WorldWideScience

Sample records for obesity-associated inflammation insulin

  1. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model.

    Directory of Open Access Journals (Sweden)

    Yanzhang Li

    Full Text Available Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1 is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF or a high-fat (HF diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a

  2. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Vanessa Deveaux

    Full Text Available BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT mice fed a high fat diet (HFD, that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-. PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.

  3. Skeletal muscle inflammation and insulin resistance in obesity

    Science.gov (United States)

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  4. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  5. Activation and Regulation of the Pattern Recognition Receptors in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Kiyoshi Takatsu

    2013-09-01

    Full Text Available Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor family protein Radioprotective 105 (RP105/myeloid differentiation protein-1 (MD-1.

  6. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  7. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity

    Directory of Open Access Journals (Sweden)

    Joseph F. Cavallari

    2017-09-01

    Full Text Available Obesity is associated with increased risk of developing metabolic diseases such as type 2 diabetes. The origins of obesity are multi-factorial, but ultimately rooted in increased host energy accumulation or retention. The gut microbiota has been implicated in control of host energy balance and nutrient extraction from dietary sources. The microbiota also impacts host immune status and dysbiosis-related inflammation can augment insulin resistance, independently of obesity. Advances in microbial metagenomic analyses and directly manipulating bacterial-host models of obesity have contributed to our understanding of the relationship between gut bacteria and metabolic disease. Foodborne, or drug-mediated perturbations to the gut microbiota can increase metabolic inflammation, insulin resistance, and dysglycemia. There is now some evidence that specific bacterial species can influence obesity and related metabolic defects such as insulin sensitivity. Components of bacteria are sufficient to impact obesity-related changes in metabolism. In fact, different microbial components derived from the bacterial cell wall can increase or decrease insulin resistance. Improving our understanding of the how components of the microbiota alter host metabolism is positioned to aid in the development of dietary interventions, avoiding triggers of dysbiosis, and generating novel therapeutic strategies to combat increasing rates of obesity and diabetes.

  8. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    Science.gov (United States)

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  9. Preliminary evidence for obesity-associated insulin resistance in adolescents without elevations of inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Cohen Jessica I

    2012-06-01

    Full Text Available Abstract Background To ascertain whether the associations between obesity, inflammation, and insulin resistance established in human adult studies are found among adolescents. Methods We contrasted 36 obese and 24 lean youth on fasting glucose, insulin levels, lipid profile, hemoglobin A1C, markers of hepatic function, white blood cell count, C-reactive protein (CRP and fibrinogen levels. The cytokines IL-6, TNF-α, IFN-γ, IL-10 and IL-4 and the adipokines leptin, resistin, and adiponectin were also compared between the two groups. The fasting glucose and insulin values were used to estimate the degree of insulin resistance with the homeostatic model assessment of insulin resistance (HOMA-IR. T-tests and correlations were run to examine group differences and associations between groups. In addition, regression analyses were used to ascertain whether the markers of inflammation were predictive of the degree of insulin resistance. Results Although obese adolescents had clear evidence of insulin resistance, only CRP, fibrinogen and leptin were elevated; there were no group differences in pro- or anti-inflammatory cytokines nor adiponectin and resistin. Anthropometric measures of obesity and level of insulin resistance were highly correlated to the acute phase reactants CRP and fibrinogen; however, the degree of insulin resistance was not predicted by the pro- or anti-inflammatory cytokine markers. Obese adolescents had higher white blood cell counts. In addition they had higher circulating alanine aminotransferase concentrations and lower circulating albumin and total protein than lean adolescents, possibly as a result of hepatocyte damage from fatty liver. Conclusion Unlike rodent or adult studies, we found that wide-spread systemic inflammation is not necessarily associated with insulin resistance among adolescents. This finding does not support the current paradigm that the associations between obesity and insulin resistance are, to a

  10. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Science.gov (United States)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  11. B cells promote obesity-associated periodontitis and oral pathogen-associated inflammation.

    Science.gov (United States)

    Zhu, Min; Belkina, Anna C; DeFuria, Jason; Carr, Jordan D; Van Dyke, Thomas E; Gyurko, Robert; Nikolajczyk, Barbara S

    2014-08-01

    Individuals with T2D and PD suffer significantly from the ability of one disease to intensify the other. Disease-associated inflammation is one mechanism thought to fuel this pathogenic feed-forward loop. Several lines of evidence indicate that proinflammatory B cells promote T2D and PD; thus, B cells are top candidates for a cell type that predisposes PD in T2D. To test directly the role of B cells in T2D-associated PD, we compared outcomes from oral Porphyromonas gingivalis challenge of lean WT or B cell-null mice with outcomes from mice that were obese and insulin-resistant before challenge. Obese WT mice responded to oral P. gingivalis challenge with significant periodontal bone loss, whereas obese B cell-null mice were protected completely from PD. By contrast, lean WT and B cell-null mice suffer similar periodontal bone loss in response to oral pathogen. B cells from obese/insulin-resistant hosts also support oral osteoclastogenesis and both oral and systemic production of inflammatory cytokines, including pro-osteoclastogenic TNF-α and MIP-2, an ortholog of human IL-8. B cells furthermore impact AT inflammation in obese, P. gingivalis-infected hosts. Taken together, these data show that fundamentally different mechanisms regulate PD in lean and obese hosts, with B cells able to promote PD only if the hosts are "primed" by obesity. These results justify more intense analysis of obesity-associated changes in B cells that predispose PD in human T2D. © 2014 Society for Leukocyte Biology.

  12. Loss of regulator of G protein signaling 5 exacerbates obesity, hepatic steatosis, inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Wei Deng

    Full Text Available BACKGROUND: The effect of regulator of G protein signaling 5 (RGS5 on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC or a high-fat diet (HF. METHODOLOGY/PRINCIPAL FINDINGS: Male, 8-week-old RGS5 knockout (KO and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.

  13. Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea.

    Science.gov (United States)

    Tirado, Raquel; Masdeu, Maria José; Vigil, Laura; Rigla, Mercedes; Luna, Alexis; Rebasa, Pere; Pareja, Rocío; Hurtado, Marta; Caixàs, Assumpta

    2017-09-01

    Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation. We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery. Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03). Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.

  14. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Phieler, Julia; Chung, Kyoung-Jin; Chatzigeorgiou, Antonios; Klotzsche-von Ameln, Anne; Garcia-Martin, Ruben; Sprott, David; Moisidou, Maria; Tzanavari, Theodora; Ludwig, Barbara; Baraban, Elena; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Mziaut, Hassan; Solimena, Michele; Karalis, Katia P; Economopoulou, Matina; Lambris, John D; Chavakis, Triantafyllos

    2013-10-15

    Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.

  15. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  16. Early Onset Inflammation in Pre-Insulin-Resistant Diet-Induced Obese Rats Does Not Affect the Vasoreactivity of Isolated Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Raun, Kirsten; Boonen, Harrie C M

    2012-01-01

    Background: Obesity is an increasing burden affecting developed and emerging societies since it is associated with an increased risk of diabetes and consequent cardiovascular complications. Increasing evidence points towards a pivotal role of inflammation in the etiology of vascular dysfunction. ...... concomitant vascular dysfunction. The results show that inflammation and obesity are tightly associated, and that inflammation is manifested prior to significant insulin resistance and vascular dysfunction........ Our study aimed to investigate signs of inflammation and their relation to vascular dysfunction in rats receiving a high fat diet. Methods: Diet-induced obese (DIO) rats were used as a model since these rats exhibit a human pre-diabetic pathology. Oral glucose and insulin tolerance tests were...... conducted on DIO rats and their controls prior to the development of insulin resistance. Furthermore, the plasma contents of selected cytokines [macrophage chemoattractant protein (MCP-1), interleukin-6 (IL-6), and interleukin-1 (IL-1)] and the concentration of adiponectin were measured. Using wire...

  17. Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet–Fed Mice

    Science.gov (United States)

    Satapathy, Sanjaya K; Ochani, Mahendar; Dancho, Meghan; Hudson, LaQueta K; Rosas-Ballina, Mauricio; Valdes-Ferrer, Sergio I; Olofsson, Peder S; Harris, Yael Tobi; Roth, Jesse; Chavan, Sangeeta; Tracey, Kevin J; Pavlov, Valentin A

    2011-01-01

    Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome. PMID:21738953

  18. Relationship between Inflammation markers, Coagulation Activation and Impaired Insulin Sensitivity in Obese Healthy Women

    International Nuclear Information System (INIS)

    Soliman, S.Et; Shousha, M.A.

    2011-01-01

    Obesity, insulin resistance syndrome, and atherosclerosis are closely linked phenomena, often connected with a chronic low grade inflammatory state and pro thrombotic hypo fibrinolytic condition. This study investigated the relationship between impaired insulin sensitivity and selected markers of inflammation and thrombin generation in obese healthy women. The study included 36 healthy obese women (body mass index ≥ 30), with normal insulin sensitivity (NIS, n = 18) or impaired insulin sensitivity (IIS, n 18), and 10 non obese women (body mass index < 25).Impaired insulin sensitivity patients had significantly higher levels of high sensitivity C-reactive protein (hs-CRP), transforming growth factor -β1(TGF-β1), plasminogen activator inhibitor-1 (PAI-1), activated factor VII (VIIa), and prothrombin fragments 1 + 2 (F1 + 2) compared with either control subjects or normal insulin sensitivity patients. On the other hand, NIS patients had higher hs-CRP, TGF-β1, PAI-1, and factor VIIa, but not F1 + 2, levels than controls. Significant inverse correlations were observed between the insulin sensitivity index and TGF-β1, hs-CRP, PAI-1; factor VIIa, and F1 + 2 levels. Moreover, significant direct correlations were noted between TGF-β1 and CRP, PAI-1, factor VIIa, and F1 + 2 concentrations. Finally, multiple regressions revealed that TGF-β1 and the insulin sensitivity index were independently related to F1 + 2. These results document an in vivo relationship between insulin sensitivity and coagulation activation in obesity. Here we report that obesity is associated with higher TGF-β, PAI-1, prothrombin fragments 1 and 2 (F1 + 2), and activated factor VII (VIIa) plasma levels, and that insulin resistance exacerbates these alterations. The elevated TGF-β1 levels detected in the obese population may provide a biochemical link between insulin resistance and an increased risk for cardiovascular disease

  19. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone.

    Science.gov (United States)

    Guedes, J A C; Esteves, J V; Morais, M R; Zorn, T M; Furuya, D T

    2017-11-26

    The discovery of osteocalcin, a protein synthetized by osteoblasts, as a hormone that has positive effects on insulin resistance, contributed to support the concept of bone as an endocrine organ. However, very little is known about the molecular pathways involved in osteocalcin improved-insulin resistance. The present study aimed to investigate the mechanisms of action of osteocalcin on insulin resistance and inflammation in obese mice and 3T3-L1 adipocytes. Lean control, saline-treated obese and uncarboxylated osteocalcin (uOC)-treated obese mice were subjected to insulin tolerance test in vivo. Blood was collect for biochemical/metabolic profile analysis; and, skeletal muscle, white adipose tissue (WAT) and bone were collected for protein (Western blotting) and mRNA (RT-qPCR) analysis. uOC effects on insulin resistance and inflammation were also investigated in 3T3-L1 adipocytes challenged with tumor necrosis factor. Osteocalcin treatment improved in vivo insulin resistance in obese mice. In WAT, osteocalcin had positive effects such as (1) WAT weight reduction; (2) upregulation of glucose transporter (GLUT) 4 protein and its mRNA (Slc2a4); (3) improved insulin-induced AKT phosphorylation; (4) downregulation of several genes involved in inflammation and inflammassome transcriptional machinery, and (5) reduction of the density of macrophage in crown-like structures (histomorphometrical analysis). Notably, in 3T3-L1 adipocytes, osteocalcin restored Slc2a4/GLUT4 content and reduced the expression of inflammatory genes after TNF-a challenge; moreover, osteocalcin treatment increased AKT phosphorylation induced by insulin. Finally, it was observed that in bone, osteocalcin improves insulin resistance by increasing insulin-induced AKT phosphorylation and reducing the expression of genes involved in bone insulin resistance, resulting in increased secretion of uncarboxylated osteocalcin in circulation. We provided some mechanisms of action for osteocalcin in the

  20. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice.

    Science.gov (United States)

    Chen, Cheng; Han, Xiuqing; Dong, Ping; Li, Zhaojie; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming

    2018-02-21

    Obesity has become a worldwide concern in recent years, which may cause many diseases. Much attention has been paid to food components that are considered to be beneficial in preventing chronic metabolic diseases. The present study was conducted to investigate the effects of sea cucumber saponin liposomes on certain metabolic markers associated with obesity. C57/BL6 mice fed with high-fat diet were treated with different forms of sea cucumber saponins for eight weeks. The results showed that liposomes exhibited better effects on anti-obesity and anti-hyperlipidemia activities than the common form of sea cucumber saponins. Sea cucumber saponin liposomes could also effectively alleviate adipose tissue inflammation by reducing pro-inflammatory cytokine releases and macrophage infiltration. Moreover, sea cucumber saponin liposomes improved insulin resistance by altering the uptake and utilization of glucose. Taken together, our results indicated that the intake of sea cucumber saponin liposomes might be able to ameliorate obesity-induced inflammation and insulin resistance.

  1. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice.

    Science.gov (United States)

    Jung, Dae Young; Ko, Hwi Jin; Lichtman, Eben I; Lee, Eunjung; Lawton, Elizabeth; Ong, Helena; Yu, Kristine; Azuma, Yoshihiro; Friedline, Randall H; Lee, Ki Won; Kim, Jason K

    2013-05-01

    Obesity is a major cause of insulin resistance, and weight loss is shown to improve glucose homeostasis. But the underlying mechanism and the role of inflammation remain unclear. Male C57BL/6 mice were fed a high-fat diet (HFD) for 12 wk. After HFD, weight loss was induced by changing to a low-fat diet (LFD) or exercise with continuous HFD. The weight loss effects on energy balance and insulin sensitivity were determined using metabolic cages and hyperinsulinemic euglycemic clamps in awake mice. Diet and exercise intervention for 3 wk caused a modest weight loss and improved glucose homeostasis. Weight loss dramatically reduced local inflammation in skeletal muscle, liver, and heart but not in adipose tissue. Exercise-mediated weight loss increased muscle glucose metabolism without affecting Akt phosphorylation or lipid levels. LFD-mediated weight loss reduced lipid levels and improved insulin sensitivity selectively in liver. Both weight loss interventions improved cardiac glucose metabolism. These results demonstrate that a short-term weight loss with exercise or diet intervention attenuates obesity-induced local inflammation and selectively improves insulin sensitivity in skeletal muscle and liver. Our findings suggest that local factors, not adipose tissue inflammation, are involved in the beneficial effects of weight loss on glucose homeostasis.

  2. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  3. Prohibitin-induced, obesity-associated insulin resistance and accompanying low-grade inflammation causes NASH and HCC.

    Science.gov (United States)

    Ande, Sudharsana R; Nguyen, K Hoa; Grégoire Nyomba, B L; Mishra, Suresh

    2016-03-23

    Obesity increases the risk for nonalcoholic steatohepatitis (NASH) and hepatocarcinogenesis. However, the underlying mechanisms involved in the disease process remain unclear. Recently, we have developed a transgenic obese mouse model (Mito-Ob) by prohibitin mediated mitochondrial remodeling in adipocytes. The Mito-Ob mice develop obesity in a sex-neutral manner, but obesity-associated adipose inflammation and metabolic dysregulation in a male sex-specific manner. Here we report that with aging, the male Mito-Ob mice spontaneously develop obesity-linked NASH and hepatocellular carcinoma (HCC). In contrast, the female Mito-Ob mice maintained normal glucose and insulin levels and did not develop NASH and HCC. The anti-inflammatory peptide ghrelin was significantly upregulated in the female mice and down regulated in the male mice compared with respective control mice. In addition, a reduction in the markers of mitochondrial content and function was found in the liver of male Mito-Ob mice with NASH/HCC development. We found that ERK1/2 signaling was significantly upregulated whereas STAT3 signaling was significantly down regulated in the tumors from Mito-Ob mice. These data provide a proof-of-concept that the metabolic and inflammatory status of the adipose tissue and their interplay at the systemic and hepatic level play a central role in the pathogenesis of obesity-linked NASH and HCC.

  4. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children.

    Science.gov (United States)

    Landgraf, Kathrin; Rockstroh, Denise; Wagner, Isabel V; Weise, Sebastian; Tauscher, Roy; Schwartze, Julian T; Löffler, Dennis; Bühligen, Ulf; Wojan, Magdalena; Till, Holger; Kratzsch, Jürgen; Kiess, Wieland; Blüher, Matthias; Körner, Antje

    2015-04-01

    Accumulation of fat mass in obesity may result from hypertrophy and/or hyperplasia and is frequently associated with adipose tissue (AT) dysfunction in adults. Here we assessed early alterations in AT biology and function by comprehensive experimental and clinical characterization of 171 AT samples from lean and obese children aged 0 to 18 years. We show an increase in adipocyte size and number in obese compared with lean children beginning in early childhood. These alterations in AT composition in obese children were accompanied by decreased basal lipolytic activity and significantly enhanced stromal vascular cell proliferation in vitro, potentially underlying the hypertrophy and hyperplasia seen in obese children, respectively. Furthermore, macrophage infiltration, including the formation of crown-like structures, was increased in AT of obese children from 6 years on and was associated with higher hs-CRP serum levels. Clinically, adipocyte hypertrophy was not only associated with leptin serum levels but was highly and independently correlated with HOMA-IR as a marker of insulin resistance in children. In summary, we show that adipocyte hypertrophy is linked to increased inflammation in AT in obese children, thereby providing evidence that obesity-associated AT dysfunction develops in early childhood and is related to insulin resistance. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  7. Macrophage Migration Inhibitory Factor: Critical Role in Obesity, Insulin Resistance, and Associated Comorbidities

    Directory of Open Access Journals (Sweden)

    Robert Kleemann

    2010-01-01

    Full Text Available Obesity is associated with insulin resistance, disturbed glucose homeostasis, low grade inflammation, and comorbidities such as type 2 diabetes and cardiovascular disease. The cytokine macrophage migration inhibitory factor (MIF is an ubiquitously expressed protein that plays a crucial role in many inflammatory and autoimmune disorders. Increasing evidence suggests that MIF also controls metabolic and inflammatory processes underlying the development of metabolic pathologies associated with obesity. This is a comprehensive summary of our current knowledge on the role of MIF in obesity and obesity-associated comorbidities, based on human clinical data as well as animal models of disease.

  8. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  9. Association of insulin resistance with obesity in children

    International Nuclear Information System (INIS)

    Siddiqui, S.A.; Bashir, S.; Shabbir, I.; Sherwani, M.K.; Aasim, M.

    2011-01-01

    Background: Insulin resistance is the primary metabolic disorder associated with obesity. Little is known about its role as a determinant of the metabolic syndrome in obese children. Objectives: To assess the association of insulin resistance with metabolic syndrome in obese and non obese children. Study type and settings: Cross sectional analytical study conducted among children of ten Municipal Corporation high schools of Data Ganj Buksh Town Lahore. Subjects and Methods: A total of 46 obese and 49 non obese children with consent were recruited for the study. Fasting blood glucose, serum insulin, high density lipoprotein in cholesterol, triglycerides, cholesterol, non HDL-cholesterol LDL-cholesterol were measured using standard methods. Data were analyzed by using statistical software SPSS-Version 15. Results: A total of 95 children 49 obese and 46 non obese were recruited for the study. A significant association of serum triglyceride(p<0.001), high density lipoprotein cholesterol(p<0.001), fasting blood glucose(p<0.001), and insulin levels (p<0.001) , was seen between the two groups. For each component of metabolic syndrome, when insulin resistance increased so did odds ratios for cardio metabolic risk factors. Conclusions: Insulin resistance was seen in 34.7% children. Metabolic syndrome was found in 31.6% children reflecting that obese children are at high risk for metabolic syndrome and have low HDL-cholesterol and high triglycerides levels. (author)

  10. Neurotensin Is a Lipid-Induced Gastrointestinal Peptide Associated with Visceral Adipose Tissue Inflammation in Obesity.

    Science.gov (United States)

    Barchetta, Ilaria; Cimini, Flavia Agata; Capoccia, Danila; Bertoccini, Laura; Ceccarelli, Valentina; Chiappetta, Caterina; Leonetti, Frida; Di Cristofano, Claudio; Silecchia, Gianfranco; Orho-Melander, Marju; Melander, Olle; Cavallo, Maria Gisella

    2018-04-23

    Neurotensin (NT) is a 13-amino acid peptide localized in the neuroendocrine cells of the small intestine, which promotes fat absorption and fatty acids translocation in response to lipid ingestion. NT-knock-out mice fed with a high-fat diet are protected from obesity, fatty liver, and the development of insulin-resistance. In humans, higher plasma levels of pro-NT, which is the stable circulating precursor of NT, predict obesity, type 2 diabetes (T2D), and cardiovascular disease. In obesity, the presence of visceral adipose tissue (VAT) inflammation leads to unfavorable metabolic outcomes and is associated with the development of T2D and non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the relationship between plasma pro-NT levels and the presence of VAT inflammation in biopsies from 40 morbidly obese subjects undergoing bariatric surgery. We demonstrated that higher proNT levels are significantly associated with greater macrophages infiltration, HIF-1α, WISP-1, and UNC5B expression in VAT (all p < 0.01) due to the diagnosis of T2D and NAFLD. The overall results show that, in obesity, pro-NT is a biomarker of VAT inflammation and insulin-resistance. Additionally, NT may be involved in the development of dysmetabolic conditions likely mediated by increased gut fat absorption and the presence of a proinflammatory milieu in the adipose tissue.

  11. Delivery of Adipose-Derived Stem Cells Attenuates Adipose Tissue Inflammation and Insulin Resistance in Obese Mice Through Remodeling Macrophage Phenotypes.

    Science.gov (United States)

    Shang, Qianwen; Bai, Yang; Wang, Guannan; Song, Qiang; Guo, Chun; Zhang, Lining; Wang, Qun

    2015-09-01

    Adipose-derived stem cells (ADSCs) have been used to control several autoimmune or inflammatory diseases due to immunosuppressive properties, but their role in obesity-associated inflammation remains unestablished. This study aims to evaluate the effects of ADSCs on obesity-induced white adipose tissue (WAT) inflammation and insulin resistance. We found that diet-induced obesity caused a remarkable reduction of ADSC fraction in mouse WAT. Delivery of lean mouse-derived ADSCs, which could successfully locate into WAT of obese mice, substantially improved insulin action and metabolic homeostasis of obese mice. ADSC treatment not only reduced adipocyte hypertrophy but also attenuated WAT inflammation by reducing crown-like structures of macrophages and tumor necrosis factor (TNF)-α secretion. Importantly, ADSC treatment remodeled the phenotypes of adipose-resident macrophages from proinflammatory M1 toward anti-inflammatory M2-like subtypes, as characterized by decreased MHC class II-expressing but increased interleukin (IL)-10-producing macrophages together with low expression of TNF-α and IL-12. Coculture of ADSCs through the transwell or conditional medium with induced M1 macrophages also reproduced the phenotypic switch toward M2-like macrophages, which was substantiated by elevated arginase 1, declined inducible nitric oxide synthase, inhibition of NF-κB activity, and activation of STAT3/STAT6. Taken together, our data support that ADSC supplement in obese mice could sustain IL-10-producing M2-like macrophages in WAT through paracrine action, thereby suggesting the crucial role of ADSCs in resolving WAT inflammation, maintaining adipose homeostasis, and proposing a potential ADSC-based approach for the treatment of obesity-related diseases.

  12. Serum IL-12 Is Increased in Mexican Obese Subjects and Associated with Low-Grade Inflammation and Obesity-Related Parameters

    Directory of Open Access Journals (Sweden)

    K. Suárez-Álvarez

    2013-01-01

    Full Text Available Interleukin-(IL- 12 has been recently suggested to participate during development of insulin resistance in obese mice. Nevertheless, serum IL-12 levels have not been accurately determined in overweight and obese humans. We thus studied serum concentrations of IL-12 in Mexican adult individuals, examining their relationship with low-grade inflammation and obesity-related parameters. A total of 147 healthy individuals, 43 normal weight, 61 overweight, and 43 obese subjects participated in the study. Circulating levels of IL-12, tumor necrosis factor-alpha (TNF-α, leptin, insulin, glucose, total cholesterol, and triglyceride were measured after overnight fasting in all of the study subjects. Waist circumference and body fat percentage were recorded for all the participants. Serum IL-12 was significantly higher in overweight and obese individuals than in normal weight controls. Besides being strongly related with body mass index (r=0.5154, serum IL-12 exhibited a significant relationship with abdominal obesity (r=0.4481, body fat percentage (r=0.5625, serum glucose (r=0.3158, triglyceride (r=0.3714, and TNF-α (r=0.4717. Thus, serum levels of IL-12 are increased in overweight and obese individuals and show a strong relationship with markers of low-grade inflammation and obesity in the Mexican adult population. Further research is needed to understand the role of IL-12 in developing obesity-associated alterations in humans.

  13. Role of macrophage migration inhibitory factor in obesity, insulin resistance, type 2 diabetes, and associated hepatic co-morbidities

    NARCIS (Netherlands)

    Morrison, M.C.; Kleemann, Robert

    2015-01-01

    Obesity is associated with a chronic low-grade inflammatory state that drives the -development of obesity-related co-morbidities such as insulin resistance/type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. This metabolic inflammation is thought to originate

  14. Midkine, a potential link between obesity and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Nengguang Fan

    Full Text Available Obesity is associated with increased production of inflammatory mediators in adipose tissue, which contributes to chronic inflammation and insulin resistance. Midkine (MK is a heparin-binding growth factor with potent proinflammatory activities. We aimed to test whether MK is associated with obesity and has a role in insulin resistance. It was found that MK was expressed in adipocytes and regulated by inflammatory modulators (TNF-α and rosiglitazone. In addition, a significant increase in MK levels was observed in adipose tissue of obese ob/ob mice as well as in serum of overweight/obese subjects when compared with their respective controls. In vitro studies further revealed that MK impaired insulin signaling in 3T3-L1 adipocytes, as indicated by reduced phosphorylation of Akt and IRS-1 and decreased translocation of glucose transporter 4 (GLUT4 to the plasma membrane in response to insulin stimulation. Moreover, MK activated the STAT3-suppressor of cytokine signaling 3 (SOCS3 pathway in adipocytes. Thus, MK is a novel adipocyte-secreted factor associated with obesity and inhibition of insulin signaling in adipocytes. It may provide a potential link between obesity and insulin resistance.

  15. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  16. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    Science.gov (United States)

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  17. PPARs, Obesity, and Inflammation

    Directory of Open Access Journals (Sweden)

    Rinke Stienstra

    2007-01-01

    Full Text Available The worldwide prevalence of obesity and related metabolic disorders is rising rapidly, increasing the burden on our healthcare system. Obesity is often accompanied by excess fat storage in tissues other than adipose tissue, including liver and skeletal muscle, which may lead to local insulin resistance and may stimulate inflammation, as in steatohepatitis. In addition, obesity changes the morphology and composition of adipose tissue, leading to changes in protein production and secretion. Some of these secreted proteins, including several proinflammatory mediators, may be produced by macrophages resident in the adipose tissue. The changes in inflammatory status of adipose tissue and liver with obesity feed a growing recognition that obesity represents a state of chronic low-level inflammation. Various molecular mechanisms have been implicated in obesity-induced inflammation, some of which are modulated by the peroxisome proliferator-activated receptors (PPARs. PPARs are ligand-activated transcription factors involved in the regulation of numerous biological processes, including lipid and glucose metabolism, and overall energy homeostasis. Importantly, PPARs also modulate the inflammatory response, which makes them an interesting therapeutic target to mitigate obesity-induced inflammation and its consequences. This review will address the role of PPARs in obesity-induced inflammation specifically in adipose tissue, liver, and the vascular wall.

  18. Obesity and Low-Grade Inflammation Increase Plasma Follistatin-Like 3 in Humans

    DEFF Research Database (Denmark)

    Brandt, Claus; Pedersen, Maria; Rinnov, Anders

    2014-01-01

    , plasma leptin, fasting insulin, and HOMA B and negatively with HOMA S. Furthermore plasma fstl3 correlated positively with plasma TNF-α and IL-6 levels. Infusion of LPS and TNF-α, but not IL-6 and insulin, increased plasma fstl3 in humans. CONCLUSION: Plasma fstl3 is increased in obese subjects......BACKGROUND: Rodent models suggest that follistatin-like 3 (fstl3) is associated with diabetes and obesity. In humans, plasma fstl3 is reduced with gestational diabetes. In vitro, TNF-α induces fstl3 secretion, which suggests a link to inflammation. OBJECTIVE: To elucidate the association between...... plasma fstl3 and obesity, insulin resistance, and low-grade inflammation in humans. STUDY DESIGN: Plasma fstl3 levels were determined in a cross-sectional study including three groups: patients with type 2 diabetes, impaired glucose tolerance, and healthy controls. In addition, lipopolysaccharide (LPS...

  19. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  20. Insulin resistance in Chinese patients with type 2 diabetes is associated with C-reactive protein independent of abdominal obesity

    Directory of Open Access Journals (Sweden)

    Feng Xiaocheng

    2010-12-01

    Full Text Available Abstract Background There is debate as to whether the association between C-reactive protein (CRP and insulin resistance is independent of body fatness, particularly central obesity. Therefore, the association among CRP, insulin resistance and obesity was analyzed in Chinese patients with type 2 diabetes. Methods The study included 520 Chinese patients diagnosed with type 2 diabetes with CRP levels not exceeding 10 mg/L. The degree of insulin resistance was determined with the homeostasis model assessment of insulin resistance (HOMA-IR. The CRP levels were categorized into quartiles from the lowest to the highest concentrations (Q1-Q4. Results Body mass index (BMI and waist circumference (WC were both higher in Q4, Q3 and Q2 than those in Q1. HOMA-IR was higher in Q2, Q3 and Q4 than that in Q1 (Q1 vs Q4, P Conclusion These findings showed that insulin resistance was associated with CRP levels independent of abdominal obesity in Chinese patients with type 2 diabetes, suggesting that abdominal obesity could only partly explain the link between subclinical inflammation and insulin resistance.

  1. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  2. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Nugent, Colleen A; Tsompana, Maria; Cai, Liting; Wang, Yong; Buck, Michael J; Genco, Robert J; Baker, Robert D; Zhu, Ruixin; Zhu, Lixin

    2018-04-01

    A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.

  3. Adipokines mediate inflammation and insulin resistance

    Directory of Open Access Journals (Sweden)

    Jeffrey E. Pessin

    2013-06-01

    Full Text Available For many years, adipose tissue was considered as an inert energy storage organ that accumulates and stores triacylglycerols during energy excess and releases fatty acids in times of systemic energy need. However, over the last two decades adipose tissue depots have been established as highly active endocrine and metabolically important organs that modulate energy expenditure and glucose homeostasis. In rodents, brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against diet-induced obesity. White adipose tissue collectively referred too as either subcutaneous or visceral adipose tissue is responsible for the secretion of an array of signaling molecules, termed adipokines. These adipokines function as classic circulating hormones to communicate with other organs including brain, liver, muscle, the immune system and adipose tissue itself. The dysregulation of adipokines has been implicated in obesity, type 2 diabetes and cardiovascular disease. Recently, inflammatory responses in adipose tissue have been shown as a major mechanism to induce peripheral tissue insulin resistance. Although leptin and adiponectin regulate feeding behavior and energy expenditure, these adipokines are also involved in the regulation of inflammatory responses. Adipose tissue secrete various pro- and anti-inflammatory adipokines to modulate inflammation and insulin resistance. In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced to induce insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the expression of pro- and anti-inflammatory adipokines. Thus we will review the recent progress regarding the physiological and molecular functions of adipokines in the obesity-induced inflammation and insulin resistance with perspectives on future directions.

  4. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  5. The association of cysteine with obesity, inflammatory cytokines and insulin resistance in Hispanic children and adolescents.

    Directory of Open Access Journals (Sweden)

    Amany K Elshorbagy

    Full Text Available Plasma total cysteine (tCys independently relates to fat mass in adults. Dietary cyst(eine promotes adiposity and decreases glucose tolerance in some rodent models, but alleviates insulin resistance in others.To investigate whether the association of tCys with body fat extends to children at particular risk of obesity, and whether tCys is associated with insulin resistance and obesity-associated inflammation.We explored the cross-sectional relations of fasting plasma tCys and related metabolites with body composition measured by dual-energy X-ray absorptiometry in 984 Hispanic children and adolescents aged 4-19 years from the Viva La Familia Study. Linear and logistic regression and dose-response curves were used to evaluate relations of tCys with obesity, insulin resistance and inflammatory markers including interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, monocyte chemoattractant protein-1 (MCP-1 and C-reactive protein (CRP.tCys, methionine and total homocysteine (tHcy increased with age. Upper tCys quartile was independently associated with a 5-fold increased risk of obesity (95% CI 3.5-8.0, P<0.001, and 2-fold risk of insulin resistance (95% CI: 1.6-5.0, P<0.001; adjusted for body fat%. Within the overweight/obese subgroup, but not in normal-weight children, tCys accounted for 9% of the variability in body fat% (partial r = 0.30, P<0.001; adjusted for age and gender. tCys correlated positively with serum non-esterified fatty acids and leptin, partly independent of body fat, but was not associated with serum IL-6, TNF-α or MCP-1. A positive correlation with CRP disappeared after adjustment for BMI.tCys is independently associated with obesity and insulin resistance in Hispanic children and adolescents, highlighting a previously underappreciated link between the sulfur amino acid metabolic pathway and obesity and cardiometabolic risk.

  6. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  7. Effects of Bariatric Surgery on Adipokine-Induced Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Zeynep eGoktas

    2013-06-01

    Full Text Available Over a third of the US population is obese and at high risk for developing type 2 diabetes, insulin resistance and other metabolic disorders. Obesity is considered a chronic low grade inflammatory condition that is primarily attributed to expansion and inflammation of adipose tissues. Indeed, adipocytes produce and secrete numerous proinflammatory and anti-inflammatory cytokines known as adipokines. When the balance of these adipokines is shifted towards higher production of proinflammatory factors, local inflammation within adipose tissues and subsequently systemic inflammation occur. These adipokines including leptin, visfatin, resistin, apelin, vaspin, and retinol binding protein-4 can regulate inflammatory responses and contribute to the pathogenesis of diabetes. These effects are mediated by key inflammatory signaling molecules including activated serine kinases such as c-Jun N-terminal kinase (JNK and serine kinases inhibitor κB kinase (IKK and insulin signaling molecules including insulin receptor substrates, protein kinase B (PKB, also known as Akt, and nuclear factor kappa B (NF-kB. Bariatric surgery can decrease body weight and improve insulin resistance in morbidly obese subjects. However, despite reports suggesting reduced inflammation and weight-independent effects of bariatric surgery on glucose metabolism, mechanisms behind such improvements are not yet well understood. This review article focuses on some of these novel adipokines and discusses their changes after bariatric surgery and their relationship to insulin resistance, fat mass, inflammation, and glucose homeostasis.

  8. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation.

    Directory of Open Access Journals (Sweden)

    Gesine Flehmig

    Full Text Available In obesity, elevated fat mass and ectopic fat accumulation are associated with changes in adipokine secretion, which may link obesity to inflammation and the development of insulin resistance. However, relationships among individual adipokines and between adipokines and parameters of obesity, glucose metabolism or inflammation are largely unknown. Serum concentrations of 20 adipokines were measured in 141 Caucasian obese men (n = 67 and women (n = 74 with a wide range of body weight, glycemia and insulin sensitivity. Unbiased, distance-based hierarchical cluster analyses were performed to recognize patterns among adipokines and their relationship with parameters of obesity, glucose metabolism, insulin sensitivity and inflammation. We identified two major adipokine clusters related to either (1 body fat mass and inflammation (leptin, ANGPTL3, DLL1, chemerin, Nampt, resistin or insulin sensitivity/hyperglycemia, and lipid metabolism (vaspin, clusterin, glypican 4, progranulin, ANGPTL6, GPX3, RBP4, DLK1, SFRP5, BMP7, adiponectin, CTRP3 and 5, omentin. In addition, we found distinct adipokine clusters in subgroups of patients with or without type 2 diabetes (T2D. Logistic regression analyses revealed ANGPTL6, DLK1, Nampt and progranulin as strongest adipokine correlates of T2D in obese individuals. The panel of 20 adipokines predicted T2D compared to a combination of HbA1c, HOMA-IR and fasting plasma glucose with lower sensitivity (78% versus 91% and specificity (76% versus 94%. Therefore, adipokine patterns may currently not be clinically useful for the diagnosis of metabolic diseases. Whether adipokine patterns are relevant for the predictive assessment of intervention outcomes needs to be further investigated.

  9. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B.

    Science.gov (United States)

    Ormazabal, Paulina; Scazzocchio, Beatrice; Varì, Rosaria; Santangelo, Carmela; D'Archivio, Massimo; Silecchia, Gianfranco; Iacovelli, Annunziata; Giovannini, Claudio; Masella, Roberta

    2018-05-16

    The occurrence of chronic inflammation in visceral adipose tissue (VAT) in obese subjects precipitates the development of insulin resistance and type 2 diabetes (T2D). Anthocyanins and their main metabolite protocatechuic acid (PCA) have been demonstrated to stimulate insulin signaling in human adipocytes. The aim of this study was to investigate whether PCA is able to modulate insulin responsiveness and inflammation in VAT from obese (OB) and normal weight (NW) subjects. VATs obtained from NW and OB subjects were incubated or not (control) with 100 μM PCA for 24 h. After incubation, tissues untreated and treated with PCA were acutely stimulated with insulin (20 nM, 20 min). PTP1B, p65 NF-κB, phospho-p65 NF-κB, IRS-1, IRβ, Akt, GLUT4 as well as basal and insulin-stimulated Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting in NW- and OB-VAT. Samples were assessed for PTP1B activity and adipocytokine secretion. PCA restored insulin-induced phosphorylation in OB-VAT by increasing phospho-Tyr-IRS-1 and phospho-Ser-Akt after insulin stimulation as observed in NW-VAT (p < 0.05). PTP1B activity was lower in OB-VAT treated with PCA with respect to untreated (p < 0.05). Compared to non-treated tissues, PCA reduced phospho-p65 NF-κB and IL-6 in OB-VAT, and IL-1β in NW-VAT (p < 0.05); and increased adiponectin secretion in NW-VAT (p < 0.05). PCA restores the insulin responsiveness of OB-VAT by increasing IRS-1 and Akt phosphorylation which could be related with the lower PTP1B activity found in PCA-treated OB-VAT. Furthermore, PCA diminishes inflammation in VAT. These results support the beneficial role of an anthocyanin-rich diet against inflammation and insulin resistance in obesity.

  10. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Hamada, Daisuke; Maynard, Robert; Schott, Eric; Drinkwater, Christopher J; Ketz, John P; Kates, Stephen L; Jonason, Jennifer H; Hilton, Matthew J; Zuscik, Michael J; Mooney, Robert A

    2016-06-01

    Obesity is a state of chronic inflammation that is associated with insulin resistance and type 2 diabetes mellitus (DM), as well as an increased risk of osteoarthritis (OA). This study was undertaken to define the links between obesity-associated inflammation, insulin resistance, and OA, by testing the hypotheses that 1) tumor necrosis factor (TNF) is critical in mediating these pathologic changes in OA, and 2) insulin has direct effects on the synovial joint that are compromised by insulin resistance. The effects of TNF and insulin on catabolic gene expression were determined in fibroblast-like synoviocytes (FLS) isolated from human OA synovium. Synovial TNF expression and OA progression were examined in 2 mouse models, high-fat (HF) diet-fed obese mice with type 2 DM and TNF-knockout mice. Insulin resistance was investigated in synovium from patients with type 2 DM. Insulin receptors (IRs) were abundant in both mouse and human synovial membranes. Human OA FLS were insulin responsive, as indicated by the dose-dependent phosphorylation of IRs and Akt. In cultures of human OA FLS with exogenous TNF, the expression and release of MMP1, MMP13, and ADAMTS4 by FLS were markedly increased, whereas after treatment with insulin, these effects were selectively inhibited by >50%. The expression of TNF and its abundance in the synovium were elevated in samples from obese mice with type 2 DM. In TNF-knockout mice, increases in osteophyte formation and synovial hyperplasia associated with the HF diet were blunted. The synovium from OA patients with type 2 DM contained markedly more macrophages and showed elevated TNF levels as compared to the synovium from OA patients without diabetes. Moreover, insulin-dependent phosphorylation of IRs and Akt was blunted in cultures of OA FLS from patients with type 2 DM. TNF appears to be involved in mediating the advanced progression of OA seen in type 2 DM. While insulin plays a protective, antiinflammatory role in the synovium, insulin

  11. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    Science.gov (United States)

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  12. Maternal Pre-Gravid Obesity Changes Gene Expression Profiles Towards Greater Inflammation and Reduced Insulin Sensitivity in Umbilical Cord

    Science.gov (United States)

    Thakali, Keshari M.; Saben, Jessica; Faske, Jennifer B.; Lindsey, Forrest; Gomez-Acevedo, Horacio; Lowery, Curtis L.; Badger, Thomas M.; Andres, Aline; Shankar, Kartik

    2014-01-01

    Background Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods UCs from 12 lean (pre-gravid BMI obese (OW/OB, pre-gravid BMI ≥25) women without gestational diabetes were collected for gene expression analysis using Human Primeview microarrays (Affymetrix). Metabolic parameters were assayed in mother’s plasma and cord blood. Results Although offspring birth weight and adiposity (at 2-wk) did not differ between groups, expression of 232 transcripts was affected in UC from OW/OB compared to those of lean mothers. GSEA analysis revealed an up-regulation of genes related to metabolism, stimulus and defense response and inhibitory to insulin signaling in the OW/OB group. We confirmed that EGR1, periostin, and FOSB mRNA expression was induced in UCs from OW/OB moms, while endothelin receptor B, KFL10, PEG3 and EGLN3 expression was decreased. Messenger RNA expression of EGR1, FOSB, MEST and SOCS1 were positively correlated (pmaternal obesity and changes in UC gene expression profiles favoring inflammation and insulin resistance, potentially predisposing infants to develop metabolic dysfunction later on in life. PMID:24819376

  13. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    Science.gov (United States)

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  14. Implication of inflammatory signaling pathways in obesity-induced insulin resistance

    Directory of Open Access Journals (Sweden)

    Jean-François eTANTI

    2013-01-01

    Full Text Available Obesity is characterized by the development of a low-grade chronic inflammatory state in different metabolic tissues including adipose tissue and liver. This inflammation develops in response to an excess of nutrient flux and is now recognized as an important link between obesity and insulin resistance. Several dietary factors like saturated fatty acids and glucose as well as changes in gut microbiota have been proposed as triggers of this metabolic inflammation through the activation of pattern-recognition receptors, including Toll-like receptors, inflammasome and NOD. The consequences are the production of pro-inflammatory cytokines and the recruitment of immune cells such as macrophages and T lymphocytes in metabolic tissues. Inflammatory cytokines activate several kinases like IKKbeta, mTOR/S6 kinase and MAP kinases as well as SOCS proteins that interfere with insulin signaling and action in adipocytes and hepatocytes. In this review, we summarize recent studies demonstrating that pattern recognition receptors and stress kinases are important integrators of metabolic and inflammatory stress signals in metabolic tissues leading to peripheral and central insulin resistance and metabolic dysfunction. We discuss recent data obtained with genetically modified mice and pharmacological approaches suggesting that these inflammatory pathways are potential novel pharmacological targets for the management of obesity-associated insulin resistance.

  15. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  16. The 2009 stock conference report: inflammation, obesity and metabolic disease.

    Science.gov (United States)

    Hevener, A L; Febbraio, M A

    2010-09-01

    Obesity is linked with many deleterious health consequences and is associated with increased risk of chronic disease including type 2 diabetes, atherosclerosis and certain forms of cancer. Recent work has highlighted the impact of obesity to activate inflammatory gene networks and suggests a causal function of inflammation in the pathogenesis of the metabolic syndrome. Since 2005, when Dr Gokhan Hotamisligil chaired the fourth Stock Conference in Istanbul, Turkey, entitled 'Obesity and Inflammation', there has been an explosion of studies investigating the relationship between obesity, inflammation and substrate metabolism. The exuberance surrounding this field of research is exemplified by the body of work that has been published in these past 4 years, including over 1400 publications. During this time, several novel mechanisms relating to cellular inflammation have been uncovered including the role of the hematopoietic system, toll-like receptor activation, endoplasmic reticulum stress and very recently T-cell activation in obesity-induced insulin resistance. These discoveries have led us to rethink cellular nutrient sensing and its role in inflammation and metabolic disease. Despite burgeoning investigation in this field, there still remain a number of unanswered questions. This review that evolved from the 2009 Stock Conference summarizes current research and identifies the deficiencies in our understanding of this topic. The overall goal of this Stock Conference was to bring together leading investigators in the field of inflammation and obesity research in the hope of fostering new ideas, thus advancing the pursuit of novel therapeutic strategies to reduce disease risk and or better treat chronic disease including type 2 diabetes, cardiovascular disease and cancer. © 2009 The Authors. obesity reviews © 2009 International Association for the Study of Obesity.

  17. Role of Macrophage Migration Inhibitory Factor in Obesity, Insulin Resistance, Type 2 Diabetes, and Associated Hepatic Co-Morbidities: A Comprehensive Review of Human and Rodent Studies

    NARCIS (Netherlands)

    Morrison, M.C.; Kleemann, R.

    2015-01-01

    Obesity is associated with a chronic low-grade inflammatory state that drives the -development of obesity-related co-morbidities such as insulin resistance/type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. This metabolic inflammation is thought to originate in

  18. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin.

    Directory of Open Access Journals (Sweden)

    Maarten Hulsmans

    Full Text Available BACKGROUND: Low adiponectin, a well-recognized antidiabetic adipokine, has been associated with obesity-related inflammation, oxidative stress and insulin resistance. Globular adiponectin is an important regulator of the interleukin-1 receptor-associated kinase (IRAK/NFκB pathway in monocytes of obese subjects. It protects against inflammation and oxidative stress by inducing IRAK3. microRNA (miR-146b-5p inhibits NFκB-mediated inflammation by targeted repression of IRAK1 and TNF receptor-associated factor-6 (TRAF6. Therefore, we measured the expression of miR-146b-5p in monocytes of obese subjects. Because it was low we determined the involvement of this miR in the anti-inflammatory, antioxidative and insulin signaling action of globular adiponectin. METHODS: miR-146b-5p expression in monocytes of obese subjects was determined by qRT-PCR. The effect of miR-146b-5p silencing on molecular markers of inflammation, oxidative stress and insulin signaling and the association with globular adiponectin was assessed in human THP-1 monocytes. RESULTS: miR-146b-5p was downregulated in monocytes of obese persons. Low globular adiponectin decreased miR-146b-5p and IRAK3 in THP-1 monocytes, associated with increased mitochondrial reactive oxygen species (ROS. Intracellular ROS and insulin receptor substrate-1 (IRS1 protein were unchanged. Silencing of miR-146b-5p with an antisense inhibitor resulted in increased expression of IRAK1 and TRAF6 leading to more NFκB p65 DNA binding activity and TNFα. As a response IRAK3 and IRS1 protein increased. Mitochondrial and intracellular ROS production did not increase despite more inflammation. In addition, exposure of miR-146b-5p-depleted THP-1 monocytes to high levels of globular adiponectin resulted in an increased production of TNFα and intracellular ROS. Still, they did not lose their potential to increase IRAK3 and IRS1 protein and to decrease mitochondrial ROS. CONCLUSION: miR-146b-5p, decreased in monocytes

  19. Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Titos, Esther; Clària, Joan

    2013-12-01

    Chronic low-grade inflammation in adipose tissue has been recognized as a key step in the development of obesity-associated complications. In obesity, the accumulation of infiltrating macrophages in adipose tissue and their phenotypic switch to M1-type dysregulate inflammatory adipokine production leading to obesity-linked insulin resistance. Resolvins are potent anti-inflammatory and pro-resolving mediators endogenously generated from omega-3 fatty acids that act as "stop-signals" of the inflammatory response promoting the resolution of inflammation. Recently, a deficit in the production of these endogenous anti-inflammatory signals has been demonstrated in obese adipose tissue. The restoration of their levels by either exogenous administration of these mediators or feeding omega-3-enriched diets, improves the inflammatory status of adipose tissue and ameliorates metabolic dysfunction. Here, we review the current knowledge on the role of these endogenous autacoids in the resolution of adipose tissue inflammation with special emphasis on their functional actions on macrophages. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Obesity is the main determinant of insulin resistance more than the circulating pro-inflammatory cytokines levels in rheumatoid arthritis patients.

    Science.gov (United States)

    Castillo-Hernandez, Jesus; Maldonado-Cervantes, Martha Imelda; Reyes, Juan Pablo; Patiño-Marin, Nuria; Maldonado-Cervantes, Enrique; Solorzano-Rodriguez, Claudia; de la Cruz Mendoza, Esperanza; Alvarado-Sanchez, Brenda

    Systemic blockade of TNF-α in Rheumatoid arthritis with insulin resistance seems to produce more improvement in insulin sensitivity in normal weight patients with Rheumatoid arthritis than in obese patients with Rheumatoid arthritis, suggesting that systemic-inflammation and obesity are independent risk factors for insulin resistance in Rheumatoid arthritis patients. To evaluate the insulin resistance in: normal weight patients with Rheumatoid arthritis, overweight patients with Rheumatoid arthritis, obese Rheumatoid arthritis patients, and matched control subjects with normal weight and obesity; and its association with major cytokines involved in the pathogenesis of the disease. Assessments included: body mass index, insulin resistance by Homeostasis Model Assessment, ELISA method, and enzymatic colorimetric assay. Outstanding results from these studies include: (1) In Rheumatoid arthritis patients, insulin resistance was well correlated with body mass index, but not with levels of serum cytokines. In fact, levels of cytokines were similar in all Rheumatoid arthritis patients, regardless of being obese, overweight or normal weight (2) Insulin resistance was significantly higher in Rheumatoid arthritis with normal weight than in normal weight (3) No significant difference was observed between insulin resistances of Rheumatoid arthritis with obesity and obesity (4) As expected, levels of circulating cytokines were significantly higher in Rheumatoid arthritis patients than in obesity. Obesity appears to be a dominant condition above inflammation to produce IR in RA patients. The dissociation of the inflammation and obesity components to produce IR suggests the need of an independent therapeutic strategy in obese patients with RA. Copyright © 2017. Published by Elsevier Editora Ltda.

  1. The Role of the Immune System in Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Payal S. Patel

    2013-01-01

    Full Text Available The innate immune system provides organisms with rapid and well-coordinated protection from foreign pathogens. However, under certain conditions of metabolic dysfunction, components of the innate immune system may be activated in the absence of external pathogens, leading to pathologic consequences. Indeed, there appears to be an intimate relationship between metabolic diseases and immune dysfunction; for example, macrophages are prime players in the initiation of a chronic inflammatory state in obesity which leads to insulin resistance. In response to increases in free fatty acid release from obese adipose depots, M1-polarized macrophages infiltrate adipose tissues. These M1 macrophages trigger inflammatory signaling and stress responses within cells that signal through JNK or IKKβ pathways, leading to insulin resistance. If overnutrition persists, mechanisms that counteract inflammation (such as M2 macrophages and PPAR signaling are suppressed, and the inflammation becomes chronic. Although macrophages are a principal constituent of obese adipose tissue inflammation, other components of the immune system such as lymphocytes and mast cells also contribute to the inflammatory cascade. Thus it is not merely an increased mass of adipose tissue that directly leads to attenuation of insulin action, but rather adipose tissue inflammation activated by the immune system in obese individuals that leads to insulin resistance.

  2. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  3. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    Directory of Open Access Journals (Sweden)

    Mardia López-Alarcón

    2014-01-01

    Full Text Available Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P<0.01. Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity.

  4. Serum progranulin levels in relation to insulin resistance in childhood obesity.

    Science.gov (United States)

    Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M

    2017-11-27

    Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.

  5. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis.

    Science.gov (United States)

    Kalinkovich, Alexander; Livshits, Gregory

    2017-05-01

    Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway. Copyright © 2016 Elsevier B.V. All rights

  6. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice.

    Science.gov (United States)

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-26

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  7. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Gil-Cardoso, Katherine; Ginés, Iris; Pinent, Montserrat; Ardévol, Anna; Blay, Mayte; Terra, Ximena

    2016-12-01

    Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.

  9. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    Science.gov (United States)

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (pPCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Maternal Obesity, Inflammation, and Developmental Programming

    Directory of Open Access Journals (Sweden)

    Stephanie A. Segovia

    2014-01-01

    Full Text Available The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming.

  11. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism.

    Science.gov (United States)

    Garbossa, Stefania Giuliana; Folli, Franco

    2017-06-01

    Vitamin D is a key hormone involved in the regulation of calcium/phosphorous balance and recently it has been implicated in the pathogenesis of sub-inflammation, insulin resistance and obesity. The two main forms of vitamin D are cholecalciferol (Vitamin D3) and ergocalciferol (Vitamin D2): the active form (1,25-dihydroxyvitamin D) is the result of two hydroxylations that take place in liver, kidney, pancreas and immune cells. Vitamin D increases the production of some anti-inflammatory cytokines and reduces the release of some pro-inflammatory cytokines. Low levels of Vitamin D are also associated with an up-regulation of TLRs expression and a pro-inflammatory state. Regardless of the effect on inflammation, Vitamin D seems to directly increase insulin sensitivity and secretion, through different mechanisms. Considering the importance of low grade chronic inflammation in metabolic syndrome, obesity and diabetes, many authors hypothesized the involvement of this nutrient/hormone in the pathogenesis of these diseases. Vitamin D status could alter the balance between pro and anti-inflammatory cytokines and thus affect insulin action, lipid metabolism and adipose tissue function and structure. Numerous studies have shown that Vitamin D concentrations are inversely associated with pro-inflammatory markers, insulin resistance, glucose intolerance and obesity. Interestingly, some longitudinal trials suggested also an inverse association between vitamin D status and incident type 2 diabetes mellitus. However, vitamin D supplementation in humans showed controversial effects: with some studies demonstrating improvements in insulin sensitivity, glucose and lipid metabolism while others showing no beneficial effect on glycemic control and on inflammation. In conclusion, although the evidences of a significant role of Vitamin D on inflammation, insulin resistance and insulin secretion in the pathogenesis of obesity, metabolic syndrome and type 2 diabetes, its potential

  12. Vegetarian diet reduces the risk of hypertension independent of abdominal obesity and inflammation: a prospective study.

    Science.gov (United States)

    Chuang, Shao-Yuan; Chiu, Tina H T; Lee, Chun-Yi; Liu, Ting-Ting; Tsao, Chwen Keng; Hsiung, Chao A; Chiu, Yen-Feng

    2016-11-01

    A vegetarian diet may prevent elevation of blood pressures and lower the risk for hypertension through lower degrees of obesity, inflammation, and insulin resistance. This study investigated the association between a vegetarian diet and hypertension incidence in a cohort of Taiwanese adult nonsmokers and examined whether this association was mediated through inflammation, abdominal obesity, or insulin resistance (using fasting glucose as a proxy). This matched cohort study was from the 1994-2008 MJ Health Screening Database. Each vegetarian was matched with five nonvegetarians by age, sex, and study site. The analysis included 4109 nonsmokers (3423 nonvegetarians and 686 vegetarians), followed for a median of 1.61 years. The outcome includes hypertension incidence, as well as SBP and DBP levels. Regression analysis was performed to assess the association between vegetarian diet and hypertension incidence or future blood pressure levels in the presence/absence of potential mediators. Vegetarians had a 34% lower risk for hypertension, adjusting for age and sex (odds ratio: 0.66, 95% confidence interval: 0.50-0.87; SBP: -3.3 mmHg, P vegetarian diet and hypertension appeared to be consistent across age groups. Taiwanese vegetarians had lower incidence of hypertension than nonvegetarians. Vegetarian diets may protect against hypertension beyond lower abdominal obesity, inflammation, and insulin resistance.

  13. Waist-to-height ratio as a marker of low-grade inflammation in obese children and adolescents.

    Science.gov (United States)

    Caminiti, Carolina; Armeno, Marisa; Mazza, Carmen S

    2016-05-01

    The epidemic of childhood obesity is associated with early atherosclerosis. Several reports have related this event to low-grade inflammation described in obesity. CRP and IL6 are markers that correlate with adiposity. The waist-to-height ratio (WtHR) is an anthropometric marker associated with insulin resistance and inflammation. The objective of this study was to assess the correlation between WtHR, metabolic complications and pro-inflammatory factors in obese children and adolescents. Weight, height, waist circumference, glycemia, insulin, CRP, TNF-α and IL-6 were measured in the baseline sample in 280 patients 6-19 years of age with overweight or obesity (OW/OB) and 112 normal-weight controls. Logistic regression was performed using WtHR as an independent variable. p>0.05 STATA11. Mean WtHR was 0.6±0.06 in OW/OB and 0.43±0.02 in controls (p0.5, insulin resistence and inflammatory markers were significantly increased (p<0.01) compared to the WtHR<0.5 (HOMA 3.4 vs. 1.4; CRP 2.3 vs. 0.6; Il-6 2.9 vs. 2.1; and TNF-α 6.4 vs. 5.55). In logistic regression, a significant independent association was found between WtHR with CRP (OR1.47), IL6 (OR1.60) and TNF-α (OR1.79). Obese children and adolescents have high inflammatory markers that may increase cardiovascular risk. WtHR is associated with low-grade inflammation and may be considered a relevant anthropometric marker in the clinical practice.

  14. Defects in TLR3 expression and RNase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people

    DEFF Research Database (Denmark)

    Fabre, Odile Martine Julie; Breuker, C; Amouzou, C

    2014-01-01

    Obesity is associated with chronic low-grade inflammation and oxidative stress that blunt insulin response in its target tissues, leading to insulin resistance (IR). IR is a characteristic feature of type 2 diabetes. Skeletal muscle is responsible for 75% of total insulin-dependent glucose uptake...... with palmitate, a saturated free fatty acid (FFA) known to induce inflammation and oxidative stress via TLR4 activation. While RNase L and RLI levels remained unchanged, OAS level was decreased in primary myotubes from insulin-resistant obese subjects (OB-IR) compared with myotubes from insulin-sensitive obese......; consequently, skeletal muscle IR is considered to be the primary defect of systemic IR development. Interestingly, some obese people stay insulin-sensitive and metabolically healthy. With the aim of understanding this difference and identifying the mechanisms responsible for insulin sensitivity maintenance...

  15. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-06-01

    Full Text Available Sodium-glucose cotransporter (SGLT 2 inhibitors increase urinary glucose excretion (UGE, leading to blood glucose reductions and weight loss. However, the impacts of SGLT2 inhibition on energy homeostasis and obesity-induced insulin resistance are less well known. Here, we show that empagliflozin, a SGLT2 inhibitor, enhanced energy expenditure and attenuated inflammation and insulin resistance in high-fat-diet-induced obese (DIO mice. C57BL/6J mice were pair-fed a high-fat diet (HFD or a HFD with empagliflozin for 16 weeks. Empagliflozin administration increased UGE in the DIO mice, whereas it suppressed HFD-induced weight gain, insulin resistance, and hepatic steatosis. Moreover, empagliflozin shifted energy metabolism towards fat utilization, elevated AMP-activated protein kinase and acetyl-CoA carbolxylase phosphorylation in skeletal muscle, and increased hepatic and plasma fibroblast growth factor 21 levels. Importantly, empagliflozin increased energy expenditure, heat production, and the expression of uncoupling protein 1 in brown fat and in inguinal and epididymal white adipose tissue (WAT. Furthermore, empagliflozin reduced M1-polarized macrophage accumulation while inducing the anti-inflammatory M2 phenotype of macrophages within WAT and liver, lowering plasma TNFα levels and attenuating obesity-related chronic inflammation. Thus, empagliflozin suppressed weight gain by enhancing fat utilization and browning and attenuated obesity-induced inflammation and insulin resistance by polarizing M2 macrophages in WAT and liver.

  16. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    Science.gov (United States)

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  17. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase.

    Science.gov (United States)

    Carillon, Julie; Romain, Cindy; Bardy, Guillaume; Fouret, Gilles; Feillet-Coudray, Christine; Gaillet, Sylvie; Lacan, Dominique; Cristol, Jean-Paul; Rouanet, Jean-Max

    2013-12-01

    Oxidative stress is involved in obesity. However, dietary antioxidants could prevent oxidative stress-induced damage. We have previously shown the preventive effects of a melon superoxide dismutase (SODB) on oxidative stress. However, the mechanism of action of SODB is still unknown. Here, we evaluated the effects of a 1-month curative supplementation with SODB on the liver of obese hamsters. Golden Syrian hamsters received either a standard diet or a cafeteria diet composed of high-fat, high-sugar, and high-salt supermarket products, for 15 weeks. This diet resulted in insulin resistance and in increased oxidative stress in the liver. However, inflammatory markers (IL-6, TNF-α, and NF-κB) were not enhanced and no liver steatosis was detected, although these are usually described in obesity-induced insulin resistance models. After the 1-month supplementation with SODB, body weight and insulin resistance induced by the cafeteria diet were reduced and hepatic oxidative stress was corrected. This could be due to the increased expression of the liver antioxidant defense proteins (manganese and copper/zinc superoxide dismutase, catalase, and glutathione peroxidase). Even though no inflammation was detected in the obese hamsters, inflammatory markers were decreased after SODB supplementation, probably through the reduction of oxidative stress. These findings suggest for the first time that SODB could exert its antioxidant properties by inducing the endogenous antioxidant defense. The mechanisms underlying this induction need to be further investigated. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  19. Effect of Roux-en-Y Bariatric Surgery on Lipoproteins, Insulin Resistance, and Systemic and Vascular Inflammation in Obesity and Diabetes

    Directory of Open Access Journals (Sweden)

    Rahul Yadav

    2017-11-01

    Full Text Available PurposeObesity is a major modifiable risk factor for cardiovascular disease. Bariatric surgery is considered to be the most effective treatment option for weight reduction in obese patients with and without type 2 diabetes (T2DM.ObjectiveTo evaluate changes in lipoproteins, insulin resistance, mediators of systemic and vascular inflammation, and endothelial dysfunction following Roux-en-Y bariatric surgery in obese patients with and without diabetes.Materials and methodsLipoproteins, insulin resistance, mediators of systemic and vascular inflammation, and endothelial dysfunction were measured in 37 obese patients with (n = 17 and without (n = 20 T2DM, before and 6 and 12 months after Roux-en-Y bariatric surgery. Two way between subject ANOVA was carried out to study the interaction between independent variables (time since surgery and presence of diabetes and all dependent variables.ResultsThere was a significant effect of time since surgery on (large effect size weight, body mass index (BMI, waist circumference, triglycerides (TG, small-dense LDL apolipoprotein B (sdLDL ApoB, HOMA-IR, CRP, MCP-1, ICAM-1, E-selectin, P-selectin, leptin, and adiponectin. BMI and waist circumference had the largest impact of time since surgery. The effect of time since surgery was noticed mostly in the first 6 months. Absence of diabetes led to a significantly greater reduction in total cholesterol, low-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol although the effect size was small to medium. There was a greater reduction in TG and HOMA-IR in patients with diabetes with a small effect size. No patients were lost to follow up.ConclusionLipoproteins, insulin resistance, mediators of systemic and vascular inflammation, and endothelial dysfunction improve mostly 6 months after bariatric surgery in obese patients with and without diabetes.Clinical Trial Registrationwww.ClinicalTrials.gov, identifier: NCT02169518. https

  20. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice

    Directory of Open Access Journals (Sweden)

    Jongkil Kim

    2016-01-01

    Full Text Available Adipose tissue macrophage (ATM-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1, which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  1. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Science.gov (United States)

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity). Circulating zonulin increased with body mass index (BMI), waist to hip ratio (WHR), fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002) contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01) contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  2. CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress.

    Science.gov (United States)

    Petersen, Pia S; Lei, Xia; Wolf, Risa M; Rodriguez, Susana; Tan, Stefanie Y; Little, Hannah C; Schweitzer, Michael A; Magnuson, Thomas H; Steele, Kimberley E; Wong, G William

    2017-04-01

    Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. Copyright © 2017 the American Physiological Society.

  3. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: potential effects of exercise.

    Science.gov (United States)

    Schmidt, S; Monk, J M; Robinson, L E; Mourtzakis, M

    2015-06-01

    Obesity is an established risk factor for postmenopausal breast cancer. The mechanisms through which obesity influences the development and progression of breast cancer are not fully elucidated; however, several factors such as increased oestrogen, concentrations of various members of the insulin family and inflammation that are associated with adiposity are purported to be important factors in this relationship. Emerging research has also begun to focus on the role of adipokines, (i.e. adipocyte secreted factors), in breast cancer. Leptin secretion is directly related to adiposity and is believed to promote breast cancer directly and independently, as well as through involvement with the oestrogen and insulin signalling pathways. As leptin is secreted from white adipose tissue, any intervention that reduces adiposity may be favourable. However, it is also important to consider that energy expenditure through exercise, independent of fat loss, may improve leptin regulation. The purpose of this narrative review was to explore the role of leptin in breast cancer development and progression, identify key interactions with oestrogen and the insulin family, and distinguish the potential effects of exercise on these interactions. © 2015 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity.

  4. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMIobese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  5. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss.

    Science.gov (United States)

    Schmitz, J; Evers, N; Awazawa, M; Nicholls, H T; Brönneke, H S; Dietrich, A; Mauer, J; Blüher, M; Brüning, J C

    2016-05-01

    Obesity represents a major risk factor for the development of type 2 diabetes mellitus, atherosclerosis and certain cancer entities. Treatment of obesity is hindered by the long-term maintenance of initially reduced body weight, and it remains unclear whether all pathologies associated with obesity are fully reversible even upon successfully maintained weight loss. We compared high fat diet-fed, weight reduced and lean mice in terms of body weight development, adipose tissue and liver insulin sensitivity as well as inflammatory gene expression. Moreover, we assessed similar parameters in a human cohort before and after bariatric surgery. Compared to lean animals, mice that demonstrated successful weight reduction showed increased weight gain following exposure to ad libitum control diet. However, pair-feeding weight-reduced mice with lean controls efficiently stabilized body weight, indicating that hyperphagia was the predominant cause for the observed weight regain. Additionally, whereas glucose tolerance improved rapidly after weight loss, systemic insulin resistance was retained and ameliorated only upon prolonged pair-feeding. Weight loss enhanced insulin action and resolved pro-inflammatory gene expression exclusively in the liver, whereas visceral adipose tissue displayed no significant improvement of metabolic and inflammatory parameters compared to obese mice. Similarly, bariatric surgery in humans (n = 55) resulted in massive weight reduction, improved hepatic inflammation and systemic glucose homeostasis, while adipose tissue inflammation remained unaffected and adipocyte-autonomous insulin action only exhibit minor improvements in a subgroup of patients (42%). These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue inflammation and insulin resistance in mice as

  6. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study

    DEFF Research Database (Denmark)

    Koska, J; Ortega, E; Bunt, J C

    2009-01-01

    Low-grade inflammation may contribute to obesity-related insulin resistance and has been associated with increased risk of type 2 diabetes mellitus. The present study evaluated whether treatment with salsalate, a traditional anti-inflammatory medication, would improve insulin action in obese non-...

  8. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents.

    Science.gov (United States)

    Habib, Salem A; Saad, Entsar A; Elsharkawy, Ashraf A; Attia, Zeinab R

    2015-09-01

    To investigate the inter-relationships between adipocytokines, oxidative stress, insulin, Zn and Cu and obesity among Egyptian obese non-diabetic children and adolescents. 72 obese children and adolescents of both sexes (5-17 years) were recruited for the study. 40 healthy normal non-obese persons of matched ages and sexes were used as control group. Lipid profile, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and leptin levels were measured. Malondialdehyde (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were estimated. Micronutrients (Zn and Cu) concentrations in addition to insulin and fasting blood sugar (FBS) levels were also evaluated. Estimation of insulin resistance (homeostatic model assessment (HOMA-IR)) was derived from FBS measurements. Significant elevations (Pobese individuals as compared with control group. Insulin and triglyceride levels were significantly increased in obese male children and HDL-cholesterol level was increased significantly in obese adolescent females compared to controls. However, total cholesterol and LDL-cholesterol levels were significantly high in all obese cases as compared with controls. Insulin resistance was detected in 100% of the patients. We concluded that obesity with pro-inflammatory adipocytokines and hypozincemia together by many mechanisms participate in excessive oxidative stress and are highly associated with inflammation and the development of obesity-related complications. Obesity represents a critical risk factor for development of insulin resistance status. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Enhanced Inflammation without Impairment of Insulin Signaling in the Visceral Adipose Tissue of 5α-Dihydrotestosterone-Induced Animal Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Milutinović, Danijela Vojnović; Nikolić, Marina; Veličković, Nataša; Djordjevic, Ana; Bursać, Biljana; Nestorov, Jelena; Teofilović, Ana; Antić, Ivana Božić; Macut, Jelica Bjekić; Zidane, Abdulbaset Shirif; Matić, Gordana; Macut, Djuro

    2017-09-01

    Polycystic ovary syndrome is a heterogeneous endocrine and metabolic disorder associated with abdominal obesity, dyslipidemia and insulin resistance. Since abdominal obesity is characterized by low-grade inflammation, the aim of the study was to investigate whether visceral adipose tissue inflammation linked to abdominal obesity and dyslipidemia could lead to impaired insulin sensitivity in the animal model of polycystic ovary syndrome.Female Wistar rats were treated with nonaromatizable 5α-dihydrotestosterone pellets in order to induce reproductive and metabolic characteristics of polycystic ovary syndrome. Glucose, triglycerides, non-esterified fatty acids and insulin were determined in blood plasma. Visceral adipose tissue inflammation was evaluated by the nuclear factor kappa B intracellular distribution, macrophage migration inhibitory factor protein level, as well as TNFα, IL6 and IL1β mRNA levels. Insulin sensitivity was assessed by intraperitoneal glucose tolerance test and homeostasis model assessment index, and through analysis of insulin signaling pathway in the visceral adipose tissue.Dihydrotestosterone treatment led to increased body weight, abdominal obesity and elevated triglycerides and non-esterified fatty acids, which were accompanied by the activation of nuclear factor kappa B and increase in macrophage migration inhibitory factor, IL6 and IL1β levels in the visceral adipose tissue. In parallel, insulin sensitivity was affected in 5α-dihydrotestosterone-treated animals only at the systemic and not at the level of visceral adipose tissue.The results showed that abdominal obesity and dyslipidemia in the animal model of polycystic ovary syndrome were accompanied with low-grade inflammation in the visceral adipose tissue. However, these metabolic disturbances did not result in decreased tissue insulin sensitivity. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity.

    Science.gov (United States)

    Vieira Potter, Victoria J; Strissel, Katherine J; Xie, Chen; Chang, Eugene; Bennett, Grace; Defuria, Jason; Obin, Martin S; Greenberg, Andrew S

    2012-09-01

    Menopause promotes central obesity, adipose tissue (AT) inflammation, and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages, T cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation and IR are poorly understood. Here we determined the temporal kinetics of fat accretion, AT inflammation, and IR over a 26-wk time course in ovariectomized (OVX) mice, a model of menopause. OVX and sham-operated (SHM) C57BL6 mice were fed a normal chow diet. Weight, body composition (magnetic resonance imaging), total and regional adiposity, activity, food intake, AT crown-like structures, biohumoral measures, and insulin sensitivity (insulin tolerance testing and homeostatic model assessment) were determined at wk 12, 20, and 26. Macrophages and T cells from perigonadal AT were immunophenotyped by fluorescence-associated cell sorting, and perigonadal adipose tissue (PGAT) gene expression was quantified by quantitative PCR. OVX mice (≈ 31 g) became fatter than SHM mice (≈ 26 g) by wk 12, but mice were equally insulin sensitive. PGAT of OVX mice contained more T cells but expressed higher levels of M2-MΦ (arginase-1) and T cell-regulatory (cytotoxic T-lymphocyte antigen 4) genes. At wk 20, both OVX and SHM mice weighed approximately 35 g and were equally insulin sensitive with comparable amounts of PGAT and total body fat. OVX mice became less insulin sensitive than SHM mice by wk 26, coincident with the down-regulation of PGAT arginase-1 (-20-fold) and cytotoxic T-lymphocyte antigen 4 (2-fold) and up-regulation of M1/Th1 genes CD11c (+2-fold), IL12p40 (+2-fold), and interferon-γ (+78-fold). Ovarian hormone loss in mice induces PGAT inflammation and IR by mechanisms that can be uncoupled from OVX-induced obesity.

  11. Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Bruno Melo Carvalho

    2013-01-01

    Full Text Available Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we review the role of the gut microbiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates in inflammation and insulin resistance. Several strategies focusing on modulation of the gut microbiota (antibiotics, probiotics, and prebiotics are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory status and insulin resistance found in obese individuals.

  12. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity. Circulating zonulin increased with body mass index (BMI, waist to hip ratio (WHR, fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002 contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01 contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase.

  13. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    Science.gov (United States)

    Yao, Longbiao; Herlea-Pana, Oana; Heuser-Baker, Janet; Chen, Yitong; Barlic-Dicen, Jana

    2014-01-01

    The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies. PMID:24741577

  14. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Longbiao Yao

    2014-01-01

    Full Text Available The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies.

  15. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice.

    Science.gov (United States)

    Heerwagen, Margaret J R; Stewart, Michael S; de la Houssaye, Becky A; Janssen, Rachel C; Friedman, Jacob E

    2013-01-01

    Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (Pmaternal insulin resistance (r = 0.59, Pmaternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (Pmaternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.

  16. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  17. [Research advances in association between childhood obesity and gut microbiota].

    Science.gov (United States)

    Gao, Xiao-Lin; Wan, Chao-Min

    2017-03-01

    In recent years, more and more studies have noted the close association between gut microbiota and the development and progression of obesity. Gut microbiota may act on obesity by increasing energy intake, affecting the secretion of intestinal hormones, inducing chronic systemic inflammation, and producing insulin resistance. This article reviews the association between childhood obesity and gut microbiota, as well as possible mechanisms, in an attempt to provide a reference for the etiology, prevention and treatment of childhood obesity.

  18. The effects of Jiao-Tai-Wan on sleep, inflammation and insulin resistance in obesity-resistant rats with chronic partial sleep deprivation.

    Science.gov (United States)

    Zou, Xin; Huang, Wenya; Lu, Fuer; Fang, Ke; Wang, Dingkun; Zhao, Shuyong; Jia, Jiming; Xu, Lijun; Wang, Kaifu; Wang, Nan; Dong, Hui

    2017-03-23

    Jiao-Tai-Wan (JTW), composed of Rhizome Coptidis and Cortex Cinnamomi, is a classical traditional Chinese prescription for treating insomnia. Several in vivo studies have concluded that JTW could exert its therapeutical effect in insomnia rats. However, the specific mechanism is still unclear. The present study aimed to explore the effect of JTW on sleep in obesity-resistant (OR) rats with chronic partial sleep deprivation (PSD) and to clarify its possible mechanism. JTW was prepared and the main components contained in the granules were identified by 3D-High Performance Liquid Chromatography (3D-HPLC) assay. The Male Sprague-Dawley (SD) rats underwent 4 h PSD by environmental noise and the treatment with low and high doses of JTW orally for 4 weeks, respectively. Then sleep structure was analyzed by electroencephalographic (EEG). Inflammation markers including high-sensitivity C reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were examined in the rat plasma. Meanwhile, metabolic parameters as body weight increase rate, fasting plasma glucose (FPG), fasting insulin (FINS) levels and insulin resistance index (HOMA-IR) were measured. The expressions of clock gene cryptochromes (Cry1 and Cry2) and inflammation gene nuclear factor-κB (NF-κB) in peripheral blood monocyte cells (PBMC) were also determined. The result showed that the administration of JTW significantly increased total sleep time and total slow wave sleep (SWS) time in OR rats with PSD. Furthermore, the treatment with JTW reversed the increase in the markers of systemic inflammation and insulin resistance caused by sleep loss. These changes were also associated with the up-regulation of Cry1 mRNA and Cry 2 mRNA and the down-regulation of NF-κB mRNA expression in PBMC. This study suggests that JTW has the beneficial effects of improving sleep, inflammation and insulin sensitivity. The mechanism appears to be related to the modulation of circadian clock and

  19. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  20. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Francisco Westermeier

    2014-01-01

    Full Text Available The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes and intrauterine programming of insulin resistance (IR. Maternal obesity (MO and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER stress-dependent unfolded protein response (UPR. However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response.

  1. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    Science.gov (United States)

    Sáez, Pablo J.; Villalobos-Labra, Roberto; Farías-Jofré, Marcelo

    2014-01-01

    The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. PMID:25093191

  2. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  3. Association Between Free Fatty Acid (FFA and Insulin Resistance: The Role of Inflammation (Adiponectin and high sensivity C-reactive Protein/hs-CRP and Stress Oxidative (Superoxide Dismutase/SOD in Obese Non-Diabetic Individual

    Directory of Open Access Journals (Sweden)

    Indriyanti Rafi Sukmawati

    2009-12-01

    Full Text Available BACKGROUND: Obesity is highly related to insulin resistance, therefore, the increased number of obesity is followed by the increased prevalence of type 2 Diabetes Melitus. Obesity is associated with increased of reactive oxygen species (ROS in muscle, liver and endothelial cells. The increase of ROS would lead to insulin resistance (IR and increased pro-inflammatory protein. FFA plays an important role in IR by inhibiting muscle glucose transport and oxidation via effects on serine/threonine phosphorylation of IRS-1. The aim of this study was discover the existence of SOD, hs-CRP and and adiponectin levels towards the occurrence of insulin resistance which was caused by elevated level of FFA and to discover the interaction between SOD, hs-CRP and adiponectin in non diabetic obese adult male. METHODS: This was observational study with cross sectional design. There were 65 obese male non diabetic subjects and 45 non obese male non diabetic subjects who met the criteria. In this study, measurements were done on body mass index (BMI, fasting glucose, insulin, adiponectin, hs-CRP and SOD. Obese was defined as BMI >25 kg/m2, normal weight was defined as BMI 18.5-23 kh/m2 and Insulin Resistance was defined as HOMA-IR >1. RESULTS: This study showed that Hypoadiponectinemia condition, decreased SOD level and high level of hs-CRP is associated with insulin resistance in obese non diabetic subject. Adiponectin and SOD were correlated negatively with insulin resistance in obese non diabetic (Adiponectin, r=-0.455, p<0.001; SOD, r=-0.262, p=0.003, hs-CRP was positively correlated with insulin resistance in obese non diabetic (r=0.592, p<0.001. FFA levels was increased in obese insulin resistance compared with non obese non insulin resistance. The Odds Ratio of Adiponectin, hs-CRP and SOD in this study was analyzed by logistic binary. The OR for SOD 3.6 (p=0.001, hs-CRP 9.1 (p<0.001 and Adiponectin 7.2 (p<0.001. CONCLUSIONS: This study suggested that FFA

  4. Lean body mass and creatine kinase are associated with reduced inflammation in obesity.

    Science.gov (United States)

    Bekkelund, Svein I; Jorde, Rolf

    2017-11-01

    Obesity is associated with inflammation, but the role of lean mass and creatine kinase (CK) on the inflammatory process is less known. We investigated the associations between lean mass, CK and fat mass upon inflammatory parameters in an overweight and obese adult population. Body composition examined by dual-energy X-ray absorptiometry, high-sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), CK and supplementary clinical parameters were measured in 454 overweight and obese individuals. This is a secondary analysis from a cohort of obese individuals treated with Vitamin D. Mean age was 47·6 ± 11·4 years and mean body mass index 34·6 ± 3·9 kg/m 2 . Lean mass correlated negatively with hs-CRP (r = -0·127, P = 0·042) and ESR (r = -0·381, P lean mass in the lower ESR quartile was significantly higher than in the upper quartile (P lean mass and CK in an overweight and obese population. Hypothetically, lean mass has a favourable effect on obesity-related inflammation, and CK may play a role as an inhibitor of inflammation in obesity. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  5. Mechanisms of insulin resistance in obesity

    Science.gov (United States)

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  6. Dietary Anthocyanins against Obesity and Inflammation.

    Science.gov (United States)

    Lee, Yoon-Mi; Yoon, Young; Yoon, Haelim; Park, Hyun-Min; Song, Sooji; Yeum, Kyung-Jin

    2017-10-01

    Chronic low-grade inflammation plays a pivotal role in the pathogenesis of obesity, due to its associated chronic diseases such as type II diabetes, cardiovascular diseases, pulmonary diseases and cancer. Thus, targeting inflammation is an attractive strategy to counter the burden of obesity-induced health problems. Recently, food-derived bioactive compounds have been spotlighted as a regulator against various chronic diseases due to their low toxicity, as opposed to drugs that induce severe side effects. Here we describe the beneficial effects of dietary anthocyanins on obesity-induced metabolic disorders and inflammation. Red cabbage microgreen, blueberry, blackcurrant, mulberry, cherry, black elderberry, black soybean, chokeberry and jaboticaba peel contain a variety of anthocyanins including cyanidins, delphinidins, malvidins, pelargonidins, peonidins and petunidins, and have been reported to alter both metabolic markers and inflammatory markers in cells, animals, and humans. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the use of dietary anthocyanins, suggesting an alternative dietary strategy to ameliorate obesity and obesity associated chronic diseases.

  7. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome.

    Science.gov (United States)

    Wimalawansa, Sunil J

    2018-01-01

    The aim of this study is to determine the relationships of vitamin D with diabetes, insulin resistance obesity, and metabolic syndrome. Intra cellular vitamin D receptors and the 1-α hydroxylase enzyme are distributed ubiquitously in all tissues suggesting a multitude of functions of vitamin D. It plays an indirect but an important role in carbohydrate and lipid metabolism as reflected by its association with type 2 diabetes (T2D), metabolic syndrome, insulin secretion, insulin resistance, polycystic ovarian syndrome, and obesity. Peer-reviewed papers, related to the topic were extracted using key words, from PubMed, Medline, and other research databases. Correlations of vitamin D with diabetes, insulin resistance and metabolic syndrome were examined for this evidence-based review. In addition to the well-studied musculoskeletal effects, vitamin D decreases the insulin resistance, severity of T2D, prediabetes, metabolic syndrome, inflammation, and autoimmunity. Vitamin D exerts autocrine and paracrine effects such as direct intra-cellular effects via its receptors and the local production of 1,25(OH) 2 D 3 , especially in muscle and pancreatic β-cells. It also regulates calcium homeostasis and calcium flux through cell membranes, and activation of a cascade of key enzymes and cofactors associated with metabolic pathways. Cross-sectional, observational, and ecological studies reported inverse correlations between vitamin D status with hyperglycemia and glycemic control in patients with T2D, decrease the rate of conversion of prediabetes to diabetes, and obesity. However, no firm conclusions can be drawn from current studies, because (A) studies were underpowered; (B) few were designed for glycemic outcomes, (C) the minimum (or median) serum 25(OH) D levels achieved are not measured or reported; (D) most did not report the use of diabetes medications; (E) some trials used too little (F) others used too large, unphysiological and infrequent doses of vitamin D; and

  8. Impact of exercise training without caloric restriction on inflammation, insulin resistance and visceral fat mass in obese adolescents.

    Science.gov (United States)

    Mendelson, M; Michallet, A-S; Monneret, D; Perrin, C; Estève, F; Lombard, P R; Faure, P; Lévy, P; Favre-Juvin, A; Pépin, J-L; Wuyam, B; Flore, P

    2015-08-01

    Exercise training has been shown to improve cardiometabolic health in obese adolescents. Evaluate the impact of a 12-week exercise-training programme (without caloric restriction) on obese adolescents' cardiometabolic and vascular risk profiles. We measured systemic markers of oxidation, inflammation, metabolic variables and endothelial function in 20 obese adolescents (OB) (age: 14.5 ± 1.5 years; body mass index: 34.0 ± 4.7 kg m(-2) ) and 20 age- and gender-matched normal-weight adolescents (NW). Body composition was assessed by magnetic resonance imagery. Peak aerobic capacity and maximal fat oxidation were evaluated during specific incremental exercise tests. OB participated in a 12-week exercise-training programme. OB presented lower peak aerobic capacity (24.2 ± 5.9 vs. 39.8 ± 8.3 mL kg(-1)  min(-1) , P < 0.05) and maximal fat oxidation compared with NW (P < 0.05). OB displayed greater F2t-Isoprostanes (20.5 ± 6.7 vs. 13.4 ± 4.2 ng mmol(-1) creatinine), Interleukin-1 receptor antagonist (IL-1Ra) (1794.8 ± 532.2 vs. 835.1 ± 1027.4 pg mL(-1) ), Tumor Necrosis Factor-α (TNF-α) (2.1 ± 1.2 vs. 1.5 ± 1.0 pg mL(-1) ), Soluble Tumor Necrosis Factor-α Type II Receptor (sTNFαRII), leptin, insulin, homeostasis model assessment of insulin resistance, version 2 (HOMA2-IR), high-sensitive C-reactive protein, triglycerides and lower adiponectin and high-density lipoprotein cholesterol (all P < 0.05). After exercise training, despite lack of weight loss, VO2peak (mL.kg(-1) .min(-1) ) and maximal fat oxidation increased (P < 0.05). IL-1Ra and IFN-gamma-inducible protein 10 (IP-10) decreased (P < 0.05). Insulin and HOMA2-IR decreased (14.8 ± 1.5 vs. 10.2 ± 4.2 μUI mL(-1) and 1.9 ± 0.8 vs. 1.3 ± 0.6, respectively, P < 0.05). Change in visceral fat mass was inversely associated with change in maximal fat oxidation (r = -0.54; P = 0.024). The

  9. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    Science.gov (United States)

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic

  10. Indomethacin treatment prevents high fat diet-induced obesity and insulin resistance but not glucose intolerance in C57BL/6J Mice

    DEFF Research Database (Denmark)

    Fjære, Even; Aune, Ulrike Liisberg; Røen, Kristin

    2014-01-01

    Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice...... a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo...... and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose...

  11. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice

    OpenAIRE

    Bradley, Richard L.; Jeon, Justin Y.; Liu, Fen-Fen; Maratos-Flier, Eleftheria

    2008-01-01

    Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high suc...

  12. Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation.

    Science.gov (United States)

    Caprio, Sonia; Perry, Rachel; Kursawe, Romy

    2017-05-01

    As a consequence of the global rise in the prevalence of adolescent obesity, an unprecedented phenomenon of type 2 diabetes has emerged in pediatrics. At the heart of the development of type 2 diabetes lies a key metabolic derangement: insulin resistance (IR). Despite the widespread occurrence of IR affecting an unmeasurable number of youths worldwide, its pathogenesis remains elusive. IR in obese youth is a complex phenomenon that defies explanation by a single pathway. In this review we first describe recent data on the prevalence, severity, and racial/ethnic differences in pediatric obesity. We follow by elucidating the initiating events associated with the onset of IR, and describe a distinct "endophenotype" in obese adolescents characterized by a thin superficial layer of abdominal subcutaneous adipose tissue, increased visceral adipose tissue, marked IR, dyslipidemia, and fatty liver. Further, we provide evidence for the cellular and molecular mechanisms associated with this peculiar endophenotype and its relations to IR in the obese adolescent. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers.

    Directory of Open Access Journals (Sweden)

    Jeffrey Deiuliis

    2011-01-01

    Full Text Available The development of insulin resistance (IR in mouse models of obesity and type 2 diabetes mellitus (DM is characterized by progressive accumulation of inflammatory macrophages and subpopulations of T cells in the visceral adipose. Regulatory T cells (Tregs may play a critical role in modulating tissue inflammation via their interactions with both adaptive and innate immune mechanisms. We hypothesized that an imbalance in Tregs is a critical determinant of adipose inflammation and investigated the role of Tregs in IR/obesity through coordinated studies in mice and humans.Foxp3-green fluorescent protein (GFP "knock-in" mice were randomized to a high-fat diet intervention for a duration of 12 weeks to induce DIO/IR. Morbidly obese humans without overt type 2 DM (n = 13 and lean controls (n = 7 were recruited prospectively for assessment of visceral adipose inflammation. DIO resulted in increased CD3(+CD4(+, and CD3(+CD8(+ cells in visceral adipose with a striking decrease in visceral adipose Tregs. Treg numbers in visceral adipose inversely correlated with CD11b(+CD11c(+ adipose tissue macrophages (ATMs. Splenic Treg numbers were increased with up-regulation of homing receptors CXCR3 and CCR7 and marker of activation CD44. In-vitro differentiation assays showed an inhibition of Treg differentiation in response to conditioned media from inflammatory macrophages. Human visceral adipose in morbid obesity was characterized by an increase in CD11c(+ ATMs and a decrease in foxp3 expression.Our experiments indicate that obesity in mice and humans results in adipose Treg depletion. These changes appear to occur via reduced local differentiation rather than impaired homing. Our findings implicate a role for Tregs as determinants of adipose inflammation.

  14. Association between Myeloperoxidase Levels and Risk of Insulin Resistance in Egyptian Obese Women

    Science.gov (United States)

    Zaki, Moushira; Basha, Walaa; Reyad, Hanaa; Mohamed, Ramy; Hassan, Naglaa; Kholousi, Shams

    2018-01-01

    BACKGROUND: Myeloperoxidase (MPO) is an enzyme involved in the pathogenesis of several diseases. AIM: The current study aimed to investigate serum MPO levels in obese Egyptian women and assess its relation with insulin resistance (IR) and other biochemical risk parameters. METHODS: The study included 80 obese women and 50 age-and-sex-matched healthy controls. Insulin resistance (IR) was evaluated by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Serum MPO, fasting glucose, insulin and blood lipids and anthropometry were measured. Obese cases were divided into three groups based on MPO tertiles. ROC analysis was performed to obtain the optimal cut-off values of MPO to predicate IR in obese women. RESULTS: The mean serum MPO was significantly higher in obese cases than controls. Cases in the highest MPO tertile had higher HOMA-IR, blood lipids and pressure levels compared with those in the lower tertile. The cutoff point of MPO was > 87.8 (ng/mL) and area under curves was 0.82 (p < 0.01) for diagnosis of IR. MPO levels were higher in obese Egyptian women than healthy controls. CONCLUSION: Elevation of MPO was associated with abnormal metabolic parameters. MPO might be used as an earlier biomarker for IR and metabolic disturbance in obese women. PMID:29731928

  15. Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children

    Directory of Open Access Journals (Sweden)

    Christian Hellmuth

    2016-01-01

    Full Text Available In obese children, hyperinsulinaemia induces adverse metabolic consequences related to the risk of cardiovascular and other disorders. Branched-chain amino acids (BCAA and acylcarnitines (Carn, involved in amino acid (AA degradation, were linked to obesity-associated insulin resistance, but these associations yet have not been studied longitudinally in obese children. We studied 80 obese children before and after a one-year lifestyle intervention programme inducing substantial weight loss >0.5 BMI standard deviation scores in 40 children and no weight loss in another 40 children. At baseline and after the 1-year intervention, we assessed insulin resistance (HOMA index, fasting glucose, HbA1c, 2 h glucose in an oral glucose tolerance test, AA, and Carn. BMI adjusted metabolite levels were associated with clinical markers at baseline and after intervention, and changes with the intervention period were evaluated. Only tyrosine was significantly associated with HOMA (p<0.05 at baseline and end and with change during the intervention (p<0.05. In contrast, ratios depicting BCAA metabolism were negatively associated with HOMA at baseline (p<0.05, but not in the longitudinal profiling. Stratified analysis revealed that the children with substantial weight loss drove this association. We conclude that tyrosine alterations in association with insulin resistance precede alteration in BCAA metabolism. This trial is registered with ClinicalTrials.gov Identifier NCT00435734.

  16. Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents.

    Science.gov (United States)

    Juárez-López, Carlos; Klünder-Klünder, Miguel; Medina-Bravo, Patricia; Madrigal-Azcárate, Adrián; Mass-Díaz, Eliezer; Flores-Huerta, Samuel

    2010-06-07

    Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents. An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated. Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors. Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.

  17. MAP3K8 (TPL2/COT affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice.

    Directory of Open Access Journals (Sweden)

    Dov B Ballak

    Full Text Available Chronic low-grade inflammation in adipose tissue often accompanies obesity, leading to insulin resistance and increasing the risk for metabolic diseases. MAP3K8 (TPL2/COT is an important signal transductor and activator of pro-inflammatory pathways that has been linked to obesity-induced adipose tissue inflammation. We used human adipose tissue biopsies to study the relationship of MAP3K8 expression with markers of obesity and expression of pro-inflammatory cytokines (IL-1β, IL-6 and IL-8. Moreover, we evaluated obesity-induced adipose tissue inflammation and insulin resistance in mice lacking MAP3K8 and WT mice on a high-fat diet (HFD for 16 weeks. Individuals with a BMI >30 displayed a higher mRNA expression of MAP3K8 in adipose tissue compared to individuals with a normal BMI. Additionally, high mRNA expression levels of IL-1β, IL-6 and IL-8, but not TNF -α, in human adipose tissue were associated with higher expression of MAP3K8. Moreover, high plasma SAA and CRP did not associate with increased MAP3K8 expression in adipose tissue. Similarly, no association was found for MAP3K8 expression with plasma insulin or glucose levels. Mice lacking MAP3K8 had similar bodyweight gain as WT mice, yet displayed lower mRNA expression levels of IL-1β, IL-6 and CXCL1 in adipose tissue in response to the HFD as compared to WT animals. However, MAP3K8 deficient mice were not protected against HFD-induced adipose tissue macrophage infiltration or the development of insulin resistance. Together, the data in both human and mouse show that MAP3K8 is involved in local adipose tissue inflammation, specifically for IL-1β and its responsive cytokines IL-6 and IL-8, but does not seem to have systemic effects on insulin resistance.

  18. Expression of the central obesity and Type 2 Diabetes mellitus genes is associated with insulin resistance in young obese children.

    Science.gov (United States)

    Skoczen, S; Wojcik, M; Fijorek, K; Siedlar, M; Starzyk, J B

    2015-04-01

    The assessment of the health consequences associated with obesity in young children is challenging. The aims of this study were: (1) to compare insulin resistance indices derived from OGTT in obese patients and healthy control (2) to analyze central obesity and Type 2 Diabetes genes expression in obese children, with special attention to the youngest group (10 years old). The study included 49 children with obesity (median age 13.5 years old), and 25 healthy peers. Biochemical blood tests and expression of 11 central obesity and 33 Type 2 Diabetes genes was assessed. A significant difference in insulin resistance between obese and non-obese adolescents was observed in all studied indices (mean values of the insulin levels: 24.9 vs. 9.71 mIU/L in T0, 128 vs. 54.7 mIU/L in T60 and 98.7 vs. 41.1 mIU/L in T120 respectively; AUC: 217 vs. 77.2 ng/ml*h, mean values of B% (state beta cell function), S% (insulin sensitivity), and IR were 255 (±97) vs. 135 (±37.8), 46.6 (±37.3) vs. 84.2 (±29.6) and 3 (±1.55) vs. 1.36 (±0,56); HIS, WBIS and ISIBel median 3.89, 44.7, 0.73 vs. 8.57, 110, 2.25. All comparisons differed significantly p1). Moreover, insulin sensitivity was significantly better in the older obese group (>10 years old): median AUC 239 vs. 104 ng/ml*h, and HIS, WBIS and ISIBel 3.57, 38, 0.67 vs. 6.23, 75.6, 1.87 respectively in the obese older compared to the obese younger subgroup, pobesity genes and 70% of Type 2 Diabetes genes was higher in the obese compared to control groups. The differences were more pronounced in the younger obese group. Insulin resistance may develop in early stage of childhood obesity and in very young children may be associated with higher expression of the central obesity and Type 2 Diabetes genes. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Insights into the role of macrophage migration inhibitory factor in obesity and insulin resistance.

    LENUS (Irish Health Repository)

    Finucane, Orla M

    2012-11-01

    High-fat diet (HFD)-induced obesity has emerged as a state of chronic low-grade inflammation characterised by a progressive infiltration of immune cells, particularly macrophages, into obese adipose tissue. Adipose tissue macrophages (ATM) present immense plasticity. In early obesity, M2 anti-inflammatory macrophages acquire an M1 pro-inflammatory phenotype. Pro-inflammatory cytokines including TNF-α, IL-6 and IL-1β produced by M1 ATM exacerbate local inflammation promoting insulin resistance (IR), which consequently, can lead to type-2 diabetes mellitus (T2DM). However, the triggers responsible for ATM recruitment and activation are not fully understood. Adipose tissue-derived chemokines are significant players in driving ATM recruitment during obesity. Macrophage migration inhibitory factor (MIF), a chemokine-like inflammatory regulator, is enhanced during obesity and is directly associated with the degree of peripheral IR. This review focuses on the functional role of macrophages in obesity-induced IR and highlights the importance of the unique inflammatory cytokine MIF in propagating obesity-induced inflammation and IR. Given MIF chemotactic properties, MIF may be a primary candidate promoting ATM recruitment during obesity. Manipulating MIF inflammatory activities in obesity, using pharmacological agents or functional foods, may be therapeutically beneficial for the treatment and prevention of obesity-related metabolic diseases.

  20. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile.

    Science.gov (United States)

    DeFuria, Jason; Belkina, Anna C; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R; Markham, Douglas; Strissel, Katherine J; Watkins, Amanda A; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S; McDonnell, Marie E; Apovian, Caroline; Denis, Gerald V; Nikolajczyk, Barbara S

    2013-03-26

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D.

  1. Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Mass-Díaz Eliezer

    2010-06-01

    Full Text Available Abstract Background Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents. Methods An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated. Results Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors. Conclusions Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.

  2. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction.

    Directory of Open Access Journals (Sweden)

    Yea Eun Kang

    Full Text Available The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25. The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037 but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035 but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and

  3. Relationship of Adiposity and Insulin Resistance Mediated by Inflammation in a Group of Overweight and Obese Chilean Adolescents

    Directory of Open Access Journals (Sweden)

    Leiva Laura

    2011-01-01

    Full Text Available Abstract The mild chronic inflammatory state associated with obesity may be an important link between adiposity and insulin resistance (IR. In a sample of 137 overweight and obese Chilean adolescents, we assessed associations between high-sensitivity C-reactive protein (hs-CRP, IR and adiposity; explored sex differences; and evaluated whether hs-CRP mediated the relationship between adiposity and IR. Positive relationships between hs-CRP, IR and 2 measures of adiposity were found. Hs-CRP was associated with waist circumference (WC in boys and fat mass index (FMI in girls. Using path analysis, we found that hs-CRP mediated the relationship between adiposity (WC and FMI and the homeostatic model assessment of insulin resistance (HOMA-IR (p

  4. Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults.

    Science.gov (United States)

    Wang, Rui; Hong, Jie; Cao, Yanan; Shi, Juan; Gu, Weiqiong; Ning, Guang; Zhang, Yifei; Wang, Weiqing

    2015-03-01

    MicroRNAs (miRNAs) are involved in the regulation of adiposity, but functional studies have yielded inconclusive results. Examining the associations of circulating miRNAs levels with obesity and insulin sensitivity in humans may lead to improved insights. Serum samples collected from 112 obese and control subjects (50.0% men) were randomly divided and combined into four pools (28 samples in each obese or control pool). The genome-wide circulating miRNA profiles were detected via microarray. Elevated miR-122 was selected and validated in individual serum samples from 123 obese (46.7% men) and 107 control (50.0% men) young adults. Associations between circulating miR-122 levels and parameters related to adiposity, insulin resistance, lipid profiles and hepatic enzymes were further assessed. Thirty-four miRNAs were found to be expressed differently in the sera of obese patients compared with control subjects (Pobese patients had 3.07-fold higher circulating miR-122 levels than controls (Pobesity and insulin resistance in young adults. These findings provide a better understanding regarding the role of miRNAs in adiposity and insulin sensitivity. © 2015 European Society of Endocrinology.

  5. Evaluating the evidence for macrophage presence in skeletal muscle and its relation to insulin resistance in obese mice and humans: a systematic review protocol.

    Science.gov (United States)

    Bhatt, Meha; Rudrapatna, Srikesh; Banfield, Laura; Bierbrier, Rachel; Wang, Pei-Wen; Wang, Kuan-Wen; Thabane, Lehana; Samaan, M Constantine

    2017-08-08

    The current global rates of obesity and type 2 diabetes are staggering. In order to implement effective management strategies, it is imperative to understand the mechanisms of obesity-induced insulin resistance and diabetes. Macrophage infiltration and inflammation of the adipose tissue in obesity is a well-established paradigm, yet the role of macrophages in muscle inflammation, insulin resistance and diabetes is not adequately studied. In this systematic review, we will examine the evidence for the presence of macrophages in skeletal muscle of obese humans and mice, and will assess the association between muscle macrophages and insulin resistance. We will identify published studies that address muscle macrophage content and phenotype, and its association with insulin resistance. We will search MEDLINE/PubMed, EMBASE, and Web of Science for eligible studies. Grey literature will be searched in ProQuest. Quality assessment will be conducted using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias Tool for animal studies. The findings of this systematic review will shed light on immune-metabolic crosstalk in obesity, and allow the consideration of targeted therapies to modulate muscle macrophages in the treatment and prevention of diabetes. The review will be published in a peer-reviewed journal and presented at conferences.

  6. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    International Nuclear Information System (INIS)

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-01-01

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent

  7. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Batchuluun, Battsetseg, E-mail: battsetseg.batchuluun@gmail.com [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Sugiyama, Naonobu, E-mail: nao1@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kobayashi, Kunihisa, E-mail: nihisak@fukuoka-u.ac.jp [Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka 818-8502 (Japan); Sonoda, Noriyuki, E-mail: noriyuki@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Takayanagi, Ryoichi, E-mail: takayana@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  8. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation.

    Directory of Open Access Journals (Sweden)

    Brante P Sampey

    Full Text Available Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD to "Cafeteria diets" (CAF consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity

  9. Vitamin D insufficiency is associated with insulin resistance independently of obesity in primary schoolchildren. The healthy growth study.

    Science.gov (United States)

    Moschonis, George; Androutsos, Odysseas; Hulshof, Toine; Dracopoulou, Maria; Chrousos, George P; Manios, Yannis

    2018-04-02

    To explore the associations of vitamin D status and obesity with insulin resistance (IR) in children. A sample of 2282 schoolchildren (9-13 years old) in Greece was examined. Sociodemographic, anthropometric (weight, height), biochemical (fasting plasma glucose, serum insulin and 25(OH)D), pubertal status and physical activity data were collected, using standard methods. The "Vitamin D Standardization Program" protocol was applied to standardize serum 25(OH)D values. The prevalence of vitamin D insufficiency (serum 25(OH)D < 50 nmol/L) was higher in obese children compared to their over- and normal-weight counterparts (60.5% vs 51.6% and 51%, P = .017). Furthermore, children with IR (both obese and non-obese) had higher prevalence of vitamin D insufficiency compared to non-obese, non-insulin resistant children (66% and 59.2% vs 49.8%, P < .05), possibly indicating that IR is associated with vitamin D insufficiency, independently of obesity. In line with the above, the results from logistic regression analyses controlled for several potential confounders, showed a 1.48 (95% C.I: 1.2-1.84) higher likelihood for vitamin D insufficiency for insulin resistant children compared to the non-insulin resistant ones, while no significant association was observed with obesity. The present study revealed a high prevalence of vitamin D insufficiency among schoolchildren in Greece, particularly among obese and insulin resistant ones. In addition, it highlighted that the significant association of vitamin D insufficiency with IR is possibly independent of obesity. Further clinical trials are needed to confirm this possible independent association but also explore the potential beneficial effect of vitamin D supplementation on IR and possibly on weight management too. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation.

    Science.gov (United States)

    Chen, Fan; Chen, Dandan; Zhao, Xinmei; Yang, Shuai; Li, Zhe; Sanchis, Daniel; Jin, Liang; Qiang, Xizhe; Wang, Kaiye; Xu, Yitao; Zhang, Yubin; Ye, Junmei

    2017-12-01

    Obesity is associated with metabolic disorder and chronic inflammation that plays a crucial role in cardiovascular diseases. IL-6 is involved in regulating obesity-related lipid metabolism and inflammation. In this study, we sought to determine the role of IL-6 in high-fat diet (HFD)-induced cardiomyopathy and explore the signaling pathway. Female, 5-week-old IL-6 knockout (KO) and littermate mice were fed a normal diet (ND, 10% fat) or HFD (45% fat) for 14 weeks. At the end of treatment, cardiac function was assessed by echocardiography. Adipose tissues and plasma were collected for further measurement. Immunohistology of CD68 was performed to detect inflammation in the heart. Masson's trichrome staining and Oil Red O staining was applied to evaluated cardiac fibrosis and lipid accumulation. Real-time PCR and Western immunoblotting analyses on heart tissue were used to explore the underlying mechanism. IL-6 KO mice displayed increased insulin resistance compared to WT mice at baseline. When fed HFD, IL-6 KO mice showed decreased gains in body weight and fat mass, increased insulin resistance relative to IL-6 KO mice feed ND. Furthermore, IL-6 KO mice developed cardiac dysfunction during HFD-induced obesity. Histological analysis suggested increased lipid accumulation, fibrosis and inflammation without affecting cardiac morphology during HFD treatment in the heart of IL-6 KO mice. Finally, IL-6 deficiency increased the phosphorylation of AMPK and ACC in the heart during HFD-induced obesity. Our results suggest that IL-6 contributes to limit lipid metabolic disorder, cardiac hypertrophy, fibrosis, inflammation and myocardium lipotoxicity during HFD-induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    Science.gov (United States)

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    Obesity is a low-grade chronic inflammation condition, and macrophages, and possibly monocytes, are involved in the pathological outcomes of obesity. Physical exercise is a low-cost strategy to prevent and treat obesity, probably because of its anti-inflammatory action. We evaluated the percentage of CD16(-) and CD16(+) monocyte subsets in obese insulin-resistant individuals and the effect of an exercise bout on the percentage of these cells. Twenty-seven volunteers were divided into three experimental groups: lean insulin sensitive, obese insulin sensitive and obese insulin resistant. Venous blood samples collected before and 1 h after an aerobic exercise session on a cycle ergometer were used for determination of monocyte subsets by flow cytometry. Insulin-resistant obese individuals have a higher percentage of CD16(+) monocytes (14.8 ± 2.4%) than the lean group (10.0 ± 1.3%). A positive correlation of the percentage of CD16(+) monocytes with body mass index and fasting plasma insulin levels was found. One bout of moderate exercise reduced the percentage of CD16(+) monocytes by 10% in all the groups evaluated. Also, the absolute monocyte count, as well as all other leukocyte populations, in lean and obese individuals, increased after exercise. This fact may partially account for the observed reduction in the percentage of CD16(+) cells in response to exercise. Insulin-resistant, but not insulin-sensitive obese individuals, have an increased percentage of CD16(+) monocytes that can be slightly modulated by a single bout of moderate aerobic exercise. These findings may be clinically relevant to the population studied, considering the involvement of CD16(+) monocytes in the pathophysiology of obesity. Copyright © 2016 John Wiley & Sons, Ltd. Obesity is now considered to be an inflammatory condition associated with many pathological consequences, including insulin resistance. It is proposed that insulin resistance contributes to the aggravation of the

  12. Circulating Zonulin, a Marker of Intestinal Permeability, Is Increased in Association with Obesity-Associated Insulin Resistance

    OpenAIRE

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measure...

  13. Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents

    OpenAIRE

    Mass-Díaz Eliezer; Madrigal-Azcárate Adrián; Medina-Bravo Patricia; Klünder-Klünder Miguel; Juárez-López Carlos; Flores-Huerta Samuel

    2010-01-01

    Abstract Background Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents. Methods An analytical, cross-sectional and population-based study was performed in forty-four public primary schools ...

  14. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source

    Directory of Open Access Journals (Sweden)

    Rosalba ePutti

    2016-01-01

    Full Text Available It has been suggested that skeletal muscle mitochondria play a key role in high fat diet induced insulin resistance. Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle insulin resistance. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to insulin resistance. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of insulin resistance. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift towards mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and insulin resistance development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle insulin resistance and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle insulin resistance, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.

  15. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity.

    Science.gov (United States)

    Nayak, Minakshi; Eekhoff, Marelise E W; Peinhaupt, Miriam; Heinemann, Akos; Desoye, Gernot; van Poppel, Mireille N M

    2016-01-01

    Cytokines contribute to insulin resistance in pregnancy, but the role of distinct cytokines is not fully understood. To study whether cytokines produced by tissues other than skeletal muscle are associated with glucose and insulin metabolism activity in overweight and obese women and to study whether these associations can be modified by physical activity. A longitudinal study with 44 overweight and obese pregnant women was conducted. Changes in cytokines levels (IFN-γ, IP-10, IL1-α, MIP1-α, adiponectin and leptin) and ICAM1 from early (15wk) to late (32wk) pregnancy were determined. Physical activity was measured objectively with accelerometers. In linear regression models, the associations between (changes in) cytokine levels and fasting glucose, fasting insulin and HOMA-IR were studied. Both IFN-γ and IP-10 levels increased from early to late pregnancy, and adiponectin levels decreased. IFN-γ and IP-10 were positively associated with fasting glucose, whereas IL-1α, ICAM1 and adiponectin were inversely associated with insulin and insulin resistance. The association of IL-1α with insulin and insulin resistance was only found in women with low levels of physical activity. IFN-γ, IP-10, IL1-α, ICAM1, and adiponectin may play a role in glucose and insulin metabolism in pregnancy. The relationship of IL-1α with insulin and insulin resistance might be moderated by levels of physical activity. Further studies are required to confirm the role of these cytokines in glucose and insulin metabolism in obese pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes.

    Science.gov (United States)

    Kahles, Florian; Findeisen, Hannes M; Bruemmer, Dennis

    2014-07-01

    Since its first description more than 20 years ago osteopontin has emerged as an active player in many physiological and pathological processes, including biomineralization, tissue remodeling and inflammation. As an extracellular matrix protein and proinflammatory cytokine osteopontin is thought to facilitate the recruitment of monocytes/macrophages and to mediate cytokine secretion in leukocytes. Modulation of immune cell response by osteopontin has been associated with various inflammatory diseases and may play a pivotal role in the development of adipose tissue inflammation and insulin resistance. Here we summarize recent findings on the role of osteopontin in metabolic disorders, particularly focusing on diabetes and obesity.

  17. Anti-inflammatory effects of insulin.

    Science.gov (United States)

    Dandona, Paresh; Chaudhuri, Ajay; Mohanty, Priya; Ghanim, Husam

    2007-07-01

    This review deals with the recent observations on the pro-inflammatory effects of glucose and the anti-inflammatory actions of insulin. Apart from being novel, they are central to our understanding of why hyperglycemia is a prognosticator of bad clinical outcomes including patients with acute coronary syndromes, stroke and in patients in the intensive care unit. The pro-inflammatory effect of glucose as well as that of other macronutrients including fast food meals provides the basis of chronic oxidative stress and inflammation in the obese and their propensity to atherosclerotic disease. The anti-inflammatory action of insulin provides a neutralizing effect to balance macronutrient induced inflammation on the one hand and the possibility of using insulin as an anti-inflammatory drug on the other. The actions of macronutrients and insulin described above explain why insulin resistant states like obesity and type 2 diabetes are associated with oxidative stress, inflammation and atherosclerosis. They also suggest that insulin may be antiatherogenic.

  18. Voluntary exercise attenuates obesity-associated inflammation through ghrelin expressed in macrophages.

    Science.gov (United States)

    Kizaki, Takako; Maegawa, Taketeru; Sakurai, Takuya; Ogasawara, Jun-etsu; Ookawara, Tomomi; Oh-ishi, Shuji; Izawa, Tetsuya; Haga, Shukoh; Ohno, Hideki

    2011-09-30

    Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    Directory of Open Access Journals (Sweden)

    J. Schmitz

    2016-05-01

    Conclusions: These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue inflammation and insulin resistance in mice as well as in a significant subpopulation of obese patients.

  20. Neural correlates of stress- and food cue-induced food craving in obesity: association with insulin levels.

    Science.gov (United States)

    Jastreboff, Ania M; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M; Sherwin, Robert S; Potenza, Marc N

    2013-02-01

    Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity.

  1. miRNA Signatures of Insulin Resistance in Obesity.

    Science.gov (United States)

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  2. Triglycerides and glycated hemoglobin for screening insulin resistance in obese patients.

    Science.gov (United States)

    Boursier, Guilaine; Sultan, Ariane; Molinari, Nicolas; Maimoun, Laurent; Boegner, Catherine; Picandet, Marion; Kuster, Nils; Bargnoux, Anne-Sophie; Badiou, Stéphanie; Dupuy, Anne-Marie; Cristol, Jean-Paul; Avignon, Antoine

    2018-03-01

    Assessment of insulin resistance (IR) is essential in non-diabetic patients with obesity. Thus study aims to identify the best determinants of IR and to propose an original approach for routine assessment of IR in obesity. All adult with obesity defined by a body mass index ≥30kg/m 2 , evaluated in the Nutrition Department between January 2010 and January 2015 were included in this cross-sectional study. Patients with diabetes were excluded. IR was diagnosed according to the HOMA-IR. Based on a logistic regression, we determined a composite score of IR. We then tested the variables with a principal component analysis and a hierarchical clustering analysis. A total of 498 patients with obesity were included. IR was associated with grade III obesity (OR=2.6[1.6-4.4], p1.7mmol/l (OR=3.0[2.0-4.5], p<0.001) and age (OR=0.98[0.96-0.99], p=0.002). Exploratory visual analysis using factor map and clustering analysis revealed that lipid and carbohydrates metabolism abnormalities were correlated with insulin resistance but not with excessive fat accumulation and low-grade inflammation. Our results highlight the interest of simple blood tests such as HbA1c and triglyceride determination, which associated with BMI, may be widely available tools for screening IR in obese patients. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Milk-derived peptide Val-Pro-Pro (VPP) inhibits obesity-induced adipose inflammation via an angiotensin-converting enzyme (ACE) dependent cascade.

    Science.gov (United States)

    Sawada, Yoko; Sakamoto, Yuri; Toh, Mariko; Ohara, Nozomi; Hatanaka, Yuiko; Naka, Ayano; Kishimoto, Yoshimi; Kondo, Kazuo; Iida, Kaoruko

    2015-12-01

    This study aimed to examine the effects of Val-Pro-Pro (VPP), a food-derived peptide with an angiotensin-converting enzyme (ACE) inhibitory property, on obesity-linked insulin resistance, and adipose inflammation in vivo and in vitro. C57BL/6J mice were fed high-fat high-sucrose diet and VPP (0.1% in water) for 4 months. For in vitro analysis, coculture of 3T3-L1 adipocytes overexpressing either ACE (3T3-ACE) or green fluorescent protein (3T3-GFP) and RAW264 macrophages was conducted with VPP. In diet-induced obese mice, VPP improved insulin sensitivity, concomitant with a significant decrease in tumor necrosis factor α (TNF-α) and IL-1β expression in adipose tissue, with a tendency (p = 0.06) toward decreased CC chemokine ligand 5 expression. Additionally, VPP administration inhibited macrophage accumulation and activation in fat tissues. In vitro, VPP attenuated TNF-α mRNA induced by ACE overexpression in 3T3-L1 adipocytes. TNF-α and IL-1β expression decreased following VPP treatment of RAW264 macrophage and 3T3-ACE adipocyte cocultures, but not in RAW264-3T3-GFP adipocyte cocultures. Our data suggest that VPP inhibits adipose inflammation in the interaction between adipocytes and macrophages, acting as an ACE inhibitor, thereby improving obesity-related insulin resistance. Thus, ingestion of VPP may be a viable protective and therapeutic strategy for insulin resistance and obesity-associated adipose inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Umesh B Masharani

    2011-05-01

    Full Text Available The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots.To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL were assessed by DXA, MRI and (1H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05, while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005 while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005. IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2O peak, P<0.05, who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls.This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired

  5. Endoplasmic Reticulum Stress and Obesity.

    Science.gov (United States)

    Yilmaz, Erkan

    2017-01-01

    In recent years, the world has seen an alarming increase in obesity and closely associated with insulin resistance which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) play in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably other causes for obesity-related insulin resistance and inflammation. One of these appears to be endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.

  6. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III.

    Directory of Open Access Journals (Sweden)

    Preethi Srikanthan

    2010-05-01

    Full Text Available Sarcopenia often co-exists with obesity, and may have additive effects on insulin resistance. Sarcopenic obese individuals could be at increased risk for type 2 diabetes. We performed a study to determine whether sarcopenia is associated with impairment in insulin sensitivity and glucose homeostasis in obese and non-obese individuals.We performed a cross-sectional analysis of National Health and Nutrition Examination Survey III data utilizing subjects of 20 years or older, non-pregnant (N = 14,528. Sarcopenia was identified from bioelectrical impedance measurement of muscle mass. Obesity was identified from body mass index. Outcomes were homeostasis model assessment of insulin resistance (HOMA IR, glycosylated hemoglobin level (HbA1C, and prevalence of pre-diabetes (6.0≤ HbA1C<6.5 and not on medication and type 2 diabetes. Covariates in multiple regression were age, educational level, ethnicity and sex.Sarcopenia was associated with insulin resistance in non-obese (HOMA IR ratio 1.39, 95% confidence interval (CI 1.26 to 1.52 and obese individuals (HOMA-IR ratio 1.16, 95% CI 1.12 to 1.18. Sarcopenia was associated with dysglycemia in obese individuals (HbA1C ratio 1.021, 95% CI 1.011 to 1.043 but not in non-obese individuals. Associations were stronger in those under 60 years of age. We acknowledge that the cross-sectional study design limits our ability to draw causal inferences.Sarcopenia, independent of obesity, is associated with adverse glucose metabolism, and the association is strongest in individuals under 60 years of age, which suggests that low muscle mass may be an early predictor of diabetes susceptibility. Given the increasing prevalence of obesity, further research is urgently needed to develop interventions to prevent sarcopenic obesity and its metabolic consequences.

  7. Association of peripheral total and differential leukocyte counts with obesity-related complications in young adults.

    Science.gov (United States)

    Yoshimura, Aya; Ohnishi, Shunsuke; Orito, Chieko; Kawahara, Yukako; Takasaki, Hiroyo; Takeda, Hiroshi; Sakamoto, Naoya; Hashino, Satoshi

    2015-01-01

    Obesity has been demonstrated to be associated with elevated leukocytes in adults and children. This study assessed the associations between peripheral total and differential leukocyte counts and obesity-related complications in young adults. 12 obese (median age 21.5 (range 19-28) years, median BMI 35.7 (range 32.0-44.9) kg/m(2)) and 11 normal (median age 23 (range 18-27) years, median BMI 19.5 (range 18.1-21.7) kg/m(2)) adults were enrolled. Complete blood count and serum levels of liver enzymes, fasting blood glucose, insulin and lipids were measured, and the homeostasis model assessment of insulin resistance was calculated. Fat mass was calculated using a bioimpedance analysis device, and ultrasonography was performed to measure fat thickness and to detect fatty change of the liver. Total leukocyte and monocyte counts were significantly increased in obese young adults. Total leukocyte count was associated with liver enzyme levels, insulin resistance as well as visceral and subcutaneous fat thickness. Neutrophil count was associated with insulin resistance. Lymphocyte count was associated with serum liver enzymes, insulin resistance, and dyslipidemia. Monocyte count was associated with serum liver enzyme, insulin resistance, visceral and subcutaneous fat thickness, body fat mass, and percentage body fat. The results of this study suggest that chronic low-grade systemic inflammation is associated with obesity-related complications such as nonalcoholic fatty liver disease, insulin resistance, and dyslipidemia in young adults. © 2015 S. Karger GmbH, Freiburg.

  8. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice.

    Directory of Open Access Journals (Sweden)

    Margaret J R Heerwagen

    Full Text Available Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD or control diet (CD for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02, and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05, while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02, as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively and increased placental LPL TG-hydrolase activity (P<0.02, which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02. The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05, body and liver fat (P<0.05 and P<0.001, respectively, and whole body insulin resistance (P<0.05, these were prevented in WT offspring from Fat1-HFD mothers. Our results

  9. Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults.

    Science.gov (United States)

    Rauschert, Sebastian; Uhl, Olaf; Koletzko, Berthold; Kirchberg, Franca; Mori, Trevor A; Huang, Rae-Chi; Beilin, Lawrence J; Hellmuth, Christian; Oddy, Wendy H

    2016-03-01

    Obesity and related diseases have become a global public health burden. Identifying biomarkers will lead to a better understanding of the underlying mechanisms associated with obesity and the pathways leading to insulin resistance (IR) and diabetes. This study aimed to identify the lipidomic biomarkers associated with obesity and IR using plasma samples from a population-based cohort of young adults. The Western Australian Pregnancy Cohort (Raine) study enrolled 2900 pregnant women from 1989 to 1991. The 20-year follow-up was conducted between March 2010 and April 2012. Participants and Samples: Plasma samples from 1176 subjects aged 20 years were analyzed using mass spectrometry-based metabolomics. Associations of analytes with markers of obesity and IR including body mass index, waist circumference, homeostasis model assessment (HOMA-IR), and insulin were examined. Analyses were stratified by body mass index and adjusted for lifestyle and other factors. Waist circumference was positively associated with seven sphingomyelins and five diacylphosphatidylcholines and negatively associated with two lysophosphatidylcholines. HOMA-IR was negatively associated with two diacylphosphatidylcholines and positively with one lysophosphatidylcholine and one diacylphosphatidylcholine. No significant association was found in the obese/overweight group of the HOMA-IR model. In the normal-weight group, one lysophosphatidylcholine was increased. A possible discriminative effect of sphingomyelins, particularly those with two double bonds, and lysophosphatidylcholines was identified between subjects with normal weight and obesity independent of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol concentrations. Our results suggest weight status-dependent mechanisms for the development of IR with lysophosphatidylcholine C14:0 as a key metabolite in nonobese IR.

  10. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    Science.gov (United States)

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Frankwich Karen

    2012-10-01

    Full Text Available Abstract Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs, for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI, doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2. The study included non-DM2 controls (n = 15, and DM2 subjects randomized to PL (n = 13 or doxycycline 100 mg twice daily (MMPI; n = 11. All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P  Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491

  12. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance

    Science.gov (United States)

    Khan, Ilvira M.; Dai Perrard, Xiao-Yuan; Brunner, Gerd; Lui, Hua; Sparks, Lauren M.; Smith, Steven R.; Wang, Xukui; Shi, Zheng-Zheng; Lewis, Dorothy E.; Wu, Huaizhu; Ballantyne, Christie M.

    2015-01-01

    Background/Objectives Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied. Subjects/Methods T cells and macrophage markers were examined in SM of obese humans by RT-PCR. Mice were fed high-fat diet (HFD) for 2–24 weeks, and time course of macrophage and T cell accumulation was assessed by flow cytometry and quantitative RT-PCR. Extramyocellular adipose tissue (EMAT) was quantified by high-resolution micro-CT, and correlation to T cell number in SM was examined. CD11a−/− mice and C57BL/6 mice were treated with CD11a-neutralizing antibody to determine the role of CD11a in T cell accumulation in SM. To investigate the involvement JAK/STAT, the major pathway for T helper I (TH1) cytokine IFNγ? in SM and adipose tissue inflammation and insulin resistance, mice were treated with a JAK1/JAK2 inhibitor, baricitinib. Results Macrophage and T cells markers were upregulated in SM of obese compared with lean humans. SM of obese mice had higher expression of inflammatory cytokines, with macrophages increasing by 2 weeks on HFD and T cells increasing by 8 weeks. The immune cells were localized in EMAT. Micro-CT revealed that EMAT expansion in obese mice correlated with T cell infiltration and insulin resistance. Deficiency or neutralization of CD11a reduced T cell accumulation in SM of obese mice. T cells polarized into a proinflammatory TH1 phenotype, with increased STAT1 phosphorylation in SM of obese mice. In vivo inhibition of JAK/STAT pathway with baricitinib reduced T cell numbers and activation markers in SM and adipose tissue and improved insulin resistance in obese mice. Conclusions Obesity-induced expansion of EMAT in SM was associated with accumulation and proinflammatory polarization of T cells, which may regulate SM metabolic functions through paracrine mechanisms. Obesity-associated SM

  13. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    Science.gov (United States)

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), Pobese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  14. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance.

    Science.gov (United States)

    Almuraikhy, Shamma; Kafienah, Wael; Bashah, Moataz; Diboun, Ilhame; Jaganjac, Morana; Al-Khelaifi, Fatima; Abdesselem, Houari; Mazloum, Nayef A; Alsayrafi, Mohammed; Mohamed-Ali, Vidya; Elrayess, Mohamed A

    2016-11-01

    A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.

  15. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor

    Science.gov (United States)

    Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing

    2016-01-01

    Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944

  16. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Science.gov (United States)

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  18. STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity

    Science.gov (United States)

    Mao, Yun; Luo, Wei; Zhang, Lin; Wu, Weiwei; Yuan, Liangshuai; Xu, Hao; Song, Juhee; Fujiwara, Keigi; Abe, Jun-ichi; LeMaire, Scott A.; Wang, Xing Li; Shen, Ying. H.

    2017-01-01

    Objective Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid (PA)-induced endothelial activation/inflammation. Approach and Results In cultured endothelial cells, PA treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of intercellular adhesion molecule 1 (ICAM-1) and induced ICAM-1 expression and monocyte–endothelial cell adhesion. When analyzing the upstream signaling, we found that PA activated STING by inducing mitochondrial damage. PA treatment caused mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol. Through the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), the mitochondrial damage and leaked cytosolic mtDNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance. Conclusions The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals. PMID:28302626

  19. Association between insulin resistance and oxidative stress parameters in obese adolescents with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Pirgon, Özgür; Bilgin, Hüseyin; Çekmez, Ferhat; Kurku, Hüseyin; Dündar, Bumin Nuri

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8 ± 2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7 ± 2.7 years) were enrolled in the study. The obese subjects were divided into two groups (NAFLD group and non-NAFLD group) based on the elevated alanine aminotransferase levels (>30 IU/L) and the presence or absence of liver steatosis detected by ultrasonography. Insulin resistance was evaluated by homeostasis model assessment (HOMA-IR) from fasting samples. Plasma total antioxidant status (TAS) and total oxidant status (TOS) level measurements (REL Assay Diagnostics) were done in all participants. The ratio of TOS to TAS was regarded as an oxidative stress index (OSI), an indicator of the degree of OS. Fasting insulin levels and HOMA-IR values in the NAFLD group were significantly higher than in the non-NAFLD and control groups. TAS measurements were decreased in both obese groups (NAFLD and non-NAFLD) in comparison with the control group. TOS and OSI measurements were higher in the NAFLD group than in the non-NAFLD and control groups. OSI was positively correlated with fasting insulin (r=0.67, p=0.01) and HOMA-IR (r=0.71, p=0.02) in the NAFLD obese group. In this cross-sectional study, elevated OS markers in obese adolescents with NAFLD were associated with insulin resistance. This data suggest that an antioxidant therapy might have a potential for treating NAFLD associated with insulin resistance.

  20. Diminished hepatic insulin removal in obesity

    International Nuclear Information System (INIS)

    Cano, I.; Salvador, J.; Rodriguez, R.; Arraiza, M.C.; Goena, M.; Barberia, J.J.; Moncada, E.

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out

  1. Diminished hepatic insulin removal in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Cano, I; Salvador, J; Rodriguez, R; Arraiza, M C; Goena, M; Barberia, J J; Moncada, E

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out.

  2. Obesity and Inflammation: Epidemiology, Risk Factors, and Markers of Inflammation

    Directory of Open Access Journals (Sweden)

    Heriberto Rodríguez-Hernández

    2013-01-01

    Full Text Available Obesity is a public health problem that has reached epidemic proportions with an increasing worldwide prevalence. The global emergence of obesity increases the risk of developing chronic metabolic disorders. Thus, it is an economic issue that increased the costs of the comorbidities associated. Moreover, in recent years, it has been demonstrated that obesity is associated with chronic systemic inflammation, this status is conditioned by the innate immune system activation in adipose tissue that promotes an increase in the production and release of pro-inflammatory cytokines that contribute to the triggering of the systemic acute-phase response which is characterized by elevation of acute-phase protein levels. On this regard, low-grade chronic inflammation is a characteristic of various chronic diseases such as metabolic syndrome, cardiovascular disease, diabetes, hypertension, non-alcoholic fatty liver disease, and some cancers, among others, which are also characterized by obesity condition. Thus, a growing body of evidence supports the important role that is played by the inflammatory response in obesity condition and the pathogenesis of chronic diseases related.

  3. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver.

    Science.gov (United States)

    Peng, Yanhua; Rideout, Drew; Rakita, Steven; Lee, James; Murr, Michel

    2012-01-01

    Obesity induces steatosis and increases oxidative stress, as well as chronic inflammation in the liver. The balance between lipogenesis and lipolysis is disrupted in obese animals. At a cellular level, the changes in metabolic sensors and energy regulators are poorly understood. We hypothesized that diet-induced steatosis increases oxidative stress, inflammation, and changes the metabolic regulators to promote energy storage in mice. The setting was a university-affiliated basic science research laboratory. Four-week-old C57BL mice were fed a high-fat diet (n = 8) or regular chow (n = 8) for 7 weeks. The liver sections were stained for fat content and immunofluorescence. Liver homogenates were used for protein analysis by immunoblotting and mRNA analysis by reverse transcriptase-polymerase chain reaction. The gels were quantified using densitometry P ≤ .05 was considered significant. The high-fat diet upregulated protein kinase-C atypical isoforms ζ and λ and decreased glucose tolerance and the interaction of insulin receptor substrate 2 with phosphoinositide kinase-3. The high-fat diet increased the transcriptional factors liver X receptor (4321 ± 98 versus 2981 ± 80) and carbohydrate response element-binding protein (5132 ± 135 versus 3076 ± 91), the lipogenesis genes fatty acid binding protein 5, stearoyl-co-enzyme A desaturase-1, and acetyl-co-enzyme A carboxylase protein, and fatty acid synthesis. The high-fat diet decreased 5'-adenosine monophosphate-activated protein kinase (2561 ± 78 versus 1765 ± 65), glucokinase-3β (2.214 ± 34 versus 3356 ± 86), and SIRT1 (2015 ± 76 versus 3567 ± 104) and increased tumor necrosis factor-α (3415 ± 112 versus 2042 ± 65), nuclear factor kappa B (5123 ± 201 versus 2562 ± 103), cyclooxygenase-2 (4230 ± 113 versus 2473 ± 98), nicotinamide-adenine dinucleotide phosphate oxidase (3501 ± 106 versus 1600 ± 69) and reactive oxygen species production (all P high-fat diet impairs glucose tolerance and hepatic

  4. Fatty-acid binding protein 4 gene variants and childhood obesity: potential implications for insulin sensitivity and CRP levels

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Rakesh

    2010-02-01

    Full Text Available Abstract Introduction Obesity increases the risk for insulin resistance and metabolic syndrome in both adults and children. FABP4 is a member of the intracellular lipid-binding protein family that is predominantly expressed in adipose tissue, and plays an important role in maintaining glucose and lipid homeostasis. The purpose of this study was to measure FABP4 plasma levels, assess FABP4 allelic variants, and explore potential associations with fasting glucose and insulin levels in young school-age children with and without obesity. Methods A total of 309 consecutive children ages 5-7 years were recruited. Children were divided based on BMI z score into Obese (OB; BMI z score >1.65 and non-obese (NOB. Fasting plasma glucose, lipids, insulin, hsCRP, and FABP4 levels were measured. HOMA was used as correlate of insulin sensitivity. Four SNPs of the human FABP4 gene (rs1051231, rs2303519, rs16909233 and rs1054135, corresponding to several critical regions of the encoding FABP4 gene sequence were genotyped. Results Compared to NOB, circulating FABP4 levels were increased in OB, as were LDL, hsCRP and HOMA. FABP4 levels correlated with BMI, and also contributed to the variance of HOMA and hsCRP, but not serum lipids. The frequency of rs1054135 allelic variant was increased in OB, and was associated with increased FABP4 levels, while the presence of rs16909233 variant allele, although similar in OB and NOB, was associated with increased HOMA values. Conclusions Childhood obesity is associated with higher FABP4 levels that may promote cardiometabolic risk. The presence of selective SNPs in the FABP4 gene may account for increased risk for insulin resistance or systemic inflammation in the context of obesity.

  5. Association of canine obesity with reduced serum levels of C-reactive protein.

    Science.gov (United States)

    Veiga, Angela P M; Price, Christopher A; de Oliveira, Simone T; Dos Santos, Andréa P; Campos, Rómulo; Barbosa, Patricia R; González, Félix H D

    2008-03-01

    The prevalence of obesity is increasing in dogs as well as in humans. C-reactive protein (CRP) is an important tool for the detection of inflammation and/or early tissue damage and is linked to obesity in humans. The objective of the present study was to determine if serum CRP levels are altered in obese dogs. Fifteen lean (control group) and 16 overweight (obese group) dogs were examined. Blood samples were collected under fasted conditions for serum determination of CRP, glucose, insulin, cholesterol, triglyceride, and fructosamine. Results indicated that obese dogs were insulin resistant because serum insulin and insulin/glucose ratios were higher than in lean dogs (P obese dogs than in controls (P obese group compared with the control group. Based on these results, it can be postulated that CRP production is inhibited by obesity and insulin resistance in dogs.

  6. Association of MEP1A gene variants with insulin metabolism in central European women with polycystic ovary syndrome.

    Science.gov (United States)

    Lam, Uyen D P; Lerchbaum, Elisabeth; Schweighofer, Natascha; Trummer, Olivia; Eberhard, Katharina; Genser, Bernd; Pieber, Thomas R; Obermayer-Pietsch, Barbara

    2014-03-10

    Polycystic ovary syndrome (PCOS) shows not only hyperandrogenemia, hirsutism and fertility problems, but also metabolic disturbances including obesity, cardiovascular events and type-2 diabetes. Accumulating evidence suggests some degree of inflammation associated with prominent aspects of PCOS. We aimed to investigate the association of genetic variants 3'UTR rs17468190 (G/T) of the inflammation-associated gene MEP1A (GenBank ID: NM_005588.2) with metabolic disturbances in PCOS and healthy control women. Genetic variants rs17468190 (G/T) of MEP1A gene were analyzed in 576 PCOS women and 206 controls by using the Taqman fluorogenic 5'-exonuclease assay. This polymorphism was tested for association with anthropometric, metabolic, hormonal, and functional parameters of PCOS. There was a borderline significant difference in genotype distribution between PCOS and control women (p=0.046). In overweight/obese PCOS patients, the variants rs17468190 (G/T) in the MEP1A gene are associated with glucose and insulin metabolism. In a dominant model, the GG genotype of the MEP1A gene was more strongly associated with insulin metabolism in overweight/obese PCOS women (body mass index, BMI>25 kg/m(2)), than in GT+TT genotypes. The MEP1A GG-carriers showed a significantly increased homeostatic model assessment - insulin resistance (HOMA-IR) (p=0.003), elevation of fasting insulin (p=0.004) and stimulated insulin (30 min, pdisease modification in PCOS. It might contribute to the abnormalities of glucose metabolism and insulin sensitivity and serve as a diagnostic or therapeutic target gene for PCOS. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Association Between Free Fatty Acid (FFA) and Insulin Resistance: the Role of Inflammation (Adiponectin and High Sensivity C-reactive Protein/hs-CRP) and Stress Oxidative (Superoxide Dismutase/SOD) in Obese Non-Diabetic Individual

    OpenAIRE

    Sukmawati, Indriyanti Rafi; Donoseputro, Marsetio; Lukito, Widjaja

    2009-01-01

    BACKGROUND: Obesity is highly related to insulin resistance, therefore, the increased number of obesity is followed by the increased prevalence of type 2 Diabetes Melitus. Obesity is associated with increased of reactive oxygen species (ROS) in muscle, liver and endothelial cells. The increase of ROS would lead to insulin resistance (IR) and increased pro-inflammatory protein. FFA plays an important role in IR by inhibiting muscle glucose transport and oxidation via effects on serine/threonin...

  8. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Mano Mark

    2011-05-01

    Full Text Available Abstract Background The potential of cereals with high antioxidant capacity for reducing oxidative stress and inflammation in obesity is unknown. This study investigated the impact of wheat bran, barley or a control diet (α-cellulose on the development of oxidative stress and inflammation in lean and obese Zucker rats. Methods Seven wk old, lean and obese male Zucker rats (n = 8/group were fed diets that contained wheat bran, barley or α-cellulose (control. After 3 months on these diets, systolic blood pressure was measured and plasma was analysed for glucose, insulin, lipids, oxygen radical absorbance capacity (ORAC, malondialdehyde, glutathione peroxidase and adipokine concentration (leptin, adiponectin, interleukin (IL-1β, IL-6, TNFα, plasminogen activator inhibitor (PAI-1, monocyte chemotactic protein (MCP-1. Adipokine secretion rates from visceral and subcutaneous adipose tissue explants were also determined. Results Obese rats had higher body weight, systolic blood pressure and fasting blood lipids, glucose, insulin, leptin and IL-1β in comparison to lean rats, and these measures were not reduced by consumption of wheat bran or barley based diets. Serum ORAC tended to be higher in obese rats fed wheat bran and barley in comparison to control (p = 0.06. Obese rats had higher plasma malondialdehyde (p Conclusions A 3-month dietary intervention was sufficient for Zucker obese rats to develop oxidative stress and systemic inflammation. Cereal-based diets with moderate and high antioxidant capacity elicited modest improvements in indices of oxidative stress and inflammation.

  9. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation

    Directory of Open Access Journals (Sweden)

    J.D. Douglass

    2017-04-01

    Full Text Available Objective: Obesity and high fat diet (HFD consumption in rodents is associated with hypothalamic inflammation and reactive gliosis. While neuronal inflammation promotes HFD-induced metabolic dysfunction, the role of astrocyte activation in susceptibility to hypothalamic inflammation and diet-induced obesity (DIO remains uncertain. Methods: Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were performed on HFD-fed mice with a tamoxifen-inducible astrocyte-specific knockout of IKKβ (GfapCreERIkbkbfl/fl, IKKβ-AKO, an essential cofactor of NF-κB-mediated inflammation. Results: IKKβ-AKO mice with tamoxifen-induced IKKβ deletion prior to HFD exposure showed equivalent HFD-induced weight gain and glucose intolerance as Ikbkbfl/fl littermate controls. In GfapCreERTdTomato marker mice treated using the same protocol, minimal Cre-mediated recombination was observed in the mediobasal hypothalamus (MBH. By contrast, mice pretreated with 6 weeks of HFD exposure prior to tamoxifen administration showed substantially increased recombination throughout the MBH. Remarkably, this treatment approach protected IKKβ-AKO mice from further weight gain through an immediate reduction of food intake and increase of energy expenditure. Astrocyte IKKβ deletion after HFD exposure—but not before—also reduced glucose intolerance and insulin resistance, likely as a consequence of lower adiposity. Finally, both hypothalamic inflammation and astrocytosis were reduced in HFD-fed IKKβ-AKO mice. Conclusions: These data support a requirement for astrocytic inflammatory signaling in HFD-induced hyperphagia and DIO susceptibility that may provide a novel target for obesity therapeutics. Keywords: Obesity, Astrocytes, Inflammation, Metabolism, Hypothalamus, Energy homeostasis

  10. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jide Tian

    Full Text Available Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM, which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4(+Foxp3(+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic.

  11. Association between Type 2 Diabetes, Obesity and Key Immunological Components of IgE-mediated Inflammation

    Directory of Open Access Journals (Sweden)

    Sokolova Raditsa N.

    2017-06-01

    Full Text Available Background: Changes in lifestyle and obesity in recent decades have brought about a dramatic increase in type 2 diabetes mellitus (DM2 and allergic diseases. Clinical and epidemiological studies associate obesity with epidemics of allergic diseases. The link between obesity and DM2 with immunological components of IgE-mediated allergic inflammation is not yet conclusively established.

  12. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  13. Serum leptin and insulin tests in obesity

    International Nuclear Information System (INIS)

    Yang Yin; Jiang Xiaojin; Leng Xiumei

    2001-01-01

    Objective: To study the clinical significance and the relations of leptin and insulin on obesity group. Methods: Leptin and insulin were tested with radioimmunoassay (RIA) in pre-obesity group and obesity group respectively. Results: Serum leptin and insulin levels were significantly elevated in obesity group compare with the controls (P<0.01). Conclusion: Changing with insulin, the elevation of leptin in obesity group has been identified as an important agent of diabetes mellitus (DM)

  14. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects.

    Science.gov (United States)

    Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee; Shanmugasundaram, Karthigayan; Mohan, Sumathy; Espinoza, Sara; Defronzo, Ralph A; Dubé, John J; Musi, Nicolas

    2013-06-01

    Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IBα protein (an indication of decreased IB kinase-nuclear factor B signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs.

  15. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women.

    Science.gov (United States)

    Ott, Beate; Skurk, Thomas; Hastreiter, Ljiljana; Lagkouvardos, Ilias; Fischer, Sandra; Büttner, Janine; Kellerer, Teresa; Clavel, Thomas; Rychlik, Michael; Haller, Dirk; Hauner, Hans

    2017-09-20

    Recent findings suggest an association between obesity, loss of gut barrier function and changes in microbiota profiles. Our primary objective was to examine the effect of caloric restriction and subsequent weight reduction on gut permeability in obese women. The impact on inflammatory markers and fecal microbiota was also investigated. The 4-week very-low calorie diet (VLCD, 800 kcal/day) induced a mean weight loss of 6.9 ± 1.9 kg accompanied by a reduction in HOMA-IR (Homeostasis model assessment-insulin resistance), fasting plasma glucose and insulin, plasma leptin, and leptin gene expression in subcutaneous adipose tissue. Plasma high-molecular weight adiponectin (HMW adiponectin) was significantly increased after VLCD. Plasma levels of high-sensitivity C-reactive protein (hsCRP) and lipopolysaccharide-binding protein (LBP) were significantly decreased after 28 days of VLCD. Using three different methods, gut paracellular permeability was decreased after VLCD. These changes in clinical parameters were not associated with major consistent changes in dominant bacterial communities in feces. In summary, a 4-week caloric restriction resulted in significant weight loss, improved gut barrier integrity and reduced systemic inflammation in obese women.

  16. Total antioxidant and oxidant status in obese children without insulin resistance

    OpenAIRE

    Ayşegül Doğan Demir; Ufuk Erenberk; İlker Tolga Özgen; Emin Özkaya; Aysel Vahapoğlu Türkmen; M. Ruşen Dündaröz; Özcan Erel

    2014-01-01

    Objective: Oxidative stress in obese children may lead in adulthood serious conditions such as coronary heart diseases or type 2 diabetes mellitus. In childhood oxidative stress is associated with insulin resistance or extreme obesity. In this study, we aimed to evaluate oxidative stress status in moderately obese children without insulin resistance. Methods: A total of 38 obese children (21 male, 17 female) without insulin resistance, mean aged 9.4±3.8 years) and 51 normal weight children...

  17. Prevalence of insulin resistance and its association with metabolic syndrome criteria among Bolivian children and adolescents with obesity

    Directory of Open Access Journals (Sweden)

    Rodriguez Susana

    2008-08-01

    Full Text Available Abstract Background Obesity is a one of the most common nutritional disorder worldwide, clearly associated with the metabolic syndrome, condition with implications for the development of many chronic diseases. In the poorest countries of Latin America, malnourishment is still the most prevalent nutritional problem, but obesity is emerging in alarming rates over the last 10 years without a predictable association with metabolic syndrome. The objective of our study was to determine the association between insulin-resistance and components of the metabolic syndrome in a group of Bolivian obese children and adolescents. The second objective was determining the relation of acanthosis nigricans and insulin-resistance. Methods We studied 61 obese children and adolescents aged between 5 and 18 years old. All children underwent an oral glucose tolerance test and fasting blood sample was also obtained to measure insulin, HDL, LDL and triglycerides serum level. The diagnosis of metabolic syndrome was defined according to National Cholesterol Education Program-Adult Treatment Panel (NCEP-ATP III criteria adapted for children. Results Metabolic syndrome was found in 36% of the children, with a higher rate among males (40% than females (32.2% (p = 0.599. The prevalence of each of the components was 8.2% in impaired glucose tolerance, 42.6% for high triglyceride level, 55.7% for low levels of high-density lipoprotein cholesterol, and 24.5% for high blood pressure. Insulin resistance (HOMA-IR > 3.5 was found in 39.4% of the children, with a higher rate in males (50% than females (29%. A strong correlation was found between insulin resistance and high blood pressure (p = 0.0148 and high triglycerides (p = 0.002. No statistical significance was found between the presence of acanthosis nigricans and insulin resistance. Conclusion Metabolic syndrome has a prevalence of 36% in children and adolescent population in the study. Insulin resistance was very common among

  18. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    Science.gov (United States)

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P fatty acid (100, 250, or 500 microM for neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  19. Ghrelin receptor regulates adipose tissue inflammation in aging

    Science.gov (United States)

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  20. Body composition of obese adolescents: association between adiposity indicators and cardiometabolic risk factors.

    Science.gov (United States)

    Araújo, A J S; Santos, A C O; Prado, W L

    2017-04-01

    The association between obesity during adolescence and the increased risk of cardiometabolic diseases indicates the need to identify reproducible and cost effective methods for identifying individuals who are at increased risk of developing diseases. The present cross-sectional study investigated the occurrence of metabolic consequences of obesity in adolescents and the use of adiposity indicators as predictors of cardiometabolic risk. A fasting blood sample was taken in 93 pubertal obese adolescents aged 13-18 years old (39 males, 54 females) for the assessment of cardiometabolic risk markers (glucose, lipid profiles, insulin resistence, and inflammatory and endothelial dysfunction markers). Together with anthropometry, total fat mass and lean mass were determined by dual-energy X-ray absorptiometry (DXA). The prevalence of dyslipidaemia and disorders in glucose metabolism are noticeably higher in the present study. There was no correlation between the percentage of body fat according to DXA and most indicators of adiposity. For boys, the arm circumference values predicted the increase in fasting insulin (r² = 0.200), homeostasis model assessment of insulin resistance (r² = 0.267) and cardiometabolic risk score (r² = 0.338). The percentage of body fat according to DXA predicted the inflammation score (r² = 0.172). For girls, body mass index was the parameter that best described the variability of fasting insulin (r² = 0.079) and inflammation score (r² = 0.263). The waist-to-stature ratio was able to predict the triglyceride values (r² = 0.090). Anthropometric measures of adiposity, such a body mass index, waist-to-stature ratio, arm circumference and waist circumference,should be considered in the clinical evaluation of obese adolescents. © 2016 The British Dietetic Association Ltd.

  1. Whole-Body and Hepatic Insulin Resistance in Obese Children

    Science.gov (United States)

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  2. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    International Nuclear Information System (INIS)

    Su, Chien-Tien; Lin, Hsiu-Chen; Choy, Cheuk-Sing; Huang, Yung-Kai; Huang, Shiau-Rung; Hsueh, Yu-Mei

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA 5+ ) and dimethylarsinic acid (DMA 5+ ) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: ► This is the first to find that urinary total arsenic is related inversely to the BMI. ► Arsenic methylation capability may be associated with obesity and insulin. ► Obese adolescents with high insulin had low arsenic methylation capacity.

  3. The association between TNF-α and insulin resistance in euglycemic women.

    LENUS (Irish Health Repository)

    Walsh, Jennifer M

    2013-10-01

    Chronic low levels of inflammation have links to obesity, diabetes and insulin resistance. We sought to assess the relationship between cytokine tumor necrosis factor (TNF-α) and insulin resistance in a healthy, euglycemic population. This is a prospective study of 574 non-diabetic mother and infant pairs. Maternal body mass index (BMI), TNF-α, glucose and insulin were measured in early pregnancy and at 28 weeks. Insulin resistance was calculated by HOMA index. At delivery birthweight was recorded and cord blood analysed for fetal C-peptide and TNF-α. In a multivariate model, maternal TNF-α in early pregnancy was predicted by maternal insulin resistance at the same time-point, (β=0.54, p<0.01), and maternal TNF-α at 28 weeks was predicted by maternal insulin resistance in early pregnancy (β=0.24, p<0.01) and at 28 weeks (β=0.39, p<0.01). These results, in a large cohort of healthy, non-diabetic women have shown that insulin resistance, even at levels below those diagnostic of gestational diabetes, is associated with maternal and fetal inflammatory response. These findings have important implications for defining the pathways of fetal programming of later metabolic syndrome and childhood obesity.

  4. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Hannibal, Tine D; Schmidt-Christensen, Anja; Nilsson, Julia; Fransén-Pettersson, Nina; Hansen, Lisbeth; Holmberg, Dan

    2017-10-01

    Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Mice lacking the receptor for IFN-α (IFNAR -/- ) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.

  5. Glucagon and insulin response to meals in non-obese and obese Dutch women

    NARCIS (Netherlands)

    Hill, P.; Garbaczewski, L.; Koppeschaar, H.; Thijssen, J.H.H.; Waard, F. de

    1987-01-01

    Many digestive complaints are associated with abnormalities in gastrointestinal peptide hormone function. To investigate the effect of obesity on the release of pancreatic peptide hormones, we have compared the release of insulin and glucagon in non-obese-obese Dutch women in response to isocaloric

  6. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  7. Insulin sensitivity deteriorates after short-term lifestyle intervention in the insulin sensitive phenotype of obesity.

    Science.gov (United States)

    Gilardini, Luisa; Vallone, Luciana; Cottafava, Raffaella; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia

    2012-01-01

    To investigate the effects of a 3-month lifestyle intervention on insulin sensitivity and its related cardiometabolic factors in obese patients. Anthropometry, body composition, oral glucose tolerance test, lipids, alanine aminotransferase, insulin sensitivity (insulinogenic index (ISI), homeostasis model assessment, β-cell performance (disposition index)) were evaluated in 263 obese women and 93 obese men before and after 3 months of hypocaloric low fat/high protein diet associated with physical activity 30 min/day. Patients were divided into 3 groups according to the intervention-induced ISI changes: group 1 (decrease), group 2 (stability) and group 3 (increase). Insulin sensitivity and the disposition index were significantly higher before the intervention in group 1 than in group 3. BMI, waist circumference, and fat mass significantly decreased in groups 1 and 3 in both sexes. β-cell performance decreased in group 1 and increased in group 3. Metabolic variables improved in group 3, whereas glucose levels increased in women of group 1. The post-intervention insulin sensitivity was lower in group 1 than in group 3. Lifestyle intervention induces changes in insulin sensitivity and metabolic factors that depend on the pre-intervention degree of insulin sensitivity. Weight loss leads to metabolic benefits in insulin-resistant, obese patients, whereas it may paradoxically worsen the metabolic conditions in the insulin-sensitive phenotype of obesity. Copyright © 2012 S. Karger GmbH, Freiburg.

  8. Insulin resistance in obese children and adolescents.

    Science.gov (United States)

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  9. Fatty Acids, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Peter Arner

    2015-04-01

    Full Text Available Objective: Although elevated free fatty acid (FFA levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Methods: Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888. Serum FFA (n = 3,306, plasma glycerol (n = 3,776, and insulin sensitivity index (HOMA-IR,n = 3,469 were determined. Obesity was defined as BMI ≥ 30 kg/m2 and insulin resistance as HOMA-IR ≥ 2.21. Results: In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Conclusion: Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established.

  10. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Hsiu-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Choy, Cheuk-Sing [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Emergency Department, Taipei Hospital, Department of Health, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shiau-Rung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA{sup 5+}) and dimethylarsinic acid (DMA{sup 5+}) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: Black-Right-Pointing-Pointer This is the first to find that urinary total arsenic is related inversely to the BMI. Black-Right-Pointing-Pointer Arsenic methylation capability may be associated with obesity and insulin. Black-Right-Pointing-Pointer Obese adolescents with high insulin had low arsenic methylation capacity.

  11. Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation.

    Science.gov (United States)

    Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao

    2014-10-01

    We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.

  12. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review.

    Science.gov (United States)

    Rheinheimer, Jakeline; de Souza, Bianca M; Cardoso, Natali S; Bauer, Andrea C; Crispim, Daisy

    2017-09-01

    NLRP3 inflammasome activation seems to be a culprit behind the chronic inflammation characteristic of obesity and insulin resistance (IR). Nutrient excess generates danger-associated molecules that activate NLRP3 inflammasome-caspase 1, leading to maturation of IL-1β and IL-18, which are proinflammatory cytokines released by immune cells infiltrating the adipose tissue (AT) from obese subjects. Although several studies have reported an association of the NLRP3 inflammasome with obesity and/or IR; contradictory results were also reported by other studies. Therefore, we conducted a systematic review to summarize results of studies that evaluated the association of the NLRP3 with obesity and IR. Nineteen studies were included in the review. These studies focused on NLRP3 expression/polymorphism analyses in AT. Overall, human studies indicate that obesity and IR are associated with increased NLRP3 expression in AT. Studies in obese mice corroborate this association. Moreover, high fat diet (HFD) increases Nlrp3 expression in murine AT while calorie-restricted diet decreases its expression. Hence, Nlrp3 blockade in mice protects against HFD-induced obesity and IR. NLRP3 rs10754558 polymorphism is associated with risk for T2DM in Chinese Han populations. In conclusion, available studies strongly points for an association between NLRP3 inflammasome and obesity/IR. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Insulin resistance in obesity can be reliably identified from fasting plasma insulin

    NARCIS (Netherlands)

    ter Horst, K. W.; Gilijamse, P. W.; Koopman, K. E.; de Weijer, B. A.; Brands, M.; Kootte, R. S.; Romijn, J. A.; Ackermans, M. T.; Nieuwdorp, M.; Soeters, M. R.; Serlie, M. J.

    2015-01-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely

  14. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice

    NARCIS (Netherlands)

    Jiang, Hongfeng; Westerterp, Marit; Wang, Chunjiong; Zhu, Yi; Ai, Ding

    2014-01-01

    Inflammatory factors secreted by macrophages play an important role in obesity-related insulin resistance. Being at the crossroads of a nutrient-hormonal signalling network, the mammalian target of rapamycin complex 1 (mTORC1) controls important functions in the regulation of energy balance and

  15. The role of dietary fat in obesity-induced insulin resistance.

    Science.gov (United States)

    Lackey, Denise E; Lazaro, Raul G; Li, Pingping; Johnson, Andrew; Hernandez-Carretero, Angelina; Weber, Natalie; Vorobyova, Ivetta; Tsukomoto, Hidekazu; Osborn, Olivia

    2016-12-01

    Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease. Copyright © 2016 the American Physiological Society.

  16. Dietary fiber, plasma insulin, and obesity.

    Science.gov (United States)

    Albrink, M J

    1978-10-01

    The relationship between obesity, insulin resistance, and hyperinsulinemia is briefly reviewed. The possibility is considered that excess insulin secretion is the cause rather than the result of insulin resistance and obesity. Glucose administration is one of the most frequently studied of those factors known to stimulate insulin secretion. Much less well documented is the fact that meals of equal protein, fat, and carbohydrate content may cause different responses of plasma glucose and insulin. An experiment is reported in which the effects of a high-carbohydrate, high-fiber meal administered to seven healthy young adults were compared with the effects of a meal equally high in carbohydrate but composed largely of glucose in liquid formula form. The high-fiber meal caused an insulin rise less than half that caused by the liquid formula meal although the plasma glucose response to the two meals was not significantly different. The hypothesis is proposed that a high-carbohydrate, fiber-depleted diet, high in simple sugars, by repeatedly stimulating an excessive insulin response, may lead to insulin resistance and obesity in susceptible individuals and may play a role in the common occurrence of obesity in industrialized societies.

  17. Relationship of serum resistin with insulin resistance and obesity

    International Nuclear Information System (INIS)

    Zaidi, S.I.Z.

    2015-01-01

    Background: Adipokines have been implicated in the modulation of insulin sensitivity and glucose tolerance and have thus gained importance in the study of Type 2 diabetes mellitus (T2DM). Resistin, a unique signalling molecule, is being proposed as a significant factor in the pathogenesis of obesity-related insulin resistance. However, its relevance to human diabetes mellitus remains uncertain and controversial. This study was therefore planned to compare and correlate the potential role of resistin in obese patients with T2DM and obese non-diabetic controls and also to evaluate the correlation between resistin and marker of obesity and glycaemic parameters. Method: Fasting serum resistin, glucose and insulin were measured in forty obese diabetics (mean±SD BMI 35±5 kg/m2) and forty obese non-diabetics (mean±SD BMI 33±3 kg/m2). Insulin resistance was assessed using the HOMA-IR formula derived from fasting insulin and glucose levels. Results: Serum resistin levels (38±8 ng/ml) were significantly higher in type 2 diabetic patients as compared with the controls. Fasting blood glucose (164±46 mg/dl), serum insulin (37±7 μU/ml) and insulin resistance (19±8), were considerably higher among the studied diabetics than in the controls. Pearson's correlation analysis revealed positive correlation between serum resistin and BMI (p=0.001) and HOMA-IR (p=0.561) in diabetic subjects. Similarly, a correlation also existed between serum resistin and BMI (p=0.016) and HOMA-IR (p=0.307) in control obese subjects. However, it was highly significant in diabetics as compared to non-diabetic controls. Conclusion: A significant BMI-dependent association exists between resistin and insulin resistance in patients with T2DM. It appears that resistin may play a role in the pathogenesis of obesity and insulin resistance and that both of these may contribute to the development of T2DM. (author)

  18. The role of macrophage migration inhibitory factor in obesity-associated type 2 diabetes in mice

    Directory of Open Access Journals (Sweden)

    Saksida Tamara

    2013-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF is implicated in the pathogenesis of several inflammationrelated diseases, including obesity and type 2 diabetes (T2D. However, MIF deficiency itself promotes obesity and glucose intolerance in mice. Here we show that the introduction of a high-fat diet (HFD further aggravates the parameters of obesity-associated T2D: weight gain and glucose intolerance. Furthermore, in contrast to MIF-KO mice on standard chow, HFD-fed MIF-KO mice develop insulin resistance. Although the clinical signs of obesity-associated T2D are upgraded, inflammation in MIF-deficient mice on HFD is significantly lower. These results imply that MIF possesses a complex role in glucose metabolism and the development of obesity-related T2D. However, the downregulation of inflammation upon MIF inhibition could be a useful tool in short-term T2D therapy for preventing pancreatic islet deterioration. [Projekat Ministarstva nauke Republike Srbije, br. 173013

  19. Elevated expression of the toll like receptors 2 and 4 in obese individuals: its significance for obesity-induced inflammation

    Directory of Open Access Journals (Sweden)

    Ahmad Rasheed

    2012-11-01

    Full Text Available Abstract Background Expression profile of the toll like receptors (TLRs on PBMCs is central to the regulation of proinflammatory markers. An imbalance in the TLRs expression may lead to several types of inflammatory disorders. Furthermore, the dynamic regulation of inflammatory activity and associated impaired production of cytokines by peripheral blood mononuclear cells (PBMCs in obese individulas remain poorly understood. Therefore, we determined the perturbation in TLRs (TLR2 and TLR4, their adaptor proteins (MyD88, IRAK1 and TRAF6 expression in PBMCs/subcutaneous adipose tissue (AT as well as inflammatory cytokines changes in obese individuals. Methods mRNA expression levels of TLR2, TLR4, IL-6, TNF-α and adaptor proteins were determined by RT-PCR. TLR2, TLR4 and adaptor proteins expression in AT was determined by immunohistochemistry. Results Obese and overweight individuals showed significantly increased expression of TLR2, TLR4 and MyD88 in both PBMCs and AT as compared with lean individuals (P  Conclusions TLRs and adapter proteins were overexpressed in PBMCs from obese subjects, which correlated with increased expression of TNF-α and IL-6. This association may explain a potential pathophysiological link between obesity and inflammation leading to insulin resistance.

  20. The frequent UCP2 -866G>A polymorphism protects against insulin resistance and is associated with obesity

    DEFF Research Database (Denmark)

    Andersen, G; Dalgaard, L T; Justesen, J M

    2012-01-01

    CONTEXT:Uncoupling protein 2 (UCP2) is involved in regulating ATP synthesis, generation of reactive oxygen species and glucose-stimulated insulin secretion in ß-cells. Polymorphisms in UCP2 may be associated with obesity and type 2 diabetes mellitus.OBJECTIVE:To determine the influence of a funct......CONTEXT:Uncoupling protein 2 (UCP2) is involved in regulating ATP synthesis, generation of reactive oxygen species and glucose-stimulated insulin secretion in ß-cells. Polymorphisms in UCP2 may be associated with obesity and type 2 diabetes mellitus.OBJECTIVE:To determine the influence...... of a functional UCP2 promoter polymorphism (-866G>A, rs659366) on obesity, type 2 diabetes and intermediary metabolic traits. Furthermore, to include these and previously published data in a meta-analysis of this variant with respect to its impact on obesity and type 2 diabetes.DESIGN:We genotyped UCP2 rs659366...... in a total of 17¿636 Danish individuals and established case-control studies of obese and non-obese subjects and of type 2 diabetic and glucose-tolerant subjects. Meta-analyses were made in own data set and in publicly available data sets. Quantitative traits relevant for obesity and type 2 diabetes were...

  1. Effect of weight reduction on insulin sensitivity, sex hormone-binding globulin, sex hormones and gonadotrophins in obese children

    DEFF Research Database (Denmark)

    Birkebaek, N H; Lange, Aksel; Holland-Fischer, P

    2010-01-01

    Obesity in men is associated with reduced insulin sensitivity and hypoandrogenism, while obesity in women is associated with reduced insulin sensitivity and hyperandrogenism. In children, the effect of obesity and weight reduction on the hypothalamo-pituitary-gonadal axis is rarely investigated. ....... The aim of the present study was to investigate the effect of weight reduction in obese Caucasian children on insulin sensitivity, sex hormone-binding globulin (SHBG), DHEAS and the hypothalamo-pituitary-gonadal axis.......Obesity in men is associated with reduced insulin sensitivity and hypoandrogenism, while obesity in women is associated with reduced insulin sensitivity and hyperandrogenism. In children, the effect of obesity and weight reduction on the hypothalamo-pituitary-gonadal axis is rarely investigated...

  2. Galantamine alleviates inflammation and insulin resistance in patients with metabolic syndrome in a randomized trial.

    Science.gov (United States)

    Consolim-Colombo, Fernanda M; Sangaleti, Carine T; Costa, Fernando O; Morais, Tercio L; Lopes, Heno F; Motta, Josiane M; Irigoyen, Maria C; Bortoloto, Luiz A; Rochitte, Carlos Eduardo; Harris, Yael Tobi; Satapathy, Sanjaya K; Olofsson, Peder S; Akerman, Meredith; Chavan, Sangeeta S; MacKay, Meggan; Barnaby, Douglas P; Lesser, Martin L; Roth, Jesse; Tracey, Kevin J; Pavlov, Valentin A

    2017-07-20

    Metabolic syndrome (MetS) is an obesity-driven condition of pandemic proportions that increases the risk of type 2 diabetes and cardiovascular disease. Pathophysiological mechanisms are poorly understood, though inflammation has been implicated in MetS pathogenesis. The aim of this study was to assess the effects of galantamine, a centrally acting acetylcholinesterase inhibitor with antiinflammatory properties, on markers of inflammation implicated in insulin resistance and cardiovascular risk, and other metabolic and cardiovascular indices in subjects with MetS. In this randomized, double-blind, placebo-controlled trial, subjects with MetS (30 per group) received oral galantamine 8 mg daily for 4 weeks, followed by 16 mg daily for 8 weeks or placebo. The primary outcome was inflammation assessed through plasma levels of cytokines and adipokines associated with MetS. Secondary endpoints included body weight, fat tissue depots, plasma glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), cholesterol (total, HDL, LDL), triglycerides, BP, heart rate, and heart rate variability (HRV). Galantamine resulted in lower plasma levels of proinflammatory molecules TNF (-2.57 pg/ml [95% CI -4.96 to -0.19]; P = 0.035) and leptin (-12.02 ng/ml [95% CI -17.71 to -6.33]; P < 0.0001), and higher levels of the antiinflammatory molecules adiponectin (2.71 μg/ml [95% CI 1.93 to 3.49]; P < 0.0001) and IL-10 (1.32 pg/ml, [95% CI 0.29 to 2.38]; P = 0.002) as compared with placebo. Galantamine also significantly lowered plasma insulin and HOMA-IR values, and altered HRV. Low-dose galantamine alleviates inflammation and insulin resistance in MetS subjects. These findings support further study of galantamine in MetS therapy. ClinicalTrials.gov, number NCT02283242. Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, and the NIH.

  3. Molecular Mechanisms and Treatment Strategies for Obesity-Associated Coronary Artery Disease, an Imminent Military Epidemic

    Science.gov (United States)

    2009-12-01

    inflammation, hepatic steatosis , and atherosclerosis in mice. J Nutr. 2007;137(7):1776-1782. 26. Jehle AW, Gardai SJ, Li S, L insel-Nitschke P, Morimoto K...Martinez-Clemente M, Lopez-Parra M, Arroyo V, Claria J. Obesity-induced insulin resistance and hepatic steatosis are alleviat ed by ome ga-3 fatty acids: a...impaired hepatic insulin sensitivity and respond only partially to PPARγ agonists. Adiponectin-mediated metabolic improvements are associated with

  4. Elevated fasting insulin levels increase the risk of abdominal obesity in Korean men.

    Science.gov (United States)

    Park, Sung Keun; Oh, Chang-Mo; Jung, Taegi; Choi, Young-Jun; Chung, Ju Youn; Ryoo, Jae-Hong

    2017-04-01

    This study was designed to investigate whether an elevated fasting insulin level predicts abdominal obesity. A cohort study was conducted with 13,707 non-obese Korean men. They were categorized into 4 groups according to the quartile of fasting insulin level, and followed up from 2005 to 2010. Incidence rates of obesity were compared among the 4 groups during follow-up, and a Cox proportional hazards model was used to calculate hazard ratios (HRs) for abdominal obesity according to fasting insulin level. The overall incidence rate of obesity was 16.2%, but the rate increased in proportion to the fasting insulin level (quartiles 1-4: 9.8%, 12.4%, 16.9%, 25.5%, Pobesity increased proportionally to baseline fasting insulin level in an unadjusted model. However, after adjustment for covariates, including baseline waist circumference (WC), only in the quartile 4 group was the statistical significance of the association maintained [quartile 2-4; abdominal obesity: 0.89 (0.76-1.02), 1.00 (0.86-1.14) and 1.24 (1.08-1.43), P for trend obesity was highest in the group with the highest fasting insulin levels, an overall proportional relationship between fasting insulin level and incident abdominal obesity was not found. Additionally, this association was largely accounted for by baseline WC. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Insulin resistance, insulin response, and obesity as indicators of metabolic risk

    DEFF Research Database (Denmark)

    Ferrannini, Ele; Balkau, Beverley; Coppack, Simon W

    2007-01-01

    CONTEXT: Insulin resistance (IR) and obesity, especially abdominal obesity, are regarded as central pathophysiological features of a cluster of cardiovascular risk factors (CVRFs), but their relative roles remain undefined. Moreover, the differential impact of IR viz. insulin response has not been...... evaluated. OBJECTIVE: The objective of this study was to dissect out the impact of obesity, abdominal obesity, and IR/insulin response on CVRF. DESIGN: This was a cross-sectional study. SETTING: The study was conducted at 21 research centers in Europe. SUBJECTS: The study included a cohort of 1308......-cholesterol, and lower high-density lipoprotein-cholesterol, and insulin response to higher heart rate, blood pressure and fasting glucose, and the same dyslipidemic profile as IR (P

  6. Inflammation versus Host Defense in Obesity

    OpenAIRE

    Wu, Huaizhu; Ballantyne, Christie M.

    2014-01-01

    Obesity is characterized by a state of low-grade, chronic inflammation. Wang et al. (2014) report that immune cells from obese mice have decreased production of IL-22, a cytokine involved in immune responses and inflammation, and reveal therapeutic effects of exogenous IL-22 against obesity-linked metabolic dysfunctions.

  7. Association between markers of systemic inflammation, oxidative stress, lipid profiles, and insulin resistance in pregnant women

    Directory of Open Access Journals (Sweden)

    Zatollah Asemi

    2013-05-01

    Full Text Available BACKGROUND: Increased levels of pro-inflammatory factors, markers of oxidative stress and lipid profiles are known to be associated with several complications. The aim of this study was to determine the association of markers of systemic inflammation, oxidative stress and lipid profiles with insulin resistance in pregnant women in Kashan, Iran. METHODS: In a cross-sectional study, serum high sensitivity C-reactive protein (hs-CRP, tumor necrosis factor-alpha (TNF-α, fasting plasma glucose (FPG, serum insulin, 8-oxo-7, 8-dihydroguanine (8-oxo-G, total cholesterol, triglyceride, HDL-cholesterol, and plasma total antioxidant capacity (TAC were measured among 89 primigravida singleton pregnant women aged 18-30 years at 24-28 weeks of gestation. Pearson’s correlation and multiple linear regressions were used to assess their relationships with homeostatic model assessment of insulin resistance (HOMA-IR. RESULTS: We found that among biochemical indicators of pregnant women, serum hs-CRP and total cholesterol levels were positively correlated with HOMA-IR (β = 0.05, P = 0.006 for hs-CRP and β = 0.006, P = 0.006 for total cholesterol. These associations remained significant even after mutual effect of other biochemical indicators were controlled (β = 0.04, P = 0.01 for hs-CRP and β = 0.007, P = 0.02 for total cholesterol. Further adjustment for body mass index made the association of hs-CRP and HOMA-IR disappeared; however, the relationship for total cholesterol remained statistically significant. CONCLUSION: Our findings showed that serum total cholesterol is independently correlated with HOMA-IR score. Further studies are needed to confirm our findings. Keywords: Inflammation, Oxidative Stress, Insulin Resistance, Pregnancy

  8. DNA Methylation of the LY86 Gene is Associated With Obesity, Insulin Resistance, and Inflammation

    NARCIS (Netherlands)

    Su, Shaoyong; Zhu, Haidong; Xu, Xiaojing; Wang, Xin; Dong, Yanbin; Kapuku, Gaston; Treiber, Frank; Gutin, Bernard; Harshfield, Gregory; Snieder, Harold; Wang, Xiaoling

    Background: Previous genome-wide association studies (GWAS) have identified a large number of genetic variants for obesity and its related traits, representing a group of potential key genes in the etiology of obesity. Emerging evidence suggests that epigenetics may play an important role in

  9. Relationship of oxidative stress in skeletal muscle with obesity and obesity-associated hyperinsulinemia in horses.

    Science.gov (United States)

    Banse, Heidi E; Frank, Nicholas; Kwong, Grace P S; McFarlane, Dianne

    2015-10-01

    In horses, hyperinsulinemia and insulin resistance (insulin dysregulation) are associated with the development of laminitis. Although obesity is associated with insulin dysregulation, the mechanism of obesity-associated insulin dysregulation remains to be established. We hypothesized that oxidative stress in skeletal muscle is associated with obesity-associated hyperinsulinemia in horses. Thirty-five light breed horses with body condition scores (BCS) of 3/9 to 9/9 were studied, including 7 obese, normoinsulinemic (BCS ≥ 7, resting serum insulin obese, hyperinsulinemic (resting serum insulin ≥ 30 μIU/mL) horses. Markers of oxidative stress (oxidative damage, mitochondrial function, and antioxidant capacity) were evaluated in skeletal muscle biopsies. A Spearman's rank correlation coefficient was used to determine relationships between markers of oxidative stress and BCS. Furthermore, to assess the role of oxidative stress in obesity-related hyperinsulinemia, markers of antioxidant capacity and oxidative damage were compared among lean, normoinsulinemic (L-NI); obese, normoinsulinemic (O-NI); and obese, hyperinsulinemic (O-HI) horses. Increasing BCS was associated with an increase in gene expression of a mitochondrial protein responsible for mitochondrial biogenesis (estrogen-related receptor alpha, ERRα) and with increased antioxidant enzyme total superoxide dismutase (TotSOD) activity. When groups (L-NI, O-NI, and O-HI) were compared, TotSOD activity was increased and protein carbonyls, a marker of oxidative damage, decreased in the O-HI compared to the L-NI horses. These findings suggest that a protective antioxidant response occurred in the muscle of obese animals and that obesity-associated oxidative damage in skeletal muscle is not central to the pathogenesis of equine hyperinsulinemia.

  10. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P intermittent hypoxia is dependent on the disruption of leptin pathways.

  11. Perinatal programming of metabolic dysfunction and obesity-induced inflammation

    DEFF Research Database (Denmark)

    Ingvorsen, Camilla; Hellgren, Lars; Pedersen, Susanne Brix

    The number of obese women in the childbearing age is drastically increasing globally. As a consequence, more children are born by obese mothers. Unfortunately, maternal obesity and/ or high fat intake during pregnancy increase the risk of developing obesity, type-2 diabetes, cardiovascular disease...... and non-alcoholic fatty liver disease in the children, which passes obesity and metabolic dysfunction on from generation to generation. Several studies try to elucidate causative effects of maternal metabolic markers on the metabolic imprinting in the children; however diet induced obesity is also...... associated with chronic low grade inflammation. Nobody have yet investigated the role of this inflammatory phenotype, but here we demonst rate that obesity induced inflammation is reversed during pregnancy in mice, and is therefore less likely to affect the fetal programming of metabolic dysfunction. Instead...

  12. Ordovas-Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance

    Science.gov (United States)

    This study assesses whether oxidative stress, using oxidized LDL (ox-LDL) as a proxy, is associated with metabolic syndrome (MS), whether ox-LDL mediates the association between central obesity and MS, and whether insulin resistance mediates the association between ox-LDL and MS. We examined baselin...

  13. Addictive genes and the relationship to obesity and inflammation.

    Science.gov (United States)

    Heber, David; Carpenter, Catherine L

    2011-10-01

    There is increasing evidence that the same brain reward circuits involved in perpetuating drug abuse are involved in the hedonic urges and food cravings observed clinically in overweight and obese subjects. A polymorphism of the D2 dopamine receptor which renders it less sensitive to dopamine stimulation has been proposed to promote self-stimulatory behavior such as consuming alcohol, abusing drugs, or binging on foods. It is important to determine how this polymorphism may interact with other well-known candidate genes for obesity including polymorphisms of the leptin receptor gene and the opiomelanocortin gene. Leptin is a proinflammatory cytokine as well as a long-term signal maintaining body fat. Upper-body obesity stimulates systemic inflammation through the action of multiple cytokines including leptin throughout many organs including the brain. The association of numerous diseases including diabetes mellitus, heart disease, as well as depression with chronic low-grade inflammation due to abdominal obesity has raised the possibility that obesity-associated inflammation affecting the brain may promote addictive behaviors leading to a self-perpetuating cycle that may affect not only foods but addictions to drugs, alcohol, and gambling. This new area of interdisciplinary research holds the promise of developing new approaches to treating drug abuse and obesity.

  14. Childhood obesity and insulin resistance: how should it be managed?

    Science.gov (United States)

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  15. Insulin sensitivity in post-obese women

    DEFF Research Database (Denmark)

    Toubro, S; Western, P; Bülow, J

    1994-01-01

    1. Both increased and decreased sensitivity to insulin has been proposed to precede the development of obesity. Therefore, insulin sensitivity was measured during a 2 h hyperinsulinaemia (100 m-units min-1 m-2) euglycaemic (4.5 mmol/l) glucose clamp combined with indirect calorimetry in nine weight......-1 kg-1, not significant). Basal plasma concentrations of free fatty acids were similar, but at the end of the clamp free fatty acids were lower in the post-obese women than in the control women (139 +/- 19 and 276 +/- 48 mumol/l, P = 0.02). 3. We conclude that the insulin sensitivity of glucose...... metabolism is unaltered in the post-obese state. The study, however, points to an increased antilipolytic insulin action in post-obese subjects, which may favour fat storage and lower lipid oxidation rate postprandially.(ABSTRACT TRUNCATED AT 250 WORDS)...

  16. Acute High-intensity Interval Exercise-induced Redox Signaling is Associated with Enhanced Insulin Sensitivity in Obese Middle-aged Men.

    Directory of Open Access Journals (Sweden)

    Lewan Parker

    2016-09-01

    Full Text Available Background. Obesity and ageing are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK, and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods. Participants completed a 2 hour hyperinsulinaemic-euglycaemic clamp at rest, and 60 minutes after HIIE (4x4 mins at 95% HRpeak; 2 min recovery periods, separated by 1-3 weeks. Results. Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SAPK phosphorylation (JNK, p38 MAPK and NF-κB and SOD activity (p<0.05. Conclusion. These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 hours after HIIE.

  17. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus

    NARCIS (Netherlands)

    Asseldonk, van E.J.P.; Poppel, van P.C.M.; Ballak, D.B.; Stienstra, Rinke; Netea, M.G.; Tack, C.J.

    2015-01-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity.In an open label proof-of-concept study, we included overweight

  18. Anti-inflammatory role of GLP-1 and the effect of gastric bypass on diabetes- and obesity-associated inflammation

    DEFF Research Database (Denmark)

    Bovbjerg, Kirsten Katrine Lindegaard

    with a set of metabolic abnormalities comprising the metabolic syndrome, such as hypertension, dyslipidemia, and insulin resistance. Although the exact causes for the onset of clinical disease remain largely unknown, emerging evidence seems to suggest that obesity-induced inflammation, especially...... in the adipose tissue, is involved in the metabolic dysregulation and therefore plays an important role in the pathogenesis of this deteriorating disease.Bariatric surgery, including the Roux-en Y gastric bypass (RYGB), is one of the most effective treatments for severe obesity. In addition to weight loss...... body of literature reports antiinflammatory and other immunological effects of GLP-1 in animals and in humans suggesting that GLP-1 acts beyond purely glucoregulatory mechanisms. The exaggerated postprandial GLP-1 secretion following RYGB may thus be involved in the beneficial metabolic effects both...

  19. PPARs, Obesity, and Inflammation

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.N.C.; Müller, M.R.; Kersten, A.H.

    2007-01-01

    The worldwide prevalence of obesity and related metabolic disorders is rising rapidly, increasing the burden on our healthcare system. Obesity is often accompanied by excess fat storage in tissues other than adipose tissue, including liver and skeletal muscle, which may lead to local insulin

  20. Insulin resistance in obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Monica Cristina dos Santos Romualdo

    2014-11-01

    Conclusion: The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood.

  1. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats.

    Science.gov (United States)

    Yamazaki, Ricardo K; Brito, Gleisson A P; Coelho, Isabela; Pequitto, Danielle C T; Yamaguchi, Adriana A; Borghetti, Gina; Schiessel, Dalton Luiz; Kryczyk, Marcelo; Machado, Juliano; Rocha, Ricelli E R; Aikawa, Julia; Iagher, Fabiola; Naliwaiko, Katya; Tanhoffer, Ricardo A; Nunes, Everson A; Fernandes, Luiz Claudio

    2011-04-28

    Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  2. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling.

    Science.gov (United States)

    Williams, Michael J; Eriksson, Anders; Shaik, Muksheed; Voisin, Sarah; Yamskova, Olga; Paulsson, Johan; Thombare, Ketan; Fredriksson, Robert; Schiöth, Helgi B

    2015-09-01

    Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.

  3. The adipose transcriptional response to insulin is determined by obesity, not insulin sensitivity

    DEFF Research Database (Denmark)

    Rydén, Mikael; Hrydziuszko, Olga; Mileti, Enrichetta

    2016-01-01

    Metabolically healthy obese subjects display preserved insulin sensitivity and a beneficial white adipose tissue gene expression pattern. However, this observation stems from fasting studies when insulin levels are low. We investigated adipose gene expression by 5'Cap-mRNA sequencing in 17 healthy...... non-obese (NO), 21 insulin-sensitive severely obese (ISO), and 30 insulin-resistant severely obese (IRO) subjects, before and 2 hr into a hyperinsulinemic euglycemic clamp. ISO and IRO subjects displayed a clear but globally similar transcriptional response to insulin, which differed from the small...... effects observed in NO subjects. In the obese, 231 genes were altered; 71 were enriched in ISO subjects (e.g., phosphorylation processes), and 52 were enriched in IRO subjects (e.g., cellular stimuli). Common cardio-metabolic risk factors and gender do not influence these findings. This study demonstrates...

  4. MAP3K8 (TPL2/COT) Affects Obesity-Induced Adipose Tissue Inflammation without Systemic Effects in Humans and in Mice

    NARCIS (Netherlands)

    Ballak, D.B.; Essen, P. van; Diepen, J.A. van; Jansen, H.J.; Hijmans, A.G.; Matsuguchi, T.; Sparrer, H.; Tack, C.J.J.; Netea, M.G.; Joosten, L.A.B.; Stienstra, R.

    2014-01-01

    Chronic low-grade inflammation in adipose tissue often accompanies obesity, leading to insulin resistance and increasing the risk for metabolic diseases. MAP3K8 (TPL2/COT) is an important signal transductor and activator of pro-inflammatory pathways that has been linked to obesity-induced adipose

  5. Association between insulin resistance and preeclampsia in obese non-diabetic women receiving metformin.

    Science.gov (United States)

    Balani, Jyoti; Hyer, Steve; Syngelaki, Argyro; Akolekar, Ranjit; Nicolaides, Kypros H; Johnson, Antoinette; Shehata, Hassan

    2017-12-01

    To examine whether the reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is mediated by changes in insulin resistance. This was a secondary analysis of obese pregnant women in a randomised trial (MOP trial). Fasting plasma glucose and insulin were measured in 384 of the 400 women who participated in the MOP trial. Homeostasis model assessment of insulin resistance (HOMA-IR) was compared in the metformin and placebo groups and in those that developed preeclampsia versus those that did not develop preeclampsia. At 28 weeks, median HOMA-IR was significantly lower in the metformin group. Logistic regression analysis demonstrated that there was a significant contribution in the prediction of preeclampsia from maternal history of chronic hypertension and gestational weight gain, but not HOMA-IR either at randomisation ( p  = 0.514) or at 28 weeks ( p  = 0.643). Reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is unlikely to be due to changes in insulin resistance.

  6. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects

    DEFF Research Database (Denmark)

    Bruun, Jens M; Helge, Jørn W; Richelsen, Bjørn

    2006-01-01

    Obesity is associated with low-grade inflammation, insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the effect of a 15-wk lifestyle intervention (hypocaloric diet and daily exercise) on inflammatory markers in plasma, adipose tissue (AT), and skeletal muscle...... (SM) in 27 severely obese subjects (mean body mass index: 45.8 kg/m2). Plasma samples, subcutaneous abdominal AT biopsies, and vastus lateralis SM biopsies were obtained before and after the intervention and analyzed by ELISA and RT-PCR. The intervention reduced body weight (P

  7. The cross-sectional association between insulin resistance and circulating complement C3 is partly explained by plasma alanine aminotransferase, independent of central obesity and general inflammation (the CODAM study)

    NARCIS (Netherlands)

    Greevenbroek, van M.M.J.; Jacobs, M.; Kallen, van der C.J.H.; Vermeulen, V.M.M.J.; Jansen, E.H.J.M.; Schalkwijk, C.G.; Ferreira, I.; Feskens, E.J.M.; Stehouwer, C.D.A.

    2011-01-01

    P>Background Complement C3, a central component of the innate immune system is increased in subjects with obesity and type 2 diabetes and is a novel risk factor for cardiovascular disease. We hypothesized that the strong association between insulin resistance and circulating amounts of C3 may be

  8. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-Ming; Shebib, Ahmad R; Johnson, Fruzsina K; Johnson, Robert A; Durante, William

    2018-04-27

    This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.

  9. Markers of inflammation and hemodynamic measurements in obesity: Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Asferg, Camilla; Jensen, Jan S; Marott, Jacob L

    2009-01-01

    BACKGROUND: Low-grade chronic inflammation has been proposed to play a major role in the pathogenesis of hypertension. Low-grade chronic inflammation is also closely associated with obesity, an established causative factor in the development of hypertension. The purpose of this study was to inves......BACKGROUND: Low-grade chronic inflammation has been proposed to play a major role in the pathogenesis of hypertension. Low-grade chronic inflammation is also closely associated with obesity, an established causative factor in the development of hypertension. The purpose of this study...... was to investigate the relationship between two markers of inflammation, C-reactive protein (CRP) and fibrinogen, and blood pressure (BP) and other hemodynamic variables in obese subjects. METHODS: From a large cardiovascular study based in the general population, we selected subjects with a body mass index (BMI...... index (rho: -0.057 to 0.068; P > 0.13). However, fibrinogen and CRP were found to be significantly related to heart rate (rho: 0.127-0.169; P obese subjects from the general population, we found no significant relationships between markers...

  10. Inflammation and Oxidative Stress in Obesity-Related Glomerulopathy

    OpenAIRE

    Tang, Jinhua; Yan, Haidong; Zhuang, Shougang

    2012-01-01

    Obesity-related glomerulopathy is an increasing cause of end-stage renal disease. Obesity has been considered a state of chronic low-grade systemic inflammation and chronic oxidative stress. Augmented inflammation in adipose and kidney tissues promotes the progression of kidney damage in obesity. Adipose tissue, which is accumulated in obesity, is a key endocrine organ that produces multiple biologically active molecules, including leptin, adiponectin, resistin, that affect inflammation, and ...

  11. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  12. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-11-27

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.

  13. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    International Nuclear Information System (INIS)

    Zhou, Jun; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-01-01

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.

  14. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    Directory of Open Access Journals (Sweden)

    Iagher Fabiola

    2011-04-01

    Full Text Available Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG (4 mg/g body weight was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C, coconut fat-treated normal weight group (CO, fish oil-treated normal weight group (FO, obese control group (Ob, coconut fat-treated obese group (ObCO and fish oil-treated obese group (ObFO. Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30% and triacylglycerol (TG; 33% compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  15. Glucocorticoid mediated regulation of inflammation in human monocytes is associated with depressive mood and obesity.

    Science.gov (United States)

    Cheng, Tiefu; Dimitrov, Stoyan; Pruitt, Christopher; Hong, Suzi

    2016-04-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is observed in various conditions, including depression and obesity, which are also often related. Glucocorticoid (GC) resistance and desensitization of peripheral GC receptors (GRs) are often the case in HPA dysregulation seen in depression, and GC plays a critical role in regulation of inflammation. Given the growing evidence that inflammation is a central feature of some depression cases and obesity, we aimed to investigate the immune-regulatory role of GC-GR in relation to depressive mood and obesity in 35 healthy men and women. Depressive mood and level of obesity were assessed, using Beck Depression Inventory (BDI-Ia) and body mass index (BMI), respectively. We measured plasma cortisol levels via enzyme-linked immunosorbent assay and lipopolysaccharide-stimulated intracellular tumor necrosis factor (TNF) production by monocytes, using flow cytometry. Cortisol sensitivity was determined by the difference in monocytic TNF production between the conditions of 1 and 0 μM cortisol incubation ("cortisol-mediated inflammation regulation, CoMIR"). GR vs. mineralocorticoid receptor (MR) antagonism for CoMIR was examined by using mifepristone and spironolactone. A series of multiple regression analyses were performed to investigate independent contribution of depressive mood vs. obesity after controlling for age, gender, systolic blood pressure (SBP), and plasma cortisol in predicting CoMIR. CoMIR was explained by somatic subcomponents of depressive mood (BDI-S: β=-0.499, p=0.001), or BMI (β=-0.466, pcortisol dose (1 μM). There was initial indication that greater obesity and somatic depressive symptoms were associated with smaller efficacy of the blockers, which warrants further investigation. Our findings, although in a preclinical sample, signify the shared pathophysiology of immune dysregulation in depression and obesity and warrant further mechanistic investigation. Published by Elsevier Ltd.

  16. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  17. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  18. Circulating MOTS-c levels are decreased in obese male children and adolescents and associated with insulin resistance.

    Science.gov (United States)

    Du, Caiqi; Zhang, Cai; Wu, Wei; Liang, Yan; Wang, Anru; Wu, Shimin; Zhao, Yue; Hou, Ling; Ning, Qin; Luo, Xiaoping

    2018-04-25

    A novel bioactive peptide, mitochondrial-derived peptide (MOTS-c), has recently attracted attention as a potential prevention or therapeutic option for obesity and type 2 diabetes mellitus (T2DM). MOTS-c profiles have not yet been reported in human obesity and T2DM. We aimed to determine circulating MOTS-c levels in obesity and explore the association between MOTS-c levels and various metabolic parameters. In this case-control study, 40 obese children and adolescents (27 males) and 57 controls (40 males) were recruited in the Hubei Province of China in 2017. Circulating MOTS-c levels were measured, clinical data (e.g., glucose, insulin and lipid profile) were recorded, and anthropometric measurements were performed. Finally, we investigated correlations between MOTS-c levels and related variables. MOTS-c levels were significantly decreased in the obese group compared with the control group (472.61 ± 22.83 ng/mL vs. 561.64 ± 19.19 ng/mL, p c levels were significantly decreased in obese male children and adolescents compared to their counterparts (465.26 ± 24.53 ng/mL vs. 584.07 ± 21.18 ng/mL, p 0.05). Further, MOTS-c levels were negatively correlated with body mass index (BMI), BMI standard deviation score, waist circumference, waist-to-hip ratio, fasting insulin level, HOMA-IR, and HbA1c in the male cohort. Circulating MOTS-c levels were decreased in obese male children and adolescents and correlated with markers of insulin resistance and obesity. This article is protected by copyright. All rights reserved.

  19. [The role of uric acid in the insulin resistance in children and adolescents with obesity].

    Science.gov (United States)

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-12-01

    To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8 to 18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40 to 2.62; p<-0.001). The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status.

    Science.gov (United States)

    Rock, Cheryl L; Flatt, Shirley W; Pakiz, Bilge; Quintana, Elizabeth L; Heath, Dennis D; Rana, Brinda K; Natarajan, Loki

    2016-11-01

    Obesity is a risk factor for postmenopausal breast cancer incidence and premenopausal and postmenopausal breast cancer mortality, which may be explained by several metabolic and hormonal factors (sex hormones, insulin resistance, and inflammation) that are biologically related. Differential effects of dietary composition on weight loss and these metabolic factors may occur in insulin-sensitive vs. insulin-resistant obese women. To examine the effect of diet composition on weight loss and metabolic, hormonal and inflammatory factors in overweight/obese women stratified by insulin resistance status in a 1-year weight loss intervention. Nondiabetic women who were overweight/obese (n=245) were randomly assigned to a lower fat (20% energy), higher carbohydrate (65% energy) diet; a lower carbohydrate (45% energy), higher fat (35% energy) diet; or a walnut-rich (18% energy), higher fat (35% energy), lower carbohydrate (45% energy) diet. All groups lost weight at follow-up (Ploss of 9.2(1.1)% in lower fat, 6.5(0.9)% in lower carbohydrate, and 8.2(1.0)% in walnut-rich groups at 12months. The diet×time×insulin resistance status interaction was not statistically significant in the model for overall weight loss, although insulin sensitive women at 12months lost more weight in the lower fat vs. lower carbohydrate group (7.5kg vs. 4.3kg, P=0.06), and in the walnut-rich vs. lower carbohydrate group (8.1kg vs. 4.3kg, P=0.04). Sex hormone binding globulin increased within each group except in the lower carbohydrate group at 12months (Ploss depending on insulin resistance status. Prescribing walnuts is associated with weight loss comparable to a standard lower fat diet in a behavioral weight loss intervention. Weight loss itself may be the most critical factor for reducing the chronic inflammation associated with increased breast cancer risk and progression. Copyright © 2016. Published by Elsevier Inc.

  1. Normocaloric Diet Restores Weight Gain and Insulin Sensitivity in Obese Mice

    OpenAIRE

    Lombardo, Giovanni Enrico; Arcidiacono, Biagio; De Rose, Roberta Francesca; Lepore, Saverio Massimo; Costa, Nicola; Montalcini, Tiziana; Brunetti, Antonio; Russo, Diego; De Sarro, Giovambattista; Celano, Marilena

    2016-01-01

    An increased incidence of obesity is registered worldwide, and its association with insulin resistance and type 2 diabetes is closely related with increased morbidity and mortality for cardiovascular diseases. A major clinical problem in the management of obesity is the non-adherence or low adherence of patients to a hypo-caloric dietetic restriction. In this study we evaluated in obese mice the effects on insulin sensitivity of shifting from high-calorie foods to normal diet. Male C57BL/6Jol...

  2. Iron in Child Obesity. Relationships with Inflammation and Metabolic Risk Factors

    Directory of Open Access Journals (Sweden)

    Dominique Bouglé

    2013-06-01

    Full Text Available Iron (Fe sequestration is described in overweight and in its associated metabolic complications, i.e., metabolic syndrome (MetS and non-alcoholic liver fatty disease (NAFLD; however, the interactions between Fe, obesity and inflammation make it difficult to recognize the specific role of each of them in the risk of obesity-induced metabolic diseases. Even the usual surrogate marker of Fe stores, ferritin, is influenced by inflammation; therefore, in obese subjects inflammation parameters must be measured together with those of Fe metabolism. This cross-sectional study in obese youth (502 patients; 57% girls: 11.4 ± 3.0 years old (x ± SD; BMI z score 5.5 ± 2.3, multivariate regression analysis showed associations between Fe storage assessed by serum ferritin with risk factors for MetS and NAFLD, assessed by transaminase levels, which were independent of overweight and the acute phase protein fibrinogen. Further studies incorporating the measurement of complementary parameters of Fe metabolism could improve the comprehension of mechanisms involved.

  3. Aerobic Training Improved Low-Grade Inflammation in Obese Women with Intellectual Disability

    Science.gov (United States)

    Ordonez, F. J.; Rosety, M. A.; Camacho, A.; Rosety, I.; Diaz, A. J.; Fornieles, G.; Garcia, N.; Rosety-Rodriguez, M.

    2014-01-01

    Background: Obesity is a major health problem in people with intellectual disabilities. It is also widely accepted that low-grade systemic inflammation associated to obesity plays a key role in the pathogenic mechanism of several disorders. Fortunately, physical activity has shown to improve inflammation in people with metabolic syndrome and type…

  4. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  5. Visceral adiposity, insulin resistance and cancer risk

    LENUS (Irish Health Repository)

    Donohoe, Claire L

    2011-06-22

    Abstract Background There is a well established link between obesity and cancer. Emerging research is characterising this relationship further and delineating the specific role of excess visceral adiposity, as opposed to simple obesity, in promoting tumorigenesis. This review summarises the evidence from an epidemiological and pathophysiological perspective. Methods Relevant medical literature was identified from searches of PubMed and references cited in appropriate articles identified. Selection of articles was based on peer review, journal and relevance. Results Numerous epidemiological studies consistently identify increased risk of developing carcinoma in the obese. Adipose tissue, particularly viscerally located fat, is metabolically active and exerts systemic endocrine effects. Putative pathophysiological mechanisms linking obesity and carcinogenesis include the paracrine effects of adipose tissue and systemic alterations associated with obesity. Systemic changes in the obese state include chronic inflammation and alterations in adipokines and sex steroids. Insulin and the insulin-like growth factor axis influence tumorigenesis and also have a complex relationship with adiposity. There is evidence to suggest that insulin and the IGF axis play an important role in mediating obesity associated malignancy. Conclusions There is much evidence to support a role for obesity in cancer progression, however further research is warranted to determine the specific effect of excess visceral adipose tissue on tumorigenesis. Investigation of the potential mechanisms underpinning the association, including the role of insulin and the IGF axis, will improve understanding of the obesity and cancer link and may uncover targets for intervention.

  6. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  7. Skin disorders in overweight and obese patients and their relationship with insulin.

    Science.gov (United States)

    Plascencia Gómez, A; Vega Memije, M E; Torres Tamayo, M; Rodríguez Carreón, A A

    2014-03-01

    The prevalence of obesity has increased worldwide in recent years. Some authors have described skin conditions associated with obesity, but there is little evidence on the association between insulin levels and such disorders. To describe the skin disorders present in overweight and obese patients and analyze their association with insulin levels. The study included nondiabetic male and female patients over 6 years of age who were seen at our hospital between January and April 2011. All the patients were evaluated by a dermatologist, who performed a physical examination, including anthropometry, and reviewed their medical history and medication record; fasting blood glucose and insulin were also measured. The patients were grouped according to degree of overweight or obesity and the data were compared using analysis of variance or the χ(2) test depending on the type of variable. The independence of the associations was assessed using regression analysis. In total, 109 patients (95 adults and 13 children, 83.5% female) were studied. The mean (SD) age was 38 (14) years and the mean body mass index was 39.6±8 kg/m(2). The skin conditions observed were acanthosis nigricans (AN) (in 97% of patients), skin tags (77%), keratosis pilaris (42%), and plantar hyperkeratosis (38%). Statistically significant associations were found between degree of obesity and AN (P=.003), skin tags (P=.001), and plantar hyperkeratosis. Number of skin tags, AN neck severity score, and AN distribution were significantly and independently associated with insulin levels. AN and skin tags should be considered clinical markers of hyperinsulinemia in nondiabetic, obese patients. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  8. The Relations Between Immunity, Oxidative Stress and Inflammation Markers, in Childhood Obesity.

    Science.gov (United States)

    Laura Anca, Popescu; Bogdana, Virgolici; Olivia, Timnea; Horia, Virgolici; Dumitru, Oraseanu; Leon, Zagrean

    2014-10-01

    Oxidative stress, inflammation and insulin resistance are the principal culprits in childhood obesity. Immune modifications are also important in the development of the obesity complications.The aim of this study is to find the relations for some immunity parameters with markers for oxidative stress and inflammation. Sixty obese children (10-16 years old) and thirty age and sex matched lean children were involved. The activities for erythrocyte superoxid dismutase (SOD), for erythrocyte glutathione peroxidase (GPx) and serum thioredoxin level were measured by ELISA, as oxidative stress markers. Circulating immune complexes (CIC), complement fractions C3, C4 and the self-antibodies, antismooth muscle antibodies (ASMA), antiliver-kidney microsome antibodies (LKM1) were measured by ELISA methods. Ceruloplasmin, haptoglobin and C reactive protein (CRP) were measured as inflammatory markers by immunoturbidimetric methods. ceruloplasmin (pLKM1 and ASMA and GPx activity were not modified between groups. Positive correlations (for pLKM1 (r=0.37), GPx activity and ASMA (r=0.27), haptoglobin and C3 (r=0.33), ceruloplasmin and CIC (r=0.41), CRP and C3 (p<0.27) and negative correlations were calculated for C4 both with GPx activity (r= -0.28) and with thioredoxin level (r= -0.27). In the obese children versus the lean ones, higher levels for C3 (p<0.001), C4(p<0.001), CIC (p<0.05), In conclusion, this study demonstrates that immune modifications, inflammation and oxidative stress are related and they act in cluster in childhood obesity. Copyright © 2014. Published by Elsevier Inc.

  9. Elevated plasma SPARC levels are associated with insulin resistance, dyslipidemia, and inflammation in gestational diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available OBJECTIVE: Recent studies suggested that secreted protein acidic and rich in cysteine (SPARC, a novel adipokine, is a key player in the pathology of obesity and type 2 diabetes. We aimed to determine whether concentrations of SPARC were altered in patients with gestational diabetes mellitus (GDM compared to normal glucose tolerance (NGT controls and to investigate the relationships between SPARC and metabolic parameters in pregnant women. DESIGN/METHODS: Cross-sectional study of 120 pregnant women with GDM and 60 controls with NGT, in a university hospital setting. Plasma levels of SPARC, adiponectin, fibroblast growth factor 21 (FGF21, insulin and proinsulin were determined by ELISA. RESULTS: GDM women had higher SPARC and lower adiponectin than NGT subjects; no difference was found in FGF21. SPARC levels were the lowest in subjects in the third tertile of insulin sensitivity index (ISIOGTT and correlated positively with pre-pregnant BMI, insulin and 3 h glucose during 100-g OGTT, HOMA-IR, fasting proinsulin, hsCRP and white blood cells count, and negatively with ISIOGTT, when adjusting for gestational age. Triglyceride (TG, Apolipoprotein A1, apolipoprotein B and lipoprotein (a correlated with SPARC in partial Pearson correlation. Correlations between SPARC with adiponectin, systolic blood pressure and TG were marginally significant in partial Spearman correlation analysis. In multivariate regression analysis, SPARC was an independent negative indicator of ISIOGTT. CONCLUSIONS: SPARC levels are correlated significantly with inflammation and may also be correlated with dyslipidemia and represent an independent determinant of insulin resistance in late pregnancy, indicating a potential role of SPARC in the pathophysiology of GDM.

  10. Elevated plasma SPARC levels are associated with insulin resistance, dyslipidemia, and inflammation in gestational diabetes mellitus.

    Science.gov (United States)

    Xu, Lu; Ping, Fan; Yin, Jinhua; Xiao, Xinhua; Xiang, Hongding; Ballantyne, Christie M; Wu, Huaizhu; Li, Ming

    2013-01-01

    Recent studies suggested that secreted protein acidic and rich in cysteine (SPARC), a novel adipokine, is a key player in the pathology of obesity and type 2 diabetes. We aimed to determine whether concentrations of SPARC were altered in patients with gestational diabetes mellitus (GDM) compared to normal glucose tolerance (NGT) controls and to investigate the relationships between SPARC and metabolic parameters in pregnant women. Cross-sectional study of 120 pregnant women with GDM and 60 controls with NGT, in a university hospital setting. Plasma levels of SPARC, adiponectin, fibroblast growth factor 21 (FGF21), insulin and proinsulin were determined by ELISA. GDM women had higher SPARC and lower adiponectin than NGT subjects; no difference was found in FGF21. SPARC levels were the lowest in subjects in the third tertile of insulin sensitivity index (ISIOGTT) and correlated positively with pre-pregnant BMI, insulin and 3 h glucose during 100-g OGTT, HOMA-IR, fasting proinsulin, hsCRP and white blood cells count, and negatively with ISIOGTT, when adjusting for gestational age. Triglyceride (TG), Apolipoprotein A1, apolipoprotein B and lipoprotein (a) correlated with SPARC in partial Pearson correlation. Correlations between SPARC with adiponectin, systolic blood pressure and TG were marginally significant in partial Spearman correlation analysis. In multivariate regression analysis, SPARC was an independent negative indicator of ISIOGTT. SPARC levels are correlated significantly with inflammation and may also be correlated with dyslipidemia and represent an independent determinant of insulin resistance in late pregnancy, indicating a potential role of SPARC in the pathophysiology of GDM.

  11. Determination of Insulin Resistance and Beta Cell Function in Healthy Obese and Non-obese Individuals

    International Nuclear Information System (INIS)

    Kazmi, A.; Sattar, A.; Tariq, K. M.; Najamussahar; Hashim, R.; Almani, M. I.

    2013-01-01

    Objective: To determine insulin resistance and beta cell function in healthy obese and nonobese individuals of the local population. Study Design: Case control study. Place and Duration of Study: AFIP Rawalpindi in collaboration with department of medicine military hospital(MH) Rawalpindi, from Aug 2008 to Mar 2009. Methods: Eighty obese(n=40) and non-obese(n=40) subjects were selected by non-probability convenience sampling. Plasma insulin, glucose, and serum total cholestrol were estimated in fasting state. Insulin resistance was calculated by HOMA-IR and beta cell function by HOMA- equation. Results: Significant differences were observed between obese and non-obese individuals regarding insulin resistance, beta cell function, and BMI and serum total cholesterol. Mean insulin resistance in obese group was found to be 11.1 +- 5.1(range 7.0-16.2) and in non-obese group it was 0.9+-0.4 (range 0.5-1.3). This difference was highly significant (p=0.001). There was a highly significant difference between the two groups in term of beta cell function with mean rank 60.1 for obese group and 20.9 non obese groups (Asym sig. 2 tailed 0.000). Also the correlation (r = 0.064) between insulin resistance and beta cell function in obese group is highly significant (p = 0.000). Mean serum leptin levels were lower (6.3 ng/ml) in non-obese, and high (57.2 ng/ml) in the obese group. Conclusions: Insulin resistance is found higher in obese individuals. Beta cell function is significantly different between obese and non-obese groups. (author)

  12. Insulin Resistance, Metabolic Syndrome, and Polycystic Ovary Syndrome in Obese Youth.

    Science.gov (United States)

    Platt, Adrienne M

    2015-07-01

    School nurses are well aware of the childhood obesity epidemic in the United States, as one in three youth are overweight or obese. Co-morbidities found in overweight or obese adults were not commonly found in youth three decades ago but are now increasingly "normal" as the obesity epidemic continues to evolve. This article is the second of six related articles discussing the co-morbidities of childhood obesity and discusses the complex association between obesity and insulin resistance, metabolic syndrome, and polycystic ovary syndrome. Insulin resistance increases up to 50% during puberty, which may help to explain why youth are more likely to develop co-morbidities as teens. Treatment of these disorders is focused on changing lifestyle habits, as a child cannot change his or her pubertal progression, ethnicity, or family history. School nurses and other personnel can assist youth with insulin resistance, metabolic syndrome, and polycystic ovary syndrome by supporting their efforts to make changes, reinforcing that insulin resistance is not necessarily type 2 diabetes even if the child is taking medication, and intervening with negative peer pressure. © 2015 The Author(s).

  13. High serum fasting peptide YY (3-36) is associated with obesity-associated insulin resistance and type 2 diabetes.

    Science.gov (United States)

    Ukkola, Olavi H; Puurunen, Veli-Pekka; Piira, Olli-Pekka; Niva, Jarkko T; Lepojärvi, E Samuli; Tulppo, Mikko P; Huikuri, Heikki V

    2011-10-10

    We studied whether serum fasting levels of active form of peptide YY (PYY), PYY(3-36), are associated with obesity and related phenotypes. The study population consisted of 428 patients with coronary artery disease and diagnosed type 2 diabetes and 440 patients with coronary artery disease but without evidence of diabetes from the ARTEMIS study. The patients were recruited from the consecutive series of patients undergoing coronary angiography in the Oulu University Hospital. The patients without diabetes underwent a 2-hour oral glucose tolerance test. PYY(3-36) levels were analyzed by human PYY(3-36) specific radioimmunoassay. Result suggested that when PYY(3-36) tertiles were considered, high serum fasting PYY(3-36) concentration was associated with high body mass index, waist circumference, hemoglobin A1c, fasting blood glucose, leptin, triglyceride (p for all p ≤ 0.001), serum insulin (p=0.013) and with a low high-density lipoprotein cholesterol (p=0.004) concentrations in the analyses adjusted for age, sex and study group. The link high PYY(3-36)-high insulin level was evident in subjects with normal glucose tolerance (pfasting glucose, impaired glucose tolerance and normal glucose tolerance (pfasting PYY(3-36) concentrations in type 2 diabetic subjects are high. Although high PYY(3-36) is strongly linked to obesity and associated insulin resistance, the relation between PYY(3-36) and type 2 diabetes is independent of body fatness. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance

    DEFF Research Database (Denmark)

    Ahlqvist, Emma; Osmark, Peter; Kuulasmaa, Tiina

    2013-01-01

    Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis...... and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher...... for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue...

  15. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities

    Directory of Open Access Journals (Sweden)

    Toshinari Takamura

    2017-07-01

    Interpretation: Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective marker against obesity-associated metabolic abnormalities.

  16. The severity of nocturnal hypoxia but not abdominal adiposity is associated with insulin resistance in non-obese men with sleep apnea.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Borel

    Full Text Available BACKGROUND: Beyond obesity, sleep apnea syndrome is frequently associated with excess abdominal adiposity that could contribute to the deteriorated cardiometabolic risk profile of apneic patients. METHODS: The present study addressed the respective contribution of the severity of sleep apnea syndrome and excess abdominal adiposity to the cardiometabolic risk profile of 38 non obese men with polysomnography-diagnosed sleep apnea syndrome (apnea-hypopnea index >15 events/hour. These otherwise healthy men performed a 75g-oral glucose tolerance test (OGTT with plasma lipid/inflammatory and redox profiles. Twenty-one apneic men with high-waist circumference (>94 cm were compared to 17 apneic men with low-waist circumference. RESULTS: Apneic men with high-waist circumference had higher AUC glucose and AUC insulin than apneic men with low-waist circumference. Accordingly, apneic men with high-waist circumference had higher hepatic insulin resistance as reflected by higher HOMA-resistance index, and lower global insulin sensitivity as reflected by lower insulin sensitivity index of Matsuda (derived from OGTT. The sleep structure and the apnea-hypopnea index were not different between the two groups. However, apneic men with high-waist circumference presented with lower mean nocturnal oxyhemoglobin (SpO2. In the 38 men, waist circumference and mean nocturnal SpO2 were inversely correlated (r = -0.43, p = 0.011 and were both associated with plasma glucose/insulin homeostasis indices: the higher the waist circumference, the lower the mean nocturnal SpO2, the lower the insulin-sensitivity. Finally, in multivariable regression model, mean nocturnal SpO2 and not waist circumference was associated with insulin-resistance. CONCLUSION: Thus, excess abdominal adiposity in non obese apneic men was associated with a deteriorated insulin-sensitivity that could be driven by a more severe nocturnal hypoxemia.

  17. Iron and obesity status-associated insulin resistance influence circulating fibroblast-growth factor-23 concentrations.

    Directory of Open Access Journals (Sweden)

    José Manuel Fernández-Real

    Full Text Available Fibroblast growth factor 23 (FGF-23 is known to be produced by the bone and linked to metabolic risk. We aimed to explore circulating FGF-23 in association with fatness and insulin sensitivity, atherosclerosis and bone mineral density (BMD. Circulating intact FGF-23 (iFGF-23 and C-terminal (CtFGF-23 concentrations (ELISA were measured in 133 middle aged men from the general population in association with insulin sensitivity (Cohort 1; and in association with fat mass and bone mineral density (DEXA and atherosclerosis (intima media thickness, IMT in 78 subjects (52 women with a wide range of adiposity (Cohort 2. Circulating iFGF-23 was also measured before and after weight loss. In all subjects as a whole, serum intact and C-terminal concentrations were linearly and positively associated with BMI. In cohort 1, both serum iFGF-23 and CtFGF-23 concentrations increased with insulin resistance. Serum creatinine contributed to iFGF-23 variance, while serum ferritin and insulin sensitivity (but not BMI, age or serum creatinine contributed to 17% of CtFGF-23 variance. In cohort 2, CtFGF-23 levels were higher in women vs. men, and increased with BMI, fat mass, fasting and post-load serum glucose, insulin, HOMA-IR and PTH, being negatively associated with circulating vitamin D and ferritin levels. The associations of CtFGF-23 with bone density in the radius, lumbar spine and carotid IMT were no longer significant after controlling for BMI. Weight loss led to decreased iFGF-23 concentrations. In summary, the associations of circulating FGF-23 concentration with parameters of glucose metabolism, bone density and atherosclerosis are dependent on iron and obesity status-associated insulin resistance.

  18. Associations of −308G/A Polymorphism of Tumor Necrosis Factor(TNF)–α Gene and Serum TNF-α Levels with Measures of Obesity, Intra-Abdominal and Subcutaneous Abdominal Fat, Subclinical Inflammation and Insulin Resistance in Asian Indians in North India

    Science.gov (United States)

    Vikram, Naval K.; Bhatt, Surya Prakash; Bhushan, Bharat; Luthra, Kalpana; Misra, Anoop; Poddar, Pawan K.; Pandey, Ravindra M.; Guleria, Randeep

    2011-01-01

    Objectives: Obesity is associated with high levels proinflammatory cytokines like tumour necrosis factor alpha (TNF-α), which may play an important role in the genesis of insulin resistance. We evaluated the relationship of −308G/A polymorphism of TNF-α gene with obesity and insulin resistance in Asian Indians in north India. Methods: This cross-sectional study included 151 apparently healthy individuals (79 males, 72 females) 18–50 yrs of age from New Delhi, India. Body composition by dual-energy x-ray absorptiometry (DEXA) and abdominal fat by magnetic resonance imaging (MRI) were measured. Biochemical measurements included OGTT, lipids, fasting insulin, hs-CRP and TNF-α levels. We analysed −308G/A polymorphism of TNF-α gene and studied its association with obesity and biochemical parameters. Results: At comparable BMI, abdominal obesity was more prevalent in females (50%) as compared to males (20%). The wild genotype (GG) was present in 78.8%, GA in 17.9%, and AA in 3.3% subjects. Measures of body composition, abdominal fat distribution, lipids, insulin, hs-CRP and TNF-α levels were not influenced by the presence of −308G/A polymorphism. Serum TNF-α levels correlated significantly with fasting insulin in both genders. Conclusion: TNF-α levels correlate with fasting insulin but not with indicators of body composition in Asian Indians. The −308G/A polymorphism of TNF-α gene is not associated with differences in the serum levels of TNF-α in Asian Indians. PMID:21846948

  19. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country.

    Science.gov (United States)

    Rahmadhani, Rayinda; Zaharan, Nur Lisa; Mohamed, Zahurin; Moy, Foong Ming; Jalaludin, Muhammad Yazid

    2017-01-01

    The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance. This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country. Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression. Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03-2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36-5.19, p = 0.004). VDR BsmI polymorphism was significantly associated with vitamin D deficiency and insulin

  20. Double stranded viral RNA induces inflammation and insulin resistance in skeletal muscle from pregnant women in vitro.

    Science.gov (United States)

    Lappas, Martha

    2015-05-01

    Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies complicated by pre-existing maternal obesity and gestational diabetes mellitus (GDM). There is now increasing evidence that activation of Toll-like receptor (TLR) signalling pathways by viral products may play a role in the pathophysiology of diabetes. Thus, the aim of this study was to assess the effect of the TLR3 ligand and viral dsRNA analogue polyinosinic polycytidilic acid (poly(I:C)) on inflammation and the insulin signalling pathway in skeletal muscle from pregnant women. Human skeletal muscle tissue explants were performed to determine the effect of poly(I:C) on the expression and secretion of markers of inflammation, and the insulin signalling pathway and glucose uptake. Poly(I:C) significantly increased the expression of a number of inflammatory markers in skeletal muscle from pregnant women. Specifically, there was an increase in the expression and/or secretion of the pro-inflammatory cytokines TNF-α, and IL-6 and the pro-inflammatory chemokines IL-8 and MCP-1. These effect of poly(I:C) appear to mediated via a number of signalling molecules including the pro-inflammatory transcription factor NF-κB, and the serine threonine kinases GSK3 and AMPKα. Additionally, poly(I:C) decreased insulin stimulated GLUT-4 expression and glucose uptake in skeletal muscle from pregnant women. The in vitro data presented in this study suggests that viral infection may contribute to the pathophysiology of pregnancies complicated by pre-existing maternal obesity and/or GDM. It should be noted that the in vitro studies cannot be directly used to infer the same outcomes in the intact subject. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome.

    Science.gov (United States)

    Lemas, Dominick J; Young, Bridget E; Baker, Peter R; Tomczik, Angela C; Soderborg, Taylor K; Hernandez, Teri L; de la Houssaye, Becky A; Robertson, Charles E; Rudolph, Michael C; Ir, Diana; Patinkin, Zachary W; Krebs, Nancy F; Santorico, Stephanie A; Weir, Tiffany; Barbour, Linda A; Frank, Daniel N; Friedman, Jacob E

    2016-05-01

    Increased maternal body mass index (BMI) is a robust risk factor for later pediatric obesity. Accumulating evidence suggests that human milk (HM) may attenuate the transfer of obesity from mother to offspring, potentially through its effects on early development of the infant microbiome. Our objective was to identify early differences in intestinal microbiota in a cohort of breastfeeding infants born to obese compared with normal-weight (NW) mothers. We also investigated relations between HM hormones (leptin and insulin) and both the taxonomic and functional potentials of the infant microbiome. Clinical data and infant stool and fasting HM samples were collected from 18 NW [prepregnancy BMI (in kg/m(2)) obese (prepregnancy BMI >30.0) mothers and their exclusively breastfed infants at 2 wk postpartum. Infant body composition at 2 wk was determined by air-displacement plethysmography. Infant gastrointestinal microbes were estimated by using 16S amplicon and whole-genome sequencing. HM insulin and leptin were determined by ELISA; short-chain fatty acids (SCFAs) were measured in stool samples by using gas chromatography. Power was set at 80%. Infants born to obese mothers were exposed to 2-fold higher HM insulin and leptin concentrations (P obesity may adversely affect the early infant intestinal microbiome, HM insulin and leptin are independently associated with beneficial microbial metabolic pathways predicted to increase intestinal barrier function and reduce intestinal inflammation. This trial was registered at clinicaltrials.gov as NCT01693406. © 2016 American Society for Nutrition.

  2. Red wine polyphenols do not improve obesity-associated insulin resistance: A randomized controlled trial.

    Science.gov (United States)

    Woerdeman, Jorn; Del Rio, Daniele; Calani, Luca; Eringa, Etto C; Smulders, Yvo M; Serné, Erik H

    2018-01-01

    Preclinical studies have suggested that polyphenols extracted from red wine (RWPs) favourably affect insulin sensitivity, but there is controversy over whether RWPs exert similar effects in humans. The aim of the present study was to determine whether RWPs improve insulin sensitivity in obese volunteers. Obese (body mass index >30 kg/m 2 ) volunteers were randomly allocated to RWPs 600 mg/d (n = 14) or matched placebo (n = 15) in a double-blind parallel-arm study for 8 weeks. The participants were investigated at baseline and at the end of the study. Insulin sensitivity was determined using a hyperinsulinaemic-euglycaemic clamp (M-value), a mixed-meal test (Matsuda index), and homeostatic model assessment of insulin resistance (HOMA-IR). RWPs elicited no significant changes in M-value (RWP group: median [interquartile range; IQR] baseline 3.0 [2.4; 3.6]; end of study 3.3 [2.4; 4.8] vs placebo group: median [IQR] baseline 3.4 [2.8; 4.4]; end of study 2.9 [2.8; 5.9] mg/kg/min; P = .65), in Matsuda index (RWP group: median [IQR] baseline 3.3 [2.2; 4.8]; end of study 3.6 [2.4; 4.8] vs placebo group: median [IQR] baseline 4.0 [3.0; 6.0]; end of study 4.0 [3.0; 5.2]; P = .88), or in HOMA-IR. This study showed that 8 weeks of RWP supplementation did not improve insulin sensitivity in 29 obese volunteers. Our findings were not consistent with the hypothesis that RWPs ameliorate insulin resistance in human obesity. © 2017 John Wiley & Sons Ltd.

  3. Association Between Insulin Resistance and Oxidative Stress Parameters in Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    OpenAIRE

    Pirgon, ?zg?r; Bilgin, H?seyin; ?ekmez, Ferhat; Kurku, H?seyin; D?ndar, Bumin Nuri

    2013-01-01

    Objective: Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Methods: Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8?2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7?2.7 years) were enrolled in the study. The obese subjects were d...

  4. Obese but not normal-weight women with polycystic ovary syndrome are characterized by metabolic and microvascular insulin resistance.

    Science.gov (United States)

    Ketel, Iris J G; Stehouwer, Coen D A; Serné, Erik H; Korsen, Ted J M; Hompes, Peter G A; Smulders, Yvo M; de Jongh, Renate T; Homburg, Roy; Lambalk, Cornelis B

    2008-09-01

    Polycystic ovary syndrome (PCOS) and obesity are associated with diabetes and cardiovascular disease, but it is unclear to what extent PCOS contributes independently of obesity. The objective of the study was to investigate whether insulin sensitivity and insulin's effects on the microcirculation are impaired in normal-weight and obese women with PCOS. Thirty-five women with PCOS (19 normal weight and 16 obese) and 27 age- and body mass index-matched controls (14 normal weight and 13 obese) were included. Metabolic Insulin sensitivity (isoglycemic-hyperinsulinemic clamp) and microvascular insulin sensitivity [endothelium dependent (acetylcholine [ACh])] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation with laser Doppler flowmetry was assessed at baseline and during hyperinsulinemia. Metabolic insulin sensitivity (M/I value) and the area under the response curves to ACh and SNP curves were measured to assess microcirculatory function at baseline and during insulin infusion (microvascular insulin sensitivity). Obese women were more insulin resistant than normal-weight women (P PCOS women were more resistant than obese controls (P = 0.02). In contrast, normal-weight women with PCOS had similar insulin sensitivity, compared with normal-weight women without PCOS. Baseline responses to ACh showed no difference in the four groups. ACh responses during insulin infusion were significantly greater in normal-weight PCOS and controls than in obese PCOS and controls. PCOS per se had no significant influence on ACh responses during insulin infusion. During hyperinsulinemia, SNP-dependent vasodilatation did not significantly increase, compared with baseline in the four groups. PCOS per se was not associated with impaired metabolic insulin sensitivity in normal-weight women but aggravates impairment of metabolic insulin sensitivity in obese women. In obese but not normal-weight women, microvascular and metabolic insulin sensitivity are decreased, independent

  5. Is Chronic Inflammation a Possible Cause of Obesity-Related Depression?

    OpenAIRE

    Olszanecka-Glinianowicz, Magdalena; Zahorska-Markiewicz, Barbara; Kocełak, Piotr; Janowska, Joanna; Semik-Grabarczyk, Elżbieta; Wikarek, Tomasz; Gruszka, Wojciech; Dąbrowski, Piotr

    2009-01-01

    Adult obesity has been associated with depression, especially in women. Whether depression leads to obesity or obesity causes depression is unclear. Chronic inflammation is observed in obesity and depression. In 63 obese women without additional diseases depression level was assessed with the Beck's questionnaire. After evaluation of depression level study group was divided into groups according to the mood status (A—without depression, B—mild depression, and C—severe depression), and serum c...

  6. Normocaloric Diet Restores Weight Gain and Insulin Sensitivity in Obese Mice

    Directory of Open Access Journals (Sweden)

    Giovanni Enrico Lombardo

    2016-05-01

    Full Text Available An increased incidence of obesity is registered worldwide, and its association with insulin resistance and type 2 diabetes is closely related with increased morbidity and mortality for cardiovascular diseases. A major clinical problem in the management of obesity is the non-adherence or low adherence of patients to a hypo-caloric dietetic restriction. In this study we evaluated in obese mice the effects on insulin sensitivity of shifting from high-calorie foods to normal diet. Male C57BL/6JolaHsd mice (n=20 were fed with high fat diet for a 24 weeks period. Afterwards, body weight, energy and food intake were measured in all animals, together with parameters of insulin sensitivity by homeostatic model assessment of insulin resistance and plasma glucose levels in response to insulin administration. Moreover, in half of these mice, Glut4 mRNA levels were measured in muscle at the end of the high fat treatment, whereas the rest of the animals (n=10 were shifted to normocaloric diet for 10 weeks, after which the same analyses were carried out. A significant reduction of body weight was found after the transition from high to normal fat diet, and this decrease correlated well with an improvement in insulin sensitivity. In fact, we found a reduction in serum insulin levels and the recovery of insulin responsiveness in terms of glucose disposal measured by insulin tolerance test and Glut4 mRNA and protein expression. These results indicate that obesity related insulin resistance may be rescued by shifting from high fat diet to normocaloric diet.

  7. Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors.

    Science.gov (United States)

    Bougoulia, Maria; Triantos, Athanassios; Koliakos, George

    2006-01-01

    To evaluate the levels of Interleukin-6 (IL-6), glutathione peroxidase and isoprostane in obese women and their association with markers of cardiovascular risk factors before and after weight loss. 36 healthy obese women of reproductive age (group A: age (mean+/-SD) 35.4+/-9.2 years, Body Mass Index (BMI) 38.5+/-7 kg/m2) and 30 healthy, normal weight women (group B: age mean+/-SD 34.9+/-7.4 y., BMI 24+/-1.1 kg/m2) were included in the study. Glucose tolerance was normal in all participating women. Il-6, glutathione peroxidase and isoprostane, C-Reactive Protein (CRP), insulin, fasting plasma glucose, HOMA-IR as well as the lipid profile were evaluated. Body weight, BMI, Waist to Hip ratio (W/H) ratio, Waist Circumference (WC), %free fat mass and the %fat mass were also measured. A hypo-caloric diet was prescribed for the obese women and all participants were re-examined after six months. In obese women after weight loss, anthropometric obesity markers (BMI, W/H ratio), %fat, lipid profile, insulin levels and inflammation indices such as IL-6 and CRP, the oxidative stress index isoprostane, as well as glutathione peroxidase were significantly ameliorated. The levels of serum glutathione peroxidase activity were negatively correlated with IL-6 levels and were significantly increased after weight reduction. In obese women there was an association between IL-6 levels and the values of %fat, %free fat mass, insulin and HOMA-IR before and after weight loss. Weight loss is related to reduction of oxidative stress and inflammation; this beneficial effect could possibly be translated into reduction of cardiovascular risk in obese individuals.

  8. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    Science.gov (United States)

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  9. Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice.

    Science.gov (United States)

    Legry, Vanessa; Van Rooyen, Derrick M; Lambert, Barbara; Sempoux, Christine; Poekes, Laurence; Español-Suñer, Regina; Molendi-Coste, Olivier; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2014-10-01

    Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.

  10. Serum 25-Hydroxyvitamin D Concentration Is Independently Inversely Associated with Insulin Resistance in the Healthy, Non-Obese Korean Population

    Directory of Open Access Journals (Sweden)

    So Young Ock

    2016-07-01

    Full Text Available BackgroundWe evaluated the associations between 25-hydroxyvitamin D (25(OHD concentrations in serum and insulin resistance in the healthy Korean population.MethodsWe conducted this cross-sectional analysis in 1,807 healthy Korean people (628 men and 1,179 women aged 30 to 64 years in the Cardiovascular and Metabolic Disease Etiologic Research Center study. All participants were assessed for 25(OHD, fasting glucose, and insulin levels, and completed a health examination and lifestyle questionnaire according to standard procedures. Insulin resistance was defined as the homeostasis model assessment insulin resistance higher than the 75 percentile.ResultsCompared to those in the highest tertile (≥14.3 ng/mL, the odds ratio (OR for insulin resistance was 1.37 (95% confidence interval [CI], 1.01 to 1.86 for the 1st tertile (<9.7 ng/mL and 1.19 (95% CI, 0.08 to 1.62 for the 2nd tertile (9.7 to 14.3 ng/mL after adjusting for age, gender, waist circumference, alcohol consumption, smoking status, physical exercise, season, and cohort. After stratification of the subjects by adiposity, these associations remained only in non-obese subjects (lowest tertile vs. highest tertile, multivariable OR, 1.64; 95% CI, 1.05 to 2.56.ConclusionSerum 25(OHD has an independent inverse association with insulin resistance in the healthy, non-obese Korean population, even among people with vitamin D insufficiency.

  11. Metabolic syndrome and insulin resistance in obese adolescents

    Directory of Open Access Journals (Sweden)

    Amanda Oliva Gobato

    2014-03-01

    Full Text Available Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI, body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032 and with metabolic syndrome (p=0.006. All body composition indicators were correlated with insulin resistance (p<0.01. In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  12. Insulin-associated weight gain in obese type 2 diabetes mellitus patients: What can be done?

    Science.gov (United States)

    Brown, Adrian; Guess, Nicola; Dornhorst, Anne; Taheri, Shahrad; Frost, Gary

    2017-12-01

    Insulin therapy (IT) is initiated for patients with type 2 diabetes mellitus when glycaemic targets are not met with diet and other hypoglycaemic agents. The initiation of IT improves glycaemic control and reduces the risk of microvascular complications. There is, however, an associated weight gain following IT, which may adversely affect diabetic and cardiovascular morbidity and mortality. A 3 to 9 kg insulin-associated weight gain (IAWG) is reported to occur in the first year of initiating IT, predominantly caused by adipose tissue. The potential causes for this weight gain include an increase in energy intake linked to a fear of hypoglycaemia, a reduction in glycosuria, catch-up weight, and central effects on weight and appetite regulation. Patients with type 2 diabetes who are receiving IT often have multiple co-morbidities, including obesity, that are exacerbated by weight gain, making the management of their diabetes and obesity challenging. There are several treatment strategies for patients with type 2 diabetes, who require IT, that attenuate weight gain, help improve glycaemic control, and help promote body weight homeostasis. This review addresses the effects of insulin initiation and intensification on IAWG, and explores its potential underlying mechanisms, the predictors for this weight gain, and the available treatment options for managing and limiting weight gain. © 2017 John Wiley & Sons Ltd.

  13. Reduced Systemic Levels of IL-10 Are Associated with the Severity of Obstructive Sleep Apnea and Insulin Resistance in Morbidly Obese Humans

    Directory of Open Access Journals (Sweden)

    Sonia Leon-Cabrera

    2015-01-01

    Full Text Available Obstructive sleep apnea (OSA has been related to elevation of inflammatory cytokines and development of insulin resistance in morbidly obese (MO subjects. However, it is still unclear whether the systemic concentration of anti-inflammatory mediators is also affected in MO subjects directly related to the severity of OSA and level of insulin resistance. Normal weight and MO subjects were subjected to overnight polysomnography in order to establish the severity of OSA, according to the apnea-hypopnea index (AHI. Blood samples were obtained for estimation of total cholesterol and triglycerides, insulin, glucose, insulin resistance, tumor necrosis factor alpha (TNF-α, interleukin 12 (IL12, and interleukin 10 (IL-10. Serum levels of IL-10 were significantly lower in MO subjects with OSA than in MO and control individuals without OSA. Besides being inversely associated with serum TNF-α and IL-12, decreased IL-10 levels were significantly related to increased AHI, hyperinsulinemia, and insulin resistance. Serum IL-10 is significantly reduced in morbidly obese subjects with severe OSA while also showing a clear relationship with a state of hyperinsulinemia and insulin resistance probably regardless of obesity in the present sample. It may be of potential clinical interest to identify the stimulatory mechanisms of IL-10 in obese individuals with OSA.

  14. Alantolactone Improves Prolonged Exposure of Interleukin-6-Induced Skeletal Muscle Inflammation Associated Glucose Intolerance and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Minjee Kim

    2017-06-01

    , alantolactone can be a promising candidate for the treatment of inflammation-associated glucose intolerance and insulin resistance.

  15. The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance

    Czech Academy of Sciences Publication Activity Database

    Chmelař, Jindřich; Chung, K.-J.; Chavakis, T.

    2013-01-01

    Roč. 109, č. 3 (2013), s. 399-406 ISSN 0340-6245 Institutional support: RVO:60077344 Keywords : Obesity * adipose tissue * inflammation * review * leukocytes Subject RIV: EC - Immunology Impact factor: 5.760, year: 2013

  16. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  17. Does Inflammation Determine Whether Obesity Is Metabolically Healthy or Unhealthy? The Aging Perspective

    Directory of Open Access Journals (Sweden)

    Iftikhar Alam

    2012-01-01

    Full Text Available Obesity is a major health issue in developed as well as developing countries. While obesity is associated with relatively good health status in some individuals, it may become a health issue for others. Obesity in the context of inflammation has been studied extensively. However, whether obesity in its various forms has the same adverse effects is a matter of debate and requires further research. During its natural history, metabolically healthy obesity (MHO converts into metabolically unhealthy obesity (MUHO. What causes this transition to occur and what is the role of obesity-related mediators of inflammation during this transition is discussed in this paper.

  18. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.

    Science.gov (United States)

    Yamaguchi, Shintaro; Yoshino, Jun

    2017-05-01

    Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.

  19. Total antioxidant and oxidant status in obese children without insulin resistance

    Directory of Open Access Journals (Sweden)

    Ayşegül Doğan Demir

    2014-06-01

    Full Text Available Objective: Oxidative stress in obese children may lead in adulthood serious conditions such as coronary heart diseases or type 2 diabetes mellitus. In childhood oxidative stress is associated with insulin resistance or extreme obesity. In this study, we aimed to evaluate oxidative stress status in moderately obese children without insulin resistance. Methods: A total of 38 obese children (21 male, 17 female without insulin resistance, mean aged 9.4±3.8 years and 51 normal weight children (25 male, 26 female as the control group, mean aged 9.3±3.9 years were enrolled to the study. Total oxidative status (TOS, total antioxidant capacity (TAC were measured and oxidative stress index (OSI was calculated. Results: The results reveal that obese children had lower TAC than normal weight children (2,27±0,28 vs. 2.76±0.35 mmol Trolox Eq./L; p<0,001. There was no statistical difference between obese and control groups regarding TOS (6,08±3,63 vs 5.25±4.16 μmol H2O2 Eq./L; p=0.333. OSI was higher in obese group (2.65±1.52 vs 1.92±1.56; p=0.029 Conclusion: Balance between oxidant and antioxidant system is disrupted due to the reduced TAC even in moderately obese children without insulin resistance. Further studies should also be performed to evaluate the beneficial effects of dietary intake of antioxidants in these children.

  20. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation

    NARCIS (Netherlands)

    Wensveen, Felix M.; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-01-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is

  1. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    Science.gov (United States)

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Negative association of acetate with visceral adipose tissue and insulin levels

    Directory of Open Access Journals (Sweden)

    Layden BT

    2012-02-01

    Full Text Available Brian T Layden1, Sudha K Yalamanchi1, Thomas MS Wolever2, Andrea Dunaif1, William L Lowe Jr11Division of Endocrinology, Metabolism and Molecular Medicine (BTL, SKY, AD, WLL, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; 2Department of Nutritional Sciences (TMSW, University of Toronto, Toronto, CanadaBackground: The composition of gut flora has been proposed as a cause of obesity, a major risk factor for type 2 diabetes. The objective of this study was to assess whether serum short chain fatty acids, a major by-product of fermentation in gut flora, are associated with obesity and/or diabetes-related traits (insulin sensitivity and secretion.Methods: The association of serum short chain fatty acids levels with measures of obesity was assessed using body mass index, computerized tomography scan, and dual photon X-ray absorptiometry scan. Insulin sensitivity and insulin secretion were both determined from an oral glucose tolerance test and insulin sensitivity was also determined from a hyperinsulinemic euglycemic clamp.Results: In this population of young, obese women, acetate was negatively associated with visceral adipose tissue determined by computerized tomography scan and dual photon X-ray absorptiometry scan, but not body mass index. The level of the short chain fatty acids acetate, but not propionate or butyrate, was also negatively associated with fasting serum insulin and 2 hour insulin levels in the oral glucose tolerance test.Conclusions: In this population, serum acetate was negatively associated with visceral adipose tissue and insulin levels. Future studies need to verify these findings and expand on these observations in larger cohorts of subjects.Keywords: obesity, insulin, gut flora, short chain fatty acids 

  3. Obesity, insulin resistance, and type 1 diabetes mellitus.

    Science.gov (United States)

    Polsky, Sarit; Ellis, Samuel L

    2015-08-01

    To summarize recent studies about obesity, insulin resistance, and type 1 diabetes mellitus (T1DM). Overweight and obesity continue to be prevalent among individuals with T1DM. Obesity rates appear to have reached a plateau among children with T1DM in some parts of the world. The risk for development of T1DM is increased by obesity and may occur at an earlier age among obese individuals with a predisposition. Obesity increases the risk for comorbidities among individuals with T1DM, especially metabolic syndrome, and microvascular and macrovascular diseases. Metformin, glucagon-like peptide-1 agonist therapy, sodium glucose cotransporter-2 inhibitor therapy, and bariatric surgery may be beneficial therapies for glucose control, comorbidity management, and obesity among adults with T1DM. Insulin resistance may be improved among obese individuals with T1DM by biguanides (metformin) and glucagon-like peptide-1 agonists (exenatide). We review the last 18 months of literature on obesity, insulin resistance, and T1DM to highlight new epidemiologic results and treatments.

  4. Effect of Seyoeum on Obesity, Insulin Resistance, and Nonalcoholic Fatty Liver Disease of High-Fat Diet-Fed C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Hyun-Young Na

    2017-01-01

    Full Text Available Background. This study was performed to evaluate the effect of Seyoeum (SYE, a novel herbal meal replacement, on insulin resistance and nonalcoholic fatty liver disease (NAFLD in obese mice fed with a high-fat diet (HFD. Methods. SYE contained six kinds of herbal powder such as Coix lacryma-jobi, Oryza sativa, Sesamum indicum, Glycine max, Liriope platyphylla, and Dioscorea batatas. Male C57BL/6 mice were divided into four groups: normal chow (NC, HFD, SYE, and HFD plus SYE (HFD + SYE. The mice in groups other than NC were fed HFD for 9 weeks to induce obesity and then were fed each diet for 6 weeks. Clinical markers related to obesity, diabetes, and NAFLD were examined and gene expressions related to inflammation and insulin receptor were determined. Results. Compared with HFD group, body weight, serum glucose, serum insulin, HOMA-IR, total cholesterol, triglyceride, epididymal fat pad weight, liver weight, and inflammatory gene expression were significantly reduced in SYE group. Insulin receptor gene expression increased in SYE group. Conclusions. Based on these results, we conclude that SYE improved obesity and insulin resistance in high-fat fed obese mice. Our findings suggest that SYE could be a beneficial meal replacement through these antiobesity and anti-insulin resistance effects.

  5. Bromocriptine and insulin sensitivity in lean and obese subjects

    Directory of Open Access Journals (Sweden)

    L Bahler

    2016-11-01

    Full Text Available Bromocriptine is a glucose-lowering drug, which was shown to be effective in obese subjects with insulin resistance. It is usually administered in the morning. The exact working mechanism of bromocriptine still has to be elucidated. Therefore, in this open-label randomized prospective cross-over mechanistic study, we assessed whether the timing of bromocriptine administration (morning vs evening results in different effects and whether these effects differ between lean and obese subjects. We studied the effect of bromocriptine on insulin sensitivity in 8 lean and 8 overweight subjects using an oral glucose tolerance test. The subjects used bromocriptine in randomized cross-over order for 2 weeks in the morning and 2 weeks in the evening. We found that in lean subjects, bromocriptine administration in the evening resulted in a significantly higher post-prandial insulin sensitivity as compared with the pre-exposure visit (glucose area under the curve (AUC 742 mmol/L * 120 min (695–818 vs 641 (504–750, P = 0.036, AUC for insulin did not change, P = 0.575. In obese subjects, both morning and evening administration of bromocriptine resulted in a significantly higher insulin sensitivity: morning administration in obese: insulin AUC (55,900 mmol/L * 120 min (43,236–96,831 vs 36,448 (25,213–57,711, P = 0.012 and glucose AUC P = 0.069; evening administration in obese: glucose AUC (735 mmol/L * 120 min (614–988 vs 644 (568–829, P = 0.017 and insulin AUC, P = 0.208. In conclusion, bromocriptine increases insulin sensitivity in both lean and obese subjects. In lean subjects, this effect only occurred when bromocriptine was administrated in the evening, whereas in the obese, insulin sensitivity increased independent of the timing of bromocriptine administration.

  6. Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans.

    Science.gov (United States)

    El Assar, Mariam; Angulo, Javier; Santos-Ruiz, Marta; Ruiz de Adana, Juan Carlos; Pindado, María Luz; Sánchez-Ferrer, Alberto; Hernández, Alberto; Rodríguez-Mañas, Leocadio

    2016-06-01

    The presence of insulin resistance (IR) is determinant for endothelial dysfunction associated with obesity. Although recent studies have implicated the involvement of mitochondrial superoxide and inflammation in the defective nitric oxide (NO)-mediated responses and subsequent endothelial dysfunction in IR, other mechanisms could compromise this pathway. In the present study, we assessed the role of asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of endothelium-dependent vasodilatation in human morbid obesity and in a non-obese rat model of IR. We show that both increased ADMA and up-regulated arginase are determinant factors in the alteration of the l-arginine/NO pathway associated with IR in both models and also that acute treatment of arteries with arginase inhibitor or with l-arginine significantly alleviate endothelial dysfunction. These results help to expand our knowledge regarding the mechanisms of endothelial dysfunction that are related to obesity and IR and establish potential therapeutic targets for intervention. Insulin resistance (IR) is determinant for endothelial dysfunction in human obesity. Although we have previously reported the involvement of mitochondrial superoxide and inflammation, other mechanisms could compromise NO-mediated responses in IR. We evaluated the role of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) and arginase with respect to IR-induced impairment of l-arginine/NO-mediated vasodilatation in human morbid obesity and in a non-obese rat model of IR. Bradykinin-induced vasodilatation was evaluated in microarteries derived from insulin-resistant morbidly obese (IR-MO) and non-insulin-resistant MO (NIR-MO) subjects. Defective endothelial vasodilatation in IR-MO was improved by l-arginine supplementation. Increased levels of ADMA were detected in serum and adipose tissue from IR-MO. Serum ADMA positively correlated with IR score and negatively with pD2 for bradykinin. Gene

  7. Changes in total and central fat mass after a hypocaloric diet associate with changes of apoC-I in postmenopausal obese women.

    Science.gov (United States)

    Wassef, Hanny; Davignon, Jean; Prud'homme, Denis; Rabasa-Lhoret, Rémi; Faraj, May

    2014-01-01

    We previously reported the secretion of apolipoprotein apoC-I, apoC-II, apoC-III, and apoE from adipose tissue in postmenopausal obese women, suggesting their potential regulation by energy balance in humans. We examined the changes of these apolipoproteins, in relation to changes in cardiometabolic risks, following a hypocaloric diet in overweight/obese women. A total of 137 postmenopausal overweight/obese women who were free of chronic disease were examined at baseline, 56 women of whom were reevaluated following a 6-month hypocaloric diet. At baseline, there was no association between the plasma transferable apolipoproteins with any index of adiposity, insulin sensitivity, lipids, or inflammation, except for apoE with peripheral fat mass (r = 0.18, P hypocaloric diet reduced adiposity, insulin resistance, and inflammatory markers but had no significant effects on plasma transferable apolipoproteins or lipids, whose average concentrations were within normal range at baseline. The changes in total and central, but not peripheral, fat mass associated with changes of apoC-I only (r = 0.28 and r = 0.43; respectively, P < .05). Post-weight-loss apoC-I increased in some women (52%) yet it decreased in others, however there were no differences in cardiometabolic risk factors between the 2 groups. Plasma apoC-I, apoC-II, apoC-III, and apoE are not associated with adiposity, insulin sensitivity, or inflammation in obese but healthy postmenopausal women. Post-weight-loss changes of total and central fat mass associate with changes of apoC-I. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    Science.gov (United States)

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Oxidative stress and inflammation in lean and obese subjects with polycystic ovary syndrome.

    Science.gov (United States)

    Blair, Sarah A; Kyaw-Tun, Tommy; Young, Ian S; Phelan, Niamh A; Gibney, James; McEneny, Jane

    2013-01-01

    To determine whether polycystic ovary syndrome (PCOS) independently influences oxidative stress and inflammation or if the culprit is the comorbidities of obesity and/or insulin resistance common to this condition. Thirty women with PCOS were matched for age, body mass index and insulin resistance with 30 control subjects. Oxidative stress was examined by measuring the total oxidant status (TOS) and total antioxidant capacity (TAC) by spectrophotometric assay. The inflammatory biomarkers, C-reactive protein, plasminogen activator inhibitor-1, myeloperoxidase, neopterin, and serum amyloid A were measured by ELISA methodologies. Oxidative status was increased in the PCOS subjects relative to their weight-matched controls (TOS: obese PCOS patients vs. obese controls, 42.42 +/- 4.49 vs. 32.57 +/- 1.97, plean PCOS patients vs. lean controls, 33.69 +/- 1.59 vs. 28.69 +/- 1.18 micromol H2O2 Equiv/L, p lean PCOS group relative to their weight-matched controls (TAC: lean PCOS patients vs. lean controls, 1.10 +/- 0.09 vs. 1.49 +/- 0.03 nmol Trolox Equiv/L, p PCOS independently influenced oxidative stress. Overall, the presence of PCOS may increase cardiovascular risk.

  10. Sex differences in the association between dietary restraint, insulin resistance and obesity.

    Science.gov (United States)

    Jastreboff, Ania M; Gaiser, Edward C; Gu, Peihua; Sinha, Rajita

    2014-04-01

    Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. In this cross-sectional, observational study, we studied 487 individuals from the community (men N = 222, women N = 265), who ranged from lean (body mass index 18.5-24.9 kg/m(2), N = 173), overweight (body mass index 25-29.9 kg/m(2), N = 159) to obese (body mass index >30 kg/m(2), N = 155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.0001). Furthermore, HOMA-IR was significantly higher in men who were high- versus low-restrained eaters (p = 0.0006). This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restrained eating is associated with insulin resistance in men but not in women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Association of single nucleotide polymorphism at position 45 in adiponectin gene with plasma adiponectin level and insulin resistance in obesity

    International Nuclear Information System (INIS)

    Chen Xiaoyu; Li Xisheng; Lin Xiahong; Gao Hongzhi; Li Qiulan; Zha Jinshun

    2012-01-01

    Objective: To explore the association of single nucleotide polymorphism at position 45 (SNP45) in adiponectin gene with plasma adiponectin level and insulin resistance in obesity in Quanzhou area of Fujian province. Methods: Two hundred and forty-eight patients with obesity and 225 normal control subjects were enrolled in this study.Fasting insulin (FINS) were measured by radioimmunoassay and fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) were measured by BECKMAN DXC800 biochemistry analyzer. Body mass index (BMI), waist to hip ratio,homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. Plasma adiponectin levels were examined by means of enzyme-linked immunosorbentassy. The adiponectin gene SNP45 was identified by PCR-restriction fragment length polymorphism. Results: (1) Frequencies of GG+GT genotype in obesity group and normal control group were 61% and 44% respectively (χ 2 =14.182, P<0.01), and G allele frequencies were 35% and 25% (χ 2 =10.708, P<0.01). (2) In obesity group,the subjects with SNP45 GG+GT genotype had higher TG and LDL-C levels than those with TT genotype (t=2.604, P<0.01; t=5.507, P<0.01), and had lower adiponectin level than those with TT genotype (t=2.275, P<0.05), and had significantly lower HDL-L level than those with TT genotype (t=10.100, P< 0.01). (3) In normal control group,the subjects with SNP45 GG +GT genotype had significantly lower adiponectin,TG,TC levels than those with TT genotype (t=2.510, P<0.05; t=2.922, P<0.01; t=3.272, P< 0.01). (4) Logistic analysis proved that the SNP45 GG+GT genotype in obesity group was associated with decreased risk of plasma adiponectin level (OR=0.810, 95% CI : 0.673-0.975, P<0.05), and with increased risk of HOMA-IR (OR=1.746, 95% CI : 1.060-2.875, P<0.05). The SNP45 GG+GT genotype in normal control group was associated with increased risk of HOMA-IR (OR=3

  12. SOCS-1 deficiency does not prevent diet-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Macotela, Yazmin; Boucher, Jérémie

    2008-01-01

    Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we...... investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression...... of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency...

  13. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    Science.gov (United States)

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  14. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR plays a critical role in attenuating insulin resistance, inflammation and oxidative stress.The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms.Mice were fed with a high-fat diet (HFD, 40% of calories from fat for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured.HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2 expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks.These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.

  15. Effects of pregnancy on obesity-induced inflammation in a mouse model of fetal programming

    DEFF Research Database (Denmark)

    Ingvorsen, Camilla; Thysen, Anna Hammerich; Fernandez-Twinn, D.

    2014-01-01

    Objective Maternal obesity is associated with increased risk of metabolic dysfunction in the offspring. It is not clear whether it is the metabolic changes or chronic low-grade inflammation in the obese state that causes this metabolic programming. We therefore investigated whether low-grade infl......Objective Maternal obesity is associated with increased risk of metabolic dysfunction in the offspring. It is not clear whether it is the metabolic changes or chronic low-grade inflammation in the obese state that causes this metabolic programming. We therefore investigated whether low...... of the obese animals, which suggested that monocytes are being recruited from the blood to the liver and adipose tissue in the obese animals. Gestation reversed macrophage infiltration, such that obese dams showed a lower adipose tissue macrophage count at the end of gestation compared to pre-pregnancy obese...

  16. Dietary Sulfur-Containing Amino Acids Are Associated with Higher Prevalence of Overweight/Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study.

    Science.gov (United States)

    Li, Yan-Chuan; Li, Yu-Zheng; Li, Rui; Lan, Li; Li, Chun-Long; Huang, Min; Shi, Dan; Feng, Ren-Nan; Sun, Chang-Hao

    2018-06-07

    Elevation of plasma sulfur-containing amino acids (SAAs) is generally associated with higher body mass index (BMI) and unfavorable lipid profiles. It is not known how dietary SAAs relate to these associations in humans. A convenient tool named internet-based dietary questionnaire for Chinese (IDQC) was used to estimate dietary SAAs intake. A total of 936 participants were randomly recruited and asked to complete the IDQC. Furthermore, 90 subjects were randomly selected to perform a subgroup study. The associations between dietary SAAs and prevalence of obesity, lipid profiles, and status of insulin resistance (IR), inflammation and oxidative stress were assessed. Dietary total SAAs and cysteine of overweight/obese participants were significantly higher. Dietary total SAAs and cysteine were positively associated with BMI and waist circumference. Higher dietary total SAAs were associated with higher prevalence of overweight/obesity. Higher dietary total SAAs and cysteine also associated with higher serum triglyceride (total cholesterol), low density lipoprotein, fasting blood glucose, 2 h-postprandial glucose, and homeostasis model assessment of IR. In the subgroup study, positive associations between dietary SAAs and inflammation biomarkers were also observed. Dietary SAAs are associated with higher prevalence of overweight/obesity, unfavorable lipid profiles and status of IR, and inflammation. © 2018 S. Karger AG, Basel.

  17. Surgical treatment of nonalcoholic fatty liver disease in severely obese patients

    Directory of Open Access Journals (Sweden)

    Vander Naalt SJ

    2014-10-01

    Full Text Available Steven J Vander Naalt, Juan P Gurria, AiXuan L HoltermanUniversity of Illinois College of Medicine at Peoria, Children's Hospital of Illinois, Department of Surgery/Pediatric Surgery, Peoria, IL, USAAbstract: Obesity is a multi-organ system disease with underlying metabolic abnormalities and chronic systemic inflammation. Nonalcoholic fatty liver disease (NAFLD is a hepatic manifestation of obesity metabolic dysfunction and its associated cardiovascular- and liver-related morbidities and mortality. Our current understanding of NAFLD pathogenesis, disease characteristics, the role of insulin resistance, chronic inflammation, gut–liver and gut–brain crosstalk and the effectiveness of pharmacotherapy is still evolving. Bariatric surgery significantly improves metabolic and NAFLD histology in severely obese patients, although its positive effects on fibrosis are not universal. Bariatric surgery benefits NAFLD through its metabolic effect on insulin resistance, inflammation, and insulinotropic and anorexinogenic gastrointestinal hormones. Further studies are needed to understand the natural course of NAFLD in severely obese patients and the role of weight loss surgery as a primary treatment for NAFLD.Keywords: NAFLD, severe obesity, bariatric surgery

  18. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    Science.gov (United States)

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  19. Effect of Avocado Soybean Unsaponifiables on Insulin Secretion and Insulin Sensitivity in Patients with Obesity

    Directory of Open Access Journals (Sweden)

    Esperanza Martínez-Abundis

    2013-10-01

    Full Text Available Aim: To evaluate the effect of avocado soybean unsaponifiables (ASU on insulin secretion and insulin sensitivity in patients with obesity. Methods: A randomized, double-blind, placebo-controlled, clinical trial was carried out in 14 obese adult volunteers. After random allocation of the intervention, 7 patients received 300 mg of ASU or placebo during a fasting state for 3 months. A metabolic profile including IL-6 and high-sensitivity C-reactive protein (hs-CRP levels was carried out prior to the intervention. A hyperglycemic-hyperinsulinemic clamp technique was used to assess insulin secretion and insulin sensitivity phases. Mann-Whitney U test and Wilcoxon test were performed for statistical analyses. The study was approved by the local ethics committee of our institution. Results: At baseline, both groups were similar according to clinical and laboratory characteristics. There was no significant difference in insulin secretion and insulin sensitivity with ASU. Conclusions: ASU administration for 3 months did not modify insulin secretion and insulin sensitivity in patients with obesity.

  20. Inflammation markers are associated with metabolic syndrome and ventricular arrhythmia in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Krzysztof Safranow

    2016-02-01

    outcome, results in a concomitant decrease of inflammation markers. The present results confirm the strong association of inflammation with metabolic syndrome components in CAD patients. The MS components, including obesity, low HDL cholesterol, high triacylglycerols, as well as high LDL cholesterol, were independent predictors of higher levels of inflammation markers. Other MS components lost significance in multivariate analysis (diabetes or hyperglycemia or were not associated with inflammation (hypertension. Obesity and dyslipidaemia are known risk factors for adverse cardiovascular events. An association of metabolic syndrome with elevated markers of inflammation is evident in many studies, but the responsible mechanisms are not fully understood [54]. It seems that the proinflammatory state of obesity and metabolic syndrome induces insulin resistance, leading to clinical and biochemical manifestations of the metabolic syndrome [18]. Several prospective studies have established that IL-6 levels are increased in subjects with obesity or MS and that raised IL-6 levels are predictive for the development of MS and DM [30]. Furthermore, in the liver, IL-6 contributes to insulin resistance by impairment of insulin signaling, which leads to decreased levels of glycogen synthase and decreased glucose uptake [57]. By contrast, in skeletal muscle IL-6 is secreted in response to exercise and increases glucose uptake [43]. IL-6 induces the secretion of CRP, especially during an acute-phase response to inflammation or tissue injury [36]. The elevated CRP levels observed in subjects with abdominal obesity and MS are caused by IL-6 released from macrophages in the visceral adipose tissue and subendothelial space, which stimulates CRP secretion from the liver. CRP contributes to insulin resistance by attenuating insulin signaling [17]. Previous studies have confirmed that elevated CRP levels are predictive of the development of insulin resistance, DM and MS [46,51]. It was observed

  1. Obesity, insulin resistance and comorbidities – Mechanisms of association

    Science.gov (United States)

    Castro, Ana Valeria B.; Kolka, Cathryn M.; Kim, Stella P.; Bergman, Richard N.

    2015-01-01

    Overall excess of fat, usually defined by the body mass index, is associated with metabolic (e.g. glucose intolerance, type 2 diabetes mellitus (T2DM), dyslipidemia) and non-metabolic disorders (e.g. neoplasias, polycystic ovary syndrome, non-alcoholic fat liver disease, glomerulopathy, bone fragility etc.). However, more than its total amount, the distribution of adipose tissue throughout the body is a better predictor of the risk to the development of those disorders. Fat accumulation in the abdominal area and in non-adipose tissue (ectopic fat), for example, is associated with increased risk to develop metabolic and non-metabolic derangements. On the other hand, observations suggest that individuals who present peripheral adiposity, characterized by large hip and thigh circumferences, have better glucose tolerance, reduced incidence of T2DM and of metabolic syndrome. Insulin resistance (IR) is one of the main culprits in the association between obesity, particularly visceral, and metabolic as well as non-metabolic diseases. In this review we will highlight the current pathophysiological and molecular mechanisms possibly involved in the link between increased VAT, ectopic fat, IR and comorbidities. We will also provide some insights in the identification of these abnormalities. PMID:25211442

  2. Insight in modulation of inflammation in response to diclofenac intervention: a human intervention study

    NARCIS (Netherlands)

    van Erk, M.J.; Wopereis, S.; Rubingh, C.; van Vliet, T.; Verheij, E.; Cnubben, N.H.P.; Pedersen, T.L.; Newman, J.W.; Smilde, A.K.; van der Greef, J.; Hendriks, H.F.J.; van Ommen, B.

    2010-01-01

    Background: Chronic systemic low-grade inflammation in obese subjects is associated with health complications including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce these risks. However, available markers of inflammatory status inadequately

  3. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Hanson, K

    2001-01-01

    Plasma concentrations of interleukin-6 (IL-6), a proinflammatory cytokine produced and released in part by adipose tissue, are elevated in people with obesity and type 2 diabetes. Because recent studies suggest that markers of inflammation predict the development of type 2 diabetes, we examined w...... whether circulating plasma IL-6 concentrations were related to direct measures of insulin resistance and insulin secretory dysfunction in Pima Indians, a population with high rates of obesity and type 2 diabetes....

  4. Obese adolescent girls with polycystic ovary syndrome (PCOS) have more severe insulin resistance measured by HOMA-IR score than obese girls without PCOS.

    Science.gov (United States)

    Sawathiparnich, Pairunyar; Weerakulwattana, Linda; Santiprabhob, Jeerunda; Likitmaskul, Supawadee

    2005-11-01

    The prevalence of obesity in Thai children is increasing. These individuals are at increased risks of metabolic syndrome that includes insulin resistance, type 2 diabetes mellitus (T2DM), polycystic ovary syndrome (PCOS), dyslipidemia and hypertension. PCOS has been known to be associated with insulin resistance. To compare the insulin sensitivity between obese adolescent girls with PCOS and those without PCOS. We reviewed demographic and hormonal data of 6 obese adolescent girls with PCOS and compared with 6 age, weight and BMI-matched non-PCOS controls. Each subject underwent an oral glucose tolerance test. Homeostasis model assessment of insulin resistance score (HOMA-IR score) in obese adolescent girls with PCOS was significantly higher than in girls without PCOS with median and range as follows (16.5 [3.8, 21.8] vs. 4.1 [3.3, 6.9], p = 0.04). Our study demonstrates that obese adolescent girls with PCOS have more severe insulin resistance measured by HOMA-IR score than girls without PCOS independent of the degree of obesity. Since insulin resistance is a metabolic precursor of future cardiovascular diseases, obese adolescent girls with PCOS might be at greater risk of developing cardiovascular disease in later adulthood than their non-PCOS counterparts.

  5. The Immune System in Obesity: Developing Paradigms Amidst Inconvenient Truths.

    Science.gov (United States)

    Agrawal, Madhur; Kern, Philip A; Nikolajczyk, Barbara S

    2017-08-15

    Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.

  6. Correlation between Interleukin-6 (IL-6, High Sensitivity C-Reactive Protein (hsCRP, Endothelin-1 (ET-1, Asymmetric Dimethylarginine (ADMA and Insulin Resistance (HOMA-IR in Central Obese Men

    Directory of Open Access Journals (Sweden)

    Andri Hidayat

    2011-04-01

    Full Text Available BACKGROUND: Many studies have shown that obesity was closely related to insulin resistance via several pathways such as inflammation, oxidative stress, lipolysis, and endothelial dysfunction. This study was carried out to observe the correlation between inflammation (IL-6 and hsCRP, lipolysis process (ET-1, and endothelial dysfunction (ADMA and insulin resistance (HOMA-IR in centrally obese men. METHODS: This was a cross sectional study on 62 male subjects aged 30–60 years old with waist circumference (WC >90 cm. IL-6, ET-1 and ADMA levels were measured using ELISA method, while hsCRP and insulin were measured using chemiluminescence method. All blood testings were conducted in Prodia Clinical Laboratory. RESULTS: The results showed that WC was significantly correlated with hsCRP (r=0.294, p=0.022, ET-1 (r=0.257, p=0.047 and ADMA (r=0.338, p=0.009. We also found a significant correlation between hsCRP with HOMA-IR (r=0.324, p=0.021, ADMA with HOMA-IR (r=0.280, p=0.045 and IL-6 with hsCRP (r=0.437, p=0.003. CONCLUSIONS: hsCRP and ADMA have significant correlation with HOMA-IR in centrally obese men. HOMA-IR significantly increases in subjects with ADMA above median and either IL-6 or hsCRP above median, as compared to those in the other groups. Inflammation and endothelial dysfunction are important causal pathways of insulin resistance state in centrally obese men. KEYWORDS: obesity, IL-6, hsCRP, ET-1, ADMA, HOMA-IR.

  7. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2011-08-01

    Full Text Available Abstract Cigarette smoke is a major risk factor for a number of diseases including lung cancer and respiratory infections. Paradoxically, it also contains nicotine, an anti-inflammatory alkaloid. There is increasing evidence that smokers have a lower incidence of some inflammatory diseases, including ulcerative colitis, and the protective effect involves the activation of a cholinergic anti-inflammatory pathway that requires the α7 nicotinic acetylcholine receptor (α7nAChR on immune cells. Obesity is characterized by chronic low-grade inflammation, which contributes to insulin resistance. Nicotine significantly improves glucose homeostasis and insulin sensitivity in genetically obese and diet-induced obese mice, which is associated with suppressed adipose tissue inflammation. Inflammation that results in disruption of the epithelial barrier is a hallmark of inflammatory bowel disease, and nicotine is protective in ulcerative colitis. This article summarizes current evidence for the anti-inflammatory effects of nicotine in obesity and ulcerative colitis. Selective agonists for the α7nAChR could represent a promising pharmacological strategy for the treatment of inflammation in obesity and ulcerative colitis. Nevertheless, we should keep in mind that the anti-inflammatory effects of nicotine could be mediated via the expression of several nAChRs on a particular target cell.

  8. Obesity-driven gut microbiota inflammatory pathways to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Agra eCavalcante-Silva

    2015-11-01

    Full Text Available The intimate interplay between immune system, metabolism and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signalling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.

  9. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    Science.gov (United States)

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  10. DIABETES ASSOCIATED OXIDATIVE STRESS AND INFLAMMATION ALTERS THE PROTECTIVE EFFECT OF OBESITY ON SURVIVAL IN CHD PATIENTS

    Directory of Open Access Journals (Sweden)

    Serpil M. Deger

    2012-06-01

    Full Text Available In contrast to the adverse outcomes of obesity in general population, increased body mass index (BMI is associated with improved survival in hemodialysis (CHD patients. The aim of this retrospective study was to evaluate the association between obesity and mortality by diabetic status among 98 maintenance CHD patients. The median follow up was 33 (19, 56 months. Mean age was 49±13 years, 66% were male and 48 % had obesity. 45% of obese subjects were diabetic. Among the subgroups of study population, survival of diabetic obese patients was significantly lower compared to non-diabetic obese subjects (p=0.007 (Figure 1. The subgroup comparisons showed that diabetic obese patients tend to have higher truncal fat percentage (p<0.001 and lower lean body mass standardized by body surface area compared to nondiabetic counterparts although difference was not statistically significance. Diabetic obese patients had higher leptin (p=0.001 and high sensitivity C-reactive protein levels (0.005. Additionally, protein thiols (P-SH were significantly decreased in diabetic obese participants (p=0.03. Although, elevated body fatness appears to be protective for CHD population, presence of overt diabetes alters this advantage by increasing inflammation and oxidative stress.fx1

  11. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2016-06-01

    The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.

  12. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle.

    Science.gov (United States)

    Tran, Ha T; Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-01-01

    Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.

  13. Molecular correlates in urine for the obesity and prostatic inflammation of BPH/LUTS patients.

    Science.gov (United States)

    Tyagi, Pradeep; Motley, Saundra S; Koyama, Tatsuki; Kashyap, Mahendra; Gingrich, Jeffrey; Yoshimura, Naoki; Fowke, Jay H

    2018-01-01

    Benign prostatic hyperplasia (BPH) is strongly associated with obesity and prostatic tissue inflammation, but the molecular underpinning of this relationship is not known. Here, we examined the association between urine levels of chemokines/adipokines with histological markers of prostate inflammation, obesity, and lower urinary tract symptoms LUTS in BPH patients. Frozen urine specimens from 207 BPH/LUTS patients enrolled in Nashville Men's Health Study were sent for blinded analysis of 11 analytes, namely sIL-1RA, CXC chemokines (CXCL-1, CXCL-8, CXCL-10), CC chemokines (CCL2, CCL3, CCL5), PDGF-BB, interleukins IL-6, IL-17, and sCD40L using Luminex™ xMAP® technology. After adjusting for age and medication use, the urine levels of analytes were correlated with the scales of obesity, prostate inflammation grade, extent, and markers of lymphocytic infiltration (CD3 and CD20) using linear regression. sIL-1RA levels were significantly raised with higher BMI, waist circumference and waist-hip ratio in BPH patients after correction for multiple testing (P = 0.02). Men with greater overall extent of inflammatory infiltrates and maximal CD3 infiltration were marginally associated with CXCL-10 (P = 0.054) and CCL5 (P = 0.054), respectively. CCL3 in 15 patients with moderate to severe grade inflammation was marginally associated with maximal CD20 infiltration (P = 0.09), whereas CCL3 was undetectable in men with mild prostate tissue inflammation. There was marginal association of sCD40L with AUA-SI scores (P = 0.07). Strong association of sIL-1RA in urine with greater body size supports it as a major molecular correlate of obesity in the urine of BPH patients. Increased urine levels of CXCL-10, CCL5, and CCL3 were marginally associated with the scores for prostate tissue inflammation and lymphocytic infiltration. Overall, elevated urinary chemokines support that BPH is a metabolic disorder and suggest a molecular link between BPH/LUTS and prostatic

  14. Ghrelin receptor regulates adipose tissue inflammation in aging.

    Science.gov (United States)

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  15. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood.

    Science.gov (United States)

    Day, Samantha E; Coletta, Richard L; Kim, Joon Young; Garcia, Luis A; Campbell, Latoya E; Benjamin, Tonya R; Roust, Lori R; De Filippis, Elena A; Mandarino, Lawrence J; Coletta, Dawn K

    2017-04-03

    Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m 2 ) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m 2 ) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0

  16. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats.

    Science.gov (United States)

    Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2014-06-01

    We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    Science.gov (United States)

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Ojeda-Ojeda, Miriam; Murri, Mora; Insenser, María; Escobar-Morreale, Héctor F

    2013-01-01

    Chronic low-grade subclinical inflammation has been increasingly recognized as an interposer in the endocrine, metabolic and reproductive disturbances that characterize the polycystic ovary syndrome (PCOS). Abdominal adiposity and obesity are often present in PCOS. Mounting evidence indicates that adipose tissue is involved in innate and adaptive immune responses. Continuous release of inflammatory mediators such as cytokines, acute phase proteins, and adipokines perpetuates the inflammatory condition associated with obesity in women with PCOS, possibly contributing to insulin resistance and other long-term cardiometabolic risk factors. Genetic variants in the genes encoding inflammation-related mediators underlie the development of PCOS and their interaction with environmental factors may contribute to the heterogeneous clinical phenotype of this syndrome. In the future, strategies ameliorating inflammation may prove useful for the management of PCOS and associated conditions.

  19. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty.

    Science.gov (United States)

    Tobisch, B; Blatniczky, L; Barkai, L

    2015-02-01

    The prevalence of obesity with concomitant increasing risk for having cardiometabolic diseases is rising in the childhood population. Insulin resistance has a key role in metabolic changes in these children. Insulin levels elevate as puberty commences in every individual. Children with increased risk for cardiometabolic diseases show significant differences in insulin levels even before the onset of puberty compared with those without risks. The pattern of appearance of dyslipidaemia also varies in children with risk factors even in the pre-pubertal group from those without risk. Children with metabolic syndrome display considerably pronounced changes in their metabolic parameters before the onset of puberty, which become more pronounced as puberty passes. Insulin resistance (IR) has a key role in the metabolic changes in obese children. In commencing puberty, the insulin levels elevate. It is not clear, however, how insulin levels develop if the metabolic syndrome appears. Metabolic changes were assessed in obese children before, during and after puberty to analyse the relationship between IR and puberty in subjects with and without metabolic syndrome. Three hundred thirty-four obese children (5-19 years) attended the study. The criteria of the International Diabetes Federation were used to assess the presence of cardiometabolic risks (CMRs). Subjects with increased CMR were compared with those without risk (nCMR). Pubertal staging, lipid levels, plasma glucose and insulin levels during oral glucose tolerance test were determined in each participant. IR was expressed by homeostasis model assessment (HOMA-IR) and the ratio of glucose and insulin areas under the curve (AUC-IR). Significantly higher AUC-IR were found in pre-pubertal CMR children compared with nCMR subjects (11.84 ± 1.03 vs. 8.00 ± 0.69; P puberty. HOMA-IR differs between CMR and nCMR only in post-puberty (6.03 ± 1.26 vs. 2.54 ± 0.23; P puberty. CMR is associated with increased

  20. Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats.

    Science.gov (United States)

    Vincent, Mylène; Philippe, Erwann; Everard, Amandine; Kassis, Nadim; Rouch, Claude; Denom, Jessica; Takeda, Yorihiko; Uchiyama, Shoji; Delzenne, Nathalie M; Cani, Patrice D; Migrenne, Stéphanie; Magnan, Christophe

    2013-03-01

    Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin-resistance and low-grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet-induced obesity in rats. Wistar rats were fed with control diet (CD) or high-fat diet (HF) and either with or without supplemented ABM for 20 weeks. HF diet-induced body weight gain and increased fat mass compared to CD. In addition HF-fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF-fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet-induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM-treated rats suggesting a decrease in lipid absorption. Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system. Copyright © 2012 The Obesity Society.

  1. Role of MicroRNA Regulation in Obesity-Associated Breast Cancer: Nutritional Perspectives.

    Science.gov (United States)

    Kasiappan, Ravi; Rajarajan, Dheeran

    2017-11-01

    Breast cancer is the most common malignancy diagnosed in women, and the incidence of breast cancer is increasing every year. Obesity has been identified as one of the major risk factors for breast cancer progression. The mechanisms by which obesity contributes to breast cancer development is not yet understood; however, there are a few mechanisms counted as potential producers of breast cancer in obesity, including insulin resistance, chronic inflammation and inflammatory cytokines, adipokines, and sex hormones. Recent emerging evidence suggests that alterations in microRNA (miRNA) expressions are found in several diseases, including breast cancer and obesity; however, miRNA roles in obesity-linked breast cancer are beginning to unravel. miRNAs are thought to be potential noninvasive biomarkers for diagnosis and prognosis of cancer patients with comorbid conditions of obesity as well as therapeutic targets. Recent studies have evidenced that nutrients and other dietary factors protect against cancer and obesity through modulation of miRNA expressions. Herein, we summarize a comprehensive overview of up-to-date information related to miRNAs and their molecular targets involved in obesity-associated breast cancer. We also address the mechanisms by which dietary factors modulate miRNA expression and its protective roles in obesity-associated breast cancer. It is hoped that this review would provide new therapeutic strategies for the treatment of obesity-associated breast cancer to reduce the burden of breast cancer. © 2017 American Society for Nutrition.

  2. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity.

    Science.gov (United States)

    Kelly, A S; Ryder, J R; Marlatt, K L; Rudser, K D; Jenkins, T; Inge, T H

    2016-02-01

    Inflammation, oxidative stress and dysregulation of adipokines are thought to be pathophysiological mechanisms linking obesity to the development of insulin resistance and atherosclerosis. In adults, bariatric surgery reduces inflammation and oxidative stress, and beneficially changes the levels of several adipokines, but little is known about the postsurgical changes among adolescents. In two separate longitudinal cohorts we evaluated change from baseline of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemo-attractant protein-1 (MCP-1), oxidized low-density lipoprotein cholesterol (oxLDL), adiponectin, leptin and resistin up to 12 months following elective laparoscopic Roux-en-Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG) surgery in adolescents with severe obesity. In cohort 1, which consisted of 39 adolescents (mean age 16.5±1.6 years; 29 females) undergoing either RYGB or VSG, IL-6 (baseline: 2.3±3.4 pg ml(-1) vs 12 months: 0.8±0.6 pg ml(-1), Padolescents (mean age 16.5±1.6 years; 10 females) undergoing RYGB, results were similar: IL-6 (baseline: 1.7±0.9 pg ml(-1) vs 12 months: 0.4±0.9 pg ml(-1), PBariatric surgery produced robust improvements in markers of inflammation, oxidative stress and several adipokines among adolescents with severe obesity, suggesting potential reductions in risk for type 2 diabetes and cardiovascular disease.

  4. Obesity and cognitive decline: role of inflammation and vascular changes

    Directory of Open Access Journals (Sweden)

    Jason C.D. Nguyen

    2014-11-01

    Full Text Available The incidence of obesity in middle age is increasing markedly, and in parallel the prevalence of metabolic disorders including cardiovascular disease and type II diabetes is also rising. Numerous studies have demonstrated that both obesity and metabolic disorders are associated with poorer cognitive performance, cognitive decline, and dementia. In this review we discuss the effects of obesity on cognitive performance, including both clinical and preclinical observations, and discuss some of the potential mechanisms involved, namely inflammation and vascular and metabolic alterations.

  5. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal.

    Directory of Open Access Journals (Sweden)

    Mimi Z Chen

    Full Text Available Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB, and compared this to lean volunteers.The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR in eight morbidly obese (body mass index, BMI=47.3 ± 2.2 kg/m(2 patients, before and after RYGB, and in eight lean volunteers (BMI=20.7 ± 0.7 kg/m2. Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50 and maximal (GDR100 GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity.Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001. Weight-loss of 29.9 ± 4 kg after surgery significantly improved GDR50 (P=0.004 but not GDR100 (P=0.3. These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001. Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA, and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA, and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively.Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.

  6. Associations between serum apelin-12 levels and obesity-related markers in Chinese children.

    Directory of Open Access Journals (Sweden)

    Hong-Jun Ba

    Full Text Available OBJECTIVE: To investigate possible correlations between apelin-12 levels and obesity in children in China and associations between apelin-12 and obesity-related markers, including lipids, insulin sensitivity and insulin resistance index (HOMA-IR. METHODS: Forty-eight obese and forty non-obese age- and gender-matched Chinese children were enrolled between June 2008 and June 2009. Mean age was 10.42 ± 2.03 and 10.86±2.23 years in obesity and control groups, respectively. Main outcome measures were apelin-12, BMI, lipids, glucose and insulin. HOMA-IR was calculated for all subjects. RESULTS: All obesity group subjects had significantly higher total cholesterol (TC, triglycerides (TG, low-density lipoprotein cholesterol (LDL-C, insulin levels and HOMA-IR (all P<0.05. In separate analyses, obese girls had significantly higher LDL-C, insulin and HOMA-IR than controls, and obese boys had significantly higher TC, TG, insulin and HOMA-IR than controls (all P<0.05. Apelin-12 levels were significantly higher in obese girls compared to controls (P = 0.024, and correlated positively with TG in all obese subjects. Among obese girls, apelin-12 levels correlated positively with TG, insulin and HOMA-IR after adjusting for age and BMI. In all boys (obese and controls apelin-12 was positively associated with fasting plasma glucose (FPG. No significant correlations were found in either group between apelin-12 levels and other characteristics after adjusting for age, sex, and BMI. CONCLUSIONS: Apelin-12 levels are significantly higher in obese vs. non-obese girls in China and correlate significantly with obesity-related markers insulin, HOMA-IR, and TG. Increased apelin-12 levels may be involved in the pathological mechanism of childhood obesity.

  7. Association of esophageal inflammation, obesity and gastroesophageal reflux disease: from FDG PET/CT perspective.

    Directory of Open Access Journals (Sweden)

    Yen-Wen Wu

    Full Text Available OBJECTIVE: Gastroesophageal reflux disease (GERD is associated with bothersome symptoms and neoplastic progression into Barrett's esophagus and esophageal adenocarcinoma. We aim to determine the correlation between GERD, esophageal inflammation and obesity with 18F-Fluorodeoxyglucose (FDG positron emission tomography/computed tomography (PET/CT. METHODS: We studied 458 subjects who underwent a comprehensive health check-up, which included an upper gastrointestinal endoscopy, FDG PET/CT and complete anthropometric measures. GERD symptoms were evaluated with Reflux Disease Questionnaire. Endoscopically erosive esophagitis was scored using the Los Angeles classification system. Inflammatory activity, represented by standardized uptake values (SUVmax of FDG at pre-determined locations of esophagus, stomach and duodenum, were compared. Association between erosive esophagitis, FDG activity and anthropometric evaluation, including body mass index (BMI, waist circumference, visceral and subcutaneous adipose tissue volumes were analyzed. RESULTS: Subjects with erosive esophagitis (n = 178, 38.9% had significantly higher SUVmax at middle esophagus (2.69±0.74 vs. 2.41±0.57, P<.001 and esophagogastric junction (3.10±0.89 vs. 2.38±0.57, P<.001, marginally higher at upper esophageal sphincter (2.29±0.42 vs. 2.21±0.48, P = .062, but not in stomach or duodenum. The severity of erosive esophagitis correlated with SUVmax and subjects with Barrett's esophagus had the highest SUVmax at middle esophagus and esophagogastric junction. Heartburn positively correlated with higher SUVmax at middle oesophagus (r = .262, P = .003. Using multivariate regression analyses, age (P = .027, total cholesterol level (P = .003, alcohol drinking (P = .03, subcutaneous adipose tissue (P<.001, BMI (P<.001 and waist circumference (P<.001 were independently associated with higher SUVmax at respective esophageal locations. CONCLUSIONS: Esophageal

  8. The effect of dietary fiber and other factors on insulin response: role in obesity.

    Science.gov (United States)

    Ullrich, I H; Albrink, M J

    1985-07-01

    Epidemiologic evidence favors the hypothesis that obesity may result from the fiber-depleted diet of industrialized societies. Since hyperinsulinemia is a universal characteristic and perhaps causal of obesity, the possibility is considered that dietary factors causing excess insulin secretion might lead to obesity. Dietary glucose causes a slightly greater insulin rise than cooked starch containing an equal amount of carbohydrate, and high fiber starchy foods cause a much lesser insulin response than does glucose in solution. Doubling the dose of carbohydrate in a meal causes only a small increase in glucose response but a large increase in insulin response. Dietary fiber could act by displacing some of the carbohydrate that would normally be absorbable in the small intestine, or could translocate the carbohydrate to a point lower in the intestinal tract where less effect on insulin secretion would be observed. Evidence is presented that a higher fiber diet is associated with a higher concentration of fasting circulating free fatty acids, a lesser post-cibal decrease in circulating free fatty acids and triglycerides and less chronic increase in fasting triglycerides than a low fiber diet. These differences are associated with a lesser insulin response to high fiber meals. The extreme fluctuations between the fed and fasted states seen with low fiber diets are thus dampened by high fiber diets. The less complete inhibition of lipolysis during the fed state, and more intense lipolysis during fasting, suggested by the above data, might tend to prevent obesity. The mechanisms of the lesser insulin response to high rather than low fiber meals are not known, but the possibility that dietary fiber decreases the GIP response is considered.

  9. Effect of a test meal on meal responses of satiation hormones and their association to insulin resistance in obese adolescents.

    Science.gov (United States)

    Beglinger, Svetlana; Meyer-Gerspach, Anne Christin; Graf, Steffi; Zumsteg, Urs; Drewe, Jürgen; Beglinger, Christoph; Gutzwiller, Jean-Pierre

    2014-09-01

    The role of gastrointestinal (GI) hormones in the pathophysiology of obesity is unclear, although they are involved in the regulation of satiation and glucose metabolism. To (i) examine glucagon-like peptide 1 (GLP-1), amylin, ghrelin, and glucagon responses to a meal in obese adolescents and to (ii) test which GI peptides are associated with insulin resistance are presented. A total of 16 obese (body mass index (BMI) ≥ 97th percentile for age and gender) and 14 control (BMI between 25th and 75th percentiles) adolescents were included. Subjects were instructed to eat a test meal (490 kcal). Plasma samples were collected for hormone and glucose analysis. Obese adolescents were insulin resistant as expressed by the Homeostasis Model Assessment (HOMA) index and had significantly increased fasting glucagon and amylin levels compared to the control group (P = 0.003 and 0.044, respectively). In response to the meal, the increase in GLP-1 levels was reduced in obese adolescents (P < 0.001). In contrast, amylin secretion was significantly increased in the obese population compared to the control group (P < 0.005). Obese adolescents have increased fasting glucagon and amylin levels and attenuated post-prandial GLP-1 concentrations compared with the control group. These factors could contribute to the metabolic syndrome. © 2014 The Obesity Society.

  10. Associations of sarcopenic obesity with the metabolic syndrome and insulin resistance over five years in older men: The Concord Health and Ageing in Men Project.

    Science.gov (United States)

    Scott, David; Cumming, Robert; Naganathan, Vasi; Blyth, Fiona; Le Couteur, David G; Handelsman, David J; Seibel, Markus; Waite, Louise M; Hirani, Vasant

    2018-04-09

    Previous cross-sectional studies investigating associations of sarcopenic obesity with metabolic syndrome (MetS) and insulin resistance have not utilised consensus definitions of sarcopenia. We aimed to determine associations of sarcopenic obesity with MetS and insulin resistance over five years in community-dwelling older men. 1231 men aged ≥70 years had appendicular lean mass (ALM) and body fat percentage assessed by dual-energy X-ray absorptiometry and hand grip strength and gait speed tests. Sarcopenia was defined as low ALM/height (m 2 ) and low hand grip strength or gait speed (European Working Group definition); obesity was defined as body fat percentage ≥30%. MetS was assessed at baseline and 5-years later. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was assessed at 5-years only. Men with sarcopenic obesity (odds ratio, 95% CI: 2.07, 1.21-3.55) and non-sarcopenic obesity (4.19, 3.16-5.57) had higher MetS likelihood than those with non-sarcopenic non-obesity at baseline. Higher gait speed predicted lower odds for prevalent MetS (0.45, 0.21-0.96 per m/s). Higher body fat predicted increased odds for prevalent and incident MetS (1.14, 1.11-1.17 and 1.11, 1.02-1.20 per kg, respectively) and deleterious 5-year changes in MetS fasting glucose, high-density lipoprotein cholesterol and triglycerides (all P < 0.05). Compared with non-sarcopenic non-obesity, estimated marginal means for HOMA-IR at 5-years were higher in non-sarcopenic obesity only (1.0, 0.8-1.1 vs 1.3, 1.2-1.5; P < 0.001). Similar results were observed when sarcopenic obesity was defined by waist circumference. Sarcopenic obesity does not appear to confer greater risk for incident MetS or insulin resistance than obesity alone in community-dwelling older men. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effects of acute ingestion of different fats on oxidative stress and inflammation in overweight and obese adults

    Directory of Open Access Journals (Sweden)

    Peairs Abigail D

    2011-11-01

    Full Text Available Abstract Background Studies show that obese individuals have prolonged elevations in postprandial lipemia and an exacerbated inflammatory response to high fat meals, which can increase risk for cardiovascular diseases. As epidemiological studies indicate an association between type of fat and circulating inflammatory markers, the purpose of this study was to investigate the acute effect of different fat sources on inflammation and oxidative stress in overweight and obese individuals. Methods Eleven overweight and obese subjects consumed three high fat milkshakes rich in monounsaturated fat (MFA, saturated fat (SFA, or long-chain omega 3 polyunsaturated fat (O3FA in random order. Blood samples collected at baseline, 1, 2, 4, and 6 hours postprandial were analyzed for markers of inflammation (soluble intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, tumor necrosis factor- α (TNF-α, and C-reactive protein (CRP, oxidative stress (8-epi-prostaglandin-F2α (8-epi and nuclear factor-κB (NF-κB, and metabolic factors (glucose, insulin, non-esterified free fatty acids, and triglycerides (TG. Results O3FA enhanced NF-kB activation compared to SFA, but did not increase any inflammatory factors measured. Conversely, SFA led to higher ICAM-1 levels than MFA (p = 0.051, while MFA increased TG more than SFA (p Conclusions While most of the inflammatory factors measured had modest or no change following the meal, ICAM-1 and NF-κB responded differently by meal type. These results are provocative and suggest that type of fat in meals may differentially influence postprandial inflammation and endothelial activation.

  12. Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation.

    Science.gov (United States)

    Desai, Harsh R; Sivasubramaniyam, Tharini; Revelo, Xavier S; Schroer, Stephanie A; Luk, Cynthia T; Rikkala, Prashanth R; Metherel, Adam H; Dodington, David W; Park, Yoo Jin; Kim, Min Jeong; Rapps, Joshua A; Besla, Rickvinder; Robbins, Clinton S; Wagner, Kay-Uwe; Bazinet, Richard P; Winer, Daniel A; Woo, Minna

    2017-08-09

    During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2 -/- ) mice gained less body weight compared to wildtype littermate control (M-JAK2 +/+ ) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2 -/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2 -/- mice. Peritoneal macrophages from M-JAK2 -/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.

  13. Association between markers of systemic inflammation, oxidative stress, lipid profiles, and insulin resistance in pregnant women.

    Science.gov (United States)

    Asemi, Zatollah; Jazayeri, Shima; Najafi, Mohammad; Samimi, Mansooreh; Shidfar, Farzad; Tabassi, Zohreh; Shahaboddin, Mohamadesmaeil; Esmaillzadeh, Ahmad

    2013-05-01

    Increased levels of pro-inflammatory factors, markers of oxidative stress and lipid profiles are known to be associated with several complications. The aim of this study was to determine the association of markers of systemic inflammation, oxidative stress and lipid profiles with insulin resistance in pregnant women in Kashan, Iran. In a cross-sectional study, serum high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), fasting plasma glucose (FPG), serum insulin, 8-oxo-7, 8-dihydroguanine (8-oxo-G), total cholesterol, triglyceride, High density lipoprotein-cholesterol (HDL-cholesterol), and plasma total antioxidant capacity (TAC) were measured among 89 primigravida singleton pregnant women aged 18-30 years at 24-28 weeks of gestation. Pearson's correlation and multiple linear regressions were used to assess their relationships with homeostatic model assessment of insulin resistance (HOMA-IR). We found that among biochemical indicators of pregnant women, serum hs-CRP and total cholesterol levels were positively correlated with HOMA-IR (β = 0.05, P = 0.006 for hs-CRP and β = 0.006, P = 0.006 for total cholesterol). These associations remained significant even after mutual effect of other biochemical indicators were controlled (β = 0.04, P = 0.01 for hs-CRP and β = 0.007, P = 0.02 for total cholesterol). Further adjustment for body mass index made the association of hs-CRP and HOMA-IR disappeared; however, the relationship for total cholesterol remained statistically significant. Our findings showed that serum total cholesterol is independently correlated with HOMA-IR score. Further studies are needed to confirm our findings.

  14. The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Huijuan eZhu

    2016-05-01

    Full Text Available ObjectivesSafflower yellow (SY is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body weight, body fat mass, insulin sensitivity in high fat diet (HFD-induced obese mice. MethodsHFD-induced obese male ICR mice were intraperitoneally injected with SY (120 mg kg-1 daily. Eight weeks later, intraperitoneal insulin tolerance test (IPITT and intraperitoneal glucose tolerance test (IPGTT were performed, and body weight, body fat mass, serum insulin levels were measured. The expression of glucose and lipid metabolic related genes in white adipose tissue (WAT were determined by RT-qPCR and western blot technologies.ResultsThe administration obese mice with SY significantly reduced the body fat mass of HFD-induced obese mice (P<0.05. IPITT test showed that the insulin sensitivity of SY treated obese mice were evidently improved. The mRNA levels of insulin signaling pathway related genes including insulin receptor substrate 1(IRS1, PKB protein kinase (AKT, glycogen synthase kinase 3β (GSK3β and forkhead box protein O1(FOXO1 in mesenteric WAT of SY treated mice were significantly increased to 1.9, 2.8, 3.3 and 5.9 folds of that in HFD-induced control obese mice, respectively (P<0.05. The protein levels of AKT and GSK3β were also significantly increased to 3.0 and 5.2 folds of that in HFD-induced control obese mice, respectively (P<0.05. Meanwhile, both the mRNA and protein levels of peroxisome proliferator-activated receptorgamma coactivator 1α (PGC1α in inguinal subcutaneous WAT of SY group were notably increased to 2.5 and 3.0 folds of that in HFD-induced control obese mice (P<0.05.ConclusionsSY significantly reduce the body fat mass, fasting blood glucose and increase insulin sensitivity of HFD-induced obese mice. The possible mechanism is to

  15. Prevalence of the insulin resistance syndrome in obesity

    OpenAIRE

    Viner, R; Segal, T; Lichtarowicz-Kryn..., E; Hindmarsh, P

    2005-01-01

    Aims: To assess prevalence of the insulin resistance syndrome (IRS: obesity, abnormal glucose homoeostasis, dyslipidaemia, and hypertension) in obese UK children and adolescents of different ethnicities and to assess whether fasting data is sufficient to identify IRS in childhood obesity.

  16. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

    Science.gov (United States)

    Ciciliot, Stefano; Albiero, Mattia; Campanaro, Stefano; Poncina, Nicol; Tedesco, Serena; Scattolini, Valentina; Dalla Costa, Francesca; Cignarella, Andrea; Vettore, Monica; Di Gangi, Iole Maria; Bogialli, Sara; Avogaro, Angelo; Fadini, Gian Paolo

    2018-02-21

    The 66 kDa isoform of the mammalian Shc gene promotes adipogenesis, and p66Shc -/- mice accumulate less body weight than wild-type (WT) mice. As the metabolic consequences of the leaner phenotype of p66Shc -/- mice is debated, we hypothesized that gut microbiota may be involved. We confirmed that p66Shc -/- mice gained less weight than WT mice when on a high-fat diet (HFD), but they were not protected from insulin resistance and glucose intolerance. p66Shc deletion significantly modified the composition of gut microbiota and their modification after an HFD. This was associated with changes in gene expression of Il-1b and regenerating islet-derived protein 3 γ ( Reg3g) in the gut and in systemic trimethylamine N-oxide and branched chain amino acid levels, despite there being no difference in intestinal structure and permeability. Depleting gut microbiota at the end of HFD rendered both strains more glucose tolerant but improved insulin sensitivity only in p66Shc -/- mice. Microbiota-depleted WT mice cohoused with microbiota-competent p66Shc -/- mice became significantly more insulin resistant than WT mice cohoused with WT mice, despite no difference in weight gain. These findings reconcile previous inconsistent observations on the metabolic phenotype of p66Shc -/- mice and illustrate the complex microbiome-host-genotype interplay under metabolic stress.-Ciciliot, S., Albiero, M., Campanaro, S., Poncina, N., Tedesco, S., Scattolini, V., Dalla Costa, F., Cignarella, A., Vettore, M., Di Gangi, I. M., Bogialli, S., Avogaro, A., Fadini, G. P. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.

  17. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.

    Science.gov (United States)

    Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia; Tantiwong, Puntip; Musi, Nicolas

    2013-01-01

    Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS on insulin action and glucose metabolism in human muscle cells. In the present study we compared plasma LPS concentration in insulin resistant [obese non-diabetic and obese type 2 diabetic (T2DM)] subjects versus lean individuals. In addition, we employed a primary human skeletal muscle cell culture system to investigate the effect of LPS on glucose metabolism and whether these effects are mediated via TLR4. Obese non-diabetic and T2DM subjects had significantly elevated plasma LPS and LPS binding protein (LBP) concentrations. Plasma LPS (r = -0.46, P = 0.005) and LBP (r = -0.49, P = 0.005) concentrations negatively correlated with muscle insulin sensitivity (M). In human myotubes, LPS increased JNK phosphorylation and MCP-1 and IL-6 gene expression. This inflammatory response led to reduced insulin-stimulated IRS-1, Akt and AS160 phosphorylation and impaired glucose transport. Both pharmacologic blockade of TLR4 with TAK-242, and TLR4 gene silencing, suppressed the inflammatory response and insulin resistance caused by LPS in human muscle cells. Taken together, these findings suggest that elevations in plasma LPS concentration found in obese and T2DM subjects could play a role in the pathogenesis of insulin resistance and that antagonists of TLR4 may improve insulin action in these individuals.

  18. Common variants in SOCS7 gene predict obesity, disturbances in lipid metabolism and insulin resistance.

    Science.gov (United States)

    Tellechea, M L; Steinhardt, A Penas; Rodriguez, G; Taverna, M J; Poskus, E; Frechtel, G

    2013-05-01

    Specific Suppressor of Cytokine Signaling (SOCS) members, such as SOCS7, may play a role in the development of insulin resistance (IR) owing to their ability to inhibit insulin signaling pathways. The objective was to explore the association between common variants and related haplotypes in SOCS7 gene and metabolic traits related to obesity, lipid metabolism and IR. 780 unrelated men were included in a cross-sectional study. We selected three tagged SNPs that capture 100% of SNPs with minor allele frequency ≥ 0.10. Analyses were done separately for each SNP and followed up by haplotype analysis. rs8074124C was associated with both obesity (p = 0.005) and abdominal obesity (p = 0.002) and allele C carriers showed, in comparison with TT carriers, lower BMI (p = 0.001) and waist circumference (p = 0.001). rs8074124CC- carriers showed lower fasting insulin (p = 0.017) and HOMA-IR (p = 0.018) than allele T carriers. rs12051836C was associated with hypertriglyceridemia (p = 0.009) and hypertriglyceridemic waist (p = 0.006). rs12051836CC- carriers showed lower fasting insulin (p = 0.043) and HOMA-IR (p = 0.042). Haplotype-based association analysis (rs8074124 and rs12051836 in that order) showed associations with lipid and obesity -related phenotypes, consistent with single locus analysis. Haplotype analysis also revealed association between haplotype CT and both decreased HDL-C (p = 0.026) and HDL-C (p = 0.014) as a continuous variable. We found, for the first time, significant associations between SOCS7 common variants and related haplotypes and obesity, IR and lipid metabolism disorders. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. Relationship between severe obesity and gut inflammation in children: what's next?

    Directory of Open Access Journals (Sweden)

    Assante Luca

    2010-10-01

    Full Text Available Abstract Background Preliminary evidence suggests an association between obesity and gut inflammation. Aims To evaluate the frequency of glucose abnormalities and their correlation with systemic and intestinal inflammation in severely obese children. Patients and Methods Thirty-four children (25 males; median age 10.8 ± 3.4 yrs with severe obesity (BMI >95% were screened for diabetes with oral glucose tolerance test (OGTT, systemic inflammation with C-reactive protein (CRP and gut inflammation with rectal nitric oxide (NO and faecal calprotectin. Results BMI ranged from 23 to 44 kg/m2, and BMI z-score between 2.08 e 4.93 (median 2.69 ± 0.53. Glucose abnormalities were documented in 71% of patients: type 2 diabetes in 29%, impaired fasting glucose (IFG in 58%, and impaired glucose tolerance (IGT in 37.5%. Thirty-one patients (91% were hyperinsulinemic. CRP was increased in 73.5% with a correlation between BMI z-score and CRP (p 0.03. Faecal calprotectin was increased in 47% patients (mean 77 ± 68, and in 50% of children with abnormal glucose metabolism (mean 76 ± 68 μg/g, with a correlation with increasing BMI z-score. NO was pathological in 88%, and in 87.5% of glucose impairment (mean 6.8 ± 5 μM. Conclusions In this study, the prevalence of glucose abnormalities in obese children is higher than in other series; furthermore, a correlation is present between markers of systemic and intestinal inflammation and glucose abnormalities.

  20. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2015-06-01

    Impaired brain insulin action has been linked to obesity, type 2 diabetes, and neurodegenerative diseases. To date, the central nervous effects of insulin in obese humans still remain ill defined, and no study thus far has evaluated the specific brain areas affected by insulin resistance. In 25 healthy lean and 23 overweight/obese participants, we performed magnetic resonance imaging to measure cerebral blood flow (CBF) before and 15 and 30 min after application of intranasal insulin or placebo. Additionally, participants explicitly rated pictures of high-caloric savory and sweet food 60 min after the spray for wanting and liking. In response to insulin compared with placebo, we found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, we observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures such as disinhibition and food craving. Behaviorally, we were able to observe a significant reduction for the wanting of sweet foods after insulin application in lean men only. Brain insulin action was selectively impaired in the prefrontal cortex in overweight and obese adults and in the hypothalamus in participants with high visceral adipose tissue, potentially promoting an altered homeostatic set point and reduced inhibitory control contributing to overeating behavior. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota.

    Science.gov (United States)

    Alard, Jeanne; Lehrter, Véronique; Rhimi, Moez; Mangin, Irène; Peucelle, Véronique; Abraham, Anne-Laure; Mariadassou, Mahendra; Maguin, Emmanuelle; Waligora-Dupriet, Anne-Judith; Pot, Bruno; Wolowczuk, Isabelle; Grangette, Corinne

    2016-05-01

    Alterations in gut microbiota composition and diversity were suggested to play a role in the development of obesity, a chronic subclinical inflammatory condition. We here evaluated the impact of oral consumption of a monostrain or multi-strain probiotic preparation in high-fat diet-induced obese mice. We observed a strain-specific effect and reported dissociation between the capacity of probiotics to dampen adipose tissue inflammation and to limit body weight gain. A multi-strain mixture was able to improve adiposity, insulin resistance and dyslipidemia through adipose tissue immune cell-remodelling, mainly affecting macrophages. At the gut level, the mixture modified the uptake of fatty acids and restored the expression level of the short-chain fatty acid receptor GPR43. These beneficial effects were associated with changes in the microbiota composition, such as the restoration of the abundance of Akkermansia muciniphila and Rikenellaceae and the decrease of other taxa like Lactobacillaceae. Using an in vitro gut model, we further showed that the probiotic mixture favours the production of butyrate and propionate. Our findings provide crucial clues for the design and use of more efficient probiotic preparations in obesity management and may bring new insights into the mechanisms by which host-microbe interactions govern such protective effects. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  3. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    Science.gov (United States)

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  4. Non-viral causes of liver cancer: does obesity led inflammation play a role?

    Science.gov (United States)

    Alzahrani, Badr; Iseli, Tristan J; Hebbard, Lionel W

    2014-04-10

    Liver cancer is the fifth most common cancer worldwide and the third most common cause of cancer mortality. Hepatocellular carcinoma (HCC) accounts for around 90% of primary liver cancers. Chronic infection with hepatitis B and hepatitis C viruses are two of most common causes of liver cancer. However, there are non-viral factors that are associated with liver cancer development. Numerous population studies have revealed strong links between obesity and the development of liver cancer. Obesity can alter hepatic pathology, metabolism and promote inflammation, leading to nonalcoholic fatty liver disease (NAFLD) and the progression to the more severe form, non-alcoholic steatohepatitis (NASH). NASH is characterised by prominent steatosis and inflammation, and can lead to HCC. Here, we discuss the role of obesity in inflammation and the principal signalling mechanisms involved in HCC formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The Potential Role of Aerobic Exercise-Induced Pentraxin 3 on Obesity-Related Inflammation and Metabolic Dysregulation.

    Science.gov (United States)

    Slusher, Aaron L; Huang, Chun-Jung; Acevedo, Edmund O

    2017-01-01

    Obesity is defined as the excess accumulation of intra-abdominal body fat, resulting in a state of chronic, low-grade proinflammation that can directly contribute to the development of insulin resistance. Pentraxin 3 (PTX3) is an acute-phase protein that is expressed by a variety of tissue and cell sources and provides an anti-inflammatory property to downregulate the production of proinflammatory cytokines, in particular interleukin-1 beta and tumor necrosis factor alpha. Although PTX3 may therapeutically aid in altering the proinflammatory milieu in obese individuals, and despite elevated expression of PTX3 mRNA observed in adipose tissue, the circulating level of PTX3 is reduced with obesity. Interestingly, aerobic activity has been demonstrated to elevate PTX3 levels. Therefore, the purpose of this review is to discuss the therapeutic potential of PTX3 to positively regulate obesity-related inflammation and discuss the proposition for utilizing aerobic exercise as a nonpharmacological anti-inflammatory treatment strategy to enhance circulating PTX3 concentrations in obese individuals.

  6. Sex Differences in Biomarkers Associated With Insulin Resistance in Obese Adolescents: Metabolomic Profiling and Principal Components Analysis

    Science.gov (United States)

    Newbern, Dorothee; Balikcioglu, Metin; Bain, James; Muehlbauer, Michael; Stevens, Robert; Ilkayeva, Olga; Dolinsky, Diana; Armstrong, Sarah; Irizarry, Krystal; Freemark, Michael

    2014-01-01

    Objective: Obesity and insulin resistance (IR) predispose to type 2 diabetes mellitus. Yet only half of obese adolescents have IR and far fewer progress to type 2 diabetes mellitus. We hypothesized that amino acid and fatty acid metabolites may serve as biomarkers or determinants of IR in obese teens. Research Design and Methods: Fasting blood samples were analyzed by tandem mass spectrometry in 82 obese adolescents. A principal components analysis and multiple linear regression models were used to correlate metabolic components with surrogate measures of IR: homeostasis model assessment index of insulin resistance (HOMA-IR), adiponectin, and triglyceride (TG) to high-density lipoprotein (HDL) ratio. Results: Branched-chain amino acid (BCAA) levels and products of BCAA catabolism were higher (P BCAA, uric acid, and long-chain acylcarnitines and negatively with byproducts of complete fatty acid oxidation (R2 = 0.659, P < .0001). In contrast, only BMI z-score correlated with HOMA-IR in females. Adiponectin correlated inversely with BCAA and uric acid (R2 = 0.268, P = .0212) in males but not females. TG to HDL ratio correlated with BMI z-score and the BCAA signature in females but not males. Conclusions: BCAA levels and byproducts of BCAA catabolism are higher in obese teenage boys than girls of comparable BMI z-score. A metabolic signature comprising BCAA and uric acid correlates positively with HOMA-IR in males and TG to HDL ratio in females and inversely with adiponectin in males but not females. Likewise, byproducts of fatty acid oxidation associate inversely with HOMA-IR in males but not females. Our findings underscore the roles of sex differences in metabolic function and outcomes in pediatric obesity. PMID:25202817

  7. INS VNTR is not associated with childhood obesity in 1,023 families: a family-based study.

    Science.gov (United States)

    Bouatia-Naji, Nabila; De Graeve, Franck; Brönner, Günter; Lecoeur, Cécile; Vatin, Vincent; Durand, Emmanuelle; Lichtner, Peter; Nguyen, Thuy T; Heude, Barbara; Weill, Jacques; Lévy-Marchal, Claire; Hebebrand, Johannes; Froguel, Philippe; Meyre, David

    2008-06-01

    Previous studies have described genetic associations of the insulin gene variable number tandem repeat (INS VNTR) variant with childhood obesity and associated phenotypes. We aimed to assess the contribution of INS VNTR genotypes to childhood obesity and variance of insulin resistance, insulin secretion, and birth weight using family-based design. Participants were either French or German whites. We used transmission disequilibrium tests (TDTs) for assessing binary traits and quantitative pedigree disequilibrium tests for assessing continuous traits. In contrast to previous findings, we did not observe any familial association with childhood obesity (T = 50%, P = 0.77) in the 1,023 families tested. In French obese children, INS VNTR did not associate with fasting insulin levels (P = 0.23) and class I allele showed only borderline association with increased insulin secretion index at 30 min (P = 0.03). INS VNTR did not associate with birth weight in obese children (P = 0.98) and TDT analyses in 350 French families with history of low birth weight (LBW) showed no association with this condition (P = 0.92). In summary, our study, the largest performed so far, does not support the previously reported associations between INS VNTR and childhood obesity, insulin resistance, or birth weight, and does not suggest any major role for this variant in modulating these traits.

  8. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Directory of Open Access Journals (Sweden)

    Mette J. Jacobsen

    2016-01-01

    Full Text Available Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.

  9. Altered insulin response to an acute bout of exercise in pediatric obesity.

    Science.gov (United States)

    Tran, Brian D; Leu, Szu-Yun; Oliver, Stacy; Graf, Scott; Vigil, Diana; Galassetti, Pietro

    2014-11-01

    Pediatric obesity typically induces insulin resistance, often later evolving into type 2 diabetes. While exercise, enhancing insulin sensitivity, is broadly used to prevent this transition, it is unknown whether alterations in the exercise insulin response pattern occur in obese children. Therefore, we measured exercise insulin responses in 57 healthy weight (NW), 20 overweight (OW), and 56 obese (Ob) children. Blood samples were drawn before and after 30 min of intermittent (2 min on, 1 min off) cycling at ~80% VO2max. In a smaller group (14 NW, 6 OW, 15 Ob), a high-fat meal was ingested 45 min preexercise. Baseline glycemia was similar and increased slightly and similarly in all groups during exercise. Basal insulin (pmol/L) was significantly higher in Ob vs. other groups; postexercise, insulin increased in NW (+7± 3) and OW (+5 ± 8), but decreased in Ob (-15±5, p feeding caused a rapid rise in insulin, promptly corrected by exercise. In Ob, however, insulin rose again 30 min postexercise. Our data indicates a distinct pattern of exercise-induced insulin modulation in pediatric obesity, possibly modulated by basal insulin concentrations.

  10. Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity.

    Science.gov (United States)

    Darmon, Patrice; Dadoun, Frédéric; Boullu-Ciocca, Sandrine; Grino, Michel; Alessi, Marie-Christine; Dutour, Anne

    2006-11-01

    Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P obese women (+25%) than in controls (+12%) (P obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.

  11. Berberine Ameliorates Diabetes-Associated Cognitive Decline through Modulation of Aberrant Inflammation Response and Insulin Signaling Pathway in DM Rats

    Directory of Open Access Journals (Sweden)

    Qingjie Chen

    2017-06-01

    Full Text Available Background: Memory-impairment was one of the common characteristics in patients with diabetes mellitus. The release of chronic inflammation mediators and insulin resistance in diabetic brain gave rise to the generation of toxic factor Aβ42 which was the marker of Alzheimer’s disease. In addition, the impairment of memory in diabetes mellitus was also correlated predominantly with uptake/metabolism of glucose in medial prefrontal cortex (mPFC. Previously, anti-inflammation and hypoglycemic effects of berberine (BBr have been described in peripheral tissues. For better understanding the effects of BBr on cognitive action in diabetics, we investigated the functions of BBr involved in anti-inflammation and ameliorating insulin resistance in prefrontal cortex of diabetic rats.Methods: Intragastric administration of BBr (187.5 mg/Kg/d was used in diabetic rats. Fear-condition assay was applied for cognitive assessment, and relative protein expressions were detected by western-blot. The glucose uptake in prefrontal cortex of diabetic rats was tested by Positron-Emission Tomography imaging. The levels of inflammation mediators were determined by commercial ELISA kits.Results: The inflammation mediator release and insulin resistance in the mPFC of diabetic rats was inhibited by BBr. The activation of PI3K/Akt/mTOR and MAPK signaling pathway, as well as two novel isoforms PKCη and PKC and the translocation of NF-κB in neuron were also down-regulated by BBr; furthermore, the neuron specific glucose transporter GLUT3 was remarkably augmented by 2–3 times when compared with diabetic group; meanwhile, BBr also promoted glucose uptake in the brain. Additionally BBr decreased the expressions of amyloid precursor protein and BACE-1, and the production of oligomeric Aβ42. Finally, it accelerates the reinforcement of the information and ameliorates cognitive impairment.Conclusion: BBr inhibited the activation of inflammation pathway and insulin resistance

  12. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice.

    Science.gov (United States)

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Akbarpour, Mahzad; Maccari, Rosanna; Ottanà, Rosaria

    2017-09-01

    Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. Relationship among resistance to the insulin and obesity in Zacatecas population

    International Nuclear Information System (INIS)

    Zapata R, P. G.; Badillo A, V.

    2012-10-01

    The Zacatecas State (Mexico) occupies the second national place in obesity, although the adults have a bigger incidence every time exist more minors that present this problem which can facilitate other illnesses like diabetes and hypertension. The first resistance references to the insulin were made by Himsworth in 1936, when he referred to insulin-resistant and insulin-sensitive diabetics. The resistance to the insulin, as event pathogen primary in the diabetes mellitus type 2 is derived of the obesity, what implies a subnormal biological response to the actions of the hormone in the carbohydrates, proteins and lipids metabolism. In this work was carried out a study of insulin levels for the Radioimmunoassay method in 40 patients with evident obesity and 8 patients with normal weight in order to evaluate these levels according to their age and abdominal circumference. Three correlations were made for both groups (obese and normal), the first correlation indicates the size of the waist with the insulin quantity, according to the arrangements that shows the correlation is bigger in all; what means that there is a great dependence among the size of the waist and the insulin quantity that contain. The second correlation is the age with the insulin that although is small, indicates that the age does not important for the insulin quantity that is secreted. The third and last realized correlation was of the age with the waist, and according to the results correlation also exists, but this is not significant as the first correlation. Therefore is considered existent the relationship between obesity and resistance to the insulin. (Author)

  14. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth

    Science.gov (United States)

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome. PMID:25763405

  15. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth

    Directory of Open Access Journals (Sweden)

    Joselyn Rojas

    2014-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR, and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

  16. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth.

    Science.gov (United States)

    Rojas, Joselyn; Chávez, Mervin; Olivar, Luis; Rojas, Milagros; Morillo, Jessenia; Mejías, José; Calvo, María; Bermúdez, Valmore

    2014-01-01

    Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.

  17. Differential Effect of Electroacupuncture on Inflammatory Adipokines in Two Rat Models of Obesity

    Directory of Open Access Journals (Sweden)

    Jacqueline J.T. Liaw

    2016-08-01

    Full Text Available Chronic inflammation is known to be associated with visceral obesity and insulin resistance which are characterized by altered levels of production of pro- and anti-inflammatory adipokines. The dysregulation of the production of inflammatory adipokines and their functions in obese individuals leads to a state of chronic low-grade inflammation and may promote obesity-linked metabolic disorders and cardiovascular diseases such as insulin resistance, metabolic syndrome, and atherosclerosis. Electroacupuncture (EA was tested to see if there was a difference in its effect on pro- and anti-inflammatory adipokine levels in the blood serum and the white adipose tissue of obese Zucker fatty rats and high-fat diet-induced obese Long Evans rats. In the two rat models of obesity, on Day 12 of treatment, repeated applications of EA were seen to have had a significant differential effect for serum tumor necrosis factor-α, adiponectin, the adiponectin:leptin ratio, and blood glucose. For the adipose tissue, there was a differential effect for adiponectin that was on the borderline of significance. To explore these changes further and how they might affect insulin resistance would require a modification to the research design to use larger group sizes for the two models or to give a greater number of EA treatments.

  18. microRNAs as a New Mechanism Regulating Adipose Tissue Inflammation in Obesity and as a Novel Therapeutic Strategy in the Metabolic Syndrome

    OpenAIRE

    Ge, Qian; Brichard, Sonia; Yi, Xu; Li, QiFu

    2014-01-01

    Obesity is associated closely with the metabolic syndrome (MS). It is well known that obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of MS. White adipose tissue (AT) is the primary site for the initiation and exacerbation of obesity-associated inflammation. Exploring the mechanisms of white AT inflammation and resetting the immunological balance in white AT could be crucial for the management of MS. Several prominent molecular mechanisms have been proposed t...

  19. Nesfatin-1 in childhood and adolescent obesity and its association with food intake, body composition and insulin resistance.

    Science.gov (United States)

    Anwar, Ghada M; Yamamah, Gamal; Ibrahim, Amani; El-Lebedy, Dalia; Farid, Tarek M; Mahmoud, Rasha

    2014-01-10

    Nesfatin-1 is an anorexigenic peptide that controls feeding behavior and glucose homeostasis. However, there is little data that exists regarding nesfatin-1 secretion in obese children and young adolescents. The aim of this study is to investigate serum nesfatin-1 in childhood and adolescent obesity and to study potential correlations with food intake, anthropometric indices, body composition and insulin resistance. Forty obese children and adolescents and 40 healthy control subjects were studied. Anthropometric measurements were assessed, dietary food intake was evaluated based on 3-days food record and body composition indices were evaluated using bioelectrical impedance analysis. Lipid profile, fasting blood sugar, fasting insulin and HOMA-IR were measured. Fasting serum nesfatin-1 was quantitatively assayed by ELISA. Serum nesfatin-1 was significantly higher in obese group (2.49±1.96 ng/ml) than in control group (0.70±0.81 ng/ml), P=0.001. Positive correlations with serum insulin (P=0.001), HOMA-IR (P=0.000), BMI-SDS (P=0.04), body fat % (P=0.000), fat mass (P=0.000), fat free mass (P=0.03), CHO % (P=0.000), and saturated fat % (P=0.01) were found. While significant negative correlation with protein % (P=0.000) was observed. In conclusion, our results denote that nesfatin-1 might have an important role in regulation of food intake and pathogenesis of insulin resistance in obese children and young adolescents. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Serum levels of fractalkine are associated with markers of insulin resistance in gestational diabetes.

    Science.gov (United States)

    Ebert, T; Hindricks, J; Kralisch, S; Lossner, U; Jessnitzer, B; Richter, J; Blüher, M; Stumvoll, M; Fasshauer, M

    2014-08-01

    Fractalkine has recently been introduced as an adipokine that improves glucose tolerance. Regulation of fractalkine in gestational diabetes, as well as its association with markers of obesity, glucose and lipid metabolism, inflammation and renal function, has not been elucidated. Circulating fractalkine was quantified by enzyme-linked immunosorbent assay in 74 women with gestational diabetes and 74 healthy, pregnant control subjects matched for age, BMI, and gestational age. Median (interquartile range) levels of fractalkine were not significantly different between the two groups [gestational diabetes: 2.24 (2.16) μg/l; control: 2.45 (1.38) μg/l] (P = 0.461). In multivariate linear regression analysis, fractalkine remained independently associated with homeostasis model assessment of insulin resistance (β = -0.253, P = 0.002) and the proinflammatory adipokine progranulin (β = 0.218, P = 0.007). Circulating fractalkine is not different between women with gestational diabetes and control subjects, but the adipokine is independently associated with markers of insulin resistance and proinflammatory progranulin in pregnancy. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  1. Low fitness is associated with abdominal adiposity and low-grade inflammation independent of BMI

    DEFF Research Database (Denmark)

    Wedell-Neergaard, Anne-Sophie; Eriksen, Louise; Grønbæk, Morten

    2018-01-01

    OBJECTIVE: Up to 30% of obese individuals are metabolically healthy. Metabolically healthy obese (MHO) individuals are characterized by having low abdominal adiposity, low inflammation level and low risk of developing metabolic comorbidity. In this study, we hypothesize that cardiorespiratory fit...... to be inversely associated with both abdominal adiposity and low-grade inflammation independent of BMI. These data suggest that, in spite of BMI, high fitness levels lead to a reduction in abdominal fat mass and low-grade inflammation.......OBJECTIVE: Up to 30% of obese individuals are metabolically healthy. Metabolically healthy obese (MHO) individuals are characterized by having low abdominal adiposity, low inflammation level and low risk of developing metabolic comorbidity. In this study, we hypothesize that cardiorespiratory...... fitness (fitness) is a determinant factor for the MHO individuals and aim to investigate the associations between fitness, abdominal adiposity and low-grade inflammation within different BMI categories. METHOD: Data from 10,976 individuals from the general population, DANHES 2007-2008, on waist...

  2. n-3 Polyunsaturated Fatty Acids and Mechanisms to Mitigate Inflammatory Paracrine Signaling in Obesity-Associated Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-10-01

    Full Text Available Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.

  3. Associations of Insulin Resistance and Glycemia With Liver Enzymes in Hispanic/Latino Youths: Results From the Hispanic Community Children's Health Study/Study of Latino Youth (SOL Youth).

    Science.gov (United States)

    Parrinello, Christina M; Rudolph, Bryan J; Lazo, Mariana; Gallo, Linda C; Thyagarajan, Bharat; Cotler, Scott J; Qi, Qibin; Seeherunvong, Tossaporn; Vidot, Denise C; Strickler, Howard D; Kaplan, Robert C; Isasi, Carmen R

    2017-11-03

    Associations of insulin resistance and hyperglycemia with a panel of liver enzymes have not been well studied in a young, heterogenous Hispanic/Latino population. We aimed to assess the associations of insulin resistance and glycemia with nonalcoholic fatty liver disease (NAFLD), as measured by liver enzymes and the pediatric NAFLD fibrosis index (PNFI), and whether these associations are modified by body mass index and mediated by inflammation or endothelial dysfunction. We conducted a cross-sectional study of 1317 boys and girls aged 8 to 16 years from the Hispanic Community Children's Health Study/Study of Latino Youth. We used Poisson regression to assess the associations of fasting glucose, hemoglobin A1c, and homeostasis model assessment of insulin resistance (HOMA-IR) with elevated alanine aminotransferase (ALT) (>25 U/L in boys, >22 U/L in girls), aspartate aminotransferase (AST) (≥37 U/L), gamma-glutamyl transpeptidase (GGT) (≥17 U/L), and PNFI (≥9; a function of age, waist circumference, and triglyceride level). HOMA-IR was associated with elevated ALT, AST, GGT, and PNFI [prevalence ratios (95% confidence intervals) for each 1-unit increase in the natural log of HOMA-IR: 1.99 (1.40-2.81), 2.15 (1.12-4.12), 1.70 (1.26-2.30), and 1.98 (1.43-2.74), respectively]. Associations were observed in overweight/obese children, but not in normal weight children (P-interaction=0.04 for AST and P-interaction=0.07 for GGT). After further adjustment for adiponectin, high-sensitivity C-reactive protein, e-selectin, and PAI-1, associations of HOMA-IR with liver enzymes and PNFI were attenuated, but remained statistically significant for AST and PNFI. Insulin resistance was associated with NAFLD in overweight/obese Hispanic/Latino youth, and this association may be partially mediated by inflammation and endothelial dysfunction.

  4. Association between obesity and periodontal disease. A systematic review of epidemiological studies and controlled clinical trials

    Science.gov (United States)

    Martinez-Herrera, Mayte; Silvestre-Rangil, Javier

    2017-01-01

    Background Obesity is a very prevalent chronic disease worldwide and has been suggested to increase susceptibility of periodontitis. The aim of this paper was to provide a systematic review of the association between obesity and periodontal disease, and to determine the possible mechanisms underlying in this relationship. Material and Methods A literature search was carried out in the databases PubMed-Medline and Embase. Controlled clinical trials and observational studies identifying periodontal and body composition parameters were selected. Each article was subjected to data extraction and quality assessment. Results A total of 284 articles were identified, of which 64 were preselected and 28 were finally included in the review. All the studies described an association between obesity and periodontal disease, except two articles that reported no such association. Obesity is characterized by a chronic subclinical inflammation that could exacerbate other chronic inflammatory disorders like as periodontitis. Conclusions The association between obesity and periodontitis was consistent with a compelling pattern of increased risk of periodontitis in overweight or obese individuals. Although the underlying pathophysiological mechanism remains unclear, it has been pointed out that the development of insulin resistance as a consequence of a chronic inflammatory state and oxidative stress could be implicated in the association between obesity and periodontitis. Further prospective longitudinal studies are needed to define the magnitude of this association and to elucidate the causal biological mechanisms. Key words:Periodontal disease, periodontitis, periodontal infection, obesity, abdominal obesity. PMID:29053651

  5. Bovine α-Lactalbumin Hydrolysates (α-LAH Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2018-02-01

    Full Text Available Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV and angiotensin converting enzyme (ACE, scavenge 2,2′-azinobis [3-ethylbenzothiazoline-6-sulfonate] (ABTS+ radical and stimulate glucagon-like peptide-2 secretion. In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH on adipose insulin resistance and inflammation induced by high-fat diet (HFD were investigated. The insulin resistance model was established by feeding C57BL/6J mice with HFD (60% kcal from fat for eight weeks. Then, the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w. and 400 mg/kg b.w. for another 12 weeks to evaluate its protective effects against HFD-induced insulin resistance. The oral glucose tolerance test (OGTT and intraperitoneal insulin tolerance test (ipITT were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively. Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum insulin, and HOMA-IR (homeostatic model assessment of insulin resistance levels, lowered the area-under-the-curve (AUC during OGTT and ipITT, and downregulated inflammation-related gene [tumor necrosis factor (TNF-α, interleukin (IL-6, monocyte chemoattractant protein (MCP-1] expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also suppressed insulin receptor substrate 1 (IRS-1 serine phosphorylation (Ser307, Ser612, enhanced protein kinase B (known as Akt phosphorylation, and inhibited the activation of inhibitor of kappaB kinase (IKK and mitogen activated protein kinase (MAPK signaling pathways in adipose tissues of HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin resistance and inflammation through IKK and MAPK signaling

  6. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  7. PEDF-induced alteration of metabolism leading to insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Independent associations of insulin resistance with high whole-body intermuscular and low leg subcutaneous adipose tissue distribution in obese HIV-infected women123

    Science.gov (United States)

    Albu, Jeanine B; Kenya, Sonjia; He, Qing; Wainwright, Marsha; Berk, Evan S; Heshka, Stanley; Kotler, Donald P; Engelson, Ellen S

    2009-01-01

    Background Obesity and insulin resistance are growing problems in HIV-positive (HIV+) women receiving highly active antiretroviral therapy (HAART). Objective The objective was to determine the contribution of adipose tissue (AT) enlargement and distribution to the presence of insulin resistance in obese HIV+ women. Design Whole-body intermuscular AT (IMAT), visceral AT (VAT), subcutaneous AT (SAT), and SAT distribution (leg versus upper body) were measured by whole-body magnetic resonance imaging. Insulin sensitivity (SI) was measured with an intravenous glucose tolerance test in obese HIV+ women recruited because of their desire to lose weight (n = 17) and in obese healthy controls (n = 32). Results The HIV+ women had relatively less whole-body SAT and more VAT and IMAT than did the controls (P < 0.05 for all). A significant interaction by HIV status was observed for the relation of total SAT with SI (P < 0.001 for the regression’s slope interactions after adjustment for age, height, and weight). However, relations of IMAT, VAT, and SAT distribution (leg SAT as a percentage of total SAT; leg SAT%) with SI did not differ significantly between groups. For both groups combined, the best model predicting a low SI included significant contributions by both high IMAT and low leg SAT%, independent of age, height, and weight, and no interaction between groups was observed (overall r2 = 0.44, P = 0.0003). Conclusion In obese HIV+ women, high whole-body IMAT and low leg SAT% distribution are independently associated with insulin resistance. PMID:17616768

  9. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.

    Science.gov (United States)

    Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-03-20

    The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    Science.gov (United States)

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-06-01

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Relationships between acylated ghrelin with growth hormone, insulin resistance, lipid profile, and cardio respiratory function in lean and obese men

    Directory of Open Access Journals (Sweden)

    Hasan Matin Homaee

    2011-01-01

    Conclusions: Obese and lean inactive young men had different levels of acylated ghrelin, GH, insulin, insulin resistance index, cardiorespiratory function and body fat percent. Body fat percent, insulin, and GH levels appear to be best determinant factors of acylated ghrelin levels. Also, in both obese and lean young men, higher levels of cardiovascular function were associated with higher levels of acylated ghrelin.

  12. Postmenopausal hypertension, abdominal obesity, apolipoprotein and insulin resistance.

    Science.gov (United States)

    Ben Ali, Samir; Belfki-Benali, Hanen; Ahmed, Decy Ben; Haddad, Najet; Jmal, Awatef; Abdennebi, Monia; Romdhane, Habiba Ben

    This study aimed to evaluate the association of abdominal obesity, apolipoprotein and insulin resistance (IR) with the risk of hypertension in postmenopausal women. We analyzed a total of 242 women aged between 35 and 70 years. Blood pressure (BP), anthropometric indices, lipid profile, fasting glucose, insulin, C-reactive protein (CRP) and apolipoprotein concentrations were measured. Homeostasis model assessment (HOMA) was used to assess IR. Hypertension was defined as a systolic BP (SBP) ≥140 mmHg and/or diastolic BP (DBP) ≥90 mmHg or current treatment with antihypertensive drugs. Women with hypertension showed significantly higher mean values of age, SBP and DBP, waist circumference (WC), fasting plasma glucose (FPG), insulin, HOMAIR and the apolipoprotein B (apoB). When analyses were done according to the menopausal status, higher prevalence of hypertension was observed in postmenopausal women (72.8% vs. 26.0%, p menopause (p = 0.008) were significantly associated with higher risk for hypertension. These results suggest that changes in WC, apoB and IR accompanying menopause lead to a greater prevalence of hypertension in postmenopausal women.

  13. Adipose tissue CIDEA is associated, independently of weight variation, to change in insulin resistance during a longitudinal weight control dietary program in obese individuals.

    Science.gov (United States)

    Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie

    2014-01-01

    Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation. ClinicalTrials.gov NCT00390637.

  14. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production.

    Science.gov (United States)

    Ip, Blanche; Cilfone, Nicholas A; Belkina, Anna C; DeFuria, Jason; Jagannathan-Bogdan, Madhumita; Zhu, Min; Kuchibhatla, Ramya; McDonnell, Marie E; Xiao, Qiang; Kepler, Thomas B; Apovian, Caroline M; Lauffenburger, Douglas A; Nikolajczyk, Barbara S

    2016-01-01

    T cell inflammation plays pivotal roles in obesity-associated type 2 diabetes (T2DM). The identification of dominant sources of T cell inflammation in humans remains a significant gap in understanding disease pathogenesis. It was hypothesized that cytokine profiles from circulating T cells identify T cell subsets and T cell cytokines that define T2DM-associated inflammation. Multiplex analyses were used to quantify T cell-associated cytokines in αCD3/αCD28-stimulated PBMCs, or B cell-depleted PBMCs, from subjects with T2DM or BMI-matched controls. Cytokine measurements were subjected to multivariate (principal component and partial least squares) analyses. Flow cytometry detected intracellular TNFα in multiple immune cell subsets in the presence/absence of antibodies that neutralize T cell cytokines. T cell cytokines were generally higher in T2DM samples, but Th17 cytokines are specifically important for classifying individuals correctly as T2DM. Multivariate analyses indicated that B cells support Th17 inflammation in T2DM but not control samples, while monocytes supported Th17 inflammation regardless of T2DM status. Partial least squares regression analysis indicated that both Th17 and Th1 cytokines impact %HbA1c. Among various T cell subsets, Th17 cells are major contributors to inflammation and hyperglycemia and are uniquely supported by B cells in obesity-associated T2DM. © 2015 The Obesity Society.

  15. White blood cells levels and PCOS: direct and indirect relationship with obesity and insulin resistance, but not with hyperandogenemia.

    Science.gov (United States)

    Papalou, Olga; Livadas, Sarantis; Karachalios, Athanasios; Tolia, Nikoleta; Kokkoris, Panayiotis; Tripolitakis, Konstantinos; Diamanti-Kandarakis, Evanthia

    2015-01-01

    To study white blood cells count (WBC) in women suffering from PCOS and compare these results with age and BMI-matched healthy women. The specific aim of this study was to assess the possible correlations of WBC with the major components of PCOS, obesity, insulin resistance and hyperandrogenism. Anthropometrical, metabolic and hormonal data were analyzed from 203 women with PCOS (NIH criteria) and 76 age-matched controls. In the total population studied (N=279), WBC was significantly higher (P=0.003) in the PCOS group compared with age-matched healthy women and was positively correlated with BMI (r=0.461, pPCOS women, the role of central adiposity is assessed only in this group. Multiple regression analysis in the PCOS group, including WHR, revealed BMI, SHBG and TGL as the main predicting factors of WBC. Multinomial logistic regression analysis was also conducted and overweight/obesity was the sole independent risk factor for elevated WBC (higher tertile) (OR:0.907 CI:0.85-0.96, p=0.002). After dividing the sample based on BMI in the lean subgroups, WBC did not differ significantly between PCOS and controls, while multiple regression analysis indicated SHBG as the main predicting factor of WBC. Finally, we picked out the group of overweight/obese (BMI ≥25 kg/m2) women with PCOS and conducted another classification based on HOMA score (HOMA-IR≤2: insulin-sensitive women, HOMA-IR>2: insulin-resistant women) in the group of overweight and obese women with PCOS separately. In overweight women with PCOS, WBC, although higher in the group of insulin-resistant, did not differ significantly between the two groups, while in the subcategory of overweight women WBC was significantly (p=0.02) higher in the group of insulin-resistant women (HOMA-IR >2). Chronic low-grade inflammation and increased white cell count do occur in PCOS. Obesity and insulin resistance are the two leading parameters that act accumulatively in the development of leucocytosis, whereas

  16. Adipose tissue-related proteins locally associated with resolution of inflammation in obese mice

    Czech Academy of Sciences Publication Activity Database

    Jílková, Zuzana; Hensler, Michal; Medříková, Daša; Janovská, Petra; Horáková, Olga; Rossmeisl, Martin; Flachs, Pavel; Sell, H.; Eckel, J.; Kopecký, Jan

    2014-01-01

    Roč. 38, č. 2 (2014), s. 216-223 ISSN 0307-0565 R&D Projects: GA MZd(CZ) NT13763; GA MŠk(CZ) 7E12073 Institutional support: RVO:67985823 Keywords : eicosapentaenoic acid * docosahexaenoic acid * inflammation * obesity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 5.004, year: 2014

  17. 25-Hydroxy vitamin-D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1.

    Science.gov (United States)

    Amir, Eitan; Cecchini, Reena S; Ganz, Patricia A; Costantino, Joseph P; Beddows, Samantha; Hood, Nicola; Goodwin, Pamela J

    2012-06-01

    Observational studies suggest that host factors are associated with breast cancer risk. The influence of obesity, vitamin-D status, insulin resistance, inflammation, and elevated adipocytokines in women at high risk of breast cancer is unknown. The NSABP-P1 trial population was used for a nested case-control study. Cases were drawn from those who developed invasive breast cancer and controls selected from unaffected participants (≤4 per case) matched for age, race, 5 year Gail score, and geographic location of clinical center as a surrogate for latitude. Fasting serum banked at trial enrolment was assayed for 25-hydroxy vitamin-D (25OHD), insulin, leptin (adipocytokine), and C-reactive protein (CRP, marker of inflammation). Logistic regression was used to test for associations between study variables and the risk of invasive breast cancer. Two hundred and thirty-one cases were matched with 856 controls. Mean age was 54, and 49% were premenopausal. There were negative correlations for 25OHD with body mass index (BMI), insulin, CRP, and leptin. BMI ≥ 25 kg/m(2) was associated with higher breast cancer risk (odds ratio [OR] 1.45, p = 0.02) and tamoxifen treatment was associated with lower risk (OR = 0.44, p continuous variables, 25OHD, insulin, CRP, and leptin levels were not associated with breast cancer risk (all p > 0.34). In this high risk population, higher BMI was associated with a greater breast cancer risk. Serum levels of 25OHD, insulin, CRP, and leptin were not independent predictors of either breast cancer risk or tamoxifen benefit.

  18. [Contribution of leptin in the development of insulin resistance in pregnant women with obesity].

    Science.gov (United States)

    Tarasenko, K

    2014-03-01

    The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.

  19. The Potential Role of Aerobic Exercise-Induced Pentraxin 3 on Obesity-Related Inflammation and Metabolic Dysregulation

    Directory of Open Access Journals (Sweden)

    Aaron L. Slusher

    2017-01-01

    Full Text Available Obesity is defined as the excess accumulation of intra-abdominal body fat, resulting in a state of chronic, low-grade proinflammation that can directly contribute to the development of insulin resistance. Pentraxin 3 (PTX3 is an acute-phase protein that is expressed by a variety of tissue and cell sources and provides an anti-inflammatory property to downregulate the production of proinflammatory cytokines, in particular interleukin-1 beta and tumor necrosis factor alpha. Although PTX3 may therapeutically aid in altering the proinflammatory milieu in obese individuals, and despite elevated expression of PTX3 mRNA observed in adipose tissue, the circulating level of PTX3 is reduced with obesity. Interestingly, aerobic activity has been demonstrated to elevate PTX3 levels. Therefore, the purpose of this review is to discuss the therapeutic potential of PTX3 to positively regulate obesity-related inflammation and discuss the proposition for utilizing aerobic exercise as a nonpharmacological anti-inflammatory treatment strategy to enhance circulating PTX3 concentrations in obese individuals.

  20. The relationship between vitamin D status, physical activity and insulin resistance in overweight and obese subjects

    Directory of Open Access Journals (Sweden)

    Gülis Kavadar

    2015-05-01

    Full Text Available Type 2 diabetes mellitus (T2DM incidence has been increasing worldwide along with the rise of obesity and sedantery lifestyle. Decreased physical activity (PA and obesity have also been associated with the low vitamin D levels. We aimed to determine the association between PA, vitamin D status and insulin resistance in overweight and obese subjects. A total of 294 (186 female, 108 male overweight or obese subjects were included in this cross-sectional study. 25-hydroxy vitamin D (25(OHD, insulin, fasting plasma glucose (FPG and HbA1c levels were measured in blood samples. Body mass index (BMI, HOMA-index and total score of International Physical Activity Questionnaire-long form (IPAQ were calculated. Insulin resistant subjects were compared with the non-resistant group. The mean age of the participants was 45±12.25 and 41.39±10.32; 25(OHD levels were 8.91 ± 4.30 and 17.62 ± 10.47 ng/dL; BMIs were 31.29 ± 4.48  and 28.2 ± 3.16 kg/m², IPAQ total scores were 548.71±382.81 and 998±486.21 in the insulin resistant and nonresistant subjects, respectively. There was a statistically significant difference in terms of 25(OHD, FPG, insulin levels, IPAQ  total score and BMI between the two groups (p = 0.001, p = 0.001, p = 0.001, p = 0.001, p = 0.001.Significantly low 25(OHD levels, high BMI and low PA in insulin resistant subjects confirm the importance of active lifestyle and the maintenance of normal vitamin D levels in overweight and obese subjects in prevention of T2DM.

  1. Insulin-induced capillary recruitment is impaired in both lean and obese women with PCOS.

    Science.gov (United States)

    Ketel, I J G; Serné, E H; Ijzerman, R G; Korsen, T J M; Twisk, J W; Hompes, P G A; Smulders, Y M; Homburg, R; Vorstermans, L; Stehouwer, C D A; Lambalk, C B

    2011-11-01

    Insulin resistance, i.e. impaired insulin-mediated glucose uptake (IMGU), is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). Insulin-induced capillary recruitment (IICR) is considered a significant determinant of IMGU. We investigated whether IICR is a determinant IMGU in obese and lean women with and without PCOS. The study included 36 women with PCOS (20 lean, BMI 21.9 ± 2.3 kg/m(2) and 16 obese, BMI 35.9 ± 6.0 kg/m(2)) and 27 age-matched healthy controls (14 lean, BMI 22.2 ± 1.8 kg/m(2) and 13 obese, BMI 40.5 ± 7.0 kg/m(2)). IICR was evaluated by capillary microscopy during an isoglycemic-hyperinsulinemic clamp. IMGU was expressed as M/I value. The M/I value was significantly lower in obese PCOS women compared with obese controls [0.5 (0.2-1.1) versus 0.8 (0.3-1.4) (mg kg(-1) min(-1) pmol l(-1)) × 100, P lean PCOS and lean control women was non-significant [1.5 (0.5-2.6) versus 1.7 (1.0-3.7) (mg kg(-1) min(-1) pmol l(-1)) × 100, P = 0.17]. Hyperinsulinemia increased capillary recruitment in lean controls (53.5 ± 20.3 versus 64.9 ± 27.4 n/mm(2), P PCOS group nor in obese controls. IICR and androgens were a determinant of M/I value only in lean women with or without PCOS. PCOS per se is associated with impaired IICR. Obese women with PCOS, in part independent of obesity, demonstrated a profound insulin resistance, whereas the difference between lean PCOS women and healthy controls was small and statistically non-significant. IICR was a determinant of IMGU in lean, but not in obese, women regardless of the presence of PCOS.

  2. Lack of association between the fatty acid binding protein 2 (FABP2) polymorphism with obesity and insulin resistance in two aboriginal populations from Chile.

    Science.gov (United States)

    Pérez-Bravo, F; Fuentes, M; Angel, B; Sanchez, H; Carrasco, E; Santos, J L; Lera, L; Albala, C

    2006-12-01

    The aim of this study was to assess the frequency of fatty acid binding protein 2 (FABP2) Ala54Thr genetic polymorphism and to evaluate its association with obesity and insulin resistance in Chilean aboriginal populations. A sample of 96 urban Aymara and 111 urban Mapuche subjects aged 20-80 years were recruited for this cross-sectional study. Glucose, insulin and lipid profile were measured in fasting plasma samples. Insulin resistance was estimated through the HOMA-IR model. FABP2 Ala54Thr genotypes were determined by PCR followed by RFLP analysis. The allele frequency of Thr54 variant was estimated as 18.2% in Aymara subjects, which is one of the lowest reported to date. The corresponding frequency in Mapuche subjects was 31.9% (pMapuche group: OR=2.37, 95% CI 1.319-4.277, p=0.004) It is unlikely that Ala54Thr polymorphism of the FABP2 gene plays a relevant role in obesity and insulin resistance in Chilean ethnic groups.

  3. Is Chronic Inflammation a Possible Cause of Obesity-Related Depression?

    Directory of Open Access Journals (Sweden)

    Magdalena Olszanecka-Glinianowicz

    2009-01-01

    Full Text Available Adult obesity has been associated with depression, especially in women. Whether depression leads to obesity or obesity causes depression is unclear. Chronic inflammation is observed in obesity and depression. In 63 obese women without additional diseases depression level was assessed with the Beck's questionnaire. After evaluation of depression level study group was divided into groups according to the mood status (A—without depression, B—mild depression, and C—severe depression, and serum concentration of TNF-α, sTNFs, leptin, and IL-6 were measured by ELISA. No differences in age, body mass, BMI, and body composition were observed in study groups. We did not observe differences of serum concentrations of TNF-α, sTNFRs, leptin, and IL-6 between subgroup A and subgroups B and C. It seems that circulating adipokines did not exert influence on depression levels in obese women.

  4. Metabolic syndrome criteria as predictors of insulin resistance, inflammation and mortality in chronic hemodialysis patients.

    Science.gov (United States)

    Vogt, Barbara Perez; Souza, Priscilla L; Minicucci, Marcos Ferreira; Martin, Luis Cuadrado; Barretti, Pasqual; Caramori, Jacqueline Teixeira

    2014-10-01

    Abstract Background: Chronic kidney disease (CKD) and metabolic syndrome are characterized by overlapping disorders, including glucose intolerance, hypertension, dyslipidemia, and, in some cases, obesity. However, there are no specific criteria for the diagnosis of metabolic syndrome in CKD. Metabolic syndrome can also be associated with increased risk of mortality. Some traditional risk factors may protect dialysis patients from mortality, known as "reverse epidemiology." Metabolic syndrome might undergo reverse epidemiology. The objectives were to detect differences in frequency and metabolic characteristics associated with three sets of diagnostic criteria for metabolic syndrome, to evaluate the accuracy of insulin resistance (IR) and inflammation to identify patients with metabolic syndrome, and to investigate the effects of metabolic syndrome by three sets of diagnostic criteria on mortality in chronic hemodialysis patients. An observational study was conducted. Diagnostic criteria for metabolic syndrome proposed by National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III), International Diabetes Federation (IDF), and Harmonizing the Metabolic Syndrome (HMetS) statement were applied to 98 hemodialysis patients. The prevalence of metabolic syndrome was 51%, 66.3%, and 75.3% according to NCEP ATP III, IDF, and HMetS criteria, respectively. Diagnosis of metabolic syndrome by HMetS was simultaneously capable of revealing both inflammation and IR, whereas NCEP ATP III and IDF criteria were only able to identify IR. Mortality risk increased in the presence of metabolic syndrome regardless of the criteria used. The prevalence of metabolic syndrome in hemodialysis varies according to the diagnostic criteria used. IR and inflammation predict metabolic syndrome only when diagnosed by HMetS criteria. HMetS was the diagnostic criteria that can predict the highest risk of mortality.

  5. The impact of obesity towards prostate diseases

    Directory of Open Access Journals (Sweden)

    Dyandra Parikesit

    2016-03-01

    Full Text Available Evidence has supported obesity as a risk factor for both benign prostate hyperplasia (BPH and prostate cancer (PCa. Obesity causes several mechanisms including increased intra-abdominal pressure, altered endocrine status, increased sympathetic nervous activity, increased inflammation process, and oxidative stress, all of which are favorable in the development of BPH. In PCa, there are several different mechanisms, such as decreased serum testosterone, peripheral aromatization of androgens, insulin resistance, and altered adipokine secretion caused by inflammation, which may precipitate the development of and even cause high-grade PCa. The role of obesity in prostatitis still remains unclear. A greater understanding of the pathogenesis of prostate disease and adiposity could allow the development of new therapeutic markers, prognostic indicators, and drug targets. This review was made to help better understanding of the association between central obesity and prostate diseases, such as prostatitis, BPH, and PCa.

  6. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    OpenAIRE

    Iagher Fabiola; Aikawa Julia; Rocha Ricelli ER; Machado Juliano; Kryczyk Marcelo; Schiessel Dalton; Borghetti Gina; Yamaguchi Adriana A; Pequitto Danielle CT; Coelho Isabela; Brito Gleisson AP; Yamazaki Ricardo K; Naliwaiko Katya; Tanhoffer Ricardo A; Nunes Everson A

    2011-01-01

    Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish...

  7. Combining insulin with metformin or an insulin secretagogue in non-obese patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Lund, Søren S; Tarnow, Lise; Frandsen, Merete

    2009-01-01

    . Patients had had type 2 diabetes for approximately 10 years. At the end of treatment, HbA(1c) concentration was reduced by a similar amount in the two treatment groups (insulin plus metformin: mean (standard deviation) HbA(1c) 8.15% (1.32) v 6.72% (0.66); insulin plus repaglinide: 8.07% (1.49) v 6.90% (0......OBJECTIVES: To study the effect of insulin treatment in combination with metformin or an insulin secretagogue, repaglinide, on glycaemic regulation in non-obese patients with type 2 diabetes. DESIGN: Randomised, double blind, double dummy, parallel trial. SETTING: Secondary care in Denmark between......% confidence interval -4.07 to -0.95). CONCLUSIONS: In non-obese patients with type 2 diabetes and poor glycaemic regulation on oral hypoglycaemic agents, overall glycaemic regulation with insulin in combination with metformin was equivalent to that with insulin plus repaglinide. Weight gain seemed less...

  8. Changes of serum leptin, adiponection and insulin levels in females with simple obesity

    International Nuclear Information System (INIS)

    Wei Tao; Duan Wennuo; Ma Yongxiu; Chen Yanping

    2004-01-01

    Objective: To study the changes of serum leptin, insulin and adiponectin levels and their relationship with BMI in females with simple obesity. Methods: Serum leptin, adiponectin and insulin levels were measured with RIA in 48 pre-obese females (BMI=23-24.9 kg/m 2 ), 40 females with simple obesity, (BMI≥25 kg/m 2 ) and 42 female controls (BMI 18-22.9 kg/m 2 ). Correlations among these variables were studied. Results: Serum leptin, insulin levels were significantly higher and serum adiponectin levels were significantly lower in both the pre-obese and obese females than those in controls. Serum leptin, insulin levels were positively correlated to BMI; Serum adiponectin levels were negatively correlated to BMI. Conclusion: Within normal range of BMI, the leptin-insulin feedback mechanism provided satisfactory self-regulation. However, with excessive BMI, this dynamic equilibrium would be disrupted. The defective equilibrium, together with the abnormal low adiponectin level, would predispose to the development of diabetes mellitus. (authors)

  9. Comparison of inflammation and oxidative stress levels by the severity of obesity in prepubertal children

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Surya Candra Eka Pertiwi

    2018-01-01

    Full Text Available Background Children with severe obesity are more likely to develop diabetes and cardiovascular diseases at a younger age. Inflammation and oxidative stress associated with childhood obesity may be important in the development of insulin resistance and atherosclerosis. Objective To compare levels of high-sensitivity C-reactive protein (hsCRP and malondialdehyde (MDA by the severity of obesity in prepubertal children aged 6 to 10 years. Methods We conducted a cross-sectional study at the Pediatric Nutrition and Metabolic Syndrome Clinic, Sanglah Hospital, Bali, from August to December 2015. Subjects were categorized into three body mass index (BMI groups, according to the 2000 Centers for Disease Control and Prevention growth chart: overweight (85th-94.9th percentile, obese (95th-98.9th percentile, or severely obese (≥ 99th percentile. Plasma MDA and serum hsCRP were analyzed in blood specimens obtained at enrollment. Data were analyzed by Kruskal-Wallis test, followed by Mann-Whitney U test for post-hoc comparison between groups. Results Subjects were 20 overweight children, 29 obese children, and 28 severely obese children. Levels of MDA were significantly higher in the severely obese [median 0.25 (IQR 0.1 μmol/L] than in obese subjects [median 0.19 (IQR 0.1 μmol/L; P=0.001], and than in overweight subjects [median 0.16 (IQR 0.1 μmol/L; P<0.0001]. Also, the severely obese children had significantly higher hsCRP levels compared to obese [median 3.2 (IQR 2.0 mg/L vs. 1.3 (1.6 mg/L, respectively; P<0.0001] and compared to overweight children [median 0.7 (IQR 0.6 mg/L; P<0.0001].     Conclusion Prepubertal children at the ≥ 99th percentile for BMI (severely obese are more likely to have significantly higher hsCRP and MDA compared to those in the obese and overweight groups.

  10. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2017-10-01

    Full Text Available Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL levels. Moreover, polyunsaturated fatty acids (PUFAs and monounsaturated fatty acids (MUFAs are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.

  11. Inflammation, insulin resistance, and diabetes--Mendelian randomization using CRP haplotypes points upstream.

    Directory of Open Access Journals (Sweden)

    Eric J Brunner

    2008-08-01

    Full Text Available Raised C-reactive protein (CRP is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables.We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study. Homeostasis model assessment-insulin resistance (HOMA-IR and hemoglobin A1c (HbA1c were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29-1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p = 0.52-0.92. The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p = 0.007-0.11. Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p = 0.25-0.88. Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls using three SNPs in tight linkage disequilibrium with our

  12. Prevalence of impaired glucose tolerance and insulin resistance among obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Robabeh Ghergherechi

    2010-07-01

    Full Text Available Robabeh Ghergherechi1, Ali Tabrizi21Department of Pediatrics Endocrinology, Tabriz University of Medical Sciences, Tabriz, Iran; 2Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, IranPurpose: Obesity is one of the most important nutritional disorders in the world which has an obvious relationship with the incidence of metabolic diseases. Obesity prevalence has increased among children and adolescents during recent decades, leading to a rise in Type 2 diabetes mellitus (DM II prevalence in these two age brackets. Hence, the aim of this study was to assess impaired glucose tolerance and insulin resistance, and gather metabolic findings in obese children and adolescents.Methods and materials: We studied 110 obese children and adolescents (body mass index > 95th percentile for age and gender 4–18 years of age referred to the endocrine clinic of the Children’s Hospital at Tabriz University in a descriptive cross-sectional study. ­Fasting glucose, insulin, and lipid profile in all subjects were determined. Oral glucose tolerance test after eating 75 g/kg glucose was performed. Homeostatic model assessment was used to ­estimate insulin resistance.Results: Impaired glucose tolerance and insulin resistance prevalence in 68 obese adolescents was 14.7% and 31.8%, respectively. Impaired glucose tolerance and insulin resistance was not seen in 23.8% of 42 obese children. No case of DM II was seen. There was a significant statistical difference in glucose (P = 0.003 and insulin (P < 0.001 level at minute 120 in individuals with impaired glucose tolerance compared to obese children and adolescents without impaired glucose tolerance. Rate of insulin resistance in patients with impaired glucose tolerance was greater and had a significant statistical difference (P = 0.03.Conclusion: Obesity has a close relationship with increased risk of impaired glucose tolerance and insulin resistance in children and adolescents. Oral glucose

  13. The Association Between Obesity and Cognitive Function in Older Persons: How Much Is Mediated by Inflammation, Fasting Plasma Glucose, and Hypertriglyceridemia?

    Science.gov (United States)

    Gunathilake, Roshan; Oldmeadow, Christopher; McEvoy, Mark; Inder, Kerry J; Schofield, Peter W; Nair, Balakrishnan R; Attia, John

    2016-12-01

    The aim of the study was to determine how much of the association between obesity, measured by body mass index (BMI), and cognition in older persons is mediated through inflammation, fasting plasma glucose, and hypertriglyceridemia. Anthropometrics, high-sensitivity C-reactive protein (CRP), fasting plasma glucose, and serum triglycerides were measured in 3,256 community-dwelling individuals aged 55-85 years residing in Newcastle, New South Wales, Australia. Audio recorded cognitive screen (ARCS) was used to assess multiple cognitive domains. Mediation analyses showed very modest but significant direct mediation effects, whereby obesity was associated with better cognitive function after adjusting for potential confounders (controlled direct effect ≈ 1/500 point increase in the total ARCS score per 1.0-kg/m 2 increase in BMI). There were significant indirect negative mediation effects from BMI to cognition mediated through CRP, that is, increased BMI was associated with increased CRP which was associated with decreased cognition (natural indirect effect -0.20 unit; 95% confidence interval [CI] -0.39, -0.02), and through fasting plasma glucose, that is, increased BMI was associated with increased fasting plasma glucose which was associated with decreased cognition (natural indirect effect -0.12 unit; 95% CI -0.24, -0.01], but not through serum triglycerides. There is a weak positive association between obesity and cognitive performance in older persons, which is partially antagonized by inflammation and elevated fasting plasma glucose, but not hypertriglyceridemia. Further studies are needed to elucidate whether this is due to selection bias, or truly reflects biologically complex and counter balancing pathways involved in obesity. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature1234

    Science.gov (United States)

    2016-01-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. PMID:26980825

  15. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Kowalska, Irina; Straczkowski, Marek; Nikolajuk, Agnieszka; Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Otziomek, Elzbieta; Wolczynski, Slawomir; Gorska, Maria

    2007-07-01

    Visfatin, a protein secreted by adipose tissue, is suggested to play a role in pathogenesis of insulin resistance. In polycystic ovary syndrome (PCOS), insulin resistance might be involved in the development of endocrine and metabolic abnormalities. The aim of the study was to asses the relation between serum visfatin concentration and insulin sensitivity and markers of hyperandrogenism in lean and obese PCOS patients. The study group consisted of 70 women with PCOS (23 lean and 47 obese) and 45 healthy women (25 lean and 20 obese). Euglycemic hyperinsulinemic clamp and the measurements of serum visfatin, sex hormones were performed. The PCOS group had lower insulin sensitivity (P=0.00049) and higher serum visfatin (P=0.047) in comparison to the control group. The decrease in insulin sensitivity was present in both the lean (P=0.019) and obese (P=0.0077) PCOS subjects, whereas increase in serum visfatin was observed only in lean PCOS subjects (P=0.012). In the whole group, serum visfatin was negatively correlated with insulin sensitivity (r=-0.27, P=0.004). This relationship was also observed in the subgroup of lean (r=-0.30, P=0.038), but not obese women. Additionally, in lean women, visfatin was associated with serum testosterone (r=0.47, P=0.002) and free androgen index (r=0.48, P=0.002), independently of other potential confounding factors. Visfatin is associated with insulin resistance and markers of hyperandrogenism in lean PCOS patients.

  16. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Yan-Chuan Li

    2016-07-01

    Full Text Available Our previous studies have demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women and high-fat diet-induced obese rats. However, the effects of dietary histidine on general population are not known. The objective of this Internet-based cross-sectional study was to evaluate the associations between dietary histidine and prevalence of overweight/obesity and abdominal obesity in northern Chinese population. A total of 2376 participants were randomly recruited and asked to finish our Internet-based dietary questionnaire for the Chinese (IDQC. Afterwards, 88 overweight/obese participants were randomly selected to explore the possible mechanism. Compared with healthy controls, dietary histidine was significantly lower in overweight (p < 0.05 and obese (p < 0.01 participants of both sexes. Dietary histidine was inversely associated with body mass index (BMI, waist circumference (WC and blood pressure in overall population and stronger associations were observed in women and overweight/obese participants. Higher dietary histidine was associated with lower prevalence of overweight/obesity and abdominal obesity, especially in women. Further studies indicated that higher dietary histidine was associated with lower fasting blood glucose (FBG, homeostasis model assessment of insulin resistance (HOMA-IR, 2-h postprandial glucose (2 h-PG, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, C-reactive protein (CRP, malonaldehyde (MDA and vaspin and higher glutathione peroxidase (GSH-Px, superoxide dismutase (SOD and adiponectin of overweight/obese individuals of both sexes. In conclusion, higher dietary histidine is inversely associated with energy intake, status of insulin resistance, inflammation and oxidative stress in overweight/obese participants and lower prevalence of overweight/obesity in northern Chinese adults.

  17. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study.

    Science.gov (United States)

    Li, Yan-Chuan; Li, Chun-Long; Qi, Jia-Yue; Huang, Li-Na; Shi, Dan; Du, Shan-Shan; Liu, Li-Yan; Feng, Ren-Nan; Sun, Chang-Hao

    2016-07-11

    Our previous studies have demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women and high-fat diet-induced obese rats. However, the effects of dietary histidine on general population are not known. The objective of this Internet-based cross-sectional study was to evaluate the associations between dietary histidine and prevalence of overweight/obesity and abdominal obesity in northern Chinese population. A total of 2376 participants were randomly recruited and asked to finish our Internet-based dietary questionnaire for the Chinese (IDQC). Afterwards, 88 overweight/obese participants were randomly selected to explore the possible mechanism. Compared with healthy controls, dietary histidine was significantly lower in overweight (p obese (p Dietary histidine was inversely associated with body mass index (BMI), waist circumference (WC) and blood pressure in overall population and stronger associations were observed in women and overweight/obese participants. Higher dietary histidine was associated with lower prevalence of overweight/obesity and abdominal obesity, especially in women. Further studies indicated that higher dietary histidine was associated with lower fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), 2-h postprandial glucose (2 h-PG), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), malonaldehyde (MDA) and vaspin and higher glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and adiponectin of overweight/obese individuals of both sexes. In conclusion, higher dietary histidine is inversely associated with energy intake, status of insulin resistance, inflammation and oxidative stress in overweight/obese participants and lower prevalence of overweight/obesity in northern Chinese adults.

  18. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    International Nuclear Information System (INIS)

    Liu, Wei-Xin; Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen; Gu, Shou-Zhi; Sang, Li-Xuan; Dai, Cong; Wang, Hai-Lan

    2015-01-01

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  19. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Xin, E-mail: weixinliu@yahoo.com [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Gu, Shou-Zhi [Department of Anatomy, Seirei Christopher College, Hamamatsu 433-8558 (Japan); Sang, Li-Xuan [Department of Cadre Ward II, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Dai, Cong [Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning (China); Wang, Hai-Lan [Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, Guangdong (China)

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  20. Insulin resistance and endocrine-metabolic abnormalities in polycystic ovarian syndrome: Comparison between obese and non-obese PCOS patients.

    Science.gov (United States)

    Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad

    2016-04-01

    Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI 2.3) between two groups (p=0.357). Waist circumference (pPCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients.

  1. Independent Benefits of Meeting the 2008 Physical Activity Guidelines to Insulin Resistance in Obese Latino Children

    Directory of Open Access Journals (Sweden)

    Nazrat Mirza

    2012-01-01

    Full Text Available We examined the independent association between moderate-to-vigorous physical activity (MVPA and insulin resistance (IR among obese Latino children (N=113; 7–15 years who were enrolled in a community-based obesity intervention. Baseline information on physical activity was gathered by self-report. Clinical assessments of body composition, resting energy expenditure (REE, as well as glucose and insulin responses to an oral glucose tolerance test (OGTT were performed after an overnight fast. Insulin resistance was defined as a 2 h insulin concentration >57 μU·mL-1. We observed that those obese children who met the 2008 Guidelines for MVPA (≥60 min/day experienced a significantly lower odds of IR compared with those not meeting the Guidelines (OR=0.29; 95% CI: (0.10–0.92 and these findings were independent of age, sex, pubertal stage, acculturation, fasting insulin, and 2 h glucose concentrations. Efforts to promote 60 min or more of daily MVPA among children from ethnic minority and high-risk communities should assume primary public health importance.

  2. Study of genetic variation in the STAT3 on obesity and insulin resistance in male adults.

    Science.gov (United States)

    Gianotti, Tomas F; Sookoian, Silvia; Gemma, Carolina; Burgueño, Adriana L; González, Claudio D; Pirola, Carlos J

    2008-07-01

    Signal transducer and activator of transcription 3 (STAT3) plays an important role in hepatic glucose homeostasis and carbohydrate metabolism and has been implicated in the leptin-mediated energy homeostasis. We explored whether STAT3 gene variants are associated with obesity and insulin resistance in a well-characterized sample of 984 adult men (aged 34.4+/-8.6 years) of self-reported European ancestry from a population-based study. We analyzed three tagging single-nucleotide polymorphisms (tagSNPs), two intronic (rs2293152 and rs6503695) and one located in a noncoding region near the gene promoter (rs9891119). These variants were not associated with either obesity (in which 488 lean individuals were compared to 496 overweight/obese subjects) (P values: 0.68, 0.49, and 0.9 for rs2293152, rs6503695, and rs9891119, respectively) or BMI as a continuous trait (P values: 0.85, 0.73, and 0.58 for rs2293152, rs6503695, and rs9891119, respectively). We found no significant association between the three tagSNPs and fasting plasma glucose and insulin. Likewise, no association was observed between the homeostasis model assessment (HOMA) index and any of the tagSNPs. A significant association was observed with total cholesterol and rs6503695 (nominal P value 0.019), but after correcting for multiple testing by Bonferroni correction, the significance becomes marginal (P=0.057). In conclusion, although STAT3 is an excellent candidate gene for assessing obesity and insulin resistance susceptibility alleles, our results do not support a major role for STAT3 variants in BMI and insulin resistance in our male population.

  3. Total adiponectin and adiponectin multimeric complexes in relation to weight loss-induced improvements in insulin sensitivity in obese women

    DEFF Research Database (Denmark)

    Polak, J.; Kovacova, Z.; Holst, C.

    2008-01-01

    , and LMW). The HMW form was suggested to be closely associated with insulin sensitivity. This study investigated whether diet-induced changes in insulin sensitivity were associated with changes in adiponectin multimeric complexes. SUBJECTS: Twenty obese women with highest and twenty obese women with lowest...... diet induced changes in insulin sensitivity (responders and non-responders respectively), matched for weight loss (body mass index (BMI)=34.5 (s.d. 2.9) resp. 36.5 kg/m(2) (s.d. 4.0) for responders and non-responders), were selected from 292 women who underwent a 10-week low-caloric diet (LCD; 600 kcal...

  4. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature.

    Science.gov (United States)

    Nommsen-Rivers, Laurie A

    2016-03-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. © 2016 American Society for Nutrition.

  5. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    Science.gov (United States)

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-06-08

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese.

  6. Obesity-induced vascular inflammation involves elevated arginase activity.

    Science.gov (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William

    2017-11-01

    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and in