. M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F.

    2017-05-01

    Accurate 3D city models represent an important source of geospatial information to support various "smart city" applications, such as space management, energy assessment, 3D cartography, noise and pollution mapping as well as disaster management. Even though remarkable progress has been made in recent years, there are still many open issues, especially when it comes to the 3D modelling of complex urban scenarios like historical and densely-built city centres featuring narrow streets and non-conventional building shapes. Most approaches introduce strong building priors/constraints on symmetry and roof typology that penalize urban environments having high variations of roof shapes. Furthermore, although oblique photogrammetry is rapidly maturing, the use of slanted views for façade reconstruction is not completely included in the reconstruction pipeline of state-of-the-art software. This paper aims to investigate state-of-the-art methods for 3D building modelling in complex urban scenarios with the support of oblique airborne images. A reconstruction approach based on roof primitives fitting is tested. Oblique imagery is then exploited to support the manual editing of the generated building models. At the same time, mobile mapping data are collected at cm resolution and then integrated with the aerial ones. All approaches are tested on the historical city centre of Bergamo (Italy).

  2. Incidents analysis

    International Nuclear Information System (INIS)

    Francois, P.

    1996-01-01

    We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs

  3. Incidents analysis

    Energy Technology Data Exchange (ETDEWEB)

    Francois, P

    1997-12-31

    We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs.

  4. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  5. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  6. Surgical Results in Unilateral Superior Oblique Muscle Palsy

    Directory of Open Access Journals (Sweden)

    Aylin Tenlik

    2014-08-01

    Full Text Available Objectives: To evaluate the surgical treatments and results of the patients with superior oblique muscle palsy (SOMP. Materials and Methods: Clinical charts of the patients with unilateral SOMP who were operated in our clinic between 1999 and 2009 were evaluated retrospectively. Patients’ demographics, preoperative signs, surgical procedure, complications, and final results were recorded. Results: Thirty-seven patients were included in the study, [21 (59% male, 15 (41% female]. The mean age was 20.6 years at the time of operation. The mean time interval between diagnosis and operation was 7.3 years. Postoperative follow-up period was 2.04 (ranging 1-10 years. Diplopia was determined in seven (18.9% patients, and abnormal head position in 36 (97.3% patients. Only inferior oblique tenotomy with distal muscle resection was performed in 25 patients. In addition, five patients had recession of the contralateral inferior rectus muscle and two patients had recession of the ipsilateral superior rectus muscle additional to inferior oblique tenotomy. Abnormal head position was completely improved in all of the patients postoperatively. The preoperative average score of the inferior oblique muscle (IOM overaction was +3.3±0.8, and postoperative overaction was found in only two patients (+1.5. There was statistically significant difference between the two periods (p<0.001. The average score of the superior oblique muscle hypofunction was -2.18 preoperatively, and in only three patients, the score was found -1.0 postoperatively. Difference between the two periods was statistically significant (p<0.001. While the preoperative average vertical deviation was 22 PD in primary position, none of the patients had hyperdeviation postoperatively. Diplopia was resolved in all seven affected patients postoperatively. Contralateral IOM hyperfunction was the most common complication (13.5%. Adherence syndrome was seen in none of the patients. Conclusion: It was found

  7. Effect of oblique ray on image quality of direct digitized radiography system

    International Nuclear Information System (INIS)

    Song Yuquan; Wu Xiaomei; Deng Yu; He Jianxun; Xiao Shaoping; He Zhecheng; Yu Cixi

    2005-01-01

    Objective: To evaluate the effec on image quality of DDR system caused by oblique ray. Methods: (1) Experiment group: A sphere was taken radiographes repeatedly using DDR system, the respective incidence were vertical (0 degree), 15 degree, 30 degree, 45 degree, and all images were printed into laser films. (2) Comparison group: By way of self comparing, conventional films were radio graphed under all conditions as in experiment group with screen-film system instead of flat-panel detector. (3) To evaluate the edge fog of sphere image, micro-density of image edge. Both groups were measured separately. Results: (1) The image edge fog in both experiment group and comparison group increased along with increase of X-ray incidence, the more large angle was, the more amplitude of image fog was. And the amplitude of experiment group was more distinct while with large incidence. When incidence was 45 degree, the edge fog value of experiment group went up to (0.9240±0.0033) mm, while only (0.4840±0.0033) mm of comparison group contrarily. (2) When projecting with 15 degree inclination of tube, the amplitude of variation of image edge fog in both DDR system and screen-film system had no distinct difference (P>0.05); when the lean angle were 30 degree and 45 degree, it had distinct difference (P<0.05). Conclusion: (1) The image edge fog of DDR system has no distinctly difference from screen-film system and better image gotten while the inclination of tube is vertical or small angle. (2) The amplitude of variation of image edge fog have distinctly difference that it of DDR system is visibly over screen-film system, when the inclination of tube is big, the imaging quality will be affected. (authors)

  8. Reaching to virtual targets: The oblique effect reloaded in 3-D.

    Science.gov (United States)

    Kaspiris-Rousellis, Christos; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2017-02-20

    Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Relationship between peri-incisional dysesthesia and the vertical and oblique incisions on the hamstrings harvest in anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    Marcos Laube Leite

    Full Text Available ABSTRACT OBJECTIVE: To compare the incidence of peri-incisional dysesthesia according to the skin incision technique for hamstring tendon graft harvest in anterior cruciate ligament reconstruction. METHODS: Thirty-three patients with ACL rupture were separated in two groups: group 1, with 19 patients submitted to the oblique skin incision to access the hamstrings and group 2-14 patients operated by vertical skin incision technique. The selected patients were assessed after surgery. Demographic data and prevalence of dysesthesia was measured by digital pressure around the skin incision and classified according to the Highet scale. RESULTS: The total rate of dysesthesia was 42% (14 patients. Five patients (26% on the oblique incision group reported dysesthesia symptoms. On the group submitted to the vertical incision technique, the involvement was 64% (nine patients. On the 33 knees evaluated, the superior lateral area was the most affected skin region, while the superior medial and inferior medial regions were affected in only one patient (7.1%. No statistical differences between both groups were observed regarding patients' weight, age, and height¸ as well as skin incision length. CONCLUSION: Patients who underwent reconstruction of the anterior cruciate ligament using the oblique access technique had five times lower incidence of peri-incisional dysesthesia when compared with those in whom the vertical access technique was used.

  10. The oblique view for spondylolysis in the growing period. X-ray projection angle to spondylolytic lumbar vertebra based on CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yoshimitsu; Minato, Izumi; Nagano, Junji; Inoue, Yoshiya; Takahashi, Yuji; Saito, Hidehiko [Seirei Hamamatsu General Hospital, Shizuoka (Japan)

    1996-02-01

    In this study, CT images of 239 vertebrae from 227 patients with spondylolysis in the growing period were obtained to analyze x-ray oblique separation images based on the relationship between x-ray incidence angle and CT. The age of the subjects ranged from 5 to 23 years (average 14.8 years), of which 224 patients were 18 years or lower. The CT images obtained were classified into four according to our classification, i.e., Type Ia, 112 vertebrae; Type Ib, 175; Type II, 66; Type III, 67. All patients underwent plain x-ray from 4 directions including 45deg. The angle of separation line and posterior margin of the vertebral body was obtained and the average angle of all slices was determined as separation angle. As a result, depiction level of separation line was better in 30deg oblique images than 45deg oblique images in Ia, Ib, and III groups. It is thus desirable to take the relationship between incidence angle of x-ray, separation angle, and CT classification into consideration. (S.Y.).

  11. The oblique view for spondylolysis in the growing period. X-ray projection angle to spondylolytic lumbar vertebra based on CT scanning

    International Nuclear Information System (INIS)

    Kobayashi, Yoshimitsu; Minato, Izumi; Nagano, Junji; Inoue, Yoshiya; Takahashi, Yuji; Saito, Hidehiko

    1996-01-01

    In this study, CT images of 239 vertebrae from 227 patients with spondylolysis in the growing period were obtained to analyze x-ray oblique separation images based on the relationship between x-ray incidence angle and CT. The age of the subjects ranged from 5 to 23 years (average 14.8 years), of which 224 patients were 18 years or lower. The CT images obtained were classified into four according to our classification, i.e., Type Ia, 112 vertebrae; Type Ib, 175; Type II, 66; Type III, 67. All patients underwent plain x-ray from 4 directions including 45deg. The angle of separation line and posterior margin of the vertebral body was obtained and the average angle of all slices was determined as separation angle. As a result, depiction level of separation line was better in 30deg oblique images than 45deg oblique images in Ia, Ib, and III groups. It is thus desirable to take the relationship between incidence angle of x-ray, separation angle, and CT classification into consideration. (S.Y.)

  12. The change in color matches with retinal angle of incidence of the colorimeter beams.

    Science.gov (United States)

    Alpern, M; Kitahara, H; Fielder, G H

    1987-01-01

    Differences between W.D.W. chromaticities of monochromatic lights obtained with all colorimeter beams incident on the retina "off-axis" and those found for lights striking the retina normally have been studied throughout the visible spectrum on 4 normal trichromats. The results are inconsistent with: (i) the assumption in Weale's theories of the Stiles-Crawford hue shift that the sets of absorption spectra of the visual pigments catching normally and obliquely incident photons are identical, and (ii) "self-screening" explanations for the change in color with angle of incidence on the retina. The color matching functions of a protanomalous trichromat are inconsistent with the hypothesis that the absorption spectra of the visual pigments catching normally incident photons in his retina are those catching obliquely incident photons in the normal retina.

  13. The Resilience of Kepler Systems to Stellar Obliquity

    Science.gov (United States)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple members, but a large fraction possess only a single transiting example. This overabundance of singles has led to the suggestion that up to half of Kepler systems might possess significant mutual inclinations between orbits, reducing the transiting number (the so-called “Kepler Dichotomy”). In a recent paper, Spalding & Batygin demonstrated that the quadrupole moment arising from a young, oblate star is capable of misaligning the constituent orbits of a close-in planetary system enough to reduce their transit number, provided that the stellar spin axis is sufficiently misaligned with respect to the planetary orbital plane. Moreover, tightly packed planetary systems were shown to be susceptible to becoming destabilized during this process. Here, we investigate the ubiquity of the stellar obliquity-driven instability within systems with a range of multiplicities. We find that most planetary systems analyzed, including those possessing only two planets, underwent instability for stellar spin periods below ∼3 days and stellar tilts of order 30°. Moreover, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity ≲20°), where other methods of measuring the spin–orbit misalignment are not currently available. Given the known parameters of T-Tauri stars, we predict that up to one-half of super-Earth-mass systems may encounter the instability, in general agreement with the fraction typically proposed to explain the observed abundance of single-transiting systems.

  14. AUTOMATIC BUILDING OUTLINING FROM MULTI-VIEW OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Xiao

    2012-07-01

    Full Text Available Automatic building detection plays an important role in many applications. Multiple overlapped airborne images as well as lidar point clouds are among the most popular data sources used for this purpose. Multi-view overlapped oblique images bear both height and colour information, and additionally we explicitly have access to the vertical extent of objects, therefore we explore the usability of this data source solely to detect and outline buildings in this paper. The outline can then be used for further 3D modelling. In the previous work, building hypotheses are generated using a box model based on detected façades from four directions. In each viewing direction, façade edges extracted from images and height information by stereo matching from an image pair is used for the façade detection. Given that many façades were missing due to occlusion or lack of texture whilst building roofs can be viewed in most images, this work mainly focuses on improve the building box outline by adding roof information. Stereo matched point cloud generated from oblique images are combined with the features from images. Initial roof patches are located in the point cloud. Then AdaBoost is used to integrate geometric and radiometric attributes extracted from oblique image on grid pixel level with the aim to refine the roof area. Generalized contours of the roof pixels are taken as building outlines. The preliminary test has been done by training with five buildings and testing around sixty building clusters. The proposed method performs well concerning covering the irregular roofs as well as improve the sides location of slope roof buildings. Outline result comparing with cadastral map shows almost all above 70% completeness and correctness in an area-based assessment, as well as 20% to 40% improvement in correctness with respect to our previous work.

  15. Oblique convergence and the lobate mountain belts of western Pakistan

    Science.gov (United States)

    Haq, Saad S. B.; Davis, Dan M.

    1997-01-01

    The thin-skinned structures of the Pakistani convergent margin have formed as a consequence of the relative motion between India and Eurasia. Most of the resultant motion is being accommodated along or near the current edge of the Eurasian plate: the southwest-northeast striking Chaman fault zone. It has been observed at oblique margins that the total plate motion is resolved into a component parallel to the margin, accommodated through strike-slip faulting, and a component normal to the margin taken up as contraction. However, the orientations of structures along the Pakistani convergent margin in and around the Sulaiman lobe and Sulaiman Range cannot be explained simply by resolving the plate motion vector into components normal and parallel to the plate boundary. Our modeling suggests that the complex juxtaposition of strike-slip faults with thrust faults of various orientations can be explained by the presence of a block centered upon the Katawaz basin that translates along the southwest-northeast structural barrier of the Chaman fault zone, moving with respect to both Eurasia and India. As this relatively rigid block moves northeastward relative to Asia, it causes deformation of the sedimentary cover and is responsible for much of the structural complexity in the Pakistani foreland. Our simple model explains several first-order features of this oblique margin, such as the eastward-facing Sulaiman Range, the strike-slip Kingri fault (located between the Sulaiman lobe and Sulaiman Range), and the reentrant at Sibi. This leads us to conclude that very complex structural and geometric relationships at oblique convergent plate boundaries can result from the accommodation of strain with simple initial geometric constraints.

  16. Continental breakup by oblique extension: the Gulf of California

    Science.gov (United States)

    van Wijk, J.; Axen, G. J.

    2017-12-01

    We address two aspects of oblique extension: 1) the evolution of pull-apart basins, and how/when they may evolve into seafloor spreading segments; and 2) the formation of microcontinents. The Gulf of California formed by oblique extension. Breakup resulted in oceanic crust generation in the southern and central parts, while in the northern Gulf/Salton Trough a thick layer of (meta-)sediments overlies thinned continental crust. We propose a simple mechanism to explain this N-S variation. We assume that oblique rifting of the proto-Gulf province resulted in pull-apart basins, and use numerical models to show that such pull-apart basins do not develop into seafloor spreading segments when their length-to-width ratios are small, as is the case in the northern Gulf. In the central and southern Gulf the length-to-width ratios were larger, promoting continent rupture. The mechanisms behind this fate of pull-apart basins will be discussed in the presentation. In the southern Gulf, potential field models show that the Tamayo Bank in the southern Gulf is likely a microcontinent, separated from the main continent by the Tamayo trough. The thickness of the ocean crust in the Tamayo trough is anomalously small, suggesting that initial seafloor spreading was magma-starved and unsuccessful, causing the location of rifting and seafloor spreading to jump. As a consequence a sliver of continent broke off, forming the microcontinent. We suggest that worldwide this may be a common process for microcontinent formation.

  17. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  18. Magnetization reversal in an obliquely oriented metal evaporated tape

    International Nuclear Information System (INIS)

    Srinath, S.; Vavassori, P.; Rekveldt, M.Th.; Cook, R.E.; Felcher, G.P.

    2004-01-01

    Magnetization reversal in obliquely oriented metal evaporated videotapes as a function of the tape depth was studied by vector magneto-optic Kerr effect and polarized neutron reflectivity. The magnetization vector was found to rotate coherently out-of-plane by an angle α during the magnetization reversal for a substantial part of the hysteresis cycle. However α differs between the surface-facing and the substrate-facing sides of the film, with the more oxidized surface layer following closely the applied field. Close to M∼0 the film breaks down magnetically into a collage of small domains, reflecting the crystalline microstructure of the material

  19. Two-phase flow measurement based on oblique laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.

  20. Reflection of oblique electron thermal modes in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Sanuki, H.

    1980-04-01

    In an inhomogeneous magnetoplasma, reflection of an oblique electron thermal mode radiated from a local source is investigated experimentally and theoretically near the electron plasma frequency layer. The experimental observation of reflection in the lower plasma density region than the f sub(p)-layer is found to be in qualitative accord with the theoretical reflection, which is obtained from a kinetic theory in an inhomogeneous magnetoplasma. The reflection of the thermal mode is also compared with that of an electromagnetic mode at the f sub(p)-layer. (author)

  1. Exaggerated supine oblique view of the cervical spine

    International Nuclear Information System (INIS)

    Abel, M.S.

    1982-01-01

    The technique of the 60 degree supine oblique view is described together with anatomic skeletal studies of this projection. The view is convenient for emergency room radiography and useful in other clinical radiography. The view separates widely the anterior and posterior portions of the vertebrae in a side to side projection. This makes for an elongated but detailed view of the articular processes, pedicles, and intervertebral foramina. In the cadavar specimen and clinically the view is shown to be useful in delineating fracture deformities of the articular process and visualizing constriction of the intervertebral foramen superiorly. Encroachment of the foramen superiorly is likely to compromise the emerging nerve root in this area

  2. Kinetic Alfven waves and electron physics. II. Oblique slow shocks

    International Nuclear Information System (INIS)

    Yin, L.; Winske, D.; Daughton, W.

    2007-01-01

    One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study

  3. Oblique aerial images and their use in cultural heritage documentation

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2013-01-01

    on automatically derived point clouds of high density. Each point will be supplemented with colour and other attributes. The problems experienced in these processes and the solutions to these problems are presented. The applied tools are a combination of professional tools, free software, and of own software...... developments. Special attention is given to the quality of input images. Investigations are carried out on edges in the images. The combination of oblique and nadir images enables new possibilities in the processing. The use of the near-infrared channel besides the red, green, and blue channel of the applied...

  4. Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f

    Science.gov (United States)

    Shan, Yutong; Li, Gongjie

    2018-06-01

    Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet’s spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N-body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the planetary properties and system architecture in the lower-obliquity regimes (≲40°). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below ∼40°, whereas the high-obliquity regions (60°–90°) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g., mutual inclinations ∼3°) could stir peak-to-peak obliquity variations up to ∼20°. Undetected planetary companions and/or the existence of a satellite could also destabilize the low-obliquity regions. In all cases, the high-obliquity region allows for moderate variations, and all obliquities corresponding to retrograde motion (i.e., >90°) are stable.

  5. Dependence of secondary electron emission on the incident angle and the energy of primary electrons bombarding bowl-structured beryllium surfaces

    International Nuclear Information System (INIS)

    Kawata, Jun; Ohya, Kaoru.

    1994-01-01

    A Monte Carlo simulation of the secondary electron emission from beryllium is combined with a model of bowl structure for surface roughness, for analyzing the difference between the electron emissions for normal and oblique incidences. At normal incidence, with increasing the roughness parameter H/W, the primary energy E pm at which the maximum electron yield occurs becomes higher, and at more than the E pm , the decrease in the yield is slower; where H and W are the depth and width of the bowl structure, respectively. The dispersion of incident angle to the microscopic surface causes a small increase in the yield at oblique incidence, whereas the blocking of primary electrons from bombarding the bottom of the structure causes an opposite trend. The strong anisotropy in the polar angular distribution with respect to the azimuthal angle is calculated at oblique incidence. (author)

  6. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  7. Transient electromagnetic scattering on anisotropic media

    International Nuclear Information System (INIS)

    Stewart, R.D.

    1990-01-01

    This dissertation treats the problem of transient scattering of obliquely incident electromagnetic plane waves on a stratified anisotropic dielectric slab. Scattering operators are derived for the reflective response of the medium. The internal fields are calculated. Wave splitting and invariant imbedding techniques are used. These techniques are first presented for fields normally incident on a stratified, isotropic dielectric medium. The techniques of wave splitting and invariant imbedding are applied to normally incident plane waves on an anisotropic medium. An integro-differential equation is derived for the reflective response and the direct and inverse scattering problems are discussed. These techniques are applied to the case of obliquely incident plane waves. The reflective response is derived and the direct and inverse problems discussed and compared to those for the normal incidence case. The internal fields are investigated for the oblique incidence via a Green's function approach. A numerical scheme is presented to calculate the Green's function. Finally, symmetry relations of the reflective response are discussed

  8. Routine oblique radiography of the pediatric lumbar spine: is it necessary. [Oblique radiography entails more than double the gonadal radiation dose of frontal-lateral projections

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, F.F.; Kishore, P.R.S.; Cunningham, M.E.

    1978-08-01

    A series of 86 pediatric lumbar spine abnormalities was evaluated to determine the diagnostic benefit of radiography in oblique projection as compared to frontal-lateral projections alone. In only four patients was an abnormality apparent on the oblique view which had not already been demonstrated by the frontal-lateral series; each of these represented an isolated spondylolysis. Because the diagnostic yield was low at a patient cost of more than double the gonadal radiation dose, it is recommended that oblique views be eliminated in the routine radiography of the pediatric lumbar spine.

  9. Ion stochastic heating by obliquely propagating magnetosonic waves

    International Nuclear Information System (INIS)

    Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui

    2012-01-01

    The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.

  10. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    Field, E.C. Jr.; Bloom, R.M.; Kossey, P.A.

    1990-01-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  11. The oblique perspective: philosophical diagnostics of contemporary life sciences research.

    Science.gov (United States)

    Zwart, Hub

    2017-12-01

    This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.

  12. SEMANTIC BUILDING FAÇADE SEGMENTATION FROM AIRBORNE OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2018-05-01

    Full Text Available With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF, capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.

  13. Semantic Building FAÇADE Segmentation from Airborne Oblique Images

    Science.gov (United States)

    Lin, Y.; Nex, F.; Yang, M. Y.

    2018-05-01

    With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF), capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.

  14. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    Science.gov (United States)

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of

  15. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su

    2011-01-01

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/μc-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of θ i = 0 (normal sputtering) and θ i = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at θ i = 80 show the inclined columnar nanostructures compared to those at θ i = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/μc-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of ∝1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at θ i = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Department of Electronics and Radio Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-09-15

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/{mu}c-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of {theta}{sub i} = 0 (normal sputtering) and {theta}{sub i} = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at {theta}{sub i} = 80 show the inclined columnar nanostructures compared to those at {theta}{sub i} = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/{mu}c-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of {proportional_to}1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at {theta}{sub i} = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Evaluation of the internal oblique, external oblique, and transversus abdominalis muscles in patients with ankylosing spondylitis: an ultrasonographic study.

    Science.gov (United States)

    Üşen, Ahmet; Kuran, Banu; Yılmaz, Figen; Aksu, Neşe; Erçalık, Cem

    2017-11-01

    The objectives of the study are to compare abdominal muscle thickness in ankylosing spondylitis (AS) patients with healthy subjects and determine the factors affecting these muscle thickness. Thirty-five male patients with a previous diagnosis of AS according to the Modified New York criteria and a control group consisting of 35 healthy male individuals were included in this cross-sectional and case-control study. Thicknesses of the internal oblique (IO), external oblique (EO), and transversus abdominalis (TrA) muscles were measured with ultrasound (US). AS patients were classified according to the International Physical Activity Questionnaire (IPAQ). There were 35 AS patients with a mean age of 35.17 ± 8.05 years and 35 healthy subjects with a mean age 32.57 ± 7.05 years. No significant difference was observed between the groups in terms of abdominal muscle thicknesses (p > 0.005). When the AS patients were classified according to the IPAQ scores, thicknesses of the IO and TrA muscles were significantly lower in patients who had the low level of IPAQ scores (p < 0.05). In the light of our first and preliminary results, muscle thickness of the IO, EO, and TrA muscles were similar in AS patients to healthy subjects. However, AS patients who had lower level of physical activity have also reduced thickness of IO and TrA muscles.

  18. Graphite irradiated by swift heavy ions under grazing incidence

    CERN Document Server

    Liu, J; Müller, C; Neumann, R

    2002-01-01

    Highly oriented pyrolytic graphite is irradiated with various heavy projectiles (Ne, Ni, Zn, Xe and U) in the MeV to GeV energy range under different oblique angles of incidence. Using scanning tunneling microscopy, the impact zones are imaged as hillocks protruding from the surface. The diameter of surface-grazing tracks varies between 3 nm (Ne) and 6 nm (U), which is about twice as large as under normal beam incidence. Exclusively for U and Xe projectiles, grazing tracks exhibit long comet-like tails consisting of successive little bumps indicating that the damage along the ion path is discontinuous even for highest electronic stopping powers.

  19. Oblique decision trees using embedded support vector machines in classifier ensembles

    NARCIS (Netherlands)

    Menkovski, V.; Christou, I.; Efremidis, S.

    2008-01-01

    Classifier ensembles have emerged in recent years as a promising research area for boosting pattern recognition systems' performance. We present a new base classifier that utilizes oblique decision tree technology based on support vector machines for the construction of oblique (non-axis parallel)

  20. Which oblique plane is more helpful in diagnosing an anterior cruciate ligament tear?

    International Nuclear Information System (INIS)

    Kwon, J.W.; Yoon, Y.C.; Kim, Y.N.; Ahn, J.H.; Choe, B.K.

    2009-01-01

    Aim: To evaluate the diagnostic role of additional oblique coronal and oblique sagittal magnetic resonance imaging (MRI) for an anterior cruciate ligament (ACL) tear. Materials and methods: A total of 101 patients who had undergone preoperative knee MRI examinations with orthogonal and two sets of oblique images were enrolled in the study. Two radiologists evaluated the MRI images by the use of four methods: orthogonal images only (method A); orthogonal and additional oblique coronal images (method B); orthogonal and oblique sagittal images (method C); and orthogonal images with oblique coronal and sagittal images (method D). The status of the ACL (normal or tear) was determined by consensus. The sensitivity, specificity, and accuracy for an ACL tear with the use of each method were calculated in comparison with arthroscopy as the reference standard, and values were statistically analysed using the McNemar test. The diagnostic accuracies were compared using receiver operating characteristic (ROC) analysis. Results: Arthroscopy identified 10 partial ACL tears and 30 complete ACL tears. The specificities and accuracies for methods B, C, and D were significantly higher than the specificities and accuracies for method A (p 0.05). Conclusions: Additional oblique imaging for an ACL tear improved the specificity. Either of the oblique imaging methods is sufficient, and no further improvement in the diagnostic efficacy was achieved by simultaneous use

  1. Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65

    NARCIS (Netherlands)

    Chaplin, W.J.; Sanchis-Ojeda, R.; Campante, T.L.; Handberg, R.; Stello, D.; Winn, J.N.; Basu, S.; Christensen-Dalsgaard, J.; Davies, G.R.; Metcalfe, T.S.; Buchhave, L.A.; Fischer, D.A.; Bedding, T.R.; Cochran, W.D.; Elsworth, Y.; Gilliland, R.L.; Hekker, S.; Huber, D.; Isaacson, H.; Karoff, C.; Kawaler, S.D.; Kjeldsen, H.; Latham, D.W.; Lund, M.N.; Lundkvist, M.; Marcy, G.W.; Miglio, A.; Barclay, T.; Lissauer, J.J.

    2013-01-01

    Results on the obliquity of exoplanet host stars?the angle between the stellar spin axis and the planetary orbital axis?provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity

  2. An "oblique effect" in the visual evoked potential of the cat.

    Science.gov (United States)

    Bonds, A B

    1982-01-01

    An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.

  3. Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations

    Science.gov (United States)

    Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi

    1996-09-01

    We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.

  4. Horizontal effect of the surgical weakening of the oblique muscles

    Directory of Open Access Journals (Sweden)

    Carlos Souza-Dias

    2011-06-01

    Full Text Available PURPOSE: To evaluate the influence of the oblique muscles surgical weakening on the horizontal alignment in the primary position (PP and its efficacy on the correction of the "A" and "V" anisotropies. METHODS: In order to study the influence of bilateral superior oblique muscles (SO weakening on the horizontal alignment in PP, we analyzed the files of 12 patients who underwent only that operation; no other muscle was operated on. We took the opportunity of those 12 patients to analyze the effect of their operation on the correction of "A" incomitance. For evaluating the effect of the inferior oblique muscles (IO weakening on the correction of the "V" pattern, we analyzed retrospectively the files of 67 anisotropic patients who underwent a bilateral SO weakening. In 10 of them, the only operation was the oblique muscles weakening and, in 57 patients, the horizontal recti were also operated on for the horizontal deviations in primary position. These patients were divided into two groups: 50 were esotropic and 17 exotropic. There was not any mixed anisotropy. RESULTS: The mean value of the preoperative "V" incomitance of the 50 esotropic patients was 24.25∆ ± 10.15∆; the mean postoperative correction was 15.56 ∆ ± 8.74∆. The mean correction between the PP and upgaze was 7.52∆ ± 7.47∆ and from the PP to downgaze was 8.56∆ ± 9.21∆. The same values of the 17 exotropic patients was: preoperative 31.88∆ ± 9.4∆; primary position to upgaze was 13.11∆ ± 4.9∆ and primary position to downgaze 14.11∆ ± 12.48∆. The mean preoperative value of the "A" incomitance among the 12 patients who underwent isolated SO weakening was 30.50∆ ± 19.25∆ and the postoperative was of 9,92∆, therefore a mean correction of 22.58∆ ± 17.54∆. Among these ones, in 5 there was no alteration of the deviation in primary position, in 4 there was an exo-effect and in 3 there was an eso-effect. The mean alteration of the deviation in PP was an

  5. ANALISIS ABSOLUTE DAN OBLIQUE DALAM BAHASA KERINCI ISOLEK PULAU TENGAH

    Directory of Open Access Journals (Sweden)

    Nova Rina

    2016-10-01

    Full Text Available This research study in phonological field, aims of this research to discribe rhyme alternation on form of absolute and oblique in Kerinci language isolect pulau tengah. The purpose of this research are 1 to documenting Kerinci language isolect Pulau Tengah that threatened by Indonesian standart, Jakarta Indonesia, Minangkabau language, and most seriously threathened by Kerinci koine 2 the result of this research about description of Kerinci language isolect Pulau Tengah will be useful for other Malayic language researcher especially in remote areas of Sumatera and 3 give langauge contribution significantly for Kerinci society especially for Pulau Tengah society. This research found 19 rhyme alternation in G-words, 20 rhyme alternation in K-words, 16 vocal sequences, 28 consonant clusters, 12 consonant sequences, and base on silable phonotactic rules in Kerinci language isolect Pulau Tengah, it found six rules; V, VC, CV, CVC, CCV, and CCVC.

  6. Splitting Terraced Houses Into Single Units Using Oblique Aerial Imagery

    Science.gov (United States)

    Dahlke, D.

    2017-05-01

    This paper introduces a method to subdivide complex building structures like terraced houses into single house units comparable to units available in a cadastral map. 3D line segments are detected with sub-pixel accuracy in traditional vertical true orthomosaics as well as in innovative oblique true orthomosaics and their respective surface models. Hereby high gradient strengths on roofs as well as façades are taken into account. By investigating the coplanarity and frequencies within a set of 3D line segments, individual cut lines for a building complex are found. The resulting regions ideally describe single houses and thus the object complexity is reduced for subsequent topological, semantical or geometrical considerations. For the chosen study area with 70 buidling outlines a hit rate of 80% for cut lines is achieved.

  7. A simple oblique dip model for geomagnetic micropulsations

    Directory of Open Access Journals (Sweden)

    J. A. Lawrie

    Full Text Available It is pointed out that simple models adopted so far have tended to neglect the obliquity of the magnetic field lines entering the Earth's surface. A simple alternative model is presented, in which the ambient field lines are straight, but enter wedge shaped boundaries at half a right-angle. The model is illustrated by assuming an axially symmetric, compressional, impulse type disturbance at the outer boundary, all other boundaries being assumed to be perfectly conducting. The numerical method used is checked from the instant the excitation ceases, by an analytical method. The first harmonic along field lines is found to be of noticeable size, but appears to be mainly due to coupling with the fundamental, and with the first harmonic across field lines.

    Key words. Magnetospheric physics (MHD waves and instabilities.

  8. Oblique shock waves in granular flows over bluff bodies

    Directory of Open Access Journals (Sweden)

    Gopan Nandu

    2017-01-01

    Full Text Available Granular flows around an object have been the focus of numerous analytical, experimental and simulation studies. The structure and nature of the oblique shock wave developed when a quasi-two dimensional flow of spherical granular particles streams past an immersed, fixed cylindrical obstacle forms the focus of this study. The binary granular mixture, consisting of particles of the same diameter but different material properties, is investigated by using a modified LIGGGHTS package as the simulation engine. Variations in the solid fraction and granular temperature within the resulting flow are studied. The Mach number is calculated and is used to distinguish between the subsonic and the supersonic regions of the bow shock.

  9. Formation mechanisms and characteristics of transition patterns in oblique detonations

    Science.gov (United States)

    Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong

    2018-01-01

    The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).

  10. Distal Oblique Bundle Reinforcement for Treatment of DRUJ Instability.

    Science.gov (United States)

    Brink, Peter R G; Hannemann, Pascal F W

    2015-08-01

    Background Chronic, dynamic bidirectional instability in the distal radioulnar joint (DRUJ) is diagnosed clinically, based on the patient's complaints and the finding of abnormal laxity in the vicinity of the distal ulna. In cases where malunion is ruled out or treated and there are no signs of osteoarthritis, stabilization of the DRUJ may offer relief. To this end, several different techniques have been investigated over the past 90 years. Materials and Methods In this article we outline the procedure for a new technique using a tendon graft to reinforce the distal edge of the interosseous membrane. Description of Technique A percutaneous technique is used to harvest the palmaris longus tendon and to create a tunnel, just proximal to the sigmoid notch, through the ulna and radius in an oblique direction. By overdrilling the radial cortex, the knotted tendon can be pulled through the radius and ulna and the knot blocked at the second radial cortex, creating a strong connection between the radius and ulna at the site of the distal oblique bundle (DOB). The tendon is fixed in the ulna with a small interference screw in full supination, preventing subluxation of the ulna out of the sigmoid notch during rotation. Results Fourteen patients were treated with this novel technique between 2011 and October 2013. The QuickDASH score at 25 months postoperatively (range 16-38 months) showed an improvement of 32 points. Similarly, an improvement of 33 points (67-34 months) was found on the PRWHE. Only one recurrence of chronic, dynamic bidirectional instability in the DRUJ was observed. Conclusion This simple percutaneous tenodesis technique between radius and ulna at the position of the distal edge of the interosseous membrane shows promise in terms of both restoring stability and relieving complaints related to chronic subluxation in the DRUJ.

  11. AUTOMATIC ORIENTATION OF LARGE BLOCKS OF OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2013-05-01

    Full Text Available Nowadays, multi-camera platforms combining nadir and oblique cameras are experiencing a revival. Due to their advantages such as ease of interpretation, completeness through mitigation of occluding areas, as well as system accessibility, they have found their place in numerous civil applications. However, automatic post-processing of such imagery still remains a topic of research. Configuration of cameras poses a challenge on the traditional photogrammetric pipeline used in commercial software and manual measurements are inevitable. For large image blocks it is certainly an impediment. Within theoretical part of the work we review three common least square adjustment methods and recap on possible ways for a multi-camera system orientation. In the practical part we present an approach that successfully oriented a block of 550 images acquired with an imaging system composed of 5 cameras (Canon Eos 1D Mark III with different focal lengths. Oblique cameras are rotated in the four looking directions (forward, backward, left and right by 45° with respect to the nadir camera. The workflow relies only upon open-source software: a developed tool to analyse image connectivity and Apero to orient the image block. The benefits of the connectivity tool are twofold: in terms of computational time and success of Bundle Block Adjustment. It exploits the georeferenced information provided by the Applanix system in constraining feature point extraction to relevant images only, and guides the concatenation of images during the relative orientation. Ultimately an absolute transformation is performed resulting in mean re-projection residuals equal to 0.6 pix.

  12. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    Science.gov (United States)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  13. Alpha-particle breakup at incident energies of 20 and 40 MeV/nucleon

    International Nuclear Information System (INIS)

    Wu, J.R.; Chang, C.C.; Holmgren, H.D.; Koontz, R.W.

    1979-01-01

    The breakup of alpha particles at incident energies of 20 and 40 MeV/nucleon on 27 Al, 58 Ni, 90 Zr, and 209 Bi has been studied. It was found that the breakup cross section decreases rapidly with increasing angles and increases with increasing target mass and incident energy. The total breakup yield, summed over all charged fragments, is approx.15--35% of the alpha-particle total reaction cross section, and has an approximate A/sup 1/3/ dependence. The ratios of breakup yields among different fragments are approximately p:d:t: 3 He approx. = 13:3:1:2, and are roughly independent of the incident energy and the target nucleus. These features suggest that the alpha-particle fragmentation is a peripheral process and is dominated by the properties of the incident projectile. A simple plane-wave alpha-particle breakup model gives a rather good description to the experimental data. In addition to the breakup deuteron peak at half of the beam energy, a second peak at quarter of the beam energy (or the same energy as the breakup proton peak) is observed. This peak might be due to a two-step breakup-pickup process

  14. Plane wave interaction with a homogeneous warm plasma sphere

    International Nuclear Information System (INIS)

    Ruppin, R.

    1975-01-01

    A Mie type theory for the scattering and absorption properties of a homogeneous warm plasma sphere is developed. The theory is applied to the calculation of the extinction cross section of plasma spheres, and the effects of Landau damping and collisional damping on the spectra are discussed. The dependence of the main resonance and of the Tonks-Dattner resonances on the physical parameters characterizing the sphere and its surroundings is investigated. The spectrum is shown to be insenitive to the boundary conditions which specify the behaviour of the electrons at the surface of the sphere (author)

  15. On the energy-momentum density of gravitational plane waves

    International Nuclear Information System (INIS)

    Dereli, T; Tucker, R W

    2004-01-01

    By embedding Einstein's original formulation of general relativity into a broader context, we show that a dynamic covariant description of gravitational stress-energy emerges naturally from a variational principle. A tensor T G is constructed from a contraction of the Bel tensor with a symmetric covariant second degree tensor field Φ and has a form analogous to the stress-energy tensor of the Maxwell field in an arbitrary spacetime. For plane-fronted gravitational waves helicity-2 polarized (graviton) states can be identified carrying non-zero energy and momentum

  16. A pulsed electron gun for the Plane Wave Transformer Linac

    Science.gov (United States)

    Mahadevan, S.; Gandhi, M. L.; Nandedkar, R. V.

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5 π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  17. A pulsed electron gun for the Plane Wave Transformer Linac

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, S. E-mail: maharaja@cat.ernet.in; Gandhi, M.L. E-mail: mlg@cat.ernet.in; Nandedkar, R.V. E-mail: nrv@cat.ernet.in

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 {mu}perv and the normalized emittance is within 5{pi} mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  18. A pulsed electron gun for the Plane Wave Transformer Linac

    CERN Document Server

    Mahadevan, S; Nandedkar, R V

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 mu perv and the normalized emittance is within 5 pi mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  19. A pulsed electron gun for the Plane Wave Transformer Linac

    International Nuclear Information System (INIS)

    Mahadevan, S.; Gandhi, M.L.; Nandedkar, R.V.

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance

  20. Inverse problems and inverse scattering of plane waves

    CERN Document Server

    Ghosh Roy, Dilip N

    2001-01-01

    The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.

  1. Analytic plane wave solutions for the quaternionic potential step

    International Nuclear Information System (INIS)

    De Leo, Stefano; Ducati, Gisele C.; Madureira, Tiago M.

    2006-01-01

    By using the recent mathematical tools developed in quaternionic differential operator theory, we solve the Schroedinger equation in the presence of a quaternionic step potential. The analytic solution for the stationary states allows one to explicitly show the qualitative and quantitative differences between this quaternionic quantum dynamical system and its complex counterpart. A brief discussion on reflected and transmitted times, performed by using the stationary phase method, and its implication on the experimental evidence for deviations of standard quantum mechanics is also presented. The analytic solution given in this paper represents a fundamental mathematical tool to find an analytic approximation to the quaternionic barrier problem (up to now solved by numerical method)

  2. Analyzing Lagrange gauge measurements of spherical, cylindrical, or plane waves

    International Nuclear Information System (INIS)

    Aidun, J.B.

    1993-01-01

    Material response characterizations that are very useful in constitutive model development can be obtained from careful analysis of in-material (embedded, Lagrangian) gauge measurements of stress and/or particle velocity histories at multiple locations. The requisite measurements and the analysis are feasible for both laboratory and field experiments. The final product of the analysis is a set of load paths (e.g., radial stress vs. radial strain, tangential vs. radial stress, tangential vs. radial strain, radial stress vs. particle velocity) and their possible variation with propagation distance. Material model development can be guided and constrained by this information, but extra information or assumptions are needed to first establish a parameterized representation of the material response

  3. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  4. Plane wave scattering by bow-tie posts

    Science.gov (United States)

    Lech, Rafal; Mazur, Jerzy

    2004-04-01

    The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.

  5. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments.

    Science.gov (United States)

    Leishman, Timothy W; Anderson, Brian E

    2013-07-01

    The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.

  6. Axial oblique MR imaging of the intrinsic ligaments of the wrist: initial experience

    International Nuclear Information System (INIS)

    Robinson, G.; Chung, T.; Finlay, K.; Friedman, L.

    2006-01-01

    To evaluate two separate MR sequences acquired in the axial oblique plane, parallel to the long axis of the scapholunate (SL) and lunotriquetral (LT) ligaments, to determine whether the addition of these sequences to the standard MR wrist examination improves visualization of the intrinsic ligaments, and the evaluation of their integrity. To our knowledge, this plane has not been described in the literature previously. In total we evaluated 26 patients with chronic wrist pain or instability, referred for MR imaging following assessment by an orthopedic surgeon or physiatrist. All patients underwent initial conventional tri-compartment wrist arthrography, which served as the reference standard. This was immediately followed by MR arthrography, in the standard coronal and true axial planes, as well as in the axial oblique plane. The SL and LT ligaments were initially assessed for the presence or absence of tear, using the standard coronal and true axial sequences, and subsequently re-evaluated with the addition of the axial oblique planes. A total of ten intrinsic ligament tears were identified with conventional arthrography: six SL and four LT tears. Five of the six SL tears were identified on the standard sequences. All six were diagnosed with the addition of the oblique sequences. There were three false-positive SL tears identified using standard MR imaging, and two false-positives with the addition of the oblique sequences. No LT tear was identified on standard sequences, whereas all four were confidently seen with the addition of oblique images. No false-positives of the LT ligament were recorded with either standard or axial oblique sequences. The study suggests that the addition of axial oblique MR sequences helps identify tears to the intrinsic ligaments of the wrist, particularly the LT ligament. In addition, the axial oblique images assist in localization of the tear. (orig.)

  7. Response of PMHS to high- and low-speed oblique and lateral pneumatic ram impacts.

    Science.gov (United States)

    Rhule, Heather; Suntay, Brian; Herriott, Rodney; Amenson, Tara; Stricklin, Jim; Bolte, John H

    2011-11-01

    In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al. (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al. or similar as observed by ISO. Twelve PMHS were impacted by a 23 kg pneumatic ram with a 152.4 mmx304.8 mm rectangular face plate at the level of the xyphoid process in either the pure lateral or 30° anterior-to-lateral oblique direction. Because these tests were potentially injurious, only one test per subject was conducted. Normalized responses demonstrate similar characteristics for both lateral and oblique impacts, indicating that it may be reasonable to combine lateral and oblique responses together at these higher speeds to define characteristic PMHS response as was done by ISO. The small number of tests conducted indicates that less chest compression may be required to obtain serious thoracic injury in oblique impacts as compared to lateral impacts at speeds of 4.5 or 5.5 m/s.

  8. Routine oblique radiography of the pediatric lumbar spine: is it necessary

    International Nuclear Information System (INIS)

    Roberts, F.F.; Kishore, P.R.S.; Cunningham, M.E.

    1978-01-01

    A series of 86 pediatric lumbar spine abnormalities was evaluated to determine the diagnostic benefit of radiography in oblique projection as compared to frontal-lateral projections alone. In only four patients was an abnormality apparent on the oblique view which had not already been demonstrated by the frontal-lateral series; each of these represented an isolated spondylolysis. Because the diagnostic yield was low at a patient cost of more than double the gonadal radiation dose, it is recommended that oblique views be eliminated in the routine radiography of the pediatric lumbar spine

  9. Obliquely Propagating Non-Monotonic Double Layer in a Hot Magnetized Plasma

    International Nuclear Information System (INIS)

    Kim, T.H.; Kim, S.S.; Hwang, J.H.; Kim, H.Y.

    2005-01-01

    Obliquely propagating non-monotonic double layer is investigated in a hot magnetized plasma, which consists of a positively charged hot ion fluid and trapped, as well as free electrons. A model equation (modified Korteweg-de Vries equation) is derived by the usual reductive perturbation method from a set of basic hydrodynamic equations. A time stationary obliquely propagating non-monotonic double layer solution is obtained in a hot magnetized-plasma. This solution is an analytic extension of the monotonic double layer and the solitary hole. The effects of obliqueness, external magnetic field and ion temperature on the properties of the non-monotonic double layer are discussed

  10. FITTING OF PARAMETRIC BUILDING MODELS TO OBLIQUE AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    U. S. Panday

    2012-09-01

    Full Text Available In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of – 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for

  11. 3-D Numerical Modelling of Oblique Continental Collisions with ASPECT

    Science.gov (United States)

    Karatun, L.; Pysklywec, R.

    2017-12-01

    Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and

  12. Evanescent wave scattering at off-axis incidence on multiple cylinders located near a surface

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2015-01-01

    The scattering characteristics of an infinite cylinder are strongly influenced by the incidence angle relative to its axis. If the incident wave propagates in the plane normal to the axis of the cylinder, the polarization of the scattered wave remains unchanged and the scattered wave propagates in the same plan as the incident wave. At off-axis incidence such that the incident direction makes an oblique angle with the cylinder axis, the scattered wave is depolarized, and its spatial distribution becomes three-dimensional. This paper presents the scattering solution for oblique incidence on multiple parallel cylinders located near a planar interface by an evanescent wave that is generated by total internal reflection of the source wave propagating in the higher refractive index substrate. Hertz potentials are utilized to formulate the interaction of inhomogeneous waves with the cylinders, scattering at the substrate interface, and near field scattering between the cylinders. Analytic formulas are derived for the electromagnetic fields and Poynting vector of scattered radiation in the near-field and their asymptotic forms in the far-field. Numerical examples are shown to illustrate scattering of evanescent wave by multiple cylinders at off-axis incidence. - Highlights: • Developed an exact solution for off-axis incidence on multiple cylinders. • Included depolarization, near-field scattering, and Fresnel effect in theory. • Derived analytic formulas for scattered radiation in the far field. • Illustrated evanescent scattering at off-axis incidence by numerical data

  13. Effect of ion composition on oblique magnetosonic waves

    International Nuclear Information System (INIS)

    Kondo, Yuichi; Toida, Mieko

    2011-01-01

    The effects of ion composition on oblique magnetosonic waves in a two-ion-species plasma are studied theoretically and numerically. First, it is analytically shown that the KdV equation for the low-frequency mode, the lower branch of magnetosonic waves, is valid for amplitudes ε max (l-) , where ε max (l-) is a measure of the upper limit of the amplitude of the rarefactive solitary pulse of the low-frequency mode and is given as a function of the propagation angle of the wave θ, the density ratio and cyclotron frequency ratio of two ion species. The value of ε max (l-) increases with decreasing θ. Next, with electromagnetic particle simulations, the nonlinear evolution of the low- and high-frequency modes is examined. It is demonstrated that shorter-wavelength low- and high-frequency-mode waves are generated from a long-wavelength low-frequency-mode pulse if its amplitude ε exceeds ε max (l-) . (author)

  14. Obliquely propagating large amplitude solitary waves in charge neutral plasmas

    Directory of Open Access Journals (Sweden)

    F. Verheest

    2007-01-01

    Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.

  15. Oblique Aerial Photography Tool for Building Inspection and Damage Assessment

    Science.gov (United States)

    Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.

    2014-11-01

    Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.

  16. Radio frequency sheaths in an oblique magnetic field

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2015-01-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describes the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle θ, assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath, and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general, the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall

  17. Automated Prescription of Oblique Brain 3D MRSI

    Science.gov (United States)

    Ozhinsky, Eugene; Vigneron, Daniel B.; Chang, Susan M.; Nelson, Sarah J.

    2012-01-01

    Two major difficulties encountered in implementing Magnetic Resonance Spectroscopic Imaging (MRSI) in a clinical setting are limited coverage and difficulty in prescription. The goal of this project was to completely automate the process of 3D PRESS MRSI prescription, including placement of the selection box, saturation bands and shim volume, while maximizing the coverage of the brain. The automated prescription technique included acquisition of an anatomical MRI image, optimization of the oblique selection box parameters, optimization of the placement of OVS saturation bands, and loading of the calculated parameters into a customized 3D MRSI pulse sequence. To validate the technique and compare its performance with existing protocols, 3D MRSI data were acquired from 6 exams from 3 healthy volunteers. To assess the performance of the automated 3D MRSI prescription for patients with brain tumors, the data were collected from 16 exams from 8 subjects with gliomas. This technique demonstrated robust coverage of the tumor, high consistency of prescription and very good data quality within the T2 lesion. PMID:22692829

  18. Theory of the collisional presheath in an oblique magnetic field

    International Nuclear Information System (INIS)

    Riemann, K.

    1994-01-01

    In the limit of a small Debye length (λ D →0), the plasma boundary layer in front of a negative absorbing wall is split up into a collision-free planar space charge sheath and a quasineutral presheath, where the ions are accelerated to ion sound speed (Bohm criterion). Usually the presheath mechanism depends decisively on collisional friction of the ions, on ionization, or on geometric ion current concentration. If the ion dynamics in the presheath is dominated by a magnetic field (nearly) parallel to the wall, an additional effect must be considered to provide an ion transport to the wall. The special cases (a) of an ion transport by field lines intersecting the wall at a finite angle and (b) of an ion transport by collisions result in somewhat contradictory conclusions. To get a coherent picture, a hydrodynamic model of the presheath is investigated accounting for an oblique magnetic field and for collisions. The limiting cases (a) and (b) are discussed, and it is shown that (in plane geometry) the presheath ion acceleration depends always on elementary processes. The main effect of a strong magnetic field is to ''compress'' the collisional presheath into a thin layer with a characteristic extension of the ion gyroradius ρ i

  19. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jonsson, Sigurjon

    2016-01-01

    -field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit

  20. OBLIQUE MULTI-CAMERA SYSTEMS – ORIENTATION AND DENSE MATCHING ISSUES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2014-03-01

    Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  1. Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests

    National Research Council Canada - National Science Library

    Scheidler, Mike

    2007-01-01

    This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...

  2. The oblique occipital sinus: anatomical study using bone subtraction 3D CT venography.

    Science.gov (United States)

    Shin, Hwa Seon; Choi, Dae Seob; Baek, Hye Jin; Choi, Ho Cheol; Choi, Hye Young; Park, Mi Jung; Kim, Ji Eun; Han, Jeong Yeol; Park, SungEun

    2017-06-01

    An occipital sinus draining into the sigmoid sinus has been termed the oblique occipital sinus (OOS). The frequency, anatomical features, patterns, and relationship with the transverse sinus of the oblique occipital sinus were analyzed in this study. The study included 1805 patients who underwent brain CT angiography during a 3-year period from 2013 to 2015. CT examinations were performed using a 64-slice MDCT system. The OOS was identified in 41 patients (2.3%). There were many anatomical variations in the oblique occipital sinuses. A hypoplastic or aplastic TS was seen in 31 (75.6%) of the 41 patients with OOS. Many anatomical variations in the oblique occipital sinus can be seen on CT venography. Some OOSs function as the main drainage route of the intracranial veins instead of the TS. Thus, careful examination is essential for preoperative evaluation in posterior fossa lesions.

  3. The role of the reversed oblique radiograph in trauma of the foot and ankle

    International Nuclear Information System (INIS)

    Geusens, E.; Geyskens, W.; Brys, P.; Janzing, H.

    2000-01-01

    The objective of this study was to demonstrate the statistical significance of a reversed oblique radiograph of the foot in patients with ankle or foot trauma. In 100 consecutive patients a reversed oblique radiograph of the foot was taken in addition to the conventional plain films. Ten of 29 fractures were not visualised on the conventional films of foot and ankle and could only be diagnosed on the reversed oblique film. In 7 of these 10 cases an avulsion fracture at the anterolateral aspect of the calcaneus was present. This additional reversed oblique film of the foot seems to be of considerable importance, especially when an anterolateral avulsion fracture of the calcaneus is clinically suspected. (orig.)

  4. The role of the reversed oblique radiograph in trauma of the foot and ankle

    Energy Technology Data Exchange (ETDEWEB)

    Geusens, E.; Geyskens, W.; Brys, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Janzing, H. [Dept. of Traumatology, University Hospitals, Leuven (Belgium)

    2000-03-01

    The objective of this study was to demonstrate the statistical significance of a reversed oblique radiograph of the foot in patients with ankle or foot trauma. In 100 consecutive patients a reversed oblique radiograph of the foot was taken in addition to the conventional plain films. Ten of 29 fractures were not visualised on the conventional films of foot and ankle and could only be diagnosed on the reversed oblique film. In 7 of these 10 cases an avulsion fracture at the anterolateral aspect of the calcaneus was present. This additional reversed oblique film of the foot seems to be of considerable importance, especially when an anterolateral avulsion fracture of the calcaneus is clinically suspected. (orig.)

  5. Modulational instability of the obliquely modulated ion acoustic waves in a warm ion plasma

    International Nuclear Information System (INIS)

    Saxena, M.K.; Arora, A.K.; Sharma, S.R.

    1981-01-01

    Using KBM. perturbation technique, it is shown that the modulationally unstable domain in the (kappa - phi) plane for the obliquely modulated ion acoustic waves is appreciably modified due to the finite ion temperature. It is also shown that in a collisionless plasma having small TAUsub(i)/TAUsub(e) ( 0 approximately 0.1) may exceed the Landau damping rate provided the modulation is sufficiently oblique. (author)

  6. Oblique Modulation of Ion-Acoustic Waves in a Warm Plasma

    International Nuclear Information System (INIS)

    Xue Jukui; Tang Rongan

    2003-01-01

    The stability of oblique modulation of ion-acoustic waves in an unmagnetized warm plasma is studied. A nonlinear Schroedinger equation governing the slow modulation of the wave amplitude is derived. The effect of temperature on the oblique modulational instability of the ion-acoustic wave is investigated. It is found that the ion temperature significantly changes the domain of the modulational instability in the k-θ plane

  7. THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION

    International Nuclear Information System (INIS)

    Désert, Jean-Michel; Charbonneau, David; Ballard, Sarah; Carter, Joshua A.; Quinn, Samuel N.; Fressin, François; Latham, David W.; Torres, Guillermo; Demory, Brice-Olivier; Fortney, Jonathan J.; Cochran, William D.; Endl, Michael; Isaacson, Howard T.; Knutson, Heather A.; Buchhave, Lars A.; Bryson, Stephen T.; Rowe, Jason F.; Borucki, William J.; Batalha, Natalie M.; Brown, Timothy M.

    2011-01-01

    This paper reports the discovery and characterization of the transiting hot giant exoplanet Kepler-17b. The planet has an orbital period of 1.486 days, and radial velocity measurements from the Hobby-Eberly Telescope show a Doppler signal of 419.5 +13.3 –15.6 m s –1 . From a transit-based estimate of the host star's mean density, combined with an estimate of the stellar effective temperature T eff = 5630 ± 100 from high-resolution spectra, we infer a stellar host mass of 1.06 ± 0.07 M ☉ and a stellar radius of 1.02 ± 0.03 R ☉ . We estimate the planet mass and radius to be M P = 2.45 ± 0.11 M J and R P = 1.31 ± 0.02 R J . The host star is active, with dark spots that are frequently occulted by the planet. The continuous monitoring of the star reveals a stellar rotation period of 11.89 days, eight times the planet's orbital period; this period ratio produces stroboscopic effects on the occulted starspots. The temporal pattern of these spot-crossing events shows that the planet's orbit is prograde and the star's obliquity is smaller than 15°. We detected planetary occultations of Kepler-17b with both the Kepler and Spitzer Space Telescopes. We use these observations to constrain the eccentricity, e, and find that it is consistent with a circular orbit (e 3.6μm = 1880 ± 100 K and T 4.5μm = 1770 ± 150 K. We measure the optical geometric albedo A g in the Kepler bandpass and find A g = 0.10 ± 0.02. The observations are best described by atmospheric models for which most of the incident energy is re-radiated away from the day side.

  8. Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity.

    Science.gov (United States)

    Tenan, Matthew S; Peng, Yi-Ling; Hackney, Anthony C; Griffin, Lisa

    2013-11-01

    Sports medicine professionals commonly describe two functionally different units of the vastus medialis (VM), the VM, and the vastus medialis oblique (VMO), but the anatomical support is equivocal. The functional difference of the VMO is principle to rehabilitation programs designed to alleviate anterior knee pain, a pathology that is known to have a greater occurrence in women. The purpose of this study was to determine whether the motor units of the VM and VMO are differentially recruited and if this recruitment pattern has an effect of sex or menstrual cycle phase. Single motor unit recordings from the VM and VMO were obtained for men and women during an isometric ramp knee extension. Eleven men were tested once. Seven women were tested during five different phases of the menstrual cycle, determined by basal body temperature mapping. The recruitment threshold and the initial firing rate at recruitment were determined from 510 motor unit recordings. The initial firing rate was lower in the VMO than that in the VM in women (P recruitment thresholds for the VM and VMO in either sex or across the menstrual cycle. There was a main effect of menstrual phase on initial firing rate, showing increases from the early follicular to late luteal phase (P = 0.003). The initial firing rate in the VMO was lower than that in the VM during ovulatory (P = 0.009) and midluteal (P = 0.009) phases. The relative control of the VM and VMO changes across the menstrual cycle. This could influence patellar pathologies that have a higher incidence in women.

  9. The visibility of mandibular canal on orthoradial and oblique CBCT slices at molar implant sites

    International Nuclear Information System (INIS)

    Alkhader, Mustafa; Jarab, Fadi; Shaweesh, Ashraf; Hudieb, Malik

    2016-01-01

    The aim of the present study was to compare visibility of the mandibular canal on cone beam computed tomography (CBCT)-based orthoradial and oblique slices at molar implant sites. CBCT images for 132 mandibular molar implant sites were selected for the study. After generating orthoradial and oblique slices, two observers evaluated the visibility of the mandibular canal using three-point scoring scale (1-3, good to excellent). Wilcoxon signed-rank test compared the visibility scores of the two slices. Both orthoradial and oblique slices obtained from CBCT had only very good to excellent mandibular canal visibility scores. At 114 mandibular molar implant sites, the visibility score was equal on both orthoradial and oblique slices. Although the visibility score was higher on orthoradial slices for 12 implant sites, the visibility score was higher for six implant sites on oblique slices and the difference was not significant. Therefore, the visibility of the mandibular canal was excellent and comparable on most of orthoradial and oblique slices obtained from CBCT images

  10. Differential melt scaling for oblique impacts on terrestrial planets

    Science.gov (United States)

    Abramov, Oleg; Wong, Stephanie M. Wong; Kring, David A. Kring

    2012-01-01

    Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal energy of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ∼1.6 times less melt volume than a vertical impact, and ∼1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous–Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.

  11. Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    International Nuclear Information System (INIS)

    Hermans, John J.; Ginai, Abida Z.; Beumer, Annechien; Moonen, Adrianus F.C.M.; Hop, Wim C.J.

    2012-01-01

    To evaluate the additional value of a 45 oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45 oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. The interobserver agreement (κ) and agreement score [AS (%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes (κ 0.61-0.92, AS 84-95%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p < 0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p=0.50) nor posteriorly (p=1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86% from 7%) and posterior (to 86% from 48%) syndesmotic injury when compared to the axial plane. Our results show the additional value of an 45 oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique MRI plane were

  12. Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    Energy Technology Data Exchange (ETDEWEB)

    Hermans, John J.; Ginai, Abida Z. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Beumer, Annechien; Moonen, Adrianus F.C.M. [Amphia Hospital, Department of Orthopaedics, Breda (Netherlands); Hop, Wim C.J. [Erasmus University Medical Center, Department of Biostatistics, Rotterdam (Netherlands)

    2012-02-15

    To evaluate the additional value of a 45 oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45 oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. The interobserver agreement ({kappa}) and agreement score [AS (%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes ({kappa} 0.61-0.92, AS 84-95%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p < 0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p=0.50) nor posteriorly (p=1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86% from 7%) and posterior (to 86% from 48%) syndesmotic injury when compared to the axial plane. Our results show the additional value of an 45 oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique

  13. Analysis of variationfor horizontal deviation in the primary position after the inferior oblique muscle weakening

    Directory of Open Access Journals (Sweden)

    Ming-Yu Si

    2015-06-01

    Full Text Available AIM: To analyse the variation of horizontal deviation in the primary position after the inferior oblique muscle weakening, and to explore the effect of the inferior oblique muscle recession on horizontal deviations in primary position.METHODS:, In the study, 30 cases in the Department of ophthalmology of our hospital from January 2014 to September 2014 underwent the inferior oblique muscle recession as the sole without horizontal muscles surgery, who were superior obliquer paralysis and V pattern strabismus with small angle of horizontal strabismus, were analyzed. Of the 30 patients, 25 had unilateral inferior oblique muscle surgery, and then 5 had bilateral surgeries.Followed up for three to six mo, all patients were received full ophthalmologic and orthoptic examinations, including measurement of the deviation in the diagnostic positions of gaze at near 33cm and at distance 6m by prism and alternate cover test, synoptophore, Titmus stereo graph examination, Worth four lighting inspection, eye movement examination, and fundus photography preoperatively and postoperatively. The changes of horizontal deviations in the primary position after procedures were investigated. RESULT:(1The comparison of horizontal deviation showed significant difference pre- and post-operation in the exotropia group(P=0.00. It was postoperative respectively to reduce the original in external oblique average 3.35±2.87△ and 4.37±2.65△.(2The comparison of horizontal deviation showed significant difference pre-and post-operation in the esotropia group(P=0.02, and it decreased postoperatively in average 2.43±1.99△. There was no significant difference for horizontal deviation position between pre- and post-operation(P=0.089. CONCLUSION:The horizontal deviation in primary position, either exotropia or esotropia, will decrease after the Inferior oblique muscle recession. This change can be compensated by the gradually improving and establishing the fusion function.

  14. QUALITY INSPECTION AND ANALYSIS OF THREE-DIMENSIONAL GEOGRAPHIC INFORMATION MODEL BASED ON OBLIQUE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    S. Dong

    2018-04-01

    Full Text Available In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  15. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    Science.gov (United States)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  16. Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks

    Directory of Open Access Journals (Sweden)

    S.-Y. Lee

    2008-10-01

    Full Text Available Pleistocene benthic δ18O records exhibit strong spectral power at ~41 kyr, indicating that global ice volume has been modulated by Earth's axial tilt. This feature, and weak spectral power in the precessional band, has been attributed to the influence of obliquity on mean annual and seasonal insolation gradients at high latitudes. In this study, we use a coupled ocean-atmosphere general circulation model to quantify changes in continental snowfall associated with mean annual and seasonal insolation forcing due to a change in obliquity. Our model results indicate that insolation changes associated with a decrease in obliquity amplify continental snowfall in three ways: (1 Local reductions in air temperature enhance precipitation as snowfall. (2 An intensification of the winter meridional insolation gradient strengthens zonal circulation (e.g. the Aleutian low, promoting greater vapor transport from ocean to land and snow precipitation. (3 An increase in the summer meridional insolation gradient enhances summer eddy activity, increasing vapor transport to high-latitude regions. In our experiments, a decrease in obliquity leads to an annual snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm is attributed to seasonal changes in insolation. Our results indicate that the role of insolation gradients is important in amplifying the relatively weak insolation forcing due to a change in obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to a shift in Earth's precession, suggesting that obliquity forcing alone can not account for the spectral characteristics of the ice-volume record.

  17. The equivalent incidence angle for porous absorbers backed by a hard surface

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Brunskog, Jonas

    2013-01-01

    experiment using a free-field absorption measurement technique with a source at the equivalent angle. This study investigates the equivalent angle for locally and extendedly reacting porous media mainly by a numerical approach: Numerical minimizations of a cost function that is the difference between...... coefficients by free-field techniques, a broad incidence angle range can be suggested: 20 hi65 for extended reaction and hi65 for locally reacting porous absorbers, if an average difference of 0.05 is allowed.......An equivalent incidence angle is defined as the incidence angle at which the oblique incidence absorption coefficient best approximates the random incidence absorption coefficient. Once the equivalent angle is known, the random incidence absorption coefficient can be estimated by a single...

  18. Monte Carlo calculations of ligth-ion sputtering as a function of the incident angle

    International Nuclear Information System (INIS)

    Haggmark, L.G.; Biersack, J.P.

    1980-01-01

    The sputtering of metal surfaces by light ions has been studied as a function of the incident angle using an extension of the TRIM Monte Carlo computer program. Sputtering yields were calculated at both normal and oblique angles of incidence for H, D, T, and 4 He impinging on Ni, Mo, and Au targets with energies <= 10 keV. Direct comparisons are made with the most recent experimental and theoretical results. There is generally good agreement with the experimental data although our calculated maximum in the yield usually occurs at a smaller incident angle, measured from the surface normal. The enhancement of the yield at large incident angles over that at normal incidence is observed to be a complex function of the incident ion's energy and mass and the target's atomic weight and surface binding energy. (orig.)

  19. A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity

    Science.gov (United States)

    Damiani, Cilia

    2017-10-01

    It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.

  20. Microstructural and magnetic properties of thin obliquely deposited films: A simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Solovev, P.N., E-mail: platon.solovev@gmail.com [Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, 79, pr. Svobodnyi, Krasnoyarsk 660041 (Russian Federation); Izotov, A.V. [Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, 79, pr. Svobodnyi, Krasnoyarsk 660041 (Russian Federation); Belyaev, B.A. [Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, 79, pr. Svobodnyi, Krasnoyarsk 660041 (Russian Federation); Reshetnev Siberian State Aerospace University, 31, pr. Imeni Gazety “Krasnoyarskii Rabochii”, Krasnoyarsk 660014 (Russian Federation)

    2017-05-01

    The relation between microstructural and magnetic properties of thin obliquely deposited films has been studied by means of numerical techniques. Using our developed simulation code based on ballistic deposition model and Fourier space approach, we have investigated dependences of magnetometric tensor components and magnetic anisotropy parameters on the deposition angle of the films. A modified Netzelmann approach has been employed to study structural and magnetic parameters of an isolated column in the samples with tilted columnar microstructure. Reliability and validity of used numerical methods is confirmed by a good agreement of the calculation results with each other, as well as with our experimental data obtained by the ferromagnetic resonance measurements of obliquely deposited thin Ni{sub 80}Fe{sub 20} films. The combination of these numerical methods can be used to design a magnetic film with a desirable value of uniaxial magnetic anisotropy and to extract the obliquely deposited film structure from only magnetic measurements. - Highlights: • We present a simulation approach to study a relation between structural and magnetic properties of oblique films. • The calculated dependence of magnetic anisotropy on a deposition angle accords well with the experiment. • A modified Netzelmann approach is proposed. • It allows for the computation of magnetic and structural parameters of an isolated column. • Proposed approach can be used for theoretical studies and for characterization of oblique films.

  1. Are oblique views necessary for detecting space occupying lesions in liver scintigraphy

    International Nuclear Information System (INIS)

    Koizumi, Kiyoshi; Seki, Hiroyasu; Taki, Junichi; Yokoyama, Kunihiko; Tada, Akira

    1983-01-01

    In colloid scanning of the liver to determine the presence or absence of SOL(s), it has been suggested that oblique views are desirable. However, it is not popular in Japan to obtain oblique views in routine liver imgaing. The present study was conducted to determine whether such additional views are necessary or not. Liver images of 20 patients with SOL(s) and 84 patients without SOL, all of which were confirmed by ultrasonography, transmission computed tomography and/or clinical course, were evaluated initially using 4 standard views and then adding oblique views by 6 physicians (3 experts and 3 freshmen in nuclear medicine). The numbers of cases showing different interpretation between 4 views and 6 views were 15, 10 and 13 each when interpreted by 3 experts. However, those were 21, 33 and 18 each when interpreted by 3 freshmen. Sensitivity for detecting SOL was improved in 3 physicians by adding oblique views, but was the same in other 3. Specificity was improved in only one physicinan. Overall accuracy was consequently improved in 4 physicians and was deteriorated in 2 physicians. ROC analysis revealed that in the freshman group more accurate interpretation was attained by using 6 views, but in the expert group false-positive cases were increased by using 6 views. Some cases showing usefulness for detecting SOL were presented. In conclusion, oblique views gave more accurate interpretation in inexpertienced observers, and useful information in some cases. (author)

  2. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces.

    Science.gov (United States)

    Hyong, In Hyouk; Kang, Jong Ho

    2013-08-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected.

  3. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    Science.gov (United States)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  4. 3D reconnection due to oblique modes: a simulation of Harris current sheets

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2000-01-01

    Full Text Available Simulations in three dimensions of a Harris current sheet with mass ratio, mi/me = 180, and current sheet thickness, pi/L = 0.5, suggest the existence of a linearly unstable oblique mode, which is independent from either the drift-kink or the tearing instability. The new oblique mode causes reconnection independently from the tearing mode. During the initial linear stage, the system is unstable to the tearing mode and the drift kink mode, with growth rates that are accurately described by existing linear theories. How-ever, oblique modes are also linearly unstable, but with smaller growth rates than either the tearing or the drift-kink mode. The non-linear stage is first reached by the drift-kink mode, which alters the initial equilibrium and leads to a change in the growth rates of the tearing and oblique modes. In the non-linear stage, the resulting changes in magnetic topology are incompatible with a pure tearing mode. The oblique mode is shown to introduce a helical structure into the magnetic field lines.

  5. DMSA SPECT imaging using oblique reconstruction in a paediatric population - benefits and technical considerations

    International Nuclear Information System (INIS)

    Parsons, G.; Ford, M.; Crisp, J.; Bernard, E.; Howman-Giles, R.

    1997-01-01

    Full text: DMSA renal scans are frequently requested for the diagnosis and follow-up of acute pyelonephritis and cortical scarring. This study was designed to:- 1. evaluate oblique reconstruction of DMSA SPECT over standard plane reconstruction and planar imaging; and 2. report on the technical aspects important in obtaining high quality DMSA SPECT, particularly in neonates. Over seven months, 210/231 (91 %) of DMSA scans were performed with SPECT on children from age nine days to 16 years, the median age being 2.5 years. 65 patients (31 %) were under one year and 39 (18%) were under six months. Planar and SPECT imaging with standard plane reconstruction and oblique reorientation was performed on the Siemens triple-headed gamma camera. High quality SPECT images were obtained on the smallest babies using a paediatric palette, and were of comparable quality to those of older children. At the time of reporting, the nuclear medicine physician assessed the diagnostic value of the three types of date presented: (1) planar images; (2) standard plane SPECT reconstruction; and (3) oblique SPECT reconstruction. Cortical defects were identified separately for upper, middle and lower poles. Three physicians concluded that high quality SPECT is superior to planar images when assessing the renal cortex. In addition, oblique reorientation is superior to standard reconstruction, particularly at the upper and lower poles. SPECT is now performed routinely on patients of all ages, and the oblique sagittal and coronal reorientation is now used in place of the standard reconstruction

  6. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  7. Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect

    Science.gov (United States)

    Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.

    2017-12-01

    Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.

  8. Location and incidence of localized juxta-articular demineralizations and erosions at the wrist in early rheumatoid arthritis

    International Nuclear Information System (INIS)

    Fischer, E.

    1988-01-01

    In early rheumatoid arthritis the location and incidence of localized juxta-articular demineralizations and erosions were investigated at 53 points of the wrist. On the level of the metacarpal bases, the distal and proximal row of the carpal bones more changes are seen in the oblique vd. and the lateral view than in the dv. view. At the distal bones of the forearm more changes are seen at the radius than at the ulnar styloid. The most often changes at all occur at the volar middle third of the triquetrum in the oblique view and at the distal volar articular facet of the scaphoid in the lateral view. Close relations between localized juxta-articular demineralizations and erosions do not exist. If the early bone changes at the wrist in rheumatoid arthritis are to be detected additional oblique and lateral view are prerequisite. (orig.) [de

  9. Oblique hilar tomography, computed tomography, and mediastinoscopy for prethoracotomy staging of bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Khan, A.; Gersten, K.C.; Garvey, J.; Khan, F.A.; Steinberg, H.

    1985-01-01

    Preoperative oblique hilar tomography was used to evaluate hilar lymph nodes in 150 patients with clinically resectable bronchogenic carcinoma. CT was also used in the evaluation of mediastinal lymph nodes in 50 of these patients. Subsequently, all patients underwent mediastinoscopy and/or thoracotomy. Hilar and mediastinal nodes were evaluated for the presence of metastasis, and these findings were then correlated with the radiographic findings of oblique hilar tomography and CT. CT was found to be a reliable method for prethoracotomy staging of bronchogenic carcinoma and for selecting patients for mediastinoscopy. Thus patients with negative mediastinal CT need not undergo mediastinoscopy prior to thoracotomy, while mediastinoscopy and biopsy should be done in patients with enlarged mediastinal nodes on CT. Oblique hilar tomography is an accurate method for evaluation of hilar adenopathy and for predicting mediastinal involvement by extrapolation

  10. Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.

    Science.gov (United States)

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2011-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system's ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking - in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. © 2011 IEEE

  11. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    Science.gov (United States)

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2012-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693

  12. Treatment for incarcerated indirect hernia with "Cross-Internal Ring" inguinal oblique incision in children.

    Science.gov (United States)

    Yan, Xue-Qiang; Yang, Jun; Zheng, Nan-Nan; Kuang, Hou-Fang; Duan, Xu-Fei; Bian, Hong-Qiang

    2017-01-01

    This study aims to evaluate the utility of the "Cross-Internal Ring" inguinal oblique incision for the surgical treatment of incarcerated indirect hernia (IIH) complicated with severe abdominal distension. Patients of IIH complicated with severe abdominal distension were reviewed retrospectively. All patients received operation through the "Cross-Internal Ring" inguinal oblique incision. There were totally 13 patients were included, male to female ratio was 9-4. The time for patients to resume oral feeding varying from 2 to 5 days after operation, no complications include delayed intestinal perforation, intra-abdominal abscess, and incision infection happened. Average postoperative hospital stay was 5.2 days. All cases were followed up for 6-18 months. No recurrence or iatrogenic cryptorchidism happened. "Cross-Internal Ring" inguinal oblique incision is a simple, safe, and reliable surgical method to treat pediatric IIH complicated with severe abdominal distension.

  13. Treatment for incarcerated indirect hernia with “Cross-Internal Ring” inguinal oblique incision in children

    Directory of Open Access Journals (Sweden)

    Xue-Qiang Yan

    2017-01-01

    Full Text Available Background: This study aims to evaluate the utility of the “Cross-Internal Ring” inguinal oblique incision for the surgical treatment of incarcerated indirect hernia (IIH complicated with severe abdominal distension. Materials and Methods: Patients of IIH complicated with severe abdominal distension were reviewed retrospectively. All patients received operation through the “Cross-Internal Ring” inguinal oblique incision. Results: There were totally 13 patients were included, male to female ratio was 9-4. The time for patients to resume oral feeding varying from 2 to 5 days after operation, no complications include delayed intestinal perforation, intra-abdominal abscess, and incision infection happened. Average postoperative hospital stay was 5.2 days. All cases were followed up for 6–18 months. No recurrence or iatrogenic cryptorchidism happened. Conclusion: “Cross-Internal Ring” inguinal oblique incision is a simple, safe, and reliable surgical method to treat pediatric IIH complicated with severe abdominal distension.

  14. Researching on Real 3d Modeling Constructed with the Oblique Photogrammetry and Terrestrial Photogrammetry

    Science.gov (United States)

    Han, Youmei; Jiao, Minglian; Shijuan

    2018-04-01

    With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  15. RESEARCHING ON REAL 3D MODELING CONSTRUCTED WITH THE OBLIQUE PHOTOGRAMMETRY AND TERRESTRIAL PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    Y. Han

    2018-04-01

    Full Text Available With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  16. Seismic Slip on an Oblique Detachment Fault at Low Angles

    Science.gov (United States)

    Janecke, S. U.; Steely, A. N.; Evans, J. P.

    2008-12-01

    Pseudotachylytes are one of the few accepted indicators of seismic slip along ancient faults. Low-angle normal faults have produced few large earthquakes in historic times and low-angle normal faults (detachment faults) are typically severely misoriented relative to a vertical maximum compressive stress. As a result many geoscientists question whether low-angle normal faults produce earthquakes at low angles. Relationships in southern California show that a major low-angle normal-oblique fault slipped at low angles and produced large earthquakes. The exhumed Late Cenozoic West Salton detachment fault preserves spectacular fault- related pseudotachylytes along its fault plane and injected into its hanging wall and footwall. Composite pseudotachylyte zones are up to 1.25 m thick and persists over lateral distances of at least 10's of meters. Pseudotachylyte is common in most thin sections of damaged fault rocks with more than 20% (by volume) of cataclasite. We recognized the presence of original melt using numerous criteria: abundant spherulites in thin sections, injection structures at both the thin-section and outcrop scale, black aphanitic textures, quenched vein margins, variations in microcrystallite textures and/or size with respect to the vein margin, and glassy textures in hand sample. Multiple earthquakes are inferred to produce the layered "stratigraphy" in some exposures of pseudotachylytes. We infer that the West Salton detachment fault formed and slipped at low angles because it nearly perfectly reactivates a Cretaceous ductile thrust system at the half km scale and dips between 10 and 45 degrees. The about 30 degree NNE dip of the detachment fault on the north side of Yaqui Ridge is likely steeper than its dip during detachment slip because there is local steepening on the flanks of the Yaqui Ridge antiform in a contractional stepover of a crosscutting Quaternary San Felipe dextral fault zone. These relationships indicate a low dip on the detachment

  17. Benefits of sagittal-oblique MRI reconstruction of anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Nenezić, D.

    2015-01-01

    Full text: MRI examination of the anterior cruciate ligament (ACL) of the knee gives valuable information for conventional, physiatrist and/or arthroscopic microinvasiv treatment. three planar MRI examination and 3D reconstructions are highly precise in the analysis of the intra and periarticular structures, with exceptions of anterior cruciate ligament. Direct contact with the roof of the intercondilar fossa (in the full extension during the examination) and its specific orientation makes visualization of ACL diagnostically problematic. In a one year period precise protocol for MRI visualization of ACL was tested and applied as “Sagittal Oblique MRI Reconstruction”. In short, it has been Angled biplanar reconstruction in the parasagital and paratransversal planes (patientrelated and arbitrary selected in full extension), on T2, 2mm slice and 0,2 mm gap. 153 MRI examinations of the patients with lesions of the ACL were included in the study in the Clinical Center of Montenegro during 2005 year. Beside standard Knee MRI protocol all patients had the Sagittal Oblique MRI reconstruction of ACL and the Flexion MRI examination, to compare with. The Sagittal Oblique MRI reconstruction of ACL it is adapted to the concrete morphology of the patients ACL and it does not depend of the volume of the examined knee. In comparison with the Standard Knee MRI protocol and with the Flexion MRI examination, the Sagittal Oblique MRI reconstruction of ACL takes less time to perform, and the ligament is shown in fool length at three to five slices, which is more than with the both compared protocols. Sagittal Oblique MRI Reconstruction of ACL is therefore patient dependable, orientated in shape of concrete ligament of the patient’s knee. In combination with age, occupation, physical activity and level of patients while to contribute in healing process, the Sagittal Oblique MRI reconstruction of ACL contribute to scholastic approach, as highest benefit to patients with

  18. POTENTIAL OF MULTI-TEMPORAL OBLIQUE AIRBORNE IMAGERY FOR STRUCTURAL DAMAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    A. Vetrivel

    2016-06-01

    Full Text Available Quick post-disaster actions demand automated, rapid and detailed building damage assessment. Among the available technologies, post-event oblique airborne images have already shown their potential for this task. However, existing methods usually compensate the lack of pre-event information with aprioristic assumptions of building shapes and textures that can lead to uncertainties and misdetections. However, oblique images have been already captured over many cities of the world, and the exploitation of pre- and post-event data as inputs to damage assessment is readily feasible in urban areas. In this paper, we investigate the potential of multi-temporal oblique imagery for detailed damage assessment focusing on two methodologies: the first method aims at detecting severe structural damages related to geometrical deformation by combining the complementary information provided by photogrammetric point clouds and oblique images. The developed method detected 87% of damaged elements. The failed detections are due to varying noise levels within the point cloud which hindered the recognition of some structural elements. We observed, in general that the façade regions are very noisy in point clouds. To address this, we propose our second method which aims to detect damages to building façades using the oriented oblique images. The results show that the proposed methodology can effectively differentiate among the three proposed categories: collapsed/highly damaged, lower levels of damage and undamaged buildings, using a computationally light-weight approach. We describe the implementations of the above mentioned methods in detail and present the promising results achieved using multi-temporal oblique imagery over the city of L’Aquila (Italy.

  19. Incomplete fissures in severe emphysematous patients evaluated with MDCT: Incidence and interobserver agreement among radiologists and pneumologists

    Energy Technology Data Exchange (ETDEWEB)

    Koenigkam-Santos, Marcel, E-mail: marcelk46@yahoo.com.br [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Neuenheimer Feld 110, 69120 Heidelberg (Germany); Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstr. 5,69126 Heidelberg (Germany); Department of Radiology, University Hospital of the School of Medicine of Ribeirao Preto - University of Sao Paulo, Av. Bandeirantes 3900, Campus Universitario Monte Alegre, 14048 900 Ribeirao Preto, SP (Brazil); Puderbach, Michael [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Neuenheimer Feld 110, 69120 Heidelberg (Germany); Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstr. 5,69126 Heidelberg (Germany); Gompelmann, Daniela; Eberhardt, Ralf; Herth, Felix [Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstr. 5,69126 Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Neuenheimer Feld 110, 69120 Heidelberg (Germany); Heussel, Claus Peter [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Neuenheimer Feld 110, 69120 Heidelberg (Germany); Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstr. 5,69126 Heidelberg (Germany)

    2012-12-15

    Objective: Pulmonary fissures completeness predicts efficacy in endobronchial valves (EBV) implantation, a new lobar volume reduction therapy for severe emphysematous patients. We assessed the incidence of incomplete fissures and the interobserver agreement in its evaluation with MDCT, in severe emphysematous patients prior to EBV implantation. Materials and Methods: Volumetric thin-section CT scans of 35 patients (CODP GOLD 3/4, heterogeneous emphysema) were retrospectively reviewed by 2 pneumologists, 1 general and 2 experienced chest radiologists, independently and blinded for treatment outcome, and the pulmonary fissures were classified as either complete or incomplete. Interobserver agreement was assessed with Kappa index (KI). Results: Agreement between all readers for the left oblique, right oblique and horizontal fissure was, respectively, moderate (KI = 0.53), fair (KI = 0.37) and moderate (KI = 0.42). Highest agreement (99/105 fissures) was observed among experienced radiologists, being for left oblique, right oblique and horizontal, respectively, almost perfect (KI = 0.79), perfect (KI = 1.0) and moderate (KI = 0.52). These 2 reviewers found that all of 35 patients had at least one incomplete fissure, with a proportion of incomplete fissures assigned as 74/65%, 85/85% and 91/88%, respectively for the left oblique, right oblique and horizontal fissures. Conclusions: Pneumologists and radiologists agreed fairly to moderately in fissures analysis, while the experienced chest radiologists reached the highest clinically adequate agreement of 94%. We believe that clinical routine visual analysis of the fissures integrity can be done with a good degree of confidence in MDCT images, and experienced readers might be required. Also, a higher than expected incidence of incomplete fissures was described in our studied population.

  20. Incomplete fissures in severe emphysematous patients evaluated with MDCT: Incidence and interobserver agreement among radiologists and pneumologists

    International Nuclear Information System (INIS)

    Koenigkam-Santos, Marcel; Puderbach, Michael; Gompelmann, Daniela; Eberhardt, Ralf; Herth, Felix; Kauczor, Hans-Ulrich; Heussel, Claus Peter

    2012-01-01

    Objective: Pulmonary fissures completeness predicts efficacy in endobronchial valves (EBV) implantation, a new lobar volume reduction therapy for severe emphysematous patients. We assessed the incidence of incomplete fissures and the interobserver agreement in its evaluation with MDCT, in severe emphysematous patients prior to EBV implantation. Materials and Methods: Volumetric thin-section CT scans of 35 patients (CODP GOLD 3/4, heterogeneous emphysema) were retrospectively reviewed by 2 pneumologists, 1 general and 2 experienced chest radiologists, independently and blinded for treatment outcome, and the pulmonary fissures were classified as either complete or incomplete. Interobserver agreement was assessed with Kappa index (KI). Results: Agreement between all readers for the left oblique, right oblique and horizontal fissure was, respectively, moderate (KI = 0.53), fair (KI = 0.37) and moderate (KI = 0.42). Highest agreement (99/105 fissures) was observed among experienced radiologists, being for left oblique, right oblique and horizontal, respectively, almost perfect (KI = 0.79), perfect (KI = 1.0) and moderate (KI = 0.52). These 2 reviewers found that all of 35 patients had at least one incomplete fissure, with a proportion of incomplete fissures assigned as 74/65%, 85/85% and 91/88%, respectively for the left oblique, right oblique and horizontal fissures. Conclusions: Pneumologists and radiologists agreed fairly to moderately in fissures analysis, while the experienced chest radiologists reached the highest clinically adequate agreement of 94%. We believe that clinical routine visual analysis of the fissures integrity can be done with a good degree of confidence in MDCT images, and experienced readers might be required. Also, a higher than expected incidence of incomplete fissures was described in our studied population.

  1. Three-dimensional oblique water-entry problems at small deadrise angles

    KAUST Repository

    Moore, M. R.; Howison, S. D.; Ockendon, J. R.; Oliver, J. M.

    2012-01-01

    This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets. © 2012 Cambridge University Press.

  2. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    Science.gov (United States)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  3. Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons.

    Science.gov (United States)

    Thaning, Anna; Jaroszewicz, Zbigniew; Friberg, Ari T

    2003-01-01

    Axicons in oblique illumination produce broadened focal lines, a problem, e.g., in scanning applications. A compact mathematical description of the focal segment is presented, for the first time, to our knowledge, and the results are compared with elliptical axicons in normal illumination. In both cases, analytical expressions in the form of asteroid curves are obtained from asymptotic wave theory and caustic surfaces. The results are confirmed by direct diffraction simulations and by experiments. In addition we show that at a fixed angle an elliptical axicon can be used to compensate for the adverse effects of oblique illumination.

  4. Oblique Propagation of Fast Surface Waves in a Low-Beta Hall-Magnetohydrodynamics Plasma Slab

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Mann, G.

    1999-01-01

    The oblique propagation of fast sausage and kink magnetohydrodynamics (MHD) surface waves in an ideal magnetized plasma slab in the low-beta plasma limit is studied considering the Hall term in the generalized Ohm's law. It is found that the combined action of the Hall effect and oblique wave propagation makes possible the existence of multivalued solutions to the wave dispersion relations - some of them corresponding to positive values of the transfer wave number, k y , undergo a 'propagation stop' at specific (numerically found) full wave numbers. It is also shown that with growing wave number the waves change their nature - from bulk modes to pseudosurface or pure surface waves. (author)

  5. Normal tendon sheath of the second to fifth fingers as seen on oblique views

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    1984-01-01

    Oblique views of the fingers, using a low kilovolt technique, show a portion of the tendon sheaths which can be regarded as representative of the entire sheath. Because of the varying obliquity of each finger, this proportion differs in the fingers. With increasing age the projected portion of the sheath becomes smaller because it is covered by increasing bone formation in the insertion of the tendon sheat. Normal values have been obtained for adults according to their decades; from these, quite minor degrees of tendon sheat thickening can be determined. In camptodactyly of the fifth finger, which is not uncommon, the tendon sheat may be widened in the absence of a tenosynovitis.

  6. Sound absorption of a new oblique-section acoustic metamaterial with nested resonator

    Science.gov (United States)

    Gao, Nansha; Hou, Hong; Zhang, Yanni; Wu, Jiu Hui

    2018-02-01

    This study designs and investigates high-efficiency sound absorption of new oblique-section nested resonators. Impedance tube experiment results show that different combinations of oblique-section nest resonators have tunable low-frequency bandwidth characteristics. The sound absorption mechanism is due to air friction losses in the slotted region and the sample structure resonance. The acousto-electric analogy model demonstrates that the sound absorption peak and bandwidth can be modulated over an even wider frequency range by changing the geometric size and combinations of structures. The proposed structure can be easily fabricated and used in low-frequency sound absorption applications.

  7. Three-dimensional oblique water-entry problems at small deadrise angles

    KAUST Repository

    Moore, M. R.

    2012-09-19

    This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets. © 2012 Cambridge University Press.

  8. Early detection of breast cancer using only oblique medium lateral view

    International Nuclear Information System (INIS)

    Aguillar, Vera L.N.

    1996-01-01

    To compare the advantages of one- versus two-views mammography, screening films were reviewed from 1,500 asymptomatic women undergoing mammography. Two separate interpretations were made of each case, one using only the oblique projection images, the other using both oblique and cranio caudal views. In women with dense breasts, one view readings resulted in much more frequent abnormal interpretations, false positives, than two-views readings. In contrast, in woman with primary fatty breast, in whom superimposition of dense tissue on image is not a problem, it may be reasonable to obtain a single mediolateral projection to follow-up screening mammography. (author)

  9. Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations

    Directory of Open Access Journals (Sweden)

    Jianxi Yao

    2015-01-01

    Full Text Available This paper presents a numerical study on investigating on hydrodynamic characteristics of a marine propeller in oblique flow. The study is achieved by RANS simulations on an open source platform - OpenFOAM. A sliding grid approach is applied to compute the rotating motion of the propeller. Total force and moment acting on blades, as well as average force distributions in one revolution on propeller disk, are obtained for 70 cases of com- binations of advance ratios and oblique angles. The computed results are compared with available experimental data and discussed.

  10. Application of oblique plane microscopy to high speed live cell imaging

    Science.gov (United States)

    Kumar, Sunil; Wilding, Dean; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken T.; Dunsby, Chris

    2011-07-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. We present high speed 2D and 3D optically sectioned OPM imaging of live cells using a high NA water immersion lens.

  11. THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Desert, Jean-Michel; Charbonneau, David; Ballard, Sarah; Carter, Joshua A.; Quinn, Samuel N.; Fressin, Francois; Latham, David W.; Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Demory, Brice-Olivier [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Cochran, William D.; Endl, Michael [Department of Astronomy, University of Texas, Austin (United States); Isaacson, Howard T.; Knutson, Heather A. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Buchhave, Lars A. [Neils Bohr Institute, University of Copenhagen, DK-2100 Denmark (Denmark); Bryson, Stephen T.; Rowe, Jason F.; Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Batalha, Natalie M. [San Jose State University, San Jose, CA 95192 (United States); Brown, Timothy M., E-mail: jdesert@cfa.harvard.edu [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); and others

    2011-11-01

    This paper reports the discovery and characterization of the transiting hot giant exoplanet Kepler-17b. The planet has an orbital period of 1.486 days, and radial velocity measurements from the Hobby-Eberly Telescope show a Doppler signal of 419.5{sup +13.3}{sub -15.6} m s{sup -1}. From a transit-based estimate of the host star's mean density, combined with an estimate of the stellar effective temperature T{sub eff} = 5630 {+-} 100 from high-resolution spectra, we infer a stellar host mass of 1.06 {+-} 0.07 M{sub Sun} and a stellar radius of 1.02 {+-} 0.03 R{sub Sun }. We estimate the planet mass and radius to be M{sub P} = 2.45 {+-} 0.11 M{sub J} and R{sub P} = 1.31 {+-} 0.02 R{sub J}. The host star is active, with dark spots that are frequently occulted by the planet. The continuous monitoring of the star reveals a stellar rotation period of 11.89 days, eight times the planet's orbital period; this period ratio produces stroboscopic effects on the occulted starspots. The temporal pattern of these spot-crossing events shows that the planet's orbit is prograde and the star's obliquity is smaller than 15 Degree-Sign . We detected planetary occultations of Kepler-17b with both the Kepler and Spitzer Space Telescopes. We use these observations to constrain the eccentricity, e, and find that it is consistent with a circular orbit (e < 0.011). The brightness temperatures of the planet's infrared bandpasses are T{sub 3.6{mu}m} = 1880 {+-} 100 K and T{sub 4.5{mu}m} = 1770 {+-} 150 K. We measure the optical geometric albedo A{sub g} in the Kepler bandpass and find A{sub g} = 0.10 {+-} 0.02. The observations are best described by atmospheric models for which most of the incident energy is re-radiated away from the day side.

  12. Incident Information Management Tool

    CERN Document Server

    Pejovic, Vladimir

    2015-01-01

    Flaws of\tcurrent incident information management at CMS and CERN\tare discussed. A new data\tmodel for future incident database is\tproposed and briefly described. Recently developed draft version of GIS-­‐based tool for incident tracking is presented.

  13. Oblique Chest Views as a Routine Part of Skeletal Surveys Performed for Possible Physical Abuse--Is This Practice Worthwhile?

    Science.gov (United States)

    Hansen, Karen Kirhofer; Prince, Jeffrey S.; Nixon, G. William

    2008-01-01

    Objective: To evaluate the utility of oblique chest views in the diagnosis of rib fractures when used as a routine part of the skeletal survey performed for possible physical abuse. Methods: Oblique chest views have been part of the routine skeletal survey protocol at Primary Children's Medical Center since October 2002. Dictated radiology reports…

  14. Minimizing the translation error in the application of an oblique single-cut rotation osteotomy: Where to cut?

    NARCIS (Netherlands)

    Dobbe, Johannes G. G.; Strackee, Simon D.; Streekstra, Geert J.

    2017-01-01

    An oblique single cut rotation osteotomy enables correcting angular bone alignment in the coronal, sagittal and transverse planes, with just a single oblique osteotomy, and by rotating one bone segment in the osteotomy plane. However, translational malalignment is likely to exist if the bone is

  15. Corticospinal activation of internal oblique muscles has a strong ipsilateral component and can be lateralised in man.

    Science.gov (United States)

    Strutton, Paul H; Beith, Iain D; Theodorou, Sophie; Catley, Maria; McGregor, Alison H; Davey, Nick J

    2004-10-01

    Trunk muscles receive corticospinal innervation ipsilaterally and contralaterally and here we investigate the degree of ipsilateral innervation and any cortical asymmetry in pairs of trunk muscles and proximal and distal limb muscles. Transcranial magnetic stimulation (TMS) was applied to left and right motor cortices in turn and bilateral electromyographic (EMG) recordings were made from internal oblique (IO; lower abdominal), deltoid (D; shoulder) and first dorsal interosseus (1DI; hand) muscles during voluntary contraction in ten healthy subjects. We used a 7-cm figure-of-eight stimulating coil located 2 cm lateral and 2 cm anterior to the vertex over either cortex. Incidence of ipsilateral motor evoked potentials (MEPs) was 85% in IO, 40% in D and 35% in 1DI. Mean (+/- S.E.M.) ipsilateral MEP latencies were longer ( Pmuscle (IO: n=16; D: n=8; 1DI: n=7 ratios). Mean values for these ratios were 0.70+/-0.20 (IO), 0.14+/-0.05 (D) and 0.08+/-0.02 (1DI), revealing stronger ipsilateral drive to IO. Comparisons of the sizes of these ratios revealed a bias towards one cortex or the other (four subjects right; three subjects left). The predominant cortex showed a mean ratio of 1.21+/-0.38 compared with 0.26+/-0.06 in the other cortex ( Pmuscles and also shows hemispheric asymmetry.

  16. Oblique interactions of detonation waves with explosive/metal interfaces

    International Nuclear Information System (INIS)

    Walsh, J.M.

    1982-12-01

    The interaction of a detonation wave with an explosive/metal interface is considered. Theoretical models are discussed, and calculated results are given for PBX 9501 onto uranium, tantalum, copper, 304 stainless steel, aluminum, and nickel. For PBX 9501 onto aluminum and copper, regular shock reflection (in the PBX 9501) at small angles changes to regular rarefaction reflection (Prandtl-Meyer flow) at large angles, and the curve of metal-shock pressure vs incidence angle is smooth. For the other metals, there is a discontinuity in shock pressure where low-angle, regular reflection transists to Mach reflection, and a smaller discontinuity where the Mach reflection changes back to high-angle regular reflection

  17. Recognition of human gait in oblique and frontal views using Kinect ...

    African Journals Online (AJOL)

    This study describes the recognition of human gait in the oblique and frontal views using novel gait features derived from the skeleton joints provided by Kinect. In D-joint, the skeleton joints were extracted directly from the Kinect, which generates the gait feature. On the other hand, H-joint distance is a feature of distance ...

  18. Oblique radiograph for the detection of bone spurs in anterior ankle impingement

    International Nuclear Information System (INIS)

    Dijk, Niek C. van; Wessel, Ronald N.; Tol, Johannes L.; Maas, M.

    2002-01-01

    Objective: The aim of this study was to develop a radiographic view to detect anteromedial talotibial osteophytes that remain undetected on standard radiographs. Design and patients: In 10 cadaver specimens the maximal size was measured of anteromedial tibial osteophytes that remain undetected on a standard lateral radiograph projection, due to the presence of the anteromedial tibial rim. The average projection of the most prominent anterolateral tibial rim over the anteromedial rim was found to be 7.3 mm. A 7 mm barium-clay osteophyte was attached to this anteromedial rim of the distal tibia. Anteromedial osteophytes become most prominent on an oblique view, in which the radiographic beam is tilted into a 45 craniocaudal direction with the leg in 30 external rotation. This oblique view was compared with the findings of arthroscopic surgery in 25 consecutive patients with anterior ankle impingement syndrome. Results: Medially located tibial and talar osteophytes remained undetected on a standard lateral projection and became visible on the oblique anteromedial impingement (AMI) radiograph. Anterolateral tibial and talar osteophytes were well detected on a standard lateral radiograph projection but were invisible on the AMI view. There was a high correlation between the location of the osteophyte and the location of symptoms and the findings at arthroscopy. Conclusion: A combination of lateral and oblique radiographs can be used to differentiate between anteromedial and anterolateral bony ankle impingement. (orig.)

  19. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    International Nuclear Information System (INIS)

    Kilic, C.; Raible, C. C.; Stocker, T. F.

    2017-01-01

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.

  20. Youngswick-Austin versus distal oblique osteotomy for the treatment of Hallux Rigidus.

    Science.gov (United States)

    Viladot, Antonio; Sodano, Luca; Marcellini, Lorenzo; Zamperetti, Marco; Hernandez, Elsa Sanchez; Perice, Ramon Viladot

    2017-08-01

    Hallux Rigidus is the most common degenerative joint pathology of the foot. Several procedures are described for the management of this deformity. In this prospective study we compared Youngswick-Austin and distal oblique osteotomy in the treatment of grade II Hallux Rigidus, in terms of clinical outcomes, efficacy and complications. Forty-six patients (50 feet) with moderate Hallux Rigidus (Regnauld grade II) were recruited and operated between March 2009 and December 2012. Surgical technique was Youngswick-Austin osteotomy (Group A) or distal oblique osteotomy (Group B). Mean follow-up was 42.7 ±12.2 (range, 24-70) months. Both groups achieved significant improvement of AOFAS score and first metatarsophalangeal joint range of motion (p value Austin and distal oblique osteotomies provides subjective patient improvement and increases the first metatarsophalangeal joint range of motion. The results of grade II Hallux Rigidus treatment were comparable when using a Youngswick-Austin or distal oblique osteotomy. Level II, prospective comparative study. Copyright © 2017 Elsevier Ltd. All rights reserved.